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Summary 
 

A numerical heat transfer study on spheres and droplets in two-phase 

flows  

In many industrial processes droplets are present with different physical and chemical 

properties. Heat transfer from droplets as a major step is present in many different 

processes, such as spray drying, combustion, spray cooling, etc. The purpose of the 

present research is to investigate heat transfer in deforming droplets.  

As an initial step the problem of heat transfer in a solid sphere where the temperature of 

the sphere is assumed to remain constant is considered. The model is validated by 

comparison with literature results. The effect of the mesh size on the accuracy of the 

Nusselt number is also investigated. As next step, the heat transfer from a solid sphere 

in which there is internal temperature distribution is considered to show the effect of the 

variable surface temperature on heat transfer rate. This is presented by the variation of 

the local and average Nusselt number. The results show that the internal temperature 

distribution affects the heat transfer rate significantly. Therefore, to have a reliable 

estimation of the local Nusselt number, the internal temperature distribution and the local 

variation of the surface temperature of the particle should also be considered. The result of 

the mesh sensitivity study shows that the grid resolution while does not significantly affect 

the average Nusselt number but affects the local Nusselt number at the front stagnation 

point and at the rear of the particle, therefore a proper mesh resolution should be used.  

By using a coupled level-set and volume of fluid method the problem of heat transfer 

from deforming droplets are solved as the final step.  The deformation of droplets as 

well as the location of the droplet in the domain can be captured with this method. 

Although the level-set method is not mass conserving, coupling it with the volume of 

fluid method provides mass conservation. The case of a falling droplet and colliding 

droplets with different geometrical configurations for different Reynolds and Weber 

numbers are considered.  
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Summary 

In the study of heat transfer over a falling and deforming water droplet in air for different 

Weber and Reynolds numbers, the results show that in order to have a reliable estimation 

of the local Nusselt number, the internal temperature distribution should be considered. In 

this way the correct local surface temperature of the droplet which is used in the Nusselt 

number calculations is obtained. A cyclic deformation is observed in the surface area of a 

falling droplet for which the period increases by increasing the Weber number. Since in the 

calculation of the Nusselt number the surface area is used, it is important to use the correct 

surface area from which the heat is being transferred. 

The sensitivity study of the heat transfer rate to the Reynolds number and the Weber 

number shows that increasing the Reynolds number and Weber number both increase the 

Nusselt number. However, the effect of the Reynolds number variation is more significant.  

The flow and heat transfer in colliding droplets is studied in 3D for different Weber 

numbers, Reynolds numbers and eccentricity of droplets. Droplets are allowed to 

deform under the hydrodynamic forces of the surrounding flow. A coupled level-set and 

volume of fluid (CLSVOF) method is applied to model the highly deforming topology 

of the droplets. The temperature distribution inside the droplet as well as the outer 

domain is considered and the consequent effect on the Nusselt number is studied. 

The results show that the eccentricity of droplets has a significant effect on the Nusselt 

number. If the droplets deform considerably due to the collision, the heat transfer from 

the droplets will be strongly enhanced. It is concluded from the calculations for different 

Reynolds numbers that heat transfer rate is increased by increasing the Reynolds 

number. The surface tension controls the extent of deformations, so increasing the 

Weber number for a certain approach velocity results in larger deformations in droplets 

and therefore a higher heat transfer rate is achieved. The role of using the real surface 

area of droplets in calculation of the Nusselt number is also studied, it is concluded that 

in problems with high Weber numbers it is required that the real surface area is used in 

the heat transfer calculations. On the other hand, for cases with lower Weber numbers in 

which the deformations are negligible, using the real surface area is not necessary. 

In the study of flow and heat transfer in colliding droplets two different solvers for 

pressure and velocity have been used: an iterative solver and a direct solver. Since the 

direct solver is computationally less effortful and much faster than the iterative solver it 

can be applied on finer meshes. Therefore, results with higher resolution and less 

numerical instabilities can be achieved which makes the direct solver a suitable choice 

to solve problems with large topological changes. 
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1 Introduction 
 

 
 

 

 

1.1 Background and motivation  

 

Droplets and bubbles are observed in different shapes and sizes in nature, such as in rain 

or waterfall mists and in various fields of industry, from food industry to oil and gas 

production. In many industrial applications droplets are present, such as spray 

combustion, spray drying, spray cooling, spray atomization, spray deposition, spray 

cleaning and surface treatment.  

Droplets may form in different ways, such as, condensation, liquid breakup and melting. 

In many industrial applications, droplets are formed due to liquid break up like in 

atomization which in turn can be obtained by aerodynamic or mechanical forces, or by 

exposing the liquid to ultrasonic or electrostatic fields. The size and shape of droplets 

are of high importance in applications with discrete droplets, where reaction rates, 

cooling, solidification or evaporation rates are dependent on the surface area of droplets. 

Droplet deformation due to impact on a surface is also an important phenomenon, such 
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as, erosion in aircraft surfaces due to rain drops, or the erosion of turbine blades in wet 

steam.  

When there are different phases present in a flow and each phase with its own 

properties, exchange of momentum, mass and energy may occur. Heat and mass transfer 

in droplets is important phenomena, such as evaporation of fuel droplets in internal 

combustion engines, film evaporation of water from the surface of biomass fuels and 

mass transfer to the absorbent droplets in CO2 capture are a few examples. Some 

examples of industrial processes in which multiphase flows are present are as follows. 

 

 

 

Figure 1.1 Flow regimes in a geothermal well. 

 

In an oil pipeline, gas bubbles can assist in the lifting of the oil. On the other hand they 

affect the pressure, temperature and viscosity of the mixture in the pipeline. In some 

cases these droplets can coalesce and therefore, making liquid slugs in the pipeline 

which can cause damage to the pipeline due to vibrations.  In a geothermal well, hot 

water and steam move upwards. Since the pressure of the fluid decreases along the 

pipeline, more vapors are produced in time, which can result in different flow regime as 
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shown in Figure 1.1. The vapor phase initially appears as spherical bubbles. As the 

concentration of the bubbles increases, they can coalesce to make irregular bubbles or 

elongated Taylor bubbles, this regime is known as the slug flow. When the 

concentration of the vapor goes even higher, an annular flow will form. The last stage is 

the droplet flow in which the liquid annulus evaporates due to low pressure and breaks 

into droplets. In boilers and burners almost all these regimes occur, but due to addition 

of heat at the end, droplets and the liquid film evaporate to vapor. Here, thermal 

instabilities may cause problems which have to be controlled. Another undesired 

evaporation is cavitation that can occur due to pressure drop below the vapor pressure. 

This evaporated liquid will rupture farther down in the form of droplets in the flow due 

to increase in the surrounding pressure. The result of these bursts is damage to the 

structure on which cavitation is occurring. Figure 1.2 shows how a cavitating flow looks 

like and how it can damage the structures.  

 

        

Figure 1.2 Cavitation near the maximum thickness of an airfoil. From Kermeen (1965) 

(left), damage caused by cavitation on a pump propeller (right). 

 

Condensation is also an important phenomenon in many industrial applications, in 

which colder droplets are introduced into the steam through some spray nozzles. Vapor 

condenses when encountered with colder droplets and therefore, droplets grow in size. 

In this procedure heat transfer, droplet size, and relative velocity are important 

parameters. The evaporation can be done by adding bubbling steam, and the fractions of 

oil are condensed at different temperatures. 

Spray drying can be used in food, pharmaceutical or chemicals production. This 

procedure is done by introducing a hot air flow through the spray of the material, the 

droplets evaporate due to heat exchange with the hot air flow and thus the material is 
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dried. Efficient heat transfer will enhance the production of dried material at the end of 

the procedure. In the review of the literature there is a wide range of research that has 

been performed on heat and mass transfer to or from droplets. 

1.2 Literature review 

 

The main interest in this work is the flow and heat transfer in deforming droplets. The 

relevant literature has been reviewed and the summary of the past work on this problem 

is presented in this section. 

 

1.2.1 Experimental work on droplet heat transfer 

In order to perform accurate measurements proper optical facilities are required. 

Different measurement techniques can be used to extract velocity and temperature 

fields. To track the velocity field, tracer particle can be added to the liquid phase. By 

using Particle Image Velocimetry (PIV) the velocity field can be measured. For 

temperature measurements a two-color laser-induced fluorescence (LIF) can be used to 

characterize the temporal evolution of the temperature field and to measure heat transfer 

a laser phase-Doppler anemometry (PDA) can be used. 

There are many experimental studies on heat and mass transfer of multiphase flows with 

discrete droplets. Different optical equipment, various measurement techniques and 

facilities are applied to enhance the understanding of the physics of the problem and the 

characteristic parameters. The problem of flow over droplets and heat and mass transfer 

from them has been treated with different experimental means. The main issue in 

performing experiments is to have proper optical facilities to accurately capture the 

moving interfaces. In the study of Fujita, Kurose and Komori (2010) the effect of 

relative humidity on heat transfer of an evaporating water droplet in air flow is 

investigated. PIV is applied to measure the flow velocity as in the study by ten Cate et 

al. (2002). Castanet, Labergue and Lemoine (2011) have investigated the heat and mass 

transfer between the two phases of an evaporating droplet stream by using laser-induced 

fluorescence (LIF) techniques. They have used a two-color laser induced fluorescence 

to characterize the temporal mean temperature of droplets. To track the vapor phase 

acetone planar laser-induced fluorescence is used (PLIF) which is based on the 

absorption of the incident light by molecules which are excited to a higher energy level. 

A study on the measurement of heat transfer from hot surfaces to non-wetting droplets 

is performed by Chatzikyriakou et al. (2011) using transient, high resolution, infrared 
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microscopy and by observing a thin metallic layer from beneath through an infrared-

transparent substrate. Another experimental study on droplet dynamics and heat transfer 

in spray cooling is performed by Jia and Qiu (2003). The incoming and outgoing 

droplets were characterized in situ with a newly developed laser phase-Doppler 

anemometry (PDA).  

For an extensive review of literature on experimental studies on droplets the reader is 

referred to the experimental study of Oldenziel (2014) on droplet collisions in 

turbulence. 

1.2.2 Computational work on droplet heat transfer 

As the computers and also the numerical methods improved in time, further numerical 

studies performed in more detail with higher accuracy. To optimize the design of 

systems and machines, numerical modeling is an important step to have an estimate of 

the physics of the problem and to avoid expensive fabrication of small or large scale 

experimental models. Also there is the possibility of changing inputs more easily when 

working with the numerical models comparing to an actual system in which changing a 

specific parameter might not be feasible. The more the physics of the problem is known 

the closer one can get to a sustainable design.  

In the early studies with lower performance computations, it was only possible to 

perform studies on one or two dimensional heat and mass transfer from droplets and the 

Reynold numbers were mostly limited to the laminar range of flow. In most of these 

studies the droplets are assumed to remain spherical (non-deforming droplets) or 

droplets with low Weber numbers were considered. Other assumptions were made on 

the temperature of the droplets. In some studies the droplets were assumed to have 

uniform temperature, and in some other studies the surface temperature of the droplets 

was assumed uniform.  

To name a few examples of such studies the work of Galloway and Sage (1964) on 

thermal and material transfer in turbulent gas streams for spheres, Chen and Mucoglu 

(1977) on flow and heat transfer characteristics of laminar mixed forced and free 

convection about a sphere and Hayward and Pei (1978) on the local heat transfer of a 

sphere in turbulent air stream can be mentioned. In all of these studies the surface 

temperature is assumed to be uniform. Woo and Hamielec (1971) performed a 

numerical study of falling evaporating droplets for a Reynolds number up to 300 with 

axisymmetric flow assumption. The same assumption was used in the study of Prakash 

and Sirignano (1980) in which the radius of the droplet was also assumed to remain 

constant during evaporation. The changes of droplet radius has been considered with a 
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rescaling mesh in the study of Renksizbulut and Haywood (1988). However, two-

dimensional axisymmetric equations were still solved. Even in some recent studies such 

as the work of Abou Al-Sood and Birouk (2008), Juncu (2010) and Castanet et al. 

(2011) still assumptions such as spherical droplets and uniform surface temperature are 

used. There are also studies on heat transfer in liquid droplets considering the internal 

circulation but the droplet is assumed to remain a sphere, Nguyen, Paik and Chung 

(1993). 

To investigate the problem of flow and heat transfer in droplets comprehensively, the 

deformation of droplets and the internal temperature distribution should also be 

considered. The deformation of droplets will change the interface as well. Therefore, 

locating the interface is a major task in the computational approach to solve multiphase 

flows with topological changes. As it was mentioned in the previous section, there are 

different methods to capture the interface in multiphase flows. Therefore, this is a 

moving boundary problem, for which either Eulerian or Lagrangian methods can be 

used. Tracking methods are of Lagrangian nature, in these methods the interface 

between the phases is tracked by the marker points which are defined at the interface.  

Examples of tracking methods are, front-tracking method as in Tryggvason et al. 

Tryggvason et al. (2001), the Constrained Interpolation Profile (CIP) method as in Hu 

and Kashiwagi (2004), Yabe, Xiao and Utsumi (2001) and Takizawa et al. (2007) and 

boundary integral such as study of Hou, Lowengrub and Shelley (2001). There are 

many studies using adaptive mesh or moving mesh for multiphase heat and mass 

transfer problems, such as study of Petera and Weatherley (2001) on mass transfer from 

a falling droplet, Quan, Lou and Schmidt (2009) using interface tracking in merging and 

breakup by using moving mesh. Adaptive mesh has been used by Anderson, Zheng and 

Cristini (2005) for simulation of multiphase flow, Quan and Schmidt (2007) for 

capturing interface curvature, Tan, Lim and Khoo (2007) for incompressible mixture 

flows and by Quan (2011) for multiphase flows interface tracking. In these studies the 

whole domain or a part of it has to be re-meshed every time step which makes them 

computationally expensive and therefore not suitable for problems with many droplets 

or with large topological changes.  

In order to avoid the computational effort of re-meshing the domain, the governing 

equations can be solved on an Eulerian grid, using a front-capturing method to capture 

the interface location and shape. Examples of such methods are the volume of fluid 

(VOF) method, phase-field methods and the level-set method, in which the marker 

function is directly advected. The reader is referred to Hirt and Nichols (1981), Puckett 
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et al. (1997) and Badalassi, Ceniceros and Banerjee (2003) for more details on these 

methods.  

There are a number of studies using such methods for heat and mass transfer problems. 

Most of these studies are limited to two-dimensional or axisymmetric cases. Examples of 

such studies are, the work of  Gibou et al. (2007) applying a level set sharp interface 

method for multiphase flow with phase change, Tanguy, Ménard and Berlemont (2007) 

using a Level set method for vaporizing two-phase flows.  Davidson and Rudman (2001) 

used the VOF method for heat and mass transfer in deforming interfaces. Flow with 

phase change have been studied by Welch and Wilson (2000), Jin and Shaw (2010) and 

Banerjee (2013) applying the VOF method.  

There have been also studies on heat and mass transfer in droplets in 3D but they are 

mostly limited to the case of a single droplet. The study of Gilmanov and Acharya 

(2008) on heat transfer and flow past deformable objects and Hase and Weigand (2004) 

on heat transfer from a single deforming droplet by VOF are such examples.  

Al-Sharafi, Yilbas and Ali (2017) have studied the effect of droplet size on droplet 

thermal characteristic on micro-post arrays which are created via lithography on a 

silicon wafer. Che et al. (2015) have shown the effect of the flow inside of droplets on 

heat transfer in droplet-based microchannel heat sinks using the finite volume method 

and the level-set methods. To our knowledge, although there are extensive numerical 

and experimental studies focused on hydrodynamics of binary collision of droplets in 

the literature, such as Pan and Suga (2005), Mohammadi, Shahhosseini and Bayat 

(2012), Nikolopoulos et al. (2012) and Kwakkel, Breugem and Boersma (2013), Hu et 

al. (2017)  Sun et al. (2018), the study of heat transfer in colliding droplets has not been 

studied in detail. 

 

1.3 Objective 

 

The objective of this work is to develop a numerical model for multiple droplets 

colliding, deforming with thermal interaction with the ambient flow. A coupled level set 

and volume of fluid method is applied to capture the interfaces in the computational 

domain while conserving mass and volume. The code is equipped with a coalescence 

and break up module that can prevent numerical coalescence of droplets when they are 

in the vicinity of each other and not colliding.  
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1.4 Outline 

 

The content of the following chapters are as follows. In Chapter 2 the governing 

equations, the numerical solutions for the governing equations of multiphase flow, the 

spatial and temporal discretization, the interface description and advection are 

presented. The fast pressure and momentum solver is also introduced in this chapter. 

Chapter 3 is focused on the heat transfer from a single solid sphere. The effect of 

considering internal temperature distribution inside the solid sphere on the Nusselt 

number is studied and the results are compared with the case of isothermal solid sphere. 

In Chapter 4 the case of heat transfer from a single deforming droplet is studied for 

different Reynolds numbers and Weber numbers. Heat transfer from colliding droplets 

for different Reynolds numbers, Weber numbers and eccentricities of droplets with an 

iterative solver and a direct solver is studied in Chapter 5. The conclusions and 

recommendations for future work are given in Chapter 6.  
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2 Governing equations and the 

numerical method 
  

 

 

 

 

 

 

In this chapter the governing equations and the numerical solution are presented. The 

non-dimensional numbers such as the Weber number and the Reynolds number are 

introduced and the non-dimensional forms of the governing equations which are 

obtained by using these numbers are also discussed. The Coupled Level-Set and 

Volume of Fluid method (CLSVOF) for solving problems with large topological 

changes is introduced and the numerical schemes which are applied for the advection 

and diffusion terms are presented. At the end of this chapter the fast pressure and 

momentum solver are discussed which have been implemented to decrease the 

computational cost and to improve the numerical convergence.  
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2.1 Governing equations for multiphase flows 

 

In this work one set of equations is used for the whole domain while the fluid properties 

can change moving from one fluid to another. Since the magnitude of the velocity in 

this study is much smaller than the speed of sound. Thus, the Mach number which is the 

ratio of the fluid velocity and the speed of sound is much smaller than one. Therefore, 

the flow can be assumed incompressible, with different viscosities and densities. Since 

there are no chemical reactions involved viscosity and density remain constant in each 

phase. The mass continuity equation can be written as, Tryggvason et al. (2006), 

   0
t





 


u  (2.1) 

 

In which u, is the velocity, ρ is the density and  is the divergence operator. The density is 

assumed to be constant therefore, equation (2.1) can be reduced to: 

 0 u  (2.2) 

 

The momentum equation holds at every point in the domain, Tryggvason et al. (2006), 

     Tp g
t


  


      



u
uu u u  (2.3) 

 

In which μ is the dynamic viscosity, p is the pressure and g is the gravity force. With the 

help of equation(2.1), (2.3) can be written as, 

     
1 1 Tp g

t


 


        



u
uu u u  (2.4) 

  

The conservation of energy equation from Bird, Stewart and Lightfoot (2007) for an 

incompressible flow is, 

 
 

   
p

p

C T
C T Tk

t





   


u  (2.5) 
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Governing equations and numerical method 

In which Cp is the heat capacity, T is the temperature and k is thermal conductivity of the 

fluid. In this study the variation of the heat capacity with temperature is assumed to be 

negligible. Since Cp   remains constant in each phase the energy equation can be rewritten 

as, 

    
1

p

k
T

T T
t C


   


u  (2.6) 

 

The governing equations are made non-dimensional with the help of the characteristic 

length scale D0, for instance the droplet diameter, velocity scale U0, which is the relative 

velocity of droplets in case of colliding droplets and the inlet velocity in case of a single 

falling droplet, density ρg, viscosity µg, thermal conductivity kg and specific heat capacity 

at constant pressure Cpg of the carrier phase. Ts and T∞ are respectively the initial droplet 

temperature and the far field ambient flow temperature. This results in the definition of the 

following non-dimensional variables: 

'

2

0 0 0 0 0

, , , , , , , ,

g

p

p

g g g p g s

C T Tx t p k
x t p C k T

D U D U U C k T T

 
 

  




              


u
u

 

By introducing these variables in the equations and dropping the primes, the non-

dimensional form of the governing equations are obtained: 

 

 0 u  (2.7) 

  

     
1 1 1T

Re
p z

t Fr


 


        



u
uu u u                            (2.8) 

    
1

p

T
T T

t C PRe r
k




   


u  (2.9) 

 

These equations are valid in each phase but special treatment is required at the interface 

which is discussed in section 2.2. The dimensionless parameters in equations (2.7)-(2.9) 

are the Reynolds number, Froude number and Prandtl number which are respectively 

defined as: 
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2.2 Interface conditions 

 

In numerical simulation of multiphase flow the usual governing equations are solved, but 

in order to couple the equations of different phases the jump conditions at the interface 

have to be exerted. The jump conditions are obtained from the continuity of velocity, 

stresses and heat flux across the interface. The normal velocity should be continuous 

across the interface,Tryggvason, Scardovelli and Zaleski (2011), Tryggvason et al. (2006), 

which can be written as,  

                                    

 
1 2V    nu u n  (2.11) 

 

In which V in the interface velocity and n is the normal to the interface.u1 and u2 are fluid 

velocity vectors at the interface for each phase as shown in Figure 2.1. 

 

 

Figure 2.1 An infinitesimal interface dS, showing the normal to the interface n, the 

interface velocity V, inside and outside velocities u1 and u2 respectively. 

 

Since for viscous fluids the no-slip boundary condition should hold for the tangential 

velocity at the interface, the interface condition for the velocity vector can be written as, 
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  
Γ

0u  (2.12) 

 

Where [.]Γ is the jump notation, i.e.   2 1Γ
x x x  .  

Γ
0u  implies that there is no jump 

in the velocity at the interface.  

Figure 2.3 shows the forces acting on the interface for a stationary case. When there is 

fluid motion, the stresses induced by the velocity should also be considered. Since the 

conservation of momentum should hold at the interface, and the interface is assumed to 

move with the fluid velocity. The jump condition for stresses at the interface can be written 

as, 

  
Γ

Tp       
 

n u u n n  (2.13) 

 

In which n denotes the interface normal vector, κ is the magnitude of the interface 

curvature and σ is the surface tension coefficient which is assumed to be constant. It should 

be noted that the pressure and velocity jump conditions are coupled.  

Kang, Fedkiw and Liu (2000) proposed to regularize the viscosity across the interface. 

In that case the velocity gradients become continuous across the interface. Sussman and 

Puckett (2000) and Chang et al. (1996) have proposed the following smoothed 

Heaviside function to regularize the viscosity: 

  

0                                                            

1 1
1              

2

1                                                            

if

H sin if

if

 

 
  

  

 

 


     
        

    
 

 (2.14) 

  

 

Where 3 2h  and h  is the uniform mesh width. The Heaviside function of  H   for 

a uniform mesh width of 0.05 is shown in Figure 2.2. 
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Figure 2.2 The relation between H (ϕ) and ϕ for a uniform mesh width of 0.05.  

 

 

Then the viscosity can be regularized as follows: 

     1g lH H        (2.15) 

 

By using the regularized viscosity across the interface, the gradient of velocities are also 

continuous across the interface and equation (2.13) can be reduced to: 

  
Γ

p n n  (2.16) 

 

With this reduction the jump conditions for the pressure and velocity are decoupled, and 

there is only a pressure jump at the interface due to the surface tension force. It means 

the same numerical scheme can be used in the whole domain to discretize the 

derivatives of the velocity. 
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Figure 2.3 Forces acting on an interface for stationary fluids with a surface tension of σ. 

 

When there is no phase change due to evaporation or condensation and there is thus no 

latent heat production, the heat flux q should also be continuous across the interface. 

Therefore the jump condition for heat flux can be written as, 

  
Γ

0k T   (2.17) 

 

Inserting the dimensionless variables in jump condition equations, the scaled form of the 

jump conditions are obtained, 

 

  
Γ

0u  (2.18) 

  
Γ

1
p

We
n n  (2.19) 

  
Γ

0k T   (2.20) 

 

The dimensionless Weber number in equation (2.19) is defined as,  

 

2

0 0g D U
We




  (2.21) 

 

The other scalar properties, the thermophysical properties and the temperature are also 

smoothed across the interface and are defined as: 
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     1g lH H        (2.22) 

     1
g lp p pC C H C H     (2.23) 

     1g lk k H k H     (2.24) 

     1g lT T H T H     (2.25) 

 

The dimensionless thermophysical properties and the temperature used in the non-

dimensional Navier-Stokes equations, the energy equation and the interface conditions 

are defined by: 

  1 1l

g

H


 


 
    

 

 (2.26) 
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

 


 
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 (2.27) 
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 
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 (2.28) 
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
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 (2.29) 
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 (2.30) 
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2.3 Computational methods for multiphase flows 

 

A major challenge in solving the governing equations in multiphase flows is to capture 

the whole range of length and time scales to deliver a solution with acceptable accuracy. 

The large scales are droplet, bubbles or wakes and small scales can refer to the filament 

between two bouncing droplets. In colliding and deforming droplets where they can 

break-up or coalesce, smaller scales become more important.  Therefore, the applied 

numerical methods should necessarily capture these small scales accurately. There are 

different methods for solving multi-phase problems, these methods can be categorized 

as, the Two-Fluid approach as in Ishii and Mishima (1984), the Discrete Bubble method 

as in Jain et al. (2013) and direct methods for two-phase flow. In the first two methods, 

a simplified description of the physics is used and the equations are solved with less 

computational effort. These methods are applicable for large scale industrial flows, such 

as the work of Portela and Oliemans (2006) in which they have studied and compared 

different approaches for multiphase flow simulations in industrial applications. In these 

methods additional terms, known as closure terms, are used to represent the interaction 

between phases. Since simplified description of the physics is used, small scales are not 

captured accurately. Therefore, the accuracy of the model depends on the definition of 

the closure terms which can add extra complexity to the problem. On the other hand in 

direct methods, a detailed representation of interfaces is used and the Navier-Stokes 

equations are solved without the need of the closure terms. The study of Irfan and 

Muradoglu (2017) on evaporation in a multiphase system and the study of Eisenschmidt 

et al. (2016) on direct numerical simulation of multiphase flows give a good overview 

of these methods. Besides the complexity of the programming, a major obstacle in 

performing direct methods is the computational effort. However, the latter can be 

overcome with the improvements in computing power.  

 

2.4    Interface handling in direct methods 

 

The problem of locating the interface in the domain can be handled by different 

meshing methods. One way is to define the mesh such that the interface always sticks to 

a specific layer of cells, in such methods the 3D grid spacing and locations has to 

deform in time. One technique is adding grid points by splitting a regular structured grid 

locally. To increase the resolution small cells can be split further. This is called the 

adaptive mesh refinement (AMR). The work by Kadioglu and Sussman (2008) for 
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underwater explosions and implosions and the simulation of rising bubbles by Hua and 

Lou (2007) on adaptive mesh are examples of such studies. Other techniques such as 

moving mesh or variable grid spacing can also be used. In these methods the whole 

domain or a part of it has to be re-meshed every time step which makes them not only 

computationally expensive but also complex from an implementation point of view and 

therefore not suitable for complicated problems. Examples of moving mesh and 

adaptive mesh are shown in Figure 2.4 and Figure 2.5. In order to eliminate the re-

meshing step, a fixed grid can be used. 

In this study a marker function or marker particles are required to describe the interface. 

Every time step these marker functions or marker particles have to be updated when the 

interfaces are moving and deforming. There are some popular ways to describe the 

interface in multiphase problems. These methods are categorized based on implicit or 

explicit description of the interface which will be discussed in more detail in sections 

2.4.1 and 2.4.2.  

 

 

Figure 2.4 Moving mesh arounf main foil and flaps.                                             

Image source: Qin, Liu and Xia (2005)  
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Figure 2.5 Adaptive mesh refinement.                                                                    

Image source: Vanella, Posa and Balaras (2014) 

 

2.4.1  Front-tracking methods 

In front-tracking methods an explicit description of the interface is used. In front-

tracking methods the interface is identified by connected marker points as shown in 

Figure 2.6. The marker points are advected by the velocity from the Eulerian grid. In 

general a triangular unstructured grid is used to represent the interface, in this way grid 

points can be added or removed in a straightforward way as in Unverdi and Tryggvason 

(1992) for viscous, incompressible, multi-fluid flows. In their study the unstructured 

grid moves through the stationary grid while the interface deforms. Therefore the grid 

should be restructured during the solution. 

The different front-tracking methods are distinguished by the way the marker points 

interact with the fixed grid. One simple approach is to consider the front as a smooth 

transition between the different fluids.  

There are different methods to keep the interface sharp. One way is to modify the 

numerical approximations near the front by the front-tracking method as in Glimm and 

McBryan (1985), in which the field variables at the interface are extrapolated to grid 

points on the other side of the front, allowing the use of finite-difference discretization 

for grid points next to the interface. Another way is to modify the fixed grid near the 

interface such that the grid lines coincide with the interface.  
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One disadvantage of the front-tracking method is that the advection of the marker 

particles is not necessarily mass conserving. This error can be controlled by adjusting 

the numerical properties (order) of the advection scheme. Another error is caused by the 

interpolation of velocities which might not necessarily be divergence-free. Furthermore 

it should be noted that in the front-tracking methods the changes in topology are not 

handled automatically.    

 

 

Figure 2.6 Connected marker particles in front-tracking method. Figure adapted 

from Tryggvason, Scardovelli et al. (2011). 

 

 

2.4.2  Front-capturing methods 

In front-capturing methods an implicit description of the interface is used. The interface 

can be described by a marker function. This marker function can be the mass or volume 

fraction inside a computational cell, which is 1 if the cell is completely filled with the 

fluid, 0 if the cell is empty and a value between 0 and 1 if the cell is partially filled. In 

this way the interface is defined with a sharp change from on phase to the other. The 

interface can also be determined by a smooth function F, which takes the value of 0 at 

the interface, F>0 in one phase and F<0 in the other phase (this is the basis of the level-

set method). 
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In front-capturing methods such as the phase-field method, the CIP (cubic interpolated 

pseudo-particle or constrained interpolation profile) method, the level-set method and 

the Volume-of-fluid method the marker function is directly advected.  

Phase-field method 

In the phase-field method by modifying the governing equations, the interface remains 

sharp. Updating the phase function is done by adding a nonlinear diffusion term to the 

advection equation, Tryggvason et al. (2011). The diffusive term prevents extreme 

changes in the thickness of the interface and therefore keeps it finite. The Navier-Stokes 

equations are also modified by adding a term which results in surface tension forces in 

the interface region. The phase-field method is mainly used for solidification problems; 

it is also suitable for small scale problems and multiphase problems. This method is 

used in the study of Chiu and Lin (2011) for incompressible two-phase flows and in a 

later study for topology optimization by Jeong et al. (2014). The phase field method is 

comparable to other methods using a fixed grid. The smoothing of the interface and 

using the front-capturing makes this method similar to the level-set method. The 

advantage of the phase-field method over tracking methods that start from sharp 

interfaces is that it can be used for small-scale phenomena.  

CIP method 

In the CIP method the advection equations are solved for both a marker function and its 

derivatives. By fitting a cubic polynomial to the nodal values of the marker function and 

its derivatives the dispersive error is reduced. In the study of Che Sidik and Niaki 

Attarzadeh (2012) this method is used for transient hydrodynamics of solid spheres. 

Matsumoto (2015) has used the CIP method for two-dimensional single-phase 

hydrothermal reservoir simulations. Although the CIP method was not originally 

invented for discontinuous solutions yet due to very low dispersive errors it performs 

well for such problems but still some oscillations occur.  

Volume of fluid method 

In the volume of fluid method the marker function is defined as a volume fraction of a 

computational cell of the reference phase as shown in Figure 2.7. The interface is 

implicitly identified by the volume of fluid in each cell. The interface is reconstructed 

according to the velocities and the volume of fluid in each cell. The method of 

reconstruction of the interface determines the accuracy of the scheme. In general a VOF 

method consists of two steps, reconstruction of the interface and advection of the 

reconstructed interface. Falcão, Pereira and Pinto (2016) have used this method to 

model the two-phase flow phenomena in low temperature fuel cells. 
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Interface advection 

To advect an interface accurately special techniques should be used. In the simple line 

interface calculation (SLIC) by Noh and Woodward (1976) the marker function is 

advected by time splitting. Therefore, in a two-dimensional problem the marker 

function is first advected in one direction and then the other. In the method proposed by 

Hirt and Nichols (1981) the interface is approximated by straight lines. Using the values 

of the marker function in the neighboring cells, the normal to the interface and 

consequently the orientation of the interface can be found. In these methods the 

interface is distorted and pieces of interface which break away in an unphysical way can 

be generated. 

In order to have a more accurate advection scheme it is important to reconstruct the 

interface in each cell by using the volume of fluid in that cell and its neighbors. This has 

been considered in the piecewise linear interface calculation (PLIC) method. In this 

method the interface is approximated by a straight- line segment in each cell using the 

normal to the interface to determine the orientation of the line. The normal is obtained 

by considering the volume of fluid in the cell and its neighbors. After construction of 

the interface in each cell, the fluxes between cells are computed. Since the accuracy of 

the advection is influenced by the accuracy of the interface reconstruction, it has 

become an important task to find the normal accurately in PLIC methods. In Figure 2.8, 

the VOF reconstruction of the solution in two dimensions using different reconstruction 

methods is shown. It is observed that the PLIC method is more accurate in 

reconstructing the interface.  

 

 

Figure 2.7 Representation of the volume-of-fluid method. 
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The advantage of the VOF method lies in the fact that the volume fraction of each phase 

is known in each cell at every time step and it is therefore easy to obtain the amount of 

mass. However, capturing the interface depends on the accuracy of the reconstruction of 

the interface. 

Level-set method 

In the level-set method the different fluids or phases are identified by a smooth marker 

function as a distance function to the interface, which takes positive values in one fluid 

and negative values in the other. The interface is then identified by the zero value level-

set; this is shown in Figure 2.9. Furthermore, for convenience the gradient of the level-

set is, ( ) 1  . In this way the distance to the interface is always known. The interface 

motion depends only on the normal velocity component. Since the level-set function is 

smooth, in principle it can be advected using any standard method for hyperbolic 

equations.  

The advection of the LS function results in a non-volume conserving representation of 

the interface. Therefore, a reinitialization of the LS function φ
n+1/2 

is required to keep it 

as a distance function to the advected VOF function ψ
n+1/2

. The reinitialization of the 

corrected LS function is performed with a reconstruction distance function (RDF) using 

fast marching method (FMM) over a few grid cells (at least 4) to ensure ( ) 1  . For 

the reinitialization first in the cells which contain the interface a piecewise linear 

reconstruction of the interface is performed. The normal vector is obtained from the 

updated LS function while the intercept of the linear segment is obtained from the 

updated VOF function. The  for more detail of the reinitialization procedure the reader 

is referred to Coyajee and Boersma (2009). 

The level-set method has the advantage of simplicity comparing to the VOF method in 

which the interface reconstruction is required and the front-tracking methods which 

need addition or removal of marker points. Disadvantage of the level-set method is that 

it is not mass conserving and its accuracy depends on the order of accuracy of the 

advection scheme.  
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Figure 2.8 VOF reconstruction of interface. (a)The original interface. (b)SLIC 

reconstruction. (c)The Hirt and Nichols (1981) reconstruction. (d)PLIC 

reconstruction. Figure adapted from Tryggvason, Scardovelli et al. (2011). 

 

 

2.4.3   Coupled level-set and volume-of-fluid method 

In this study a coupled level-set and volume-of-fluid (CLSVOF) method is used. As it 

was mentioned before, the advection of the level-set function is not mass (or volume) 

conserving. However, it is a very elegant method in locating the interface since the 

calculation of the interface curvature and its normal are straightforward because of the 

mathematical definition of the level-set function. On the other hand the volume of fluid 

method is mass conserving but requires reconstruction of the interface and also 

calculating the normal to the interface is more complicated than in the level-set method. 

In order to benefit from the advantages of both methods, in this work a coupled level-set 

and volume-of-fluid method is used for the representation and advection of the 

interface. 
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Figure 2.9 Representation of the level-set method. ϕ represents the level-set 

function; the interface is indicated by the zero level-set. 

 

2.5 Time and spatial discretization of the governing equations 

 

For the discretization of equations (2.7)-(2.9) a staggered grid is used such that the 

velocity components are placed at faces of the cells and the scalars such as temperature, 

pressure, level set and volume of fluid denoted as T, P, ϕ and ψ are respectively located 

at the center of each cell. A schematic of a staggered grid is shown in Figure 2.10. 

 

 

Figure 2.10 Standard 2D MAC mesh. Vector properties are calculated at faces of 

the cells and scalar properties are calculated at the cell center. 
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For an incompressible flow, usually a pressure correction method is used, in which the 

pressure is modified to guarantee a divergence free velocity field at the end of each time 

step. In this method, first a velocity field which is generally not divergence free is 

calculated. The velocity is then corrected by adding the correct pressure gradient. The 

non-dimensional momentum equation (2.8) is split into a predictor and a corrector step. 

The prediction step reads: 
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 (2.31) 

 

In which A and D are numerical approximations for the advection and diffusion terms 

respectively. G is the numerical approximation of gradient. The advection terms are 

explicitly integrated by a second-order Adams-Bashforth method, i.e. the factors 3/2 

and 1/2. The diffusive terms are split into an implicit and an explicit part which results 

in three separate linear systems for each predicted velocity component, Coyajee and 

Boersma (2009). These systems are solved with an incomplete Choleski preconditioned 

conjugate gradient (ICCG) solver. In the correction step the velocity field is corrected 

by adding the pressure gradient: 

 

1 * *u u

t
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
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 (2.32) 

In which: 

 

1 1

* 2 2
n n

p p p
 

   (2.33) 

 

The velocity at the new time level should be divergence free: 

  1 0nDIV u    (2.34) 

 

In which DIV is the discrete divergence operator. Taking the divergence of the corrector 

equation (2.32) and applying(2.34), the Poisson equation for pressure is obtained: 
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  * *

1

2

1 1

n

DIV Gp
t

DIV u




 
  
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 (2.35) 

 

The thermodynamic properties in equations (2.31) and (2.35) are obtained based on the 

interface position at time level of n+1/2 and n-1/2. Due to the definition of p
*
, the 

Poisson equation for p
*
 is not separable and is therefore solved with an ICCG method. 

Then by substituting u
*
 and p

*
 in equation (2.32), u

n+1
 is obtained. At the end of this 

chapter we will discuss a new approach to make the Poisson equation separable. 

Since the regularized viscosity is used, the velocity gradients are continuous at the 

interface. Therefore, derivatives of the velocity can be easily approximated by central 

second order finite difference methods. However, there will be a pressure jump at the 

interface which is treated by using the Level-Set function to locate the interface. The 

one-dimensional pressure gradient near an interface can be written as:  
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Taking equation (2.19) into account, the pressure gradient at the cell face (i+1/2) can be 

written as: 
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The Poisson problem should be solved to obtain p* from equation(2.35). For a one-

dimensional case the discretization of equation (2.35) at xi is written as:  
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Which can also be written as: 
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  (2.39) 

 

As it is seen in equation (2.39), the jump condition for pressure appears as a source term 

on the right hand side of the discrete Poisson problem. Therefore, (2.39) can be solved 

with a fast iterative method. The relevant matrix of the linear system of this equation is 

symmetric which is suitable for a conjugate gradient method.  

Using the Continuous Surface Force (CSF) by Brackbill, Kothe and Zemach (1992), the 

jump condition can be included in the discretization as follows:  

 
   11

1 2

i ii i

i

H Hp pp

x x We x

   



 
  

   
                                (2.40) 

  

 

Using the smoothed Heaviside function (2.14), the pressure gradient can be written as: 

 

 
   11

1 2

i ii i

i

H Hp pp

x x We x

    



 
  

   
 (2.41) 

 

To obtain values of 1/ρ at the cell face near the interface, the weighted average is used: 

 
 1 1
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1 1

1i i
i

   



 

 (2.42) 
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In which  i i   and   is: 

 

1

i

i i




  




 (2.43) 

 

 

2.6 Discritization of the energy equation 

 

The energy equation can be discretized as: 
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


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 (2.44) 

 

The advective and diffusive terms are integrated using the second order Adams-

Bashforth method. The corresponding velocity time level and the updated interface at 

n+1/2 are applied. The thermodynamic properties are obtained from the interface 

position and therefore are at n+1/2 time level.  

Since there are sharp variation of the gradients across the interface Koren’s flux limiter 

as in Waterson and Deconinck (2007) is used for the advection terms of the energy 

equation. Whit this scheme the solution is kept monotonic: 
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

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 (2.45) 

In which, 
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 , , , , , ,i j k i j k i j kFu Su u  (2.46) 

 , , , , , ,i j k i j k i j kFv Sv v  (2.47) 

 , , , , , ,i j k i j k i j kFw Sw w  (2.48) 

 

Depending on the velocity direction in the computational cell under consideration, Su, 

Sv and Sw are calculated differently. As an example the calculation of Su is presented: 

If , , 0i j ku  , 

  , , , , 1 , , 1, ,0.5i j k i j k i j k i j kSu T T T      (2.49) 

In which, 

    1 1 1max 0,min 2 ,1 3 1 2 ,2r r    (2.50) 

 

 
1, , , ,

1

, , 1, ,

i j k i j k

i j k i j k

T T
r

T T









 (2.51) 

   

If , , 0i j ku  , 

  , , 1, , 1 1, , 2, ,0.5i j k i j k i j k i j kSu T T T       (2.52) 

 

In which 
1 is calculated by (2.38) and, 

 
1, , , ,

1

2, , 1, ,

i j k i j k

i j k i j k

T T
r

T T



 





 (2.53) 

 

Sv and Sw are calculated in the same way. 

The diffusion terms of the energy equations are discretized by a second order central 

difference scheme as: 
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 (2.54) 

 

In which, 
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1
, ,
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i j k i j k

i j k
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





 (2.56) 

 

dT/dy and dT/dz are calculated the same way for the other directions. To calculate the 

thermal conductivity at a cell face, the weighted harmonic average is used: 

 

  1 1

2

1i i
i

k k k 

    (2.57) 

 

In which   is obtained by equation (2.43). 

 

2.7 Interface description and advection by CLSVOF method 

 

In moving boundary problems with topological changes proper locating of the interface 

is an important step in the computational approach. In this work the level-set method is 

used to describe the interface where a fixed grid is used for the whole domain. The 

level-set function is used to distinguish between different phases by taking different 
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values in each phase. Every time step this marker function has to be updated due to the 

movement of the interface.  

As it was mentioned before, the advection of the level-set function is not mass (or 

volume) conserving. However, it is a very elegant method in locating the interface since 

the calculation of the interface curvature and its normal are straightforward because of 

the mathematical definition of the level-set function. On the other hand the volume of 

fluid method is mass conserving but requires reconstruction of the interface and also 

calculating the normal to the interface is more complicated than in the level-set method. 

In order to benefit from the advantages of both methods, in this work a coupled level-set 

and volume-of-fluid method is used for the representation and advection of the 

interface. The interface is described as: 

 

     , 0t t  x x  (2.58) 

 

In which   is the level-set function, 0   inside the droplet and 0   outside the 

droplet. In the CLSVOF method the volume fraction in each computational cell is 

defined in terms of the level-set function: 

 

  
. ,

, ,

1
( ( , ))d

i j k
i j k t H t

x y z
 



    x x  (2.59) 

  

In which Ω denotes the volume of a computational cell and H is the Heaviside function as 

in equation (2.14).  

The conservation law for the volume fraction can be written as, 
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Where A is the surface and v is the volume. Using Gauss’s theorem, 
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   x uxu  (2.61) 

 

 

Substituting equation (2.61) in (2.60) and using equation (2.59) and differentiating with 

respect to v, the conservation of the volume fraction is obtained as, 

  , ,

, , 0
i j k

i j k

d

dt


 u  (2.62) 

  

Which can also be written as: 

  ψ 0t  u  (2.63) 

  

 

The discrete volume fractions is defined as, 
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( ( ))d

i j k

L

i j k H
x y z

 



    x x  (2.64) 

 

In which ϕ
L
 is a linearized LS function around the center of the computational cell (i,j,k): 

 

  , , , , , ,
( )L

i j k i j k i j k
     x x x  (2.65) 

 

In the compact form equation (2.62) can be rewritten as, 
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  ,f     (2.66) 

 

The conservation equation for the LS function is simply: 

 

   0
t





 


u  (2.67) 

 

2.7.1  Advection of the LS and VOF functions: 

Using u
n
, φ

n-1/2
 and ψ

n-1/2
 the level-set and volume-of-fluid functions are advected 

separately using a second order operator split advection scheme proposed by Sussman 

and Puckett (2000). For a given scalar s the scheme works as follows. 
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 (2.71) 

 

In which, 
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 1 2, , 1 2, , 1 2, ,i j k i j k i j kG s u    (2.72) 

 , 1 2, , 1 2, , 1 2,i j k i j k i j kG s v    (2.73) 

 , , 1 2 , , 1 2 , , 1 2
ˆ ˆ

i j k i j k i j kG s w    (2.74) 

 

In order to keep the second order accuracy, the order of coordinate directions is changed 

every time step. If the scalar s represents the level-set function, depending on the 

direction of velocity, s is calculated differently, 

 If 1 2, , 0i j ku   , 
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If 1 2, , 0i j ku   , 
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 (2.76) 

 

The same procedure is used for other directions. Then the advected level-set function is 

corrected and reinitialized to satisfy the mass conservation. 

When s represents the volume-of-fluid function, the discrete flux si+1/2,j,k is computed 

from a geometric reconstruction of phases in each cell. Depending on the direction of 

velocity si+1/2,j,k is calculated as, 

If 1 2, , 0i j ku   , 
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 (2.77) 

 

If 1 2, , 0i j ku   , 
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 
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 (2.78) 

 

In which ϕ
L
 represents the linear reconstruction of the interface, 

 

  * *

, , , , , , , ,

L

i j k i j k i j k i j k
     x x  (2.79) 

The current level-set function is first computed according to the current Volume-of-

fluid function. The level-set function is then updated in the considered direction by, 

 

If 1 2, , 0i j ku   , 

  *

1 2,

1
1

2
i k zu n      (2.80) 

If 1 2, , 0i j ku   , 

  *

1 2,

1
1

2
i k zu n      (2.81) 

 

A piecewise linear reconstruction is performed in the cells carrying the interface. The 

normal to the reconstructed interface is obtained from the uncorrected LS function while 

the intercept of the linear reconstruction is determined by the VOF function. Since the 

level-set function is defined as a signed distance function to the interface, the 

mathematical property of this function is defined as, 

 1   (2.82) 

 

2.7.2  Reinitialization of the LS function: 

The advection of the LS function results in a non-volume conserving representation of 

the interface. Therefore, a reinitialization of the LS function φ
n+1/2 

is required to keep it 

as a distance function to the advected VOF function ψ
n+1/2

. 
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The reinitialization of the corrected LS function is performed with a reconstruction 

distance function (RDF) using fast marching method (FMM) over a few grid cells (at 

least 4) to ensure (2.82). For the reinitialization first in the cells which contain the 

interface a piecewise linear reconstruction of the interface is performed. The normal 

vector is obtained from the updated LS function while the intercept of the linear 

segment is obtained from the updated VOF function. The  for more detail of the 

reinitialization procedure the reader is referred to Coyajee and Boersma (2009). 

 

2.8 Coalescence/breakup model 

 

When the droplets approach each other, depending on the momentum and the surface 

tension of droplets they can either, bounce or coalesce. The coalescence of droplets 

occurs when the surface distance of the droplets becomes of the order of 10 nm 

Oldenziel (2014). This is where the van der Waals force can come into account and 

could result in the rupture of the liquid film between the droplets, Oldenziel (2014). If 

the surface tension is high enough, the surface energy can be converted into kinetic 

energy and result in bouncing of droplets. The breakup of a droplet would occur if the 

velocity and pressure variations around or within the droplet are large with respect to 

the surface tension forces. The coalescence/breakup model of Kwakkel et al. (2013) is 

used in this work. This model is based on the film drainage model of Zhang and Law 

(2011) which predicts the result of a binary head-on collision of identical droplets as 

well as the drainage time and contact time of droplets.  

 

2.9   Implementation of direct solvers 

 

As it was mentioned in section 2.4 when using the pressure correction method to solve 

the Navier-Stokes equations, a Poisson equation for pressure, equation (2.83) should be 

solved every time step which is the most time consuming part in the pressure correction 

method  
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  * *

1

2

1 1

n

DIV Gp
t

DIV u




 
  
   
 

 (2.83) 

 

In order to overcome the computationally expensive approach of solving a variable 

coefficient Poisson equation every time step, a velocity correction method can be used. 

By using this method as introduced by Dodd and Ferrante (2014) the variable 

coefficient Poisson equation is transformed to a constant coefficient equation. This is 

done by splitting the variable coefficient pressure gradient term into a constant term 

which is treated implicitly and a variable term which is treated explicitly. 
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 

 
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 (2.84) 

 

In which  0 min ,g l    and 
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Jp
p
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 


 (2.85) 

 

J=1 and J=2 indicate constant or linear extrapolation of p
n+1

. Substituting (2.84)  in 

(2.83) a constant coefficient Poisson equation for pressure is achieved, 

 

      *1 0 0

1
ˆ1n

n
DIV DIVLAP p G p

t

 







  
    

  
u  (2.86) 

 

LAP and G are discrete Laplace and gradient operators. Equation (2.86) can be solved 

directly by a fast Poisson solver such as McKenney, Greengard and Mayo (1995). 

 

2.9.1  Direct pressure solver 

 The governing equations for incompressible two-phase flow are: 
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 0 u  (2.87) 
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uu u u  (2.88) 

 

Where fσ is the force per unit volume due to surface tension: 

  f H     (2.89) 

 

To compute an approximate velocity the right-hand side of the momentum equation 

(2.88) without the pressure gradient term is used, 
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The surface tension force is then multiplied by  , in which  1 2 g l    . 

Therefore, the surface tensions is constant across the interface. Thus (2.90) becomes: 
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 (2.91) 

 

The approximate velocity is used to advance the velocity field in the pressure-correction 

method.  

 

*
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 (2.92) 

  

  

By taking the divergence of (2.92) and imposing the divergence free condition on u
n+1

 

the Poisson equation with the variable coefficient is obtained. By substituting the split 
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as in equation (2.84) in (2.92), and taking its divergence, equation (2.86) is obtained 

which can be solved by a fast Poisson solver. The Poisson equation is solved by one-

dimensional FFTs in two directions and Gauss elimination in the other direction.  

Depending on the explicit schemes to solve convective, viscous and surface tension 

terms, the time step is restricted as follows: 

  
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min , ,
2

c s ft t t t      (2.93) 
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max max max

c

h
t

u v w
 

 
 (2.94) 

 
3 2max( ,1)

4
s

We
t h




   (2.95) 

 
2

2

4
f

n n

h
t

hF

 

 u u

 (2.96) 

 

Where h is the uniform mesh width and, 
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exp impD D D   (2.99) 

 

The spatial discretization of the equations are presented here in 2D. The 3D 

discretization is analogous.  

 RU RCU RDU RBU    (2.100) 
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In which RCU refers to the convective fluxes, RDU diffusive fluxes and RBU body 

forces. 
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The diffusive terms are discretized as follows: 
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The arithmetic mean is used to compute the density at the staggered locations: 
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The staggered viscosity is computed as follows: 
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In order to prevent uniform acceleration when gravity acts in the direction of periodic 

boundaries, special treatment is needed. Therefore, a term for hydrostatic pressure is 

added to the right hand side of equation (2.88) as follows: 
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The weighted average is used to better capture the flow properties in the cells containing 

the interface. 

Then the components of the RBU are discretized as: 
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In which, 
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The input for the fast Poisson solver is obtained by taking the divergence of the right 

hand side of (2.86) as: 
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Then the components of updated velocity field by applying the pressure correction to u
*
 

are discretized as:  



44 

 

 

Chapter 2 

 

1 1

1, ,

0
1 *

1 2, 1 2,

1, ,

1 2, 0

1

ˆ ˆ1 1

n n

i j i j

n

i j i j

i j i j

i j

p p

x
u u t

p p

x



 

 





 





  
     

   
    

        

 (2.119) 

 

 

1 1

, 1 ,

0
1 *

, 1 2 , 1 2

, 1 ,

, 1 2 0

1

ˆ ˆ1 1

n n

i j i j

n

i j i j

i j i j

i j

p p

y
v v t

p p

y



 

 





 





  
     

   
    

        

 (2.120) 

 

2.9.2 Direct velocity solver 

The same splitting technique is used for the viscous terms in the Navier-Stokes 

equations: 
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In which, 
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Substituting (2.124) in (2.121) gives: 
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The constant coefficient Helmholtz equation is obtained by multiplying equation 

(2.126) by (-2Re/υ0): 
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Equation (2.127) can be solved by a fast elliptic solver. 

 

2.9.3 Verification and validation of the numerical scheme with direct solvers 

In order to verify the numerical scheme with the direct pressure and velocity solver, 

simulations on colliding water droplets in air in Figure 2.11, falling droplet and rising 

bubble, Figure 2.12 are performed. The simulation parameters are presented in Table 

2.1. As the results show, there is an excellent agreement between the results of the direct 

solver scheme and the iterative solver while the direct solver is 25 times faster than the 

other method. This advantage makes it possible to perform simulations on finer mesh. 

Since the results of the iterative solver scheme have already been validated by 

experimental data for colliding droplets by Kwakkel et al. (2013), this comparison 

shows the validity of the direct solver scheme.  

Table 2.1 Simulation parameters for validation cases 

Case Solver Re We 
Domain 

dimension 
Mesh size dt 

Colliding 

droplets 

Direct 
8.77 0.0037 4×5×4 120×150×120 

3 ×10
-5

 

Iterative 5 ×10
-5

 

Falling droplet 
Direct 

15.21 6.3×10
-4

 6×6×6 
144×144×144 

6 ×10
-5

 
Iterative 96×96×96 

Rising bubble 
Direct 

108.30 60.53 6×6×6 
144×144×144 

6 ×10
-5

 
Iterative 96×96×96 
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Figure 2.11 Colliding water droplets in air, the dashed line refers to the iterative 

solver and the solid line refers to the direct solver, t is the dimensionless time. 

 

Figure 2.12 Colliding water droplets in air, the dashed line refers to the iterative 

solver and the solid line refers to the direct solver, t is the dimensionless time. 
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3 Heat transfer from a solid 

spherical particle 
  

 

 

 
 

 

In this chapter the heat transfer from a single solid spherical particle is studied. Direct 

Numerical Simulations are performed for different Reynolds numbers. In the first part 

heat transfer from a solid spherical particle with uniform surface temperature is studied. 

In the next part, heat transfer from a spherical particle with variable internal temperature 

is studied. The main objective of this chapter is to study the effect of the non-uniform 

surface temperature on the heat transfer rate at the surface of a spherical particle.  
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3.1 Literature review 

 

There are many studies in the literature on flow, heat and mass transfer from solid 

spherical particles and deforming droplets. As it was mentioned in chapter 2, in most of 

these studies, simplifications and assumptions are made such as considering an 

axisymmetric two-dimensional geometry. Figure 3.1 is an example of an experimental 

study on the flow over a cylinder which can be used to compare with numerical results 

of an axisymmetric two-dimensional model of flow over a sphere.  

In the study of flow and heat transfer over bodies a few non-dimensional numbers are of 

importance. The Reynolds number (Re) defines the ratio between the inertial forces and 

the viscous forces and is used to determine whether the flow is laminar or turbulent 

which can be written as, 

 Re
UD


  (3.1) 

 

For flow over a solid sphere for a Reynolds number between 20 and 210, the flow is 

steady axisymmetric and a two-dimensional axisymmetric model is sufficient to capture 

the flow streamlines. However, for a Reynolds between 210 and 270 the wake behind 

the flow is steady but not axisymmetric and therefore a three-dimensional model should 

be used to capture the flow streamlines, Magarvey and Bishop (1961). 

 

 

Figure 3.1 Flow passing a cylinder (2D flow) 

 

The Prandtl number (Pr) is the ratio between the viscous diffusivity and the thermal 

diffusivity. It determines the relative thickness of the momentum to the thermal 

boundary layer. If Pr<<1 it means that the thermal diffusivity is dominant and the 
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thermal boundary layer thickness is much larger than the momentum boundary layer. 

For Pr=1 the momentum and thermal boundary layer thickness are equal and for Pr>>1 

the momentum diffusivity is dominant and therefore the momentum boundary layer is 

much larger than the thermal boundary layer.  

The Biot number (Bi) describes the ratio between the convection at the surface and the 

conduction inside of a body. For Bi<<1 the conduction inside of the body is dominant 

and therefore the temperature of the body can be assumed uniform. The difference 

between the Bi number and the Nusselt number (Nu) is that the latter describes the 

ration between the convection at the surface and conduction in the fluid over the body. 

The Peclet number (Pe) in heat transfer is the ratio of the convective heat transfer to the 

diffusive heat transfer and it can be written as, Pe=RePr. 

In some studies the surface temperature is assumed to be uniform, and in some other 

studies the whole spherical particle is assumed to be at a uniform temperature, such as 

the study of Comer and Kleinstreuer (1995). However, this assumption is only valid in 

case of smaller Biot numbers than unity, where the conduction inside the object is much 

faster than convection heat transfer.  

Some early studies on heat and mass transfer from solid spheres are, the study of 

Gostkowski and Costello (1970) in which they experimentally investigated the effect of 

free stream turbulence on heat transfer to the stagnation point of a sphere. Chen and 

Mucoglu (1977) later studied flow and heat transfer characteristics of laminar mixed 

forced and free convection about a sphere. They solved the transformed conservation 

equations by a finite difference method for gases with a Prandtl number of 0.7. They 

have also examined the effects of the variation of the local free stream velocities on the 

wall shear and surface heat transfer. Hayward and Pei (1978) studied the local heat 

transfer of a sphere in turbulent air stream for Reynolds number ranging between 2600 

and 6100 based on the sphere diameter. They have shown that the interaction between 

the free stream turbulence and the boundary layer causes the boundary layer to become 

turbulent at the laminar separation point. Morris (1982) studied the effect of a strongly 

temperature-dependent viscosity on slow flow past a hot sphere. In all of these studies 

the surface temperature is assumed to be uniform. In a more recent study Feng and 

Michaelides (2001) investigated transient heat transfer rate from a sphere at high 

Reynolds and Peclet numbers. The stream function-vorticity formulation is used to 

solve the governing equations. They have shown the dependence of the heat transfer 

rate on the Reynolds number. 

The abovementioned numerical studies assume axisymmetric solutions. Increased 

computing power made full three-dimensional simulations possible.  Dandy and Dwyer 
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(1990) performed a three-dimensional study for steady linear shear flow past a heated 

sphere for low Reynolds numbers assuming the spherical particle to be isothermal. 

Nguyen et al. (1993) have studied unsteady conjugate heat transfer from a translating 

spherical droplet by direct numerical simulation. The energy and momentum equations 

are solved by a hybrid spectral scheme. Simulations on a single sphere settling under 

gravity by Lattice-Boltzmann techniques were performed by ten Cate et al. (2002), they 

have also compared their results with particle imaging velocimetry experiments.  

Bagchi, Ha and Balachandar (2000) have performed a direct numerical simulation 

(DNS) of flow and heat transfer from a sphere in a uniform cross flow in spherical 

coordinates using the Fourier-Chebyshev spectral collocation method for Reynolds 

numbers up to 500. Three different wake regimes are identified with increasing the 

Reynolds number. They have investigated the effect of unsteadiness and three-

dimensionality on heat transfer from a sphere. They have found larger difference 

between the local Nusselt numbers in the wake region of a three-dimensional flow 

comparing with the axisymmetric results. However, there is a small difference between 

the surface-average Nusselt numbers of the two cases. 

Niazmand and Renksizbulut (2003) have modeled the heat transfer from a rotating 

sphere in a spherical coordinates with a control-volume based integration technique. 

They found out that the temperature distributions around the particle are strongly 

affected by the particle rotation and surface blowing. However, the surface-average heat 

transfer rates are not affected significantly. Dan and Wachs (2010) have studied the heat 

transfer of spherical particles by a Finite Element Method (FEM). They have computed 

the motion of the particles by a Discrete Element Method (DEM). The objective of their 

work is to understand the effect of heat transfer on the flow pattern in non-isothermal 

particulate flows. They have reported the sedimentation of a single sphere in a semi-

finite channel. 

In a more recent study, Tavassoli et al. (2013) have investigated heat transfer in a 

particulate flow with direct numerical simulation. They use an immersed boundary 

method and a fixed Eulerian grid to solve the momentum and energy equations. The 

particulate phase is treated by introducing momentum and heat source terms at the 

boundary of the solid particle, representing the momentum and thermal interactions 

between fluid and particle. Santarelli and Fröhlich (2015) have simulated spherical 

bubbles in a turbulent channel flow by immersed boundary method, while Koblitz et al. 

(2017) have used an overset grid method to simulated a particulate flow with rigid 

particles using refinement of the grid at the particle surfaces to reduce the total number 

of grid points. 
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The purpose of the present chapter is to provide a detailed overview on heat transfer in 

solid sphere for high Biot numbers to show the effect of the internal temperature 

distribution in Nusselt number calculation.  

 

3.2 Modeling heat transfer from a solid spherical particle 

 

The non-dimensional form of the continuity, the Navier-Stokes and the energy equations 

are solved in a spherical coordinates with a spherical particle at the center of the coordinate 

system. The surrounding fluid is assumed to be initially stationary and approaches the 

sphere with a uniform velocity of U∞. The geometry of the domain and the coordinates 

system which is applied is shown in Figure 3.2. Inside the sphere, the internal domain, 

there is no advection and heat transfer is purely by conduction. Therefore, the domain of 

solution is divided into an internal domain which represents the solid sphere and an 

external domain representing the surrounding fluid. For each of these domains the 

corresponding governing equations are solved separately. The interaction of the solid 

sphere and the surrounding fluid is taken into account by introducing ghost cells adjacent 

to the interface in each domain. During the time integration of the energy equations the 

values of temperature are exchanged between the two domains by means of these ghost 

cells. 

 

 

Figure 3.2 Geometry and coordinates. 
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In order to simulate flow over and heat transfer from the solid sphere, the following 

equations for conservation of mass, momentum and energy are solved in the spherical 

coordinates for the external domain:  

 0 u  (3.2) 
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In which u is the velocity vector, ρ is the mass density, P is the pressure and T is the 

temperature. The governing non-dimensional numbers, the Reynolds number and the 

Prandtl number are defined as: 
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The isothermal assumption is only valid if the Biot number is much smaller than 1 

(Bi << 1). The Biot number is defined as: 

 c

s

hL
Bi

k
   (3.5) 

 

In which h is the heat transfer coefficient and Lc is the characteristic length as: 

 s
c

s

V
L

A
  (3.6) 

 

In which Vs is the volume of the sphere and As is the surface area of the sphere.  

 

In the case that the solid sphere is assumed to be isothermal (Bi << 1) and the internal 

temperature distribution of the particle is not taken into account solving equations (3.2) - 

(3.4) gives the complete solution. However, when the isothermal assumption is abandoned, 

meaning Bi ~ O (1), the internal temperature distribution has to be considered and the 

energy equation for the internal domain has to be solved as well.  
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In which the non-dimensional thermo-physical properties inside the sphere are:  
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In this study a solid sphere of wood in air is considered, the thermal properties are given 

in Table 3.1.  

Table 3.1 Values of constant parameters and properties. 

Constant Value Unit 

D0 1.2 mm 

ks 0.05 W/mK 

ρs 900 kg/m
3
 

Cps 2400 J/kgK 

kg 0.0242 W/mK 

ρg 1.225 kg/m
3
 

Cpg 1006.43 J/kgK 

 

A three-dimensional model is applied for this problem in which the spatial terms are 

discretized by a second order finite volume method on a staggered grid. The Navier-stokes 

equations are integrated in time with a second order Adams-Bashforth Scheme. The 

Poisson equation for the pressure is computed with a direct solver using Fourier 

transformation in φ with cyclic reduction in r and the circumferential direction, θ.  

It is assumed that the no-slip boundary condition for velocity holds at the surface of the 

sphere, while for the external domain the zero-gradient condition is applied at the outer 

boundary. The boundary condition for the temperature field if the sphere temperature us 

variable is such that at the surface of the sphere no jump occurs in the heat transfer rate. 

Therefore, the surface temperature is calculated by the conduction equation in radial 

direction at the interface. The two domains are coupled by the temperature at the surface of 

the sphere, as shown in Figure 3.3. Since the two domains are overlapping at the sphere 

surface, the parameters in ghost cells of one domain are used in solving the governing 

equations of the other domain. The initial value of these cells is set by the initial 
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conditions. The sphere temperature is initially higher than the ambient air (Ts=1 and 

T∞=0). The boundary conditions are summarized as follows: 

At r=R (the outer radius of the external domain), 

 0  
u v w T

r r r r

   
   

   
 (3.8) 

 

At r=rs (the radius of the sphere), 

 0u v w    (3.9) 

 out inq q  (3.10) 

 

In which u, v and w are the velocity components in r, θ and φ direction respectively. r is 

the radius of the external domain and rs is the radius of the sphere. The boundary condition 

which holds in φ direction is the periodic boundary condition for both velocity and 

temperature. Due to the staggered arrangement of the grid no boundary condition at θ = 0 

and π is required. The temperature at the center of the sphere is assumed to remain constant 

as Ts. 

 

 

Figure 3.3 Ghost cells next to the solid surface are used to determine the boundary 

conditions. 

 

If the sphere temperature is considered to be constant, there is no interface temperature 

boundary condition needed but only a fixed wall temperature at the sphere is used. The far 

field temperature boundary condition remains the same as in (3.8). 



55 

 

 

 

Heat transfer from a solid spherical particle 

The velocity field is updated with the pressure correction method, see Chapter 2. This 

velocity field is used in the energy equation of the external domain to find the temperature 

distribution. At this point the updated outer temperature field is used as the new boundary 

condition for the energy equation inside the particle to find the internal temperature 

distribution at the same time step. The result of the internal temperature distribution will 

then be used as the boundary condition for the external domain solver in the next time step. 

The governing equations of the external and the internal domains are solved sequentially 

until the steady state solution is reached. The non-dimensional time step which is used in 

these simulations is 2.5e-4. 

 

3.3  Heat transfer on a solid sphere with uniform surface temperature 

 

The steady state flow and temperature field for the Reynolds numbers in the range of 50, 

100 and 200 are shown in Figure 3.4. The effect of separation at the rear of the particle and 

the recirculating flow in the wake region of the thermal boundary layer is very well 

observed. Due to the increase in the thickness of the boundary layer, one can expect the 

local heat transfer coefficient on the surface of the sphere to be minimal in the separation 

region. The calculation of the Nusselt number at the surface of the sphere confirms that the 

lowest heat transfer rate occurs at the separation points at the rear of the spheres. As 

mentioned before the only phenomenon happening inside the particle is the thermal 

diffusion which is negligible. The validity of the assumption Bi<<1 is studied later in this 

chapter. To show the validity of our simulation, the wake length for Re=100 and 200 is 

compared with the results of Fornberg (1988) as shown in Figure 3.5. 
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Figure 3.4 External flow isotherms on the left and streamlines on the right for 

Re=50, 100, 200 and Pr=1. 

 

Figure 3.5 Validation of the flow field with wake length, (left) present work, (right) 

Fornberg (1988). 

 

The local Nusselt number is defined as: 

 0

g

h D
Nu

k


   (3.11) 
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In which, kg is the air thermal conductivity, D0 is the sphere initial diameter and hθ is the 

local heat transfer coefficient. Since all the equations are non-dimensional the heat transfer 

coefficient which is calculated from the continuity of heat flux at the interface is also non-

dimensional. Replacing the non-dimensional length and thermal conductivity and dropping 

the primes, the local Nusselt number will be equal to the local heat transfer coefficient: 

 Nu h 
  (3.12) 

 

From the energy equilibrium at the surface, the heat transfer coefficient can be written as: 

 h T n
     (3.13) 

 

And the surface average Nusselt number is defined as: 

 
,

1
ave A

A

Nu T ndA
A

    (3.14) 

In which A is the surface area of the sphere and n is the normal vector to the surface of the 

sphere.  

3.3.1  Mesh sensitivity analysis 

A mesh size sensitivity test is performed to obtain the proper resolution for this problem. 

The applied mesh sizes at the interface are shown in Table 3.2. The average Nusselt 

number for five mesh sizes is shown in Figure 3.6. The results show that for a 50% 

decrease in the mesh size from 0.005 to 0.0025, the average Nusselt number only changes 

3%. Therefore, for the sake of computation expenses simulations are performed with the 

HRes resolution with the mesh size of 0.005 in the vicinity of the sphere. 

 

Table 3.2 Mesh resolution for sensitivity check. 

Mesh resolution label in simulation Δr adjacent to the interface 

LLRes 0.04 

LRes 0.02 

MRes 0.01 

HRes 0.005 

HHRes 0.0025 
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Figure 3.6 The average Nusselt number as a function of the numerical resolution 

for Re=100. 

As an additional check for the near wall grid resolution, the non-dimensional y
+ 

is 

calculated as follows: 

 
1g

g

U y
y






 




 (3.15) 

 

In which, ρ’g is the non-dimensional density of the air as 1, Uτ is the frictional velocity and 

Δy1 is the first cell height. The frictional velocity is calculated using the following 

equation:  

 w

g

U







 (3.16) 

The wall shear stress w can be calculated as follows: 

 

1

w g

r dr

v

r
 







 (3.17) 

  

v is the velocity in θ direction and dr1 is the grid size in r direction at the wall. The value of 

y
+
 for Re=200 is shown in Figure 3.7 along the surface of the sphere from the front 

LLRES 

LRES 

MRES 
HRES HHRES 
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stagnation point to the rear stagnation point. It is observed that the maximum y
+
 occurs 

right before the separation point where the shear stress is the maximum. The near wall grid 

size is below the y
+
 value for the whole surface. Therefore, it is concluded that the grid size 

is sufficiently fine to capture all the small scale effects.  

 

 

Figure 3.7 y
+
 at wall for Re=200 vs grid size at the sphere. 

3.3.2  Results and discussions 

The local Nusselt number is calculated based on equation (3.12). The results for the case of 

uniform surface temperature and for different Reynolds numbers in the range of 50-200 are 

shown in Figure 3.8-Figure 3.10. The local Nusselt number values are compared with the 

results of Niazmand and Renksizbulut (2003), Bagchi et al. (2000), Gilmanov and Acharya 

(2008). In the following Figures θ=0 corresponds to the front stagnation point and θ=π 

corresponds to the rear stagnation point. From the mesh sensitivity and near wall grid 

resolution study in the previous section it is concluded that the two latter studies do not 

have enough resolution to capture the heat transfer at the stagnation point accurately. For a 

given Reynolds number the Nusselt number decreases monotonically to its minimum when 

moving streamwise along the particle surface. This minimum Nusselt number corresponds 

to the separation point at the rear of the particle. For a lower Reynolds number the 

separation will occur farther from the front stagnation point and therefore the minimum 

local Nusselt number also occurs further away from the front stagnation point. Passing the 

separation point an increase in the Nusselt number is observed, this is the result of forced 

convection due to the recirculation behind the sphere in the wake region. As the Reynolds 

number increases the local Nusselt number increases. This is due to the enhanced forced 

convection which becomes more dominant than diffusion for higher Reynolds numbers. 

The average Nusselt number is also larger for a larger Reynolds number as shown in 

Figure 3.11. 
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Figure 3.8 Variation of local Nusselt number for Re=50 over an isothermal sphere 

comparing with results of Bagchi et al. (2000), Gilmanov and Acharya (2008) and 

Niazmand and Renksizbulut (2003).

 

Figure 3.9 Variation of local Nusselt number for Re=100 over an isothermal sphere 

comparing with results of Bagchi et al. (2000), Gilmanov and Acharya (2008) and 

Niazmand and Renksizbulut (2003). 
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Figure 3.10 Variation of local Nusselt number for Re=200 over an isothermal 

sphere comparing with results of Bagchi et al. (2000), Gilmanov and Acharya 

(2008) and Niazmand and Renksizbulut (2003). 

 

 

Figure 3.11 Variation of average Nusselt number in dimensionless time over an 

isothermal sphere. 
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3.3.3  Validation of results 

For validation, the average Nusselt number is compared with different correlations 

available in the literature. These correlations can be applied for flow with a Reynolds 

number up to 200 and Pr =1. 

Ranz and Marshall (1952),  

 
11

322 0.60Re PrNu    (3.18) 

Beard (1971), 

 
11
321.56 0.61Re PrNu    (3.19) 

Whitaker (1972), 

  
21

0.4322 0.40Re 0.06Re PrNu     (3.20) 

Sayegh (1979), 

 
0.145

0.78
0.552 e2 0.473 e Pr RNu R   (3.21) 

 

Clift, Grace and Weber (1978),  

  
1

11 3 0.41 31 1 RePr Re PrNu
   

 
 (3.22) 

 

As it is observed in Figure 3.12, the average Nusselt number obtained in this study is in 

line with the results from the correlations.  
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Figure 3.12 Comparison of average Nusselt numbers for a solid sphere. 

 

 

Using the non-dimensional length and thermal conductivity and the average Nusselt 

number the average Biot number can be written as:  

 
,6 ave A

ave

s g

Nu
Bi

k k
  (3.23) 

 

Substituting the Nuave,A from Figure 3.11 for different Reynolds numbers gives the 

corresponding Biot number as shown in Table 3.3. The results show that the assumption of 

uniform temperature inside the particle is not valid and therefore the internal temperature 

distribution has to be considered as well. 

 

Table 3.3 The average Biot number for sphere with uniform temperature. 

Re Biave 

50 16.8 

100 22.4 

200 30.4 
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3.4  Results and discussions on solid sphere heat transfer with non-

uniform internal temperature 

 

For the case of a sphere with internal temperature variation the energy equation inside the 

sphere is also solved. Evaluating the energy equilibrium at the surface of the sphere gives 

the heat transfer coefficient as: 

 
1

( )s

h T n
T T



 

   


 (3.24) 

In which Ts’ is the local non-dimensional surface temperature of the sphere, T∞’ is the non-

dimensional initial ambient temperature. The surface average Nusselt number is then: 

  
( )

1

s

aveNu T ndA
A T T 

  
   (3.25) 

 

In which A is the surface area of the sphere and n is the normal vector to the surface of the 

sphere.  

The isotherms of internal and external domain for cooling of a solid sphere for Reynolds 

numbers of 50, 100 and 200 are shown in Figure 3.13 for a steady average Nusselt number 

from the sphere, which is reached at a later time for a higher Reynolds number as shown in 

Figure 3.14. In Figure 3.14 the variation of the local surface temperature on the symmetry 

plane is shown for different Reynolds numbers. At first the surface temperature increases 

gradually and then dramatically from the front stagnation point towards the separation 

point. At the separation point the surface temperature reaches its maximum. At this point 

the hydraulic boundary layer thickness is the largest and consequently heat transfer rate 

due to forced convection is the least. Therefore, the surface temperature has its minimum 

change from the initial value.   

If the effect of the variation of the surface temperature is considered in the calculation of 

the Nusselt number, the local Nusselt number according to equation (3.24) will be as 

shown in Figure 3.16. In this figure the minimum local Nusselt number is occurring at the 

separation point which occurs closer to the front stagnation point for a larger Reynolds 

number.  
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Figure 3.13 Internal and external isotherms for Re=50, 100, 200 (up-down) and 

Pr=1. 

 

 

Figure 3.14 Variation of average Nusselt number in dimensionless time over a 

sphere with non-uniform surface temperature. 
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Figure 3.15 Variation of the local surface temperature with Reynolds number. 

 

 

Figure 3.16 The local Nusselt number for different Reynolds numbers over a 

sphere with non-uniform surface temperature including the effect of variable 

surface temperature. 
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3.5  Conclusions 

 

The heat transfer from solid spheres with uniform temperature and internal temperature 

distribution are considered. The grid spacing does not significantly affect the average 

Nusselt number, but in order to have reliable local Nusselt number, a proper mesh 

resolution should be used. The results show that if the Biot number is larger than 1, the 

internal temperature distribution significantly affects the local heat transfer rate. Therefore, 

to have a reliable estimation of the local Nusselt number, the internal temperature 

distribution should also be considered. The Biot number is also an indication of how fast 

the heat transfer rate from a body is stabilized.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

 

Chapter 3 

 



 

69 

 

 

 

 

 

 

4 Heat transfer from a single 

deforming droplet 
 

 

 

 

 

 

In this chapter flow and heat transfer from a single deforming droplet is studied for 

different Weber and Reynolds numbers. The Navier-Stokes equations and the energy 

equation are solved on a staggered grid in Cartesian coordinates. Droplets are allowed to 

deform under the hydrodynamic forces of the surrounding flow. A coupled level-set and 

volume of fluid (CLSVOF) method is used to capture the highly deformable topology of 

the droplets. The temperature distribution inside the droplet and its effect on the Nusselt 

number is studied. The results show that the heat transfer rate is highly influenced by 

the Reynolds number while the Weber governs the extent of the deformations. Besides 

the main results, the sensitivity of the Nusselt number calculation on the surface area is 

also investigated.  
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4.1  Literature review 

 

Apart from the studies on hard spheres, there are many studies on heat transfer from 

non-spherical particles and deforming droplets. Abramzon and Sirignano (1989) have 

performed a study on the droplet vaporization to be used in spray calculations. They 

have formulated a one-dimensional effective conductivity model for the transient liquid 

heating with internal circulation. Haywood, Renksizbulut and Raithby (1994) have 

studied transient deformation and evaporation of droplets numerically. They could 

predict the droplet shape, as well as the velocity, pressure, temperature and 

concentration fields in both liquid and gas phases. They concluded that the damping of 

droplets is due to the circulations inside the droplets. 

Comer and Kleinstreuer (1995) studied convection heat transfer to non-spherical 

particles. They considered heat transfer from rigid spheroids in steady laminar 

axisymmetric flow and presented mean Nusselt number for different Reynolds numbers, 

aspect ratios and Prandtl numbers. In the work of Gilmanov and Acharya (2008), heat 

transfer and flow past deformable objects is studied. The moving boundaries are 

captured by a hybrid immersed boundary method and a material point method is used to 

resolve the structural stresses on a fixed Eulerian grid. They have reported flow and heat 

transfer past a rigid and deforming isothermal sphere as well.  

Hase and Weigand (2004) have studied transient heat transfer of deforming droplets by 

direct numerical simulation using a volume of fluid method. Their study covers flow 

with a Reynolds number in the range of 360-853 and droplets with a Weber number of 

1.33-10.41. They have found that the Nusselt number is significantly dependent on the 

Weber number at higher Reynolds numbers. They have also investigated the effect of 

deformations and the consequent variation in the surface area on the Nusselt number.  

Sultana et al. (2017) have studied the phase change and dynamics of a free falling water 

droplet by the Volume of Fluid method in a 2D axisymmetric model while Abdelouahab 

and Gatignol (2016) have focused on the study of the terminal velocity and 

instantaneous velocity of a falling water droplet in stagnant air and  

Reviewing the literature on this topic, shows still more information is needed on the 

heat transfer from deforming droplets. The purpose of this chapter is to investigate the 

effect of surface tension and Reynolds number on heat transfer from a single deforming 

droplet. The effect of the Weber number on the variation of the surface area and the 

resulting effect on heat transfer are also addressed. 
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4.2   Modeling heat transfer from a single deforming droplet 

 

In this section flow past a single deforming droplet with heat transfer between the two 

fluids is discussed. In comparison with rigid particles, when dealing with deformable 

objects, the surface tension plays an important role. Therefore, the effect of the surface 

tension has to be considered when solving the governing equations. The results are 

presented for different Reynolds and Weber numbers. 

The domain and the boundary conditions are shown in Figure 4.1. Equations (2.7)-(2.9) 

are the governing equations which are solved as explained in Chapter 2. The flow is 

assumed to approach from the left side to the droplet with a constant velocity of U∞ at 

the boundary, where the same boundary conditions as on the other walls are applied for 

the pressure and the temperature. The flow leaves the domain from the right side where 

the temperature and velocity gradient in the normal direction to the wall is put to zero 

and the pressure is assumed to be zero. The velocity is assumed to be continuous across 

the droplet surface. Since the continuity of stress must hold at the interface, the external 

forces should be compensated by the surface tension. From the conservation of energy 

at the interface the boundary conditions for the temperature are obtained. The initial 

time step is 1.0 e-7 and the fixed time step is 0.002. The constant properties and parameters 

are given in Table 4.1. 

 

 

Figure 4.1 Geometry, coordinates and boundary conditions for falling droplet. 
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Table 4.1 Values of constant parameters and properties in a water-air system. 

Constant Value 

kl/ kg 22.57 

ρl/ ρg 833.33 

Cpl/ Cpg 4.16 

 

4.3  Results and discussions on deforming droplet heat transfer 

 

The numerical setup for this case is a single droplet in a rectangular box of (6,18,6) which 

is meshed by (60,180,60) points. Since larger topological changes occur in colliding 

droplets finer grids are applied later to capture these changes in more detail. The size of the 

box is non-dimensionalized by the droplet diameter, D0=1.2 mm. The non-dimensional 

temperature of the droplet is initially 1 and for the surrounding air is 0. The development 

of the temperature field inside and around a single deforming droplet for different 

Reynolds and Weber numbers are shown in Figure 4.2 to Figure 4.4. It is observed that 

for a Reynolds number of 50 and different Weber numbers the droplet deformations are 

more significant with the increase in the Weber number. This is actually expected due to 

the decrease of the surface tension, since the Weber number and the surface tension 

have an inverse relation. The larger deformations make a larger surface area for the heat 

transfer. In Figure 4.5 the development of temperature contours are shown for Re = 100 

and We = 1.33. In this case the heat transfer is enhanced due to thinner thermal 

boundary layer because of the larger Reynolds number.  

 
0g

g

U D
Re






  (4.1) 

 

In which U∞ is the free stream gas velocity and ρg=1.225 kg/m
3
. 

 

2

0g D U
We






  (4.2) 

 

In which σ=0.072 N/m is the surface tension of the water-air system. 

   

In order to take the local temperature variations into account, the temperature gradients at 

the interface are used and the average Nusselt number can be determined by,  
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In which  n     and kreg is the non-dimensional regularized thermal conductivity. 
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 (4.4) 

 

Equations (3.25) and (4.3) only differ in the applied thermal conductivity; which is in the 

first the thermal conductivity of the air and in the later the regularized thermal conductivity 

at the interface. 

 

The results of the variation of the Reynolds and Weber numbers and the effect on the 

Nusselt number are shown in Figure 4.6-Figure 4.8.The average Nusselt number generally 

increases with increasing the Reynolds number. When the Reynolds number is increased 

the forced convection becomes dominant in the vicinity of the droplet which enhances the 

heat transfer rate and therefore results in increasing the Nusselt number. In case of the 

increase of the Weber number variations in the shape are more significant which results in 

bluff body shapes and therefore the separation of the streamlines occurs at a smaller angle 

from the front of the droplet. This results in a small reduction of the Nusselt number. 

The effect of surface tension on the average surface temperature is less significant 

compared to the effect of the Reynolds number. A larger Nusselt number implies a higher 

heat transfer rate between the droplet and the ambient flow. Therefore, the ambient flow 

temperature rises more rapidly when the Nusselt number is larger. This, consequently 

results in higher average surface temperature for larger Reynolds and Weber numbers as 

shown in Figure 4.9 and Figure 4.10. The Variation of the surface area of the droplets is 

shown in Figure 4.11, an oscillatory behavior is observed which is more evident for 

smaller Weber numbers. This behavior has been studied in the literature and for more 

details the reader is referred to the study of Becker, Hiller and Kowalewski (2006). 
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Figure 4.2 Development of temperature distribution as a function of time for 

Re=50 and We=1.33 (snapshots with constant ∆t during t=3). 

 

Figure 4.3 Development of temperature distribution as a function of time for 

Re=50 and We=4.86 (snapshots with constant ∆t during t=3). 
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Figure 4.4 Development of temperature distribution as a function of time for 

Re=50 and We=10.41 (snapshots with constant ∆t during t=3). 

 

Figure 4.5 Development of temperature distribution as a function of time for 

Re=100 and We=1.33 (snapshots with constant ∆t during t=3). 
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Figure 4.6 The average Nusselt number variation in time for different Reynolds 

numbers and We = 1.33. 

 

Figure 4.7 The average Nusselt number variation in time for different Reynolds 

numbers and We = 4.86. 

 



77 

 

 

 

Heat transfer from a single deforming droplet 

 

Figure 4.8 The average Nusselt number variation in time for different Reynolds 

numbers and We = 10.41. 

 

Figure 4.9 Variation of the average surface temperature in time for different 

Reynolds numbers and We = 10.41. 
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Figure 4.10 Variation of the average surface temperature in time for different 

Weber numbers and Re = 100. 

 

 

Figure 4.11 Variation of surface area in time for different Weber numbers and 

Re  = 50 with filtering the natural frequency of oscillation of droplets. 
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4.4  Conclusions 

 

In this chapter the heat transfer over a falling and deforming water droplet in air is studied 

for different Weber and Reynolds numbers. The results show that the internal temperature 

distribution affects the heat transfer rate significantly. Therefore, in order to have a reliable 

estimation of the local Nusselt number, the internal temperature distribution should be 

considered. In this way the correct local surface temperature of the droplet which is used in 

the Nusselt number calculations is obtained. By looking into the variation of surface area 

of droplet due to falling it is observed that a cyclic deformation occurs for which the period 

increases by increasing the Weber number. Since in the calculation of the Nusselt number 

the surface area is used, it is important to use the correct surface area from which the heat 

is being transferred. 

The sensitivity study of the heat transfer rate to the Reynolds number and the Weber 

number shows that increasing the Reynolds number and Weber number both increase the 

Nusselt number. However, the effect of the Reynolds number variation is  more significant 

as an increase of 100% in the Reynolds number results in an increase 20% in the Nusselt 

number. While an increase of 250% of the Weber number only results in decreasing the 

Nusselt number for about 3%. An increase in the Reynolds number increases the 

convection heat transfer rate. However, the variation of the Weber number results in 

different frequencies of cyclic deformations and does not affect the heat transfer rate 

significantly. 
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5 Heat transfer from colliding 

droplets 
 

 

 

 

 

In this chapter flow and heat transfer of colliding droplets of water in air is studied for 

different Weber numbers, Reynolds numbers and eccentricities of droplets in 3D. The 

Navier-Stokes equations and the energy equation are solved on a staggered grid in 

Cartesian coordinates. Droplets are allowed to deform under the hydrodynamic forces of 

the surrounding flow and the internal and external temperature variations are captured. 

A coupled level-set and volume of fluid (CLSVOF) method is used to capture the 

highly deformable topology of the droplets. The effect of the temperature distribution 

inside the droplet on the Nusselt number is studied. The results show that the heat 

transfer rate is more influenced by the Reynolds number and the initial configuration of 

droplets while the surface tension governs the extent of the deformations. The 

sensitivity of the Nusselt number calculation to the surface area is also investigated. The 

simulations are performed with two different solvers for the pressure and the velocity to 

show the difference between the iterative and the direct solvers.  
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5.1 Introduction 

 

In this chapter a three-dimensional numerical model is used to capture detailed 

information of the heat transfer problem in colliding droplets. Internal temperature 

distribution and non-uniform surface temperature are considered in the Nusselt number 

calculations. The deformations of droplets are captured and the effect of the surface area 

variation on heat transfer rate is investigated. The heat transfer rate is quantified by the 

Nusselt number variations for different Reynolds numbers, Weber numbers and 

collision eccentricities.  

 

5.2  Modeling heat transfer from colliding droplets  

 

The governing equations (2.7)-(2.9) and the numerical method are explained in 

Chapter 2. The computational domain is a rectangular box of (4.2×4.2×4.2) in which a 

fixed uniform grid is defined. The domain size is non-dimensionalized by the droplet 

diameter. The velocity boundary condition for the normal velocity component to each face 

is the Neumann boundary condition and for other components is the symmetry boundary 

condition. Pressure is assumed to be zero at all boundaries. The droplet properties are as of 

water and the ambient flow is assumed to be air. The two droplets approach each other 

with the initial velocity of U0. The ambient air is initially still, the velocity is non-

dimensionalized by the relative velocity of droplets. The model has been validated 

against experimental results for head-on collision of droplets, Kwakkel et al. (2013). 

The Nusselt number is calculated by equation (4.3) and the effect of droplets deformation 

on the heat transfer rate is investigated. The distance between the centerline of droplets is 

defined as the eccentricity, E as shown in Figure 5.1. Figure 5.2 shows the schematic 

configuration of the approaching droplets and the boundary conditions.  

 

 

Figure 5.1 Droplets approach with relative velocity U0 and eccentricity of E. 
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Figure 5.2 Domain and boundary conditions. 

 

 

5.3   Heat transfer from colliding droplets with an iterative solver  

 

To simulate heat transfer in colliding droplets with an iterative solver for pressure and 

velocity a fixed uniform grid with dimension of (84×84×84) is used. The physical 

parameters of the simulation cases are shown in Table 5.1. Figure 5.3 shows 

development of the level-set at the interface for cases 1-3. The temperature development 

in time for the same cases is shown in Figure 5.4. The droplets deformations and the 

time development of temperature for bouncing droplets (case 8) are shown in Figure 5.5 

and Figure 5.6, respectively. The results are reported in dimensionless numbers as 

introduced in Chapter 2. 
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Table 5.1 Simulation parameters for the iterative solver 

Case No. D0 (mm) U0(m/s) Re We Eccentricity(E) 

1 1.2 4.5 360 1.33 0 

2 1.2 4.5 360 1.33 R0 

3 1.2 4.5 360 1.33 2R0 

4 1.2 4.5 360 4.86 2R0 

5 1.2 4.5 360 10.41 2R0 

6 1.2 4.5 520 1.33 2R0 

7 1.2 4.5 835 1.33 2R0 

8 1.2 0.5 22.14 0.0149 0 

 

 

 

 

Figure 5.3 The Level set at surface of droplets in time for three different 

eccentricities for Re = 360 and We = 1.33. 

 

 

E=2R 

 

 

E=R 

 

 

E=0 

     0.0                          0.5863                        0.9889                          1.633 

     0.0                         0.4826                        0.9648                          1.369 

      0.0                           0.3903                       0.6402                         1.072 
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Figure 5.4 The temperature distribution in dimensionless time for three different 

configuration for Re = 360 and We = 1.33. 

 

 

Figure 5.7 shows the Nusselt number calculated based on the real surface area, taking 

into account the deformation of droplets due to collisions and movements. In Figure 5.8 

the variation of the Nusselt number is shown for different eccentricity of the 

approaching droplets with the initial surface area of the droplets applied in the 

calculation of the Nusselt number. In case of the head-on collision the Nusselt number 

has a minimum value at t = 0.8. At this point the Nusselt number exceeds the 

corresponding values of the case of E = 2R0, where E is the eccentricity of droplets. 

This is the result of the thin elongated volumes originated from the collision which 

enhances the heat transfer rate in this case. From this point the Nusselt number of the 

droplets with E = 2R0 is the smallest since the droplets remain almost spherical. In the 

case off-center collision of droplets with E = R0, the heat transfer rate is initially 

enhanced due to the flow passing the droplets. Since the droplets are experiencing high 

deformations after collision, the Nusselt number remains high.  

Comparing these two figures, the importance of using the real surface area in the 

calculation of the Nusselt number is evident. If the constant initial surface area is used 

in the Nusselt number calculation, it is observed in Figure 5.8 that the Nusselt number 

increases after the collision due to the increase in the surface area in contact with the 
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flow. Therefore, if the real increasing surface area is applied in the denominator of the 

Nusselt equation, the overall Nusselt number will decrease as it is seen in Figure 5.7.  

 

 

Figure 5.5 The level set at surface of bouncing droplets for                                      

Re = 22.14 and We = 0.0149. 

 

 

 

Figure 5.6 The temperature distribution in bouncing droplets for                           

Re = 22.14 and We = 0.0149. 
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Figure 5.7 Re = 360, We = 1.33 and different eccentricities (E) of droplets. The 

variation of the Nusselt number in time using the real surface area of droplets. 

 

 

Figure 5.8 Re = 360, We = 1.33 and different eccentricities (E) of droplets. The 

variation of the Nusselt number in time using the initial surface area of droplets. 
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In Figure 5.9 the effect of the Weber number on heat transfer rate is shown when the 

eccentricity of droplets is 2R0. In this case the shape of droplets does not change due to 

the collision. It is observed in this graph that since the Reynolds number is large the 

Nusselt number is in less affected by the Weber number. The Nusselt number slightly 

decreases when the Weber number is lower. According to the definition of the Weber 

number, for a certain approach velocity, a lower value of the Weber number means a 

higher surface tension. When the surface tension is higher the droplets will rupture more 

slowly and therefore preserving the enclosed volume of each droplet for a longer time. 

The result of a lower Weber number is a smaller surface area in contact with the 

ambient flow which can result in a decrease in the Nusselt number.  

The Nusselt number for the initial surface area is shown in Figure 5.10. Since the 

changes in the surface area of droplets in case of E = 2R0 is almost negligible, one can 

expect that using the initial surface area of droplets in the Nusselt number calculation 

would not affect the results considerably.  

 

 

Figure 5.9 Re = 360, E = 2R and different Weber numbers. The variation of the 

Nusselt number in time using the real surface area of droplets. 
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Figure 5.10 Re = 360, E = 2R and different Weber numbers. The variation of the 

Nusselt number in time using the initial surface area of droplets. 

 

 

The effect of the Reynolds number on heat transfer rate is also investigated for 

Re = 360, 520 and 835, when the eccentricity of droplets is 2R0 and We = 1.33. As it 

expected a higher Reynolds number enhances the heat transfer rate due to the better 

mixing of flow around the droplets and the predominant turbulence effects. The 

variation of the Nusselt number taking into account the real surface area of droplets is 

presented in Figure 5.11. It is observed that the Nusselt number decreases by lowering 

the Reynolds number. The Weber number applied for the simulations in this figure is 

small and the variation of the surface area is limited. Therefore, the heat transfer rate is 

mainly ruled by the Reynolds number variation. It is also concluded that when the 

Reynolds number is large enough, increasing the Reynolds number or changing the 

Weber number do not have significant effect on the variation of the Nusselt number. So 

there seems to be a maximum to the heat transfer enhancement for increasing Reynolds 

numbers. 
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Figure 5.11 We = 4.86, E = 2R and different Reynolds numbers. The variation of 

the Nusselt number in time using the real surface area of droplets. 

 

 

5.4 Heat transfer from colliding droplets with a direct solver 

 

As it was mentioned in Chapter 2, the iterative solvers are computationally expensive 

and using fine mesh for better numerical stability in highly deforming topologies might 

not be achievable. Therefore, in the this section to perform simulations with high 

resolution to capture small scale details with high computational speed the direct solver 

is used. To simulate heat transfer from two colliding droplets with a direct solver for 

pressure and velocity a fixed uniform grid of (144×180×144) is defined on a domain of 

a rectangular box of (4×5×4). The velocity boundary condition in x and z directions is 

Neumann condition for the normal velocity component to each face and symmetry 

condition for other components, while the pressure is assumed to be zero at these 

directions. A periodic boundary condition is applied in y direction. The flow parameters 

used in the simulations with the direct solver are shown in Table 5.2. The results of this 

section are published in the International Communications in Heat and Mass Transfer. 
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Table 5.2 Simulation parameters for the direct solver. 

Case  Re We Eccentricity (E) 

1 8.77 0.00135 0 

2 35 0.01351 0 

3 70 0.05404 0 

4 140 0.21616 0 

5 8.77 0.00135 R0 

6 35 0.01351 R0 

7 70 0.05404 R0 

8 140 0.21616 R0 

 

 

Figure 5.12 shows the temperature field development in time for head-on collisions. As 

it is observed in this figure, for cases 1 and 2 in which the Reynolds number and the 

Weber number are relatively low compared to the other two cases, the droplets remain 

intact after collision. An oscillating behavior is observed in the overall shape of 

droplets. Right after collision due to the momentum the droplets are squeezed but since 

the Weber number is low the surface tension can overcome this momentum and keeps 

the enclosed volume of droplets. As the Reynolds and Weber numbers increase in cases 

3 and 4, the initial momentum of the collision increases and at the same time the surface 

tension cannot compensate. That is the reason to see those elongated parts in case 3 and 

separated volumes in case 4 after collision.  

In Figure 5.13 the temperature field development in time for the off-center collision of 

droplets is shown. In this case the effect of the momentum is lowered due to the contact 

point of droplets after collision. That is why no separated volume is observed for these 

cases.   

The level-set function at the interface is used to visualize the droplet deformations and 

the variations in the surface area. The changes in the shape and volume of droplets are 

shown in Figure 5.14 and Figure 5.15 for head-on and off-center collisions respectively. 

As it is seen in the head-on collision separated volumes of droplet emerge for higher 

Reynolds and Weber numbers, while in the off-center collision the droplets merge into a 

larger droplet.  
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Figure 5.12 Temperature contour for head-on collisions.  
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Figure 5.13 Temperature contour for off-center collisions.  
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Figure 5.14 Deformations in head-on collisions.  

 

The effect of Reynolds number and Weber number on droplets deformation is shown in 

Figure 5.16 and Figure 5.17 for head-on and off-center collisions, respectively. As it is 

observed the extent of deformation of droplets increases by the Reynolds and Weber 

numbers. In the case of a head-on collision for lower Reynolds and Weber numbers, 

droplets are first squeezed due to the momentum, but since the surface tension forces 

are strong enough to prevent droplets to be torn, they start expanding in the orthogonal 

direction to the collision axis. This elongation is then limited again by the surface 

tension resulting in an oscillating behavior of droplets which can be seen for cases 1 and 

2 in Figure 5.16. For higher Reynolds and Weber numbers this oscillation is not 

observed since the momentum overcomes the surface tension forces. Therefore, instead 

of oscillating the surface area keeps increasing due to the elongation of droplets and 

separation of smaller volumes from the main droplets. For the off-center collision where 

the centers of droplets are distanced with R0, the contraction in the area of droplets 

occurs later in time comparing to the head-on collision. Therefore, the same trend in the 

variation of the surface area ratio is observed but with a shift in time.  
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Figure 5.15 Deformations in off-center collisions.  

 

Figure 5.18 and Figure 5.19 show the variation of the average Nusselt number in time 

for head-on and off-center, respectively. It is observed that a higher Reynolds number 

and Weber number result in a higher Nusselt number due to larger deformations and the 

presence of thinner volumes. When deformations are larger the surface area increases 

which results in higher heat transfer rate and therefore a higher Nusselt number. It is 

observed in these graphs that the Nusselt number is generally lower for a lower Weber 

number. According to the definition of the Weber number, for a certain approach 

velocity a lower value of the Weber number means a higher surface tension, when the 

surface tension is higher the droplets will rupture more slowly and therefore preserving 

the enclosed volume of each droplet for longer time. The smaller surface area which is 

the result of a lower Weber number can result in decreasing the Nusselt number. The 

comparison between the heat transfer rate in a head-on collision and an off-center 

collision for the same Reynolds and Weber numbers are shown in Figure 5.20-Figure 

5.23. As it is observed, generally the average Nusselt number is higher for the off-center 

collision for identical Reynolds and Weber numbers but as the Reynolds and Weber 

number increase the surface area increases more dramatically in a head-on collision due 
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to the rupture of the droplets and creation of scattered smaller volumes, which results in 

a higher Nusselt number as shown in Figure 5.23. 

 

Figure 5.16 Surface area variation for head-on collisions. 

 

 

Figure 5.17 Surface area variation for off-center collisions. 
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Figure 5.18 Variation of average Nusselt number in time for head-on collisions.  

 

 

 

Figure 5.19 Variation of the average Nusselt number for off-center collisions. 
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Figure 5.20 Comparison of the average Nusselt number in head-on and off-center 

collisions for Re=8.77 and We=0.00135.  

 

 

Figure 5.21 Comparison of the average Nusselt number in head-on and off-center 

collisions for Re=35 and We=0.01351. 
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Figure 5.22 Comparison of the average Nusselt number in head-on and off-center 

collisions for Re=70 and We=0.05404. 

 

 

Figure 5.23 Comparison of the average Nusselt number in head-on and off-center 

collisions for Re=140 and We=0.21616. 
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5.5 Conclusions 

 

In this chapter the flow and heat transfer in colliding droplets is studied in 3D for 

different Weber numbers, Reynolds numbers and eccentricity of droplets. Droplets are 

allowed to deform under the hydrodynamic forces of the surrounding flow. A coupled 

level-set and volume of fluid (CLSVOF) method is applied to model the highly 

deforming topology of the droplets. The temperature distribution inside the droplet as 

well as the outer domain is considered and the consequent effect on the Nusselt number 

is studied. 

The results show that the eccentricity of droplets has a significant effect on the Nusselt 

number. If the droplets deform considerably due to the collision, the heat transfer from 

the droplets will be strongly enhanced. It is concluded from the calculations for different 

Reynolds numbers that heat transfer rate is increased for higher Reynolds numbers. The 

surface tension controls the extent of deformations, so the larger Weber number for a 

certain approach velocity results in larger deformations in droplets and therefore a 

higher heat transfer rate is achieved. The role of using the real surface area of droplets 

in calculation of the Nusselt number is also studied, it is concluded that in problems 

with high Weber numbers it is of more importance that the real surface area is used in 

heat the transfer calculations. On the other hand, for cases with lower Weber numbers in 

which the deformations are negligible, using the real surface area is not necessary. 

Two different solvers for pressure and velocity have been used; an iterative solver and a 

direct solver. Since the direct solver is computationally less effortful and much faster 

than the iterative solver it can be applied on finer meshes. Therefore, results with higher 

resolution and less numerical instabilities can be achieved which makes the direct solver 

a suitable choice to solve problems with large topological changes. 
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6 Conclusions and 

recommendations for future work 
  

 

 

 

 

 

 

In this chapter the results are discussed and some recommendations for future work are 

given. The goal of this project was to develop a model to simulate heat transfer from 

multiple colliding and deforming droplets in different flow regimes for different 

configuration of droplets and physical properties of droplets. In order to achieve this 

goal, a Coupled Level-Set and Volume-of-Fluid method (CLSVOF) is applied to 

capture the highly deforming interfaces accurately while mass conservation is also 

satisfied.  
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6.1 Conclusions  

 

The governing equations are solved on a fixed grid and since direct methods are used no 

closure terms are required to be added. Small scales as well as large scale phenomena 

are well captured in the simulations. Since the level-set function is used in the 

simulations, the calculation of the normal vector to the interface at every computational 

cell is straightforward and consequently is the calculation of the Nusselt number where 

the normal vector is required. Using parallel computing gives higher speed to the 

computations and thus makes it possible to use the model for higher number of droplets 

without affecting the computation time significantly. In order to have a good overview 

of the heat transfer phenomena from spherical objects, solid spheres, single falling 

droplet and colliding droplets are studied.  

In the study of heat transfer from solid spheres the Biot number plays an important role. 

For Bi<<1 the conduction inside of the body is dominant and therefore the temperature 

of the body can be assumed uniform. For systems with Bi≥1 the internal temperature 

distribution should also be considered. The results show that the internal temperature 

distribution affects the heat transfer rate significantly. Therefore, to have a reliable 

estimation of the local Nusselt number, the internal temperature distribution and the local 

variation of the surface temperature of the particle should also be considered. The result of 

the mesh sensitivity study shows that the grid resolution while does not significantly affect 

the average Nusselt number but affects the local Nusselt number at the front stagnation 

point and at the rear of the particle, therefore a proper mesh resolution should be used.  

In the study of heat transfer over a falling and deforming water droplet in air for different 

Weber and Reynolds numbers, the results show that the internal temperature distribution 

affects the heat transfer rate significantly. Therefore, in order to have a reliable estimation 

of the local Nusselt number, the internal temperature distribution should be considered. In 

this way the correct local surface temperature of the droplet which is used in the Nusselt 

number calculations is obtained. By looking into the variation of the surface area of droplet 

due to falling it is observed that a cyclic deformation occurs for which the period increases 

by increasing the Weber number. Since in the calculation of the Nusselt number the 

surface area is used, it is important to use the correct surface area from which the heat is 

being transferred. 

The sensitivity study of the heat transfer rate to the Reynolds number and the Weber 

number shows that increasing the Reynolds number and Weber number both increase the 

Nusselt number. However, the effect of the Reynolds number variation is more significant 

as an increase of 100% in the Reynolds number results in an increase of 20% in the 
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Nusselt number. While an increase of 250% of the Weber number only results in 

decreasing the Nusselt number for about 3%. An increase in the Reynolds number 

increases the convection heat transfer rate while increasing the Weber number results in 

cyclic deformations in the droplet that decreases the heat transfer rate. 

The flow and heat transfer in colliding droplets is studied in 3D for different Weber 

numbers, Reynolds numbers and eccentricity of droplets. Droplets are allowed to 

deform under the hydrodynamic forces of the surrounding flow. A coupled level-set and 

volume of fluid (CLSVOF) method is applied to model the highly deforming topology 

of the droplets. The temperature distribution inside the droplet as well as the outer 

domain is considered and the consequent effect on the Nusselt number is studied. 

The results show that the eccentricity of droplets has a significant effect on the Nusselt 

number. If the droplets deform considerably due to the collision, the heat transfer from 

the droplets will be strongly enhanced. It is concluded from the calculations for different 

Reynolds numbers that heat transfer rate is increased by increasing the Reynolds 

number. The surface tension controls the extent of deformations, so increasing the 

Weber number for a certain approach velocity results in larger deformations in droplets 

and therefore a higher heat transfer rate is achieved. The role of using the real surface 

area of droplets in calculation of the Nusselt number is also studied, it is concluded that 

in problems with high Weber numbers it is required that the real surface area is used in 

the heat transfer calculations. On the other hand, for cases with lower Weber numbers in 

which the deformations are negligible, using the real surface area is not necessary. 

In the study of flow and heat transfer in colliding droplets two different solvers for 

pressure and velocity have been used: an iterative solver and a direct solver. Since the 

direct solver is computationally less effortful and much faster than the iterative solver it 

can be applied on finer meshes. Therefore, results with higher resolution and less 

numerical instabilities can be achieved which makes the direct solver a suitable choice 

to solve problems with large topological changes. 

 

6.2 Recommendations for future work  

 

As the next step in heat transfer study, the evaporation problem can be considered. The 

problem of evaporation of a single droplet or a spray of droplets has been studied for a 

few decades both numerically and experimentally. In modeling evaporation problem 

different assumptions have been made to simplify the computation process. Considering 
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the droplet to remain a sphere for its whole life time and considering uniform surface 

temperature for droplets are examples of such assumptions.  

As a future step, this model can be used to solve evaporation of droplets by adding 

another volume of fluid function for the vapor phase as in Schlottke and Weigand 

(2008) and Eisenschmidt et al. (2016). In this way the vapor phase can also be tracked 

in the domain and the shrinkage of the droplets due to evaporation can be included as 

well. Also by using a direct solver as introduced by Dodd and Ferrante (2014) for 

pressure and velocity, finer mesh with higher numerical stability can be used to capture 

the interface changes more accurately with less computational effort. 

The momentum equation remains the same for this problem as equation (2.8), but since 

due to evaporation some liquid mass is changed into vapor, the continuity equation will 

need some modifications and it can be written as: 

 
1 1

v l

m
 

 
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 

u  (6.1) 

 

If the droplets are assumed to be at the saturation temperature at the beginning of the 

simulations the energy equation can remain as equation (2.9). If droplets are at a 

temperature lower than the saturation temperature the energy equation also needs some 

modifications. In this case the latent heat of evaporation should be considered in the 

energy equation, so it can be written as: 
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In which m is the evaporation rate per unit volume. 

When evaporation is present, the equations for continuity of momentum, energy and mass 

as follows are required at the interface: 
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    
Γ l gm m YY YD   n  (6.5) 

 

Where [.]Γ represents a jump across the interface, n denotes the interface normal vector, 

m is the evaporation rate per unit surface and hlg is the latent heat of the evaporation. 

In dealing with evaporation problem with the CLSVOF method, an additional VOF 

function should be introduced for the vapor phase, so the transport equation for the 

vapor phase can be written as: 
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And the transport equation of the liquid phase should be modified as: 
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When there are two VOF functions in the domain, they should both be considered in the 

computation of the thermophysical variables. 
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The non-dimensional thermophysical properties used in the non-dimensional Navier-

Stokes equations, the energy equation and the interface conditions are defined by: 
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