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Abstract

In this thesis the development of a compressor for a gas network simulation will be discussed.
The modelled compressor is a centrifugal compressor and this compressor is common to use
when compressing gas. At first the equations to describe a centrifugal compressor and an ex-
ample parameter set are given. These equations will be used in an algorithm to calculate either
the suction pressure, the discharge pressure or the volume flow. A compressor can only operate
when it is in a feasible area. This feasible area is defined by both a surge and choke line as well
as the minimum and maximum rotation speed.

The gas network considered consists of a compressor plus a pipeline in front and after the
compressor. To model a pipeline the Weymouth pressure-drop equation is used. The pipe-
compressor system can be described as a system of seven equations. There are seven unknown
variables and two given variables. The given variables are the pressure at the beginning of the
first pipeline and the pressure at the end of the second pipeline.

To solve the system of equations a nonlinear solver is used. The Newton method is an ex-
ample of such a nonlinear solver and will be discussed for scalar equations and a system of
equations. Solving the system of equations as part of a simulation, a function in Python called
fsolve will be used. This function uses a more robust algorithm to get the solution quickly.

The numerical behaviour of the solver will be considered during multiple simulations. Fur-
thermore a parameter study has been done to understand what kind of pipelines are needed for
a certain pressure ratio. Finally two examples are discussed briefly.
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Chapter 1

Introduction

Almost every person in the Netherlands needs gas in their life. It is either to warm their houses
or to prepare a meal. The important question is, how gets the gas distributed into the Nether-
lands? This gas can be distributed by using pipelines and compressors. At about every 100
kilometres there is a compressor station [1]. A compressor station is a station where multiple
compressors are working parallel or in serie with each other. These stations make sure that gas
will remain at sufficiently high pressure everywhere in the pipeline and that gas is transported
to the destination.

At most compressor stations there are two types of compressors [1]. The reciprocating com-
pressor and the centrifugal compressor. A good mix of both compressors will keep the pressure
steady. Models of compressors and pipelines are needed to keep the gas at the right pressure.
Workers at the compressor stations can then calculate the right settings of each compressor. In
this thesis a model for a centrifugal compressor will be discussed. The model is important to
calculate the suction pressure (Ps), the discharge pressure (Pd) or the actual volume flow (Qac).
When two of the three variables are known, the third can be calculated. This is important to
set the compressors at the right settings.

In the article of Chapman and Abbaspour [1] equations of a centrifugal compressor are elabo-
rated. These equations will form the basis of the model. Every compressor needs to work in a
feasible area. When the compressor is outside this area, the performance will drop drastically.
What determines a feasible area? Every compressor has a point where there is surge and a
point where there is choke. Surge is the operation point where the maximum head (H) and the
related volume flow (Qac) is reached. The head of a compressor is in joule per kilogram. Choke
is the point where the volume flow increases and the discharge pressure decreases, such that the
compressor does not work anymore. Surge and choke points are both dependent on the rotation
speed. Every rotation speed has a specific surge and choke point and together they will form a
line. So the feasible area is confined by the surge line and the choke line.

The equations modelling a centrifugal compressor used here are nonlinear equations. There-
fore it is not easy to solve them. There are multiple ways to solve nonlinear equations. It can
be solved via dedicated nonlinear solvers or via optimization. The algorithm for the known
centrifugal compressor will be solved via a nonlinear solver. Examples that can be used to solve
the equations are Newton’s method, the Secant method or Quasi-Newton methods. The last
numerical method is a collective of several numerical methods and they are all derived from
Newton’s method. The method that will be used is the Newton method. To solve the scalar
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equation f(x) = 0 that method is given by

xn+1 = xn −
f(xn)

f ′(xn)
.

This model is a root-finding method and calculates the xn+1 by using the xn, the function and
the derivative of the function. To find the root, the method needs to calculate multiple itera-
tions. A method like Newton’s method works the best when the compressor is in the feasible
area. This method can sometimes not converge to a root. When the compressor wants to solve
the equation outside the feasible area there is a chance that the Newton method will not converge.

As already mentioned, the model is important to calculate either the suction pressure, the
discharge pressure or the volume flow. These variables can be calculated when two of the three
are already known. But what can be done with the outcome of this model. This model can be
used to calculate the settings to get the right pressure. A compressor station is a good example
for this. The compressor station will use the model to calculate the right settings for every
compressor. Then the flow in the pipeline and the flow in the compressors will be simulated.

The working of centrifugal compressors will be explained in chapter 2 by using [2]. Not only
the working of a centrifugal compressor will be elaborated also the equations modelling it will
be explained. These nonlinear equations need to be solved. When everything is explained and
known, the model will be elaborated at chapter 3. The feasible area is part of this modeling
process. Furthermore two different ways to handle the model such that there is always a solution
will be discussed.

In chapter 4 there will be a pipe-compressor system discussed. One part of this pipe-compressor
system is the pipe-compressor model. The other part is the composition of the system of equa-
tions.

In chapter 5 the method to solve a nonlinear equations will be discussed. Not only the Newton
method but also the Secant method and the Quasi-Newton methods are discussed. The three
methods will be compared and explained which one is the best.

Finally an example compressor and different pipelines will be used to solve the system of equa-
tions of chapter 4. There will be checked if the solution is feasible and what to do when the
solution is not feasible.



Chapter 2

Centrifugal Compressor

In this chapter the theory of a centrifugal compressor will be discussed. At first the working of a
centrifugal compressor will be discussed. At last a couple of formulas will be used to describe a
centrifugal compressor. These formulas are needed to calculate one of the variables: Ps (suction
pressure), Pd (discharge pressure) or Qac (volume flow).

2.1 Working of a centrifugal compressor

There are many kinds of compressors in this world. The most important compressor of this
report is the centrifugal compressor. In figure 2.1 the schematic working of a centrifugal com-
pressor is shown.

Figure 2.1: Schematic version of a centrifugal compressor (from [3])

How does this compressor work? A higher pressure can be obtained by reducing the volume
of the gas. The centrifugal compressor compresses the gas as follows. At the inlet pipe, also
called suction, the gas comes into the compressor. A centrifugal compressor contains a rotatably
driven impeller inside the housing [2].

The gas can be compressed by the rotation of the impeller. The impeller has radial blades.
Due to the rotation of the impeller the speed of the gas will be higher. The diffuser, which
can be seen in figure 2.2, will partially transform kinetic energy of the gas into potential energy
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2.2. Centrifugal compressor equations 5

(pressure) by slowing down the gas. A diffuser has parallel sides without any radial blades.
When the gas compressed it will leave the compressor at the discharge side. In real life a part of
the pressure build-up will take place in the impeller. Roughly the compressor work like above,
the whole explanation can be found in [2] and [3].

Figure 2.2: Inside a centrifugal compressor (from [3])

2.2 Centrifugal compressor equations

To describe a compressor we need multiple equations. These equations are given in the following
article [1]. Some parameters are very important for the performance of the compressor. Those
parameters are the isentropic head, the isentropic efficiency and the rotation speed.

2.2.1 Equations

To model the centrifugal compressor we first need the isentropic head (H) of the compressor.
The H of a compressor is simply the work expressed in Joule per kilograms and is given as
follows:

H =
γ

γ − 1
ZsRTs

[(
Pd
Ps

) γ
γ−1

− 1

]
. (2.1)

The equations are important to calculate either Ps, Pd or Qac. The Ps and the Pd are part of
equation (2.1). The only parameter which now needs to be related is Qac. The required equation
is the ratio of the H and the rotation speed (Nr) and is given as follows:

H

N2
r

= b1 + b2

(Qac
Nr

)
+ b3

(Qac
Nr

)2
. (2.2)

Also the isentropic efficiency (η) is needed to describe the compressor. The isentropic efficiency
is the ratio of work output for an ideal isentropic compression process to the work input to
develop the required H. We calculate the η as follows:

η = b4 + b5

(Qac
Nr

)
+ b5

(Qac
Nr

)2
. (2.3)



6 Chapter 2. Centrifugal Compressor

Here b1, b2, b3, b4, b5 and b6 are coefficients, these coefficients have no dimension. They make
equation (2.2) and (2.3) fully characterize the specific centrifugal compressor map.

Last but not least the temperature of the discharged gas (Td) needs to be calculated. This
can be only done when Ps, Pd and Qac are already known. When these are known the equation
of Td is the following:

Td = Ts +
Ts
η

[(
Pd
Ps

) γ
γ−1

− 1

]
. (2.4)

A centrifugal compressor operates under constraints. They will be discussed in the next chapter.

2.2.2 List of parameters and variables

To define the equation for the centrifugal compressor there are parameters and variables needed.
These parameters and variables will be elaborated in this section. All variables, with their units,
are viewed in table 2.1.

Variable Description Unit

H Isentropic head J/kg
Nr Rotation speed RPM
Pd Discharge pressure of the gas Pa
Ps Suction pressure of the gas Pa
Qac Actual volume flow rate m3/s
Td Temperature discharged gas K
η Efficiency -

Table 2.1: Table of all variables

Not only the variables should be defined, the parameters also need to be defined. All these
parameters have a value. Not every parameter has a unit, the parameters are given in table 2.2.
Example values are given as well.

Parameter Description Value Unit

b1 − b6 Coefficients for centrifugal map

b1 = 1.059 · 10−4

b2 = 6.418
b3 = −6.401 · 104

b4 = 1.727 · 10−1

b5 = 1.942 · 104

b6 = −1.505 · 108

-

R Specific gas constant R = 437.60 J/kmol.K
Ts Temperature suction gas Ts = 300 K
Zs Compressibility factor Zs = 0.96 -
γ Isentropic coefficient γ = 1.27 -

Table 2.2: Table of parameters and example values
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2.3 Generalization

In this section the compressor model is generalized. The important difference for every com-
pressor is that the parameters b1 up to b6 can vary. There can be more bn where n > 6. When
there are more parameters some equations can be of a degree higher than 2. Usually the degree
will not be higher than three because there will be local minima and maxima. An equation of
a degree higher than 3 is hard to calculate with. It is also possible that the equations will not
be polynomials.

The equations which were used in section 2.2.1 are almost the same when they are general-
ized. Two examples of equations which can be different, are equations (2.2) and (2.3). Firstly,
see what happens with the head-rotation speed ratio. When this equation is generalized its
degree can be higher than 2. So the equation will be like this,

H

Nr
= b1 + b2

(
Qac
Nr

)
+ b3

(
Qac
Nr

)2

+ · · ·+ bn

(
Qac
Nr

)n
. (2.5)

Secondly the efficiency equation will be generalized. This equation will look the same as the
head-rotation speed ratio equation. Only the parameters will start at n+ 1. The equation is as
follows,

η = bn+1 + bn+2

(
Qac
Nr

)
+ bn+3

(
Qac
Nr

)2

+ · · ·+ bn+m

(
Qac
Nr

)m
. (2.6)

It is possible that n and m are not equal. As already mentioned, the equations are not necessarily
polynomials. When they are polynomials the degree normally is not higher than 3.



Chapter 3

Constraints of a centrifugal
compressor

In this chapter the compressor model will be discussed. The goal is to calculate the suction
pressure (Ps), the discharge pressure (Pd) or the volume flow (Qac). These variables can be
calculated using equations (2.1), (2.2) and (2.3). The algorithm uses the Newton method to
calculate one of the three variables (Ps, Pd and Qac). In this chapter the constraints and their
role in the compressor model will also be discussed.

3.1 Constraints

Every compressor operates in a feasible area. This feasible area is determined by constraints.
In the figure below equation (2.2) is plotted.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Qac

60000

40000

20000

0

20000

40000

60000

He
ad

10000 RPM
11000 RPM
12000 RPM
13000 RPM
14000 RPM
15000 RPM
15700 RPM

Figure 3.1: Compressor map without constraints

What can be seen here, is when there are no constraints, H can be negative. For a real compres-
sor H can not be negative. Furthermore it shows that there are multiple Qac for a given H. For
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3.1. Constraints 9

example when the rotation speed is 11000 RPM and a H = 20000J/kg, then Qac ≈ 0.113353
m3/s or Qac ≈ 0.989568m3/s. For every H there are two solutions. Therefore the algorithm
can give an unrealistic solution. Only at the maximum head there is one solution.

But what constraints are necessary to make sure that the solution is always realistic? When
looking at a compressor there are two states when the compressor can not operate. The two
states are surging and choking and it will be elaborated in section 3.1.1 and section 3.1.2.

3.1.1 Surge line

Surge is a system-dependent phenomenon which can cause large oscillations of pressure through
the compressor system [4]. Operating the system in these unstable conditions induces a dramatic
drop of the performance which may cause failure of the compressor. For example when there is
surge, your outlet pressure can be lower than your inlet pressure. Surge is the operation point
where the maximum head (H) and the related volume flow (Qac) are reached. Which means
that the compressor does not work at a lower Qac.

Because there is a possibility of failure, there normally is a margin on the surge line. It is
important that the compressor is not unstable. Looking at the modeled compressor, the surge
line is the maximum head at every rotation speed. Define an iso-efficiency line as a line where
the efficiency is equal for different rotation speeds. All of the maximum heads, at different
rotation speeds, are on an iso-efficiency line. The rate Qac

Nr
at the maximum head is the same,

independent of Nr. Let xmax = Qac
Nr

be the maximum of equation (2.2).

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

x (= Qac
Nr

)

Explanation surge line is on an iso-efficiency line

H
Nr
η

This is

xmax =
−b2
2 · b3

(3.1)

The corresponding η is found by substituting xmax in (2.3). The iso-efficiency line will be formed
by the found η at every rotation speed. The surge line is now defined by an iso-efficiency line
and can be put in the compressor map (see figure 3.2).
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Qac
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13000 RPM
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Figure 3.2: Compressor map with surge line

3.1.2 Choke line

In figure 3.2 the compressor map is not yet complete. At some point in the compressor map
there is going to be choking. A choking point is also known as a stonewall point. This is the
point where the volume flow increases and the discharge pressure decreases, such that the com-
pressor does not work anymore. Moving toward the choke line, the decreasing head has less
influence on inlet flow ratio because the curve slope increases. Which can be seen in figure 3.1.
As the choke point is approached, changes in head will have negligible effect on inlet flow rate [5].

Now that the definition of a choke point is clear, the modeled compressor needs a choke line to
work. The compressor will only work when it is operating between the surge line and the choke
line. Which line is allowed to be the choke line? An iso-efficiency line is part of the answer. It is
important that the compressor works as efficiently as possible and the maximum efficiency needs
to be in the feasible area. The maximum efficiency of this compressor follows from equation
(2.3) and is approximately 0.799.

The choke line is normally given by the manufacturer. For this model the choke line is cho-
sen to be an iso-efficiency line at a efficiency of 0.65. The real choking point is probably at a
lower iso-efficiency line than is given by the manufacturer of the compressor. The feasible area,
with efficiency lines of 0.799, 0.75 and 0.70, is shown in figure 3.3. The red non-dashed line is
the maximum efficiency. The code of the compressor map can be found in Appendix A.3. The
minimum and maximum Nr, respectively 10000 RPM and 15700 RPM, are boundaries of the
compressor map.
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Figure 3.3: Compressor map with surge and choke line

3.2 Solutions in the feasible area

The surge and choke line are defined such that the compressor can operate. The algorithm
needs to know that it can only operate between the surge and choke line and the minimum and
maximum Nr. This is called the feasible area. Furthermore the algorithm needs to know what
to do with a point outside the feasible area. There are two situations, one where Ps or Pd is
calculated and one where Qac is calculated. This method can be used when there is a feasible
solution needed such that some input data is changed. In this section we look at the feasibility
of the input data. The code of this model can be found in Appendix A.4.

3.2.1 Calculation feasible Ps or Pd

When calculating Ps or Pd the given Qac needs to be in the feasible area. How does the algorithm
get a feasible Qac? To check Qac is feasible the Q on the surge line (Qsurge) and choke line (Qchoke)
need to be calculated. When

Qsurge ≤ Qac ≤ Qchoke,

then the Qac is feasible. When Qac is smaller than Qsurge, then Qac = Qsurge. When Qac is
larger than Qchoke, then Qac = Qchoke.

First the calculation of the Qsurge. The model calculates the maximu head, the surge line,

and it gets the same equation as equation (3.1). Recall that x = Qac
Nr

thus,

Qsurge =
−b2 ·Nr

(2 · b3)
.
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Qsurge is the volume flow on the surge line and only dependent on Nr.

Now the Qchoke on the choke line needs to be computed. Recall from section 3.1.2 that the
choke line is the efficiency of 0.65 and recall the formula for the efficiency:

η = b4 + b5

(Qac
Nr

)
+ b5

(Qac
Nr

)2
.

The Qchoke can be solved from the fact that the efficiency is 0.65:

b4 + b5

(Qac
Nr

)
+ b5

(Qac
Nr

)2
− 0.65 = 0.

This can be solved analytically. The solution is the Qchoke.

3.2.2 Calculation feasible Qac

When calculating Qac with given Ps and Pd the technique in section 3.2.1 is not the right tech-
nique. In this case the given Pd will be checked if it is feasible. The given Ps does not have to
be checked because when Pd is feasible, Ps will follow.

First of all the Qsurge and Qchoke are needed. With the Qsurge a minimum Pd can be com-
puted via a nonlinear solver and the equations in section 2.2.1. On a similar way the maximum
Pd can be computed, the Qchoke is needed for that.

Finally the given Pd can be checked. If

Pdmin ≤ Pd ≤ Pdmax,

then the given Pd is feasible. When the Pd is bigger than Pdmax it takes that value. Similarly
when Pd is smaller than Pdmin.

3.3 Change of RPM’s

In section 3.2 we saw that the input data may be not feasible. So the input data were changed,
if necessary. The Qac was changed when either Ps or Pd were calculated. The Pd was changed
when Qac was calculated. Now the input data is fixed. Thus Qac and Pd cannot be changed
anymore. Only one variable can change, that is the rotation speed. There are multiple rotation
speeds for the same Qac. The change of Nr can be used when there is a solution needed with
the input data. So, if the result is not in the feasible area, the rotation speed may be changed.
The Python code of this model can be found in Appendix A.5.

First of all make sure the compressor work at the maximum efficiency. Which means that
the compressor has the best performance at a given head and volume flow. The maximum
efficiency is calculated in section 3.1.2. Recall,

Qac
Nr

= − b5
2 · b6

.

From the calculation of the maximum efficiency, the rotation speed can be calculated. So,

Nr = −Qac · 2 · b6
b5

.



3.3. Change of RPM’s 13

Now the Nr is the rotation speed at the maximum efficiency. It is important to note that the
maximum efficiency is always in the feasible area. In figure 3.3 the line of highest efficiency is
marked red.

There is one situation where it is hard to generate a solution for Ps. This happens when the
pressure ratio is too high. The pressure ratio Pd

Ps
can be found in equation (2.2). For example,

if the suction pressure is too low and the discharge pressure too high, the ratio would be too
high. A ratio like this is not likely to happen.



Chapter 4

Pipeline simulations

In chapter 3 the compressor model was discussed. This compressor works fine in the feasible area.
The next step is to connect a pipeline in front of the compressor and behind the compressor.
This creates a small pipe-compressor system. The pressure at the begin of the first pipeline is
fixed as well as the pressure at the end of the second pipeline. To calculate the gas flow inside
a pipeline the Weymouth pressure drop equation will be used.

4.1 Pipe-compressor model

To make a pipe-compressor system, the model needs to be clarified. It starts with a pipeline
where there is a start pressure P1 and a mass flow rate in the pipeline ṁs. At the end of
the pipeline the pressure will be lower than P1. The pressure drop can be calculated via the
Weymouth equation. This equation is as follows

ṁ = sign(P 2
1 − P 2

2 )cw

√
S|P 2

1 − P 2
2 |D5.3333

TZL
. (4.1)

The parameters are defined in table 4.1. Example values are given as well.

Parameter Description Value Unit

cw Pipe constant cw = 0.47857 -
D Pipe diameter D = 0.3 m
L Pipe length L = 105 m
S Specific gravity of the gas S = 19/29 -
T Average temperature T = 300 K
Z Compressibility factor Z = 0.96 -

Table 4.1: Table of pressure-drop equation parameters and example data

Before gas is going into the compressor, the pressure at that moment is equal to the suction
pressure (Ps). Then the pressure of the gas after compression is the discharge pressure (Pd). The
mass flow ṁs before the compression is not the same mass flow after compression (ṁd). This is
because the compressor need some ’gas fuel’ to operate. This fuel can be obtained by using a
small amount of gas of the mass flow ṁs and is denoted as ṁf . At last there is another pipeline
where P2 is fixed and the rest can be calculated via the Weymouth pressure drop equation (4.1).
The model is schematically shown in figure 4.1.

14
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Figure 4.1: Pipeline simulation schematic

4.1.1 System of equations

To solve the pipe-compressor system a system of equations needs to be collected. Not every
equation is already given. Equations (2.1), (2.2), (2.3), (2.4) and (4.1) are already given and
these are needed to compile a model for the pipe-compressor system. There are three equations
which are not given yet. The first one is to calculate the power of the compressor.

Power =
H · ṁd

η
. (4.2)

In figure 4.1 is shown that the fuel consumption is important. An equation for that mass flow
ṁf is not yet known. The equation for the fuel consumption is as follows,

ṁf =
Power

LHV · ηturbine
. (4.3)

For example, where LHV = 47 · 106 and ηturbine = 0.8. It is important that the total mass flow
is not changed throughout the system. The ṁs is not equal to ṁd because some part of the ṁs

becomes fuel. The last equation is,
ṁs = ṁf + ṁd. (4.4)

Every equation that is needed to formulate the model is known. What are the unknown vari-
ables? The pressure at the begin (P1) and the pressure at the end (P2) are fixed. Furthermore
the rotation speed (Nr) and volume flow (Qac) are important to calculate because the compres-
sor will work on a certain iso-efficiency line. So the ratio of volume mass and RPM needs to be
equal to that iso-efficiency line. So, the variables are ṁd, ṁf , ṁs, Nr, Pd, Ps and Qac

All the variables and equations are known and the system can be formed. The system of
equation for this model is,



f1 = ṁs − sign(P 2
1 − P 2

s ) cw

√
S|P 2

1−P 2
s |D5.3333

TsZL

f2 = ṁs − ṁf − ṁd

f3 = H
N2
r
−
(
b1 + b2

(
Qac
Nr

)
+ b3

(
Qac
Nr

)2)
f4 = ηline −

(
b4 + b5

(
Qac
Nr

)
+ b5

(
Qac
Nr

)2)
f5 = Qac − ṁd

ρ

f6 = ṁf − Power
LHV ηturbine

f7 = ṁd − sign(P 2
d − P 2

2 ) cw

√
S|P 2

d−P
2
2 |D5.3333

TdZL

(4.5)
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Having formed this system, the H (equation 2.1), η (equation 2.3), Td (equation 2.4) and the
Power (equation 4.2) can be calculated using the equations which are already known. The ηline
is the efficiency at a certain iso-efficiency line. This needs to be higher than 0.65 and less or
equal to the maximum efficiency.

4.2 Solver for system of equations

The system of equations is determined. But which method is the best to solve this problem?
Their are multiple ways to solve a system of equations numerically. Existing Python functions
will be used for this. The two functions that are used to solve this specific problem are Newton
and fsolve in the scipy.optimize package.

The Newton method in Python is similar to the method explained in section 5.4. The con-
vergence of the system is quadratic, if it is possible to converge. Newton’s method is known of
its fast convergence but is also known that it will not always converge. In comparison to fsolve,
it is harder to converge a system of equations for Newton’s method.

There are multiple reasons why Newton may not converge when it is solving a system of equa-
tions. First of all, the initial values can be taken wrong. When these values are too far away
from the solution Newton’s method may not converge. It could get further away from the actual
solution and diverge or maybe iterate without converging.

Fsolve is a function in the Python scipy.optimize package. This root-finding algorithm is used to
find the solutions of a system of nonlinear equations. This algorithm has a lot of great features
to find the solution. Fsolve uses, among other things, Powell’s method, also known as Powell’s
conjugate direction method [6]. This method finds the local minimum of a function and works
roughly like this. The derivative of the function does not need to be calculated and no deriva-
tives are taken. This method minimizes the function by using bidirectional search along each
vector. More information about fsolve can be found in the source code of fsolve.

Fsolve works most of the time better than Newton’s method. Newton’s method can diverge very
easily when the initial values are taken wrong. Fsolve has features like bidirectional search to
make sure the next iteration is closer to the solution. In conclusion, to solve the pipe-compressor
system in Python fsolve is a better tool to use.

4.3 Feasible area

The solver is determined but is the solution feasible? Recall that the feasible area of the com-
pressor is as in figure 3.3. Where the minimum rotation speed is 10000 RPM and the maximum
rotation speed is 15700 RPM. When solving the system of equations (4.5) the Qac can have
two solutions when the iso-efficiency line is not equal to the maximum efficiency. But when the
efficiency is equal to the maximum efficiency, the system can only have one Qac as a solution.
The maximum efficiency is calculated, where ηmax ≈ 0.799172. So, the

f4 = ηline −
(
b4 + b5

(Qac
Nr

)
+ b5

(Qac
Nr

)2)
,

can be changed into

f4 = 0.799172−
(
b4 + b5

(Qac
Nr

)
+ b5

(Qac
Nr

)2)
.
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The system of equations has only one solution at the maximum efficiency. This does not mean
that the solution is also in the feasible area. The found rotation speed can be lower than 10000
RPM and can be higher than 15700 RPM. If the rotation speed is between 10000 RPM and
15700 RPM the solution is feasible right away.

4.3.1 Rotation speed outside feasible area

The found rotation speed can be higher than feasible or lower than feasible. What happens
with the solution when it is outside the feasible area? When the rotation speed is higher then
feasible, the rotation speed will be reduced until it reaches 15700 RPM. When the rotation speed
is lower than feasible, the rotation speed will be increased until it reaches 10000 RPM. The user
can choose a rotation speed somewhere between 10000 RPM and 15700 RPM.

Figure 4.2: Line of solutions from a point with too high RPM

First, lets see what happens when the rotation speed is reduced. When it is reduced, the
solution is not the most efficient one anymore. That is because the Qac

Nr
ratio is different, Nr is

smaller. The Qac is also different and so the ratio is different. Qac can have two different solu-
tions as given in the figure 4.2. There are two lines of solutions. The one left of the iso-efficiency
line with the maximum efficiency and one right of the iso-efficiency line with the maximum
efficiency. When reducing the rotation speed, the Qac can be either feasible or not feasible. The
solution of the system needs to be in the feasible area. The solver should find the Qac on the
right line.

When looking at figure 4.3 the Qac can have two different solutions. With one line that goes
into the feasible area and one goes into something which is physically not possible. In this case
the solver also wants to find the solution on the right line. When the solver chooses that line
the solution is a feasible solution.

For both kind of problems there will be a new system of equations defined. The rotation speed
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Figure 4.3: Line of solutions from a point with too low RPM

(Nr) is now fixed. There are six variables and six equations to solve. The new system of
equations is as follows,



f1 = ṁs − sign(P 2
1 − P 2

s ) cw

√
S|P 2

1−P 2
s |D5.3333

TsZL

f2 = ṁs − ṁf − ṁd

f3 = H
N2
r
−
(
b1 + b2

(
Qac
Nr

)
+ b3

(
Qac
Nr

)2)
f4 = Qac − ṁd

ρ

f5 = ṁf − Power
LHV ηturbine

f6 = ṁd − sign(P 2
d − P 2

2 ) cw

√
S|P 2

d−P
2
2 |D5.3333

TdZL

(4.6)

Where the Power is still defined as in equation (4.2). This system is solving ṁs, Ps, Pd, ṁf , ṁd

and Qac. It is already mentioned, but Qac can have two possible solutions at the fixed rotation
speed. The solution needed is the one that lies on the right line in figure 4.2 or figure 4.3. To
check if this is true, the program checks if the Qac is in the feasible area. When the given Qac
is on the left line, the program determines automatically the Qac on the right line. When the
Qac is the right one, the system will stop. The right solution is given.

With another Qac all the other variables are different. So the system of equations needs to
be calculated again. The only difference with the system of equations (4.6) is that the Qac and
the Nr are both fixed. So, the new system has five unknown variables with five equations. This
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system looks as follows,

f1 = ṁs − sign(P 2
1 − P 2

s ) cw

√
S|P 2

1−P 2
s |D5.3333

TsZL

f2 = ṁs − ṁf − ṁd

f3 = Qac − ṁd
ρ

f4 = ṁf − Power
LHV ηturbine

f5 = ṁd − sign(P 2
d − P 2

2 ) cw

√
S|P 2

d−P
2
2 |D5.3333

TdZL

(4.7)

Finally, the right solution is given and is feasible. The Python code can be found in Appendix
A.6.

4.3.2 Other cases

It might be possible the system has not the correct solution right away. When it does have a
solution it does not mean it is feasible. There are multiple cases that come after and before
calculating the solution described in 4.3.1. First of all what to do when there is no solution given.

It is not possible that the system of equations (4.5) has no solutions. There are always so-
lutions possible. That comes from the fact that the maximum efficiency is calculated for the
ratio Qac over Nr. This iso-efficiency line is always in the feasible area, so there must be a solu-
tion of the compressor. When there is a solution of the compressor, the pipeline equations also
has a solution. But what to do when the algorithm does not give a solution or does not converge?

The problem then is that the initial values are not defined properly. This system of equa-
tions is a very unstable system. That means that for a small change in the initial values, the
whole system may not converge anymore. The two values that are the most fragile are Ps and
Pd. When these values are too high or too low, the whole system does not work anymore. This
is because the ∆P needs to be high enough. When this is too low, the compressor can not
compress it well. Therefore the solution is not feasible and thus it does not work. If the system
is not giving an answer, change the initial value of Ps or Pd. When it is still not converging
change the other initial values.

Another case is that the lines of solutions are not in the feasible area at all. An example is
seen in figure 4.4. In this figure also the right line needs to be calculated when the first solution
is underneath or above the feasible rotation speed. The left blue line is still not physically
correct. What is going to happen with the right blue line?

The right blue line in figure 4.4 is outside the feasible area. Recall that choke is the point
where the volume flow increases and the discharge pressure decreases, such that the compressor
does not work anymore. The change that choke occurs outside the feasible area is very high.
The choke line is set on the iso-efficiency line of 0.65, which is overestimated (see section 3.1.2).

The same is obtained when the rotation speed is above 15700 RPM. In that case the line
of solutions can also be outside the feasible area. It seems that this kind of problems have no
solutions in the feasible area. The only solution is that the chosen pipeline is not suitable with
the chosen compressor or vice versa. When there is another pipeline or compressor, which is
suitable for both, the system of equations will give a feasible solution.
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Figure 4.4: Line of solutions not in feasible area



Chapter 5

Solving the nonlinear equations

In this chapter one specific numerical method will be discussed. The most important numerical
method to solve the equations in chapter 2 is the Newton method. The Newton method can
be used for scalar algebraic equations or for system of algebraic equations. First we look at a
scalar algebraic equation.

5.1 Newton’s method

To solve a nonlinear equation f(x) = 0, the Newton method is one of the best-known numerical
methods. The followed derivation is from [7]. This numerical method can be explained by using
a Taylor polynomial. First suppose f ∈ C2[a, b] and let x̃ ∈ [a, b] be an approximation of the
root x such that f ′(x̃) 6= 0. Suppose that |x− x̃| is small, then the Taylor polynomial about x̃
is as follows,

f(x) = f(x̃) + (x− x̃)f ′(x̃) +
(x− x̃)2

2
f ′′(ξ(x)),

where ξ(x) is between x and x̃. Because f(x) = 0 the equation above can be written as,

0 = f(x̃) + (x− x̃)f ′(x̃) +
(x− x̃)2

2
f ′′(ξ(x)).

Then knowing that |x − x̃| is very small, |(x − x̃)|2 can be neglected. Then following equation
appears,

0 ≈ f(x̃) + (x− x̃)f ′(x̃).

Rewrite this formula into,

x ≈ x̃− f(x̃)

f ′(x̃)
.

Now let x0 be a approximation and this generates the sequence of {xn}. The Newton method
is,

xn+1 = xn −
f(xn)

f ′(xn)
.

Remark that the right part of the equation is the tangent at the point xn. A Python code for
the Newton method can be found in Appendix A.1.

21



22 Chapter 5. Solving the nonlinear equations

5.2 Geometric explanation Newton’s method

The Newton method is now explained, but how does it work? Assume f(x) = 0 has one
root. The Newton method starts with an approximation x0 and finds the tangent at x0. Then
the point (x1) where the tangent hits the x-axis becomes the new point. This continues until
f(xn) ≈ 0 and then the method stops. Then xn is the root of the function f(x). To get a better
understanding of the above, the figure below shows how the xn is calculated.

(x0)(x1)

Explanation Newton’s method

So, when the tangent line at point x0 is found, the x1 can be found by the intersection of the
tangent line and the x-axis. By repeating this the root will eventually be found. It converges if
x0 is in the radius of convergence.

5.3 Convergence of Newton’s method

To get a solution from a nonlinear solver the method needs to converge the solution. So each
nonlinear solver generates a sequence {xn} = x0, x1, x2, . . . which should converge to x. Thus
limn→∞ xn = x. We assume the method does converge. If there exist a positive constants λ and
α satisfying

lim
n→∞

|x− xn+1|
|x− xn|α

= λ, (5.1)

then {xn} converges to x with order α and asymptotic constant λ.

The Newton methods converges with an order of 2. This can be shown as follows. First make
the observation that the Newton method can be computed by Taylor expansion:

0 = f(x) = f(xn) + (x− xn)f ′(xn) +
(x− xn)2

2
f ′′(ξn) for ξn between xn and x. (5.2)

Newton method is defined such that

0 = f(xn) + (xn+1 − xn)f ′(xn). (5.3)

When subtracting equation (5.3) from (5.2) yields

(x− xn+1)f
′(xn) +

(x− xn)2

2
f ′′(ξn) = 0,
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such that,
|x− xn+1|
|x− xn|2

=

∣∣∣∣ f ′′(ξn)

2f ′(xn)

∣∣∣∣.
Then from equation (5.1) it can be seen that the Newton method converges with order 2, which
means it converges quadratically. Thus α = 2 and

λ = lim
n→∞

∣∣∣∣ f ′′(ξn)

2f ′(xn)

∣∣∣∣ =

∣∣∣∣ f ′′(x)

2f ′(x)

∣∣∣∣.
The followed derivation is from [7].

5.4 Newton’s method for systems

The Newton method can be generalized to solve a system of nonlinear equations. Let there be
a system of n nonlinear equations in n variables given by

f1(x1, x2, x3, . . . , xm) = 0

f2(x1, x2, x3, . . . , xm) = 0

f3(x1, x2, x3, . . . , xm) = 0

...

fm(x1, x2, x3, . . . , xm) = 0.

Equivalent to the the above is:

f(x) =


f1(x1, x2, x3, . . . , xm)
f2(x1, x2, x3, . . . , xm)

...
fm(x1, x2, x3, . . . , xm)

 = 0.

Use the Taylor multivariate expansion to linearize the function f about x(n−1):

f1(x) ≈ f1(x(n−1)) +
∂f1
∂x1

(x(n−1))(x1 − x(n−1)1 ) + · · ·+ ∂f1
∂xm

(x(n−1))(xm − x(n−1)m ),

...

fm(x) ≈ fm(x(n−1)) +
∂fm
∂x1

(x(n−1))(x1 − x(n−1)1 ) + · · ·+ ∂fm
∂xm

(x(n−1))(xm − x(n−1)m ).

Now the Jacobian matrix has to be defined. The Jacobian matrix of f(x) is as follows:

J(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xm

(x)

 .

The Jacobian is determined and the linearization can be written more compactly.

f(x) ≈ f(x(n−1)) + J(x(n−1))(xn − x(n−1)).

The next iteration x(n) is obtained when putting the f(x) to zero. This also happens when the
system has just one equation (see section 5.1).

f(x(n−1)) + J(x(n−1))(x(n) − x(n−1)) = 0,
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this can be rewritten as

J(x(n−1))(x(n) − x(n−1)) = −f(x(n−1)).

So the new iteration is,

x(n) = x(n−1) − J−1(x(n−1))f(x(n−1))

The Newton method for a system of nonlinear equations is defined. What we obtain is that this
method is the same as for the scalar equation. When there is a scalar equation the Jacobian is
just the derivative of f(x). Then the calculation of the new iteration is the same as in section
5.1. A Python code for the Newton method for systems can be found in Appendix A.2.

5.5 Other nonlinear solvers

Besides the method of Newton, there are many more methods that can be used. Many well-
known methods besides Newton’s Method are derived from the Newton method, such as the
Secant method and Quasi-Newton methods. These methods will be explained briefly and com-
pared to Newton’s method.

5.5.1 Secant method

The Secant method is a root-finding numerical method for scalar equations. This method uses
the roots of the secant lines. A secant line is a line that intersects at least two (distinct) points
of the curve. It can be seen as a finite-difference approximation of the Newton method. Where
the Newton method uses the derivative of a function, the Secant method uses an approximation
of the derivative. The approximation for f ′(xn) in the Secant method is given by

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1
.

What is the difference between this method and the Newton method besides the approximation
of f ′(xn)? To answer this question the order of convergence needs to be calculated. From [8]
the following is obtained.

|x− xn+1|
|x− xn||x− xn−1|

=

∣∣∣∣ f ′′(ξn)

2f ′(xn)

∣∣∣∣,
this differs from the Newton method. Let C =

∣∣ f ′′(ξn)
2f ′(xn)

∣∣ and M = f ′′(ξn)
2f ′(xn)

. Assume from the

Newton method that |x− xn+1| ≈ C|x− xn|p. Then the next result follows,

C|x− xn|p = |M ||x− xn||x− xn−1|

|x− xn|p−1 =
|M |
C
|x− xn−1|

|x− xn| =
(
|M |
C

) 1
p−1

|x− xn−1|
1
p−1 .

Now the equation is in the form of |x−xn+1| ≈ C|x−xn|p and p can be calculated with p = 1
p−1 .

After a calculation p ≈ 1.618. The order of convergence of the Secant method is lower than 2 and
thus not quadratic. Therefore the Secant method converges slower to a point than the Newton
method. Taken together the reason why the Newton method is more preferable is because the
order of convergence is higher.
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5.5.2 Quasi-Newton methods

Quasi-Newton methods are a collection of root-finding or local minima and maxima finding
numerical methods. These methods also are for systems. They can be used if the Jacobian or
Hessian of a function is unavailable or if it is too expensive to calculate them. There are many
Quasi-Newton methods. Some well-known Quasi-Newton methods are: BFGS and Broyden.
Broyden can be seen as a generalization of the secant method to systems. In general, Quasi-
Newton methods are an approximation of the Jacobian (or the Hessian in case of optimization).
The methods differ in how they do this. The Quasi-Newton method is defined as,

xn+1 = xn −
f(xn)

f ′(xn)
,

where f ′(xn) is approximated by,

f ′(xn) =
f(xn + h)− f(xn)

h
.

From [9] is it obtained that Quasi-Newton methods also converge superlinearly. But why is
it better to use the Newton method with the model of a compressor? The Newton method is
chosen because the Jacobian of the model is available as will be clear later.



Chapter 6

Examples & Results

In this chapter the results and applications of the model will be discussed. First there will be
elaborated what can and can not be done with this model. Also the difference between what
the compressor does when it is operating in a network and when it is operating alone. Next the
working of a compressor with and without a network is discussed, the potential problems with
the solver are discussed. After that the numerical behaviour of the algorithm for two different
examples will be discussed and there will be a parameter study for two different examples. At
the end the two examples and their results will be shown.

6.1 The model

Model (4.5) has seven variables. The seven variables are ṁd, ṁf , ṁs, Nr, Pd, Ps and Qac. When
calculating these variables it does not automatically mean that the solution is feasible. Recall
that a feasible solution lies in the compressor map (see figure 3.3).

With the help of the model the algorithm can be formed, see Appendix A.6. This algorithm can
calculate the seven unknown variables. What can this algorithm do and what can this algorithm
not do? First of all, the algorithm can calculate a solution. This solution is mathematically
correct, but that does not mean it is physically correct. The model is set up in a way that the
algorithm can calculate a feasible solution, even if it was not feasible at first. It does not mean
that the new solution is feasible.

Looking at the model, there are multiple solutions possible if the efficiency is not equal to
the maximal efficiency. When the efficiency is equal to the maximal efficiency then there is only
one solution possible. The algorithm first checks if the solution, with seven unknown variables, is
feasible. When this is not feasible the algorithm tries to make it feasible as described in chapter
4. Figure 6.1 is a flowchart of what the algorithm does with an unfeasible solution.

As already mentioned the solution after all the modifications can still not be feasible. This
is not because the model is not correct, but this is because some of the parameters are not well
defined. It is possible that the chosen compressor and the chosen pipelines are not compatible
with each other. The compressor can be too small or too big for the chosen pipeline. When this
happens the solution will not lie in the compressor map of that (incompatible) compressor.

Next the question is what is not possible for the model and the algorithm to do. It is not possi-
ble for the model to determine right away if the pipelines are compatible with the compressor.

26
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Is the solution in the
compressor map? (So

the rotation speed
is between 10000 RPM

and 15700 RPM).

Yes No

End

Fix the rotation speed
between 10000 RPM

and 15700 RPM.
Calculate new solution

of a system of 6
equations

Is the new solution in
the compressor

map? (So the volume
flow lies in the map
for the used rotation

speed)

Yes No

End
Fix the volume flow
and calculate new

solution of a system
with 5 equations

End

Figure 6.1: Flowchart feasible solution

It can be observed by testing the algorithm. The algorithm has more problems then only the
compatibility of the compressor and pipelines. For example, the algorithm can not get a solution
for some values of the inlet pressure P1 and the outlet pressure P2. The problem is that the
initial values for the solver are hard to determine. A standard set of initial values such that the
algorithm converge every time is hard or even impossible to find.

Thus when the model and the algorithm are set up to calculate the seven unknown variables.
First the algorithm determines if the solution is physically feasible and uses the flowchart in
figure 6.1 to make the solution as feasible as possible. When the algorithm can not converge
to a solution, the initial values are taken incorrect. Another option is that the compressor and
pipelines do not belong to each other.
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6.2 Compressor with and without a network

In this section the difference between a compressor alone and a compressor in a network will be
discussed. What happens with the compressor when it is operating alone and is this comparable
to a compressor operating in a network.

There are two kind of problems, a feasible solution and a solution that is not feasible. First we
will look at the problem when the solution is feasible. If the solution is feasible the efficiency will
be the maximum efficiency or lower, but is still within the compressor map. At the maximum
efficiency the compressor alone works the same as when it is in a network. When the solution
is feasible but not at the maximum efficiency, the compressor alone works the same as when it
is in a network. This efficiency is also inside the feasible area.

Then if the solution is not feasible, does the compressor still work the same alone as in a
network? Unfortunately this is not the same. Because the Nr and Qac are fixed there are two
equations less than the original system of equations. The two deleted equations are the efficiency
equation and the head equation. The head equation is an important equation when calculating
the pressure ratio. Deleting this equation gives the discharge and suction pressure a little free-
dom. The Nr and Qac and the Pd and Ps are not linked anymore. Thus, the compressor will
work differently in a system than operating alone when the solution is not feasible, the reason
why will be discussed further in this section. It is possible to remove two other equations but
then the variables associated with them are having too much freedom. The best option is to
remove the equations for the head and the efficiency.

In section 4.3.1 there is assumed that there are two solutions possible when the efficiency is
not equal to the maximum efficiency. Is this assumption still true? Let us find out. When there
are two solutions possible then the residual of the system of equations (4.6) for both solutions
need to be approximately zero. The first solution is when only Nr is fixed and the second solu-
tion is when the same Nr and the related Qac are fixed. Fill the first solution in to the system
of equations (4.6) and the residual will be approximately zero. The second solution can also
be filled in to the system of equations (4.6). The result is that the residual of five of the six
equations are approximately zero, but one residual is not approximately zero. This means that
the second solution is not a solution of the system of equations.

The assumption is, if only Nr is fixed, there is just one solution for the system of equations
(4.6). For every unfeasible solution of system of equations (4.5), a Nr can be fixed such that it is
feasible. Then the new solution of the system of equations (4.6) only has one solution, because
not every residual of the ’second’ solution is not approximately zero. So the assumption is true.

The only question left is, is the solution of the system of equations (4.6) in the compressor
map or outside the compressor map (which can be seen in figure 4.3 or 4.2)? By trying multiple
examples an assumption can be made about where the solution of the system of equations (4.6)
lies in the compressor map. The assumption is that the solution of the system always lies left
of the line of the maximum efficiency. The solution is feasible when it is between the surge line
and the line of the maximum efficiency, but is unfeasible when the solution lies left of the surge
line. In figure 6.2 the possible line of solution is given for a point with a very high rotation speed
and for a point with a very low rotation speed.

It is hard to verify if every solution of the system of equations (4.6) lies left of the maxi-
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mum efficiency. By trying a lot of different possibilities it looks like the assumption is true. In
figure 6.3 the convergence of Qac is shown, when the Nr is fixed. Form this figure it is clear that
the Qac is staying on 0.96 for a while. After that it drops really hard. When this happens the
feasible Qac is missed and the solver converge to the other Qac.

What definitely is true is that there is only one solution of the system of equations (4.6).
Thus, when assuming the solution is left of the maximum efficiency and if the solution is feasible
there is no problem. But when the solution is unfeasible, it is impossible to make it feasible
again, because there is just one solution. As mentioned before, a reason that the solution is
unfeasible is that the compressor and the pipeline do not belong to each other. For example,
the compressor can be too big for the used pipelines.

(a) Too high RPM (b) Too low RPM

Figure 6.2: Line of solution from a point too high or too low RPM
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6.3 Problems with the solver

In chapter 4 we discussed that the solver to solve the system of equations is fsolve. This is a
function in the scipy.optimize package and this will find the roots of the equations. Fsolve is
a better option than Newton’s method because Newton’s method may not converge for many
different values. The solver fsolve uses a more robust algorithm to get as quickly as possible to
the solution. However solving with this solver may cause some problems.

As discussed in section 6.2 one of the problems is that the solver may not converge. The
algorithm and model are well defined, so there must be a solution. The only drawback is that
the initial values are taken wrongly. Which means that the initial values are not in the radius of
convergence. The solver can not get the converged solution when the initial value is outside the
radius of convergence. So, when the solver can not converge, the initial values are taken wrong.

Another problem with this solver is that the convergence is not quadratic. Newton’s method is
a solver that converges quadratically, so there are not so much iterations needed, but fsolve will
not converge quadratically. Therefore this solver needs many more iterations to solve a problem.
Newton’s methods stops iterating when the difference of 0 and f(xn) is less than 1.48 · 10−8 and
fsolve stops iterating when difference of 0 and f(xn) is less than 1.49012 · 10−8. Both the solvers
have almost the same stopping criterion, but the total iterations can vary enormously. When the
stopping criterion is low the iterations will be less. You can only increase the stopping criterion
if the solution does not need to be precisely correct.

Unfortunately, there is in this case not an explanation for the amount of iterations. The only
solution might be to use Newton’s method, but this solver will not converge way to much for
this system of equation. So, when the solver is not converging, the initial values need to be
changed. Initial values that are generalized are almost impossible to determine for this system.
When the solver needs many iterations, to increase the stopping criterion the total number of
iterations can be less but only when there is some tolerance left.

Another problem with known functions, in Python, like newton and fsolve is that it is hard
to get the total amount of iterations needed. The total function evaluations is easy to get.
Because the 2 used functions are written by someone else, it is unknown if the total iterations is
equal to the total function evaluations. The total iterations is less or equal to the total function
evaluations. The total function evaluations are used in the rest of this chapter.

6.4 Numerical behaviour

In this section the numerical behaviour of the solver be will discussed based on two different
examples. The first example is when the solution is feasible by solving the system of equations
(4.5). The other example is when the solution is not feasible at all. The numerical behaviour
can be analyzed using multiple plots.

To check what the solver does with the convergence the norm of the residual vector is needed.
Let x1, . . . , xn be in the residual vector then the chosen norm is

||Residual|| =
√
x21 + · · ·+ x2n
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The converging of the whole system can be shown in one figure when the norm is calculated. In
figure 6.4 the norm of both the residual for a feasible solution and for an unfeasible solution is
shown.
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(b) Unfeasible solution

Figure 6.4: The norm of the residual for feasible and unfeasible solution

What can be seen from the norm is that the feasible solution needs more function evaluations
to converge than the unfeasible solution. This is because the unfeasible solution has two more
fixed point in his system of equations. Therefore it is easier to solve the system. The feasible
solution also goes quick to zero, within 15 function evaluations, but takes way longer to converge
eventually. When increasing the stopping time, the function evaluations will be less.

As can be seen in figure 6.4 both the algorithms converge well. This means that there is
no problem with the solver, with the system of equations or the initial values. Everything is
well implemented. What also can be seen is how quick the convergence is. Unfortunately this
convergence is not quadratic.
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Figure 6.5: The rate of convergence for feasible and unfeasible solution
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The log10 is taken of the norm of the residual vector in figure 6.5. When taking this logarithm
the size of the residual is shown. For example, at the 250th function evaluation the residual
is the size 10−14. The convergence of the feasible solution is thus not quadratic, but is linear
which can bee seen in figure 6.5a. When looking at figure 6.5b the convergence of the unfea-
sible solution looks like it is quadratic. However this is not true, this is also a linear convergence.

The solver that is used, fsolve, does not converge quadratically but linear. The reason that
the solver converges linearly is because this solver uses a more robust algorithm to get the solu-
tion sooner and therefore loses the quadratic convergence. The solver converges thus well for the
used system of equations. Why 250 function evaluations are needed to get a feasible solution is
unknown. A reason can be that this system of equations has two more variables and thus two
more equations, which makes it harder to solve.

6.5 Parameter studies

In this section a parameter study will be done. This study gives more inside in what kind of
pipelines the used compressor can handle and what kind of pipelines it can not handle.

First of all make sure the compressor works on the maximum efficiency. There are three cases to
discuss, the first one is with a rotation speed of 13000 RPM, the last two are with the minimum
and maximum rotation speed. Based on these three cases the pipelines that are suitable for the
used compressor can be found.

The first thing to do is to check what the Pd
Ps

ratio is. The purpose of this ratio is that the
suction pressure and discharge pressure differ always a factor, which is the ratio. This ratio is
not only applicable for the suction and discharge pressure, but also for the inlet pressure and
outlet pressure at the pipelines.

Let’s start with the pressure ratio at a rotation speed of 13000 RPM. This ratio can be cal-
culated by using equations (2.1) and (2.2). Then the ratio Pd

Ps
= 1.3886. So, when Ps = 20

bar the compressor compresses the gas up to Pd ≈ 28 bar. The ratio is also applicable for
the pressure drop in the pipeline. When the pressure is 20 bar at the end of a pipeline, it is
approximately 28 bar at the beginning of the pipeline. Now that this is clear, some calculations
with the length and diameter of the pipeline can be done.

Looking at the Weymouth pressure drop equation (4.1) the diameter and length are both pa-
rameters. Changing the diameter will have a much bigger impact on the mass flow rate then
changing the length. The interesting thing is: for a fixed length the diameter is the same inde-
pendent of the inlet/outlet pressure ratio. This is because the pressures have to deal with the
same pressure ratio, for a certain rotation speed, for every suction and discharge pressure. So
for every length of the pipeline there is a diameter and with those two parameters the system
of equations (4.5) should have a solution. This is true for every rotation speed in the feasible area.

When the rotation speed is between 10000 RPM and 15700 RPM the pressure ratio must be
between 1.2178 and 1.6024. When the length of the pipeline is fixed, the diameter of the pipe is
the same for a pressure ratio somewhere between 1.2178 and 1.6024. This does not mean that
every pressure ratio has the same diameter, the diameter is dependent on the pressure ratio.
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When the length is longer, the diameter will also increase.

Assume the pipelines for gas transportation are 100 km long. When the pipeline is fixed at
100 km, the diameter can be something between 0.4574 m and 0.4816 m. The system of equa-
tions (4.5) only has a solution when when the right pressure ratio is used. So when the rotation
speed is determined, the pressure ratio and the diameter can be calculated by a fixed length. If
the solver does not converge, the length can be adjusted. Some small adjustments of the length
give almost the same diameter, but the solver will converge.

6.6 Two examples

In this section two examples will be shown. The first example is feasible and the second example
will be unfeasible. The unfeasible solution will be calculated by the flowchart in figure 6.1. In
this example a no will be answered when a question is asked. So the Nr and the Qac will be fixed.

In the first example the solution of the system is feasible after solving the system of equa-
tions (4.5). The input data, for this example, are given in table 6.1. When filling in these input
data into the algorithm, the algorithm will solve the system of equations (4.5) and the results
are given in table 6.2. The red dot, in figure 6.6a, is the solution as given in table 6.2. This
solution lies in the compressor map, so it is feasible.

Now for the second example, the input data will be the same only the pipeline will be much
longer. Now the length of the pipeline is 100 km in stead of 20 km. When looking at figure 6.6b
there is a red dot and a blue dot. The red dot is the solution when only the rotation speed is
fixed. It is right of the surge line, which means the solution is physically not possible. The blue
dot in the same figure is the solution, which is given in table 6.2. This blue dot is the solution
when Qac is also fixed and is just outside the feasible area. So this solution is not feasible for
the chosen compressor.

In conclusion, the input data for example 1 is feasible. Because the length of the pipeline
is way shorter than the length in example 2. The solution in example 2 is not feasible. The
reason why this is not feasible is because the compressor is too small for the pipeline. The length
is much longer that the compression will be too high for this compressor. Taken all together,
with this pipeline the compressor needs to be bigger to be feasible.
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Parameter Values Example 1 Values Example 2 Unit

b1 − b6

b1 = 1.059 · 10−4

b2 = 6.418
b3 = −6.401 · 104

b4 = 1.727 · 10−1

b5 = 1.942 · 104

b6 = −1.505 · 108

b1 = 1.059 · 10−4

b2 = 6.418
b3 = −6.401 · 104

b4 = 1.727 · 10−1

b5 = 1.942 · 104

b6 = −1.505 · 108

-

cw 0.47857 0.47857 -
D D = 0.3 D = 0.3 m
L L = 2 · 104 L = 1 · 105 m
P1 P1 = 45 · 105 P1 = 45 · 105 Pa
P2 P2 = 30 · 105 P2 = 30 · 105 Pa
γ γ = 1.27 γ = 1.27 -
R R = 437.60 R = 437.60 J/kmol.K
S S = 19/29 S = 19/29 -
T T = 300 T = 300 K
Z Z = 0.96 Z = 0.96 -

Table 6.1: Input data example 1 and 2

Variable Values example 1 Values example 2 Unit

ṁd 19.57080319595879 12.19602268455741 kg/s
ṁf 0.021559910505937 0.103256404180448 kg/s
ṁs 19.59236310646472 12.29927908873785 kg/s
Nr 11425.52147920879 10000 RPM
Pd 43.20394176705705 59.96916905759383 bar
Ps 33.45975646318788 15.52116377947649 bar
Qac 0.737154989058859 0.990300221637407 m3/s

Table 6.2: Output data example 1 and 2
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Figure 6.6: Solution in compressor map
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Conclusion

The model of the compressor is defined in a way that there is a feasible area. This feasible area
is confined by the surge line, choke line, the minimum rotation speed and the maximum rotation
speed. This minimum Nr is 10000 RPM and the maximum Nr is 15700 RPM.

After the compressor model is defined, the pipe-compressor model will be defined as a com-
pressor with a pipeline in the front and in the back. The length and diameter of the pipeline
can be differed. To solve this problem there is a system of equations (4.5).

First let the length of the pipeline be 20 km and the diameter 30 cm. The system of equa-
tions can be solved by the input data and this solution was feasible. This way the input data for
the pipe-compressor system is chosen well. The number of iterations to converge the program
was 250.

At the second example the length of the pipeline was longer (100 km). The diameter was
still the same (30 cm). When solving the system of equations with the new input data, the
solution was not feasible. After fixing the rotation speed and the volume flow, the solution
should be feasible. Unfortunately, the solution was just outside the feasible area. Which means
that the pipeline and compressor do not belong to each other.

If the solution is unfeasible, for a fixed Nr, after solving the system of equations then the
solution can not be feasible anymore. For a certain efficiency (everything excepted the maxi-
mum efficiency) and a certain rotation speed, there would be two solutions for the Qac. But
when solving the system of equations with a fixed Nr there is just one solution possible. So,
if the solution is unfeasible after solving the system of equations then the solution can not be
feasible anymore.

In conclusion, when solving a system of equations for the pipe-compressor model, the length
and diameter are important. For a certain pressure ratio the diameter of the pipe is the same
when the length is fixed. The compressor used in this report is too big for the a 100 km pipeline
with a diameter of 30 cm, but is perfect for a 20 km pipeline with a diameter of 30 cm. If
the solution is not feasible, the compressor is too big or too small for the used pipeline. The
compressor needs to be changed to make the solution feasible.
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Chapter 8

Recommendations

If the model in this thesis is used for the question if a certain centrifugal compressor is suitable
with a certain pipeline, there are some recommendations I would like to make. First check what
the range of the rotation speed of the used compressor is. Then the compressor map can be
made, via Appendix A.3. The compressor map is useful to see where the compressor is operating.

With the algorithm in Appendix A.6 the initial values are really important. If the initial values
are not suitable for the parameter data the solver will not converge. Then the initial values
need to be chosen differently. This can be done by looking at the radius of convergence of each
equation. The initial values can be chosen such that the solver will converge with the given
parameter data.

Finally we assumed that the solution is always left of the efficiency line when the rotation
speed was fixed. This is still not proved, but it seems that it is true for every value. To prove if
the solution converges always to the left of the maximum efficiency the convergence behaviour
of the equations should be investigated. So, for further research this issue would be great to
tackle.
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Appendix A

Python Code

A.1 Code Newton’s method

1 de f d e r i v a t i v e ( f , a , h=1e−4) :
2 re turn ( f ( a + h) − f ( a ) ) /h
3

4 de f newton method ( f , x0 , e = 1e−10) :
5 de l t a = abs(0− f ( x0 ) )
6 whi le de l t a > e :
7 x0 = x0 − f ( x0 ) / d e r i v a t i v e ( f , x0 )
8 de l t a = abs(0− f ( x0 ) )
9 re turn x0

A.2 Code Newton’s method for systems

1 import numpy as np
2 from numpy . l i n a l g import pinv
3

4 de f J ( f , x , dx=1e−8) :
5 n=len (x )
6 func= f (x ) .T [ 0 ]
7 j a c=np . z e ro s ( ( n , n ) )
8 f o r j in range (n) : #through columns
9 Dxj=(abs (x [ j ] ) ∗dx i f x [ j ] !=0 e l s e dx )

10 x p lu s =[( x i i f k!= j e l s e x i+Dxj ) f o r k , x i in enumerate ( x ) ]
11 j a c [ : , j ]=(np . subt rac t ( f ( x p lu s ) .T[ 0 ] , func ) ) /Dxj
12 re turn j a c
13

14 de f newton method2 ( f , x0 , e = 1e−8) :
15 de l t a = abs (np . subt rac t (np . z e r o s ( ( l en ( f ( x0 ) ) ,1 ) ) , f ( x0 ) ) )
16 f o r i in range ( l en ( f ( x0 ) ) ) :
17 whi le de l t a [ i ] [ 0 ] > e :
18 t ranspose = J ( f , x0 ) .T
19 product = pinv ( J ( f , x0 ) )
20 sub = np . array ( [ ] )
21 f o r j in range ( l en ( f ( x0 ) ) ) :
22 sub = np . append ( sub , [ product . dot ( f ( x0 ) ) [ j ] ] )
23 x0 = x0 − sub
24 de l t a = abs (np . subt rac t (np . z e r o s ( ( l en ( f ( x0 ) ) ,1 ) ) , f ( x0 ) ) )
25 re turn x0
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A.3 Code Compressor Map

1 from math import ∗
2 import numpy as np
3 from sc ipy . opt imize import ∗
4 from mp l t o o l k i t s import mplot3d
5 import matp lo t l i b . pyplot as p l t
6

7

8 Ts = 288
9 gamma = 1.27

10 alpha = (gamma − 1) /gamma
11 LHV = 47 e6
12 M = 19
13 UniR = 8314.46
14 R = UniR/M
15 n turb ine = 0 .8
16 N r = 46498
17 Z = 1
18

19 b1 = 1.0595 e−4
20 b2 = 6.418
21 b3 = −6.401 e4
22 b4 = 1.727 e−1
23 b5 = 1.942 e4
24 b6 = −1.505 e8
25

26 e f f = 0 .65
27 x1 = np . empty (0 )
28 y1 = np . empty (0 )
29

30 Qac = np . l i n s p a c e (0 , 1 . 6 , 24000)
31 N r = [10000 , 11000 , 12000 , 13000 , 14000 , 15000 , 15700 ]
32 x = np . empty (0 )
33 y = np . empty (0 )
34 f o r i in N r :
35 Head = i ∗∗2∗( b1 + b2 ∗(Qac/ i ) + b3 ∗(Qac∗∗2/ i ∗∗2) )
36 y = np . append (y , np .max(Head) )
37 xbegin = −b2∗ i /(2∗b3 )
38 x = np . append (x , xbegin )
39

40 de f e f f i c i e n c y ( z ) :
41 E = np . empty ( ( 1 ) )
42 E [ 0 ] = e f f − b4 − b5 ∗( z/ i ) − b6 ∗( z ∗∗2/ i ∗∗2)
43 re turn E
44 z = np . array ( [ 9 0 ] )
45 xeind = newton ( e f f i c i e n c y , z )
46 x1 = np . append ( x1 , xeind )
47 y1 = np . append ( y1 , i ∗∗2∗( b1 + b2 ∗( xeind / i ) + b3 ∗( xeind ∗∗2/ i ∗∗2) ) )
48

49 Qac1 = np . l i n s p a c e ( xbegin , xeind , 1200)
50 head = i ∗∗2∗( b1 + b2 ∗(Qac1/ i ) + b3 ∗(Qac1∗∗2/ i ∗∗2) )
51 p l t . p l o t (Qac1 , head , ’−− ’ )
52

53

54 f o r i in range (3 ) :
55 e f f = [ 0 . 7 9 9 , 0 . 75 , 0 . 7 0 ]
56 x2 = np . empty (0 )
57 y2 = np . empty (0 )
58 f o r j in N r :
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59 de f e f f i c i e n c y ( z ) :
60 E = np . empty ( ( 1 ) )
61 E [ 0 ] = e f f [ i ] − b4 − b5 ∗( z/ j ) − b6 ∗( z ∗∗2/ j ∗∗2)
62 re turn E
63 z = np . array ( [ 5 ] )
64 newx = newton ( e f f i c i e n c y , z )
65 x2 = np . append (x2 , newx)
66 y2 = np . append (y2 , j ∗∗2∗( b1 + b2 ∗(newx/ j ) + b3 ∗(newx∗∗2/ j ∗∗2) ) )
67 p l t . p l o t ( x2 , y2 , ’ grey ’ )
68

69 p l t . p l o t (x , y , ’ b lack ’ )
70 p l t . p l o t ( x1 , y1 , ’ b lack ’ )
71

72 p l t . l egend ( ( ’ 10000 RPM’ , ’ 11000 RPM’ , ’ 12000 RPM’ , ’ 13000 RPM’ , ’ 14000 RPM’ , \
73 ’ 15000 RPM’ , ’ 15700 RPM’ ) )
74 p l t . ax i s ( [ 0 , 1 . 7 , 0 , 70000 ] )
75 p l t . x l ab e l ( ’Qac ’ )
76 p l t . y l ab e l ( ’Head ’ )
77 p l t . show ( )

A.4 Code Compressor part I

1 from math import ∗
2 import numpy as np
3 from sc ipy . opt imize import ∗
4

5 c l a s s Compressor ( ob j e c t ) :
6

7 de f i n i t ( s e l f , Ps , Pd , Qac) :
8 s e l f . Ps = Ps
9 s e l f . Pd = Pd

10 s e l f . Qac = Qac
11

12 de f Values ( s e l f ) :
13 i f type ( s e l f . Ps ) == s t r :
14 xbegin , xeind = s e l f . Checken ( )
15 zguess = np . array ( [ s e l f . Pd ] )
16 i f s e l f . Qac >= xeind [ 0 ] :
17 s e l f . Qac = xeind [ 0 ]
18 s e l f . Ps = newton ( s e l f . Func1 , zguess )
19 re turn s e l f . Ps , s e l f . Qac
20 i f s e l f . Qac <= xbegin :
21 s e l f . Qac = xbegin
22 s e l f . Ps = newton ( s e l f . Func1 , zguess )
23 re turn s e l f . Ps , s e l f . Qac
24 e l s e :
25 s e l f . Ps = newton ( s e l f . Func1 , zguess )
26 re turn s e l f . Ps , s e l f . Qac
27

28 e l i f type ( s e l f . Pd) == s t r :
29 zguess = np . array ( [ s e l f . Ps ] )
30 xbegin , xeind = s e l f . Checken ( )
31 i f s e l f . Qac >= xeind [ 0 ] :
32 s e l f . Qac = xeind [ 0 ]
33 s e l f . Pd = newton ( s e l f . Func2 , zguess )
34 re turn s e l f . Pd , s e l f . Qac
35 i f s e l f . Qac <= xbegin :
36 s e l f . Qac = xbegin
37 s e l f . Pd = newton ( s e l f . Func2 , zguess )
38 re turn s e l f . Pd , s e l f . Qac
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39 e l s e :
40 s e l f . Pd = newton ( s e l f . Func2 , zguess )
41 re turn s e l f . Pd , s e l f . Qac
42

43 e l i f type ( s e l f . Qac) == s t r :
44 xbegin , xeind = s e l f . Checken ( )
45 zguess = np . array ( [ s e l f . Ps ] )
46 s e l f . Qac = xeind
47 Pdmin = newton ( s e l f . Func2 , zgues s )
48 s e l f . Qac = xbegin
49 Pdmax = newton ( s e l f . Func2 , zguess )
50 i f s e l f . Pd >= Pdmax [ 0 ] :
51 s e l f . Pd = Pdmax [ 0 ]
52 zguess = np . array ( xeind )
53 s e l f . Qac = newton ( s e l f . Func3 , zguess )
54 re turn s e l f . Qac , s e l f . Pd
55 i f s e l f . Pd >= Pdmin [ 0 ] :
56 s e l f . Pd = Pdmin [ 0 ]
57 zguess = np . array ( xeind )
58 s e l f . Qac = newton ( s e l f . Func3 , zguess )
59 re turn s e l f . Qac , s e l f . Pd
60 e l s e :
61 zguess = np . array ( xeind )
62 s e l f . Qac = newton ( s e l f . Func3 , zguess )
63 re turn s e l f . Qac , s e l f . Pd
64

65 de f Checken ( s e l f ) :
66 xbegin = −b2∗N r /(2∗b3 )
67 z = np . array ( [ xbegin ∗2 ] )
68 xeind = newton ( s e l f . E f f l i n e s , z )
69 re turn xbegin , xeind
70

71 de f E f f l i n e s ( s e l f , z ) :
72 E = np . empty ( ( 1 ) )
73 E [ 0 ] = e f f − b4 − b5 ∗( z/N r ) − b6 ∗( z ∗∗2/N r ∗∗2)
74 re turn E
75

76 de f Head( s e l f , Ps , Pd , Qac) :
77 H = (1/ alpha ) ∗Z∗R∗Ts ∗ ( (Pd/Ps ) ∗∗ alpha − 1)
78 re turn H/(N r ∗∗2) − b1 − b2 ∗(Qac/N r ) − b3 ∗(Qac∗∗2/N r ∗∗2)
79

80 de f Func1 ( s e l f , z ) :
81 head = np . empty ( ( 1 ) )
82 head [ 0 ] = s e l f . Head( z [ 0 ] , s e l f . Pd , s e l f . Qac)
83 re turn head
84

85 de f Func2 ( s e l f , z ) :
86 head = np . empty ( ( 1 ) )
87 head [ 0 ] = s e l f . Head( s e l f . Ps , z [ 0 ] , s e l f . Qac)
88 re turn head
89

90 de f Func3 ( s e l f , z ) :
91 head = np . empty ( ( 1 ) )
92 head [ 0 ] = s e l f . Head( s e l f . Ps , s e l f . Pd , z [ 0 ] )
93 re turn head
94

95 de f TempUit ( s e l f ) :
96 re turn Ts + (Ts/ s e l f . E f f i c i e n c y ( ) ) ∗ ( ( s e l f . Pd/ s e l f . Ps ) ∗∗ alpha − 1)
97

98 de f E f f i c i e n c y ( s e l f ) :
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99 re turn b4 + b5 ∗( s e l f . Qac/N r ) + b6∗ s e l f . Qac∗∗2/N r∗∗2
100

101 ############################ VARIABLES ###########################
102

103 Ts = 288
104 gamma = 1.27
105 alpha = (gamma − 1) /gamma
106 LHV = 47 e6
107 M = 19
108 UniR = 8314.46
109 R = UniR/M
110 n turb ine = 0 .8
111 N r = 6000
112 Z = 1
113 e f f = 0 .65
114

115

116 b1 = 1.0595 e−4
117 b2 = 6.418
118 b3 = −6.401 e4
119 b4 = 1.727 e−1
120 b5 = 1.942 e4
121 b6 = −1.505 e8
122

123 ############################## EXAMPLES #############################
124

125 Pd = 100 e5
126 Qac = 20
127 t e s t = Compressor ( ’Ps ’ , Pd , Qac)
128 Ps , Qac = t e s t . Values ( )
129 pr in t (Ps [ 0 ] / 1 e5 , Qac)
130

131

132 Ps = 13 e5
133 Qac = 0 .3
134 t e s t 1 = Compressor (Ps , ’Pd ’ , Qac)
135 Pd , Qac = t e s t 1 . Values ( )
136 pr in t (Pd [ 0 ] / 1 e5 , Qac)
137

138 Ps = 22 e5
139 Pd = 47 e5
140 t e s t 2 = Compressor (Ps , Pd , ’Qac ’ )
141 Qac , Pd = t e s t 2 . Values ( )
142 pr in t (Qac [ 0 ] , Pd/1 e5 )

A.5 Code Compressor part II

1 from math import ∗
2 import numpy as np
3 from sc ipy . opt imize import ∗
4 from Newton Method import ∗
5 from Newton Method2 import ∗
6

7 c l a s s Compressor ( ob j e c t ) :
8

9 de f i n i t ( s e l f , Ps , Pd , Qac) :
10 s e l f . Ps = Ps
11 s e l f . Pd = Pd
12 s e l f . Qac = Qac
13
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14 de f Values ( s e l f ) :
15 i f type ( s e l f . Ps ) == s t r :
16 zguess = np . array ( [ 1 e−10])
17 s e l f . N r = s e l f . Qac∗2∗b6/(−b5 )
18 s e l f . Ps = newton ( s e l f . Func1 , zguess )
19 pr in t ( ’ 1 s t e : ’ , newton method ( s e l f . Func1 , zgues s ) [ 0 ] / 1 e5 )
20 pr in t ( ’ 2de : ’ , newton ( s e l f . Func1 , zguess ) [ 0 ] / 1 e5 )
21 re turn s e l f . Ps , s e l f . N r
22

23 e l i f type ( s e l f . Pd) == s t r :
24 zguess = np . array ( [ s e l f . Ps ] )
25 s e l f . N r = s e l f . Qac∗2∗b6/(−b5 )
26 s e l f . Pd = newton ( s e l f . Func2 , zguess )
27 pr in t ( ’ 1 s t e : ’ , newton method ( s e l f . Func2 , zgues s ) [ 0 ] / 1 e5 )
28 pr in t ( ’ 2de : ’ , newton method2 ( s e l f . Func2 , zgues s ) [ 0 ] / 1 e5 )
29 re turn s e l f . Pd , s e l f . N r
30

31 e l i f type ( s e l f . Qac) == s t r :
32 zguess = np . array ( [ s e l f . Ps ] )
33 C = (b1 + b2∗(−b5/(2∗b6 ) ) + b3∗(−b5/(2∗b6 ) ) ∗∗2)
34 s e l f . N r = sq r t ( s e l f . Head1 ( ) /C)
35 s e l f . Qac = newton ( s e l f . Func3 , zguess )
36 pr in t ( ’ 1 s t e : ’ , newton method ( s e l f . Func3 , zgues s ) [ 0 ] )
37 pr in t ( ’ 2de : ’ , newton method2 ( s e l f . Func3 , zgues s ) [ 0 ] )
38 re turn s e l f . Qac , s e l f . N r
39

40 de f Head( s e l f , Ps , Pd , Qac) :
41 H = (1/ alpha ) ∗Z∗R∗Ts ∗ ( (Pd/Ps ) ∗∗ alpha − 1)
42 re turn H/( s e l f . N r ∗∗2) − b1 − b2 ∗(Qac/ s e l f . N r ) − b3 ∗(Qac∗∗2/ s e l f . N r ∗∗2)
43

44 de f Func1 ( s e l f , z ) :
45 head = np . empty ( ( 1 ) )
46 head [ 0 ] = s e l f . Head( z [ 0 ] , s e l f . Pd , s e l f . Qac)
47 re turn head
48

49 de f Func2 ( s e l f , z ) :
50 head = np . empty ( ( 1 ) )
51 head [ 0 ] = s e l f . Head( s e l f . Ps , z [ 0 ] , s e l f . Qac)
52 re turn head
53

54 de f Func3 ( s e l f , z ) :
55 head = np . empty ( ( 1 ) )
56 head [ 0 ] = s e l f . Head( s e l f . Ps , s e l f . Pd , z [ 0 ] )
57 re turn head
58

59 de f Head1 ( s e l f ) :
60 re turn (1/ alpha ) ∗Z∗R∗Ts ∗ ( ( s e l f . Pd/ s e l f . Ps ) ∗∗ alpha − 1)
61

62 de f TempUit ( s e l f ) :
63 re turn Ts + (Ts/ s e l f . E f f i c i e n c y ( ) ) ∗ ( ( s e l f . Pd/ s e l f . Ps ) ∗∗ alpha − 1)
64

65 de f E f f i c i e n c y ( s e l f ) :
66 re turn b4 + b5 ∗( s e l f . Qac/N r ) + b6∗ s e l f . Qac∗∗2/ s e l f . N r∗∗2
67

68 de f Rho( s e l f ) :
69 re turn s e l f . Ps /(Z∗R∗Ts)
70

71 de f Power ( s e l f ) :
72 re turn s e l f . Head1 ( ) ∗( s e l f . Rho ( ) ∗ s e l f . Qac) / s e l f . E f f i c i e n c y ( )
73
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74 de f MassFlowFuel ( s e l f ) :
75 re turn s e l f . Power ( ) /(LHV∗ n turb ine )
76

77 de f MassFlowIn ( s e l f ) :
78 re turn s e l f . Rho ( ) ∗ s e l f . Qac + s e l f . MassFlowFuel ( )
79

80 ############################ VARIABLES ###########################
81

82 Ts = 300
83 gamma = 1.27
84 alpha = (gamma − 1) /gamma
85 LHV = 47 e6
86 M = 19
87 UniR = 8314.46
88 R = UniR/M
89 n turb ine = 0 .8
90 Z = 0.96
91

92 b1 = 1.0595 e−4
93 b2 = 6.418
94 b3 = −6.401 e4
95 b4 = 1.727 e−1
96 b5 = 1.942 e4
97 b6 = −1.505 e8
98

99 ############################## EXAMPLES #############################
100

101 Pd = 12.84141422159631 e5
102 Qac = 2.829418011428186
103 t e s t = Compressor ( ’Ps ’ , Pd , Qac)
104 Ps , N r = t e s t . Values ( )
105 pr in t (Ps [ 0 ] / 1 e5 , N r )
106 pr in t ( )
107

108 Ps = 5.719903163969866 e5
109 Qac = 2.829418011428186
110 t e s t 1 = Compressor (Ps , ’Pd ’ , Qac)
111 Pd , N r = t e s t 1 . Values ( )
112 pr in t (Pd [ 0 ] / 1 e5 , N r )
113 pr in t ( )
114

115 Ps = 22 e5
116 Pd = 47 e5
117 t e s t 2 = Compressor (Ps , Pd , ’Qac ’ )
118 Qac , N r = t e s t 2 . Values ( )
119 pr in t (Qac [ 0 ] ∗ t e s t 2 .Rho ( ) , N r )
120 pr in t ( t e s t 2 . MassFlowFuel ( ) )

A.6 Code Pipeline simulation

1 from math import ∗
2 import numpy as np
3 from sc ipy . opt imize import ∗
4 from Newton Method import ∗
5 from Newton Method2 import ∗
6 import matp lo t l i b . pyplot as p l t
7

8 c l a s s Compressor ( ob j e c t ) :
9

10 de f i n i t ( s e l f , P1 , P4) :
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11 s e l f . P1 = P1
12 s e l f . P4 = P4
13

14 de f Values ( s e l f ) :
15 zguess = np . array ( [ 1 9 . 0 3 , s e l f . P4 , 19 , 0 . 03 , s e l f . P1 , 1 , 13000 ] )
16 ## z [ 0 ] = m s z [ 1 ] = P s z [ 2 ] = m d z [ 3 ] = m f
17 ## z [ 4 ] = P d z [ 5 ] = Qac z [ 6 ] = N r
18 s e l f . z = np . empty ( ( 0 ) )
19 s e l f . op l = np . empty ( ( 0 ) )
20 Arr = f s o l v e ( s e l f . Func1 , zguess )
21 i f Arr [ 6 ] <= 15700 and Arr [ 6 ] >= 10000:
22 re turn Arr , s e l f . z , s e l f . op l
23 e l i f Arr [ 6 ] >= 15700:
24 s e l f . z1 = np . empty ( ( 0 ) )
25 s e l f . opl1 = np . empty ( ( 0 ) )
26 s e l f . N r = 15700
27 xbegin , xeind = s e l f . Checken ( )
28 zguess = np . array ( [ 8 . 5 , s e l f . P4 , 8 , 0 . 5 , s e l f . P1 , xeind [ 0 ] ] )
29 Arr = f s o l v e ( s e l f . Func2 , zgues s )
30 Arr = np . append (Arr , np . array ( s e l f . N r ) )
31 i f Arr [ 5 ] < xbegin :
32 s e l f . z2 = np . empty ( ( 0 ) )
33 s e l f . opl2 = np . empty ( ( 0 ) )
34 s e l f . e f f = s e l f . E f f i c i e n c y (Arr [ 5 ] , s e l f . N r )
35 s e l f . Qac = f s o l v e ( s e l f . E f f l i n e s 2 , xeind [ 0 ] )
36 zguess = np . array ( [ 8 . 5 , 1e5 , 8 , 0 . 5 , s e l f . P1 ] )
37 Arr = f s o l v e ( s e l f . Func3 , zgues s )
38 Arr = np . append (Arr , np . array ( [ s e l f . Qac [ 0 ] , s e l f . N r ] ) )
39 re turn Arr , s e l f . z2 , s e l f . opl2
40 e l s e :
41 re turn Arr , s e l f . z1 , s e l f . opl1
42 e l i f Arr [ 6 ] <= 10000:
43 s e l f . z1 = np . empty ( ( 0 ) )
44 s e l f . opl1 = np . empty ( ( 0 ) )
45 s e l f . N r = 10000
46 xbegin , xeind = s e l f . Checken ( )
47 zguess = np . array ( [ 8 . 5 , s e l f . P4 , 8 , 0 . 5 , s e l f . P1 , xeind [ 0 ] ] )
48 Arr = f s o l v e ( s e l f . Func2 , zgues s )
49 Arr = np . append (Arr , np . array ( s e l f . N r ) )
50 i f Arr [ 5 ] < xbegin :
51 s e l f . z2 = np . empty ( ( 0 ) )
52 s e l f . opl2 = np . empty ( ( 0 ) )
53 s e l f . e f f = s e l f . E f f i c i e n c y (Arr [ 5 ] , s e l f . N r )
54 s e l f . Qac = f s o l v e ( s e l f . E f f l i n e s 2 , xeind [ 0 ] )
55 zguess = np . array ( [ 8 . 5 , 1e5 , 8 , 0 . 5 , s e l f . P1 ] )
56 Arr = f s o l v e ( s e l f . Func3 , zgues s )
57 Arr = np . append (Arr , np . array ( [ s e l f . Qac [ 0 ] , s e l f . N r ] ) )
58 re turn Arr , s e l f . z2 , s e l f . opl2
59 e l s e :
60 re turn Arr , s e l f . z1 , s e l f . opl1
61

62 de f Head( s e l f , Ps , Pd , Qac , N r ) :
63 H = (1/ alpha ) ∗Z∗R∗Ts ∗ ( (Pd/Ps ) ∗∗ alpha − 1)
64 re turn H/(N r ∗∗2) − b1 − b2 ∗ ( (Qac) /N r ) − b3 ∗ ( (Qac) ∗∗2/N r ∗∗2)
65

66 de f Func1 ( s e l f , z ) :
67 opl = np . empty ( ( 7 ) )
68 TempUit = s e l f . TempUit ( z [ 1 ] , z [ 4 ] , z [ 5 ] , z [ 6 ] )
69 opl [ 0 ] = s e l f . E f f i c i e n c y 2 (−b5/(2∗b6 ) ) − s e l f . E f f i c i e n c y ( z [ 5 ] , z [ 6 ] )
70 opl [ 1 ] = s e l f . Head( z [ 1 ] , z [ 4 ] , z [ 5 ] , z [ 6 ] )
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71 opl [ 2 ] = z [ 3 ] − s e l f . MassFlowFuel ( z [ 1 ] , z [ 4 ] , z [ 2 ] , z [ 5 ] , z [ 6 ] )
72 opl [ 3 ] = z [ 5 ] − z [ 2 ] / s e l f . Rho( z [ 1 ] )
73 opl [ 4 ] = z [ 2 ] − s e l f .Weymouth( z [ 4 ] , s e l f . P4 , TempUit )
74 opl [ 5 ] = z [ 0 ] − z [ 2 ] − z [ 3 ]
75 opl [ 6 ] = z [ 0 ] − s e l f .Weymouth( s e l f . P1 , z [ 1 ] , Ts )
76 s e l f . z = np . append ( s e l f . z , z )
77 s e l f . op l = np . append ( s e l f . opl , op l )
78 re turn opl
79

80 de f Func2 ( s e l f , z ) :
81 opl = np . empty ( ( 6 ) )
82 TempUit = s e l f . TempUit ( z [ 1 ] , z [ 4 ] , z [ 5 ] , s e l f . N r )
83 opl [ 0 ] = s e l f . Head( z [ 1 ] , z [ 4 ] , z [ 5 ] , s e l f . N r )
84 opl [ 1 ] = z [ 3 ] − s e l f . MassFlowFuel ( z [ 1 ] , z [ 4 ] , z [ 2 ] , z [ 5 ] , s e l f . N r )
85 opl [ 2 ] = z [ 5 ] − z [ 2 ] / s e l f . Rho( z [ 1 ] )
86 opl [ 3 ] = z [ 2 ] − s e l f .Weymouth( z [ 4 ] , s e l f . P4 , TempUit )
87 opl [ 4 ] = z [ 0 ] − z [ 2 ] − z [ 3 ]
88 opl [ 5 ] = z [ 0 ] − s e l f .Weymouth( s e l f . P1 , z [ 1 ] , Ts )
89 s e l f . z1 = np . append ( s e l f . z1 , z )
90 s e l f . opl1 = np . append ( s e l f . opl1 , op l )
91 re turn opl
92

93 de f Func3 ( s e l f , z ) :
94 opl = np . empty ( ( 5 ) )
95 TempUit = s e l f . TempUit ( z [ 1 ] , z [ 4 ] , s e l f . Qac , s e l f . N r )
96 opl [ 0 ] = z [ 3 ] − s e l f . MassFlowFuel ( z [ 1 ] , z [ 4 ] , z [ 2 ] , s e l f . Qac , s e l f . N r )
97 opl [ 1 ] = s e l f . Qac − z [ 2 ] / s e l f . Rho( z [ 1 ] )
98 opl [ 2 ] = z [ 2 ] − s e l f .Weymouth( z [ 4 ] , s e l f . P4 , TempUit )
99 opl [ 3 ] = z [ 0 ] − z [ 2 ] − z [ 3 ]

100 opl [ 4 ] = z [ 0 ] − s e l f .Weymouth( s e l f . P1 , z [ 1 ] , Ts )
101 s e l f . z2 = np . append ( s e l f . z2 , z )
102 s e l f . opl2 = np . append ( s e l f . opl2 , op l )
103 re turn opl
104

105 de f Checken ( s e l f ) :
106 xbegin = −b2∗ s e l f . N r /(2∗b3 )
107 z = np . array ( [ xbegin ∗2 ] )
108 xeind = newton ( s e l f . E f f l i n e s , z )
109 re turn xbegin , xeind
110

111 de f E f f l i n e s ( s e l f , z ) :
112 E = np . empty ( ( 1 ) )
113 E [ 0 ] = 0 .65 − b4 − b5 ∗( z/ s e l f . N r ) − b6 ∗( z ∗∗2/ s e l f . N r ∗∗2)
114 re turn E
115

116 de f E f f l i n e s 2 ( s e l f , z ) :
117 E = np . empty ( ( 1 ) )
118 E [ 0 ] = s e l f . e f f − b4 − b5 ∗( z/ s e l f . N r ) − b6 ∗( z ∗∗2/ s e l f . N r ∗∗2)
119 re turn E
120

121 de f E f f i c i e n c y 2 ( s e l f , x ) :
122 re turn b4 + b5 ∗( x ) + b6 ∗( x∗∗2)
123

124 de f Weymouth( s e l f , P1 , P2 , T) :
125 re turn np . s i gn (P1∗∗2−P2∗∗2) ∗ c w ∗ \
126 np . sq r t ( ( S∗np . abs (P1∗∗2−P2∗∗2) ∗D∗∗5 .333) /(T∗Z∗L) )
127

128 de f Head1 ( s e l f , Ps , Pd) :
129 re turn (1/ alpha ) ∗Z∗R∗Ts ∗ ( (Pd/Ps ) ∗∗ alpha − 1)
130
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131 de f TempUit ( s e l f , Ps , Pd , Qac , N r ) :
132 re turn Ts + (Ts/ s e l f . E f f i c i e n c y (Qac , N r ) ) ∗ ( (Pd/Ps ) ∗∗ alpha − 1)
133

134 de f E f f i c i e n c y ( s e l f , Qac , N r ) :
135 re turn b4 + b5 ∗(Qac/N r ) + b6 ∗(Qac∗∗2) /( N r ∗∗2)
136

137 de f Rho( s e l f , P) :
138 re turn P/(Z∗R∗Ts)
139

140 de f Power ( s e l f , Ps , Pd , m, Qac , N r ) :
141 re turn ( s e l f . Head1 (Ps , Pd) ∗m)/ s e l f . E f f i c i e n c y (Qac , N r )
142

143 de f MassFlowFuel ( s e l f , Ps , Pd , m, Qac , N r ) :
144 re turn s e l f . Power (Ps , Pd , m, Qac , N r ) /(LHV∗ n turb ine )
145

146

147 ############################ VARIABLES ###########################
148

149 Ts = 300
150 gamma = 1.27
151 alpha = (gamma − 1) /gamma
152 LHV = 47 e6
153 M = 19
154 UniR = 8314.46
155 R = UniR/M
156 n turb ine = 0 .8
157 Z = 0.96
158

159 D = 0.3
160 L = 2e4
161 S = 19/29
162 c w = 0.47857
163

164 b1 = 1.0595 e−4
165 b2 = 6.418
166 b3 = −6.401 e4
167 b4 = 1.727 e−1
168 b5 = 1.942 e4
169 b6 = −1.505 e8
170

171 ############################## EXAMPLES #############################
172

173 P1 = 45 e5
174 P4 = 30 e5
175 t e s t = Compressor (P1 , P4)
176 Ps , z , op l = t e s t . Values ( )
177 pr in t (Ps [ 0 ] , Ps [ 1 ] / 1 e5 , Ps [ 2 ] , Ps [ 3 ] , Ps [ 4 ] / 1 e5 , Ps [ 5 ] , Ps [ 6 ] , \
178 t e s t . E f f i c i e n c y (Ps [ 5 ] , Ps [ 6 ] ) )
179 pr in t ( t e s t . Func1 (Ps ) )
180

181 y = np . empty ( ( 0 ) )
182 x = range (0 , i n t ( l en ( opl ) /7) )
183 f o r i in range (0 , i n t ( l en ( opl ) /7) ) :
184 norm = sqr t ( opl [0+ i ∗7]∗∗2+ opl [1+ i ∗7]∗∗2+ opl [2+ i ∗7]∗∗2+ opl [3+ i ∗7]∗∗2\
185 +opl [4+ i ∗7]∗∗2+ opl [5+ i ∗7]∗∗2+ opl [6+ i ∗7 ]∗∗2)
186 y = np . append (y , norm)
187

188 p l t . p l o t (x , y )
189 p l t . x l ab e l ( ’Number o f func t i on eva lua t i on s ’ )
190 p l t . y l ab e l ( ’Norm o f the r e s i due ’ )
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191 p l t . show ( )
192

193 p l t . p l o t (x , np . log10 (y ) )
194 p l t . x l ab e l ( ’Number o f func t i on eva lua t i on s ’ )
195 p l t . y l ab e l ( ’ Residue ’ )
196 p l t . show ( )
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