
Cost-Effectiveness of Test-Driven
Development

Master’s Thesis

Dennis de Bode

Cost-Effectiveness of Test-Driven
Development

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Dennis de Bode
born in Nijmegen, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

ISM eCompany
Van Nelleweg 1

Rotterdam, the Netherlands
www.ism.nl

c© 2009 Dennis de Bode. All rights resevered.

Cost-Effectiveness of Test-Driven
Development

Author: Dennis de Bode
Student id: 1027328
Email: ddebode@gmail.com

Abstract

Test-Driven Development (TDD) is a software development practice in which test
cases are written before code implementation. ISM eCompany, who specializes in web
solutions, is adapting their development process to become more agile. One of those
adaptations is that ISM wants to introduce TDD into their development process, to
have projects with a better code quality and a regression test suite. ISM only worries
whether the writing of test cases do create too much overhead for the developers and
using a TDD approach does not have a large effect on the time spent on fixing bugs
and rework. This can cause the projects to overrun and that makes the practice TDD
not cost-effective. This thesis will describe a case study of the introduction of TDD
in two different projects at ISM. We have proven that TDD can be introduced into the
development process of ISM. By introducing TDD in two projects of ISM we tried
to determine whether TDD is cost-effective by determining the Return on Investment
(ROI). This cost-effectiveness could, due to the insufficient dataset, only be assessed
in a limited way. In the monitored projects the developers took 31% more time for
developing work items. On the other hand, the developers spent less time on rework
and bugs than in projects where no TDD is used. However, it is hard to conclude that
this is due to the usage of a TDD approach, because of the low percentage of work
items implemented with a TDD approach (17% of the work items). The developers
struggled with TDD, because of the lack of experience with writing test cases.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Phil. H.-G. Gross, Faculty EEMCS, TU Delft
Company supervisor: Ir. J. Appelo, ISM eCompany
Committee Member: Ir. B. R. Sodoyer, Faculty EEMCS, TU Delft

Preface

First of all I want to thank all the people at ISM eCompany for their cooperation during
this project. I would like to thank my supervisor at ISM Jurgen Appelo for the chance to
conduct my thesis research at ISM and his guidance throughout this project. Special thanks
go to Alexander, Mikael, Raymond, Peter and Tuba for participating in this case study and
for Antonio and Yulia for keeping me company during the lunch breaks.

I would also like to thank my supervisor at TU Delft Gerd Gross for the feedback he
has giving me on my work and for guiding me in the right direction. Special thanks goes to
Roland Voets, who has always reviewed my work for grammatical errors and for keeping
me awake during the trips to Delft.

Many thanks for my brothers and friends, who supported me and giving me the confi-
dence to continue. Finally I want to thank my parents, who always morally and financially
supported me throughout my study.

Dennis de Bode
Delft, the Netherlands

July 2, 2009

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Test-Driven Development . 1
1.2 Scope of the Thesis . 1
1.3 Research Questions . 2
1.4 Research Approach . 2
1.5 Outline . 3

2 Test-Driven Development 5
2.1 Agile Software Development . 5
2.2 Characteristics of Agile Software Development 5
2.3 Test-Driven Development . 6

3 Related Work 11
3.1 Academic Controlled experiments . 11
3.2 Industrial case studies . 11

4 Development Process 15
4.1 User Stories . 15
4.2 Roles . 16
4.3 Project Life Cycle . 17
4.4 Development Process . 18
4.5 Testing Process . 20
4.6 New Development Process . 21

v

CONTENTS

5 Sana Software 23
5.1 Introduction . 23
5.2 Solutions . 23
5.3 Customization of a Sana Solution . 26

6 Case Study 29
6.1 Case Study Goals . 29
6.2 Characteristics . 29
6.3 Cost-Effectiveness . 30
6.4 Case Study Setup . 33
6.5 Extra Effort of Project without TDD . 34
6.6 Quantative Results . 35
6.7 Qualitative Results . 36
6.8 Evalution Case Study . 37

7 Threats to Validity Case Study 39
7.1 Reliability . 39
7.2 Internal Validity . 40
7.3 External Validty . 40

8 Discussion 43
8.1 Time and Risk is not taken into account 43
8.2 Other Factors which influence the cost-effectiveness 43
8.3 Effort versus Monetary Value . 44

9 Summary, Conclusions and Future Work 45
9.1 Summary . 45
9.2 Conclusions . 45
9.3 Future Work . 46

Bibliography 49

A Glossary 53

B Unit Testing Sana Commerce Live 55
B.1 Introduction . 55
B.2 Unit Testing . 56

vi

List of Figures

2.1 Test-Driven Development Cycle. 7

4.1 Roles at ISM. 16
4.2 Project Life Cycle ISM. 18
4.3 Scrum Template in TFS. 19
4.4 Development Process + Testing Process. 19
4.5 White Board of project team at ISM. 20
4.6 New Development Process. 21

5.1 Sana Sites Editor . 24
5.2 Sana Sites Architecture . 24
5.3 Sana Commerce Live Editor . 26
5.4 Sana Commerce Live Architecture . 27
5.5 Global architecture of a customization project. 28

6.1 Edited Sprint Backlog Item . 34

vii

List of Tables

3.1 Academic Controlled Experiments. 12
3.2 Industrial Case Studies. 13

6.1 Characteristics of the Case Studies. 29
6.2 Characteristics of Project without TDD. 30
6.3 Metrics of Project without TDD. 35
6.4 Metrics of Project 1. 35
6.5 Overhead created by TDD in Project 1 . 36
6.6 Survey Results Case Study. 37

ix

Chapter 1

Introduction

1.1 Test-Driven Development

Test-Driven Development (TDD) [5] is a design practice that uses short development itera-
tions, in which the developer writes a test before he writes just enough code to make the test
pass (see section 2.3 for a more elaborate explanation). After the test passes, the program-
mer can refactor the code if necessary or write another test and then the cycle starts again.
This cycle ends when no further tests can be defined. It is a practice which is recommended
by the agile community [40] because it reduces fault introduction, improves code quality,
and (according to some reserachers [26] [28] [16]) the code can be written faster when us-
ing TDD than when using a more traditional approach in which testing come at the end (see
section 3.1).

1.2 Scope of the Thesis

This thesis describes the introduction and evaluation of TDD in the context of the company:
ISM ECompany. We tried to asses whether TDD is cost-effective in their projects.

ISM eCompany is a full-service web company. They focus on different web activities
such as: internet technologies, e-learning, Enterprise Resource Planning (ERP) and Content
Relation Management (CRM) implementations. Through different takeovers, they have
now more than 200 employees and they opened a development department in Zhitomir
Ukraine. Customers of ISM eCompany include Heineken, AKO, Vitae, A.S. Watson and
Akzo Nobel.

ISM is developing the Sana Software platform which is divided in three different cat-
egories: Content Manangement Solutions, Ecommerce Solutions and Elearning solutions.
Customers can use these solutions to manage, build, and publish their websites, webshops
or elearning courses. These products can be bought as an off-the-shelf product or can be
integrated with a custom build web application. These customizations are performed by the
ISM project development teams.

ISM has adapted their project life cycle to the practices of Scrum [41], so it is better
suited for their dynamic development process. The development teams, who work on the

1

1.3 Research Questions Introduction

Sana Software, already write unit tests for their code. They released new versions of their
Sana Software solutions, which makes it technically better possible to write unit tests in
the customization projects (newer .net version, interfaces available for mocking [32] etc).
ISM wants to introduce the writing of unit tests following a TDD approach in the project
development teams, so the testing of their web applications will improve, and a regression
test suite is build.

However, the question remains whether a TDD approach really has more benefits than
disadvantages. The projects at ISM have very tight deadlines, because they are in a highly
competitive market. Writing unit tests in a web application, which is integrated with a third
party software, can be complex and therefore can create extra overhead. Furthermore, the
projects at ISM have short duration (almost all projects have an average size of less than
hundred working days). Do the investments put in TDD be returned in such a short notice?
If this is not the case, it may cause the projects to overrun in terms of time and money.

To asses this we have determined whether TDD can be applied in a cost-effective way
in the context of ISM. This was determined by determining the Return on Investment (ROI)
of TDD in two different projects at ISM. ROI is the ratio of money gained or lost after an
investment [39]. In our case it was investigated how many hours are saved on working on
bugs and rework after investing hours in TDD.

1.3 Research Questions

The main research question is:

1. Is Test-Driven Development cost-effective in the researched context?

With context is meant the development of a customized web application integrated with
an existing and evolving software product at ISM eCompany. Sub-questions are:

1. How can Test-Driven Development be implemented into the development process of
ISM?

2. What are the costs in terms of overhead of Test-Driven Development in the context
of a project at ISM?

3. What are the effects on the effort on fixing bugs and rework of Test-Driven Develop-
ment in the context of a project at ISM?

1.4 Research Approach

A case study is performed on the introduction of TDD in the projects of the project devel-
opment teams at ISM. By collecting quantitative (metrics) and qualitative data (interviews),
we tried to determine what the costs and the effects are of a TDD approach in a project at
ISM.

First existing literature was researched about TDD and the different case studies already
performed on TDD. Then the development process of ISM was researched and whether unit

2

Introduction 1.5 Outline

testing is technically feasible in combination with Sana Software. Our findings is described
in different documents (see appendix B. for an example) and training material is written
about TDD for the developers at ISM.

Then the practice of Test-Driven Development was introduced in two different project
teams. Quantitative data was collected by monitoring the issue trackers of the teams. This
data is compared with another project of ISM, where no TDD approach is used. After
collecting the quantitative data, qualitative data was collected by interviewing the members
of the project development team, who participated in the case study. By holding interviews
we got more insight in the quantitative data that was collected.

After all the data was collected, it was analyzed and evaluated whether the practice TDD
is cost-effective in projects here at ISM by determining the ROI.

1.5 Outline

The next chapter describes the practice TDD and what the benefits and disadvantages are of
using a TDD approach. In chapter 3 an overview is given of similar case studies performed
at TDD in an academic or industrial context. Chapter 4 describes the current development
process and testing process of ISM. Furthermore, we describe how the new development
process will look like. Chapter 5 shortly discuss the architecture of the Sana Software.
Chapter 6 describes our case studies and we present our results from the case studies. Chap-
ter 7 describes the limitations of our case study and in chapter 8 we discuss the different
points of this paper. Finally in chapter 9 we summarize our conclusions and give recom-
mendations for further research.

3

Chapter 2

Test-Driven Development

2.1 Agile Software Development

Agile Software development refers to a group of development methodologies with the same
characteristics, such as extreme programming (XP) [48], Dynamic Systems Development
Method (DSDM) [10] and Scrum [41]. Representatives of the different methodologies met
with each other in 2001 to form the ”Agile Manifesto” that contains the values and principles
that underpin agile development [29]. These values are:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

These values can be found in every agile software development methodology. Following
these values, the different agile software development methodologies have a number of
similar characteristics [2].

2.2 Characteristics of Agile Software Development

• Development Iterations

The development of the product is divided in a series of small iterations. At the end of
each iteration there should be a prototype for the customer to review. These iterations are
usually between 15-30 days.

• Face-to-Face Communication

As the physical distance between people increases, the effectiveness of their communi-
cation decreases [47]. This happens when people send emails to each other or communicate

5

2.3 Test-Driven Development Test-Driven Development

requirements through documents. It creates delays and misunderstandings. Agile methods
emphasize on colocation off all the stakeholders [8]. All stakeholders of a team should be
physically near each other during a project, including the customer, so issues can be quickly
resolved [44]. In a field study by Teasley et al. [43] at a Fortune top 100 company they
noticed a significantly higher productivity when a development team was located in one
room.

• Small, self-organizing, cross-functional Project Teams

Larger teams need more communication and generate more process overhead. This will
reduce the overall productivity [47]. Therefore Agile methods advocate small teams. If the
teams become too big, they have to be divided in smaller teams. The different methodolo-
gies advice different team sizes.

Teams in agile software development are self-organizing and cross-functional, without
any corporate hierarchy [47]. The team members make their own planning and estimations.
This means that they are all responsible and that the project is a team effort. If necessary
developers will test and testers will develop. The team is completed by an on-site cus-
tomer representative. This person is appointed by the stakeholders and is available for the
developers to ask domain specific questions.

• Change is welcome

Agile methodologies encourage changes, instead of discouraging it [22]. Instead that
the requirements are determined before design, agile methods leave room for the customers
to add changes to the project unless the changes violate the broad scope, schedule, and cost
constraints set by the purchasing customer (or management). The changes can be added at
fixed points in the project life cycle (usually before a new iteration).

• Testing

Agile methodologies recommend to test early and often. That is why they promote TDD
and automated testing [47][8]. When the tests are run early in the development process, the
bugs can be found quickly and therefore they are easier and cheaper to fix. If all the tests
are automated, they can be run fast and often, for example by every build of the system.

2.3 Test-Driven Development

2.3.1 Process

One of the practices which are made popular by the agile community and by Extreme Pro-
gramming [4], in particular, is Test-Driven Development (TDD) [5]. TDD is a test first
approach, where the test cases are written before implementation. When the implementa-
tion is done, new test cases are written and this drives the development forward.

This practice is closely related with unit testing, because in most cases when developers
use TDD, the test cases are written with the assistance of xUnit frameworks [5] [18]. Unit

6

Test-Driven Development 2.3 Test-Driven Development

tests test the smallest testable part of the source code. They provide a strict, written contract
that the code must satisfy. Usually the unit tests exercise a particular method in a particular
context [24]. These unit tests must be all independent of each other and from external
sources (like databases, GUI’s etc). This makes the tests better maintainable and fast.

TDD has a cyclic approach where in small steps additional functionality is added. This
functionality is completed when no further tests have to be added (see 2.1).

Figure 2.1: Test-Driven Development Cycle.

The TDD cycle consist of three phases:

1. Red Phase.

In the Red Phase, the developer writes a test for the new feature he wants to implement.
An important rule in TDD is: ”If you can not write a test for what you are about to code,
then you should not even be thinking about coding”[7]. All old tests should succeed, except
the new one.

2. Green Phase.

In the Green Phase, the developer writes the smallest possible piece of code to make the
test succeed. This way, the developer makes small incremental steps of development. If he
makes bigger steps, there is an increased risk that faults slip in the code.

3. Refactoring.

When the new test succeeds, the developer must make his code has clean as possible in
order to make the test succeed. In other words, all duplication, created in making the test
pass, must be removed. By running all the tests you can ensure that the refactoring activities
do not break anything. Now if additional tests can be written, the cycle starts again. If this
is not the case, then development stops.

When the developer has finished the TDD cycle, his implementation is done and a re-
gression test suite has been built to test it.

7

2.3 Test-Driven Development Test-Driven Development

2.3.2 Benefits

TDD is not a testing practices but a design practice. However, TDD supports the testing
process by the regression tests it builds [27]. Other benefits are:

• TDD increases the confidence of the developer in existing code [27].

When using TDD all functionalities are tested [31]. When a new feature is added, you
can easily verify if something is broken by running the tests.

• Bugs are quicker found and fixed.

With TDD bugs are quicker found and therefore easier to fix. It is easier to find and fix
a bug after writing ten lines of code than when writing thousand lines of code [6].

• TDD reduces defect injection [49].

When a bug is found during maintenance and debugging of software, a patch is made
to fix this. Unfortunately such fixes and small code changes are 40 times more error prone
than new development [23]. TDD can facilitate the introduction of new functionality in the
code base, by the regression test suite build during the use of a TDD approach. In addition,
when using TDD, the developer has to think what is really expected from his code. He only
makes small development steps and all old and new functionalities are directly tested.

• TDD increases code comprehension.

An additional benefit of unit testing is that it positively influences the program under-
standing (comprehension) [45]. 40% to 60% percent of the time spent on software main-
tenance is used on program understanding [11] [38]. Unit tests explain the behavior of the
code that is tested and therefore developers can look at the unit tests to see how the code
should behave.

• TDD makes testing more a satisfying process [50].

Testing provides negative feedback. The developer gets the message from the testing
process that he has failed to build something that works correctly. The testing process usu-
ally ends in failure. By reversing the process, by first testing and then coding, the developer
gets the message that he has succeeded to pass the test.

2.3.3 Shortcomings

There also some disadvantages about TDD:

• Lack of design

8

Test-Driven Development 2.3 Test-Driven Development

In the philosophy of TDD practitioners, the test cases are a replacement of the require-
ments. TDD often does not include any upfront design [21]. This increases the risk in
a project because there is no normal defense as with explicit design and documentation
[45]. However, the company ISM does already not make an elaborate upfront design. All
functional requirements are described in user stories [9] (see section 4.1).

• Applicability of practice

Some code is hard to unit test (for example graphical user interfaces) [21] [1]. This
can be an extra challenge for introducing TDD at ISM, because web applications tend to
have a lot of GUI’s. Besides the customization project has many dependencies on the Sana
Software solution. This will make it hard to write unit tests which touch as less as possible
functionalities of Sana Software. Unit tests must be independent from external sources to
keep them fast and flexible. Functionalities of Sana Software must therefore be mocked in
the unit tests [32].

• Skill level

Developers need high level of experience and determination to write test cases for code
that is hard to test. Average developers may lack the discipline to maintain the test cases
[21]. Furthermore, TDD is reported to have the steepest learning curve of all agile practices
[1].

The benefit for a TDD approach at ISM is that less bugs are injected to the code. If a
bug introduced, it can be quicker found and therefore quicker be fixed. Also the developers
have more confidence to implement new functionalities, because the regressions test suite
will check if any old functionality did not break. Disadvantages are that most developers do
not have any experience with TDD and it will take a lot of effort to write the unit tests.

9

Chapter 3

Related Work

There are many case studies performed in the domain of TDD, which can be separated into
academic controlled experiments and industrial case studies. In the academic controlled
experiments, the works of students in lab courses are monitored to see what the results are of
using TDD versus traditional approaches. In the industrial case studies, TDD is introduced
into the development process of professional developers and the results are monitored.

3.1 Academic Controlled experiments

The academic case studies differ between studies which have a short duration (12-40 hours)
and studies which have a much longer duration (week-months). Most of these studies focus
on the productivity of the developers and the quality of the code (see table 3.1). This can be
measured by the defect density [15] [33] or by focusing more on software metrics like class
size, code coverage, coupling, cyclomatic complexities etc. [26] [28].

The results of the different studies really differ: Some indicate that there is more over-
head on development when using TDD [19] and some indicate that developers using TDD
are more productive [26] [28]. The outcomes of most academic studies suggest that the
code quality improves when TDD is used [26] [28] [15] [19] [51], but some conclude that
TDD does not have a positive effect on the code quality at all:

Lech Madeyski [33] measured the quality of the code by measuring the number of ac-
ceptance tests that passed and when using the TDD approach, instead of a test-last approach,
the external code quality (this is assessing the code quality by looking from the outside in-
stead of looking inside the code) was lower. The case study by Erdogumus et al. [16]
concluded that in the context of their case study(a small programming assignment) TDD
did not deliver a better quality code then a test-last approach.

3.2 Industrial case studies

There are also case studies performed on TDD in an industrial context. A main difference
with the academic controlled experiments is that the time span of the different studies is
much longer (from 3 hours up till 5 years) and the average code size of the projects is larger.

11

3.2 Industrial case studies Related Work

Table 3.1: Academic Controlled Experiments.

Researchers Duration Productivity Code Quality Year

1. David Janzen
[26]

n/a 100% increased
productivity

Lower computational com-
plexity, higher coupling and
higher test coverage.

???

2. Reid Kauf-
mann, David
Janzen [28]

n/a 50% increased
productivity

Better Design and more con-
fidence in code.

2003

3. Stephen H. Ed-
wards [15]

2/3 weeks n/a 45% fewer defects. 2003

4. Lech Madeyski
[33]

10 hours n/a Lower external Code Quality. 2005

5. H. Erdogumus
[16]

13 hours Increased pro-
ductivity based
on the higher
number of tests.

No significant difference. 2005

6. S. Yenduri, L.
Perkins [51]

n/a 317 hours less
then traditional
development.

50% lower faults during Ac-
ceptance Testing.

2006

7. Boby George
[19]

1-4 hours 16% increased
effort

Better External Code Qual-
ity.

2007

What furthermore can be noticed, that in more cases the developer has a lower productivity
when using TDD, however almost all studies indicated a higher code quality (see table 3.2).

The results of the studies differ much from each other because every experiment must
be seen in its own context. However, if the overall trend of the results of the industrial case
studies is considered, it can be noticed that there is an increase of development effort, but it
results in a better code quality. However, not all industrial case studies on TDD have results
in which the application of TDD produces better code quality.

P. Abrahamsson et al.[1] describes a case study in which the introduction of TDD is
a failure. The case study concerns a team of three students with industrial experience and
one experienced professional developer. They developed a mobile application for the global
market. The team should develop the application with a TDD approach, but were reluctant
to adopt the approach. In the first iteration the team spent 30% of the time on TDD and
in the next iterations this percentage even dropped. One of the reasons of why the team
was reluctant to adopt TDD was: the team believed that TDD is not suitable for the kind
of application that the project involved (with a strong focus on GUI’s). Another reason was
the inexperience of the developers with the platform and with TDD.

The lessons to be learned from this case study are:

12

Related Work 3.2 Industrial case studies

Table 3.2: Industrial Case Studies.

Researchers Duration Productivity Code Quality Year

1. Randy A. Yn-
chausti [52]

8.5 hours Up to 100% in-
creased effort

38-267% fewer defects. 2001

2. Laurie
Williams,
Boby George
[20]

3-6 hours 16% increased
effort

18% more black-box test
cases succeeded.

2003

3. Laurie Williams
et al. [49]

n/a No significant
difference.

40% lower defect density. 2003

4. E. Maximilien,
L. Williams
[34]

n/a n/a 50% lower defect density. 2003

5. Thirumalesh
Bhat, N. Na-
gappan [6]

4 months 35% increased
effort

62% lower defect density. 2006

6. Thirumalesh
Bhat, N. Na-
gappan [6]

7 months 15% increased
effort

76% lower defect density. 2006

7. Lars-Ola
Damm, Lars
Lundberg [12]

1-1.5 years Total project
cost reduced
with 5-6%.

Decreased Fault Slip
Through rates (5-30%)
Lower Avoidable Fault Costs
(60%).

2006

8. Julio Cesar
Sanchez et Al.
[25]

5 years 19% increased
effort.

40% lower defect density. 2007

- The team has to be motivated to use TDD.
- TDD has one of the steepest learning curve of all agile practices.
- Good tools for TDD must be available.
- A mentor with experience of TDD must be added to the team.

3.2.1 Uniqueness of our research

As can be seen from the tables 3.1 and 3.2, there are a lot of different case studies performed
on TDD. However, most of them focus on the claims made about TDD:

1. Productivity of a developer should not be lower when he is using TDD instead of a
more traditional development approach.

13

3.2 Industrial case studies Related Work

2. When using TDD, the developer produces code with a better quality.

In our work we are not going to focus whether using TDD produces better code, but
the cost-effectiveness of TDD (which should be a result of better code). This research is
related to [12] where they researched the Return on Investment of TDD, but our research
has a completely different context:

• The duration of the projects in [12] were between 1-1.5 years. The projects at ISM
are much shorter (as mentioned in section 1.1).

• Totally different kind of applications: Components for a mobile operator network
versus web applications.

• In [12] they use TDD at a component level and in this thesis a more traditional ap-
proach of TDD is used. The developers try to write at least one unit test for each
method, which he is going to implement.

• The projects in [12] have a different testing/development approach then projects in
our research.

Besides the context, another approach is used to determine the cost-effectiveness:

• The costs of training the developers in TDD is not included. The training of the
developers in our case study did not take more than one day. This training happened
outside the projects of the case study and therefore it is not included. Besides, because
of the short duration of the training, the costs will not have any significant influence
on the cost-effectiveness of using TDD at ISM.

• In [12] they estimate the costs of fixing faults (Avoidable Fault Costs). An estima-
tion is made of the additional cost when a fault is discovered at different phases in
the project. Then by counting how many faults are found at each phase, they could
determine the costs. We measure the costs of fixing faults by determining the number
of hours spent by the developer.

• In [12] they assume that using TDD does not lead to extra costs, because of the extra
work of designing/running/updating test cases. In their case, designing test cases
replaced other designing activities (they did not mention whether these new activities
needed the same amount of effort as the replaced activities). In our case, writing test
cases is not a replacement of another activity and we are going to measure/estimate
the increased effort of using TDD.

When you have better code, you should have lesser bugs and rework on work items.
TDD is cost effective, when the overhead for writing/running/updating the test cases upfront
is less than the time saved on rework and fixing bugs.

14

Chapter 4

Development Process

The information in this section was acquired by studying documents of ISM, by conducting
interviews with different persons with different roles in the development process and by
participating as software tester in different projects. For the interviews, different persons
with different roles were selected to get a good coverage among the different teams and
roles.

There are four project development teams at ISM in the Netherlands, which work in
project-based teams at developing web applications and two product development teams
which work on the Sana Software solutions. The next section only describes the structure,
development process and test process of the project development teams.

A project development team can work on different projects at the same time. When this
is the case, the development team is splitted into several smaller project teams. The teams
are using an adaption of Scrum [41] to develop their web applications.

4.1 User Stories

All functional requirements of the projects at ISM are defined in User Stories [9] and the
graphical design is defined in a separate document. ISM believes it is unnecessary to doc-
ument implementation details in the functional requirements, because the developer will
probably misunderstand them or knows a better way to implement the requirements. User
Stories are stripped from all implementation details. If the developer wants details about the
User Story, he can better communicate directly with the Product Owner (a Scrum Role) to
avoid misunderstandings. All these User Stories are listed on a Product Backlog as Product
Backlog Items. These User Stories are defined by the Product Owner in cooperation with
the customer.

15

4.2 Roles Development Process

Figure 4.1: Roles at ISM.

4.2 Roles

4.2.1 Business Consultant

Because the development teams have multiple customers at the same time it is hard to have
a customer as Product Owner on colocation. That is why the role is fulfilled by the Business
Consultant. A Business Consultant makes the user stories in cooperation with the customer
and is responsible that end product fulfills the customer requirements. He decides whether
the implemented User Story meets the acceptance criteria.

16

Development Process 4.3 Project Life Cycle

4.2.2 Quality Manager

The Quality Manager defines in collaboration with the Product Owner the acceptance crite-
ria for the different product backlog items. His responsibility is also assigning testers from
the test team to test whether the implemented product backlog items meet the acceptance
criteria. ISM considers that the Quality Manager is a part of the Scrum role ”The Team”.
The Quality Manager is present at the daily stand-ups, sprint review meetings and sprint
planning meetings, however he does not decide which Product Backlog items are trans-
ferred to the Sprint Backlog and does not give estimates. He only gives commitment if the
items can be tested during the sprint.

4.2.3 Project Manager

The Project Manager has the role of Scrum Master. He facilitates the team and removes
impediments. The planning of the projects and the decisions on which days developers
work on which project are made by him, but the planning within a sprint is made by the
team itself. He is responsible for projects remaining within their planning and budget.

4.2.4 Development Team

The team consists of junior, medior and senior developers, who work together on the same
project. The team makes their own planning and estimation. They decide in cooperation
with the Product Owner which User Stories will be put on the sprint backlog. Some teams
have a lead developer which can make the final call on implementation issues.

4.2.5 Test Team

The test team is located in the Ukraine. The Test Team tests all projects and all developed
products from ISM. The Quality Manager manages the test team from the Netherlands and
makes sure that there are testers available to test a project. Because the testers are not on
the same location as the rest of the team, they are not present at any of the meetings.

4.3 Project Life Cycle

Because the projects at ISM have a short duration and the customers want much more input
during the development process, ISM decided to have sprint cycles of a week. All the teams
will start on Monday the new cycle with a sprint planning meeting. The customer can have
input on the implementation on a weekly basis, instead after thirty days, the usual length of
a Scrum cycle. The Product Owner will communicate with the customer during the week.
Before the next sprint planning meeting he will update the priorities on the product backlog.
The User Stories with the highest priority will be implemented first, if the team is willing
to commit to it.

In the Sprint Planning Meeting the team decides which User Stories they can implement
the coming week. When the User Story is too big, it is split into multiple work items. The
team gives an estimate on how long it will take to implement the work items. If there is

17

4.4 Development Process Development Process

Figure 4.2: Project Life Cycle ISM.

something unclear on how to implement a User Story, the Product Owner can explain it.
When all available hours of the team members are used, then the meeting is over. All the
selected User Stories/work items will be put on the sprint backlog.

After the Sprint Planning Meeting the team has a week to implement all the User Stories
on the Sprint Backlog. The Sprint Review Meeting is held just before the next Sprint Plan-
ning Meeting. The team presents the result of the sprint to the Product Owner and he then
decides whether the work item meets the acceptance criteria. All rework and not finished
work items that sprint will have a higher priority than other User Stories in the next sprint.

4.4 Development Process

4.4.1 Tools

The web applications developed by the teams are written in .Net [36]. The teams use Visual
Studio 2008 Team Foundation Server (VSTS) to write their code. This program has a built
in source control [37]. This way the code of the developers is available for the whole team.

Furthermore, a Scrum process template add-in is added to the Team Foundation Server
(TFS). With this template the team can easily add, assign and update sprints, product back-
log items, work items and bugs (see fig. 4.3).

18

Development Process 4.4 Development Process

Figure 4.3: Scrum Template in TFS.

4.4.2 Development Process

Figure 4.4: Development Process + Testing Process.

During the sprint planning meeting the teams decides which Product Backlog Items are
going to be implemented. In TFS these Product Backlog Items are linked to a specific sprint.
A developer decides which Backlog Item he his going to implement. He creates (multiple)
Sprint Backlog Items and those are linked to the original Product Backlog Item. He has
to estimate for each individual Sprint Backlog Item how much time he is going to take to
implement the item. In TFS he puts the Sprint Backlog Item on the status ”In Progress”,
when he starts with the implementation.

To implement the Sprint Backlog Item, the developer can use the User Story and the

19

4.5 Testing Process Development Process

acceptance criteria defined for it. If this is not sufficient to implement the Sprint Backlog
Item, he can ask for information from the Product Owner.

When he is finished with his work, he checks in the code and sets the status of the Sprint
Backlog Item to ”Ready For Test”. Then another developer in the team has to pick this item
up and do a code review and a functional test. When there is rework to be done, the Sprint
Backlog Item is assigned back to the first developer. If not, the work item is put on ”Done”.
When the work item is done, it can be deployed to the Alpha Server, so it can be tested by
the test team and reviewed by the Product Owner.

All the items in the Team Foundation Server are also placed as post-its on a whiteboard
(see fig. 4.5). The items in TFS and on the whiteboard must be up to date. When using a
whiteboard, the team can easily see what the status of the sprint is.

Figure 4.5: White Board of project team at ISM.

4.5 Testing Process

When all the Sprint Backlog Items of the Product Backlog Item are done, then the User
Story itself can be tested. The Quality Manager creates a test item which is linked to the
Product Backlog Item. Then the Quality Manager assigns it to a tester from the test team
and supplies the tester with the acceptance criteria. The tester tests wheter the user story

20

Development Process 4.6 New Development Process

meets these acceptance criteria and after that, the tester does some exploratory testing to see
wether there are some functional errors which are missing specification items.

In case an error has been found, which applies on the User Story, it is considered as
rework. The issue is described in the test item and then assigned to the Lead Developer. He
decides which developer has to pick up the rework. For this rework a new sprint backlog
item is created.

When an error is found, which does not apply to the functionality of the user stories
which are implemented during the sprint, then it is considered a bug. A bug item is created
by the tester and it is added to the Product Backlog list. The Product Owner decides when
it has to be fixed.

The Team, Business Consultant and the Customer agree on a couple of Beta Deploy-
ments during the project. On the Beta Server the customer can test the web application
himself. Before the customer tests the Beta website, the test team does a Beta Review of
the whole website. All User Stories implemented on the Beta are checked and, in addition,
some exploratory testing is performed to find bugs. This process is also repeated when the
website is deployed to a Live Server.

4.6 New Development Process

Figure 4.6: New Development Process.

Part of this project was the introduction of TDD into the current development process.
As can be seen in figure 4.6, not much is changed of the whole development process. The
only thing that changes, is how the developer develops his code. Instead of only writing

21

4.6 New Development Process Development Process

code, he has to write also automated unit tests following the TDD cycle described in sec-
tion 2.3.1. The developer has a User Story and the acceptance criteria as specifications.
However, these specifications are very high level, therefore the developer himself has to
determine what is expected from his code and extract the unit test cases from that. In most
cases, the developer starts with an empty method and incrementally adds functionalities to
the method by using a TDD cycle.

Using a TDD approach by the developers, aims at the following results:

1. Lesser rework is found by developers.

2. Lesser functional errors are found by Testers, which result in lesser rework items.

3. Lesser Bug Items are created.

22

Chapter 5

Sana Software

5.1 Introduction

Sana Software is an independent business unit of ISM eCompany. Within this business unit
a set of related products is distributed and developed [14]. The new products/releases of
Sana Software are built with .Net C# and are developed by different product development
team consisting of mostly developers from ISM Zhitomir (Ukraine). Clients can decide
either to use Sana Software to make there own customization or order a web application
which uses Sana Software.

When the client chooses for the second option, then the customization of the Sana so-
lution is performed by a project development team of ISM (these development teams are
in the Netherlands). Then the project development team is more or less a client of the
Sana Software bussiness unit. The different products are developed by following the Scrum
methodology and there is every 3 weeks a new release. Depending on the changes in the
new release, the clients can decide to update their own versions.

5.2 Solutions

Sana Software has three categories of solutions which can contain different subsolutions.
The three categories are: Content Management System Solutions, Ecommerce Solutions
and Elearning Solutions. These categories are all an own business unit and are developed
completely independent from each other.

We will only focus on the solutions Sana Sites (a CSM Solution) and Sana Commerce
Live (an Ecommerce Solution), because these frameworks are used in the case study.

5.2.1 Sana Sites

Sana Sites is categorized as a CMS Solution. This is a software solution for online commu-
nication. With this solution customers can easily manage and publish their websites. This
can be done with a WYSIWYG editor (see figure 5.1).

23

5.2 Solutions Sana Software

Figure 5.1: Sana Sites Editor

Sana Sites consists of a client-side application which communicates with a server-sided
application through web services. Customers, who want to manage their websites, can
install a standalone application on their pc or start the editor from a website.

Figure 5.2: Sana Sites Architecture

Sana Sites is build in C#. Figure 5.2 shows an overview of the architecture of Sana Sites.
Sana Sites is separated in three main packages, which are divided in smaller packages:

24

Sana Software 5.2 Solutions

Server
This package runs on the server side. The Server package provides methods for the
client to manage the back office and the site structure. It also handles all the calls to
the database.

Client
This package runs on the client side. It presents the user with winforms to manage
the website. It communicates with the server through web services.

Shared
Contains data used by both the server and the client. Therefore it is present at the
client side as on the server side. It contains Type Metadata, Properties, Constants and
Classes used by both Server and Client.

WebCms
This package controls all functionality for managing the site structure.

Back Office
This package controls all the functionality for managing the back office (like creating
or editing records, channels etc).

Repository
Gets items from the database and provides ways for other classes to access these.

5.2.2 Sana Commerce Live

Sana Commerce Live is categorized as an Ecommerce Solution. With the Ecommerce Solu-
tions customers can easily manage their webshop. Customers can choose from 2 solutions:
Sana Commerce and Sana Commerce Live. Sana Commerce is only a webshop and can be
linked to the customer’s financial and logistical software. Sana Commerce Live is a pack-
age which delivers a webshop which is linked to Microsoft Dynamics NAV (also known as
Navision). The customer can handle the stock, pricing, discounts, business rules and order
handling at one central place.

On the frontend (registered) users can search, view and buy products. Order handling is
all being carried out by Navision. The customer who ordered the website can log in on the
back office with their internet browser. The back office has also a Microsoft Dynamics look
and feel (see fig. 5.3). In the back-office the customer can edit products and content which
are shown in the frontend. Furthermore, registered users can be managed.

Figure 5.4 shows the architecture of Sana Commerce Live. The Sana Commerce Live
framework is developed by the product development team. The whole SDK is made avail-
able for the project development team which can customize everything outside the Sana
Commerce Live framework. Sana Commerce Live consists of the following components:

SCL Startersite: Is the frontend where registered users can order products.

SCL Backoffice: Is where admin can manage the frontend.

25

5.3 Customization of a Sana Solution Sana Software

Figure 5.3: Sana Commerce Live Editor

SCL Business facade: Handles the business logic and gets data from the Navision
and the SQL server. The project development team can implement their own busi-
ness logic by placing a component between the SCL Business facade and the web
applications.

SCL Web Business Layer: Handless all business logic related to the webshop (for
example: sessions, users, masterpages, sitecontext etc).

SCL Navision dataprovider: Handles the calls to the Navision Application Server.
They use the Windows Communication Foundation Service to communicate with
each other.

SCL Content dataprovider: Handles all the content of the web applications (text,
images, flash etc).

This whole solution is unit tested with VSTS test framework.

5.3 Customization of a Sana Solution

Figure 5.5 describes globally the architecture of customization projects. The architectures
of the various Sana solutions differ from each other, however the customization projects
works very similar. The developers of the project development team use the libraries of

26

Sana Software 5.3 Customization of a Sana Solution

Figure 5.4: Sana Commerce Live Architecture

the Sana Solution to build their own customization and web pages. The libraries contain
different C# classes which the developer can use or extend.

In case of a new version of the Sana Solution, the project developers simply update the
libraries of their customization project. Furthermore, the project developers have access to
the source code of the Sana Solution. With these files the developers can debug the Sana
source code while running their own project. The project developers can not change the
source code of the Sana Solution.

Web Pages are mostly .Net pages which contain HTML, Web Controls, User Controls,
Master Pages, java script, flash and code behind files. The developers try to put most of
the business logic outside the web pages and into the classes which extend or use the Sana
Solution. In the config of the customization project a connection is defined to a sql database.
The Sana solution can read the config and access the database.

27

5.3 Customization of a Sana Solution Sana Software

Figure 5.5: Global architecture of a customization project.

28

Chapter 6

Case Study

6.1 Case Study Goals

The objective of the case study is to determine the cost-effectiveness of a TDD approach
in the projects of ISM. This will be assessed by comparing a project of ISM were no TDD
approach is used with two projects of ISM in which a TDD approach is used. Additional
information is gathered by interviewing the subjects of the case study.

6.2 Characteristics

The introduction of TDD in two projects, handled by two different project development
teams, is going to be monitored. Both teams do not have any experience with TDD. The
characteristics of the teams and the project they are working on are shown in table 6.1.

Table 6.1: Characteristics of the Case Studies.

ID Nr. of De-
velopers

Sana Solu-
tion

Level of
Develop-
ers

Unit Test/
Mocking
Framework

Code
Size

Duration
Study

1. 2 Sana Com-
merce Live

Medior/ Ju-
nior

VSTS Unit Tests/
Rhino Mocks

132.427
LOC

3 weeks

2. 3 Sana Sites Junior/
Medior/
Medior

NUNit/Rhino
Mocks

200.946
LOC

3 weeks

The progress and the results of these two projects will be compared with another project
of ISM, in which the developers did not use TDD, to determine the effects of using TDD.
This project has approximately the same characteristics as the projects which are used in
our case study (see table 6.2).

29

6.3 Cost-Effectiveness Case Study

Table 6.2: Characteristics of Project without TDD.

ID Nr. of De-
velopers

Sana Solu-
tion

Level of
Developers

Code Size Length of data
gathering

1. 2 Sana Sites Medior/
Medior

182.212
LOC

6 weeks

6.3 Cost-Effectiveness

6.3.1 Cost and Effects

The only cost involved for using TDD we identified is the overhead during development for
the developer. The developer has to create test cases before he starts developing. Creating
test cases is an activity which did not take place in the old situation at ISM. Therefore the
time spent on creating, updating and running these test cases creates extra overhead for the
project.

To determine whether TDD is cost effective in the new situation, we have to compare
it with the old situation where no TDD is used in the development process. The major cost
of a customization project at ISM is the time developers spent on the project. Therefore we
want that the developers only spend time on building things and not on fixing bugs or doing
rework.

All the effort that the developers spend on bugs and rework can be considered as extra
costs, which should be avoided as much as possible (for example with TDD). In other words
we want the internal failure costs [42] as low as possible. Internal failure costs are all the
costs of rework, bugs and retesting before the product is shipped to the customer. This case
study is only going to focus on the costs of rework and fixing bugs.

One of the assumed effect of TDD is better code quality. As mentioned in section
2.3.2, TDD should reduce the defect injection and bugs should be quicker found and fixed.
Therefore the effects of using TDD in the projects at ISM should be:

1. Developers have to spend less time on rework.

2. Developers have to spend less time on fixing bug items.

6.3.2 Extra Costs Old situation

We calculated the time spent on rework plus time spent on fixing bugs each sprint in a
project of ISM, in which the developers do not use TDD. This amount is divided by the
total hours spend by the developers on relevant sprint backlog items and multiplied with
100 to get the percentage of time spent on rework and bugs. With relevant sprint backlog
items is meant items which involve developing code. Items like ”creating alpha server” are
excluded, because these items can not be tested by testers or reviewed by other developers.

30

Case Study 6.3 Cost-Effectiveness

Formula 6.1 is used to calculate the percentage of time that the developers spend on
rework and bugs in a project in which the developers do not use a TDD approach. The costs
are not calculated in monetary values, because all projects at ISM has different cost structure
depending on commercial agreements made with the customers. Therefore comparison
between projects can only be made on hours spent.

ExtraE f f ortP(x) =

n

∑
x=0

(REWORKtime(x)+BUGtime(x))

n

∑
x=0

TotalHours(x)
∗100 (6.1)

x = Relevant work items from a project developed without TDD.

n = The amount of relevant work items.

REWORKtime = Hours spent on rework of a item.

BUGtime = Hours spent on fixing bugs.

TotalHours = Hours spent on work item.

ExtraE f f ortP = Percentage of time spent on rework or bugs during a project.

6.3.3 New Situation

When using TDD, the overhead of creating/updating/running test cases will contribute to
the effort put in a project. However, the developer should spend less time on rework and
bugs (see section 6.3.1). Therefore the extra effort of a project can be lower in the new
situation, making TDD cost-effective. The effort of using TDD is calculated with formula
6.2. The overhead of TDD is going to estimated by the developers (see section 6.4).

T DDE f f ort(y) =
n

∑
y=0

OV ERHEADtime(y) (6.2)

y = Relevant work items from a project developed with TDD.

n = The amount of relevant work items.

OV ERHEADtime = Overhead of TDD while working on a work item.

T DDE f f ort = Total hours of overhead created by TDD in a project.

Then the effects of using a TDD approach is calculated. First the amount of extra effort
in a project which uses a TDD approach is calculated with formula 6.3.

ExtraE f f ort(y) =
n

∑
y=0

(REWORKtime(y)+BUGtime(y)) (6.3)

31

6.3 Cost-Effectiveness Case Study

ExtraE f f ort = Total hours spend on rework and bugs.

The effect of TDD should be that extra effort should be lower. Therefore the benefit
of using TDD is shorter time spent on extra effort. But first we have to calculate how
much time supposedly would be spent on extra work when not a TDD approach is used. In
formula 6.1 the percentage of time on extra work in a project without TDD is calculated,
so that percentage can be used to calculate how many hours that would be in the projects
which use TDD.

ExtraE f f ortV (y) =

n

∑
y=0

DEV ELOPMENTtime(y)

100−ExtraE f f ortP(x)
∗ExtraE f f ortP(x) (6.4)

DEV ELOPMENTtime = The time spent on developing a work item before it has the
status ”Ready for Test”.

ExtraE f f ortV = The hours supposedly spent on ExtraEffort when not a TDD ap-
proach would be used.

With this estimation of extra effort when no TDD approach is used, we can calculate
how many hours are saved (or gained) when using TDD (see form. 6.5).

T DDBene f it = ExtraE f f ortV −ExtraE f f ort(y) (6.5)

T DDBene f it = Hours saved or gained in a project by using TDD.

With the costs (in our case this is the effort spent on TDD) and benefits calculated
it can be determined whether the practice is cost-effective by determining the Return of
Investment. We use the formula suggested in [39] [46] (Benefit - Cost / Cost). Cost is
replaced by TDDEffort (see formula 6.6).

ROI =
T DDBene f it−T DDE f f ort

T DDE f f ort
(6.6)

In [12] they also use the investment cost to calculate the ROI. We did not calculate the
investment costs, because we think that on the long run the investment costs would not have
any significance influence. The only investment cost we identified was the training of the
developers and that did not take more than one day. In addition, the training was performed
by the developers on special ”academy” days. Every developer at ISM has a fixed number
of work days, on which he can study new practices. Therefore the hours for the training
were not included in the projects of the case study. The tools used for writing/running the
test cases and for mocking objects are freeware, or ISM had already a license for them.

The ROI is the amount of time saved after investing time in TDD. If the ROI is greater
than or equal to zero, then the practice is cost effective. Because if the ROI is zero: no time
is saved, but also no time is lost and in return a regression test suite is build, which can be
used for future RFC’s.

32

Case Study 6.4 Case Study Setup

We make here an important assumption: That the DEVELOPMENTtime is going be
relative the same in all the projects of the case study. When the developers take a longer
time to put work items on the status ”ready for test” with TDD, that extra time is going to
be considered as ”Overhead” and therefore stays DEVELOPMENTtime relative the same.
We do not think that developers will develop items quicker then before with TDD, because
the developers have to write/update/run test cases (which they did not do in the old situa-
tion). Therefore if the extra effort on fixing bugs and rework goes down when using a TDD
approach and it compensates the overhead created by TDD, then the developer spent less
time on the project. For example (this example is completely fictive):

- In old situation:

Building a Press Release Manager take 18 hours. 10 hours developing + 8 hours rework.
ExtraE f f ort(x) = 8

18 ∗100 = 44.44%.

- In new situation:

Building a Press Release Manager take 12 hours developing + 4 hours rework. Then the
overhead is 2 hours, because in the first situation (without TDD) the developer took about
10 hours to develop the same item:

T DDE f f ort(y) = 2
ExtraE f f ort(y) = 4
ExtraE f f ortV (y) = 10

100−44.44% ∗44.44% = 8
T DDBene f it = 8−4 = 4
ROI = 4−2

2 = 1

From the ROI can be concluded that for every hour invested in TDD, you gain 1 hour.
In the new situation 2 hours was invested in TDD and it cost 2 hours less to complete the
Press Release Manager.

In this example we could also conclude that the practice is cost-effective by looking at
the total hours spent on the item. This is not possible in the case study, because the work
items in each project differ too much from each other and the workload is different.

6.4 Case Study Setup

Before the developers started with using a TDD approach, a hands-on-lab was designed for
the developers. In these labs, the developers are introduced to the practices of TDD, unit
testing and mocking objects. These documents were made available on an internal website
of ISM.

We studied how to setup the unit tests in a customization project. One of the reasons
why it is hard to write unit tests for a customization project is the dependencies on the Sana
Software. Another reason is that some business logic which must be tested is in the code
behind pages of the web pages. We studied what the best way is to mock the different

33

6.5 Extra Effort of Project without TDD Case Study

entities of the project (Sana Software, database connection, site context etc). Furthermore,
we researched what the best way is to configure the unit tests in a customization project so
everything is accessible and can be tested.

These findings were bundled in a document and made available for the developers (see
appendix B for an example). Furthermore, some unit tests were written by us different
customization projects. The developer used these tests as real life examples and reused the
code.

For our own data gathering, three fields were added to the Sprint Backlog Item (SBI)
of the process template of visual studio (see Figure 6.1). In the first field ”Unit Tested” the
developers can mark if the sprint backlog item is developed using a TDD approach. The
second field ”Time Spent” is the total time (in hours) the developer spent on the item before
it sets the status to ”Ready for test”. In the third field they have to provide an estimation on
how big the overhead was when using a TDD approach. In figure 6.1 the developer spent
four hours to implement the item and he thinks the overhead created by TDD was one hour.

Figure 6.1: Edited Sprint Backlog Item

The quantitative data was gathered from the projects by monitoring the process template
in Visual Studio. Every day a snapshot was made of the status of the sprint and put in an
excel sheet. After the end of the sprint the following data is collected:

1. Hours spent by the developers on the project this sprint.

2. Hours spent on rework this sprint.

3. Hours spent on bug items this sprint.

4. Hours spent on work items using TDD.

5. Hours overhead is created by using TDD.

With this data we are going to determine whether the practice TDD is cost-effective.

6.5 Extra Effort of Project without TDD

The metrics of six sprints of a similar project as the ones in which the developers were
using TDD was gathered. This project was a customization of Sana Sites and with two

34

Case Study 6.6 Quantative Results

developers who took part in the case study. Because the project has approximately the same
characteristics as the projects in which TDD was introduced, we can assume that the data
from this project can be used to be compared with the data from our case studies.

The cost percentage was calculated with formula 6.1, defined in section 6.3.2 and
present the results in Table 5.

Table 6.3: Metrics of Project without TDD.

6 Sprints: No TDD used Hours Percentage %

Total Hours 247
BUGtime 2.50
REWORKtime 52.50
ExtraEffort 55 22.27

As can be seen in Table 6.3, the developers spent 22.27 percent of the time working on
rework or fixing bugs.

6.6 Quantative Results

6.6.1 Quantitative Results Project 1

In this section the results of the introduction of TDD in the project with ID. 1 in table 6.1 is
presented. The metrics of this project was collected from VSTS and are presented in table
6.4.

Table 6.4: Metrics of Project 1.

Sprint TotalHours TDDEffort ExtraEffort ExtraEffortV TDDBenefit ROI

Sprint 5 51.25 5.50 4 14.68 10.68
Sprint 6 6.25 0.50 0 1.79 1.79
Sprint 7 74.75 0.50 12 21.41 9.41

Total: 132.25 6.50 16 37.88 21.88 2.37

Table 6.4 shows that the ROI is 2.37, which means that investing 1 hour in TDD results
in 2.37 hour less work on bugs and rework. However, when we look at the effort that is put
in TDD, it is hard to conclude that the reason less time is spent on bugs and rework is due to
TDD. Metrics were collected from 36 relevant work items during 3 sprints and only 6 work
items were implemented with a TDD approach (see table 6.5).

It can be concluded from table 6.5 that overhead created by TDD is around 31.03%.
The developers take a longer time to implement the work items with a TDD approach.
That percentage is something what we already expected, because TDD does not replace any

35

6.7 Qualitative Results Case Study

Table 6.5: Overhead created by TDD in Project 1

Sprint Total hours spent
on Work Items
with TDD

Number of
Work Items

TDDEffort Overhead on
Work Item

Overhead
on Project

Sprint 5 14.55 4 of 13 5.50 37.80% 10.73%
Sprint 6 3.50 1 of 3 0.50 14.29% 8%
Sprint 7 3 1 of 20 0.50 16.67% 0.67%

Total: 20.95 6 of 36 6.50 31.03% 4.91%

other activities. Probably this percentage will become lower when the developers get more
experience with TDD.

6.6.2 Quantitative Results Project 2

In this project the introduction of TDD was a bit more problematic. The developers had
a hard time to write unit tests, due to their inexperience and because writing unit test in a
customization project of ISM is challenging. They were afraid to not make the deadline
of the project. That is why the lead developer of the project team decided to drop the
practice and to restart with writing unit tests in a new project. He also wanted to gain more
knowledge about TDD and introduce the practice after a knowledge session with the whole
team.

The team has started with a new project and started with unit testing their work items
following a test-last approach (this means after implementation is done, then the unit test is
written). Because the new project uses the code base of the previous project, they wrote in
the first sprint unit tests for the sections of the old code they believed could be broken by
the new implementations.

Because no TDD was used, we do not get any relevant metrics from this project.

6.7 Qualitative Results

After the gathering of quantitative data, some interviews were conducted among all the
developers who participated in the case study. The interview was a survey with nine closed
answered questions, but the interviewees could motivate their answers. Table 6.6 presents
the results of the survey. In total five developers were interviewed.

As can be concluded from table 6.6, most interviewed developers believe that indeed
TDD will positively affect the time the developers spent on bugs and rework. However,
writing unit tests was not really cost-effective for the projects subject to the case study,
because the developers were still getting used to the practice. Writing a unit test produces
too much overhead. The interviewed developers expect that after gaining more experience
the overhead will be less and thus the practice of TDD will be cost-effective.

36

Case Study 6.8 Evalution Case Study

Table 6.6: Survey Results Case Study.

Questions % Persons Agreed
1. When using TDD, less bugs are introduced? 80%
2. When using TDD, there is less rework? 80%
3. When using TDD, does it takes more time to implement

work items?
100%

4. Do you think 22.27% is representative number for how
much time is spent on rework and bugs in a project?

80%

5. Would the overhead of TDD be compensated, by the less
time spent on rework and bugs?

80%

6. With more experience in TDD, would TDD create less
overhead?

80%

7. Do you think TDD is useful in the projects of ISM? 60%
8. Do you think TDD is a better practice then a test-last ap-

proach?
60%

9. Are you going to use TDD in future projects of ISM? 60%

The reason for the low number of work items which were implemented with a TDD
approach was also because of inexperience. It took too much effort and because of tight
deadlines the practice was sometimes abandoned. In addition, in project 1, many of the
work items were related to Navision and to design issues, which can not be unit tested. Still
most developers were positive about using TDD and they think they are going to use this
practice in future projects.

One developer still had doubts about using TDD or a test-last approach. Because there
is not much specification available for projects, it will take a lot of effort to come up with
the tests beforehand and maybe during implementation the design will totally change. Then
the written unit test may be useless and the developer has to refactor the remaining unit
tests. However, he believes that writing unit tests is useful for the projects at ISM, but at
the moment he rather wants to use a test-last approach. Only one developer thinks that
TDD and writing unit tests for projects at ISM is not efficient. It creates too much overhead
and it slows the project down. He also believes that most bugs still slip into the code even
when using TDD, because with TDD the developer test the known scenarios and bugs slip
in through the backdoor.

6.8 Evalution Case Study

Executing a case study in the context of ISM was challenging, because it is not a controlled
environment. An example of this is that the teams in the case study were under pressure
to make their deadlines. This makes them reluctant to experiment with a new practice and
rather postponed the introduction of TDD. They were afraid that introducing a new practice
would add to much workload to their current project and therefore they would not make the
deadline.

37

6.8 Evalution Case Study Case Study

In project 1 the problem was that the project was halted about every week. ISM had to
wait for information of third parties or had to wait on decisions of the customer. This made
it hard to get good data, which could be compared with other projects. In some sprints, the
developers did so little work, that the data in that sprint was not really useful. In addition,
these issues make it hard to make a good planning for the case study.

Furthermore, the developers in the project development teams had no experience in
writing unit tests at all. Due to this inexperience, when trying to introduce TDD in the
development process of the teams, the developers had a lot of things coming at them at the
same time: unit testing, mocking, TDD etc. They were not sure how to write unit tests,
especially in the sections of the code which were intertwined with the Sana Software and
sections which are always hard to unit test (GUI’s, code behind pages etc.).

Before starting with the case study, we first researched how the unit tests could be
organized in the customization projects and put the findings of this research in different
documents. Nevertheless even with the assistance of these documents and training material,
the developers needed a lot of support when it came to writing unit tests. Because the lack of
experience with unit testing, the developers found especially hard to write a unit test before
they start coding. The developers did tend to switch back to a test last approach. First they
finished the implementation of the work items and after that they tried to find out how they
could unit test their code.

When starting this case study the learning curve of unit testing and TDD was under-
estimated. It had maybe been wiser to first introduce unit testing and when the developers
have enough experience, then introduce TDD. On the other hand, it maybe would have been
harder to persuade the developer to let go of his test last approach and use TDD.

Other solutions for this problem could be a more intensive training course or introduce
the practice in an internal test project, where there is more room for experimentation. How-
ever, these solutions can be hard to set up in an industrial setting. It depends whether the
company is willing to invest the time and money into it.

38

Chapter 7

Threats to Validity Case Study

7.1 Reliability

7.1.1 Correctness of Data

We retrieved data of an old project from TFS, to determine what the extra effort on rework
and bugs is in the old situation, when they did not use TDD. With this data we could compare
it to the data of the new situation, where they tried to use TDD. Because we did not closely
monitor that project we have to assume that the data in TFS is correct. Besides we do
not know if this percentage is representative for all the projects at ISM. However, at ISM
there are so many different projects it is hard to determine what the representative number
for the extra effort is in the projects at ISM. The project we chose had almost the same
characteristics as the case study so we can assume the data is in that context representative.
Furthermore, as can be seen in table 6.6, most developers, who participated in the case
study, think that 22% is a representative percentage.

Nevertheless the data contains a lot of uncertainties. To exclude any special circum-
stances in a project which could affect the data, more data from different projects could be
gathered. Then, we should get a clearer picture about how much time is spent on rework
and bugs in the projects of ISM.

7.1.2 Estimations of Overhead

We let the developers estimate how much overhead is created by using TDD. Because this
variable is not measured but estimated, uncertainty is introduced. We do not know if the
developers have correctly estimated the overhead. However, because not many estimations
were given, this is at the moment, not a problem. If more estimations were given, the
estimates of the different developers could be compared with each other, to see if there is a
big difference between the estimations. Anomalies between the estimations could be found
and could be corrected.

39

7.2 Internal Validity Threats to Validity Case Study

7.2 Internal Validity

7.2.1 Selection of Projects

We had to select projects to compare with each other. These projects were chosen because
they had the same kind of characteristics: two to three developers, same level of expertise
with TDD and developed with the new Sana Solution versions. Still, it is hard to compare
the projects, because they are not identical.

Other kinds of customizations are made, which may have different kind of complexities
or the developers have different level of expertise with these customizations. Another issue
is that the developers are getting more experienced with the new Sana Solutions versions.
Due to this experience they may work faster and make less faults. This may influence the
comparison of data between the old project and the new projects.

In addition, the external factors of the projects can differ. An experiment performed in
an industrial setting is not a very controlled experiment due to the external factors (pressure
of management, pressure of deadlines, other activities of developers), which can influence
the experiment. For example a project development team could not have sufficient or correct
information about a project, which can lead to overhead and faults.

7.2.2 Duration Case study

The duration of the case study was too short for the developers to get good acquainted with
TDD and for us to get enough data to prove whether TDD is cost-effective. However, if
we look at the academic case studies, the developers/students had much shorter time to
get experience with TDD and there TDD produced better results then a test-last approach.
Likely the causes are: the complexity of writing unit test in the customization project, the
inexperience of the developers with unit testing and the pressure of finishing the project
before the deadline.

7.2.3 Process Conformance

To use a TDD approach in the projects of ISM is something what the Development Man-
agers at ISM decided. Therefore it is not necessarily something what the developers them-
selves think they need in their projects. Using TDD needs a lot of discipline and it would be
probably easier if the developers themselves decided to use TDD. This motivation ”issue”
may have influenced the data negatively from the case study.

From the interviews, however, we can conclude that most developers where positive
about the practice and think that the practice can be useful for ISM. Only some developers
were afraid to apply the practice in an already ongoing project.

7.3 External Validty

The results of this case study are not fully generalizable, because of the context in which
the case study was conducted and the lack of relevant data. ISM makes customized web
applications integrated with an evolving software product, in relative small projects (the

40

Threats to Validity Case Study 7.3 External Validty

project has an average duration of less than hundred working days and the project team
exist from, in most cases, not more then four developers). The introduction of TDD may
go smoother in other contexts. Nevertheless, the way we tried to determine if TDD is cost-
effective can also be used in different contexts.

41

Chapter 8

Discussion

8.1 Time and Risk is not taken into account

Following Rico [39], some people think that the only way to calculate the economic value of
a software improvement is by a Net Present Value (NPV) analysis. NPV take the time value
of money into account. If you invest now an amount of money and over a few years this
yields an amount of money, that future money does not have the same value as the money
in the present. For example the inflation has to be taken into account. We did not take the
Net Present Value into account, because the effects of TDD should directly be visible in the
same project. The projects of the case study had only a duration of a few months.

Another factor we did not account for is Risk Discount [17]. If someone takes the
Risk Discount into account, then that can mean that you decide to receive less of a ROI
in exchange of less risk. Maybe the ROI of an investment is lower, but there is a higher
change on a pay-off. Such a Risk Analysis can come into play when there are multiple
options to choose from. We have only one option (the usage of TDD). The only risk that
ISM has is that using TDD in their projects is not cost-effective. That is something we were
investigating with this case study.

8.2 Other Factors which influence the cost-effectiveness

We measured the cost effectiveness by monitoring the time developers spent on rework and
bugs in a project. Besides working on rework and bugs, there are maybe also other factors
which could be affected by the introduction of TDD and could affect the cost-effectiveness
of the practice.

An example of this is the External Failure Costs [42]. These are the costs that arise when
a fault of the product occurs at the customer side. TDD should lower the defect injection,
so it would be logical that the External Failure costs would be lower when using TDD. This
makes the practice more cost-effective. TDD can also affect how RFC’s are performed at
ISM. When a web application is delivered, the customer can request for small changes. To
implement these changes take in most cases not more than one or two days. A benefit of
TDD is that you build a regression test suite. During the implementation of the RFC the

43

8.3 Effort versus Monetary Value Discussion

developer can verify whether his changes do not break something else in the system. A
disadvantage is that the developer might have to rewrite or add some unit tests. This can
cause extra overhead in implementing the RFC.

We did not investigate these factors because it did not fit into the scope of our case
study. These factors could make the usage of TDD at ISM more or less cost-effective. Some
developers already mentioned during the interviews that the regression test suite would be a
big help when the project is finished. For example if another team with less knowledge about
the project would perform a RFC, they can find out much quicker if they break something.

8.3 Effort versus Monetary Value

The cost-effectiveness was not calculated in monetary values, but how in terms of time/effort
saved when using TDD. We could have calculated in monetary values what would be saved
or extra costs to use a TDD approach, however every project has different costs. It depends
on how many and which developers are assigned to the project and on the agreements made
with the customer. In addition, we should have taken in account how many hours are spent
by each individual developer. The cost of a developer depends on the level of the developer
(junior/medior/senior).

That is why we believed it would be more practical to determine the cost-effectiveness
by looking how many hours are saved or generated by using TDD. This number is easier to
use to compare with other projects at ISM.

44

Chapter 9

Summary, Conclusions and Future
Work

9.1 Summary

We presented in this thesis the introduction and evaluation of TDD into the development
process of the project development teams at ISM. We wanted to research whether costs and
effects of TDD are cost-effective in the context at ISM. We researched the development
process of ISM and whether TDD could be implemented. Then TDD was introduced into
two different projects, but with similar characteristics, of ISM. By the gathering of metrics
of the monitored projects and by comparing this data with project of ISM, where no TDD
approach was used, we determined the cost-effectiveness of TDD by determining the ROI.
Then a survey was conducted among the developers, who participated in the case study, to
get more insight in the quantitative data gathered.

9.2 Conclusions

During this research we proved that is technical feasible to write unit test in a customization
project, by mocking different objects of the Sana Software. These findings were bundled in
different documents and made available for the all the developers. By proving that unit tests
can be written for the customization projects, it also proves that TDD can be implemented
into the development process of ISM. The unit tests function as the test cases which drives
the development forward. The developer can use the already defined acceptance criteria to
write the unit tests before implementation. However, these are very high level and thus the
developer has to, in most cases, determine himself how the unit test must look like.

The cost of using TDD in context at ISM is the overhead it creates for the developer
during implementation. Writing unit tests did not happen in the old development process
of ISM and does not replace any other activity. The developer has to design the test cases
himself with the unit test framework. In addition, writing unit tests in this context is com-
plicated due to the dependencies with the Sana Software, a lot of GUI’s are present in the

45

9.3 Future Work Summary, Conclusions and Future Work

code and a lot of functionality is in the code behind pages. Due to these complexities the
developer has to write a lot of mock objects to make his unit tests fast and independent.

All the work items which are implemented with a TDD approach during the case study,
the developer indicated that he had overhead because he used a TDD approach. In project
1 we monitored that the average overhead was 31%. This means that developers took 31%
more time developing items when using a TDD approach than when they do not use a TDD
approach to implement work items.

The effects we predicted were that the developers would spend less time on rework
and bugs. In project 1 the results were that less time was spend on rework and bugs in
comparison with a project where no TDD approach was used. However, we can doubt how
reliable this data is. The number of work items implement following a TDD approach was
very low (17% of the work items). Consequently it is hard to conclude that due to the usage
of TDD in the project less time was spent on rework and bugs. In addition, we do not know
if the percentage of time spent on rework and bugs we found in the project without TDD
(22.27% of the time developers are busy with rework or bugs) is a representative percentage
for all the projects at ISM.

Due to this unreliable data, it is furthermore hard to determine if the practice is actually
cost-effective. However, we think if more data is collected of the projects at ISM, it should
be possible to determine if TDD is cost-effective by using the approach proposed in this
thesis. In our opinion the practice was in the case study not cost-effective, because it took
the developers too much time to write the unit tests and because of the low test coverage of
the unit tests it does not have a large effect on reducing bugs and rework.

From this case study we also can conclude that more time should be used to introduce
the practice TDD at ISM. Most developers pointed out in the interviews that they were
positive about writing unit tests and about using TDD. They think due to their inexperience
in writing unit tests and their lack of knowledge about TDD, it was not possible to get fast
results. The majority of the developers think that when they have more experience with
TDD, it would be a useful practice in the projects of ISM. In our opinion this is correct.
When the developers get more experience, the overhead of writing unit tests will be lower
and this will stimulate to use a TDD approach on more work items. This will positively
influence the test coverage of the unit tests and it will result in less bugs and rework. In the
future projects most of the interviewed developers are going to use TDD.

We did not prove indisputable that TDD is cost-effective at the context of ISM, but
lesson learned from this study can still be used by others. Furthermore, the approach we
used to determine the ROI of TDD can be used by ISM to determine whether TDD is cost-
effective in their future projects.

9.3 Future Work

The data collected during this case study contains many uncertainties. A lot of the uncer-
tainty is created by the amount of data. During the case study it was only possible to get
data from a few sprints and only data of two projects were collected. To get a more repre-
sentative image of the time what is spent on rework and bugs, data of more projects at ISM

46

Summary, Conclusions and Future Work 9.3 Future Work

can be collected. To see if TDD is really cost-effective, TDD should be introduced in more
projects. In addition, the duration of the new case study should be longer to determine more
accurately what the effects of a TDD approach are.

Furthermore, to determine whether TDD is cost-effective, other factors could also be
included, like the ones discussed in section 8.2. By studying the effects of TDD on these
factors, it could be possible to get a better notion whether TDD is cost-effective.

To remove more uncertainty of the data to be collected, a more accurate approach can be
used for recording the hours that developers needs for implementing the work items. Now
the developers record themselves how many hours they work on an item and they estimate
the overhead created by TDD. For example a recording tool could be used to record how
many hours it the developer takes to finish a work item and how long he is busy in the test
project creating/running/updating the unit tests for that particular work item.

Other approaches of TDD could be investigated whether they are more cost-effective.
One of these is Acceptance Test-Driven Development (ATDD) [3] [35]. Acceptance tests
are test written (preferably by the customer) to test whether the User Story meets the ac-
ceptance criteria. The Product Owners at ISM already define the acceptance criteria of the
User Stories. Therefore acceptance tests can easily be extracted from the acceptance crite-
ria by the Product Owner or by a tester. Then the acceptance tests can be automated by the
developers or testers, before the developers start with the development of the work items.

Benefits of using an ATDD approach are that the developer does not have to define the
test scenarios himself. In addition, the developer does not have to worry about mock objects
and interfaces, because the tests do not have to be independent from external sources. This
could remove a lot of overhead created by the more traditional approach of TDD, which
was introduced at ISM. A downside of this approach is that it is maybe harder to determine
where the bug occurs, because the tests are not independent and it could not stimulate the
developer to write better code as a normal TDD approach would.

To make sure that the developers still write unit tests after this case study has ended,
the teams should include writing unit tests to their definition of done (DoD) [30]. This is
a checklist of criteria, which a work item must fulfill to be considered ”done”. A work
item could never be ”done” when no unit test is written for it. When someone’s code is
reviewed, the reviewer should also pay attention to quality of the unit tests (are they really
independent, are they fast enough etc). Furthermore, there should be a mentor in the team,
to which team members could ask guidance about the practices: mocking, unit testing and
TDD. It would be logical that this role should be fulfilled by the lead developers.

Another recommendation would be the practice Continuous Integration [13]. With Con-
tinuous Integration the code of developers is integrated with each other on a repository. On
the repository the solution automatically builds to see wheter it compiles. When the devel-
oper checks in his code, the unit tests should automatically be run. This way the team can
quickly find out when a test fails and the just checked-in code broke something. Various
teams at ISM already use source control in combination with automatic build definitions.
The teams whom use TDD should add the automatic running of the unit tests to these build
definitions.

47

Bibliography

[1] P. Abrahamsson, A. Hanhineva, and J. Jlinoja. Improving business agility through
technical solutions: A case study on test-driven development in mobile software de-
velopment. In Business Agility and Information Technology Diffusion, pages 1–17.
Springer, 2005.

[2] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software development
methods review and analysis. Technical Report 478, VTT PUBLICATIONS, 2002.

[3] Johan Andersson, Geoff Bache, and Peter Sutton. Xp with acceptance-test driven de-
velopment: A rewrite project for a resource optimization system. In Extreme Program-
ming and Agile Processes in Software Engineering, 4th International Conference, XP
2003, Genova, Italy, May 25-29, 2003 Proceedings, volume 2675, pages 180–188.
Springer, 2003.

[4] Kent Beck. Extreme programming explained: embrace change. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[5] Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

[6] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy of test-driven
development: industrial case studies. In ISESE ’06: Proceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering, pages 356–
363, New York, NY, USA, 2006. ACM.

[7] D. Chaplin. Test first programming. TechZone, 2001.

[8] Alistair Cockburn. Agile Software Development: The Cooperative Game (2nd Edition)
(Agile Software Development Series). Addison-Wesley Professional, 2006.

[9] Mike Cohn. User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[10] DSDM Consortium. DSDM. http://www.dsdm.org/atern/.

49

BIBLIOGRAPHY

[11] Thomas A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems
Journal, 28(2):294–306, 1989.

[12] Lars-Ola Damm and Lars Lundberg. Results from introducing component-level test
automation and test-driven development. J. Syst. Softw., 79(7):1001–1014, 2006.

[13] Paul Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving
software quality and reducing risk. Addison-Wesley Professional, 2007.

[14] ISM eCompany. Sana software. http://www.sana-software.com.

[15] S. H. Edwards. Using test-driven development in the classroom: Providing students
with automatic. In Proc. Int”l Conf. Education and Information Systems: Technolo-
gies and Applications (EISTA 03), 2003.

[16] H. Erdogmus. On the effectiveness of test-first approach to programming. IEEE
Transactions on Software Engineering, 31:1–12, January 2005.

[17] Hakan Erdogmus, John Favaro, and Wolfgang Strigel. Guest editors’ introduction:
Return on investment. IEEE Software, 21(3):18–22, 2004.

[18] Martin Fowler. Xunit. http://www.martinfowler.com/bliki/Xunit.html.

[19] Boby George. Analysis and quantification of test driven development approach,
September 2002. Ph D thesis.

[20] Boby George and Laurie Williams. An initial investigation of test driven develop-
ment in industry. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied
computing, pages 1135–1139, New York, NY, USA, 2003. ACM.

[21] Boby George and Laurie Williams. A structured experiment of test-driven develop-
ment. Information and Software Technology, 46(5):337–342, 2004.

[22] J. Highsmith and A. Cockburn. Agile software development: the business of innova-
tion. Computer, 34(9):120–127, 2001.

[23] Watts S. Humphrey. Managing the software process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1989.

[24] Andy Hunt and Dave Thomas. Pragmatic Unit Testing in C# with NUnit. The Prag-
matic Programmers, 2004.

[25] L. Williams J. C. Sanchez and E. M. Maximilien. A longitudinal study of the use of
test-driven development practice in industry. In Proceedings of Agile 2007 Conference,
pages 5–14, Washington DC, USA, 2007. IEEE Computer Society.

[26] David S. Janzen. An empirical examination of test-driven development. SRC Grand
Finals Third Place Winner, ACM Digital Library.

50

BIBLIOGRAPHY

[27] Ron Jeffries and Grigori Melnik. Guest editors’ introduction, tdd: The art of fearless
programming. IEEE Softw., 24(3):24–30, 2007.

[28] Reid Kaufmann and David Janzen. Implications of test-driven development: a pilot
study. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 298–299,
New York, NY, USA, 2003. ACM.

[29] Arie van Bennekum Alistair Cockburn Ward Cunningham Martin Fowler James Gren-
ning Jim Highsmith Andrew Hunt Ron Jeffries Jon Kern Brian Marick Robert C. Mar-
tin Steve Mellor Ken Schwaber Jeff Sutherland Dave Thomas Kent Beck, Mike Bee-
dle. Manifesto for Agile Software Development. http://agilemanifesto.org/.

[30] Henrik Kniberg. Scrum and XP from the Trenches. Lulu.com, 2007.

[31] Johannes Link and Peter Frolich. Unit Testing in Java: How Tests Drive the Code.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[32] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing: unit testing with
mock objects. In Extreme programming examined, pages 287–301, Boston, MA, USA,
2001. Addison-Wesley Longman Publishing Co., Inc.

[33] Lech Madeyski. Preliminary analysis of the effects of pair programming. In and Test-
Driven Development on the External Code Quality, Software Engineering: Evolution
and Emerging Technologies, pages 113–123. Press, 2005.

[34] E. Michael Maximilien and Laurie Williams. Assessing test-driven development at
ibm. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 564–569, Washington, DC, USA, 2003. IEEE Computer Society.

[35] Grigori Melnik and Frank Maurer. Multiple perspectives on executable acceptance
test-driven development. In Agile Processes in Software Engineering and Extreme
Programming, 8th International Conference, XP 2007, Como, Italy, June 18-22, 2007,
Proceedings, volume 4536 of Lecture Notes in Computer Science, pages 245–249.
Springer, 2007.

[36] Microsoft. .Net. http://www.microsoft.com/NET/.

[37] Microsoft. Source Control for Visual Studio. http://msdn.microsoft.com/en-us/
library/zxd4dfad(VS.80).aspx.

[38] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for Managing
Your Software Investment. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[39] David F. Rico. ROI of Software Process Improvement: Metrics for Project Managers
and Software Engineers. J. Ross Publishing, Inc., 2004.

51

BIBLIOGRAPHY

[40] Julio Cesar Sanchez, Laurie Williams, and E. Michael Maximilien. On the sustained
use of a test-driven development practice at ibm. In AGILE ’07: Proceedings of the
AGILE 2007, pages 5–14, Washington, DC, USA, 2007. IEEE Computer Society.

[41] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001.

[42] Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. Evaluating the cost
of software quality. Commun. ACM, 41(8):67–73, 1998.

[43] Stephanie D. Teasley, Lisa A. Covi, M. S. Krishnan, and Judith S. Olson. Rapid soft-
ware development through team collocation. IEEE Trans. Softw. Eng., 28(7):671683,
2002.

[44] Arie van Deursen. Customer involvement in extreme programming: Xp2001 work-
shop report. SIGSOFT Softw. Eng. Notes, 26(6):70–73, 2001.

[45] Arie van Deursen. Program comprehension risks and opportunities in extreme pro-
gramming. In WCRE ’01: Proceedings of the Eighth Working Conference on Reverse
Engineering (WCRE’01), page 176, Washington, DC, USA, 2001. IEEE Computer
Society.

[46] Rini van Solingen. Measuring the roi of software process improvement. IEEE Softw.,
21(3):32–38, 2004.

[47] Shane Warden and Jim Shore. The Art of Agile Development: With Extreme Program-
ming. OReilly Media, Inc., 2007.

[48] Don Wells. Extreme Programming. http://www.extremeprogramming.org/.

[49] Laurie Williams, E. Michael Maximilien, and Mladen Vouk. Test-driven develop-
ment as a defect-reduction practice. In ISSRE ’03: Proceedings of the 14th Inter-
national Symposium on Software Reliability Engineering, page 34, Washington, DC,
USA, 2003. IEEE Computer Society.

[50] O. Hazzan Y. Dubinsky. Measured test-driven development: Using measures to moni-
tor and control the unit development. Journal of Computer Science, 3:335–344, 2007.

[51] S. Yenduri and L. Perkins. Impact of using test-driven development: A case study.
Software Engineering Research and Practice, pages 126–129, 2006.

[52] R. Ynchausti. Integrating unit testing into a software development team’s process.
In Proceedings of XP2001 Conference on Extreme Programming, pages 79–83, May
2001.

52

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

ATDD: Acceptance Test Driven Development

Bug: Error which is not related to a user story.

DSDM: Dynamic System Development

Functional Error: Error which is related to a User Story

GUI: Graphical User Interface

ISM: Innovative Solutions in Media

LOC: Lines of Code

RFC: Request for Change

ROI: Return on Investment

SBI: Sprint Backlog Item

SUT: System Under Test

TDD: Test-Driven Development

TFS: Team Foundation Server

VSTS: Visual Studio Team System

WYSIWYG: What You See Is What You Get

XP: eXtreme Programming

53

Appendix B

Unit Testing Sana Commerce Live

B.1 Introduction

”Unit Testing” tests the smallest testable part of the source code. Usually the unit test
exercises a particular method in a particular context. It is important that the unit tests are
independent from each other or from other external data sources.

With unit testing each small functionality in the source code is validated. Unit testing
provides a strict, written contract that the code must satisfy. It forces the developer to
think about his code and keeps his methods testable and highly decoupled from each other.
Unit tests can run directly after a small functionality is finished. This way bugs can be
found quicker and are then easier to fix. Therefore when using unit testing, fewer bugs are
introduced.

An extra benefit of unit testing is that it positively influences the program understanding
(comprehension). 40% to 60% percent of the time spent on software maintenance is used
on program understanding. Unit tests can explain the behavior of the code which is tested
and therefore developers can use the unit tests to see how the code should behave.

When using unit tests developers have more confidence to add changes to their program.
This because when the program is correctly unit tested, the tests have a high code coverage
and the methods are highly decoupled. When a change is implemented, it is easy to check
if everything still works properly by running the unit tests.

Another practice, which is closed related to unit testing and also highly recommend by
the agile community, is Test-Driven Development. This practice believes that the best way
to write unit tests is before implementation. By using this practice the programmer have
to think about what really is expected from his code. He first writes a unit test and then
writes the code to make the unit test pass. When the unit test passes, additional unit tests
can be added and the cycle starts again. This repeats until no more additional unit tests are
necessary.

This document will give some general information and links about unit testing and some
examples on how to setup unit testing for a Sana Commerce Live solution and how to
mock different objects in the code. This document is not a complete tutorial about unit
testing/TDD.

55

B.2 Unit Testing Unit Testing Sana Commerce Live

2 HandsOnLabs are written for that purpose:

I:Development.Team4NL.Documentatie.HandsOnLab - Test Driven Development

B.2 Unit Testing

B.2.1 Used Tools

For Unit Testing the Sana Site Solution described in this document we used these programs:

- VSTS Unit Testing Framework

- Rhino Mocks (http://ayende.com/projects/rhino-mocks.aspx)

There a lot of other programs available like: NUnit, MbUnit or NMock, but it is up
to the team to decide which tools they are going to use. We choose these tools because
the VSTS Unit Testing Framework and Rhino Mock are also used for unit testing SANA
Commerce Live.

B.2.2 Setting up Unit Tests

The best thing to setup the unit tests is to create a separate project for it or even a new
solution. In the new project you can use the same directory structure as the source code so
you can quickly find our test classes. But how to setup the unit tests is a decision entirely
up to the team.

Add a reference to Rhino Mock. Add references to the different projects of the source
code. If you want to test a functionally from ”class A” then create a test class with an appro-
priate name like (TestA.cs or AFixture.cs) and put it in the corresponding folder of the test
project. Now you are ready for writing unit tests. For how to setup unit tests with VSTS see:

http://msdn.microsoft.com/en-us/library/ms379625.aspx

56

Unit Testing Sana Commerce Live B.2 Unit Testing

Here a quick example of a unit test:

With the object Assert you can test if the method returns the desired result, if not the
unit test will fail. To start the unit test, right click on the code and select ”Run Tests”.

(First 2 options are from the testdriven.net plugin).

B.2.3 Test Driven Development

Test Driven Development is test-first approach. This software design practice is closely
related with unit testing, because the developer writes first a unit test before he starts with
implementation. This unit test behaves as a written specification for the code what has to
be implemented. TDD has a cyclic approach where in small steps additional functionality
is added. This functionality is completed when no additional unit tests have to be added:

The TDD cycle consist out 3 phases:

57

B.2 Unit Testing Unit Testing Sana Commerce Live

1. Red Phase.

In the Red Phase the developer writes a test for the new feature he wants to implement.
An important rule in TDD is: ”If you can not write a test for what you are about to code,
then you should not even be thinking about coding”. All old tests should succeed, except
the new one.

2. Green Phase.

In the Green Phase the developer makes the smallest possible piece of code to make the
test succeed. This way the developer makes small incremental steps of development. If he
makes bigger steps, there is a higher change that faults slip in the code.

3. Refactoring.

When the new test succeeds, we can clean up the code in the refactoring phase. By
running all the tests we can ensure that our refactoring activities do not break anything.
Now if additional tests can be written, the cycle starts again. If this is not the case, then
development stops.

The benefits of writing unit tests before implementation:

- You will get high test code coverage.

- Lower fault injection.

- You have more confidence that the code act following your specifications.

- Bugs are quickly discovered.

This is practice is explained in the book: ”Beck, K. Test-Driven Development by Ex-
ample, Addison Wesley, 2003”. Some useful links:

http://www.agiledata.org/essays/tdd.html
http://www.codeproject.com/KB/dotnet/tdd in dotnet.aspx

58

Unit Testing Sana Commerce Live B.2 Unit Testing

B.2.4 Unit Testing

In this section, we will explain how to unit test methods, which are hard to test. Please try
avoiding these situations as much as possible.

B.2.4.1 Protected Methods

Sometimes it is maybe necessary to test a protected method. Before you do this, try to
figure out if the method can not be made public or it is really necessary to unit test the
method. If this is not the case you now have the problem that the method can not be called
by other unrelated classes. This can be solved by making a derived class which has public
methods (but this solution will increase the maintenance of the code) or by using the Sys-
tem.Runtime.CompilerServices.InternalsVisibleTo attribute.

Add the following line to AssemblyInfo.cs of the target project which contains the pro-
tected method:

[assembly : InternalsVisibleTo(′′TestPro jectAssemblyName′′)]

Add to the protected method the type ”internal”:

protected internal Boolean method()

When the target assembly is signed with a public key, you can get the following error:

Error 2 Friend assembly reference ’TestClasses’ is invalid. Strong-name signed assem-
blies must specify a public key in their InternalsVisibleTo declarations.

Then you have to sign your test assembly (right click on the test solution and goto sign-
ing). After that extract the public key with sn.exe:

sn -p Foo.Bar.Test.snk Foo.Bar.Test.PublicKeyOnly.snk sn -tp
Foo.Bar.Test.PublicKeyOnly.snk

Then you have to add the public key to the InternalsVisibleTo attribute in AssemblyInfo.cs
of the target project:

59

B.2 Unit Testing Unit Testing Sana Commerce Live

After building you now can call the protected methods in your test project. For more
information see:

http://blog.tylerholmes.com/2008/04/unit-tests-and-internalsvisibleto.html

B.2.4.2 Private Methods

Just like testing protected methods, before you try to unit test them, consider if it is really
necessary to test them or if it is possible to transfer the functionality to other public meth-
ods or to make the method public. Unit testing private methods is on going debate, but is
possible with reflection. This example show how to unit tests a private method of a Press-
ReleaseRecordManger:

private static string GetRecordNameById(Guid id)

You can test a private method by using reflection. You have to add ”using System.Reflection”
to your TestClass. Here an example how to use reflection for unit testing the private method:

private static string GetRecordNameById(Guid id)

You can test a private method by using reflection. You have to add ”using System.Reflection”
to your TestClass. Here an example how to use reflection for unit testing the private method:

If the method was not static the example would look like:

60

Unit Testing Sana Commerce Live B.2 Unit Testing

B.2.4.3 Code Behind

Unit Testing ”Code Behind” of webpages can be tricky, but can be done. You have to make
the attributes ”protected internal” and make also the functions public or internal. Function-
ality in the Page Load function can be defined in a separate method.

But there are better frameworks for testing the webpages like Selenium, Watir and Sahi.
They can simulate the interaction between the GUI and the end user. Even Selenium and
Watir can be integrated with your Unit tests.

B.2.5 Unit Testing Sana Commerce Live

B.2.5.1 Setup

Before you can start writing unit test, the mappings have to be performed before the unit
tests are runned. This can be done with the attribute: AssemblyInitialize. This method is
then called before all unit tests are started in the same assembly.

Put all the mappings in a method. Nicest way to do this would be if the mappings are
placed in a static method in a custom project. This way the mapping method can be called
from Global.asax.cs and from the unit tests. If something has to be updated it can be done
at one place. If the method is called InitObjects(), then your AssemblyInitialize method
should look like this:

These mapping are necessary for example for initializing the providers.

B.2.5.2 Mocking Providers

The providers in the Sana Commerce Live framework handle the calls to the databases. You
can decide to make actual calls to the database and therefore you can test the integration
between the program and the database. This way you also test the business logic of Navi-
sion. A downside of this is that it will make your tests slowly and you make your test cases
dependent of the data in the database.

This is also a decision the team has to make if they are going to mock the calls to the
database. It is also possible to make 2 groups of tests (unit tests and integration tests).

In both cases you have to add an app.config to your unit tests project, which should
look very similar to your webconfig. In our example we are going to make our own fake
customerProvider. This how normally a CustomerProvider is set upped in the config:

61

B.2 Unit Testing Unit Testing Sana Commerce Live

Now copy the NavisionCustomerProvider from the Sana Commerce Live Framework to
your Unit Test project and rename it (for example MockNavisionCustomerProvider). Make
all the methods empty except for the Initialize(string name, NameValueCollection config)
method. Now change the config so it points to your new provider:

Now if the CustomerManager calls a method of the provider you can supply it with test
data. For example let we test the method:

public override bool ValidateUser(string username, string password)

This method has to check if the password given by the user corresponds with the password
in the database. The CustomerManager would be asked to get the account with the cor-
responding username. The CustomerManager calls the method GetShopAccountByEmail
(users use their email as username). Now let we write the following Unit test:

62

Unit Testing Sana Commerce Live B.2 Unit Testing

In MockNavisionCustomerProdiver edit the method GetShopAccountByEmail:

We can implement ValidateUser:

If you now run the Unit Test it will succeed.

B.2.5.3 HttpContext Simulator

Some user information is stored in the HttpContext and mocking the HttpContext can be
difficult. These problems can be solved with a HttpContext simulator from Subtext. For
more information see:

http://haacked.com/archive/2007/06/19/unit-tests-web-code-without-a-web-server-using -httpsimulator.aspx

We will show now an example of how user information in the httpcontext can be mocked.
When a User get method is called from the SiteContext, you must check if the user is logged
in. This information is stored in the HttpContext. First add a reference of the Simulator DLL

63

B.2 Unit Testing Unit Testing Sana Commerce Live

to the Unit Test project. Then add ”using Subtext.TestLibrary” to your code. To check if
a user is logged in, the method IsUserLoggedIn from Ism.Scl.Web.Business.SiteContext is
called:

The userIdentity is retrieved from the HttpContext. You can mock this in a unit test by
the following way:

64

Unit Testing Sana Commerce Live B.2 Unit Testing

By simulating a request we can use HttpContext.Current. We assign the mock object
testUser to User. The testUser then returns a mockObject testIden when the identity is asked.
When in the method IsUserLoggedIn is asked if the user is authenticated, the mockobject
returns true.

B.2.5.4 Mock SessionState

It is quite easy to mock the SessionState in Sana Commerce Live. For example if you want
to mock the following code:

First you make ISessionState mockobject. Then you register the mockobject in the
objectManager. Now when something is asked to the SessionState, it is redirected to the
mock object, so we can decide what should be returned.

We want that IsEmpty returns false and that GetValue returns a WebUser. You use this
code in your unit test:

In the getmethod SessionState.IsEmpty IsValueEmpty is called on the attribute Current.
Current is the mockobject testSes and returns false. In GetValue the mockobject testSes
is asked to return an IWebUser and we recorded that the mockobject user is returned by
testSes.

There is only one problem now, the mockobject testSes is now registrated and is in
verification state. Because you can not unregistrate something (I do not know this for sure)
you have to solve this somewhat unorthodox:

65

B.2 Unit Testing Unit Testing Sana Commerce Live

We put the old sessionstate in a variable. When we are finished with the unit test we put
the old one back:

Ob jectManager.RegisterInstance < ISessionState > (oldOne);

You can put this in the setup and teardown, but not all tests mock the sessionstate.

B.2.6 Conclusion

Unit testing of a Sana Commerce Live Customization is possible. It will only take some
time to get used to the unit tests and mocking the different objects. Also the team has to
consider if some things have to be unit tested or an integration test is more appropriate.

66

