Graduation Plan

Master of Science Architecture, Urbanism & Building Sciences

Graduation Plan: All tracks

Submit your Graduation Plan to the Board of Examiners (<u>Examencommissie-BK@tudelft.nl</u>), Mentors and Delegate of the Board of Examiners one week before P2 at the latest.

The graduation plan consists of at least the following data/segments:

Personal information	
Name	Brent Smeekes
Student number	4607643

Studio											
Name / Theme	Structural design: Discrete Timber										
Main mentor	Stijn Brancart	Structural Design									
Second mentor	Hans Hoogenboom Design Informatics										
Argumentation of choice of the studio	uses a discretized 3D grid includes a structural anal configurations. The modu necessarily timber product										

Graduation project									
Title of the graduation project	Construction configurator: aligning the customer's preference with the manufacturer's capabilities								
Goal									
Location:	The Netherlands								
The posed problem,	The design process in BIM software is convoluted and requires advanced technological skill from the user. Moreover, a lack of integration between the phases and stakeholders involved in construction causes design issues. Resolving these issues requires extra reorganization efforts, leading to delays, higher costs, and potentially lower quality buildings.								
	Integrated construction configurators offer a solution to these issues. However, most of the existing configurators lack flexibility. Instead, they provide the selection of predefined								

	room sized modules or adaptive									
	room sized modules or adaptive parameter values. Few research studie explore the flexible spatial arrangemen of components to achieve design variations.									
research questions and	Main research question:									
research questions and	How can the design space of integrated construction configurators be enlarged?									
	Sub research questions:									
	What is missing in current									
	construction configurators?									
	2. What are the theoretical									
	frameworks that can inform the									
	architecture of the proposed									
	software?									
	3. What is the workflow and system									
	design of the proposed software? 4. What is the configuration process									
	of the proposed software?									
	5. How is the system grid									
	organized?									
	6. What grid size is appropriate to									
	be compatible with as many									
	building elements/products as									
	possible?									
	7. How can building components									
	and assemblies be organized into a categorical hierarchy?									
	8. How can module size or opening									
	variations be facilitated in the									
	proposed software?									
	9. How does the structural analysis									
	work in the proposed software?									
design assignment in which these result.	Develop an integrated construction									
	configurator. The configurator should									
	act as proof of concept. While it should									
	portray the main system/structure of the software, it doesn't need to include all									
	features required for integrating from									
	design to manufacture. The minimum is									
	an immersive experience that allows the									
	configuration of structural elements on a									
	3D grid. Additionally, the structural									
	configuration is analyzed to give									
	feedback on required profiles or									
	products and material use. Next steps									
	would be to include additional building									

products, such as partition walls and
façade elements. Even further steps
would be to include configuration rules
that could represent for example a
project developer or regulations from
government agencies.

Process

Method description

Literary research

First, literary research is conducted on current construction configurators and research on construction configurators. This literary research is utilized to understand what a construction configurator is, how it compares to BIM, how they can be categorized, which ones are currently available, and what is missing in current construction configurators.

Software proposal

Secondly, the literary research is used to propose a new construction configurator with features and improvements over current construction configurators. The proposal includes a theoretical framework, a workflow and system design, a configuration process, a framework for a system grid, a framework for a kit-of-parts, and a framework for structural analysis.

Software development

Lastly, the theory and plan for the proposed construction configurator will get translated into code and software. For this step Unreal Engine will be used to serve as the backbone for the software, it is the 3D environment in which the project can get developed. Within Unreal Engine, code specific to the project will get written. This code can be separated into a data, application, and presentation tier, also called the database, backend, and frontend. It is essential for each tier to get developed to some degree.

The first step will be to write the code for a uniform 3D system grid. Then, a database of structural elements needs to be developed. This database should contain one column, one beam, one structural wall or bracing, and one floor/roof system. Next, the code needs to be developed for the interaction of the user with the software. This includes the orientation and movement in the 3D environment, the selection of an item from the database, and then the placement of that item on the 3D system grid. The final step will be the structural analysis of the configuration.

Supplementary software development

After these steps the software should work with limited features, only including structural design and assessment. The next steps will implement more features to make the software relevant for more project phases, projects, and stakeholders. The first of these next steps would be to allow size variations in the 3D system grid and the (structural) elements in the database. Next, the inclusion of additional building products, such as partition walls and façade elements. Next, allowing opening variations in the planar elements in the database. Next, developing the code which

allows importing of BIM families, so they can extend the database. It is unlikely that more features than this can be implemented in the timeframe of this thesis. However, other possible features include connections between elements, non-orthogonal system grids, importing of custom (complex shaped) elements.

Literature and general practical references

Benjamin, S., Christopher, R., & Carl, H. (2022). Feature modeling for configurable and adaptable modular buildings. Advanced Engineering Informatics, 51. https://doi.org/10.1016/j.aei.2021.101514

Cao, J., Bucher, D. F., Hall, D. M., & Lessing, J. (2021). Cross-phase product configurator for modular buildings using kit-of-parts. Automation in Construction, 123. https://doi.org/10.1016/j.autcon.2020.103437

Cao, J., & Hall, D. (2019). AN OVERVIEW OF CONFIGURATORS FOR INDUSTRIALIZED CONSTRUCTION: TYPOLOGIES, CUSTOMER REQUIREMENTS, AND TECHNICAL APPROACHES. Proceedings of the European Conference on Computing in Construction, 295–303. https://doi.org/10.35490/ec3.2019.145

Louth, H. D., Fragachan, C., Bhooshan, V., & Bhooshan, S. (2024). Configurator: A Platform for Multifamily Residential Design and Customisation. In *Lecture Notes in* Mechanical Engineering: Vol. Part F1562 (pp. 769-805). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-36922-3_40 Potseluyko, L., Pour Rahimian, F., Dawood, N., Elghaish, F., & Hajirasouli, A. (2022). Game-like interactive environment using BIM-based virtual reality for the timber frame self-build housing sector. Automation in Construction, 142.

https://doi.org/10.1016/j.autcon.2022.104496

Wikberg, F., Olofsson, T., & Ekholm, A. (2014). Design configuration with architectural objects: Linking customer requirements with system capabilities in industrialized house-building platforms. Construction Management and Economics, 32(1-2), 196-207. https://doi.org/10.1080/01446193.2013.864780

Reflection

1. What is the relation between your graduation (project) topic, the studio topic (if applicable), your master track (A,U,BT,LA,MBE), and your master programme (MSc AUBS)?

The development of a construction configurator is a very interdisciplinary undertaking. Configurators originate from the realm of product design or industrial design. Creating a platform like a configurator is in the realm of software development or computer science. The approach in user interaction and the engine used in the platform is based on the gaming industry. This specific configurator is meant to serve as an interface between the end user and architect, therefore the field of architecture is also involved.

However, the content of the configurator is mainly based on knowledge from the architecture, engineering, and manufacturers domain. Building technology is the field that bridges the gap between these domains. This knowledge is incorporated in the project by orchestrating the configuration process, this includes managing how

building elements come together, but also analyzing and evaluating configurations. An important way of evaluating a configuration is by means of a structural analysis, which is a core part in this project.

For this reason, this project fits into the Structural department, but it also fits in the Computational Design department. The studio topic is Discrete Timber, the configurator uses a discretized grid to structure the configuration process. The building blocks aren't limited to timber products, but can be included.

2. What is the relevance of your graduation work in the larger social, professional and scientific framework.

Integrated construction configurators are relatively new, under researched and underdeveloped. However, they offer tremendous potential, with many benefits over conventional BIM. Especially the ease of use and improved integration between stakeholders and phases are promising aspects of integrated construction configurators. The ease of use can mostly be accounted to the immersion and limiting of the solution space caused by the discretized system grid, reducing the time spent for task completion and reducing the number of errors. The improved integration comes from a tool that is easy enough for the end-user to use and embeds expert knowledge and products from manufacturers in the tool as configuration rules and building blocks. This prevents design issues and therefore saves time, costs, and potentially results in higher quality buildings. To conclude, integrated construction configurators have the potential to revolutionize,

not the way we build, but the way we design our buildings.

				P2							Р3						P4					F	5	
Start date	13-Nov	20-Nov 27-Nov 04-De	11-Dec 18-	Dec 25-Dec	01-Jan 0)8-Jan 15-Jaı	n 22-Jan 2	9-Jan 05	5 <mark>-Feb</mark> 12-Feb	b 19-Feb	26-Feb 04	l-Mar 11-Ma	ar 18-Mar 25-M	ar 01-Apr	08-Apr	27-Apr	28-Apr 2	29-Apr 0	6-May 13-M	∕lay 20-N	/lay 27-Ma	ay 03-Jun	10-Jun	17-Jun 24-Ju
Week year	46	47 48 49		51 52	1	2 3		5	6 7		9	10 1		13		18	18	18	19		21 2			25 26
Task \ Week academic	2.1	EXTREME		2.6 Break	Break	2.7 2.8	8 2.9	2.1 в	Break 3.1	1 3.2	3.3			.7 3.8	3.9	4.2	4.2	4.2	4.3 4	4.4	4.5 4.	6 4.7	4.8	4.9 4.10
P1 presentation	20-Nov																							
LR: construction configurators research/products																								
LR: theoretical frameworks for configurators																								
LR: structure and sizing of the system grid																								
LR: categorical hierarchy of building components and assemblies																								
LR: structural analysis																								
Graduation plan																								
P2 report: develop																								
P2 presentation: develop & prepare																								
P2 presentation							29	-Jan																
SD: getting familiar with Unreal Engine																								
SD: develop uniform 3D system grid																								
SD: develop database of 'generic' structural elements																								
SD: develop code for orientation and movement																								
SD: develop code for selection of items in database																								
SD: develop code for placement of selected items																								
SD: develop code for connecting structural elements																								
Draft reflection															_									
P3 report: develop																								
P3 presentation: develop & prepare																								
P3 presentation													Р3											
SD: develop code for applying imposed loads to floors/roofs																								
SD: extend structural database with profiles/products																								
SD: develop code for recommending structural floor/roof products																								
SD: develop code for structural analysis of linear/bracing elements																								
SD: develop code for recommending structural profiles/products																								
SD: develop code for calculating material use and cost																								
SD: develop database of 'generic' interior/exterior partition walls																								
SD: develop code for size variations in 3D system grid (maybe)																								
SD: develop code for size variations in structural elements (maybe)																								
Reflection																								
P4 report: develop																								
P4 presentation: develop & prepare																								
P4 presentation																			P4	1				
SD: cleaning up code and visualisation/presentation																								
P5 report: develop																								
P5 presentation: develop & prepare																								
P5 presentation																								P5 ?