
Master thesis report
3D Scene Compression for Autonomous Driving
using Neural Radiance Fields

M. F. G. Enting

Master thesis report

3D Scene Compression for Autonomous Driving using
Neural Radiance Fields

Thesis report

by

M. F. G. Enting

to obtain the degree of Master of Science in Robotics

at the Delft University of Technology

to be defended publicly on Friday May 3, 2024 at 10:00 AM.

Student number: 4659147

Project duration: August 1, 2023 – May 3, 2024

Thesis committee: Dr. H. Caeser, TU Delft, supervisor

Dr. M. Weinmann, TU Delft, supervisor

Dr. P. Kellnhofer, TU Delft

3D Scene Compression for Autonomous driving
using Neural Radiance Fields

Marnix Enting

Abstract—Neural Radiance Fields (NeRFs) have showcased
remarkable effectiveness in capturing complex 3D scenes and
synthesizing novel viewpoints. By inherently capturing the entire
scene in a compact representation, they offer a promising avenue
for applications such as simulators, where efficient storage of real-
world data, fast rendering and dynamic generation of new con-
tent are crucial. However, the potential for compression in NeRFs
has been largely neglected in the existing literature. Moreover, the
practical deployment of NeRFs in real-world scenarios, including
simulators, faces significant obstacles such as constraints in
training time, rendering speed, and scalability to large scenes.
While recent advancements have tackled some of these hurdles
individually, none have offered a comprehensive solution. In
this paper, we introduce a new NeRF architecture based on a
textured polygon-based method and augment this architecture by
integrating encodings to expedite training. Additionally, we intro-
duce learned pose refinement and an appearance embedding to
enhance scalability to larger scenes. Through experimentation on
the nuScenes dataset, we demonstrate that our method achieves
competitive reconstruction performance with existing techniques
while surpassing them in rendering speed. Furthermore, in
terms of compression, our findings indicate that our method
achieves competitive compression rates comparable to image-
based compression techniques, while also enabling novel-view
synthesis. This underscores its potential utility in applications
like simulators.

Index Terms—Neural Radiance Fields, 3D Scene Compression,
Autonomous Driving, Deep Learning, Driving Simulator

I. Introduction

For many years, simulators have been core to the devel-
opment and improvement of autonomous driving models, by
offering a safe and cost-effective environment for testing and
training. Central to the efficacy of these simulators is the
fidelity and realism of the virtual environments they represent.
Despite the advancements made, a persistent challenge is the
sim-to-real gap, an unavoidable disparity between simulated
environments and real-world conditions. To mitigate this, in
addition to simulations, models are often trained on real
driving data. However, this data typically encompasses only
a narrow range of driving scenarios, posing limitations. The
substantial storage and bandwidth demands associated with
this capturing and storing 3D scene data further underscore
the need for effective compression techniques.

Capturing 3D scenes can be done explicitly or implicitly.
For explicit representation, the two most common methods
for autonomous vehicles include explicitly capturing the scene
using a collection of points, i.e. point clouds, or through 2D
images with depth. Point clouds consist of a collection of
individual points in 3D space, each representing a specific
location in the scene. Specifically, they represent 3D data as

a set of points with (x, y, z) coordinates, which is referred
to as point cloud geometry, and associated attributes, which
may include colours, normals, and reflectance. Furthermore,
these point clouds can include a temporal dimension. Thus,
a distinction can be made between static and dynamic point
clouds.

Depth images capture 3D space by representing each pixel’s
distance from the camera. Compared to point clouds, these
images offer a dense and structured representation of the
environment, where each pixel contains depth information.
While depth images offer a more continuous representation of
the scene, point clouds provide a sparse yet precise depiction,
allowing for efficient storage and processing of 3D data.

On the other hand, implicit representations offer an alter-
native approach to encoding 3D scenes. Instead of explicitly
storing individual points, implicit representations describe the
scene as a continuous function or surface that can be eval-
uated at any given point. This function provides information
about the scene’s geometry, appearance, and other relevant
properties. Implicit representations have gained attention for
their ability to compactly represent complex 3D scenes while
enabling efficient storage, transmission, rendering as well as
their ability to generate novel viewpoints.

Neural Radiance Fields (NeRF) [27] have emerged as a
prominent form of implicit representation that has garnered
significant attention in recent times. NeRF captures an entire
scene by utilizing a 5D radiance function, which is obtained
through the over-fitting of a neural network on a single scene.
This implicit representation offers great potential for com-
pressing and rendering 3D scenes, as it encompasses the entire
scene and enables the generation of novel viewpoints. In con-
trast to point clouds, which only capture a subset of the scene,
NeRF’s continuous structure allows for a more comprehen-
sive representation. However, research into the compression
capabilities of NeRF, which hold potential value for training
autonomous driving models, remains scarce. In addition, the
initial NeRF implementation [27] suffered from limitations
such as long training times, high inference, and the inability to
handle dynamic 3D scenes. Fortunately, subsequent extensions
of NeRF (e.g. Instant-NGP [29], Block-NeRF [35], Dynamic-
NeRF [31]) have made substantial progress in addressing these
limitations.

Explicit representations, favoured for vehicle-to-vehicle
communication, are not ideal in simulator applications due to
their limitation of only describing a single driving scenarios
without facilitating novel view synthesis. Instead, NeRFs are
more suitable for this purpose due to their novel view syn-
thesis. However, for driving simulators, it’s crucial that the

1

method is efficient in terms of training speed, rendering time,
and scalability to handle large scenes. These are capabilities
that none of the existing methods have fully achieved. Further-
more, there is a notable lack of research on their compression
capabilities.

In this context, we propose a novel NeRF method tailored
for autonomous driving simulators, inspired by Instant-NGP,
MobileNeRF, and Block-NeRF. This method allows for a fast
to train, fast to render NeRF that is capable of extending to
larger outdoor scenes. Moreover, we analyse the compression
capabilities of our model as well as Instant-NGP, MobileNeRF
and Nerfacto [36].

Contributions:
• Extension of MobileNeRF to scenes larger than 100m

using components from Block-NeRF.
• Capable of rendering large scenes over 50× faster than

NeRF methods with standard ray marching rendering
pipelines (Instant-NGP).

• Achieve a 10× faster training time than MobileNeRF.
• Analysis of NeRFs compression capabilities, showing 3x

improved compression rate to image-based compression
when generating intermediate poses.

II. Related Work

A. Compression

This work lies in the field of 3D scene compression, a broad
field encompassing various research areas such as point cloud
compression, polygon compression, and neural radiance fields.
To refine our focus, we focus on methodologies applicable to
autonomous driving.

Learned image and video based compression. Image
and video compression techniques have been extensively ex-
plored in the literature, with numerous standards available
such as JPEG, PNG, and TIFF for images, and H.264 and
HEVC for videos. The rise of deep convolutional networks
has revolutionized image understanding, leading to a growing
interest in utilizing such models for deep learning-based
image and video compression [2], [3], [25], [38], and [40].
Many of these approaches employ (variational) auto-encoder
architectures for compression tasks. These models comprise
an encoder-decoder structure, where the encoder compresses
data via convolutional layers into a latent vector, which is
then decompressed by deconvolutional layers in the decoder.
Notably, these methods are able to outperform the compression
rates of the standards.

Point cloud compression. Recent advancements in
learning-based image compression have influenced the devel-
opment of point cloud geometry compression significantly.
Deep neural networks are increasingly used for this purpose,
with various approaches proposed, broadly classified into
point-based, voxel-based, and octree-based methods.

Point-based methods, [20], [12] operate directly on input
points, enabling better capturing of density information due
to the absence of quantization. This makes them particularly
suitable for compressing high detail point clouds, such as
point clouds involving densely captured objects or human
models, where preserving density is crucial for high-quality

visual reconstruction. In line with this, D-DPCC [16] is a
density-preserving Point Cloud Compression (PCC) approach,
integrating density, local position, and ancestor embeddings
to effectively compress the data while maintaining density
fidelity.

More commonly employed are voxel-based methods [1],
[26], [15]. These methods rely on the initial quantization of the
input, after which the quantized points are compressed. These
methods are often employed for deep entropy based models
[30], which require quantization, and allow for the lossy as
well as lossless compression of these quantized point clouds.
One such methods developed by [21] uses a deep entropy
model to losslessly encode the input point cloud.

Octree-based approaches [13] use an octree to represent
and compress the quantized point cloud. The Motion Pictures
Experts Group (MPEG) has introduced a standard called
geometry-based PCC (G-PCC) [28]. Here they use an octree
structure and various models to predict features of the finer
layer. Octsqueeze [19] introduced a conditional deep entropy
model to estimate octree occupancy symbols, while MuSCLE
[5] enhances this approach by incorporating temporal priors
from previous frames. VoxelContext [32] further extends the
ancestor model by integrating spatial information through a
voxel context model, which predicts octree occupancies by
capturing neighbouring voxel distributions and incorporating
temporal information for dynamic point clouds, ultimately
achieving superior compression performance. More recently,
[48] presented a state-of-the-art deep geometry compression
method using autoencoders, featuring a hierarchical sparse-
convolution-based framework with multi-layer residual mod-
ules and employing multiple IRN blocks akin to [12] to pre-
serve feature information through the entropy encoding stage.
Another family of compression methods designed for lidar
involves range image compression, which can be beneficial
as you can capitalize on lidar scanning patterns. This sparked
another family of compression methods involving the com-
pression of these images. For this, image-based compression
techniques can be used. Examples include [18], [43] and
[41] which apply traditional image compression techniques.
RIDDLE [50] employs a deep neural network to predict pixel
values in raster scanning order, drawing on contextual informa-
tion from current and past scans encoded as a 4D point cloud.
This approach enables compression of the deltas between
predictions and original values through entropy encoding.

Neural Radiance Field compression. Neural radiance
fields, introduced by [27], have been primarily used for novel
view synthesis. Although not traditionally used for compres-
sion, these are closely related. Specifically, these methods cap-
ture the entire scene using a sparse subset of explicit images.
In this way, you compress the entire 3D scene into an implicit
representation. This characteristic makes them very efficient in
tasks that require many views, e.g. for simulators. However,
the compression aspect of NeRFs has been little explored.
One paper that does evaluate the compression capabilities
of NeRF is Re:NeRF [10]. This approach effectively prunes
model parameters without sacrificing performance by imple-
menting a re-inclusion mechanism. This mechanism enables
the reintroduction of previously pruned parameters, located

2

near remaining parameters, if they exhibit significant gradient
loss, thereby maintaining model efficacy.

B. Neural Radiance Fields

In the original NeRF implementation by [27], a 5D neural
radiance field is employed, capturing scene characteristics such
as volume density σ(x) and directional emitted radiance at any
point in space. This function signifies the likelihood of a ray
intersecting with a particle at position x. Consequently, the
expected colour C(r) is computed by:

C(r) =

∫ tf

tn

T (t) σ(r(t)) c(r(t), d) dt, (1)

where T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
(2)

Here, T (t) represents the ray’s probability of travelling
from tn to tf without intersecting with any other particle,
while σ(r(t)) and c(r(t), d) denote the volume density and
colour functions, respectively, both modelled using an MLP.
Rendering an image from this neural radiance field requires
estimating the integral of C(r) for each pixel. This imple-
mentation faces limitations in accurately representing large or
dynamic scenes and lacks suitability for real-time rendering
due to slow inference. Moreover, training is computationally
expensive, taking over a day for a single scene, and hindering
practical application in real-world scenarios. Hence, multiple
methods have been introduced to deal with the limitations.

NeRF did not scale well to larger outdoor scenes, such
as ones available for autonomous driving. Multiple meth-
ods have been introduced to tackle this [33], [42], [47].
Mip-NeRF [4] extends NeRF to represent scenes across a
continuous scale by rendering anti-aliased conical frustums
instead of rays, effectively reducing aliasing artefacts and
enhancing NeRF’s ability to capture fine details. Urban-NeRF
[33] extends Mip-NeRF [4] by incorporating lidar data for
depth supervision, addressing exposure variation with affine
mapping, and utilizing image segmentation to capture the sky.
These extensions improve street view synthesis performance,
but the method is limited to a single city block, unable to
capture moving obstacles, and faces challenges with long
training and slow inference times. Block-NeRF [35] extends
NeRF to encompass multiple city blocks by partitioning cities
into individual blocks, each with its neural representation.
This method addresses radiance and exposure variations via
appearance and exposure embeddings, respectively. The blocks
are merged using a visibility model which acts indepen-
dently of the density and colour MLPs. Despite improved
alignment and city-wide representation generation, it struggles
with transient objects and computationally expensive block
merging, resulting in slow inference and suboptimal real-world
performance.

Several approaches have been proposed to mitigate the train-
ing time of NeRFs [11], [22]. Instant-NGP [29] accelerates
training for various Neural Graphic Primitives by employing
hierarchical grids with trainable feature vectors stored in a
multi-resolution hash table, facilitating efficient input encoding

and interpolation. Despite its limitation to bounded scenes,
it achieves accelerated training with minimal quality loss,
demonstrating favourable results through experiments with
specific parameter settings.

Lastly, several methods have been introduced to improve
the inference time of NeRF [14], [22], [17]. Mobile NeRF
[9] achieves rendering speeds 10 times faster than previous
methods like sNeRG [17] by representing scenes with tex-
tured polygons and utilizing traditional rasterization pipelines.
However, its reliance on texture maps poses challenges in
accurately capturing fine geometric details.

III. Method
Given a set of images and their respective positions, the goal

is to devise a concise representation for 3D scene compression.
Moreover, we aspire to develop a method capable of adapting
to large urban environments, while prioritizing fast rendering
and training capabilities. In pursuit of this objective, we
employ a polygonal mesh with concentric boxes and texture
maps to efficiently encode both features and opacity, similar
to MobileNeRF [9]. Our method incorporates two optimizable
input encodings similar to Instant-NGP [29]: hash encoding
for position and spherical harmonics for direction. These en-
codings act as feature extractors, thus reducing the complexity
required of the neural networks and consequently enhancing
training speed. Furthermore, to accommodate larger scenes, we
subdivide the large scene into smaller blocks and make three
additions to the architecture based on Block-NeRF [35]. These
additions are: an appearance embedding to capture variations
in weather conditions, a learned camera pose refinement for
further alignment, and a decoupled visibility model to combine
multiple NeRFs. An overview of the full model can be seen
in Figure 1.

Similar to MobileNeRF, the method consists of three distinct
training stages, where the final stage is the final mesh and
texture generation stage:

• In Continuous opacity training, the approach is similar
to classical NeRF, where the model is trained on a
continuous opacity. The model is trained with a hash
encoding, spherical harmonics encoding, camera pose
optimization, an appearance embedding and a visibility
MLP. Here, the volume is rendered by alpha-compositing
the colour at the quadrature points on the mesh. These
quadrature points are computed for both the optimizable
polygonal mesh and the static concentric boxes around
the mesh grid.

• In Binary opacity training, the focus shifts to binary
opacity modelling. In this phase, the model is adapted
to handle discrete opacity, which is required for polygon
based rendering. In this stage, we utilize the identical
model from stage 1, with the only modifications being
the binarization of opacity and the introduction of a new
binary RGB loss.

• In Feature image generation, the representation is final-
ized by extracting a sparser polygonal mesh. Opacities
and features are integrated into texture maps, and the
weights of the small colour and visibility MLPs are
stored.

3

Fig. 1: Overview of the architecture. The architecture comprises a mesh initialized as a regular grid, an optimizable hash grid
ϕ, and an MLP F responsible for representing opacity and features for each point on the mesh. Additionally, a compact colour
MLP is employed to derive the final output colour. Furthermore, our model integrates pose refinement (r), spherical harmonics
encoding (SH), and appearance embedding (A) to capture weather variations. Given a camera viewpoint, 1) a pose correction
is applied using the learned pose refinement. 2) Rays are generated from the camera pose and intersect with the mesh grid
to produce points. 3) The generated points are encoded using hash encoding. 4) The encoded points are then fed into F to
compute opacities and features. 5) These computed values are combined with spherical harmonics encoded direction. 6) The
appearance embedding outputs are then integrated. 7) Finally, the result is passed through the colour MLP to generate the final
RGB values. The architecture remains consistent across both training stages 1 & 2, although in stage 2, opacities are binarized.

A. Position and Direction Encoding

The first major additions to the MobileNeRF architecture
are the hash and direction encodings. The hash encoding
consists of an optimizable multi-resolution hash table, denoted
as G, similar to the approach outlined in Instant-NGP [29].
Concurrently, the direction encoding is implemented through a
non-optimizable spherical harmonics encoder [8]. To integrate
the hash encoding, we consolidate the Opacity and Feature
MLPs from MobileNeRF into an unified MLP, denoted as F .
In this configuration, the first output corresponds to opacity,
while the subsequent n outputs represent features. Similar to
MobileNeRF, we set n to 8 in our experiments. By employing
a single MLP, we streamline the framework, requiring only one
optimizable hash grid, thereby mitigating potential memory
and storage overheads. Moreover, this encoding replaces the
traditional position encoder by [27]. The hash table entries are
jointly optimized along with F and the small colour MLP C
in both training stages.

B. Appearance Embedding

MobileNeRF was designed for small scenes with minimal
variation in variations in radiance due to weather fluctuations.
However, for larger outdoor scenes, these may be present.
Hence, to capture these variations in radiance, we incorporate
an appearance embedding similar to [24] and [35]. Utilizing
a Generative Latent Optimization technique [6], we optimize
appearance embedding vectors per image based on the camera.
During rendering, there are two options: either employ an
average appearance embedding to render the scene with a
blend of lighting conditions, or select a specific camera index
is used to replicate the lighting conditions experienced by that
particular camera.

C. Camera pose optimization

To achieve precise reconstruction and capture fine details, it
is imperative to ensure accurate camera pose alignment. This
becomes particularly challenging in scenarios like autonomous
driving, where camera poses can be inherently noisy. There-
fore, we incorporate an extra camera pose refining step similar
to [23], [34], [45] and [35]. It encompasses both rotational
and translational components and undergoes joint optimization
with the NeRF model in both training stages. To stabilize the
training and allow the model to learn fine details, we apply a
strong regularization term and maintain a comparatively lower
learning rate than that of the model. These measures ensure
that the pose refinement process minimally affects the learning
of initial coarse features at the start of training and, instead,
contributes to the refinement of fine-details in the final output.

D. Polygonal mesh

Similar to MobileNeRF, the polygonal mesh is represented
as a regular grid G with dimensions P . Here the vertices are
optimizable and stored relative to the voxel centres and the grid
is situated within a unit cube. To capture geometry outside the
unit cube, we use a series of L+1 concentric boxes around the
regular grid. Unlike the polygonal mesh, these boxes maintain
fixed positions and geometries. Further, their distance to the
origin are determined by the Equation 3.

di =
(
exp

(wi

L

)
+ w − 1

)
/(2w) (3)

Here, i ranges from 0 to L, L is set to 64, and w is chosen
such that dL equals 8, resulting in di ∈ [0.5, 8].

4

E. Transient objects

While changes in lighting conditions are captured in the
model, the model assumes that the objects remain static during
training. Hence, a mask is applied to remove dynamic objects
from the scene, and these regions are subsequently ignored
during training. For the masks, annotated 3D cuboids around
the objects are used, as these were present in the dataset.
Moreover, masked regions are considered transient when the
object has a velocity larger than 0.75 m/s in any frame.

F. Visibility model

For merging multiple NeRFs, a compact visibility MLP V
is added to gauge point visibility, similar to Block-NeRF.
This MLP is used to estimate whether a region is visible
to a NeRF during training given some camera position and
direction. It is trained independently of the F and C MLPs.
Along each training ray, V considers the location and view
direction, producing estimates for point transmittance (Tk).
Transmittance serves as an indicator of point visibility from
the input camera: a value of 1 denotes points in free space
or on the surface of the initial intersected object, while 0
indicates points situated behind it. Points that are observed
from only but not all receive a transmittance between 0 and
1. To merge multiple overlapping NeRFs, the output colour in
the overlapped region is determined through a weighted sum
of visibility scores from each individual NeRF. This approach
diverges from the Block-NeRF method, where the entire scene
is merged as a whole. We opt for solely merging the over-
lapped regions as it simplifies rendering, and the performance
gains are minimal due to the sparsity and misalignment of the
concentric boxes.

IV. Experiments

This section presents the performance evaluation results for
the proposed model, the compression capabilities of the model,
as well as relevant ablations. The detailed architectural and
optimization specifics are provided in Appendix A.

A. Experimental setup

We conducted our evaluation using the nuScenes [7] and
Nerfstudio [36] datasets. Specifically, the model was trained
on scenes from the 5 US nuScenes dataset and 3 scenes from
the Nerfstudio dataset. The implementation of our model was
realized within the Nerfstudio framework [36], an open-source
NeRF pipeline. It is worth noting that Nerfstudio prioritizes
readability over speed in its design. Hence, to get a fair
comparison, the model is evaluated against other methods
available within the Nerfstudio environment.

Reconstruction performance. To show a fair comparison
between the metrics, the quantitative analysis is performed
on the full scene, thus, no block subdivisions are included.
Instead, the effect of the block divisions is evaluated in the
ablations, see Section IV-D.

Rendering performance. The rendering resolution
matches the training images: (1080, 1920) for the small scenes
from the Nerfstudio dataset and (1600, 900) for the nuScenes

scenes. Further, the hardware used for rendering can be found
in Appendix A. Table V.

Training Time. To ensure equitable comparison in training
time, all models are assessed within the same framework,
Nerfstudio, and utilizing identical hardware, leveraging 8 RTX
3070 GPUs. Evaluation spans varying numbers of training
steps, with the optimal step count either determined based on
model convergence or the listed number of steps from the
original paper. Here, convergence is gauged by monitoring
metrics such as the PSNR curve, observing the point where
improvements diminish, indicating a plateau in performance.
For our model, this corresponds to 60k steps for the training
stage 1 and 90k steps for training stage 2.

The methods employed for comparison include Instant-
NGP’s [29] implementation in Nerfstudio, Nerfacto [36], Mo-
bileNeRF [9], and Block-NeRF [35]. Due to computational
constraints, values for both Block-NeRF and Mobile-NeRF
are sourced from literature rather than tested. The exceptions
to this are Mobile-NeRF’s training time and storage require-
ments, which were tested within the Nerfstudio pipeline.
Quality assessment across all methods is conducted using
PSNR, [44] and LPIPS [49]. The results are summarized in
Table I. Further, a comprehensive visual comparison can be
found in Appendix D.

B. Comparisons

To show the model’s performance, it is tested on various
metrics, including reconstruction performance, training time
and rendering speed. The results of this comparison are
provided in Table I.

Scaling to larger scenes. The model achieves superior
performance in comparison to Instant-NGP and Nerfacto, in
larger scenes as indicated in Table I, where it achieved notably
higher PSNR values, though, lower SSIM and LPIPS scores.
Moreover, as depicted in Figure 2 and Appendix D, the model
struggled to accurately capture colours compared to the other
models, resulting in a predominantly grey hue overlaying the
scene. This can be explained by a too small colour MLP, which
is unable to capture the variety of features present in the large
scene. As can be seen in Appendix D, this is less of an issue
for smaller scenes and less complex scenes. Despite producing
incorrect colours in the output, our model still manages to
attain a higher PSNR, suggesting that it produces less noisy
images compared to Instant-NGP and Nerfacto.

While our model demonstrates improvements over Instant-
NGP and Nerfacto, it lags behind Block-NeRF in terms of
PSNR and LPIPS performance. However, it excels in SSIM
scores, showcasing its proficiency in capturing diverse lumi-
nance conditions. It is worth noting that the reported results for
Block-NeRF were obtained from its original paper, where the
method was trained on the San Francisco Bay Area dataset
[46], a dataset for NeRFs. This is not a fair comparison,
as their dataset consists of 2,818,745 training images in a
1km2 block. Comparatively, nuScenes contains approximately
240 images per 100m driving segment. Hence, their model is
trained on more images, resulting in better overlapping and
consequently better reconstruction performance. However, the

5

Reconstruction metrics Rendering speed ↑ [FPS] Training speed Storage requirements
Model PSNR ↑ SSIM ↑ LPIPS ↓ Phone Laptop PC Total training Time per Storage ↓ BPP ↓

time ↓ [hours] step ↓ [ms] [MB]
Large scenes (75-185m)

Block NeRF ∗23.60 ∗0.649 ∗0.417 - - ∗0.16 ∗9–24 N/A N/A N/A
Instant-NGP 17.77 0.814 0.454 - - 0.16 0.57 29 298.1 0.86
Nerfacto 17.24 0.814 0.382 - - 0.36 1.67 60 613.4 1.77
Ours 17.83 0.652 0.587 13.82 24.45 85.38 9.62 247 367.3 1.06

Small scenes (8-20m)
MobileNeRF ∗21.95 ∗0.47 ∗0.47 ∗9.24 ∗15.28 ∗192.59 73.92 380 135.7 0.29
Instant-NGP 22.62 0.892 0.192 - - 0.62 0.40 36 198.4 0.42
Nerfacto 20.41 0.845 0.182 - - 0.95 0.37 33 176.1 0.38
Ours 21.77 0.502 0.512 16.32 24.45 144.90 7.35 189 386.5 0.82

TABLE I: Quantitative analysis, comparing our model with existing methods. Here, the range given corresponds to the size of
the scene box. Entries marked with ∗ indicate values directly sourced from the original paper, as these were unable to be run
due to computational limitations. It’s important to note that the hardware specifications, provided in Appendix B, and datasets
for the referenced metrics differ. For Block-NeRF the dataset used is the Alamo Square Dataset [46]. MobileNeRF utilizes
their proprietary real 360 unbounded dataset [9]. Note that, both MobileNeRF and Block-NeRF are represented by only one
entry each, as they were exclusively trained on small and large scenes, respectively, in their original papers. Finally, ’N/A’
denotes missing values from original papers, while ’-’ indicates the inability to render the scene on a specific device due to
memory limitations.

Fig. 2: Visual comparison of the ground truth (top left),
our method (top right), Nerfacto (bottom left) and Instant-
NGP (bottom right) for scene-0655. These are zoom-ins of
the rendered (1600 × 800) image. As evident, our method
demonstrates superior performance in capturing the static
background of the scene compared to other methods. However,
it encounters difficulties in accurately representing colours
resulting in grey scale.

larger area also results in more weather variations, which could
explain the lower SSIM scores.

Rendering. As depicted in Table I, our model demon-
strates significant performance improvements over Instant-
NGP, Nerfacto and Block-NeRF. On CUDA-accelerated hard-
ware, the method is approximately 200 times faster than
Nerfacto and 500 times faster than Instant-NGP. Likewise, it is
500 times faster than Block-NeRF which is rendered on a TPU
v3 core. Notably, unlike MobileNeRF and our method, these
approaches were unable to run on the phone and the laptop due
to memory limitations. For smaller scenes, our model achieves
performance levels comparable to MobileNeRF. However, it
encounters a reduction in rendering performance when han-

dling larger urban scenes, due to an increased number of
polygons available in the scene.

Training time. The results in Table I reveal notable
speed enhancements achieved with respect to the MobileNeRF
model. Namely, the method is approximately 10 times faster
to train than MobileNeRF. However, it still falls short when
compared to other fast-to-train NeRF variants like Nerfacto
and Instant-NGP. It is worth noting that the speed of both our
method and MobileNeRF is closely linked to the quantity of
rays employed. Specifically, a halving of the number of rays
results in an approximately similar reduction in training time.
Thus, in our case, the primary computational burden does not
stem from querying the model, as is the case with Nerfacto.
Instead, it primarily resides in the ray sampling and backward
propagation processes due to the large number of operations
required for computing the quadrature points.

C. Compression

Table I presents the total storage space and Bit Per Pixel
(BPP) of the uncompressed final models. For large scenes,
our method outperforms Nerfacto in compression rate, but
falls short of Instant-NGP. For the small scene, our method
is outperformed by both. Nonetheless, our approach maintains
a consistent compression rate regardless of model complexity.
Specifically, the final model consists of three components: the
mesh grid, the texture images, and the colour MLP. Here,
the size of the colour MLP is negligible in comparison to
the size of the mesh and texture images. Both the mesh
and texture images are heavily influenced by the sparsity
of the scene and the grid size utilized. Thus, for the same
scene and grid size, the reconstruction performance can be
improved through the utilization of a bigger model without
affecting the compression rate. In contrast, for Instant-NGP
and Nerfacto, storage space is predominantly determined by
the size of the hash grid. Consequently, employing a bigger
hash grid to improve reconstruction performance, which is

6

done by both Instant-NGP and Nerfacto for the large scene,
leads to increased storage requirements.

Finally, we analyse the effects of various model sizes
on their compression performance. Specifically, we test the
impact of varying grid sizes, subdividing the scene into blocks,
and applying a final lossless compression to the textured mesh.
The results of these tests are presented in Table II, covering
assessments of both the model architecture and the resulting
output mesh. Doubling the training mesh grid size results in a
significant increase in storage requirements, with the model’s
storage needs increasing by approximately 374% and the mesh
size by around 241%. Subdividing the scene into blocks leads
to a 68% increase in storage requirements for non-overlapping
scenes and approximately 14% for overlapping blocks.

Moreover, the initial mesh can undergo further compression
using existing techniques. For example, employing lossless
compression methods like ZIP yields compression rates rang-
ing from approximately 3.8 to 4.6. By using an additional loss-
less compression technique, our model achieves compression
rates surpassing those of Nerfacto and Instant-NGP. Though,
the method is still outperformed by image-based compression
to the same reconstruction methods. However, this does not
take into account novel-view synthesis. Specifically, for the
image-based compression technique, compressed to 20.76
PSNR, our zipped method (1 block and P = 256) is able
to out-compete image-based compression after 170k newly
generated images. Likewise, for the method with a similar
LPIPS value, the method can out-compete the image-based
compression after 3.3k generated images.

Model PSNR ↑ LPIPS ↓ Storage ↓ [MB] BPP ↓
Grid size P = 128

Ours, model 17.34 0.662 257.1 0.61
Ours 17.12 0.664 144.3 0.42
Ours, zip 17.12 0.664 45.6 0.13
Ours, no overlap 18.12 0.552 263.7 0.71
Ours, no overlap, zip 18.12 0.552 81.1 0.23

Grid size P = 256
Ours, model 17.86 0.587 961.7 2.83
Ours 17.68 0.589 348.5 1.00
Ours, zip 17.68 0.589 69.1 0.20
Ours, no overlap 18.37 0.527 586.1 1.67
Ours, no overlap, zip 18.37 0.527 156.9 0.45
Ours, overlap 18.01 0.547 398.2 1.14
Ours, overlap, zip 18.01 0.547 102.4 0.29

Image compression
Uncompressed (BMP) - - 1049.8 3.00
JPEG2000 20 0.702 0.1 1.3e-3
JPEG2000 25 0.671 0.5 1.8e-3
JPEG2000 30 0.521 5.1 1.5e-2
JPEG2000 35 0.309 22.2 0.06
JPEG2000 40 0.140 34.7 0.10
JPEG2000 N/A 0.00 43.8 0.13

TABLE II: Comparison of varying the grid size and block size
on the compression rate of the final output mesh and model.
The values are for the final mesh, unless otherwise specified.
For JPEG2000, N/A indicates that the model is losslessly
compressed, while - indicates that it is uncompressed.

D. Ablations
In this section, we conduct ablation experiments to analyse

the impact of the various model additions as well as the

grid size, and the effects of stage 2 on the nuScenes dataset.
Notably, we do not include an ablation study on the size of
the hash grid. This ablation was omitted due to computational
and time constraints. However, for an in-depth exploration of
its effects, refer to the investigation provided in Instant-NGP
[29]. The results of the ablations can be found in Table III and
IV.

Reconstruction metrics
Blocks Grid size PSNR ↑ SSIM ↑ LPIPS ↓

St
ag

e
1

1 128 19.41 0.676 0.553
1 256 20.22 0.729 0.547
1, no appearance 256 20.11 0.725 0.552
1, no pose refinement 256 19.23 0.705 0.574
2, with overlap 128 20.01 0.773 0.495
2, with overlap 256 20.79 0.774 0.490
2, no overlap 128 21.20 0.805 0.422
2, no overlap 256 21.51 0.809 0.438

St
ag

e
2 1 128 17.34 0.630 0.662

1 256 17.83 0.652 0.587
2, with overlap 256 18.01 0.675 0.547
2, no overlap 128 18.14 0.697 0.551
2, no overlap 256 18.41 0.703 0.527

TABLE III: Ablation study evaluating the impact of subdivid-
ing the scene into two blocks and employing a smaller grid.
The scene blocks are tested with either a 50% or no overlap.
The visibility model is utilized in computing the final colour
for the overlapped area, taking into account the visibility score.

Rendering speed ↑ [FPS] Training Time
Model Phone Laptop Desktop Total ↓ Per step ↓

[hours] [ms]
Full scene, P = 128 22.3 38.3 98.3 7.35 189
Full scene, P = 256 13.8 24.5 85.4 9.62 247
Blocks, overlap 2.1 9.6 63.9 19.23 247
Blocks, no overlap 3.8 11.1 67.2 19.23 247

TABLE IV: Ablation on the effect of block sizes on training
time and rendering speed. Here, the overlapping blocks have a
50% overlap and utilize the visibility model for the overlapped
area. Note that the training time is the same for both block
sizes, as we, for consistency, maintain the same number of
training steps for each case. In practice, the steps can be
reduced when fewer images are used.

Grid size. We explore the effects of changing the grid size
of the model. Namely, we explore two grid sizes: P = 128 and
256. The change in reconstruction performance can be seen
in Table III, the changes in rendering in training time can be
found in Table IV and a visualization of the improvements can
be found in Appendix D. Using a finer mesh grid results in bet-
ter reconstruction performance while sacrificing on the training
speed. Specifically, when utilizing a larger training grid size,
the reconstruction metrics are improved by approximately 0.8
dB, 8% and 1% for PSNR, SSIM and LPIPS respectively.
Consequently, as is evident from Table IV, the larger grid size
causes a ∼40% reduction in rendering speed for the phone
and laptop while reducing the rendering speed of the Desktop
by 13%. Moreover, the training time is increased by ∼30%.

Block sizes and overlap Due to computational constraints,
we conduct a single subdivision of the space. For the full
scene, the scene is normalized such that the absolute position

7

of any axis is equal to 1. For individual blocks, we divide
the space into two along the axis with the greatest variance
in camera position, employing both a 50% overlap similar
to Block NeRF and no overlap. Following subdivision, we
normalize each block into a unit cube, resulting in a slightly
contracted rectangular coverage of the full scene. In Block-
NeRF, it was found that maintaining the same total number of
parameters over all models in the scene yielded only marginal
improvements in PSNR. Conversely, when maintaining a con-
sistent model size, they observed significant enhancements
in performance. Consequently, we opt for a constant model
size over a fixed total number of parameters. The models
undergo evaluation using the scene as a whole, with the
performance of individual blocks being averaged. Uniform
test images, including some within the overlapped region,
are employed for this evaluation. As illustrated in Table III
and Appendix D, partitioning the scene into blocks yields
performance enhancements for both overlapping and non-
overlapping blocks. Notably, the initial training stage yields
significant performance increases, particularly with the smaller
grid size (P = 128). Here, non-overlapping NeRFs on average
exhibit improvements of 1.79 dB in PSNR, 19% in SSIM,
and 24% in LPIPS, while overlapping NeRFs experience
gains of 0.60 dB, 14%, and 10%, respectively. Conversely,
for the regular grid size (P = 256), enhancements in non-
overlapping NeRFs are observed at 1.29 dB, 11%, and 20%,
respectively, and in the overlapping regions, these are 0.57 dB,
6%, and 11%. However, some of these gains diminish during
the binary training phase, resulting in 0.58 dB, 8%, and 10%
improvements, respectively, for non-overlapping NeRFs. For
overlapping NeRFs, these improvements are slightly lower, at
0.18 dB, 4%, and 7%, respectively.

Effect of stage 2. The model undergoes a dual-stage
training process, with the second stage crucially involving the
binarizing of the opacity. While essential for the rendering
pipeline, this comes at a cost due to additional training
constraints being applied to the model. This leads to notable
performance decreases, as can be seen from Table III. These
performance decreases are larger than in MobileNeRF, where
an approximately 1 dB decrease in PSNR and ∼ 1% in SSIM
are achieved. In our method, these are approximately 3 dB
and over 10% in SSIM and LPIPS.

Appearance embedding. As depicted in Table III, re-
moving the appearance embedding yields only a small decline
in reconstruction performance. Notably, the PSNR decreases
by 0.11 dB, while the SSIM decreases by approximately 1%,
and LPIPS increase by roughly 0.7%. This diminishment is
relatively minor and can be attributed to the limited weather
variations present in the scene. Specifically, the scene encom-
passes only about 20 seconds of driving data. Such a brief
duration does not encompass substantial weather variations,
thereby resulting in minimal performance degradations.

Camera pose refinement. The camera pose refinement
shows a more significant impact on performance, as evidenced
in Table III. Notably, the performance experiences a decrease
of approximately 1 dB, 3%, and 5% for PSNR, SSIM, and
LPIPS, respectively. This suggests that the camera positions
are inherently noisy, leading to a more pronounced perfor-

mance drop when this noise is not corrected for.

V. Discussion

In this section, we explore the implications of model perfor-
mance, assessed across four key dimensions: rendering speed,
training speed, scalability to large scenes, and compression.
By delving into this analysis, our aim is to illuminate the
broader significance of these performance metrics and identify
potential avenues for future research and improvement.

Rendering speed On small scenes, the model is able
to achieve competitive rendering performance to that of Mo-
bileNeRF [9], while significantly improving over Nerfacto [36]
and Instant-NGP [29]. This was expected as no alterations
were made to the rendering architecture of MobileNeRF and
both Instant-NGP and Nerfacto rely on slower ray march-
ing algorithms for rendering. For larger outdoor scenes, the
rendering performance dropped. Though, the methods still
significantly outperforms Nerfacto, Instant-NGP and Block-
NeRF. This performance drop can be explained by the fact that
large outdoor scenes use more polygons to capture the space
than the small scenes. First, our model uses P = 256 instead
of P = 128, as the grid size doubles the potential number
of polygons increases by 8. Moreover, the small scenes only
have one central object within the scene, whereas the large
city scene has multiple smaller objects scattered in the scene.
Thus, more polygons are used to fill in the scene. Lastly, for
the scene blocks, the decrease in rendering speed is caused by
the increased number of polygons, as two NeRFs are combined
as well as the need to query the visibility model for the
overlapped region.

Improvements in training speed The method demon-
strates a significant improvement in training speed compared to
MobileNeRF [9], achieving over a 10x training time improve-
ment. However, the method still suffers from long training
times compared to more recent implementations in Nerfstudio
[36]. When utilizing the same 8 GPUs, our method remains
at least 5x slower than Instant-NGP [29] and Nerfacto [36].
Though, this performance gap increases further when fewer
GPUs are employed. For instance, with 2 GPUs, which is
how our method is trained, the training speed increased by
roughly 4 resulting in a total training time of 38.48 hours.
Conversely, both Instant-NGP and Nerfstudio only suffer from
an approximately 15% increased training time, as their ray
sampling method is parallelized. While our ray sampling,
that is computing the quadrature points, is computationally
expensive and partially serialized per ray.

Instant-NGP achieved its performance boost by employing
smaller neural networks for density and colour estimation.
Here, the feature extraction is performed by an optimizable
hash-grid. Similarly, our method adopts a comparable hash-
map for position encoding, resulting in smaller MLPs. How-
ever, despite these optimizations, our method still contends
with substantial computational overhead, primarily stemming
from complex gradient computations during backpropagation
due to the quadrature point computations. Unlike Instant-NGP,
our approach does not mitigate this overhead, thus maintaining
a high computational load.

8

Compression capabilities When evaluating compression
rates using existing images, the model under-performs relative
to image-based compression, achieving worse bits per pixel
(BPP) rates for the same PSNR. Though, the comparison is
not entirely fair. Specifically, the BPP of NeRF depends on
the number of images used for training. The model size is
constant irrespective of the images used, hence, more images
will lead to higher BPP. Moreover, this comes at the expense
of visual reconstruction fidelity. As, direct comparisons based
solely on PSNR metrics may not provide a fair assessment of
visual quality, especially when comparing against traditional
compression methods like JPEG2000 [37].

For instance, when images are compressed to achieve a sim-
ilar PSNR using JPEG2000, the NeRF representation yields
significantly superior subjective visual reconstructions com-
pared to traditionally compressed images. This discrepancy
can be attributed to the different types of losses incurred
by each compression method. Traditional image compression
typically involves losses due to downscaling of the input,
leading to loss of detail and fidelity. In contrast, NeRF
compression introduces losses primarily through inaccurate
upscaling of latent variables or variations in view directions,
resulting in differences in colour and texture fidelity. This
causes the subjective reconstruction quality of NeRF models
to be higher, as can be seen in Figure 3. LPIPS provide
a better comparison, though, the type of error still differs.
This highlights the importance of considering subjective per-
ceptual quality alongside objective metrics when assessing
compression performance. Moreover, the main benefit of using
NeRF lies in its novel view synthesis. Specifically, our method
facilitates the generation of novel views, enabling it to surpass
the capabilities of traditional image compression techniques
when a sufficient number of novel views are created. For the
method with similar LPIPS, our method outperforms image-
based compression when 14 intermediate images are generated
between the training images, which corresponds to an FPS
of 28. On the PC, our method is able to achieve higher
FPS, thus, beating image-based compression when generating
intermediate poses. In theory, our method has the potential to
generate an infinite number of views. However, in practical
applications such as driving simulators, the generated views
need to remain relatively close to the training dataset to
produce meaningful outputs. Therefore, while the method can
generate a vast number of outputs, the actual number of
meaningful outputs is limited.

Ultimately, both grid size and block size have a signifi-
cant effect on the model’s storage demands. While adjusting
the grid size offers marginal performance gains, it notably
increases storage requirements. Conversely, subdividing the
scene into blocks considerably enhances reconstruction met-
rics. Therefore, to strike a balance between achieving optimal
reconstruction performance and minimizing storage needs, it
proves beneficial to employ block subdivisions and opt for a
smaller grid size.

Extension to large scenes. The method is able to achieve
superior reconstruction performance in comparison to Instant-
NGP and Nerfacto. Namely, our method was able to out-
compete these methods in PSNR. However, it fell short in

(a) Ground Truth (b) Ours, 18.45 PSNR 0.527 LPIPS

(c) 19.22 PSNR 0.705 LPIPS (d) 24.77 PSNR 0.672 LPIPS

(e) 29.07 PSNR 0.523 LPIPS (f) 34.09 PSNR 0.309

Fig. 3: A visual comparison between the JPEG2000 com-
pressed images compressed to various PSNR (c-f) and our
method (b). Here our method is able to achieve a PSNR similar
to (c), though, with arguably better visual reconstruction
fidelity. Specifically, our method is closer to image (e) in terms
of subjective visual reconstruction performance, which has a
similar LPIPS value.

both SSIM and LPIPS. SSIM in particular focuses more on
structural similarity, measuring the similarity of local patterns
of pixel intensities. Likewise, it takes into account luminance,
contrast and structure. LPIPS on the other hand, focuses
on perceptual quality by measuring patch similarity between
images. This allows it to test both coarse and fine details.
Since our method achieves lower on both of these metrics, it
indicates that it is not able to capture fine detail or colour,
which can be seen from the visual comparisons in Appendix
D. The reason for this can be attributed to the multiple factors;

First, the scene’s sparse object distribution creates vast
empty areas, resulting in most of the geometry being captured
by the background boxes. These boxes are coarser than the
mesh grid, thus capturing only low-detail features. Second, the
scene’s considerable size results in large polygons within the
mesh grid, posing several challenges. Much of the grid in the
Z direction remains unused, resulting in inefficient memory
allocation and yielding undesired coarseness. Furthermore,
objects are captured by few polygons, hindering both training
and rendering. For example, for scene-0103, which has a
scene box of 105m2, each grid cell measures approximately
0.41m for the large grid and 0.82m for the small grid. During
training, points are sampled based on ray intersections with
the deformable grid. When the grid size exceeds the object,
only coarse features can be extracted, as slight shifts in the

9

grid would cause significant point displacements. Similarly,
during rendering, texture sizes often exceed object dimensions,
leading to artefacts, particularly along texture boundaries when
viewed from different perspectives, such as the side. As can be
seen in the visual comparison of Appendix D. Similar issues
arise with rendering road textures.

Furthermore, concerning the subdivision of the scene, par-
titioning the scene resulted in significant improvements across
all reconstruction metrics. Particularly noteworthy were the
substantial gains observed with the smaller grid size and in
scenarios with no overlap. This improvement can be attributed
to the reduction in scene size. As the scene dimensions
decrease, the relative size of objects within the scene increases.
This is especially pertinent for the small grid size, where a grid
cell size of 0.82m surpasses the dimensions of many objects,
leading to texture coarseness. Additionally, by reducing the
scene size, a greater portion of the space within the scene
box is utilized to capture the scene. Scenes often consist of
elongated driving segments, where one axis is significantly
longer than the others. Consequently, the driving segment
occupies a large portion of the scene, surpassing the width of
the street, thereby resulting in substantial empty space within
the grid cell. In addition, there is little necessity to overlap
the scenes. In Block-NeRF, the rationale behind overlapping
was to mitigate artefacts stemming from transitions between
NeRFs. However, these artefacts are relatively minor. Instead,
the primary visual discrepancies arise from variations in light-
ing across the scene. Though, this effect can be mitigated by
implementing a final appearance matching of the appearance
embeddings of the blocks. Lastly, the grey scale is caused by
a too small colour MLP. When the scene is smaller, or less
complex, the model is able to capture variations in colour.
However, for more complex scenes with a lot of fine detail,
the model defaults to greyscale to minimize the colour loss.
An example of this is visible in Appendix D, where a complex
scene solely utilizes grey scale while the city scene with more
coarse features is able to capture some variations in colour.

Masking dynamic objects The proposed method handles
transient objects by removing them using 3D cuboid masks.
These masks can leave behind shadows or cause visual distor-
tions. This is especially apparent at the edge of the scene where
views are sparse, as is illustrated in figure 4. The masked
region is very noisy, resulting in ’cloudy’ artefacts in the final
render. Moreover, shadows can be visible in the render, which
would require additional masks to remove. Likewise, as the
region was covered for most of the observations, the model
was never able to learn a proper representation. This becomes
a big limitation for crowded scenes with many dynamic objects
or scenes such as this one where a large portion of the
image is obstructed by a dynamic object. Moreover, as 3D
cuboids are used, the masks can be larger than needed as
illustrated in Appendix 2, where large areas of the scene are
removed through the transient object masks. Thus, applying
segmentation masks may improve performance by reducing
the number of pixels that are removed.

Memory overhead Another limitation of the model lies in
its memory requirements for both training and feature image
creation. Particularly during training, the model in total de-

(a) Ground truth (b) Reconstruction image

Fig. 4: Comparison of the ground truth and reconstructed
image. The scene consists in large of a car following scenario,
where the image is taken at the boundary of the scene.

mands approximately 16GB of memory, a demand that, while
manageable for high-end GPUs, often exceeds the capacity of
many GPUs available on the market. This limitation becomes
even more pronounced during feature image creation, where
depending on the complexity of the scene, memory needs can
increase to over 70GB. This severely limits the hardware that
can be used to train the model. As a result, addressing these
memory constraints is imperative for broader accessibility and
adoption of the model across various hardware configurations.

Future work In this implementation, rays are generated
as single lines traced from the camera centre of projection
through each pixel. However, this simplistic approach over-
looks the relative footprint of the corresponding image pixel
and the length of the interval [ti−1, ti], leading to aliasing
artefacts, especially in large scenes where the pixel footprint
is more prominent. An intriguing avenue for future research
involves incorporating Mip NeRF [4] frustums, where frus-
tums are employed to better model the pixel footprint in rays.

Moreover, the model was trained on the nuScenes dataset.
While this is useful due to the large amount of training data
available, the dataset is not tailored for NeRFs. Specifically,
the dataset has a sparse distribution of views relative to the
scene size, resulting in insufficient overlapping rays. This
makes it difficult to capture fine details, and it leads to cloudy
areas in regions where transient objects are masked out, posing
challenges for accurate reconstruction.

Lastly, analysing the performance of reconstructed images
in tasks such as segmentation or object detection presents an
exciting avenue for future investigation. This holds particular
relevance for applications like driving simulators. Currently,
our method is unable to capture dynamic objects, limiting
the use case for simulators. Hence, capturing the dynamic
objects using an additional NeRF as is done in NeuRAD
[39] would be a promising avenue for future work. Similarly,
the impact of generating novel views away from the training
image poses can be investigated. Success in this area could
significantly expand the range of meaningful novel views that
can be generated, thereby enhancing the method’s utility in
simulators.

VI. Conclusion

In this paper, we introduce a new NeRF method that
combines MobileNeRF with elements from Instant-NGP and

10

Block-NeRF. We include additional hash and spherical har-
monics encodings from Instant-NGP to speed up training,
an appearance embedding, a camera pose refinement, and a
visibility model from Block-NeRF to enable block subdivision
and capture larger scenes. Our method achieves faster training
convergence than MobileNeRF while maintaining high ren-
dering speeds, outperforming Instant-NGP, Block-NeRF, and
Nerfacto significantly. It is also capable of handling larger
scenes. However, it still falls short compared to Block-NeRF
in reconstruction performance.

Furthermore, we have assessed our method’s compression
capabilities compared to image compression, an area that has
received little attention in existing literature. Our findings
reveal that our method falls short in compression compared to
image compression when no new images are generated. How-
ever, the storage requirements of our method remain unaffected
by the number of training images, potentially surpassing image
compression with a sufficient number of images. Furthermore,
it compensates with novel-view synthesis, enabling it to gener-
ate any number of novel views. Specifically, our method can
out-compete image-based compression when rendering new
images at the achieved rendering frames per second (FPS).

In summary, in this work we introduce a method that renders
quickly and is scalable to large scenes, offering promising
applications for simulators. Our approach provides insights
into enhancing computational efficiency and scalability, ex-
tending the usefulness of NeRF techniques to scenarios where
these factors are critical. However, there is still room for
improvement in real-world applications, such as capturing
dynamic objects akin to NeuRAD [39]. Additionally, our
analysis of the model’s compression capabilities sheds light on
a previously overlooked aspect of NeRF performance. Further
research is needed to evaluate its effectiveness across various
tasks like object detection or semantic segmentation.

References

[1] Evangelos Alexiou, Kuan Tung, and Touradj Ebrahimi.
“Towards neural network approaches for point cloud
compression”. In: Applications of digital image process-
ing XLIII. Vol. 11510. SPIE. 2020, pp. 18–37.

[2] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.
“End-to-end optimized image compression”. In: arXiv
preprint arXiv:1611.01704 (2016).

[3] Johannes Ballé et al. “Variational image compres-
sion with a scale hyperprior”. In: arXiv preprint
arXiv:1802.01436 (2018).

[4] Jonathan T Barron et al. “Mip-nerf: A multiscale rep-
resentation for anti-aliasing neural radiance fields”. In:
Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, pp. 5855–5864.

[5] Sourav Biswas et al. “Muscle: Multi sweep compression
of lidar using deep entropy models”. In: Advances
in Neural Information Processing Systems 33 (2020),
pp. 22170–22181.

[6] Piotr Bojanowski et al. “Optimizing the latent
space of generative networks”. In: arXiv preprint
arXiv:1707.05776 (2017).

[7] Holger Caesar et al. “nuscenes: A multimodal dataset
for autonomous driving”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 11621–11631.

[8] Anpei Chen et al. “Tensorf: Tensorial radiance fields”.
In: European Conference on Computer Vision. Springer.
2022, pp. 333–350.

[9] Zhiqin Chen et al. “Mobilenerf: Exploiting the polygon
rasterization pipeline for efficient neural field render-
ing on mobile architectures”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2023, pp. 16569–16578.

[10] Chenxi Lola Deng and Enzo Tartaglione. “Compressing
explicit voxel grid representations: fast nerfs become
also small”. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2023,
pp. 1236–1245.

[11] Kangle Deng et al. “Depth-supervised nerf: Fewer views
and faster training for free”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 12882–12891.

[12] Tingyu Fan et al. “D-dpcc: Deep dynamic point cloud
compression via 3d motion prediction”. In: arXiv
preprint arXiv:2205.01135 (2022).

[13] Tingyu Fan et al. “Multiscale Latent-Guided Entropy
Model for LiDAR Point Cloud Compression”. In: IEEE
Transactions on Circuits and Systems for Video Tech-
nology (2023).

[14] Stephan J Garbin et al. “Fastnerf: High-fidelity neural
rendering at 200fps”. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2021,
pp. 14346–14355.

[15] André FR Guarda, Nuno MM Rodrigues, and Fernando
Pereira. “Point cloud coding: Adopting a deep learning-
based approach”. In: 2019 Picture Coding Symposium
(PCS). IEEE. 2019, pp. 1–5.

[16] Yun He et al. “Density-preserving Deep Point Cloud
Compression”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.
2022, pp. 2333–2342.

[17] Peter Hedman et al. “Baking neural radiance fields
for real-time view synthesis”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion. 2021, pp. 5875–5884.

[18] Hamidreza Houshiar and Andreas Nüchter. “3D point
cloud compression using conventional image compres-
sion for efficient data transmission”. In: 2015 XXV inter-
national conference on information, communication and
automation technologies (ICAT). IEEE. 2015, pp. 1–8.

[19] Lila Huang et al. “Octsqueeze: Octree-structured en-
tropy model for lidar compression”. In: Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 1313–1323.

[20] Tianxin Huang and Yong Liu. “3d point cloud geometry
compression on deep learning”. In: Proceedings of
the 27th ACM international conference on multimedia.
2019, pp. 890–898.

11

[21] Dat Thanh Nguyen Andre Kaup. “Lossless Point Cloud
Geometry and Attribute Compression Using a Learned
Conditional Probability Model”. In: arXiv preprint
arXiv:2303.06519 (2023).

[22] Ruilong Li et al. “Nerfacc: Efficient sampling ac-
celerates nerfs”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023,
pp. 18537–18546.

[23] Chen-Hsuan Lin et al. “Barf: Bundle-adjusting neural
radiance fields”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021,
pp. 5741–5751.

[24] Ricardo Martin-Brualla et al. “Nerf in the wild: Neural
radiance fields for unconstrained photo collections”. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 7210–7219.

[25] Fabian Mentzer et al. “Practical full resolution learned
lossless image compression”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 10629–10638.

[26] Simone Milani. “A syndrome-based autoencoder for
point cloud geometry compression”. In: 2020 IEEE
International Conference on Image Processing (ICIP).
IEEE. 2020, pp. 2686–2690.

[27] Ben Mildenhall et al. “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis”. In: ECCV.
2020.

[28] MPEG. G-PCC Codec Description. Tech. rep. Moving
Picture Experts Group, Sept. 2021.

[29] Thomas Müller et al. “Instant neural graphics primi-
tives with a multiresolution hash encoding”. In: ACM
Transactions on Graphics (ToG) 41.4 (2022), pp. 1–15.

[30] Dat Thanh Nguyen et al. “Lossless coding of point
cloud geometry using a deep generative model”. In:
IEEE Transactions on Circuits and Systems for Video
Technology 31.12 (2021), pp. 4617–4629.

[31] Albert Pumarola et al. “D-nerf: Neural radiance fields
for dynamic scenes”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion. 2021, pp. 10318–10327.

[32] Zizheng Que, Guo Lu, and Dong Xu. “Voxelcontext-
net: An octree based framework for point cloud com-
pression”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021,
pp. 6042–6051.

[33] Konstantinos Rematas et al. “Urban radiance fields”.
In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2022, pp. 12932–
12942.

[34] Shih-Yang Su et al. “A-nerf: Articulated neural radiance
fields for learning human shape, appearance, and pose”.
In: Advances in Neural Information Processing Systems
34 (2021), pp. 12278–12291.

[35] Matthew Tancik et al. “Block-nerf: Scalable large
scene neural view synthesis”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 8248–8258.

[36] Matthew Tancik et al. “Nerfstudio: A modular frame-
work for neural radiance field development”. In: ACM
SIGGRAPH 2023 Conference Proceedings. 2023, pp. 1–
12.

[37] David S Taubman and Michael W Marcellin.
“JPEG2000: Standard for interactive imaging”. In:
Proceedings of the IEEE 90.8 (2002), pp. 1336–1357.

[38] George Toderici et al. “Full resolution image compres-
sion with recurrent neural networks”. In: Proceedings of
the IEEE conference on Computer Vision and Pattern
Recognition. 2017, pp. 5306–5314.

[39] Adam Tonderski et al. “NeuRAD: Neural render-
ing for autonomous driving”. In: arXiv preprint
arXiv:2311.15260 (2023).

[40] James Townsend et al. “Hilloc: Lossless image com-
pression with hierarchical latent variable models”. In:
arXiv preprint arXiv:1912.09953 (2019).

[41] Peter Van Beek. “Image-based compression of lidar
sensor data”. In: Electronic Imaging 31 (2019), pp. 1–7.

[42] Peng Wang et al. “F2-NeRF: Fast Neural Radiance Field
Training with Free Camera Trajectories”. In: CVPR
(2023).

[43] Sukai Wang and Ming Liu. “Point cloud compression
with range image-based entropy model for autonomous
driving”. In: European Conference on Computer Vision.
Springer. 2022, pp. 323–340.

[44] Zhou Wang et al. “Image quality assessment: from error
visibility to structural similarity”. In: IEEE transactions
on image processing 13.4 (2004), pp. 600–612.

[45] Zirui Wang et al. “NeRF–: Neural radiance fields
without known camera parameters”. In: arXiv preprint
arXiv:2102.07064 (2021).

[46] Waymo. San Francisco Mission Bay dataset. 2023.
URL: %5Curl%7Bhttps://waymo.com/research/block-
nerf/%7D.

[47] Yuanbo Xiangli et al. “Bungeenerf: Progressive neural
radiance field for extreme multi-scale scene rendering”.
In: Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part XXXII. Springer. 2022, pp. 106–122.

[48] Jiawen Yu et al. “Point Cloud Geometry Compression
Based on Multi-Layer Residual Structure”. In: Entropy
24.11 (2022), p. 1677.

[49] Richard Zhang et al. “The unreasonable effectiveness of
deep features as a perceptual metric”. In: Proceedings
of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 586–595.

[50] Xuanyu Zhou et al. “Riddle: Lidar data compression
with range image deep delta encoding”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 17212–17221.

12

Appendix A
Architecture and Optimization details

Our model comprises an optimizable hash grid H and
three networks: the feature and opacity network F , the small
colour network C, and the visibility network B. Inspired by
the findings in Instant-NGP, H and F employ a similar
architecture, featuring 3 hidden layers with a size of 64 for F .
For H, we set the maximum resolution Nmax to 2048, the hash
map size to 219, and the features per level F to 2. Additionally,
we use 4 levels for the spherical harmonics embedding.

For C, we adopt MobileNeRF’s implementation, utilizing a
compact network composed of 2 hidden layers with a width
of 16. Meanwhile, B consists of 3 layers with a width of
16. Our model also incorporates an appearance embedding of
dimension 4 and a pose refinement acting on both position
and orientation.

In terms of optimization, we anneal the learning rate from
10−2 for both the point and acceleration grids to 10−5 using
an exponential decay scheduler over 200k iterations. Similarly,
for pose refinement, we adjust the learning rate from 6×10−4

to 6 × 10−6 over the same 200k steps. Further, we apply
a regularization term of 10−5 to the point grid. The batch
size begins at 2048 total rays, preserving 2 × P points per
ray post-sampling. This gradually increases to 4096 at 20k
steps and finally to 8192 at 40k steps. At the 40k-step mark,
the points retained post-sampling are reduced to P . To enable
the model to learn initial geometry more effectively, we defer
the initialization of the acceleration grid until after 10k steps.
Finally, for feature image generation, we employ a quadrature
size of K = 9.

Appendix B
Hardware specifications

The hardware specifications used for rendering can be found
in Table V. For Block-NeRF, rendering evaluations were
conducted on a TPU v3 core, which is roughly equivalent to
5 v100s, and the model is trained utilizing 32 TPU v3 cores.
Regarding MobileNeRF, rendering hardware configurations
include a Pixel 3 smartphone running Android 12 with an
integrated GPU of 9W, a Chromebook with Chrome OS
featuring an integrated GPU of 15W, and a desktop PC running
Ubuntu 16.04 equipped with an NVIDIA RTX 2080 Ti GPU
boasting a power rating of 250W. V.

Type Device OS GPU Power
Phone Samsung A53 Android 12 Integrated GPU 7.55W
Laptop Laptop Windows 11 Integrated GPU 25W
Desktop Desktop Ubuntu 22.04 RTX 3070 220W

TABLE V: The hardware specifications of the devices used.
Here, the listed power indicates the maximum GPU capability
for a dedicated GPU and the combined CPU and GPU power
for integrated GPUs. Here the maximum power setting listed
by the manufacturer.

13

Appendix C
Visualization of masks

Fig. 5: Visual example of images with their respective masks for scenes: 0061, 0103, 0655, 0796 and 0916. The images include
at least one example from all six views (these are: front, front left, front right, back, back left and back right). Here the back
camera uses a different FOV than the other cameras and includes a mask for the car bumper. Noteworthy is the bottom right
image, where only the walking pedestrian is masked.

14

Appendix D
Visual comparisons

Ground truth Full scene No overlap With overlap

Fig. 6: Comparison of block subdivision results of the front and back camera views for scenes 0103 and 0655. The images
are rendered at the initial unoptimized camera poses, causing a slight deviation in viewing angles between ground truth and
reconstructions. As depicted in the images, the subdivided scenes are better able to capture intricate details, albeit facing
pronounced visual distortions at the masked locations. These distortions arise from the limited overlaps and viewpoints within
the masked area.

15

Ground truth Ours Nerfacto Instant-NGP

Fig. 7: Visual comparison between the ground truth, our full scene model, Nerfacto and Instant-NGP on scenes 0103, 0655,
and 0916 from nuScenes and two small scenes from Nerfstudio. Here, the bottom two images correspond to the small scene.
The comparison encompasses various cameras, featuring both full-rendered (1600x900) images and zoom-ins. In numerous
instances, our method excels in capturing the coarse outline of objects or buildings, but faces challenges with colour fidelity
and fine details. Additionally, our method exhibits reduced visual distortions in masked areas, such as the image involving
pedestrians. Lastly, all renders struggle reconstructions of objects that are sparsely viewed. This is the case for the car park,
that is the second image from the bottom, this is the largest scene of 185m and has sparse views on this particular driving
segment.

16

