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Numerical Methods for CVD Simulation

S. van Veldhuizen∗ C. Vuik∗ C.R. Kleijn†

May 8, 2006

Abstract

In this study various numerical schemes for simulating 2D laminar reacting gas
flows, as typically found in Chemical Vapor Deposition (CVD) reactors, are proposed
and compared. These systems are generally modeled by means of many stiffly coupled
elementary gas phase reactions between a large number of reactants and intermediate
species. The purpose of this study is to develop robust and efficient solvers for
the stiff heat-reaction system, whereby the velocities are assumed to be given. For
non-stationary CVD simulation, an optimal combination in terms of efficiency and
robustness between time integration, nonlinear solvers and linear solvers has to be
found. Besides stability, which is important due to the stiffness of the problem,
the preservation of non-negativity of the species is crucial. It appears that this extra
condition on time integration methods is much more restrictive towards the time-step
than stability. For a set of suitable time integration methods necessary conditions are
represented. We conclude with a comparison of the workload between the selected
time integration methods. This comparison has been done for a 2D test problem.
The test problem does not represent a practical process, but represents only the
computational problems.

1 Introduction

Chemical Vapor Deposition (CVD) is a process that synthesizes a thin solid film from
the gaseous phase by a chemical reaction on a solid material. Applications of thin solid
films as, for instance, insulating and (semi) conducting layers, can be found in many
technological areas such as micro-electronics, optical devices and so on.

A CVD system is a chemical reactor, wherein the material to be deposited is injected
as a gas and which contains the substrates on which deposition takes place. The energy to
drive the chemical reaction is (usually) thermal energy. On the substrates surface reactions
will take place resulting in deposition of a thin film.
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In CVD literature, and also other reactive flow literature, one is usually looking for
the steady state solution of the so-called species equations (6). The species equations
describe the transport of mass due to advective and diffusive transport, and due to the
chemical reactions in the reactor. The usual procedure to find this steady state solution
is to perform a (damped/relaxed) Newton iteration with an (arbitrary) initial solution.
Hopefully, the Newton iteration then converges to the steady state. If this is not the case
one performs some (artificial) time stepping in order to find a better initial solution for
the next Newton iteration. In this paper we present suitable time integration methods for
stiff problems. Furthermore, we compare these integration methods by their performance,
in terms of efficiency.

In our research we are not looking for the steady state solution only, but we also want
to approximate the transient solution. Since the time scales of advection and diffusion
differ orders of magnitude from the time scales of the chemical reactions the system of
species equations becomes stiff. Thus, in order to integrate the species equations in time in
a stable manner, time integration methods have to be found that can handle stiff systems.
Besides the stability issue for time integration, also the preservation of non-negativity of
the species during time integration is important. It appears that this last condition on
time integration methods is much more restrictive towards the time step than stability.

In this report issues on stability of time integration methods are discussed, as well
as the positivity properties, see Section 3 and 4. The next step is to make a selection of
suitable time integration methods, which will be presented in Section 5. This report will be
concluded with numerical results, Section 6, obtained with the representative test problem
proposed in Section 2.

2 Model for CVD Simulation

The mathematical model describing the CVD process consists of a set of partial dif-
ferential equations with appropriate boundary conditions, which describe the gas flow, the
transport of energy, the transport of species and the chemical reactions in the reactor.

The gas mixture in the reactor is assumed to behave as a continuum. This assumption
is only valid when the mean free path of the molecules is much smaller than a characteristic
dimension of the reactor. For Knudsen numbers Kn < 0.01, where

Kn =
ξ

L
, (1)

the gas mixture behaves as a continuum. In (1) ξ is the mean free path length of the
molecules and L a typical characteristic dimension of the reactor. For pressures larger
than 100 Pa and typical reactor dimensions larger than 0.01 m the continuum approach
can be used safely. See, for example, [9].

Furthermore, the gas mixture is assumed to behave as an ideal and transparent gas1

behaving in accordance with Newton’s law of viscosity. The gas flow in the reactor is

1By transparent we mean that the adsorption of heat radiation by the gas(es) will be small.

2



assumed to be laminar (low Reynolds number flow). Since no large velocity gradients
appear in CVD gas flows, viscous heating due to dissipation will be neglected. We also
neglect the effects of pressure variations in the energy equation.

The composition of the N component gas mixture is described in terms of the dimen-
sionless mass fractions ωi = ρi

ρ
, i = 1, . . . , N , having the property

N
∑

i=1

ωi = 1. (2)

The transport of mass, momentum and heat are described respectively by the continuity
equation (3), the Navier-Stokes equations (4) and the transport equation for thermal energy
(5) expressed in terms of temperature T :

∂ρ

∂t
= −∇ · (ρv), (3)

∂(ρv)

∂t
= −(∇ρv) · v + ∇ ·

[

µ
(

∇v + (∇v)T
)

− 2

3
µ(∇ · v)I

]

−∇P + ρg, (4)

cp
∂(ρT )

∂t
= −cp∇ · (ρvT ) + ∇ · (λ∇T ) +

+∇ ·
(

RT

N
∑

i=1

DT
i

Mi

∇fi

fi

)

+

N
∑

i=1

Hi

mi
∇ · ji

−
N
∑

i=1

K
∑

k=1

HiνikR
g
k, (5)

with ρ gas mixture density, v mass averaged velocity vector, µ the viscosity, I the unit
tensor, g gravity acceleration,cp specific heat ( J

mol·K
), λ the thermal conductivity ( W

m·K
)

and R the gas constant. Gas species i has a mole fraction fi, a molar mass mi, a thermal
diffusion coefficient DT

i , a molar enthalpy Hi and a diffusive mass flux ji. The stoichiometric
coefficient of the ith species in the kth gas-phase reaction with net molar reaction rate Rg

k

is νik.
We assume that in the gas-phase K reversible reactions take place. For the kth reaction

the net molar reaction rate is denoted as Rg
k

(

mole
m3·s

)

. For an explicit description of the
net molar reaction rate, we refer to [9, 16]. The balance equation for the ith gas species,
i = 1, . . . , N , in terms of mass fractions and diffusive mass fluxes is then given as

∂(ρωi)

∂t
= −∇ · (ρvωi) −∇ · ji + mi

K
∑

k=1

νikR
g
k, (6)

where ji is the diffusive flux. This mass diffusion flux is decomposed into concentration
diffusion and thermal diffusion, e.g.,

ji = jCi + jTi . (7)
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The first type of diffusion, jCi , occurs as a result of a concentration gradient in the system.
Thermal diffusion is the kind of diffusion resulting from a temperature gradient. For a
multicomponent gas mixture there are two approaches for the treatment of the ordinary
diffusion, namely the full Stefan-Maxwell equations and an alternative approximation de-
rived by Wilke. In this case, we have chosen for Wilke’s approach. Then, the species
concentration equations become

∂(ρωi)

∂t
= −∇ · (ρvωi) + ∇ · (ρD

′
i∇ωi) + ∇ · (DT

i ∇(ln T )) +

+mi

K
∑

k=1

νikR
g
k, (8)

where D′
i is an effective diffusion coefficient for species i and DT

i the multi-component
thermal diffusion coefficient for species i.

The main focus of our research is on efficient solvers for the above species equation(s)
(8). Typically the time scales of the slow and fast reaction terms differ orders of magnitude
from each other and from the time scales of the diffusion and advection terms, leading to
extremely stiff systems.

2.1 Simplified CVD System

Since our research focuses on solving the species equations (8), we will only solve the
coupled system of N species equations, where N denotes the number of gas-species in the
reactor. Note that it suffices to solve the N − 1 coupled species equations for all species
except the carrier gas, where its mass fraction ωHe will be computed via the property

N
∑

i=1

ωi = 1. (9)

For the moment we only focus on the development of efficient solvers for species equa-
tions. Therefore, we will omit the surface reactions in our system, because these boundary
conditions will need some extra attention. Another simplification is that we assume that
both the velocity field, temperature field, pressure field and density field are given. To be
more precise, they are computed via another simulation package which was developed by
Kleijn [10]. Furthermore, we omit thermal diffusion.

2.2 Reactor Geometry

The studied reactor configuration is illustrated in Figure 1. As computational domain
we take, because of axisymmetry, one half of the r − z plane.

The pressure in the reactor is 1 atm. From the top a gas-mixture, consisting of silane
and helium, enters the reactor with a uniform temperature Tin = 300 K and a uniform
velocity uin. The inlet silane mole fraction is fin,SiH4

= 0.001, whereas the rest is helium.
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Figure 1: Reactor geometry
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At a distance of 10 cm. below the inlet a susceptor with temperature T = 1000 K and a
diameter 30 cm. is placed. As mentioned before, on this surface no reactions (will) take
place. Unlike the problem considered in [10] the susceptor does not rotate.

2.3 Gas-Phase Reaction Model

We consider a CVD process that deposits solid silicon Si from gaseous silane SiH4. In
CVD literature one usually considers gas phase chemistry models consisting of 16 - 50
species. In our simplified CVD system we consider a gas mixture consisting of 7 species.
Besides the carrier gas helium and the reactive specie silane, the mixture contains

• silane SiH4,

• helium He,

• silylane SiH2,

• H2SiSiH2,

• disilane Si2H6,

• trisilane Si3H8, and

• hydrogen H2.

The reactive species in the gas mixture satisfy the reaction mechanism

G1 : SiH4 ⇄ SiH2 + H4

G2 : Si2H6 ⇄ SiH4 + SiH2

G3 : Si2H6 ⇄ H2SiSiH2 + H2

G4 : SiH2+Si2H6 ⇄ Si3H8

G5 : 2Si2 ⇄ H2SiSiH2

As can be found in [16], the forward reaction rate kforward is fitted according to the modified
Law of Arrhenius as

kg
forward(T ) = AkT

βke
−Ek
RT . (10)

The backward reaction rates are self consistent with

kg
backward(T ) =

kg
forward(T )

Kg

(

RT

P 0

)

PN
i=1 νik

, (11)

where the reaction equilibrium Kg is approximated by

Kg(T ) = AeqT
βeqe

−Eeq

RT . (12)

In Table 1 the forward rate constants Ak, βk and Ek are given. The fit parameters for the
gas phase equilibrium are given in Table 2. In (10) - (12) R is the universal gas constant,
i.e., R = 8.314 J

mole·K
.
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Reaction Ak βk Ek

G1 1.09 · 1025 −3.37 256000

G2 3.24 · 1029 −4.24 243000

G3 7.94 · 1015 0.00 236000

G4 1.81 · 108 0.00 0

G5 1.81 · 108 0.00 0

Table 1: Fit parameters for the forward reaction rates (10)

Reaction Aeq βeq Eeq

G1 6.85 · 105 0.48 235000

G2 1.96 · 1012 −1.68 229000

G3 3.70 · 107 0.00 187000

G4 1.36 · 10−12 1.64 −233000

G5 2.00 · 10−7 0.00 −272000

Table 2: Fit parameters for the equilibrium constants (12)
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Besides the chemical model of the reacting gases, also some other properties of the gas
mixture are needed. As mentioned before, the inlet temperature of the mixture is 300 K,
and the temperature at the susceptor is 1000 K. The pressure in the reactor is 1 atm.,
which is equal to 1.013 · 105 Pa. Other properties are given in Table 3. The diffusion
coefficients, according to Fick’s Law, are given in Table 4.

Density ρ(T ) 1.637 · 10−1 · 300
T

[kg/m3]

Specific heat cp 5.163 · 103 [J/kg/K]

Viscosity µ 1.990 · 10−5
(

T
300

)0.7
[kg/m/s]

Thermal conductivity λ 1.547 · 10−1
(

T
300

)0.8
[W/m/K]

Table 3: Gas mixture properties

SiH4 4.77 · 10−6
(

T
300

)1.7

SiH2 5.38 · 10−6
(

T
300

)1.7

H2SiSiH2 3.94 · 10−6
(

T
300

)1.7

Si2H6 3.72 · 10−6
(

T
300

)1.7

Si3H8 3.05 · 10−6
(

T
300

)1.7

H2 8.02 · 10−6
(

T
300

)1.7

Table 4: Diffusion coefficients D
′
i, according to Fick’s Law

3 Solution Methods for the Species Equations

The species equations (8) are PDEs of the advection-diffusion-reaction type. In order
to have a unique solution appropriate boundary conditions and initial values have to be
chosen. For a complete description we refer to [9, 16].

In general, it is impossible to find the exact solution of the system of N − 1 coupled
species equation. Therefore, we have to approximate its solution by numerical methods.
To do this, we use the Method of Lines, shorter MOL, where the PDE (or system of PDEs)
is first discretized in space on a certain grid Ωh with mesh width h > 0 to yield a semi
discrete system

w′(t) = F (t, w(t)), 0 < t ≤ T, w(0) given, (13)
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where w(t) = (wj(t))
m
j=1 ∈ Rm, with m proportional to the number of grid points in spatial

direction. The next step is to integrate the ODE system (13) with an appropriate time
integration method.

We remark that the stiff reaction terms in CVD motivates to integrate parts of F (t, w(t))
implicitly. In general, due to the nonlinearities in the reaction term, (huge) nonlinear
systems have to be solved. Most nonlinear solvers will need solutions of linear systems.

In order to approximate the solution of a system of species equations, choices have to
be made with respect to

1. Spatial Discretization,

2. Time Integration,

3. Nonlinear Solver, and

4. Linear Solver.

The topic of this research is to find the best combination in terms of efficiency. Of course,
efficiency becomes a hot topic in the case of transient 3D simulations, where the simulation
times become huge. In the case of 2D simulations the simulation times are, with the
nowadays PCs,s, acceptable. Note that if the computational cost of one time step is (very)
expensive, then a time integration method that needs more, but computational cheaper,
time steps is better in terms of efficiency.

Besides the efficiency criteria, also some other properties are desired, for example posi-
tivity, see Section 3.2. In order to make choices for spatial discretization, time integration,
nonlinear and linear solvers, we formulate criteria in order of importance.

3.1 Stability

As already mentioned in Section 2 the system of species equations is stiff. First we pay
some attention to this notion.

While the intuitive meaning of stiff is clear to all specialists, much controversy is going
on about it’s correct ‘mathematical definition’. We cite Hundsdorfer & Verwer [7] :

“Stiffness has no mathematical definition. Instead it is an operational concept,
indicating the class of problems for which implicit methods perform (much)
better than explicit methods.”

The eigenvalues of the Jacobian δf
δy

play certainly a role in this decision, but quantities such
as the dimension of the system, the smoothness of the solution or the integration interval
are also important.
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3.2 Positivity

An important property of chemical systems is positivity. By positivity we mean preser-
vation of non-negativity for all components, which is a natural property for chemical species
concentrations. As a consequence, it should also hold for the mathematical model of the
process. Whenever numerical simulations of reactive flows will be done, the positivity
property has to be fulfilled on four levels, i.e.

1. Mathematical Model,

2. Spatial Discretization,

3. Time Integration, and,

4. Iterative Solvers (Newton-Raphson, Krylov Subspace Methods)

The first one is obvious. When a chemically reacting flow is modeled in a way that preser-
vation of non-negativity of the solution is not guaranteed, then this property cannot hold
for the approximate solution.

Discretizing the PDE in space should not introduce ‘wiggles’, or (small) negative com-
ponents, in the approximate solution, because then we (can) get blow up of the solution
in finite time.

When the semi-discretization preserves non-negativity, then also the time integration
method should preserve it. It appears that this extra condition on time integration meth-
ods, besides stability, is much more restrictive towards the time step than stability. We
come back to this in the next section.

Finally, when positivity is preserved on the previous levels, then this property also
has to be fulfilled within the iterative solvers needed in the time integration. Recall that
(non)linear systems will appear in this application because of stiff reaction terms. Espe-
cially for the 3D simulations, and for 2D systems with a large number of species, iterative
linear solvers will be needed. This topic will become important for future research.

3.3 Efficiency

Having stiff reaction terms in the species equations implies doing parts of the time
integration implicitly. As remarked before, choosing the ‘best’ time integration method in
terms of number of time steps, does not imply that this is the most efficient way to solve
the system of (N − 1) species equations.

Nonlinear Solvers

Integrating nonlinear ODEs implicitly gives rise to nonlinear equations F (x) = 0, x ∈
Rn. In order to solve these equations one has a limited choice of methods. Roughly
speaking, we have the following methods :

1. (Pseudo) Newton Iteration,
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2. Fixed Point Iteration, and

3. Broyden’s Method.

To solve n dimensional systems F (x) = 0, with F : R
n → R

n and x ∈ R
n, the Newton

iteration is defined as
xk+1 = xk − F ′(xk)−1F (xk). (14)

Importance of the above method rests on the fact that in a neighborhood of x the error
‖xk+1 − x‖ (remark that x is a solution of F (x) = 0) can be estimated by the inequality

‖xk+1 − x‖ ≤ c‖xk − x‖2. (15)

Inequality (15) yields for a c ∈ R and a certain norm defined on Rn. The above inequality
states that the (k + 1)th error is proportional to the kth error squared.

Difficulties with the Newton iteration are that in each step a linear system has to be
solved. In practical applications where the dimensions of the linear systems can be up to
one million, or even larger, an appropriate solver has to be found. It appears that the
computational costs of one time step depends mainly on the linear solver as well as the
evaluation of F (x) and F ′(x). Another difficulty is that convergence of the iteration is
assured in a neighborhood of the solution. To get global convergence one can extend the
Newton algorithm with, for example, line-search. Adding the line-search will guarantee
that the succeeding iterates are norm reducing in the sense that

‖F (xk+1)‖ ≤ ‖F (xk)‖ k = 0, 1, 2, . . . , (16)

for some norm defined on Rn. More on the topic of global convergence can be found in
[8, 16].

The fixed point iteration has the advantage that it converges globally, as long as the
spectral radius of the Jacobian of F (x) is less than one. A disadvantage is that we have
only first order convergence. This method is only attractive when the function evaluations
are cheap.

Finally, the Broyden method is an extension of the secant method to n dimensions. In
order to solve the scalar equation f(x) = 0 the secant method is given as

xk+1 = xk − f(xk)(xk − xk−1)

f(xk) − f(xk−1)
, (17)

where xk is the current iteration and xk−1 the iteration before. As can be found in [16],
the secant method converges with order equal to the golden ratio. Broyden’s method is
useful in the case that the Jacobian is not explicitly available, or computable.

Linear Solvers

As mentioned above, the computational costs of one time step depends mainly on the
computational costs of solving linear systems that appear in the nonlinear solver. Iterative
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linear solvers will come into play for three dimensional systems. In the case that two
dimensional systems are considered, one can suffice with direct solvers. Via reordering of
the unknowns and the discrete species equations, one can obtain band matrices with a
‘small’ bandwidth, such that the LU-factorization is still attractive.

4 Properties of Time Integration Methods

In this section we will pay more attention to the properties that are desired for the
time integration methods. The main focus will be on positivity. First, we start with some
(mathematical) definitions on stability.

4.1 Stability Continued

Since we are dealing with stiff problems, stability is an important issue. It is preferred
to use methods that are unconditionally stable, by which we mean that there is no step-size
restriction with respect to stability. A formal definition is given below. Before giving this
definition we first have to define the so-called stability function.

Definition 4.1. Consider the scalar, complex Dahlquist test equation

y′ = λy, with λ ∈ C. (18)

Application of an one-step method, like for example Euler Forward or Runge-Kutta method,
gives approximations

wn+1 = R(τλ)wn. (19)

The function R(z) (z = τλ) is called the stability function of the method. The set

S = {z ∈ C : |R(z)| ≤ 1}, (20)

is called the stability region of the method.

Definition 4.2. A method is called A-stable if the stability region S = {z ∈ C : |R(z)| ≤ 1}
contains the left half plane C−.
A method is called L-stable if the method is A-stable and |R(∞)| = 0.

In the case that |R(z)| are close to one for z with very large negative real part, the stiff
parts of the approximate solution are damped out very slowly. To avoid difficulties with
species with a short life span, which can appear in CVD, having L-stability is a desired
property for CVD simulation.

An other form of stability, to be defined in the definition below, is A(α)-stability. This
form of stability comes from the stability analysis of multi-step methods. By a multi-step
method we mean that this method uses, unlike one-step methods like Euler Backward or
Runge-Kutta methods, a fixed number of previous approximations. For more on multi-step
methods we refer to [16, 5, 7].
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Definition 4.3. A method is called A(α)-stable (for α < π
2
) if the stability region S =

{z ∈ C : |R(z)| ≤ 1} is a subset of

S ⊃ {z ∈ C
− : z = 0,∞ or |arg(−z)| ≤ α} (21)

From the above definition we see that A(α)-stability is a weaker form of stability than
A-stability. For certain values of α, also these methods are interesting for time integration
of species equations.

Example 4.1. The BDF methods, see Section 5.1, are for k = 1, 2 A-stable. For 3 ≤ k ≤ 6
the BDF methods is A(α)-stable, with α depending on k. See Table 5.

k 1 2 3 4 5 6

α in rad π
2

π
2

1.501 1.2741 0.8901 0.2967

α in degrees 90◦ 90◦ 86◦ 73◦ 51◦ 17◦

Table 5: Values of α, in both radials as degrees, for given k.

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Stability Region for BDF−2

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Stability Region for BDF−3

Figure 2: Stability regions of the BDF-2 method (left) and the BDF-3 method (right).

In Figure 2 the stability regions for the BDF-2 method and the BDF-3 method2 are
given. Notice that the BDF-3 method is indeed not A-stable, as can be seen in Figure 2.

IMEX

Instead of using a fully implicit time integration, one can also integrate only the ex-
tremely stiff part in an implicit way. Suppose we have the nonlinear system or semi-
discretization

w′(t) = F (t, w(t)),

2BDF methods are extensively described in, for example, [7, 5, 16]
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where F (t, w(t)) has the natural splitting

F (t, w(t)) = F0(t, w(t)) + F1(t, w(t)),

with F0 is a non-stiff and F1 stiff. In advection-diffusion-reaction systems the non-stiff
term is for instance advection and the stiff terms the discretized diffusion and reactions.
The non-stiff term is suitable for explicit time integration while the stiff terms are more
suitable for implicit integration methods.

An example of a method that combines explicit as well as implicit treatment of respec-
tively the non-stiff term F0(t, w(t)) and stiff term F1(t, w(t)) is the following one :

wn+1 = wn + τ (F0(tn, wn) + (1 − θ)F1(tn, wn) + θF1(tn+1, wn+1)) , (22)

where the parameter θ ≥ 1
2
. This method is a combination of the Euler Forward method,

which is explicit, and the implicit θ -method. Methods that are mixtures of IMplicit and
EXplicit methods are called IMEX methods. The method given in (22) is called the IMEX-
θ Method.

Consider the test equation

w′(t) = λ0w(t) + λ1w(t),

and let zj = τλj for j = 0, 1. Applying the IMEX- θ method to this test equation gives

R(z0, z1) =
1 + z0 + (1 − θ)z1

1 − θz1
. (23)

Stability of the IMEX- θ method thus requires

|R(z0, z1)| ≤ 1. (24)

To analyze the stability region (24) we have two starting points :

1. Assume the implicit part of the method to be stable, in fact A-stable, and investigate
the stability region of the explicit part,

2. Assume the explicit part of the method to be stable and investigate the stability region
of the implicit part.

Starting with the first point, we assume the implicit part of the IMEX- θ method to be
A-stable. Define the set

D0 = {z0 ∈ C : the IMEX scheme is stable ∀z1 ∈ C
−},

where C− is the set
C

− = {z ∈ C : Re z ≤ 0}.
The question is whether the set D0 is smaller, larger or equally shaped in comparison with
the stability region of Euler Forward. The boundary of the region D0 is given in Figure
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3. For a detailed derivation of this boundary, we refer to [16]. A similar way of reasoning
can be done to derive the boundary of D1, whereby

D1 = {z1 ∈ C : the IMEX scheme is stable ∀z0 ∈ S0}, (25)

and S0 the stability region of Euler Forward. The boundary of D1 is also given in Figure
3.

We remark that for θ = 1 the IMEX method has favorable stability properties. It could
be seen as a form of time splitting where we first solve the explicit part with Euler Forward
and the implicit part with Euler Backward. However, using this IMEX method we do not
have errors as consequence of

• intermediate results that are inconsistent with the full equation,

• intermediate boundary conditions to solve these intermediate results.

If one uses this IMEX- θ method with θ = 1
2
, then one has to pay a little more attention

to stability. If, for instance, one has a system with complex eigenvalues, then the IMEX
method will not be unconditionally stable for θ = 1

2
.

The general idea of IMEX methods has been explained. We conclude with the remark
that IMEX extensions can also be applied to multi-step methods, Runge-Kutta methods
and so on. The IMEX - θ method is the simplest example of an IMEX-Runge-Kutta
method.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
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Figure 3: Boundary of regions D0 (left) and D1 (right) for θ = 0.5 (circles), 0.51 (-·-), 0.6 (- -) and 1 (solid)

4.2 Positivity

Definition 4.4. An ODE system

w′(t) = F (t, w(t)) t ≥ 0, (26)

is called positive, or non-negativity preserving, if

w(0) ≥ 0 =⇒ w(t) ≥ 0, for all t > 0. (27)
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It is easy to prove, for instance by using Theorem 4.5, which is given below, that linear
systems

w′(t) = Aw(t), w(t) ∈ R
n, A ∈ R

n×n, A = (aij), (28)

are positive if and only if aij ≥ 0 for i 6= j. The next theorem provides a simple criterion
on F (t, w(t)) to tell us whether the system

w′(t) = F (t, w(t)) t ≥ 0, (29)

is positive.

Theorem 4.5. Suppose that F (t, w) is continuous and satisfies a Lipschitz condition with
respect to w 3. Then the system (29) is positive if and only if for any vector w ∈ Rm and
all i = 1, . . . , m and t ≥ 0,

w ≥ 0, wi = 0 =⇒ Fi(t, w) ≥ 0. (30)

Proof. For a proof we refer to [7, Theorem 7.1, p.116]

It is interesting to investigate the positivity for semi-discrete systems. Consider, for
instance, the linear advection-diffusion equation in one dimension, i.e.,

ut + (a(x, t)u)x = (d(x, t)ux)x, (31)

whereby a(x, t) is the space and time dependent advection coefficient, and d(x, t) the space
and time dependent diffusion coefficient. Furthermore, d(x, t) > 0 and spatial periodic
boundary conditions are assumed.

Discretizing (31) by means of central differences gives

w′
j =

1

2h

(

aj− 1
2
(wj−1 + wj) − aj+ 1

2
(wj + wj+1)

)

+

1

h2

(

dj− 1
2
(wj−1 − wj) − dj+ 1

2
(wj − wj+1)

)

, (32)

for j = 1, . . . , m, where wj = wj(t), w0 = wm, wn+1 = w1 and

aj± 1
2

= a(xj± 1
2
, t), dj± 1

2
= a(xj± 1

2
, t). (33)

Using Theorem 4.5 it follows, after an elementary calculation, that the central discretization
(32) is positive if and only if the cell Péclet numbers, defined as ah/d, satisfy

max
x,t

|a(x, t)|h
d(x, t)

≤ 2. (34)

3The condition
‖F (t, ṽ) − F (t, v)‖ ≤ L‖ṽ − v‖,

with ṽ, v ∈ Rm and F : R × Rm → Rm, is called a Lipschitz condition with Lipschitz constant L.
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Discretizing (31) by means of first order upwind for the advection part, and second order
central differences for the diffusive part, gives

w′
j =

1

h

(

a+
j− 1

2

wj−1 + (a+
j− 1

2

− a−
j− 1

2

)wj + a−
j− 1

2

wj+1)
)

1

h2

(

dj− 1
2
(wj−1 − wj) − dj− 1

2
(wj − wj+1)

)

, (35)

where a+ = max(a, 0) and a− = min(a, 0). Hence, the semi-discrete system (35) is uncon-
ditionally positive.

Positivity of Semi-Discrete Species Equations

Adding reaction terms to (31) does not influence the positivity. Since the reaction
terms that are being add are in the production-loss form

F (t, v) = p(t, v) − L(t, v)v, (36)

where p(t, v) is a vector and L(t, v) a diagonal matrix. It can be found in [7] that source
terms in this form are positive as long as p(t, v) is positive.

Furthermore, we mention that the above results with respect to the one-dimensional
advection-diffusion equation are easily generalized to higher dimensions. Therefore, dis-
cretizing the species concentrations equations in space by means of a hybrid scheme4 ensures
positivity of the semi-discretization.

A last remark with respect to upwind discretization. For higher order upwinding, for
example third order upwinding, positivity is not ensured for all step-sizes.

Positivity on the Level of Time Integration

Positivity also restricts the use of time integration methods. It appears that uncondi-
tional positivity is a very restrictive requirement. In this section we will present results
for non-linear systems w′(t) = F (t, w(t)). First we begin with exploring the positivity
property for Euler Forward and Backward.

Euler Forward and Backward

We consider the non-linear semi-discretization w′(t) = F (t, w(t)). Suppose that F (t, w(t))
satisfies the condition :

Condition 4.6. There is an α > 0, with α as large as possible, such that ατ ≤ 1 and

v + τF (t, v) ≥ 0 for all t ≥ 0, v ≥ 0. (37)

4The hybrid scheme uses central differences, except in the regions where |Pe| > 2. In the regions with
|Pe| > 2 first order upwind is used.
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Application of Euler Forward to the nonlinear system w′(t) = F (t, w(t)) gives

wn+1 = wn + τF (tn, wn). (38)

Provided that wn ≥ 0, Condition 4.6 guarantees positivity for wn+1 computed via Euler
Forward (38).

Furthermore, assume that F (t, w(t)) also satisfies the following condition :

Condition 4.7. For any v ≥ 0, t ≥ 0 and τ > 0 the equation

u = v + τF (t, u), (39)

has a unique solution that depends continuously on τ and v.

According to the following theorem we have unconditional positivity for Euler Back-
ward.

Theorem 4.8. Conditions 4.6 and 4.7 imply positivity for Euler Backward for any step
size τ .

The following proof is taken from [7].

Proof of Theorem 4.8. For given t, v and with τ variable we consider the equation u =
v + τF (t, u) and we call its solution u(τ). We have to show that v ≥ 0 implies u(τ) ≥ 0 for
all positive τ . By continuity it is sufficient to show that v > 0 implies u(τ) ≥ 0. This is
true because if we assume that u(τ) > 0 for τ ≤ τ0, except for the ith component ui(τ0) = 0,
then

0 = ui = vi + τ0Fi(t, u(τ0)). (40)

According to Condition 4.6 we have Fi(t, u(τ0)) ≥ 0 and thus vi + τ0Fi(t, u(τ0)) > 0, which
is a contradiction.

Remark 4.9. Unlike Condition 4.6, Condition 4.7 is not easy to be verified. As remarked
in [7], it is sufficient to hold that F (t, v) is continuously differentiable and

‖I − τJF (t, v)‖ ≤ C, for any v ∈ R
n, t ≥ 0 and τ > 0, (41)

whereby C is a positive constant and JF (t, v) the Jacobian of F (t, v) with respect to v.
Existence and uniqueness of the solution of

u = v + τF (t, u), (42)

then follows from Hadamard’s Theorem and the Implicit Function Theorem. The fact that
the solution u of (42) depends continuously of τ , v and t also follows from the Implicit
Function Theorem. Remark that condition (41) is easier to verify than Condition 4.7.
Both Hadamard’s Theorem and the Implicit Function Theorem can be found, for example,
in [11].
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Remark 4.10. Application of Euler Backward to the nonlinear system w′(t) = F (t, w(t))
gives

wn+1 − τF (tn, wn+1) = wn. (43)

As proven in Theorem 4.8, for every time step τ positivity of wn+1 is ensured as long as
wn is positive and F (t, w) satisfies conditions (4.6) and (4.7). In practice it is impossible
to compute the solution wn+1 of the nonlinear equation (43) exactly, thus one will use an
iterative nonlinear solver. For example, the Newton Raphson iteration is in most applica-
tions a good choice. Since iterative nonlinear solvers will only give an approximation of
the solution, it might be possible that it contains (small) negative components. Therefore,
in practice even Euler Backward can produce negative concentrations.

As mentioned before, negative components of the concentration solution vector can
cause a blow up in finite time. In the case the negative components of the solution are
the result of rounding errors, then it is justified to set them to zero. We remark that in
the case of rounding errors the negative components are very small (compared with the
relative error, condition number and the machine precision). In the case one has negative
components in the solution as consequence of the nonlinear (Newton) solver, then the most
common method to avoid negative concentrations is clipping. A disadvantage of applying
clipping is that mass is added, i.e., the integration method does not preserve mass any
longer. A possible solution is given in [12], where for the positive integration of chemical
kinetic systems a projection method is proposed. This projection method works as follows.
First, a numerical approximation is computed via a traditional (read Runge Kutta or
Rosenbrock method) scheme, which preserves mass. If there are negative components in
the solution, then the nearest vector in the reaction simplex is found using a primal-dual
optimization routine. The resulting vector, is a better approximation of the true solution
and preserves mass. In the case of advection-diffusion-reaction systems, no references are
available to do this.

Some General Remarks on Positivity

In the previous section it has been proven that the Euler Backward method is un-
conditionally positive, when Conditions 4.6 and 4.7 are satisfied. We remark that these
conditions are actually conditions on F (t, v). Unconditional positivity can only be true for
implicit methods. One might hope to find more accurate methods with this unconditional
positivity property. However, this hope is dashed by the following result, which holds for
both linear and nonlinear systems, due to Bolley and Crouzeix [2].

Theorem 4.11. Any method that is unconditionally positive, has order p ≤ 1.

For a proof we refer to [2]. The consequence of this theorem is that the only well-known
method having unconditionally positivity is Euler Backward.

Finally, we remark that for higher order methods the time step can be restricted to
impractically small values. Furthermore, we mention that for Diagonally Implicit Runge
Kutta (DIRK) methods step size restrictions are known, such that positivity is guaranteed.
We refer to [7, 16].
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4.3 Relation Positivity and TVD

If the system of ODEs w′(t) = F (t, w(t)), with a appropriate initial condition w(0) =
w0, stands for a semi-discrete version of a conservation law, it is important that the fully
discrete process is monotonic in the sense that

‖wn‖ ≤ ‖wn−1‖. (44)

The above monotonicity property reduces to the Total Variation Diminishing (TVD) prop-
erty when we use the seminorm

|y|TV =
n
∑

j=1

|yj − yj−1|, with y0 = yn, for y ∈ R
n, (45)

in (44). When a numerical scheme satisfies this TVD property, then localized over- and
undershoots are prevented.

The TVD property is developed for studying the properties of numerical schemes for
solving hyperbolic conservation laws. In particular TVD and monoticity are important in
the study of shocks in fluid flows.

In this section we will discuss some general results for TVD. It turns out that the
conditions giving the TVD property are the same as giving the positivity property.

TVD Results for ODE Methods

Considering the ODE system w′(t) = F (t, w(t)) with a function F such that

|v + τF (t, v)| ≥ |v| for all t ≥ 0, for allv ∈ R
n and 0 ≤ τ ≤ τ ∗. (46)

Then, the above condition can be seen as a condition on the time step τ such that Euler
Forward is TVD.

We remark that this condition is equivalent with the condition for positivity for Euler
Forward (4.6). This can be seen as follows. Considering a positive nonlinear system
w′(t) = F (t, w(t)), we have to find an α such that (4.6) holds. Taking

α =
1

τ ∗
, (47)

and considering v ≥ 0, then (46) implies v + τF (t, v) ≥ 0.
Applying the Backward Euler method to w′(t) = F (t, w(t)) gives

wn+1 = wn + τF (tn+1, wn+1). (48)

This method is TVD under Assumption (46) without any step size restriction. This can
easily be seen from

(

1 +
τ

τ ∗

)

wn+1 = wn +
τ

τ ∗
(wn+1 + τ ∗F (tn+1, wn+1).) (49)
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Using the TV seminorm we obtain

(

1 +
τ

τ ∗

)

|wn+1|TV ≤ |wn|TV +
τ

τ ∗
|wn+1|TV , (50)

showing that |wn+1|TV ≤ |wn|TV for any τ > 0.
For other one-step methods like Diagonally Implicit Runge Kutta methods step size

restrictions can be derived to have the TVD property. These conditions are identical to
those for positivity of DIRK methods. For TVD results for multistep, or other general
results for TVD we refer to [3, 7, 20]. In [3] the rather disappointing result concerning
the nonexistence of implicit TVD Runge Kutta or multistep methods of order higher than
1 has been proven. By adding some explicit stages to an explicit higher order RK or
multistep scheme the TVD property can be recovered. In our case of stiff systems, this
last artifact to save the TVD property is useless, because then the stiff reaction parts have
to be integrated explicitly.

To conclude this section we would like to remark the following. With respect to positiv-
ity and TVD, implicitness of the method seems to have little added value, in clear contrast
with stability. For example, the implicit trapezoidal rule

wn+1 = wn +
τ

2
(F (tn, wn) + F (tn+1, wn+1)) , (51)

has a time step restriction in order to be TVD, when applied to time integration of ut +
a ·ux = 0, whereby the advection term is discretized using limiters. Then, as can be found
in [7, 20], the TVD property holds if the Courant number ν = τa/h ≤ 1. Comparing this
with the Euler Backward method, which is unconditionally TVD, we see that implicitness
has little added value in this case.

4.4 Concluding Remarks on Stability, Positivity and TVD

In order to integrate the species equations we need a method that can handle stiff
problems and that is unconditionally positive or has the TVD property. In this section the
following notions passed the revue:

• Explicit,

• Implicit,

• Stiff,

• Positivity,

• At Most First order Accurate,

• Higher Order Integration Methods,

• TVD,
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• IMEX.

A time integration method that would be suitable to integrate the species equations needs
to have a few of the above mentioned properties. Combinations of the properties that are
possible are :

1. Positivity, Implicit, At Most First order Accurate and Stiff,

2. TVD, Implicit, At Most First order Accurate and Stiff,

3. IMEX, Higher Order Integration Methods, Positivity or TVD, Stiff,

4. Explicit, Higher Order Integration Methods, TVD,

5. Implicit, TVD, Higher Order Integration Methods, Adding explicit stages.

The last two combinations of properties, i.e., 4. and 5., are not suitable for solving the stiff
species equations, because they contain explicit stages. Integrating the reactions terms
explicitly will give a strong restriction on the time step. The latter is not preferred in
practice.

5 Suitable Methods to Integrate

In this section we present integration methods that are suitable, from a theoretical
point of view, for the time integration of the species equations. At the end of this section
we will also mention nonlinear - and linear solvers.

From the previous sections it became clear that the Euler Backward method is a suit-
able method to perform time integration. It has the advantages of being unconditionally
stable and positive. Disadvantages are the first order consistency and the probably high
computational costs for one time step. The latter is due to the fact that the succeeding
approximations are computed in a fully implicit manner.

5.1 Time Integration Methods

We will discuss a selection of time integration methods that have good properties in
both stability and positivity, or TVD.

Rosenbrock Methods

Definition 5.1. An s-stage Rosenbrock method is defined as

ki = τF (wn +
i−1
∑

j=1

αijkj) + τA
i
∑

j=1

γijkj ,

wn+1 = wn +

s
∑

i=1

biki (52)
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where A = An is the Jacobian F ′(w(t)).

Definition 5.1 is taken from [7]. The coefficients bij , αij and γij define a particular
method and are selected to obtain a desired level of consistency and stability.

Remark that computing an approximation wn+1 from wn, in each stage i a linear system
of algebraic equations with the matrix (I − γiiτA) has to be solved. To save computing
time for large dimension systems w′(t) = F (w(t)) the coefficients γii are taken constant,
e.g., γii = γ. Then, in every time-step the matrix (I − γiiA) is the same. To solve these
large systems LU decomposition or (preconditioned) iterative methods could be used.

Define

βij = αij + γij, ci =
i−1
∑

j=1

αij and di =
i−1
∑

j=1

βij.

In Table 5.1, taken from [7], the order conditions for s ≤ 4 and p ≤ 3 and γii = γ =
constant can be found. In particular the two stage method

order p order conditions

1 b1 + b2 + b3 + b4 = 1

2 b1d2 + b3d3 + b4d4 = 1
2
− γ

3 b2c
2
2 + b3c

2
3 + b4d

2
4 = 1

3

b3β32d2 + b4(β42d2 + β43d3) = 1
6
− γ + γ2

Table 6: Order conditions of Rosenbrock methods with γii = γ for s ≤ 4 and p ≤ 3.

wn+1 = wn + b1k1 + b2k2

k1 = τF (wn) + γτAk1

k2 = τF (wn + α21k1) + γ21τAk1 + γτAk2, (53)

with coefficients

b1 = 1 − b2, α21 =
1

2b2
and γ21 = − γ

b2
,

is interesting. This method is of order two for arbitrary γ as long as b2 6= 0 . The stability
function is given as

R(z) =
1 + (1 − 2γ)z + (γ2 − 2γ + 1

2
)z2

(1 − γz)2
. (54)

The method is A-stable for γ ≥ 1
4

and L-stable if γ = 1 ± 1
2

√
2. By selecting for γ the

larger value γ+ = 1 + 1
2

√
2, we have the property that R(z) ≥ 0, for all negative real z.

For diffusion-reaction problems, which have negative real eigenvalues, this property ensures
positivity of the solution. In the case that advection is added to the system, the matrix
has eigenvalues with negative real parts and relatively small imaginary parts. Then, the
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positivity property is no longer guaranteed. It appears that the second order Rosenbrock
method performs quite well with respect to the positivity property, as has been experienced
in [17]. In [17] it is conjectured that the property that R(z) ≥ 0 for all negative real
z plays a role. We conclude this section with a remark on the implementation of the
second order Rosenbrock scheme (56). In our code it is implemented with the parameters
b1 = b2 = 1

2
and γ = 1+ 1

2

√
2. The matrix-vector multiplication in the second stage of (56)

can be avoided by introducing

k̃1 = k1 and k̃2 = k2 − k1, (55)

and implementing the scheme

wn+1 = wn +
3

2
k̃1 +

1

2
k̃2,

k̃1 = τF (wn) + γτAk̃1,

k̃2 = τF (wn + k̃1) − 2k̃1 + γτAk̃2. (56)

Backward Differentiation Formulas (BDF)

The Backward Differentiation Formulas, shorter BDF, belong to the class of linear
multistep methods, as defined in Definition 5.2

Definition 5.2. The linear k-step method is defined by the formula

k
∑

j=0

αjwn+j = τ

k
∑

j=0

βjF (tn+j, wn+j), n = 0, 1, . . . , (57)

which uses the k past values wn, . . . , wn+k−1 to compute wn+k. Remark that the most
advanced level is tn+k instead of tn+1.

The method is explicit when βk = 0 and implicit otherwise. Furthermore, we will
assume that αk > 0.

The BDF are implicit and defined as

βk 6= 0 and βj = 0 for j = 0, . . . , k − 1.

The coefficients αi, see Definition 5.2, are chosen such that the order is optimal, namely
k. 5 The 1-step BDF method is Backward Euler. The 2-step method is

3

2
wn+2 − 2wn+1 +

1

2
wn = τF (tn+2, wn+2), (58)

5A linear k-step method is of order p if and only if

k
∑

i=0

αi = 0
k
∑

i=0

αii
j = 0 = j

k
∑

i=0

βii
j−1 for j = 1, 2, . . . , p.

For a proof we refer to [16].
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and the three step BDF is given by

11

6
wn+3 − 3wn+2 +

3

2
wn+1 −

1

3
wn = τF (tn+3, wn+3). (59)

In chemistry applications the BDF methods belong to the most widely used methods to
solve stiff chemical reaction equations, due to their favorable stability properties. The
BDF-1 and BDF-2 methods are both A-stable. The 3,4,5 and 6 step BDF methods are
A(α)-stable, with α given in Example 4.1. For k > 6 the BDF-methods are unstable, see
[4, Theorem 3.4, page 329].

Remark 5.3. A disadvantage of linear multi-step methods is that the first k − 1 approx-
imations cannot be computed with the linear k-step scheme. To compute the first (k − 1)
approximations, one could use a

1. Runge-Kutta scheme, for example, Euler Backward, or,

2. use for the first step a linear 1-step method, for the second approximation a linear
2-step method, . . . and for the (k − 1)st approximation a linear (k − 1)-step scheme.

As for Runge-Kutta methods the requirement of positivity does place a severe step size
restriction on (implicit) BDF methods (and also on implicit multistep methods). Under
Condition 4.6 and 4.7 we obtain positivity of w′(t) = F (t, w(t)) whenever ατ ≤ γR. The
parameter γR is the largest γ such that the stability function R(z) is absolutely monotonic
on [−γ, 0]. It is easy to check that for the BDF-2 method we have γR = 1

2
. Thus, positivity

for BDF-2 is ensured whenever

ατ ≤ 1

2
, (60)

provided that w1 is computed from w0 by a suitable starting procedure. By suitable we
mean that w1 has to be computed from a method that ensures w1 to be positive, such
as for example BDF-1 (which is Euler Backward). Implementation of the methods is
straightforward.

IMEX Runge-Kutta Chebyshev Methods

The IMEX extension of the class of Runge-Kutta Chebyshev methods is developed by
Verwer et. al. [18, 19]. The Runge-Kutta Chebyshev methods belong to the class of
explicit Runge-Kutta Chebyshev methods. They posses an extended real stability interval
with a length proportional to s2, with s the number of stages.

Definition 5.4. The stability boundary β(s) is the number β(s) such that [−β(s), 0] is the
largest segment of the negative real axis contained in the stability region

S = {z ∈ C : |R(z)| ≤ 1} .
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To construct the family of RKC methods we start with the explicit Runge-Kutta meth-
ods which have the stability polynomial

R(z) = γ0 + γ1z + · · ·+ γsz
s. (61)

In order to have first order consistency we take γ0 = γ1 = 1.6

It can be proven that every explicit Runge-Kutta method has as optimal stability
boundary β(s) = 2s2. Thus the maximum value of β(s) for explicit Runge-Kutta methods
is 2s2. The upper boundary of β(s) is achieved if we take the shifted Chebyshev polynomials
of the first kind as stability polynomial. For a proof of both results, we refer to [7, 16].

In this paper we will not go into further details on the construction of the second order
scheme. We fulfill with presenting it. The second order RKC is given as

wn0 = wn,

wn1 = wn + µ̃1τF (tn + c0τ, wn0),

wnj = (1 − µj − νj)wn + µjwn,j−1 + νjwn,j−2 + j = 1, . . . , s

+µ̃1τF (tn + cj−1τ, wn,j−1) + γ̃jτF (tn + c0τ, wn0), (63)

wn+1 = wns,

with coefficients

ω0 = 1 +
ε

s2
, ω1 =

T ′
s(ω0)

T ′′
s (ω0)

, (64)

bj =
T ′′

j (ω0)

(T ′
j(ω0))2

, cj =
T ′

s(ω0)

T ′′
s (ω0)

T ′′
j (ω0)

T ′
j(ω0)

≈ j2 − 1

s2 − 1
, (65)

µ̃1 = b1ω1, µj =
2bjω0

bj−1
, νj = − bj

bj−2
, (66)

µ̃j =
2bjω1

bj−1
, γ̃j = −aj−1µ̃j . (67)

The stability function of this method is given as

Bs(z) = 1 +
T ′′

s (ω0)

(T ′
s(ω0))2

(Ts(ω0 + ω1z) − Ts(ω0)) (68)

with

ω0 = 1 +
ε

s2
ω1 =

T ′
s(ω0)

T ′′
s (ω0)

.

6This can be verified by considering the test equation y′ = λy. The local error of the test equation
satisfies

ez − R(z)

τ
= O(τp). (62)

To achieve pth order consistency the coefficients γi has to be chosen in such a way that (62) satisfies for p.
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The parameter ε is a damping parameter to create a wider stability region. Compare in
Figure 4 the undamped and damped case. For practical applications one would always use
the damped stability function. The stability boundary is in the damped case equal to

β(s) =
2

3
(s2 − 1)(1 − 2

15
ε),

which is about 80% of the optimal value.
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Second Order Damped Chebyshev Polynomial

Figure 4: Stability region of B5(z) without damping (upper) and with damping (lower).

The IMEX extension of the above scheme is as follows. Suppose we have an ODE
system w′(t) = F (t, w(t)), where F (t, w(t)) can be split as

F (t, w(t)) = FE(t, w(t)) + FI(t, w(t)). (69)

In Eqn. (69) the term FI(t, w(t)) is the part of F which is (supposed to be) too stiff to be
integrated by an explicit Runge-Kutta Chebyshev method. Obviously, the term FE(t, w(t))
is the moderate stiff part of F that can be integrated in an explicit manner using RKC
methods.

The first stage of (63) becomes in the IMEX-RKC scheme

wn1 = wn + µ̃1τFE(tn + c0τ, wn0) + µ̃1τFI(tn + c1τ, wn1), (70)

with µ̃1 as defined before. Note that the highly stiff part of F is treated implicitly. The
other (s − 1) subsequent stages of (63) will be modified in a similar way.

With respect to stability of this IMEX extension of (63) we remark the following. The
implicit part is unconditionally stable, whereas the stability condition for the explicit part
remains unchanged. Another pleasant property is that steady states are returned exactly.
It takes an elementary calculation to prove this. Note that with operator splitting, or in
this case time splitting, where the subsystems w′(t) = FE(t, w(t)) and w′(t) = FI(t, w(t))
are integrated completely decoupled within the time-steps, steady states are not returned
exactly.
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We conclude with some remarks on the implementation and use of the IMEX-RKC
schemes in practice. We use a variable time step controller as is normal for Method of
Lines solvers. Then, it would be desirable that for relatively small τn the code automatically
switches to a lower number of stages s. For relatively large τn the same is desired, of course.
This is only important for the integration of advection diffusion part of the right hand side
of (13).

We will briefly describe the idea behind this variable number of stages procedure,
which is taken from [19]. In [20] time step size conditions are given for the standard spatial
discretizations of the m-dimensional scalar model

ut +
m
∑

k=1

akuxk
= d

m
∑

k=1

uxkxk
, (71)

guaranteeing eigenvalues emerging from von Neumann stability analysis to lie inside geo-
metric figures like squares, ellipses, half ellipses and ovals. For the explicit integration of
advection and diffusion via the RKC method one has to fit an appropriate figure inside the
stability region S. In [19] ovals are selected. In Figure 12 stability regions with inscribed
ovals

(

x

β/2
+ 1

)2

+
( y

α

)4

= 1, (72)

for s = 6 and ε = 0.1, 1, 10. Recall that epsilon is a damping factor, see (64). For β the
value β(s) has been taken, while α has been derived numerically. Assume that for diffusion
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Figure 5: Stability regions S and inscribed ovals.
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second order central discretization, while for advection the κ-scheme

dw

dt
=

a

4h
((1 − κ)wj−2 + (3κ − 5)wj−1 + (3 − 3κ)wj + (1 + κ)wj+1), (73)

is used. The κ-scheme is the second order central scheme for κ = 1, the second order
upwind scheme for κ = −1 and third order upwind-biased scheme for κ = 1

3
. The diffusion

step size condition is then the familiar condition

τ ≤ β(s)

2d
∑m

k=1 h−2
k (2 + (1 − κ)Pk)

, (74)

where Pk = |ak |hk

d
is a mesh Péclet number. Violation of (74) will give instability. Also

taken from [20] is the advection time step restriction

τ ≤ q1

(

4dα4(s)

β(s)

)
1
3

/

m
∑

k=1

(

a4
k

h2
k

)
1
3

, (75)

where the parameter q1 depends on the choice of κ, see Table 5.1. For the actual imple-

κ q1
1
3

0.635
1 1
−1 0.323

Table 7: Values for q1 for popular κ values

mentation the following lower bound for the ratio α4(s)
β(s)

has been used

α4(s)

β(s)
=















2 s = 2,
4(6 − s) + 6.15(s − 4) s = 4, 6,

6.15 (10−s)
2

+ 15.5 (s−6)
4

s = 8,
15.5 s = 10, 12, . . .

(76)

As maximum of the ratio α4(s)
β(s)

the value 15.5 has been taken, which corresponds with
s = 10. For larger values of s the slope in the curve, by which we mean the upper half of
the oval (72), becomes too small.

Next, we will describe how to choose the number of stages s. Suppose a step size τ ∗

has been obtained by a local error estimator. Then, it can be checked whether τ ∗ satisfies
the inequalities (74) and (75). If necessary, τ ∗ can be adjusted such that these inequalities
hold. Simultaneously, the number of stages can be adjusted such that the number of stages
needed to satisfy (74) is larger or equal than the number of stages needed to satisfy (75).
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We remark that it makes no sense to spend more stages on advection than required for
diffusion. Introduce the parameters

Ψ1 =
1

2d
∑m

k=1 h−2
k (2 + (1 − κ)Pk)

, and, Ψ2 =
4dq3

1
(

∑m
k=1

(

a4
k

h2
k

)
1
3

)3 . (77)

The actual algorithm that is used in the code is given in Algorithm 1. For more background

Algorithm 1 Step size and Number of Stages Selection

1: If τ ∗ ≤ 2Ψ1, then s = 2, τ = min{τ ∗, (2Ψ)1/3} and stop,
2: Put τ = min{τ ∗, (15.5Ψ)1/3}. If τ ∗ ≤ 2Ψ1, then s = 2 and stop,
3: Determine sd ≥ 4 such that τ ≤ β(sd)Ψ1 to satisfy (74),
4: Determine sa ≥ 4 such that τ ≤ ((α4(sa)/β(sa))Ψ2)

1/3 to satisfy (75),
5: If sa ≤ sd, then s = sd and stop. Otherwise τ = 0.8τ and go to 3.

information we refer to [16, 18, 19].

5.2 Nonlinear Solvers

It is obvious that with the second order convergence the Newton iteration is a suitable
choice as nonlinear solver. The disadvantage of having local convergence will disappear if
one uses a line-search algorithm within the Newton solver. In order to have a decreasing
sequence ‖F (xn)‖, we will adjust the Newton step d = −F ′(xn)−1F (xn)as follows. Find
the smallest integer m such that

‖F (xn + 2−md)‖ ≤ (1 − ̟2−m)‖F (xn)‖, (78)

and let the Newton-step be s = 2−md. Condition (78) is called the sufficient decrease of
‖F‖. The parameter ̟ in (78) is a small number, chosen such that the sufficient decrease
condition is satisfied as easy as possible. In [8, 16] ̟ is taken equal to 10−4.

5.3 Linear Solvers

Because the nonlinear solver is of the Newton type, in each Newton iteration linear
systems have to be solved. In CVD literature one uses iterative linear solvers for both
2D and 3D problems. We share the idea that for 3D problems iterative linear solvers are
definitely needed. For 2D problems we think that direct solvers are still applicable.

2D Problems

In most 2D applications direct solvers like LU factorization are still applicable to solve
linear systems. To reduce the amount of work one usually reorders the unknowns (and the
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equations), in order to reduce the bandwidth of the matrix. Also in our case it is possible
to reduce the bandwidth of the Jacobian considerably.

Using a finite volume discretization of the right hand side of (6), where the unknowns
are arranged per species and lexicographic in the grid, we get a Jacobian matrix with
a structure as in Figure 6. We change the arrangement of unknowns into: unknown
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Figure 6: Jacobian matrix belonging to the test-problem, where 6 chemical species are considered. Num-
ber of grid-points in r direction is 10 and in z direction 8. This Jacobian matrix is with lexicographic
arrangement per species. We see that the upper and lower bandwidth are both (N − 1) · G, where N is
the number of species and G the number of grid points.

concentration species 1 in grid-point 1, unknown concentration species 2 in grid-point 1,
. . ., unknown concentration species N in grid-point 1, and so on. The second step of a
successful re-arrangement is then to re-arrange the discrete ODEs as follows. Firstly, the
discrete balance for species 1 in grid-point 1 is taken, then the discrete balance for species
2 in grid-point 1 is taken, and so on. This reordering results in a Jacobian matrix with a
structure as given in Figure 7.

3D Problems

For 3D problems direct solvers like the LU factorization are no longer applicable. To
approximate the solution linear systems one has roughly speaking two options, e.g. Krylov
subspace methods and multigrid, or a combination.. For this application, simulating re-
acting gas flow simulations, the latter choice is the more obvious one.

In the 2D case with a gas phase chemistry model with a large number of species the
complexity of solving resulting linear systems will become equal to the complexity of solving
linear systems of 3D discrete systems. In that case iterative linear solvers will become more
and more attractive.
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Figure 7: Jacobian matrix belonging to the test-problem, where 6 chemical species are considered. We
have the same number of grid-points in r and z direction. This Jacobian matrix is constructed with the
re-arrangement of the unknowns as described in Section 5.3. In this re-arranged case the bandwidth is
equal to N · Gr, where Gr is the number of grid points in the r direction.

6 Numerical Simulation

Before giving the results of the numerical simulations, where we mainly considered the
efficiency of the time integration methods, we give details on the simulation itself. In
this simulation a variable time step algorithm is used, which will also be explained in this
section.

6.1 General Outline of the Simulation

We perform a transient simulation on the problem described in Section 2. The simula-
tion stops when ‘numerical’ steady state is reached. By ‘numerical’ steady state we mean
that for a certain index n yields,

‖yn+1 − yn‖2

‖yn‖2

≤ ϑ, (79)

where yn is the numerical solution of the semi-discretization

dw

dt
= Aw + b + F (t, w(t)), (80)

on time t = tn, and ϑ a small parameter. In (80) A represents the discretized advection
diffusion operator, b a vector of boundary conditions and F (t, w(t)) a nonlinear vector
function representing the gas phase reactions. In our simulations for ϑ the value ϑ =
O(10−6) has been taken.

32



In order to describe the algorithm that is used for CVD simulation we introduce the
function ‘time integration’ as follows. As input we have yn, the approximated solution of
w on time t = tn, τ = tn+1− tn, m the molar mass field and f the vector of molar fractions.
The output is yn+1, i.e., the approximated solution of w on time tn+1. Summarized

yn+1 = time integration(yn, τ, m, fi). (81)

The exact description of the function ‘time integration’ depends on the choice of time
integration method. See Section 5.

Based on the inlet concentrations of silane SiH4 an initial mass fraction profile can
be constructed. The outline of the algorithm to perform the CVD simulation is given as
Algorithm 2. As mentioned earlier, for ϑ the value ϑ = 10−6 has been taken.

Algorithm 2 Simulation

1: Initial values for y0 and fi

2: while ‖y1−y0‖
‖y0‖

≥ ϑ do
3: Compute average molar mass of gas mixture m
4: y1 = time integration(y0, τ, m, f)
5: Check whether y1 ≥ 0, if not then τ = 1

2
τ and go to 4

6: Estimate the local (time integration) error Dn

7: if Dn > Tol then
8: τ = r · τ , r estimated such that Dn ≤ Tol, and go to 4
9: end if

10: Compute mole fractions f
11: y0 = y1

12: end while

6.2 Variable Time Stepping

We briefly explain the variable time stepping algorithm as it is implemented in our
code. Consider an attempted step from tn to tn+1 = tn + τn with time step size τn that is
performed with an pth order time integration method. Suppose an estimate Dn of order
p̂ of the norm of the local truncation error is available. Then, if Dn < Tol this step τn is
accepted, whereas if Dn > Tol the step is rejected and redone with time step size 1

2
τn. If

Dn < Tol, then the new step size is computed as

τnew = r · τ, r =

(

Tol

Dn

)
1

p̂+1

. (82)

It is also possible to put bounds on the growth factor r of the new step size. This is simply
done by giving bounds on r.
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6.2.1 Local Error Estimation for Euler Backward

The local error of the Euler Backward method

wn+1 = wn + τF (tn+1,wn+1) (83)

satisfies

δn = −1

2
τ 2w′′(tn) + O(τ 3). (84)

The local truncation error δn can be estimated as

dn = −1

2
(wn+1 − wn − τF (tn, wn)) . (85)

See, for example, [7].

6.2.2 Local Error Estimation for BDF2

For the BDF-2 scheme the local error estimation is as follows. Introduce the ratio
r = τn

τn−1
, where τn is defined as above, e.g., τn = tn+1 − tn. The second order BDF-2

scheme can be rewritten in the form with the ratio r as

wn+2 −
(1 + r2)

1 + 2r
wn+1 +

r2

1 + 2r
wn =

1 + r

1 + 2r
τF (tn+2, wn+2). (86)

In a similar way as in Section 6.2.1 we obtain the first order estimator

dn =
r

1 + r
(wn+1 − (1 + r)wn + rwn−1) . (87)

A second order estimator, see [7], is

dn =
1 + r

1 + 2r

(

wn+1 + (r2 − 1)wn − r2wn−1 − (1 + r)τnF (tn, wn)
)

. (88)

We remark that in the first time step, where BDF-1 is used, the local error is estimated by

d0 =
1

2
(w1 − w0 − τ0F (t0, w0)) . (89)

6.2.3 Local Error Estimation for IMEX-Runge-Kutta-Chebyshev

The local error estimation for the IMEX -Runge-Kutta-Chebyshev methods is the same
as for the explicit Runge-Kutta-Chebyshev schemes, see [19]. The asymptotically correct
estimate of the local error is

dn =
1

15
[12(wn − wn+1) + 6τn(F (tn, wn) + F (tn+1, wn+1))] , (90)

which is taken from [14].

34



6.3 Numerical Results for the Simplified CVD System

In this part we present the numerical results of the simplified test problem as defined
in Section 2.1 to 2.3. In this section we distinguish two different simulations, namely, the
simulation with physical initial conditions, see Section 6.3.1, and the simulation with a
constant initial profile, see Section 6.3.2.

The experiments are done in FORTRAN. The computations are done on a serial Pen-
tium 4 (2.8 GHz) computer with 1Gb memory capacity. Moreover, the code is compiled
with FORTRAN g77 on LINUX.

6.3.1 Physical Initial Conditions

At t = 0 we start with the zero concentration profile for all species, except the carrier
gas, and let the reactive specie silane SiH4 enter the reactor at the inflow boundary. Then,
we stop the simulation at steady state, which is reached when the relative change of the
solution vector is less than 10−6, i.e.,

‖un+1 − un‖2

‖un‖2

≤ 10−6. (91)

For a comparison between the workloads of the various TIM, we look to the amount of
CPU time, the number of time steps and the total number of Newton iterations (if needed)
it takes to reach steady state.

The solutions computed by different TIM also have been compared with a reference
solution uref , which has been computed with high accuracy. It appeared that the solutions
of the different TIM, denoted by uTIM , all had the same quality, by which we mean that

‖uTIM − uref‖2

‖uref‖2
= O(10−7). (92)

In Figure 8 the residual ‖F (w(t))‖2 versus the time step, for different TIM, is given. Recall
that F (w(t)) is the semi-discretization resulting from the Method of Lines approach, see
(13). In Figure 9 the time step size versus the time step are given. Recall that the time
step sizes are computed using the time step controller of Section 6.2.

With respect to the IMEX Runge-Kutta-Chebyshev method we have the following
remarks. Because the advection and diffusion part are integrated explicitly, there is always
a stability condition on the time step. This stability condition makes the IMEX RKC
method not suitable for computing a steady state solution. We implemented the IMEX
RKC scheme with a variable step size controller and a variable stage controller as described
in Section 5.1. The number of stages per time step is given in Figure 10, whereas the time
step size and ‖F (w(t))‖2 are given in Figure 11.

We conclude with the contour plots of the steady state solution in Figure 12.
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TIM CPU time # time steps # Newton iterations

Euler Backward 1061 CPU sec 120 236

ROS2 579 CPU sec 190 0

BDF-2 689 CPU sec 99 182

IMEX-RKC 13141 CPU sec 1127 9075

Table 8: Workloads of various TIM for simulation with physical initial conditions.
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Figure 8: Residual ‖F (w(t))‖2 versus time step for simulation with physical initial conditions
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Figure 9: Time step size versus time step for simulation with physical initial conditions
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Figure 10: Number of stages of IMEX Runge Kutta Chebyshev scheme versus time step for simulation
with physical initial conditions
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Figure 11: Residual ‖F (w(t))‖2 and time step size versus time step for the IMEX Runge-Kutta-Chebyshev
scheme for simulation with physical initial conditions
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Figure 12: Contour plots of the steady state mass fractions of SiH4 (a), SiH2 (b), H2SiSiH2 (c), Si2H6 (d),
Si3H8 (e) and H2 (f). The outflow boundary is situated on r = 15.0 cm. to r = 17.5 cm.
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6.3.2 Constant Initial Profile

In order to test the robustness of the code we perform a test proposed by Kleijn. This so
called ‘Constant Initial Profile’ test starts at t = 0 with a constant initial profile consisting
of silane SiH4 and helium He, such that

fSiH4
= 0.001 and fHe = 0.999, (93)

on the whole computational domain. In Figures 13 and 14 and Table 9 results for the
different time integration methods, except IMEX Runge-Kutta-Chebyshev, are given. The
result for the IMEX RKC scheme are presented in Figure 15 and 16. The steady state
solution that has been found is identical as the one found in the simulations of Section
6.3.1.

From Table 9 we see that with the constant initial profile as initial condition a smaller
number of time steps is needed to converge to steady state. This observation is easily
explained by the fact that for the constant initial profile no silane has to flow into the
reactive zone. In this case the gas phase reactions will start immediately, such that towards
a chemical equilibrium can be computed.

TIM CPU time # time steps # Newton iterations

Euler Backward 502 CPU sec 53 119

ROS2 266 CPU sec 78 0

BDF-2 401 CPU sec 54 116

IMEX-RKC 8573 CPU sec 718 5797

Table 9: Workloads of various TIM for constant initial profile simulation.

7 Conclusions

Based on Table 8 and 9 can be concluded that for the simplified CVD system as
introduced in Section 2, the second order Rosenbrock method is the most efficient time
integration method in terms of CPU time. The difference between Rosenbrock, Euler
Backward and BDF is minimal. We expect that for 2D systems with a larger number
of species and reactions, these methods perform equally well, to compute a steady state
solution.

The opposite is true for the IMEX RKC scheme. As mentioned before, this method is
not suitable for simulation until steady state. We expect that in the case of 3D and a large
number of reactive species this scheme will perform much better, under the assumption
that for future work transient simulation is considered. This expectation depends highly
on the fact that the nonlinear systems in the IMEX RKC scheme will become (relatively)
cheaper to solve if the number of dimensions (and species) increases.
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Figure 13: Residual ‖F (w(t))‖2 versus time step for constant initial profile simulation
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Figure 14: Time step size versus time step for constant initial profile simulation
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Figure 15: Number of stages of IMEX Runge Kutta Chebyshev scheme versus time step for constant initial
profile simulation
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Figure 16: Residual ‖F (w(t))‖2 and time step size versus time step for the IMEX Runge-Kutta-Chebyshev
scheme for constant initial profile simulation
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