
 
 

Delft University of Technology

A Comparison of Various Deep Learning Methods for Household Load Forecasting

Deivamani, Karthikeyan; Norouzi, Farshid; Shekhar, Aditya; Bauer, Pavol

DOI
10.1109/ISGTEUROPE56780.2023.10407916
Publication date
2023
Document Version
Final published version
Published in
Proceedings of 2023 IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2023

Citation (APA)
Deivamani, K., Norouzi, F., Shekhar, A., & Bauer, P. (2023). A Comparison of Various Deep Learning
Methods for Household Load Forecasting. In Proceedings of 2023 IEEE PES Innovative Smart Grid
Technologies Europe, ISGT EUROPE 2023 (IEEE PES Innovative Smart Grid Technologies Conference
Europe). IEEE. https://doi.org/10.1109/ISGTEUROPE56780.2023.10407916
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISGTEUROPE56780.2023.10407916
https://doi.org/10.1109/ISGTEUROPE56780.2023.10407916


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



A Comparison of Various Deep Learning Methods
for Household Load Forecasting

Karthikeyan Deivamani
Faculty of Electrical Engineering,
Mathematics and Computer Science

Delft University of Technology
Delft, The Netherlands

K.Deivamani@student.tudelft.nl

Farshid Norouzi
Department of DC Systems

Energy Conversion and Storage
Delft University of Technology

Delft, The Netherlands
f.norouzi@tudelft.nl

Aditya Shekhar
Department of DC Systems,

Energy Conversion and Storage
Delft University of Technology

Delft, The Netherlands
a.shekhar@tudelft.nl

Pavol Bauer
Faculty of Electrical Engineering,

Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands
P.Bauer@tudelft.nl

Abstract—Forecasting energy consumption is vital for smart
grid operations to manage demand, plan loads, and optimize
grid operations. This work aims at reviewing and experimen-
tally evaluating six univariate deep learning architectures to
forecast load for a single household using a real-world dataset.
Multi-layer perceptron (MLP), Convolutional neural network
(CNN) and recurrent neural networks (Simple RNN, Long Short
Term Memory (LSTM)) were the neural network methods that
were analysed along with robust LSTM architectures like Bi-
directional LSTM and CNN-LSTM Hybrid. All the models were
tuned using Bayesian optimization and evaluated using root
mean squared error (RMSE) as the metric. In addition to
neural network models, Seasonal ARIMA (SARIMA) a statistical
model is also presented to observe the performance. As a result,
Bi-directional LSTM was observed to have achieved the best
performance with the smallest value of RMSE; however, it
was also observed that differences in performances between
other neural network models were quite low, especially between
the RNN architectures. Additionally, although machine learning
methods performed better than SARIMA the former model was
more complex and computationally intensive.

Index Terms—electric load forecasting, smart grid, time-series
forecasting, univariate, deep learning

I. INTRODUCTION

Microgrids are a promising solution in making the electric
grid more reliable and green by improving energy reliability,
energy sharing and demand-side management aspects. To
leverage the full capabilities of a microgrid, accurate load
forecasting becomes a critical task either from a consumer
perspective to reduce consumption or from a grid operator
perspective for a better decision-making process or for efficient
energy storage system management. With the rise in advanced
monitoring infrastructure more granular and extensive data
is being collected. Deep learning forecasting methods have
demonstrated significant potential in effectively managing
larger and more intricate datasets [1].

Short-term load forecasting (STFL) is the process of pre-
dicting the power demand of a power system over a short-
term period, typically ranging from a few minutes to a few
hours. Deep learning has demonstrated improved performance
in modeling complex patterns for individual household load
profiles, which tend to be more volatile due to their depen-
dence on individual behavior, as opposed to aggregate level
modeling [2].

In literature, different types of models both linear and non-
linear have been used for STFL. Family of Auto-regressive
moving average (ARMA) models were pioneers in STFL [3]
which was then evolved into SARIMA to account for seasonal
variance [4]. The limitation of this set of statistical methods
is that it assumes a linear system whereas most often real-
world cases exhibit non-linear properties. In order to solve this
shortcoming, models like feed-forward neural networks have
become attractive as they show capabilities in modelling com-
plex non-linear systems such as load forecasting [1]. Neural
network techniques range from simple MLP to convolutional
methods to recurrent neural networks [5] along with their
variants LSTM [6] and Gated recurrent units (GRU). Hybrid
architectures have also been proposed in the literature between
neural networks as well as between statistical and machine
learning methods such as CNN-LSTM hybrid presented in [7]
and a hybrid LSTM-Exponential smoothening [8] respectively.

The scope of this paper is to provide a comparative analysis
of basic deep-learning architectures for STFL of a single
household and compare using standard error metrics such as
RMSE and MAE to input into an energy management system.

This paper is organized as follows: Section II reviews the
load dataset, preprocessing steps, error metrics and the details
of the models being evaluated. Next, section III presents the
results and discussion of parameter search and load forecasting
models. Finally, the conclusions are provided in section IV.
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II. METHODOLOGY

A. Data Collection and preparation

The dataset used in this analysis is the hourly load from
a single household which was retrieved from the IHomeLab
RAPT dataset [9]. The data is from a household in the greater
Lucerne region in Switzerland and the data spans from 1
December 2016 to 31 July 2019 which is around two and
a half years.

Fig. 1. Weekly statistics for the load in the whole IHomeLab dataset. The
bold line is the mean and the blue area covers one standard deviation from
the mean

In Fig. 1 the bold line represents the mean of that hour
over every week in the dataset, here it could be observed
that there are high fluctuations and a higher mean during
Sunday,Saturday and Wednesday. However, higher consump-
tion during the weekend is expected but Wednesday is an
interesting observation.

The missing values in the dataset were located and filled
using the previous value and to deal with non-stationarity the
data was differenced from the previous value [10]. Stationarity
of the data was checked using Augmented Dickey-Fuller
(ADF) test [11].

B. Forecasting models

1) Baseline:
A seasonal naive model was used which is using the same
value of the previous season as the predicted value this is
also called a persistent model. In this analysis, since the daily
seasonality is strong as inferred from auto-correlation values
the previous day were used as the forecasting value for the
coming day.

2) Statistical Model (SARIMA):
SARIMA is a class of time series forecasting techniques

that predicts the future values based only on the past behavior
of the variable being modelled along with accounting for sea-
sonalities [4]. The mathematical representation of the model
is given below.

yt = c+

p∑
n=1

ϕnyt−n+

q∑
n=1

θnϵt−n+

P∑
n=1

Φnyt−sn+

Q∑
n=1

Θnϵt−sn+ϵt

(1)

SARIMA (p,d,q)(P, D, Q)s is a parametric model, and
(p,d,q) is the auto-regressive lag order, order of differencing,
moving average lag order respectively and (P, D, Q) is for the
seasonal terms. In (1) the c is a constant term, ϵt is the error
term and ϕn,θn,Θn,Φn are the coefficients of lag terms .

3) Artificial Neural Network (ANN) Methods:
Neural Networks are part of a family of machine-learning

techniques inspired by the functioning of the human brain
which consists of interconnected nodes (neurons) compart-
mentalized into layers [12]. A typical neural network archi-
tecture consists of an input, output layer along with hidden
layers where the abstractsa are learned . For this forecasting
problem, 24 lags were utilized as the feature due to its strong
diural pattern [13]. Different architectures of neural networks
built on the foundational structure are discussed below.

a) Multi layer perceptron (MLP):
Multi-layer perceptron is a type of feed-forward ANN where

the information flows in only one direction from the input layer
to the output layer. This brings the limitation of not capturing
the temporal dependencies regardless MLP has shown to have
competitive performance in a few load forecasting use cases
[14].

b) Convolutional Neural Network(CNN):
Convolutional neural networks are a family of ANN which

works with a grid-like structure and have been extensively
used in image recognition and natural language processing
[15]. The key property of CNNs to extract features has
been leveraged for univariate time-series forecasting, where
a filter/kernel is passed through the series to extract relevant
features. Although CNN has shown to be effective in NLP
and image recognition, they are not widely used in time series
forecasting as CNN cannot model sequential data, which has
been addressed recently by combining them with recurrent
neural networks [2]. A vanilla CNN and a CNN-LSTM hybrid
architectures have been analyzed in this work.

c) Recurrent Neural Network (RNN):
Recurrent neural networks is a NN architecture that modifies

feed-forward neural networks to handle sequential data and
capture patterns better, which makes it a powerful tool for
time series forecasting [5]. Compared to feed-forward neural
networks, RNNs maintain an internal state that allows them
to remember information from previous inputs.RNN’s internal
feedback loop allows it to use its previous outputs as inputs
to the current step, making it capable of modeling sequences
and capturing temporal dependencies in the data.

d) Long Short Term Memory (LSTM):
LSTM is a variant of RNN that was developed to address

the issue of vanishing or exploding gradients during backprop-
agation. This problem occurs when the gradient values become
too small or too large, making it difficult for the network
to update the weights effectively [16].LSTMs have a hidden
state and a cell state which store short-term dependencies and
long-term information. This ability of LSTM to store long-
term dependencies has it a popular choice in load forecasting
[6]. One extension of LSTM is the Bi-directional LSTM, as
unidirectional LSTM processes the input sequence only in the
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TABLE I
HYPERPARAMETERS AND PARAMETER RANGES FOR DEEP LEARNING

MODELS

Hyperparameter Range

Number of hidden layers [1,2,3]

Number of neurons (1,120)

Dropout ratio (0,0.5)

Learning rate (0.00001,0.01)

forward direction, and Bi-LSTM processes both ways forward
and backward [17]. This allows the model to capture a better
sequential relationship in the input sequence. Unidirectional
and Bi-directional LSTMs both have been explored in this
analysis.

C. Hyperparameter Tuning

Hyperparameter tuning is important in time series forecast-
ing to find the best model hyperparameters that minimize
forecast error. RMSE is a commonly used target metric for
this optimization process.

For SARIMA, the autoregressive, differencing, moving av-
erage terms (p, d, q)x(P,D,Q) were analyzed using a correl-
ogram, after which a grid search was done to obtain best-fit
hyperparameters [4].

Two common methods for hyperparameter tuning are grid
search and random search. However, as the number of hy-
perparameters to tune increases, the number of possible com-
binations can grow exponentially, making the search compu-
tationally intensive and sometimes infeasible. Bayesian opti-
mization is a probabilistic model which finds an optimal set
of hyperparameters in fewer evaluations. After every iteration,
it updates the search algorithm and avoids the low-performing
region [18]. For this comparative study, a simple Bayesian
algorithm was performed for the hyperparameter in the range
as mentioned in table II.

D. Performance Metrics

The accuracy of models and neural network architectures
is typically assessed using scale-dependent error metrics like
root mean squared error (RMSE) and mean average error
(MAE) [19]. RMSE is particularly effective as it places
greater weight on large errors and can handle values close
to zero. Since they are scale-dependent, they cannot be used
to compare different datasets. R-squared (R2) is a statistical
measure that represents the proportion of the variance in
predicted values is explained by the true values, (4) shows
the mathematical representation.

1) Mean Absolute Error (MAE):

MAE =
1

n

∑
|ŷt − yt| (2)

2) Root Mean Squared Error (RMSE):

RMSE =

√
1

n

∑
|ŷt − yt|2 (3)

3) R-Squared:

R2 = 1−
∑

(yi − ŷ)2∑
(yi − ȳ)2

(4)

In (2) and (3), ŷt is the predicted value and y is the actual
value. To assess model accuracy, a combination of metrics
is needed to inspect different aspects of the forecast. In this
paper, RMSE is chosen as the metric over which models are
optimized as well as for evaluation.

A holdout validation was undertaken for evaluation where
the dataset was split into 70% for training 20% for validation
and 10% for testing without shuffling of data points.

III. RESULTS AND DISCUSSION

In this section, the results of the above mentioned models
using the IHomeLab dataset and accuracy on the test data
using RMSE and MAE are analyzed.

TABLE II
SUMMARY OF PREDICTION ERRORS (RMSE AND MAE) FOR ABOVE

MODELS

Models MAE RMSE R2

(kW) (kW)

Persistence Model (Baseline) 0.251 0.410 -0.356

SARIMA 0.231 0.322 0.149

Deep Learning Models

Multilayer Perceptron (MLP) 0.195 0.281 0.359

Convolutional Neural Network(CNN) 0.179 0.275 0.363

Recurrent Neural Network (RNN) 0.183 0.277 0.361

Long Short Term Memory (LSTM) 0.175 0.270 0.374

CNN-LSTM Hybrid 0.181 0.271 0.404

Bidirectional LSTM 0.173 0.269 0.409

A. SARIMA

For the SARIMA model, after analyzing autocorrelation
and partial autocorrelation plot followed by a grid search the
optimum parameters were found to be p = 2, d = 1, q =
1, P = 3, D = 0, Q = 2 with the seasonality of 24 hours.
As seen in the table II RMSE and MAE were 0.231 kW and
0.322 kW, on comparing this with the baseline performance
SARIMA had lower RMSE and MAE. In Fig. 2, the predicted
values capture the daily variation but fail to capture the
increase during the weekend as the model is limited to one
seasonality. As it assumes a linear relationship and stationarity
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in data which states constant variance so the model fails to
capture the non-linearity. A key advantage of SARIMA and
statistical models, in general, is that they need less data to train
compared to machine learning methods which makes them
robust when fewer data is available. This model is introduced
to compare a well-popular statistical model with deep learning
methods.

Fig. 2. Forecasted (Red) and Actual (Blue) Load profile for a week using
SARIMA Model

B. Multilayer Perceptron (MLP)

In Fig. 3, it can be seen that the MLP model is able to
capture the trend of the actual data and fit better than the
SARIMA model with a RMSE of 0.281 kW. It can also be
noticed that the model does capture variance significantly
better visually and by inferring R-squared value in Table II .
The parameter chosen were 2 dense layers with the first layer
of 90 neurons and the second layer of 20 neurons, a learning
rate of 0.0001, dropout ratio of 0.2 for 100 epochs.

Fig. 3. Forecasted (Red) and Actual (Blue) Load profile for a week using
Multilayer Perceptron (MLP)

One of the main drawbacks of using MLP for load forecast-
ing is that it does not model the long-term dependencies and
the temporal relationships between the data. Compared to other
architectures mentioned, MLPs are heavily parameterized due
to the fully connected nature of dense layers which lead to
overfitting of the training data. Regularization by a dropout

layer was introduced to tackle this problem and generalize the
model.

C. Convolutional Neural Network (CNN)

Optimization of CNN hyperparameters yielded 16 filters,
kernel size of 4 and 30 neurons in the dense layer as the
optimal hyperparameters from bayesian optimization. It per-
formed better than MLP with a RMSE of 0.275 kW with a
slight reduction in RMSE and better capturing of vairance as
seen in Fig.4 and Table II . The architecuture of CNN is to
capture local patterns through filters explains the variance in
the predicted data and it also emphasizes the limitation of not
capturing the trend and long-term dependencies in the data.

Fig. 4. Forecasted (Red) and Actual (Blue) Load profile for a week using
Multilayer Perceptron (CNN)

Fig. 5. Forecasted (Red) and Actual (Blue) Load profile for a week using
Multilayer Perceptron (Bi-Directional LSTM)

D. Bi-Directional LSTM

In this analysis, Bidirectional LSTM has shown to be the
model with the least RMSE of 0.269kW, but the difference
between this and other recurrent neural networks (LSTM,
CNN-LSTM) is very low as seen in Table II. In Fig. 5, it
can be observed that some predictions clearly reflect the
influence of the actual value of the previous time step. This
is mainly due to the sequential nature of the data and high
correlation with the previous time step even after differencing
and removing non-stationarity. Adding external features that
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influence the load could improve the performance further
by providing additional information to the model like for
instance weather conditions, holidays, and special events can
all impact the electricity consumption of the household. A
shallow architecture with a Bi-directional LSTM with 64
neurons and a learning rate of 0.001 was chosen and trained
for 80 epochs.

Although, LSTMs have shown good results they suffered
from overfitting during experimentation due to smaller train
data and a high number of parameters. This was addressed
by introducing a regularization dropout layer with a dropout
ratio of 0.2.

In this analysis, it was observed that RNNs outperformed
the baseline and other neural network methods as seen by
their lower RMSE. It was also noted that LSTM based models
performed better than simple RNNs with Bi-directional LSTM
having a slight edge over others in terms of RMSE, as shown
in 6. The problem of overfitting was constantly experienced
during the empirical testing for all the models as the data set
used to train was limited to only 2 years, and neural networks
are complex models that require large amounts of data to
achieve better performance.

Fig. 6. Comparison of RMSE and MAE for all the discussed models

IV. CONCLUSION

In this paper, we have compared the univariate single-step
load forecasting performance of a statistical model (SARIMA)
and primary neural network architectures such as MLP, CNN,
RNN and LSTM using rRMSE as the evaluation metric and Bi-
Directional LSTM performance was superior to other models.

Although there were only slight variations in the perfor-
mance of different neural network models, Bi-LSTM exhibited
the best results in terms of RMSE, as depicted in Fig. 6
and Table II. Nonetheless, the differences in the performance
among these models were not significant. It should also be

noted that neural network methods on average performed 12%
better than SARIMA but the implementation for the former
was complex and computationally intensive than the later.
Overall, the findings suggest that deep learning approaches
are effective for energy consumption forecasting and can be
useful in smart grid operations for managing demand, planning
loads, and optimizing grid operations.
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