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Preface
This document describes the software project as implemented for the Bachelor Thesis Project
for Computer Science over the course of ten weeks. The project was commissioned by GeoPhy
and aimed at integrating automated valuation models (AVM) into the GeoPhy architecture.

We would like to thank everyone at GeoPhy for their warm welcome towards our team. We
have truly enjoyed working together with this bunch of creative innovators and have learned
more than we could have imagined at the start of the project. We would also like to thank
our coach, Cynthia Liem, for her enthusiasm and inspiration, for guiding us through this
process, and helping us come to a solid project with a real use for GeoPhy.

A. Geenen
H. Nguyen

R.T. Wiersma
Delft, June 2017
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Abstract
As GeoPhy is developing its business model and looking into the future of automated valu-
ation models (AVM), this project delivers a proof of concept of a system that automates the
training, maintaining, and delivery of machine learning models for automated valuations. In
order to achieve this goal, the situation and problem were first analysed. This resulted in
an outline of the desired product and requirements in the form of a MoSCoW analysis. An
important goal for this project was to incorporate streams of data from a stream processing
platform (Apache Kafka) into a service that would train and update models automatically.
The second goal for this project was to keep track of the changes in the data in order to
detect significant changes in distribution (concept drift) of the target prediction value.

These subjects were studied in literature, reviewing existing and upcoming valuation prac-
tices in real-estate, steps needed to perform machine learning tasks, architecture to support
big data processing, and concept drift. This resulted in a design made up of four different
components: An ETL and data processing component, a modelling component, a Kafka con-
nector, and a client-facing API. An important part to ensure efficiency and scalability of the
system is the implementation of concept drift: models are only retrained when the distribu-
tion of the target training value has changed significantly.

These components use storage in the form of a Postgres database, disk storage and Elastic
Search logs. The logs (on model performance and concept drift usage) can be interpreted
through a Grafana dashboard, which is editable through its own GUI.

Finally, to test the success of the project, a testing plan was set up and the code was
reviewed by an external group (SIG). The code achieved all the testing milestones and received
a 4.5/5 in a mid-development review on maintainability. With this project, the concept of
automated valuation models inside GeoPhy’s new architecture has been tested and proved
and the project is ready to be further developed and used in practice.
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1
Introduction

Data is the new oil!1 More and more data is gathered and GeoPhy is one of the ‘refineries’
of this oil; gathering, enriching, and analysing data for the real-estate market. In an effort
to streamline this process, GeoPhy has been working on a new internal architecture that
makes use of stream processing to enable the flow of data from one place to the other inside
the company.

Together with this renewal in architecture, GeoPhy is exploring the application of Auto-
mated Valuation Models as a business opportunity. Current and historical valuation pro-
cesses are time consuming and use a lot of manpower. Automating these valuations with
the help of machine learning models provides an advantage in terms of costs, but also in
accuracy.

This project aims to bring these two developments together in a system that takes care
of the automation of valuation models and the flow of data to these models. While doing
so, it also makes sure that the valuation models are up to date with the latest data and
provides insight into the performance of the system with logs and a dashboard. The project
is unique, in that it requires a system that is both efficient and scalable, as well as usable
and maintainable, while making use of distributed systems and the latest developments in
software engineering.

In this report, the project is described and motivated from the initial problem description
to the design and implementation of the system. In chapter two, the problem is defined
and explained. This problem is further analysed in chapter three, which culminates in a
set of requirements in the form of a MoSCoW analysis. In chapter four, the background
of the project and possible solutions are explored in existing literature. These explorations
have led to the design and implementation of the final system, which is described in chapter
five and six. In chapter seven, the results of the project are weighed and tested against the
problem and requirements that were set in chapter two and three. This leads to a conclusion
in chapter eight, after which the final system is discussed and critically examined in chapter
nine. Recommendations based on this discussion are given in chapter ten, together with
general recommendations to further develop the system.
1The first recorded mention of this was by Clive Humby in 2006, at ANA Senior marketer’s summit at Kellogg School
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2
Problem definition

This project aims to solve the following challenge: GeoPhy needs a system that can run
automated valuation models (AVM) in production (AVM Service), which works in GeoPhy’s
proposed architecture, consuming stream data, and trains its models based on changes in
the market. Simply retraining the models every time a change comes in is inefficient and
ineffective. The models take a lot of processing power to train and are designed to generalize
well; they will not change much as single values are updated. The system should find a way
to determine and detect a significant amount of changes to the data to validate a retraining.

In further detail: the AVM Service should consume a data stream with large volumes of
data to perform the following:

• Build a persistent view of the current state of incoming data that can be used bymachine
learning models.

• Analyse the data stream in order to detect changes to the distribution of the target
prediction value (e.g.: the value of houses increase due to an improving economy).

Based on this data, the system should:

• Train an automated valuation model based on the persistent view of incoming data.

• Retrain an automated valuationmodel only when a significant change in the distribution
of the target value has been detected.

• Provide predictions to a user through an API.

AVMs provide predictions for property values based on the data that is readily available (e.g.
number of rooms, value) and data that GeoPhy ‘deduces’ from other sources (e.g. transport
options in the neighbourhood). The models are trained using machine learning techniques,
such as decision trees and random forests.

The amount of data used to train these models can be enormous: each sub-market has
millions of buildings and data is gathered on the property itself, but also the surrounding
areas. The size of these datasets can grow into tens of gigabytes and the models require many
operations on this data in order to be trained.

As GeoPhy is developing its business model, it is also reworking its architecture in order
to support a growth of new services based on the pool of data they are currently building.
One of the key components in this architecture is the use of Apache Kafka to communicate
between the main database (CoreDB) and GeoPhy’s services, AVM being one of them. Kafka
communicates the changes of the data (producer) to all of the services (consumers) through
a stream of updates. In the case of GeoPhy, this data consists of information on properties.
The changes are updates to the real-world properties, like a change in value, extra buildings,
or new infrastructure.

GeoPhy should be able to monitor the detection system for changes in distribution of the
input data and modify the parameters to optimize its effectiveness. This, in order to make
sure that the models are not retrained too sparsely.

3



3
Problem analysis

The problem definition posed in the previous section will be explored in more detail in this
problem analysis. This results in a MoSCoW analysis, through which the success of the
project can be measured.

���� 0RGHOV LQ SURGXFWLRQ
One of the aims for the system is to run the models in a production environment. What does
this actually mean and how does this translate to requirements for the software? The pro-
duction environment for GeoPhy is a server or cluster of servers that has to serve predictions
to large commercial parties who expect high quality, dependable software. As mentioned
before, GeoPhy uses large volumes of data on millions of buildings. In order to measure
the quality that is expected, the International Organization for Standardization provides the
following quality measures for systems and software engineering, which will find their way
into the list of requirements at the end of this chapter: functionality, performance efficiency,
compatibility, usability, reliability, security, maintainability, portability[15]. Functional: it
should do what it is advertised to do; return accurate predictions through machine learning
models. Efficient: with the amount of data considered, it should train the models efficiently,
so that processing time (a valuable resource) is used well, and it should return predictions
quickly, so that end users have a smooth experience. Compatible: it should interact with
all of the current or planned systems well through the use of Kafka streams. Reliable: the
service should respond consistently, should be tested thoroughly, and if a model is badly
trained, GeoPhy should be able to return to previous versions of the model. Secure: internal
data should not be exposed to external users and external users should not be able to breach
into the system. Maintainable: GeoPhy engineers should be able to maintain and modify the
code easily and, on change, the system should not break or be notified when it does (testing).
Portability: the system can be deployed on different machines regardless of their operating
system or number of machines.

Regarding usability, the measure can be split up into two cases: usability for GeoPhy data
analysts and usability for external users.

4



3.2. Changing markets 5

������ 8VDELOLW\� PRGHOV LQ *HR3K\
When a customer requests a specific type of valuation model from GeoPhy that has not been
implemented yet, a data analyst will explore the task with tools such as DataIku1 or Python
notebooks2. In this software, the analyst can iterate easily and explore different kinds of set-
tings and configurations of features to use when training the model. Once this exploratory
process is done, the result is a list of data sources, features that provide the best predictions,
and settings for the machine learning model that is used (e.g.: number of iterations or tree
depth for gradient boosted trees). The data analyst could provide the predictions for desired
properties from these exploratory cases, but they would like to integrate the model into the
GeoPhy architecture, so it can make use of up-to-date data and automated prediction calcu-
lation through an API. In order to do this, the data analyst should be able to transfer their
model to the AVM system.

To make this possible, the AVM system must accommodate the most common machine
learning techniques that are used by the analysts (XGBoost, Gradient Boosted Regression,
Decision Trees). An analyst should not need to dive into the code to add functionality: they
should preferably have one place to define necessary datasources and one place to define the
model without having to add any other code. The system should take care of any actions
that are reused in different models. The modelling framework needs to be documented well
and there should be an example of an implemented model, so data analysts can learn and
copy from previously created models.

Finally, GeoPhy needs to monitor the performance of the model without having to run
any code. As the model is updated, one needs to be able to see if the model’s performance
actually improved or deteriorated and how it develops over time. This should be done through
a dashboard where performance metrics are logged.

������ 8VDELOLW\� PRGHOV IRU XVHUV
A user should be able to retrieve predictions fairly simply. In order to accommodate this,
the AVM system should provide an API, so the valuation can be incorporated in another
GeoPhy product with a front-end component. As the API is first processed by this other
component, a user will not directly interact with this API. Still, the API’s calls and responses
must be understandable to a software engineer who is new to the system. Again, this requires
creating a clean and clear design, but also documenting the functionality well.

���� &KDQJLQJ PDUNHWV
As markets change, the distributions of training data change, and the models need to reflect
these changes. When, for example, a market plummets, and property values change accord-
ingly, the model should be retrained so the lower prices will be reflected in the predictions.
If, however, a change comes through that does not imply a shift in the market, the model
does not need to be retrained. Superfluously retraining would only take valuable processing
time and does not reflect a stable state of the entire property market.

This means the system should detect a significant concept drift (concept refers to the
distribution of the target value), but should also be resilient to meaningless noise in incoming
data.

Finally, the implementation of such a detection mechanism implies the use of a model. As
models are subject to faults, overfitting or underfitting, this model should be monitored too.
GeoPhy should be able to monitor the choices made by the detection algorithm and should
be able to return to a previous model if the choice to retrain was made prematurely. Also, the
parameters used for this detection algorithm should be tuned to optimize its effectiveness.

���� 0R6&R: DQDO\VLV
In order to create a prioritization of the steps necessary to deliver the desired software project,
a MoSCoW analysis was done on the points mentioned above. This resulted in the follow

1http://dataiku.com
2https://jupyter.org



6 3. Problem analysis

requirements (the requirements are numbered for further reference, the ordering should be
ignored): the software …

������ 0XVW
1. Train a model based on the configuration set by a data analyst.

2. Have a RESTful API that can provide valuations.

3. Calculate predictions on an API call, using a trained model.

4. Version models and save old models for later use.

5. Consume events/values from a Kafka Stream.

6. Process multiple forms of data (data type agnostic).

7. Accept data points for models through a uniform interface (data source agnostic).

8. Have test coverage above 80%.

9. Score at least 4/5 on the SIG maintainability check.

������ 6KRXOG
1. Detect a significant change in distribution of the target value (concept drift) from the

incoming data.

2. Retrain a model when concept drift has been detected for the target value of that model.

3. Provide insight into the performance of the concept drift detection.

4. Provide insight into the performance of the model.

5. Consume events from multiple Kafka Streams.

6. Be able to source data from external APIs and databases.

7. Support models that require different kinds of data (numbers, vectors etc.).

8. Have at least one example valuation model that values multi family homes in parts of
the US.

9. Provide centralized places to set up the model and data sources.

������ &RXOG
1. Support different modes of valuation calculations (batch calculations vs. on demand).

2. Have a valuation model that values multi family homes for the entire US with less than
10% MdAPE.

3. Provide tools to perform time series modelling.

4. Automate the feedback process for concept drift detection.

5. Provide exactly one place to set up the model.

������ :RQ¶W
1. Have a user interface for building and setting up models.

2. Use data outside of readily available sources (i.e. no labour intensive data collection).

3. Predict sudden changes for the distribution of the target value.



4
Literature Review

After the problem was analysed, an in-depth study of literature concerning the subject ma-
terial was undertaken. This study attempted to answer the following main question: what is
the context and what are best practices to design a system to automate the data flow, training
and retraining, and delivery for AVMs?

First, an understanding of the background of valuations and modelling is necessary to
understand the context in which the system must perform and the kind of functionality that
is to be expected from the system. Current valuation practices are summarized, after which
the step is made to more recent and future models in the form of machine learning and neural
networks. The process of creating and maintaining such a model in a software system is then
assessed, after which the design principles to implement the system are studied. Finally,
topics that are specific to the desired system are studied: Apache Kafka and Concept Drift.

These topics resulted in the following sub-questions, answered in subsequent sections:

• How are property values estimated in current real-estate practices?

• What machine learning models are used to estimate real-estate value?

• What are the steps that a software system should take to create a machine learning
model?

• What are best practices for designing an architecture for varying prediction models that
can be accessed by an API?

• How should a Kafka stream be processed by an application?

• How can concept drift be detected by an application?

���� &XUUHQW YDOXDWLRQ SUDFWLFHV
According to the International Valuation Standards Committee, “Market value is the esti-
mated amount for which an asset should exchange on the date of valuation between a willing
buyer and a willing seller in an arm’s length transaction after proper marketing wherein the
parties had each acted knowledgeably, prudently and without compulsion.”[7] Current valu-
ation methods are based on the idea that the model to calculate these valuations should be
based on the thought process of a ‘willing buyer’ or a ‘willing seller’ and what these parties
are willing to pay or receive for the property being valued. The current valuation methods
are grouped by Pagourtzi et al. as follows:

1. Traditional valuation methods:

• comparable method;

• investment/income method;

7
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• profit method;
• development/residual method;
• contractor’s method/cost method;
• multiple regression method; and
• stepwise regression method.

2. Advanced valuation methods:

• artificial neural networks (ANNs);
• hedonic pricing method;
• spatial analysis methods;
• fuzzy logic; and
• autoregressive integrated moving average (ARIMA).[30]

The thought process of the buyer and seller can most explicitly be traced in traditional val-
uation methods. These methods try to estimate the value of a house, either on the value
of houses that are comparable to the property (comparable method), on the investment and
returning profit from letting or using the property (investment/income, profit method), on
the cost of developing the property (development/residual), or the cost of replacing the build-
ings on property if one were to undertake this task again (contractor’s/cost method). In the
remaining traditional valuation methods, multiple regression (MR) and stepwise regression
(SR), one can trace the buyer’s thought process in the following way: regression methods
try to find the predictive relationship of different attributes to the price of a property. If, for
example, a good view is important to buyers (as witnessed in a study by Benson et al.[4]),
regression analysis is supposed to find determine the impact of this attribute on the value
and create a linear function based on these attributes.

Advanced valuation methods have developed in the last two decades and incorporate new
technologies in the valuation mix. Artificial Neural Networks find patterns in a big dataset
without having predefined restrictions (aside from the boundaries of the network itself) or
assumptions[10]. This gives it the ability to find previously unknown connections between
attributes and the valuation. The networked nature of the model makes it extremely hard
to understand the ‘reasoning’ within the model. As developers of TensorFlow described the
process of developing their system for Deep Learning (using Neural Networks): ”Some of the
stuff was not done in full consciousness. They didn’t know themselves why they worked.”[22]
This makes it hard to pinpoint how exactly the model mirrors the parties’ thought processes,
but the accuracy of valuations does prove its effectiveness[26].

The hedonic pricing method is a version of linear regression that tries to make inferences
about non-observable values of different attributes (e.g. air quality). Spatial analysis incor-
porates geographical data and objects that are close to the evaluated property to determine
its value. According to McCluskey et al., this method appears to be the most transparent
for assisting mass appraisal in terms of “cost-effectiveness, user applicability and predictive
accuracy.”[26] Fuzzy logic uses logic based rules with fuzzy determinants to group build-
ings and has the advantage of taking into account the hierarchy of the market and allowing
linguistic variables for evaluation. Finally, ARIMA is a class of regression modelling that
includes time series in its method through the moving average.

������ (YDOXDWLQJ PRGHOV
In order to evaluate these practices and determine the need for a system based on machine
learning principles (aside from ANNs), it is useful to have an assessment rubric for the eval-
uation methods. As mentioned in the previous paragraph, it is important for a valuation
method to mirror the thought process of the potential buyer and seller, as these will even-
tually make the transaction for the property that is valued. McCluskey et al. provide the
following criteria for comparing different modelling approaches:

• predictive accuracy of the estimates;
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• conceptual integrity;

• analysis of valuation variation where more than one mass appraisal methodology is
applied;

• internal consistency of the model;

• nature of any model adjustments (i.e. the adjustment of the model predominantly spa-
tial/structural or temporal in nature);

• reliability and robustness of the model;

• feasibility in terms of cost and time efficiency; and

• explainability of the model in terms of being able to defend the estimates in a formal
setting, such as an appeal tribunal or court.[26]

The predictive accuracy and consistency of the results (conceptual integrity, internal consis-
tency) are usually present in the current models. What can be concluded from McCluskey’s
comparison of the different methods is that ANNs tend to excel in the area of predictive accu-
racy and cost and time efficiency (once the model has been trained, calculating estimations is
relatively cheap), but lack in consistency (some training sets give the model a better outcome
than others) and explainability. Because of these last reasons, McCluskey ends up favouring
Geographically Weighted Regression (GWR).

Researchers have also found fault with linear regression models[2, 37]. They argue that
some attributes are not linear in nature and that they have a problem with aggregation
bias. Through the use of hierarchical models (models that account for hierarchy: houses
within streets within neighbourhoods)[2] or models that accommodate the existence of sub-
markets[37], they try to mitigate these effects.

Another issue that came up in research was the updating of the model to continuously
serve accurate valuations. Mak et al. attempted to implement a system that would give
mass appraisals for homes based on a hedonic model. They concluded that online access
to these appraisals could save consumers a lot of time, but they also noted that “major
technical problems of data modelling and accuracy arise from the efforts to merge various
data sources into a single integrated product. Keeping the hedonic model results up-to-
date after the initial development efforts is also a time-consuming and costly task that might
have been underestimated at the outset.”[24] This highlights the issue of efficiency of the
algorithm and the need to assess when a model should be updated. Mak et al. suggest that
a time interval to update the model should be determined by professionals. In this project, it
will be attempted to design an automated process to make this determination using concept
drift.

It can be concluded from the existing literature that there is room for improvement in the
areas of accuracy and efficiency. Neural Networks provide improvement and also account for
previously unseen connections in the data. The networked nature of these techniques offer
a barrier for explainability, though. Explainability is an important aspect of valuing homes;
buyers, businesses and home-owners want to know why a certain house has a certain price
and its still hard to provide this explanation with current deep learning techniques.

���� 0DFKLQH OHDUQLQJ PRGHOV
Other machine learning methods might provide an outcome: they can ‘find’ connections
and patterns within data (like non-linear relations) that might not be found with traditional
methods and predict valuations with high accuracy. Next to this, they might offer more trans-
parency in the way the model values properties compared to Neural Network approaches. In
this section, this approach will be further explored and existing research examined for ap-
plicability.

It is out of the scope of this review to compile a comprehensive overview of all research
on machine learning. Many different approaches have been tested and each paper finds its
approach to be the most effective or provides some insights on how they used their methods.
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The research on mass appraisals for real-estate using machine learning methods suffers from
a limited availability of data and lack of open source code[23]. Data has become a highly
valuable resource for businesses, which makes it hard for researchers to get data within
their research budget. The outcome is that datasets for these experiments are relatively
small and that resulting techniques are quite specific to those datasets[41]. Nonetheless,
it is still useful to survey some approaches and see what these researchers found in their
experiments.

The papers that were studied mostly experimented with their models in WEKA (an open
source machine learning framework in Java[29]) and MatLab1 and compared the different
methods based on their accuracy measured in MdAPE (median absolute percentage error),
RMSE (root mean squared error) and other accuracy measures. Several papers resonate
the previously found issue with Neural Networks in their literature reviews: they note that
results obtained through neural network techniques are often unstable[1, 16]. Rafiei and
Adeli used Deep-belief Restricted Boltzmann Machines to estimate the sale price of a new
building before the start of construction[32]. They found that their approach was effective
and focused mostly on reducing the dimensionality of the problem; i.e.: selecting the right
features for prediction. Crosby et al. proposed a four-step process where data was analysed,
extracted and a prediction was derived using Gaussian Process Regression[8].

Antipov and Pokryshevskaya set out to justify Random Forests for mass appraisals and
compared the method with nine other methods[1]. They believe Random Forests could be-
come one of the best techniques for mass appraisal because, among other reasons, they
achieve good results in comparative studies, adequately work with missing data and are
robust to outliers. They expect Random Forests to avoid making mistakes that other tech-
niques run into. Antipov and Pokryshevskaya concluded that their research “validated the
application of the Random forest method to the mass appraisal.”

Park and Kwon Bae studied four algorithms using the Weka software: C4.5, RIPPER,
Naïve Bayesian, and Adaboost[31]. They studied data from Fairfax County in Virginia and
compared their techniques using the same data for each method[23]. Their models were
trained to predict whether the closing price was higher or lower than the listing price, which
is a boolean answer compared to the current issue of continuous valuation. Nonetheless, the
researchers found that “a machine learning algorithm can enhance the predictability of hous-
ing prices and significantly contribute to the correct evaluation of real estate price.” Research
by Kontrimas and Verikas echoes this general sentiment. They explored the usefulness of
prominent computational intelligence techniques for mass appraisals and concluded that
their SVM outperformed traditional regression and MLP based models, implying the need for
non-linear modelling in mass appraisals.

The following general tips were derived from the papers. Sub-markets and location are
important to account for in any model[19, 23, 41]. Antipov and Pokryshevskaya found that
“feature importance diagnostics has revealed that the district, time to the city centre by un-
derground, house type, total area of the apartment and bathroom unit type comprise the two
most important groups of price per square meter predictors. The factors of low importance
include indicators of inequality between room areas, the floor, on which the apartment is
situated, and telephone availability.”[1]

������ )HDWXUH VHOHFWLRQ
Some of the studied literature paid special attention to the selection of features[32]. The
approach used by Rafiei and Adeli used a Non-mating Genetic Algorithm to come up with a
selection of features that would best predict the market value of a house. Lowrance used an
L2 regularizer to find the most important features[23].

������ (QVHPEOHV
In their comparison of machine learning techniques, Kontrimas and Verikas found that a
committee (ensemble) of models outperformed the separate predictors[16]. The combining of
different techniques has been studied extensively by Lasota, Graczyk and others[13, 19–21].

1https://mathworks.com/products/matlab.html
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The different options are (1) bagging (bootstrap aggregation), (2) boosting and (3) stacking. (1)
When applying bagging, one trains the different models on different parts of the dataset. (2)
In boosting, models are trained sequentially on the part of the dataset that was not correctly
predicted by the previous model. (3) In stacking, models are trained on existing data, and
the outcome of these models is comprised into a new dataset. This new dataset is combined
with the original dataset to create a new model.

Graczyk et al. compared these techniques and found that stacking provided the lowest
prediction error, but tended to be inconsistent in its quality[13]. Bagging was most stable,
but performed the least in terms of accuracy. Graczyk et al. conclude that the results show
there is no single algorithm that produces the best ensembles and an optimal hybrid should
be sought for each dataset.

������ &RQFOXGLQJ
Machine learning techniques (like random forests, SVM, and Adaboost) are effective and
provide improvements over traditional techniques and neural networks in terms of accuracy
and consistency, but there is no one best approach. Finding the optimal model tends to be
more of an art in trying out different techniques and optimizing an ensemble for the dataset
that is used. From the literature, a couple of techniques have been shown to work and
provide better results: random forests, using ensembles. Zurada showed that, overall, AI-
based methods tend to perform better for heterogeneous data sets containing properties with
mixed features[41]. Based on this review, this project will support ensemble machine learning
models and test out the different techniques available in the machine learning toolbox. The
key is to support extensibility and a wide range of machine learning models, as new and
better methods continue to be developed.

���� 0RGHOOLQJ VWHSV
In order to support a wide range of machine learning methods, it is useful to have a gen-
eral idea of the steps needed to create a model through machine learning. Much of this
knowledge was acquired from Negnevitsky’s work on Artificial Intelligence: A Guide to Intel-
ligent Systems[28]. The first stage in creating a machine learning model, is getting the data.
According to Bellotti, important data sources for AVM include real estate property listing in-
formation, transaction data from land title registers, data from syndicates of local solicitors or
mortgage data from banks[3]. Getting this data might be difficult, as most of it is proprietary.

The second stage is data preparation. This should be done as automated as possible.
Performance of the created model largely depends on the quality of the input data. Raw data
is often not suitable for learning, but one can construct features from it that are suitable[9].
This process, known as feature engineering, as well as feature selection, can be difficult
because it requires domain-knowledge of the problem.

In addition, the data needs to be integrated and cleaned. Cleaning the data improves
the quality by removing outliers and impute or remove missing values. Joining the data
sets from different sources together often present a challenge, as different sources will use
different styles of record keeping, conventions, time periods or keys[39].

After features are selected, extracted, and cleaned. The data is ready for the model to be
trained. The dataset is then divided in a training set, on which the model is trained, and
a validation set, on which the model is validated after being trained. When the model has
reached satisfactory levels of accuracy, it will be put into ‘production’ and items that need to
be classified or appraised are fed into the model and an output is returned.

���� $UFKLWHFWXUH EHVW SUDFWLFHV
When designing a system that has to be able to accommodate a variety of models there are
a few important points to take into account. Chief among them are the ability to make it
possible to easily add new data sources for use by models, and to let the system be “model-
agnostic”, meaning that models that conform to a minimal interface should be able to be
used interchangeably.
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������ ([WHQVLELOLW\ RI SUHGLFWLRQ PRGHO IUDPHZRUN
Various architectures that have extensibility as one of the main design requirements utilize
a component-based design[25, 33, 34]. Component-based design is centered around the
separation of concerns within a software system, meaning that each piece or component
addresses a specific functionality. When building components, the goal is to abstract away
the interface of a component from the implementation details. This increases flexibility, as
programmers are then able to modify underlying logic inside of a component without affecting
the functionality of a system outside of the component’s boundaries[33].

Some ways in which component-based design can be applied to modelling systems are the
splitting of models into their own components[34], or placing models and their data sources
together into individual components[25]. One architecture proposed by researchers was the
use of so-called “Mini-Apps”[35]. This consists of domain-specific models and algorithms
implemented in various programming paradigms (e.g. MapReduce), such that they are ag-
nostic to the architecture surrounding them, and are able to be composed into more powerful
workflows and scale easily. An alternative to this is to co-locate the model and data sources.
Researchers have proposed a framework called Compositional Inference and Machine Learn-
ing Environment (CIMLE) in which this is utilized[25]. This system allows the creation of
multiple components that are composed of smaller “primitive” components that include a
model of choice, a data manager that takes care of the data loading and cleaning, and in-
terfaces for communicating with the host environment. The framework surrounding these
components allows users to configure the data flow and analysis pipeline without necessarily
understanding the internals of the individual analytics components. Systems designed using
these kinds of component-based designs are ultimately very extensible as they are able to
swap in models and data sources without severely impacting the overall system.

������ /RDGLQJ GDWD
One of the most cost and resource intensive steps in the design and implementation of a
modelling system is the loading of data in such a way that it is readily available, easy to
access, and of high enough quality to actively contribute to the performance of a model. The
extraction transformation loading (ETL) process, commonly used in industry, provides one
such way to pull data from a variety of heterogeneous data sources, combine them so that
they are useful, and load them into a system (usually a data warehouse) for further use[36].
As this is such a critical part of a data-driven system, there are various quality and design
metrics, grouped by Theodorou et. al, that have been defined for these processes:

• Data quality - How good is the data? (measured in accuracy, completeness, freshness,
consistency, and interpretability)

• Performance - The speed of the implementation of the ETL, resource utilization, capacity,
and types of ETL modes

• Upstream overhead - The load that is placed on data sources by the ETL process

• Security - The protection of sensitive information during the ETL process, the preven-
tion of unauthorized modifications, and the reliability of the system (e.g. recoverability,
availability, and fault tolerance)

• Auditability - The means to explain the ETL process i.e. How the data is sourced? What
business rules are applied during processing?

• Adaptability - How resilient to change is the ETL process?

• Usability - How difficult is the ETL to use and/or configure?

• Manageability - The maintainability and testability of the ETL process

Taking thesemetrics into account when designing the ETL process for an extensible frame-
work, metrics such as adaptability and usability become very important. However, as con-
cluded by Theodorou, these metrics are at odds with one another and so a careful balance
has to be struck between the various characteristics.
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The ETL process in its current form is relatively static, and often requires the data ware-
house, the place where the processed data is stored, to be partially unavailable when new
data is loaded in. Ideally this would not be the case, and researchers have proposed a new
streaming version of the pipeline in order to allow the data warehouse to be fully accessi-
ble at all times[12]. This system, called Stream Data Warehouse (StrDW), allows the on the
fly processing of new data as it arrives, and facilitates the use of a variety of different data
sources including data streams, external databases, and static files. It uses a load balancer
to accomplish this, that can source data from either a database that contains all historical
data and an aggregate stream of the most recent data. Once the data can no longer be found
in the external streams it is added to the historical data in the database.

���� 6WUHDP GDWD DQG .DIND
Kafka is a distributed and scalable message broker, created to process large volumes of data.
The basic concepts of Kafka are as follows[17]:

• A stream of messages of a common type is defined by a topic.

• Producers can publish messages to a certain topic.

• Published messages are stored on a set of servers called brokers.

• Consumers can receive published messages by subscribing to one or more topics.

In Kafka, different from most messaging systems, the brokers are stateless and do not
maintain information about which messages are consumed by subscribers[17]. Instead, the
brokers store messages on the server for a certain time period, after which they are deleted.
Therefore, applications that consume from a Kafka stream must maintain themselves which
messages are consumed, and ensure messages are finished processing before their retention
period. A benefit of this design, is that consumers can replay messages to an old offset.

Applications based on stream processing, often operate on a small window of recent data.
The computations are generally independent, and results are near real-time. However, most
use-cases found in the literature, such as analysis applications, often combine batch process-
ing and stream processing to provide low latency results. The lambda architecture describes
such a design[18]. This architectural pattern consists of two layers: a batch layer for accu-
rate results, and a speed layer for low latency results. By joining the output of both layers,
the results always reflect the latest data.

Currently, there are two large distributed stream processing frameworks: Apache Spark
and Apache Flink. Apache Spark streaming is based on mini-batch processing, and thus
also allows for easy implementation of the lambda architecture. Apache Flink provides a
universal dataflow engine designed to for both batch and stream processing in single unified
architecture[6].

���� &RQFHSW GULIW
A resilient valuation modelling system should be able to react to changes in the underlying
dataset, as to minimize the loss of accuracy of the models. These changes in the repre-
sentativeness of the historical training data to reality are known as concept drift[40]. In
mathematical terms, concept drift is a change over time in the joint distribution between
input variables ൝ and a target variable ൷. This concept drift can be split into two categories:
real and virtual drift. Real drift occurs when there is a real shift in ൮�൷_൝�, which does not
necessarily require a shift in the input data distribution ൮�൝�. Virtual shift is a change in the
distribution of the input data ൮�൝� which does not alter ൮�൷_൝�[38].

Zliobaite created a taxonomy categorizing the different techniques that can be used to
handle concept drift in a supervised learning environment. The two main categories are
evolving learners and learners with triggers[40]. Evolving learners are systems that handle
new input data as it arrives. Examples of such systems are adaptive ensembles, that train
many classifiers and then choose which ones to weigh more heavily in the final predictions,
and models that tweak their own parameters or design as new data is processed. Learners
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with triggers are systems that determine how or when the models in use should be altered,
based on heuristic methods. Examples of triggers are change detectors and training windows.
Change detectors monitor changes in inputs and outputs in order to detect whether or not
concept drift has occurred, while training windows focus on the selection window from which
to source the training data.

������ &KDQJH GHWHFWLRQ
For systems that use models that are not adaptive, triggers must be used. Determining
when a model should be retrained would be a use case for change detection methods. One
example of a change detection algorithm is the Cumulative Sum CUSUM test[11], assum-
ing a zero-centred process. The test is calculated using ൦፭  ൫ൠ൶��� ൦፭ዅኻ � �൶፭ ࢿ ࿶�� where
൦ኺ  �. If ൦፭ ! ࿽ then concept drift is alarmed and ൦፭ is set to 0. A variant of the CUSUM
test is the Page-Hinckley test (PH), which tracks changes in the normal behaviour of the val-

ues being observed. PH is calculated using ൫ፓ  
ፓ
ࢾ
፭዆ኻ
�൶፭ ࢿ ൶˃ፓ ࢿ ࿶� where ൶˃ፓ  ኻ

ፓ
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average of all observed values and ࿶ is the size of changes that are deemed to be acceptable.
൒ፓ  ൫൧൬�൫፭_൲  ����൙� is the minimum of these values. Just like in CUSUM, ࿽ is set as the
threshold, with concept drift being alarmed once ൫ፓ ൒ፓࢿ ! ࿽.

Other types of change detection include detection windows. Adaptive Sliding Window
(ADWIN) uses a fixed sliding window which contains the most recent inputs[11]. Within this
sliding window, a comparison is made between sub-windows and when two sub-windows are
different enough, concept drift is alarmed. The test is defined as when the mean of the two
windows is larger than the Hoeffding bound. This bound is defined as:
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where _൜_ is the length of a window, ࿶ is the confidence parameter, and
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is the harmonic mean of the two sub-windows.

���� &RQFOXVLRQ
Current valuation practices were studied and summarized. From this summary, it was con-
cluded that there is room for improvement in the areas of accuracy, by taking into account
locality and the non-linearity of the valuation process, and explainability. Then machine
learning methods were compared and evaluated for their applicability in mass appraisals.
It was found that multiple researchers have been successful in applying machine learning
methods and have achieved higher accuracy, consistency and explainability through the use
of machine learning methods like decision trees, random forests, SVM, and ensembles of
different techniques. The process of creating a machine learning model was summarized to
finish up the research of valuation practices.

Then, practices for designing an architecture for component and interacting with stream
data, and the Kafka streaming platform were studied. Some important principles for the
design of the current application are the interchangeability of different components and al-
lowing for the application to react to changing data on the fly. Finally, concept drift was
researched in order to come to a method to decide on retraining and updating models based
on changing data.

This research and conversations with GeoPhy have led into an initial design that has
evolved during development, which will be detailed in the next chapters.
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Software Design

The knowledge from the literature review was combined with explorations in different avail-
able components. This resulted in the design that is presented in the following chapters.
First, an overview of the system architecture will be given and some guiding design princi-
ples. In the next chapter, the separate components are further detailed and motivated.

���� 2YHUYLHZ
To understand the design considerations made within the software, one must take a step
back and look at the bigger picture of the architecture that is in the works at GeoPhy (Figure
5.1).

GeoPhy gathers data from many different places, processes it and produces new data. In
an effort to organize all this data, they are working towards a system where all the different
sources are brought together in one place, organized in topics, and accessible to all the
services. Apache Kafka is the platform that enables this kind of data flow through the use
of Kafka topics. Each producer of data can publish events on a Kafka topic. These events
are constrained to add and delete operations. All the services can follow these events by
becoming a consumer of a topic. As changes happen from the side of the producer, they
are published on the Kafka stream. Kafka communicates the changes to the consumers,
who update their view of the data accordingly. In this way, producers and consumers can
function independently from each other; Kafka takes care of the persistence and reliability of
the topics and is designed to handle large volumes of data, necessary to communicate these
streams of updates.

Figure 5.1: Simplified view of GeoPhy architecture
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The AVM system consumes all the topics necessary for training models and staying up-
to-date. Still, there might be other features necessary to train the models (e.g. number
of grocery stores in each neighbourhood) that are not yet published in Kafka topics. From
the MoSCoW analysis, it was decided that the system should have one uniform interface to
ingest data sources (section 3.3.1, requirement 7). Again, Kafka provides an outcome. By
building a publisher (figure 5.2, Kaiten) from the extra data sources (e.g. CSV files, external
databases), the system can ingest all these sources from Kafka topics. It then needs to join
these different topics together into a dataset that the system can use to train models.

Figure 5.2: Simplified overview of the AVM system interacting with the GeoPhy architecture

In figure 5.2 the general overview of the system is summarized. Kaiten acts as a publisher
from external sources to Kafka topics. Within the AVM Service, a data analyst can specify
which topics are necessary for the model they are working on and the system consumes
these topics to create a workable dataset. Then, the system itself trains the model, keeps it
up-to-date and serves predictions to clients through an API. As events come in from a Kafka
topic, the AVM Service keeps track of the changes and decides whether the changes imply
concept drift. If concept drift happens, the AVM Service can decide to retrain.

���� 2YHUDUFKLQJ GHVLJQ SULQFLSOHV
In designing the AVM Service, aside from delivering on functionality (making it work), effi-
ciency (making use of efficient distributed services) and compatibility (using Kafka), it was
very important to keep the code reliable, secure and maintainable. Reliable, because the
stakes are high in GeoPhy’s production environment; paying customers expect great service.
Secure, because data is a valuable asset. And maintainable, because the product needs to
be used and built upon by other engineers after the project is finished. To reach this goal,
the following design principles were given high priority: separation of responsibilities and
simplicity of solutions.

Separation of responsibilities: if a task can be handled independently from another task, it
should also perform this task independently from another. This makes the system reliable (if
one task fails, the other can continue operating), secure (each task is shielded from the data
used by other tasks and will only get the data necessary for its operation), and maintainable
(changes only need to be made to the separated task).

Simplicity of solutions: when given the choice between an ‘easier’, but eventually more
complex solution and a solution that takes more work at first but provides a more simple
solution conceptually, the simple solution is preferred. An example of this is the choice of
programming language: Python is widely used as a programming language for data analysis,
but many distributed platforms and services perform better in Scala. An ‘easy’, but eventu-
ally more complex solution would be to use both in one system. Two languages need to be
translated to each other inside the system and in the future, system engineers would need
to be acquainted with two languages instead of one. The conceptually simple solution is to
use only one language and put more effort in modelling. This makes the system reliable and
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secure (complex solutions can easily create room for errors and intruders to slip through),
and maintainable (simple solutions are easier to understand for other engineers).

The application of these principles and further design details go hand in hand with im-
plementation. Therefore, these details will be discussed and explained together with the
implementation details in the next chapter.



6
Implementation

The system will now be further detailed to provide explanations, motivations and in-depth
analysis of each component.

In figure 6.1, the following groups within the system can be distinguished: (1) the data that
enters the system through Kafka, (2) the AVM service that is delivered in this project (AVM
Service section), (3) the ‘interchangeable’ model definition that can be expanded by GeoPhy
data analysts and software engineers (Model definition section), (4) persistent storage used
by the system (Storage section), and (5) the client side where the system provides predictions
and gives insight into its performance.

Figure 6.1: Detailed view of the AVM system
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���� 3URJUDPPLQJ ODQJXDJH FRQVLGHUDWLRQV
On a general note: Scala1 was used as the main programming language. Scala is a lan-
guage that allows for clean and readable code and combines object-oriented and functional
paradigms for optimal functionality. Next to this, Scala is well supported and documented
for both Kafka and Spark (a machine learning library). Python2 was considered and used at
first, because it is widely used in machine learning applications. However, Kafka support for
Python turned out to be underdeveloped and it was decided to shift to Scala. This decision
was first discussed with the data analysts, who requested that the methods they use for their
models (XGBoost, Gradient Boosted Trees, etc.) would be supported. Spark has support for
all these methods3 and the data analysts agreed that this would be a good option.

���� 'DWD HQWU\
Figure 6.2: Detailed view of data entry part

On the data entry side (figure 6.2), two main sources are
detailed: the core topics, as explained in the previous sec-
tion on GeoPhy’s surrounding architecture, and the Kaiten
package. Kaiten (from Kaiten-zushi, the Japanese term for
sushi served on a conveyor belt) is in charge of building
Kafka topics out of external sources. This is achieved with
Kafka Connect4, a tool within the Kafka platform that can
move data from other services into Kafka and vice versa.
The connector that is used for this is called Debezium5 and
streams changes from a database into Kafka topics. This
is useful for production, when the system should be able
to digest sources apart from the readily available GeoPhy
Kafka topics, but also (and especially) in the development
phase, when the GeoPhy Kafka topics are not yet available
and all data sources need to be ‘mocked’ from CSV files
or databases. With Kaiten, all necessary data sources en-
ter the AVM Service through Kafka. The AVM Service can listen to changes on the data by
consuming the Kafka topics defined for each model. This uniformity in data flow creates
independence; as long as each system produces Kafka topics, they can change the internal
implementation and even fail to operate, because all its output is contained within Kafka.

���� $90 6HUYLFH
From the MoSCoW analysis, the following responsibilities have been appointed to the AVM
service:

• Consume events/values from Kafka Stream.

• Train a model based on the configuration set by a data analyst.

• Version models and save old models for later use.

• Have a RESTful API that can provide valuations.

• Calculate predictions on an API call, using a trained model.

• Detect a significant change in distribution of the target value (concept drift) from the
incoming data.

• Retrain a model when concept drift has been detected.

• Provide centralized places to set up the model and data streams.
1https://www.scala-lang.org
2https://www.python.org
3https://spark.apache.org/docs/latest/ml-guide.html
4https://kafka.apache.org/documentation/#connect
5http://www.debezium.io/
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These responsibilities can be divided into three different components, which are reflected
in the AVM Service group in figure 6.3: (1) ETL and Concept Drift (processing data), (2)
Modelling, and (3) API. In the final product, these components operate independently and
are set up in separate packages, following the separation of responsibilities principle. Below,
the responsibilities for each component are detailed and it is explained what software was
chosen to implement these responsibilities.

Figure 6.3: Detailed view of AVM service

������ (7/ DQG FRQFHSW GULIW
From the list of responsibilities mentioned above, the ETL and Concept Drift component deals
with all the responsibilities concerned with loading (ETL) and processing data (concept drift
detection). Figure 6.4 illustrates the flow of data through the ETL and concept drift com-
ponent. The component consumes events from the Kafka stream, processes the events in
batches to detect concept drift, joins the necessary topics from Kafka and outputs this to
Kafka again. A Kafka connector builds a persistent database from this output stream that
can be accessed by the modelling component later on. The ETL component sends the data
back into Kafka, instead of writing it to the database itself, because Kafka provides tools to
build a persistent database from topic streams through Kafka Connect. The ETL component
joins and transforms the topics, but does not need to ‘worry’ about building a persistent
database. Another reason for this is the simplicity principle: this way, all data flows through
Kafka.

Figure 6.4: Data flow in the ETL and Concept Drift package

When concept drift has been detected, a signal is sent over a Kafka topic that is consumed
by the modelling component. This, again, is done because of simplicity (one data flow) and
independence. Even if the modelling component is unable to ‘listen’ at the moment concept
drift occurs, it receives the signal when it is able, because Kafka stores the message. In
order to detect concept drift, change detection algorithms (see 4.6.1) were used, specifically
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the Page Hinckley test. The choice to use these trigger-based methods is due to the fact that
the model training is done using batch processing. This mode of processing precludes the
use of adaptive models. Training windows were also not used as they require holding a lot of
state in memory, which does not scale very well. The choice for the Page Hinckley test within
these change detection algorithms was based on its good documentation and simplicity of
concept. The code is written in such a way that other tests can be added later on.

The concept drift detector can be configured with three parameters to set the batch size
and sensitivity of the detection algorithm. Currently, logs are produced on the number of
decision per time unit and the parameters that were used with these decisions. Another
metric that is logged, is the performance of the latest and previous models on the latest
data at the moment concept drift is detected. All these metrics are logged directly from the
component that makes the calculations or decisions, to ensure that all necessary information
is logged, even when another component fails. Using thesemetrics, the concept drift detection
can be fine-tuned in production.

Fine-tuning parameters
The process of fine-tuning these parameters requires some extra attention. Figure 6.5 shows
a hypothetical progression over time of the distribution of a target variable given by its mean
value. The grey line in these graphs shows the distribution of that same target variable as
reflected by the latest version of the model. This line progresses stepwise, as models maintain
their state (and the data distribution) until they are retrained to reflect the actual data. When
the concept drift parameters are configured well, the grey line follows the black line closely
(figure 6.5a), without following each small peak. Concept drift performs badly when it shows
behaviour as seen in figure 6.5b. ࿷൴, the error in mean value between the model’s data and
the actual data, is very high in some cases, which will result in low accuracy for the model
predictions.

(a) Good concept drift sensitivity (b) Very low concept drift sensitivity

Figure 6.5: Concept drift fine-tuning. ᎒፯ is the error in mean value between the model’s data and the actual data. ᎑፭ is the time
between concept drift detections.

Because of this, concept drift parameters are initially set to be very sensitive (a very low
allowance for ࿷൴). High accuracy is more important to clients than efficiency, so it is better
to retrain the models more often than necessary. In order to achieve higher efficiency, the
approach would be to maximize the allowed ࿷൴, while still maintaining acceptable accuracy.
This boils down to the following question: what is an acceptable change in accuracy? The
answer to this question is a business decision. If for example, competitors provide predictions
with an accuracy of 5% (MdAPE) and the own model is known to perform with an accuracy
of 4%, it could be decided to accept a 1% change in accuracy in order to stay ahead of the
competition.

This question leads to another question that is relevant to this system and its implemen-
tation: How can this change in accuracy be measured? One way to answer this question is
to look at the difference in performance, ࿶൮, between the newest and the previous version
of the model on the latest data. This has been implemented in the system by logging the
performance of the latest model and the previous models when a concept drift detection has
been made. The ࿶൮ that can be found in these logs should be compared to the previously
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decided acceptable change in accuracy and with this information, the sensitivity parameters
can be set to either allow for more or less allowance in accuracy. The question of measuring
performance is discussed in further detail in chapter nine.

Choosing software
The ETL and concept drift component needs to be able to process large volumes of data
coming in from the streams and it needs to do this in batches based on count: Although the
incoming streams are voluminous, the events coming in are not evenly distributed over time,
as updates are usually triggered by a new batch of data being incorporated in the CoreDB.
This means that a batch window based on time would not be effective: some batches would
be enormous and others would be empty. The other option is to base the batch window on
count, which is done in the system.

Knowing these requirements, different stream processing platforms were considered. Spark
Streaming6 was the first candidate. Spark Streaming is part of Apache Spark, the platform
used in the modelling component, and is designed to handle large volumes of streaming data.
Using the same package for ETL and modelling would make a lot of sense, considering sim-
plicity. However, Spark Streaming cannot base batch windows on count. Therefore Apache
Flink7 was chosen. Apache Flink is a modern, distributed, and open source stream process-
ing platform that has the ability to do batch processing based on count. It works well for
large scale data processing applications, as is described below, in the section on scalabil-
ity. Another consideration for choosing this platform is that, like Spark and Kafka, Flink is
actively supported by Apache. This means that it is a safe bet for the future.

Flink runs as a standalone service. The code for the ETL and concept drift component is
first compiled and then uploaded to Flink as a Flink job. Flink then takes care of distributing
the tasks, as described in the section on scalability below.

������ 0RGHOOLQJ
The modelling component is responsible for training models, saving and versioning models,
and returning predictions. Figure 6.6 details the steps taken by themodelling component. On
start-up, it either loads or trains the models that are defined by the data analysts. If a version
of the model has been saved, it loads it from disk and if no previous version exists, it will
start training. This can lead to a long start-up process, but the steps are necessary, because
the trained models need to be available at any time. After all the models are loaded, this
component starts to listen to the Kafka topic on concept drift. When the ETL and Concept
drift package has detected concept drift, it will produce a signal on that topic, which the
modelling package will receive. When this happens, the affected models are retrained, saved
and the performance is logged. It then goes back to ‘listening’ to the Kafka topic.

Figure 6.6: Flow of processes and data in modelling package

The main criteria for selecting a software platform to support the modelling package are
the ability to train models with large volumes of data (millions of buildings), professional

6https://spark.apache.org/streaming/
7http://flink.apache.org
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support and documentation, and support for widely used machine learning methods. As
discussed before, Python and its machine learning library were also considered, because
they are already used by many data analysts. As explained before, Scala turned out to be a
better option for the main programming language. This choice of language, combined with
the requirement to handle large volumes of data in a distributed environment led to the
selection of Apache Spark8. It is designed for distributed systems, supported by Apache,
and has support for all the machine learning methods requested by the data analysts in its
machine learning library. Spark is well documented and from a quick Google search, one
can deduce that Spark is widely acclaimed.

Spark runs as a standalone instance inside a virtual machine. The code for the modelling
component is compiled and sent to the Spark master as a Spark job. The Spark master
distributes the job to several worker instances. When these workers are done, the Spark
master aggregates the results (e.g. a trained model, a prediction from a model), as described
below in the section on scalability. Models are trained and saved within the Spark virtual
machine.

������ $3,
The API component is responsible for handling client requests and retrieving predictions
from the trained models. The code for the API component is also sent to the Spark master
as a compiled Spark job. API requests are made over HTTP in a JSON format to the Spark
instance. Missing columns in the API request are imputed with an average and Spark then
runs a prediction on the specified model (figure 6.7).

Figure 6.7: Steps taken when an API request is made

������ &RQQHFWLQJ (7/� FRQFHSW GULIW DQG PRGHOOLQJ
The ETL and Concept Drift responsibilities are joined in one component. Data flows through
the concept drift detection into ETL and is then streamed through Kafka to a database.
The modelling component can communicate with the database on its own through a JDBC
connector (JDBC provides access to many different databases through Java). Concept Drift
detection signals are sent over Kafka to the modelling component.

���� 0RGHO GHILQLWLRQ
The AVM Service takes care of data flow from Kafka to the machine learning methods. It
makes sure all models are up-to-date and that clients can access predictions through an API.
The AVM Service does not, however, automatically decide which machine learning methods
it should use or what data it should source for its models. This is where the GeoPhy data
analysts come in: They explore different configurations of features andmodels to find the best
fit. In order to quickly iterate, they use software like DataIku, where they can visually put
together models, or Python and R notebooks, where they can document their process as they
code. After the exploration phase, the data analysts needs to define their model in such a way
that the AVM Service can use them. This is done in the model definition part of the system
(figure 6.8). A model is defined as a sequence of stages (a pipeline). Each stage consists of a
transformation on the data. Some examples of these transformations are: imputing missing
values (a custom transformation created for this project), transforming the feature columns
to a feature vector, and transforming categorical values to numerical values. The final stage
in this pipeline is the creation of a model from the data. This is done by defining a model
object from Spark’s machine learning library and adding it to the pipeline. The definition
of this model is written within the package for the modelling component by creating a class

8https://spark.apache.org/
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Figure 6.8: Detailed view of model definition part

for that specific model that extends from a Model trait. This Model trait holds all reusable
functionality, like the steps needed to load, train, and save a model. The features that are
necessary for a model are defined as a separate class that extends from a DataSource trait.
In this class, the column names need to be defined and the type of action to take when a
value is missing or incorrect in the provided data. This DataSource class is used in the Model
class to define the data a model will use. This makes it easy to reuse a modelling method on
different DataSources or to use different Models on the same DataSource.

External sources need to be loaded into Kaiten, which is done by loading them into the
database that Kaiten reads from. Then, the ETL and Concept Drift component also need to
know what data should be combined and watched for concept drift. Each model can define
a class extending from DataProcessor that defines what should be done with the data.

To summarize: a data analysts has a list of features and data sources for a model. These
features are defined in a class extending from DataSource. The system knows how to gather
and process the data from a class extending from DataProcessor. Then, the data analyst
defines a pipeline within a class extending from Model that prescribes the stages of transfor-
mations for the data.

Figure 6.9: Detailed view of storage

���� 6WRUDJH
The system uses persistent storage for three purposes: saving model data, saving trained
models, and logging (figure 6.9). First, the model data: As described before, the ETL and
Concept Drift component output the model data on Kafka. Kafka Connect then loads this
data into a database for use by the modelling component. A simple Postgres database is
used for this, as it can handle all write and read operations and can already interact with
Spark through JDBC. Then, the trained models: These models are saved in a format written
by Spark. Each version gets its own folder on the disk, named with a unix timestamp. By
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listing the folders on the disk, the system can find the latest version and load it when nec-
essary. Finally, the performance logs. These logs are saved to Elasticsearch9. Elasticsearch
is used, because it makes it possible for other applications to search through the logs and
create insights even when the logs grow to enormous sizes. Another advantage of using Elas-
ticsearch, is that there are readily available packages to visualize the data in Elasticsearch,
as described in the next section.

���� &OLHQW VLGH

Figure 6.10: Detailed
view of the client side

On the client side, there are internal and external clients consuming the
API and there is the internal client (GeoPhy) checking the logs (figure
6.10). The API has already been explained in the API component above
and does not need further explanation. GeoPhy can inspect the logs
and find insights through a dashboard where the logs are graphed and
visualized. This dashboard is built with Grafana10, a good looking, open
platform for analytics and monitoring. It is also very easy to set up,
as it provides a GUI to add new sources to visualize and it supports
Elasticsearch as a data source. On this dashboard, GeoPhy can track
the number of decisions made by the concept drift detection and follow
the performance of the models.

���� 7HFKQLFDO GHWDLOV
This system brings together many services and technologies. Apache
Zookeeper (used to manage Kafka), Apache Kafka, Apache Spark,
Apache Flink, Elasticsearch, Grafana, Postgres are all services that need
to be installed and started for the system to run. In order to make this
easy and scalable, the system uses Docker11. Docker runs virtual images
of machines that have the services pre-installed. All that is necessary
to run the services is a simple command (docker-compose up), after
which the project can be run. Docker maintains the images, starts them up and even makes
it possible for the images to run on multiple machines. The code for the components can
then be compiled and uploaded to the responsible Flink and Spark instances (figure 6.11).
The machines use persistent storage, so the code does not have to be uploaded each time the
instances are restarted.

In order to compile the code and to keep track of all the dependencies, SBT12 (Scala build
tool) was used. Gitlab was used to collaborate on the code, track issues and perform code
reviews. Code reviews were extensively used throughout the process as sprints were finished
and when merge requests were made.

������ 6FDODELOLW\
Scalability is defined as the ability of a system to handle an increased amount of work[5], and
elasticity refers to the ability of a system to manage its resources to meet demand, meaning
that resources can be provisioned or de-provisioned in an autonomous manner[14], as it
needs to be able to handle large amounts of input data and valuation requests, often in short
concentrated bursts

Kafka
Since Kafka registers its cluster nodes (called brokers) with Apache Zookeeper13, Kafka can
easily be scaled to handle increased message traffic by spinning up more brokers. These
brokers each register with Zookeeper, and are then discovered by the other brokers. Kafka
also has fault-tolerance mechanisms for de-provisioning brokers. Kafka replicates messages
9https://www.elastic.co/products/elasticsearch
10https://grafana.com
11https://www.docker.com
12http://www.scala-sbt.org
13https://zookeeper.apache.org
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Figure 6.11: Overview of how Docker and SBT are used

across brokers, with a replication factor set per message topic, meaning that, when a broker
is spun down, the other nodes will be able to serve the messages. The aforementioned abilities
to easily provision and de-provision Kafka mean that it is not only scalable, but also able to
change resources on the fly. Unfortunately, this dynamic allocation is not autonomous, but
it is easy to manually alter the cluster.

Flink
Apache Flink is designed to be scalable. As such it can be deployed in a cluster with two types
of nodes: JobManagers (responsible for coordination and scheduling) and TaskManagers
(responsible for executing job tasks). Programs can parallelise tasks in order to maximize
throughput, and Flink scales tasks linearly with the number of CPU cores in the cluster.
Concept drift can be parallelised by separating the concept drift detection for each feature
into a separate task. When scaling up or down to match demand, Flink jobs need to be
stopped. The cluster nodes are scaled up and then the job needs to be restarted. Stateful
operations in the jobs can be saved in order to ensure that the job restarts with the same
state it had when it was stopped, which is then redistributed amongst the new collection of
cluster nodes. This means that Flink is not yet elastic, however, while this is being written,
dynamic scaling is in the Flink project roadmap.

Spark
Like Flink, Apache Spark is also scalable. In a similar fashion, it has cluster managers that
coordinate and schedule, and has executors that run the actual job tasks. Spark scales
linearly with the number of executors it has, meaning that it can handle heavy workloads.
Spark also supports dynamic resource allocation, which means that it is able to provision
and release job executors depending on the workload when running in a cluster. This means
that Spark is truly elastic, as this dynamic allocation is autonomous.
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Results

The AVM system was implemented in a six-week development span, after a three-week re-
search and design phase. In over 250 commits and 30 merge requests, all the different
components were explored, studied, and put together. A big part of this time was spent
dealing with these new systems and finding ways to make them work well together. As the
process furthered, the project definition changed from an actual modelling project toward
the system that is now presented. In this chapter, it will be examined what this has lead to.
How should the success of this project be tested? Does the code live up to quality standards
and what are the ethical implications of this system?

���� 7HVWLQJ IRU VXFFHVV
Towards the end of the project, a plan was set up to test the success of the project, based
on the requirements as described in the problem analysis. Each component’s desired func-
tionality was described as a user story that could be tested by either running the project
itself or writing and running unit tests. This testing plan can be seen in table 7.1, where
each individual testing step is detailed. All the testing steps were executed and deemed suc-
cessful. One can find the performance results in the table 7.2. From these successful tests
as well as the design considerations that were made along the system requirements, it was
concluded that the project succeeds in fulfilling the requirements (all the must and should
requirements) that were set out at the start of the project.

���� &RGH TXDOLW\
Maintainability is an important part of the quality measures proposed by the ISO group
for systems and software engineering. In order to verify the quality of the code in terms
of maintainability, the Software Improvement Group (SIG) reviewed the project. The code
scored 4.5 out of 5 stars on SIG’s maintainability model, implying that the code scores above
average. The full 5/5 score was not yet achieved, because of unit size, a measure for the
size of individual methods and functions. The size of methods in the code was generally
small enough, but the model setup method, for example, proved to be too large. This was
done partly by design, as it was aimed to use only one method to define the models, so data
analysts would only have one place to work in. In versions of the code after the SIG review, the
larger methods were refactored to smaller individual methods to incorporate SIG’s feedback.
The model setup is still performed in one class, but different responsibilities have been split
in different methods. For the final code submission, a testing coverage of 86% was achieved,
fulfilling the requirement to have at least 80% testing coverage.

27
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Table 7.1: Testing plan

&RPSRQHQW 6WRU\ 6XFFHVIXO :KHQ 7HVWLQJ VWHSV
Model training A GeoPhy data analyst can

transfer their model to the
system and the system can
train the model to receive a
performance close to their
original model.

• The model training hap-
pens in reasonable
amount of time (<30m)

• The model performance
(MdAPE) is within 5%
range of the trained model
in the drafting system.

• Write the model
• Train the model
• Run a prediction on a vali-
dation set

• Note time/performance

Model prediction A user can call the API, and
will receive a prediction for
their house that is made by
the trained model.

• An API call can be made
to the service

• A prediction is returned
within 10s

• Write an API call with data
from validation set

• Run the API call on the
system

• Note time

Concept drift Models are automatically re-
trained when it is detected
that the distribution of the
target variable (value) has
changed significantly.

• The concept drift detec-
tion model detects con-
cept drift

• The concept drift model
notifies the model server
of concept drift

• The concept drift model fil-
ters out noise

• Feed the concept drift
detector changing data,
check if it signals

• Feed the concept drift de-
tector noisy data, check if
it does not signal

• On signal, check if it noti-
fies the model server

• Generate logging on this
performance

ETL A GeoPhy data analyst can
specify datasources for their
model and the system loads
this data through Kafka
streams into a persistent
database.

• Data is automatically
loaded from the Kafka
topics into the Postgres
database

• Data is automatically
updated in the Postgres
database, based on the
Kafka topics

• Generate Kafka stream
from Kafka connector

• Check if data in database
is updated

GeoPhy usability A GeoPhy data analyst is
briefed so they are able
to add models and specifiy
datasources for these mod-
els.

• GeoPhy data analysts are
able to understand how
the system works

• GeoPhy software en-
gineers are able to
implement a model in the
system

• GeoPhy data analysts are
able to monitor the perfor-
mance of the model

• Present the system to
GeoPhy staff

• Implement a model to-
gether with a data analyst

• Write a manual (project re-
port) and ask for feedback

Deployment The system is deployed in a
production-like setting (mul-
tiple cores, computers).

• The system is able to run
in (an) Amazon Web Ser-
vices instance(s)

• Deploy the system on
AWS
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Table 7.2: Testing results

&RPSRQHQW 7HVWLQJ VWHSV 5HVXOWV

Model training Write the model Successful

Train the model Successful

Run a prediction on a validation set Successful

Note time/performance 14m, MdAPE: 5.12% (compared to 5%
of original). Successful

Model prediction Write an API call with data from validation set Successful

Run the API call on the system Successful

Note time 9s, this time is the same when multi-
ple houses are requested at once. Suc-
cessful

Concept drift Feed the concept drift detector changing data,
check if it signals

Automated testing, successful

Feed the concept drift detector noisy data,
check if it does not signal

Automated testing, successful

On signal, check if it notifies the model server Successful

Generate logging on this performance Successful

ETL Generate Kafka stream from Kafka connector Successful

Check if data in database is updated Successful

GeoPhy usability Present the system to GeoPhy staff 30th June

Implement a model together with a data ana-
lyst

To-Do

Write a manual (project report) and ask for
feedback from staff

Successful

Deployment Deploy the system on AWS Expected successful, Docker handles
this
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When the system goes into production, it will have an indirect impact on people’s personal
lives. Companies that use the valuations produced by the system, could base decisions to
extend loans, what to do with their portfolio, and how they impact their customers on these
valuations. The ethical value of this influence is twofold: more accurate valuations can pre-
vent ‘bubbles’ of incorrect predictions that build to a burst and cause economic misfortune.
On the other hand: when the system is too reactive and incorporates every change or peak
in values, it is prone to overfitting. This could, for example, mean that a small dip in prop-
erty values is directly incorporated in the valuation model and can lead to predictions that
show an exaggeration of this dip, causing unnecessary panic. This impact needs to be taken
seriously, as people’s homes and livelihood are at stake. This is done by allowing GeoPhy to
look into the concept drift logs and tune the models, giving more accurate predictions and
checking the performance of the system as it is operating.

The importance of accurate predictions is intertwined with the ability to explain predic-
tions. As seen with the European General Data Protection Regulation (GDPR), legislations are
requiring organisations that implement algorithms to be able to explain how a decision on a
data subject was made. Aside from a legal requirement, this is also an epistemological right:
people have the right to know an explanation about decisions that are made about them.
Mittelstadt et al. mapped the debate on ethics for algorithms[27]. They created a topology of
injustices that can be committed with algorithms. When decisions cannot be comprehended,
this is the injustice of inscrutable evidence. Many machine learning methods (like the neu-
ral networks, as discussed in the literature review) behave like a black box: the models are
trained through a logical process, but the resulting model predicts values in an obscure way,
making it inscrutable. Therefore, the focus of this project was the use of machine learning
models that had some explanatory power. The decisions made by this system should be ex-
plainable, at least to the degree that clients can understand how a decision would be made
in general. This is possible with decision tree algorithms, as it is relatively easy to explain.

Another consideration is privacy. This system uses a lot of data about a lot of different
properties. Most of this information is already available online through real-estate websites
and government records, but privacy could still be an issue for some attributes. Therefore,
data is not based on persons, but on properties and measures were taken to make sure the
data is securely stored and shielded frommalicious attacks. Some of these security measures
during development were, for example to not upload any data on Git, but to transfer the data
with USB-drives. Next to this, GeoPhy’s internal network is shielded from outsiders and the
valuations can only be retrieved through the API call.
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Conclusion

As GeoPhy is developing its business model and looking into the future of automated valua-
tion models (AVM), this project has attempted to deliver a proof of concept of a system that
automates the training, maintaining, and delivery of machine learning models for automated
valuations. In order to achieve this goal, first the situation and problem was analysed. This
resulted in an outline of the desired product and requirements in the form of a MoSCoW
analysis. An important goal for this project was to incorporate streams of data from Apache
Kafka into a service that would train and update models automatically. The second goal for
this project was to keep track of the changes in the data in order to detect significant changes
in distribution (concept drift) of the target prediction value.

These subjects were studied in literature, reviewing existing and upcoming valuation prac-
tices in real-estate, steps needed to perform machine learning tasks, architecture to support
big data processing, and concept drift. This resulted in a design, described in chapters five
and six.

The project goals were achieved by combining several different services into four different
components:

• Kaiten component: Kafka connect service that outputs external sources to Kafka topics.

• ETL and concept drift component: Apache Flink service that processes incoming data
to detect concept drift and transforms the data to be used by the modelling package.

• Modelling component: Apache Spark service that creates Spark jobs to train models,
save them and update them based on the data and concept drift signals from the ETL
and concept drift package.

• API component: Apache Spark service that creates Spark jobs from incoming API calls.

These components use storage in the form of a Postgres database, disk storage and Elastic-
search logs. The logs (on model performance, concept drift usage) can be interpreted through
a Grafana dashboard, which is editable through its own GUI.

Finally, to test the success of the project, a testing plan was set up and the code was
reviewed by an external group (SIG). The code achieved all the testing milestones, has 86%
testing coverage, and received a 4.5/5 in a mid-development review on maintainability. The
project is ready to be delivered to GeoPhy and will be explained to the data analysts and soft-
ware engineers through a learning session. With this project, the concept of automated val-
uation models inside GeoPhy’s new architecture has been tested and proved and the project
is ready to be further developed and used in practice.
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9
Discussion

The code is delivered and many of the choices have been motivated, but there is always room
for improvement and discussion. This chapter revisits some of the choices made in design
that others might see or do differently. Recommendations to suit these remarks will follow
in the next chapter.

���� 2YHU�HQJLQHHULQJ
One might take a look at all the services and platforms that were used for this system and
argue that the sheer amount means the system was over-engineered. Why not just use
a simple machine learning library and a database? Why are distributed applications like
Kafka, Flink and Spark used? Don’t they give a lot of useless overhead? First of all, Kafka
is an external requirement and fits the needs of the company well. This was not a point
of discussion. Spark is also necessary to handle the volumes of data used in production.
Currently, the models are built on 80.000 to 800.000 entries, but in the near future, the
models should be able to support millions of entries. Therefore, using Spark is futureproof;
it can handle this many entries, because it does so in a distributed fashion.

Then why use Flink? Granted, the streams of data coming in are measured in a number
of changes per day, but there are situations when GeoPhy acquires a batch of new data and
this new data is all pushed to the Kafka stream. The ETL and concept drift section should be
able to handle this amount of data. Flink is made for that job. The other option would be to
create a separate batch processing section for this project that is more lightweight, but this
would take a lot of time and would have to be replaced when the streams do increase in size
eventually.

Another advantage of using these large platforms is that they are designed to follow the
industry standard or they set the industry standard. Using the platforms forces the design
of this system to follow these standards and design paradigms (e.g. master-worker in Spark,
connectors and sinks in Flink), and these paradigms in turn are used, because they facil-
itate high-quality software engineering as is demonstrated by the critical acclaim of these
platforms.
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���� 6WRUDJH
During the project, the question arose whether it was a good fit to use Postgres to store the
modelling data. The main reason to not use Postgres, is that it adds extra overhead to the
access of data when used by Spark. Spark reads the database every time it trains a model and
does so several times within a training routine. On the development computers, this added
a considerable amount of time to the training process. Why not write to a distributed file
system or database from Flink that Spark can directly use, as Spark is the only ‘consumer’ of
this data? It was decided to continue with Postgres during development, as an overhead for
reading and writing the database would be inevitable. Also, on faster production machines
the overhead would have less impact. After some tweaks to the fetch- and partition size
of the JDBC connector, the database performance came closer to that of a CSV read and
the problem of high training times was solved. Aside from these overhead considerations,
it is desirable to have all the functionality of a database that Postgres provides, like data
integrity, persistence, and a schema. Postgres has good integration with Flink and Spark
and was already implemented. For future development, other options could still be explored
that make use of distributed data storage.

���� &RQFHSW GULIW
The concept drift section is a novel addition to the AVM pipeline. Therefore, there are some
areas that need extra development or thought.

������ 0DUNHW F\FOHV
First of all, a much heard request from GeoPhy’s customer is the ability to detect sudden
drops in the market. The housing market tends to follow cycles of about eight years each.
The market grows during the cycle and property values rise until the market crashes and
property values suddenly drop. This is one of the situations where concept drift should
trigger and retraining should start. However, the nature of this situation makes it hard to
detect the sudden drop: the crash of the market means that properties are sold less, which
means that there are (almost) no new transactions to base the decision on. The current
implementation of concept drift is not able to detect this situation, because it is dependent
on new data. Detection of the start or end of cycles needs to be implemented in another
algorithm inside the processing layer. This algorithm should probably take in other streams
of data, like market analysis. It might even conclude from the absence of data that a cycle has
ended. The system that is delivered is easily extensible to incorporate this extra processing
layer.

Another problem with the situation of the end and start of cycles is the question whether
to use only new data to train a model and to discard data from the previous cycle or to train
on all the available data. How should a system know for sure that a new cycle has started?
What data should it discard? One solution could be to maintain two models when the system
has the suspicion that a new cycle has started. One model that uses all the previous data
in case the suspicion was faulty and another one that is trained on only the latest data in
case the suspicion was correct. This latter model will be less accurate, as it has to be built
on sparse data, but it could be presented alongside the ‘conservative’ valuation as a ‘cutting
edge’ valuation.

������ 3HUIRUPDQFH
Another problem with concept drift is the question how to measure its performance in order
to fine-tune the algorithm’s parameters. Concept drift performs well when the (re-)trained
models give accurate predictions for reality and when models are not updated superfluously.
One way to attempt checking the accuracy with reality, is to predict valuations for a separate
validation dataset at that moment. This, however, can be misleading: when a validation set
is used to check the accuracy of the models, the data is indirectly used to check its own
accuracy. It should not come as a surprise that a dataset is an accurate reflection of itself.

One solution would be to track a concept drift decision over time. The accuracy of the
dataset would then be tested and logged on a validation set at the moment of retraining, but
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also at later times after the data has received a number of updates. If the accuracy of the
model suddenly drops, this means that the concept drift detector responded to a peak in
the data that does not reflect reality. In order to make this possible, a separate validation
dataset needs to be maintained that is used for each validation interval. It can never be
used for training (validation results would become skewed), the dataset should be updated
as changes come in, and it should be a good representation of the entire dataset.

Another solution would involve tracking user feedback. If users can give feedback on their
valuation in some way, this would be a good reflection of the performance of the model in
reality. GeoPhy could see user ratings for each concept drift decision and decide whether the
decision was faulty or correct. This, however is not a feasible expectation from the customers:
GeoPhy’s customers do not provide feedback on the valuations; they just receive the reports
and choose a partner to work with based on model performance.

This project has partly incorporated the first solution: it measures the performance of pre-
vious versions each time the model is retrained. In this way, the performance of one version
is tracked over time and compared to more recent versions. It remains to be seen what the
negative effects of too many concept drift decisions could be aside from efficiency. The ma-
chine learning models that are used have been designed to avoid overfitting and tend to make
good generalizations. Retraining the model on the entire dataset each time an update comes
in could still provide good predictions. Concept drift is mainly put in place to avoid updating
the models and using a lot of processing power each time an update comes in. Therefore, the
current metrics (number of detections over time, previous and current model performance
on latest data) provides sufficient insight into concept drift for now and can help fine-tuning
the parameters that determine what should be considered a ‘change in distribution’.

One important take-away from the above mentioned problems is that the concept drift
section is not yet ready to be fully left to its own devices. It needs to be tested and monitored,
because the production environment has such high stakes. For the design of this system,
attention was given to this by spending extra time on logging, writing them to a searchable
data structure (Elasticsearch), and making these logs interpretable through a dashboard.

���� 7UDLQLQJ PRGHOV RQ VWDUWXS
All models in production are either loaded from disk or trained on startup. This is done,
because the models should be accessible for predictions at any time. It does, however, mean
that startup can take quite a long time and that the system is unresponsive for this startup
time. A solution to this is prioritize the loading and training of some models. High priority
models are trained right away, while low priority are trained on a separate thread after the
other models have been loaded. This means that the low priority models take a longer time
to train, as a part of the processing power is then dedicated to serving predictions. Since
the models have lower priority, this is deemed okay. This solution is not implemented in the
current system, as there is only one model to be implemented and this prioritization is not
yet relevant.

���� 8VDELOLW\ LQ *HR3K\
The current system provides several places inside the code to setup a model. It is easy
to reuse sections of code and extend the provided traits in order to build new models, but
some knowledge of the system and programming paradigms is still necessary in order to
make it work. This makes it harder for data analysts to deploy their models to a production
environment. This report can give insight into the workings of the system, but a simpler
interface to define models could go a long way to help speed up the creation and production
of new models. Some solutions for this problem are recommended in the next chapter.

���� 6\VWHP VL]H RQ GLVN
In order to run the project, quite a few services have to start up and the images have to
be loaded. The code that was written for this project is lightweight and easy to maintain



9.6. System size on disk 35

(as demonstrated by the high SIG score), but all the added services do contribute to quite
a large system size. One of the reasons this has happened, is the timespan of the project.
Docker images can be custom built, but there are readily available Docker images for most
of these services that have been tested and pre-built. Building custom Docker images takes
unnecessary time, as these pre-built Docker images prove to have higher support and have
a quicker turnover for development. For now, these Docker images work fine, but as can be
seen in the recommendations, it might prove helpful to build custom Docker images that are
tweaked for GeoPhy’s usecase.
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Recommendations

The discussion has left some problems open for development. In this chapter, the solutions to
these problems will be explored and some additional recommendations for the development
of the system are listed in order to hand off the project to GeoPhy for use in their business.

����� 6WRUDJH
The Postgres database works well for the current system, but when the database grows to
even larger sizes, it is recommended to test out distributed databases (like Apache Cassan-
dra). The database will preferably have a direct interface for Spark to manipulate and access
the data without too much extra overhead.

����� &RQFHSW GULIW
The solutions discussed in section 9.4.1 on market cycles should be explored more. A model
to detect market cycles is a separate model from concept drift and could be developed. This
model has more of a predictive function than the descriptive power of concept drift. When
this market cycle detection works, it is recommended that two models are maintained when
a new cycle is detected: one with all the available data as a training set (conservative model)
and one with only the latest data (cutting edge model). When a new cycle is detected, the
conservative prediction is shown together with a notification that a new cycle might be on
hand and the cutting edge prediction belonging to that cycle. This should be done with care:
when the system detects too many new cycles, users start to mistrust the system, even when
it is correct.

In order to measure performance, a metric should be developed to measure the success
of concept drift in its accuracy of modelling reality. The solutions proposed in the discussion
(section 9.4.2) can serve as a start to developing this metric. This requires a separate global
validation set that is used to track the performance of a model over time. For now, the
‘detections per time unit’ metric serves well to monitor the eagerness of the concept drift
algorithm and the machine learning methods are considered to generalize well.

����� 7UDLQLQJ PRGHOV RQ VWDUW XS
When more models are added to the system, it is recommended to prioritize the training of
models as described in section 9.4. This prioritization could even be implemented in auto-
mated fashion: as the system detects more API calls for a model, the priority of that model
is increased.
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����� 8VDELOLW\ LQ *HR3K\
In order to improve the usability of the system for data analysts, all the configuration settings
can be moved to one location. One config file, where the necessary features, processing steps,
and modelling methods are defined. This makes it harder to customize and tweak elements,
which is a drawback in the production environment were efficiency is more important than
usability. The costs of the time used by data analysts or software engineers needs to be
weighed against the cost of running non-optimal models in production in order to make
these decisions.

It should also be considered whether it is necessary to have interchangeable modelling
methods. Most machine learning methods can be used for many different tasks; the differ-
entiating factor between different models is the set of features. It could be opted to only allow
for the creation of feature-sets to define models, which simplifies the creation of models, but
does remove a level of independence for the data analysts.

Moving all the settings to one file could facilitate the development of a GUI to set up
models. The GUI just needs to output one config file, and the system then uses this to run
the models.

����� 6\VWHP VL]H RQ GLVN
As described in the discussion, some Docker images require a lot of space. It is recommended
to explore what Docker images can be replaced with custom images and to create these
custom Docker images. The images should be set up with only the necessary components
and can be tweaked to the system’s needs.

����� *HQHUDO UHFRPPHQGDWLRQV
• In order to simplify the conceptual design of the system, it is recommended to follow
the development of Spark Streaming. When Spark Streaming enables the definition of
batches based on count, it could be a good move to move from Flink to Spark Stream-
ing. This takes away the hassle of compiling and uploading code to different systems,
conflicting dependencies, and different development schedules for both systems.

• The API imputes missing values with averages. This could be extended by looking up the
property in the database and imputing missing values with the values in the database if
the property exists in the database. The other way around: If the API request provides
new information on a building, this could be incorporated in the database.

• Build out the Grafana dashboard in order to create more insight into the usage and per-
formance of the AVM Service based on the logs. This can be done through the Grafana
GUI.

• An important part of valuations are the reports that support them. Automated reports
could also be generated from the system, as an extension to the existing functionality.
This also contributes to the effort of explaining the decisions made by the algorithms
that are used.



A
Original project description

Predicting the value of single family homes in the US by means of an automated valuation
model. The valuation model will run on approximately 200M single family homes in the US
and should, in order to be useful, at least perform better then the accepted error rate of
10% for human appraisals whilst giving a better understanding of the composition of the
valuation. We already have access to a vast amount of data including a working valuation
model for Multi Family homes in the US that can be used for reference.

$��� &KDOOHQJHV
Early studies in literature and within GeoPhy have shown that any single statistical model
for predicting single home values the type of model best fit is strongly dependent on external
conditions like the location, time, availability of data. This results in our modelling team
needing to do extensive study before being able to choose the best fitting model. We see a
lot of promise in the application of Ensemble Learning for combining and selecting various
modelling approaches as well as in the initial selection of parameters applicable to the model.

A second, often overlooked, aspect of the model has to do with audit and acceptance:

• In order to be used by financial institutions the model has to be auditable by a third
party. This would be relatively straightforward when using a single model but when
various models are combined this is less trivial. So the final result, aside from having a
valuation and it performance indicators should also include an auditable trace on how
these values were constructed.

• Within the current architecture all changes on the data are available as a stream, this
could trigger the updating of the valuation model. For this to work efficiently it is nec-
essary to know the influence the changed datapoint has on the final valuations [" ].

$��� 'HOLYHUDEOHV�5HTXLUHPHQWV
• Valuation MdAPE < 10

• Valuation data available as API endpoint

• Models available as a Service within the company architecture

• Valuation service acts as a stream consumer on the existing data stream from the core
database
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B
Software used and links to

documentation
• Apache Kafka: https://kafka.apache.org/documentation/

• Apache Spark: https://spark.apache.org/docs/latest/

• Apache Flink: https://ci.apache.org/projects/flink/flink-docs-release-1.3/

• Elasticsearch: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

• Grafana: http://docs.grafana.org

• Postgres: https://www.postgresql.org/docs/9.6/static/index.html

• Scala: https://www.scala-lang.org/documentation/

• SBT: http://www.scala-sbt.org/documentation.html

• Docker: https://docs.docker.com
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C
Process description

In this appendix, we will describe the process from our own perspective (as reflected in the
writing style). Four parts of the process are examined: agile project management, coding and
testing, code reviews, and the group process.

&��� $JLOH
We adopted an agile approach to project management. This was extra helpful for this project,
as the project definition changed several times in the pursuit of a relevant product that would
fit the software engineering bill. We went from building a model for single family homes and
sourcing the data ourselves to the system that is presented now in the first three weeks.
As we learned more about Kafka and distributed systems, the design itself evolved with our
knowledge and choice of the systems. No time was wasted, however, as the initial research
and project planning phase still found its way into the final product.

In order to guide this process well, we created a project planning that detailed regular
meetings with our TU Delft coach as well as company management, project milestones, and
external deadlines. In these meetings, we presented our ideas for the project, technical de-
signs, and implementations. After these meetings, we would come together as a group to
discuss the steps necessary to develop the product and how we would incorporate the feed-
back from the meetings. These steps were entered into Trello and assigned to each member
of the team with a one-week deadline. As we were working at GeoPhy’s HQ in Delft, we could
talk to our GeoPhy coach any time we needed feedback, and we made use of this opportunity
several times.

When we entered amore code-focused period of the project, we switched from Trello boards
to Git issues. This way, we could link merge requests and commits to specific issues and
track the progress of the project. Towards the completion of the project, each member of the
team worked on their part of the code and report and the workload was shared equally.

Since the project definition changed many times, it became necessary to set up a testing
plan to define and measure the success of the project towards the end of the project. At the
start of the project, this would have been useless, as the requirements would change over
time. Towards the end, however, we needed to know whether the project could be deemed
successful or not and this was achieved with the testing plan.
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&��� &RGLQJ DQG WHVWLQJ
Our project started in Python and moved to Scala as we found out that Kafka provides better
support and documentation for Scala. This meant we switched from PyCharm to IntelliJ as
an IDE and had to set up a new project from scratch. This change could be overcome, as the
biggest work in the project was to understand the complex project material and requirements
and how to fulfil these with Spark, Flink, and Kafka, not necessarily enormous amounts of
code.

Tests were written as we went along. Usually, a merge request consisted of new function-
ality and fixes, together with tests written to test this functionality. Because of the nature of
this project (large datasets, distributed frameworks), a lot of the testing before merge requests
was done by way of running the project for ourselves and checking to see if it compiled and
would run. Towards submission deadlines, we made extra efforts to write unit tests, so the
integrity of the system could also be monitored automatically.

&��� &RGH UHYLHZV
Critical code reviews were performed before a merge request was actually merged. No merge
request has been merged without at least one comment and each merge request was re-
viewed by every member of the team. Because we worked together in the same room each
day, we could easily discuss issues that came up in code review face-to-face. A lot of the
maintainability, quality, and software design principles from our education were applied in
these reviews. This resulted in maintainable, understandable code, with high quality stan-
dards. Builds were run in a continuous integration (CI) pipeline on Gitlab. Only passing
builds were merged.

&��� *URXS SURFHVV
We worked together in the same building for most of the project. Because we knew each
other from previous projects and since we worked so closely together for so many hours each
day, we were able to co-operate very effectively. Group lunches, activities, and interactions
with the rest of the company added to this positive working environment. Group morale was
high and shared interest in the success of the project, not ego or pride, was clearly noticeable
when discussing design or software decisions and reviewing each other’s work.



D
Feedback from SIG

'��� )LUVW VXEPLVVLRQ
De code van het systeem scoort 4,5 ster op ons onderhoudbaarheidsmodel, wat betekent dat
de code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere
score voor Unit Size.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is.
Het opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel
makkelijker te begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen
de langere methodes in dit systeem, zoals bijvoorbeeld de ’MultiFamilyModel.pipelineSetup’-
methode, zijn aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden
naar aparte methodes. Commentaarregels zoals bijvoorbeeld ’Create model’ zijn een goede
indicatie dat er een autonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch
te kijken naar de langere methodes binnen dit systeem en deze waar mogelijk op te splitsen.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het volume van
de test-code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te
behouden tijdens de rest van de ontwikkelfase.
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Glossary

$SDFKH )OLQN
is an open-source stream processing framework.

$SDFKH .DIND
is a distributed streaming platform responsible for the flow of data inside GeoPhy’s
architecture.

$SDFKH 6SDUN
is a fast and general engine for large-scale data processing, including machine learning,
stream processing, and SQL.

$3,
is a set of functions and procedures that allow the creation of applications which access
the features or data of an operating system, application, or other service.

$90
acronym for automated valuation model.

FRQFHSW GULIW
is the occurrence that the statistical properties of a target variable changed, which the
model is trying to predict.

&RUH'%
is GeoPhy’s main database with property data used by all its services.

(7/
is an acronym for extraction transformation loading.

0G$3(
is an acronym for median absolute percentage error.

506(
is an acronym for root mean squared error.
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Automating Valuations 
for Real-Estate

Problem definition GeoPhy needs a system that can run automated 

valuation models (AVM) in production (AVM Service), which works in 

GeoPhy’s proposed architecture, consuming enormous streams of 

data, and trains its models based on changes in the market.

Project Highlights
• Automated data flow from streaming platform (Apache Kafka)
• Automated training and loading of models (Apache Spark, Flink)

• API access to valuation predictions

• Concept drift detection for efficient retraining
• Highly scalable and containerised for cloud deployment

System Design

Alex Geenen
a.t.geenen@student.tudelft.nl

Hung Nguyen
h.nguyen-3@student.tudelft.nl

Ruben Wiersma
r.t.wiersma@student.tudelft.nl

1 Uniform Kafka data input

2 AVM Service

3 Extensible model definitions

4 Storage and logging

5 Client access for monitoring 

and prediction retrieval
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