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ABSTRACT: Retaining LeLoir glycosyltransferases catalyze the
formation of glycosidic bonds between nucleotide sugar donors
and carbohydrate acceptors. The anomeric selectivity of trehalose
transferase from Thermoproteus uzoniensis was investigated for both
D- and L-glycopyranose acceptors. The enzyme couples a wide
range of carbohydrates, yielding trehalose analogues with
conversion and enantioselectivity of >98%. The anomeric
selectivity inverts from a,a-(1 — 1)-glycosidic bonds for p-
glycopyranose acceptors to a,8-(1 — 1)-glycosidic bonds for L-
glycopyranose acceptors, while (S)-selectivity was retained for both
types of sugar acceptors. Comparison of protein crystal structures
of trehalose transferase in complex with a,a-trehalose and an
unnatural o,f-trehalose analogue highlighted the mechanistic
rationale for the observed inversion of anomeric selectivity.
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he synthesis of a glycosidic bond is one of the most

important reactions within glycochemistry. Enzymes
couple sugars to afford oligosaccharides with high selectivity
under mild reaction conditions. As enzymes are regarded to
have evolved toward the selective conversion of the naturally
more abundant D-sugars, their L-sugar enantiomers are often
not considered as suitable substrates for enzymatic con-
versions. For this reason, the coupling of both p- and L-
glycopyranose acceptors has rarely been compared for a single
enzyme. However, the incorporation of L-sugars offers a broad
spectrum of diametrically opposed glycosides or oligosacchar-
ides, which might display new biological activities.

In one example, a retaining non-LeLoir glycosyltransferase
(GT) coupled L-glycopyranose acceptors with sucrose as sugar
donor in an a,f-(1 — 2)-fashion, while a,a-(1 — 2)-glycosidic
bonds were observed with p-glycopyranose acceptors.’ The
switch of anomeric selectivity for the sugar acceptor was
attributed to the *C; and 'C, chair configuration for p- and 1-
glycopyranoses, which affect the position of the nucleophilic
hydroxyl group at the anomeric position. In general, @-p and -
L anomers of the same sugar are structurally more alike (Figure
1a), than the corresponding a-D and a-L anomers (Figure 1b).?
This structural similarity allows the conversion of both @-p and
p-L configured substrates by an (S)-selective enzyme.

For retaining glycosyltransferases (GTs) with an internal
nucleophilic substitution (Syi) mechanism, the anomeric
selectivity can be expected to invert when (S)-selectivity is
retained (Figure 1c,d).””> The “same-face” attack of the
nucleophile (i.e., sugar acceptor) on the leaving group (i.e.,
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sugar donor) is guided by hydrogen bonding and proceeds
with high anomeric selectivity for the sugar donor and
acceptor.” The position of the anomeric hydroxyl of the
sugar acceptor might affect the type of glycosidic bond formed.
Here, the anomeric selectivity of the retaining LeLoir GT
trehalose transferase (TreT) was investigated. TreT is
particularly suitable for the screening of L-glycopyranoses, as
it couples nucleotide diphosphate (NDP) sugar donors to a
wide spectrum of nonphosphorylated Dp-sugar acceptors,
resulting in an a,a-(1 — 1)-glycosidic linkage.” We focused
on the recently described TreT from Thermoproteus uzoniensis
(TuTreT) fused to mCherry for the systematic screening of p-
and L-glycopyranoses as sugar acceptors.”” mCherry TuTreT is
an interesting enzyme because of a high thermostability, high
activity, the possibility of fluorometric detection that is due to
mCherry, and performance as an immobilized catalyst.®
Initially, the reaction conditions were optimized to exclude
any possible side reactions or promiscuous activities. TuTreT
did not display any phosphorylase or hydrolase activity. The
use of glucose-1-phosphate as sugar donor did not result in the
formation of trehalose (excluding phosphorylase activity), and
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Figure 1. Position of the anomeric hydroxyl of a-p-glucopyranose
(*Cy, cyan) when superimposed to f-L-glucopyranose ('C,, green) in
panel a is more similar than a-L-glucopyranose ('C,, purple) in panel
b. The insets in panel a, b show the representative overlay of the
Newman projection of the anomeric OHI1. The Syi-like reaction
mechanism with an oxocarbenium transition state (*H;) that allows
the approach of the anomeric hydroxyl, a—OH of p-glucose (*C,) in
panel ¢, or the /—OH of L-glucose ('C,) in panel d, is guided by
hydrogen bonding from the same face as the NDP leaving group. R =
NDP.

no hydrolase activity was observed when the enzyme was
incubated solely with trehalose. However, slow hydrolysis of
uridine diphosphate-glucose (UDP-glucose) to UDP and
glucose by TuTreT was observed, resulting in the subsequent
formation of trehalose from glucose and UDP-glucose (Figure
S3). To minimize the undesired formation of trehalose as a

side product via UDP glucose hydrolysis during the screening
of other sugar acceptors, the reaction time was limited to 60
min using 1.0 mg mL™" of TuTreT.”"°

Using these optimized conditions, the substrate tolerance of
TuTreT was probed in a HPLC-based screening of b- and L-
sugars (Figure 2). Conversion of L-glycopyranoses resulted in
the hypothesized p-selectivity for TuTreT. Successful enzy-
matic conversions were repeated on preparative scale and the
obtained trehalose analogues were analyzed by NMR and HR-
MS (Supporting Information). p-Glucose, D-mannose, D-
galactose, and D-xylose exclusively led to the formation of
a,a-(1 — 1)-linked trehalose derivatives, while L-glucose, L-
galactose, and L-gulose led to the formation of a,f-(1 — 1)-
linked trehalose derivatives. The long-range C—H coupling
over the glycosidic linkage confirmed the direct coupling of the
Clcceptor With the H1'yy,,, and vice versa in gHMBC
experiments. The *C, configuration of @-p-a-p-glycopyrano-
sides was confirmed by ], , coupling (~4 Hz) of the anomeric
protons, which are gauche configured. The anomeric protons of
p-L-glycopyranosides with a 'C, chair conformation are anti
configured, resulting in larger J, , coupling constants (~8 Hz).'

Further analysis of the HPLC screening demonstrates that p-
and L-enantiomers of glucose and galactose were accepted, but
L-mannose was not. For L-gulose, L-allose, and L-altrose, their
D-glycopyranoses enantiomers were not accepted. Anomeric
selectivity is dictated by more than the anomeric configuration,
and the overall conformation of the sugar acceptor is important
as well. The structural variants of p-glycopyranoses with a *C,
configuration were readily converted, such as p-glucose, D-
mannose, and D-galactose. This is in line with results for other
TreTs.'"'* CS sugars were generally less well accepted, with
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Figure 2. mCherry TuTreT catalyzed conversion of p- and L-sugar acceptors with UDP-p-glucose as donor for the screening for the formation of
product. The conversion was determined using external calibration curves of sugar acceptor with HPLC. 'n.d: not detected including a trehalose
analogue product. Reaction conditions: substrate (10 mM), UDP-p-glucose (40 mM), HEPES (50 mM), MgCl, (20 mM), mCherry TuTreT (13.5

nM), pH 7.0, 60 °C, 1 h of reaction time.
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Figure 3. Protein crystal structure of TuTreT containing UDP-p-glucose in panel a (PDB: 6ZMZ, inset in panel d), TuTreT bound with a,a-
trehalose in panel b (PDB: 6ZJH, inset shown in panel e), and TuTreT in complex with enzymatically synthesized a-p-glucopyranosyl-f3-L-
galactopyranose in panel ¢ (PDB: 6ZN1, inset shown in panel f). The nature of the glycosidic bond is demonstrated showing a high overlap for the
sugar donor and the glycosidic linkages between panels d and e, or panels d and f, while the orientation of the sugar acceptor changes slightly

between panels e and f.

the exception of p-xylose, which lacks a CH,OH group in
comparison to D-glucose. The ketohexopyranoses D-fructose
and D- and L-tagatose were not converted under the conditions
provided, which display dissimilar overall structural conforma-
tion of the cyclic ring structure as well as the anomeric
configuration. Interactions between active site residues and the
carbohydrate substrate were investigated by extending the
substrate screening to fluorodeoxy-carbohydrates. Unlike
hydroxyl groups, fluorine can exclusively function as a
hydrogen bond acceptor. All fluoro-deoxy-p-glucopyranoses
were quantitatively converted as acceptor substrates, with the
exception of 4-deoxy-4-fluoro-p-glucose.'’ The interaction of
hydrogen bond donor 4-OH of the sugar acceptor with the
deprotonated Asp254 of TuTreT is possibly important for
acceptor substrate recognition.

The substrate tolerance toward the glycopyranose moiety of
the sugar donor and the sugar acceptor is distinct from one
another." For instance, the coupling of UDP-p-glucose with
N-acetyl-D-glucosamine (GIcNAc) did not result in any
observable conversion. The sugar donor UDP-p-GIcNAc and
D-glucose is readily converted by TuTreT with >98%
conversion and a,a-(1 — 1)-selectivity.

As this is the first report that the a-D-selective retaining
glycosyltransferase TreT catalyzes the glycosidic bond
formation with S-L-glycopyranose acceptors, the protein crystal
structure of TuTreT was studied. As the mCherry TuTreT
fusion construct did not crystallize satisfactorily, the glycine-
rich linker of the fusion protein was cleaved using “in situ”

8837

proteolysis with retention of enzyme activity (Figure S1), and
the protein was purified (Figure S2). The protein without the
mCherry tag subsequently crystallized as apo (PDB: 6Z]4, 2.1
A resolution), cocrystallized with magnesium(II) (PDB: 6Z]7,
2.15 A resolution), or soaked with p-trehalose (PDB: 6ZJH,
2.1 A resolution), p-glucopyranosyl-L-galactopyranose (PDB:
6ZN1, 1.75 A resolution), and UDP-a-p-glucose (PDB:
6ZMZ, 1.9 A resolution). The latter three are shown in Figure
3a—c.

The overall three-dimensional fold observed in all
determined crystal structures are similar to the one found in
trehalose phosphate synthase (OtsA, PDB: 1GZS, RMSD of
2.0 A for 304 Ca)'* from E. coli and in trehalose transferase
from Pyrococcus horikoshii (PDB: 2X6Q, RMSD of 2.5 A for
363 Ca),"” showing in each domain a characteristic Rossmann
fold (Figure S4). Furthermore, all TuTreT structures show a
monomer in the asymmetric unit, and this state was confirmed
by size-exclusion small-angle X-ray scattering (SEC-SAXS)
measurements in aqueous solution (Figure $9-510)."° We
conclude that the functional unit of TuTreT is a monomer,
whereas a dimer has been described for PhTreT" and a
tetramer for OtsA from E. coli.'* The overall protein
conformation remained unchanged when bound to ligands in
aqua, according to SEC-SAXS (Figure S9—S10). The protein
crystal structures also show high structural similarity (Table
S3); however, a minor conformational change was observed for
the sugar donor binding site of TuTreT when it was soaked
with UDP-p-glucose. Hydrogen bond interactions between the
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uracil moiety and a disordered loop region of the protein
(Figure S6, res. 250—262), were inducing a shift of an a-helix
by 2.0 A (Figure SS). This finding is not in agreement for what
has been found for PhTreT, where a larger conformational
change was observed for the whole domain after soaking the
crystals with trehalose.'®

The active site of TuTreT is located between the N- or C-
terminal domains of the acceptor and donor binding sites
(Figure S4). Substrate-bound structures demonstrated clear
electron densities at the active site (Figure S6). The active site
residues for the sugar donor and acceptor binding sites are
conserved for TuTreT, PhTreT," and OtsA (Figure §7)."* In
TuTreT, the pyrophosphate moiety of the nucleotide sugar
donor interacts with Arg221 and Lys226, and the active site
can accommodate pyrimidine or purine nucleobases (Figure
3a,d). This leads to the ability of the enzyme to convert
nucleotide sugar donors with different nucleotides, which
holds for TreTs in general,w’18 as was observed with UDP- and
ADP-D-glucose with TuTreT previously.”’

The natural product a,a-p-trehalose shows an a,a-(1 — 1)-
glycosidic bond when bound to TuTreT (Figure 3b,e). In
trehalose, the @-p-glucopyranoseg,,,, moiety binds at the same
sugar binding site as the UDP-a-p-glucopyranose donor
(Figure S8a—c). The sugar donor binding site of UDP-p-
glucose of TuTreT (shown in Figure S8d) is similar to what
has been reported for TreT from Pyrococcus horikishii.'”
Interestingly, the a,a- and a,f-trehalose derivatives the a-p-
glucopyranose,..epor interacts with TuTreT in a different
binding mode than the p-1-galactopyranose, ccpior (Figure
S8e,f). Arg221 might bind with the 20H and 30H of the f-
L-galactopyranose, cptor (Figure S8e), while the 30H and 40H
of a-p-glucopyranose, .y, is at closer distance to Arg221
(Figure S8f). The movement of the highly conserved Arg221
when UDP-p-glucose is bound was notable (Figure S5f), which
has been postulated to play a role in substrate recognition in
PhTreT." Also, Asp256 is at a hydrogen bonding distance to
40H of a-p-galactopyranose, ceptor (Figure S8e), while no clear
electron density for this loop could be found for the natural a-
D-glucopyranose,eprorr The a-D-glucopyranose, cepior moiety of
trehalose is directed into the wide cavity of TuTreT.

Within the protein crystal structure, the conformation of the
carbohydrates demonstrated for the enzymatically synthesized
a,f-(1 — 1)-L-galactotrehalose (Figure 3cf), a 'C, con-
formation of the f-L-galactopyranose moiety. As was shown in
Figure 1, the anomeric f—OH, .o, hydroxyl group points into
the same direction as the a-OH, ., hydroxyl group in the
natural substrate p-trehalose (Figure 3f). Hence, the overall
geometry of a-D-glucopyranose with a *C, conformation and
p-L-galactopyranose with a 'C, conformation are highly similar
(Figure S8gh).

On the basis of these findings, we hypothesized that highly
(S)-selective TuTreT guides the anomeric hydroxyl of the
sugar acceptor according to a Syi-like mechanism. More
specifically, the a-OH of p-glucose (*C,), or the f-OH of L-
galactose ('C,) are guided by hydrogen bonding from the
same face as the NDP leaving group. As the Syi-like
mechanism requires the same-face participation with the
anomeric hydroxyl of the nucleotide phosphate of the glycosyl
donor, the sugar coupling does not readily proceed for the
equatorial #-OH of p-glucose (*C,) or the axial a-OH of 1-
galactose ('C,). This allows TuTreT to retain its (S)-selectivity
for the anomeric hydroxyl group, while the anomeric
configuration inverts. This mechanistic rationale explains the

8838

inversion of anomeric selectivity of TuTreT with L-glycopyr-
anose acceptors, emphasizing that understanding the structural
conformations of hexopyranoses is important for under-
standing enzyme selectivity when glycosidic bonds are formed.
This inversion of anomeric selectivity might not be limited to
TuTreT and could occur in other GTs as well.

In conclusion, mCherry TuTreT catalyzes the formation of
trehalose derivatives with a large substrate spectrum. The
switch in anomeric selectivity for p- and L-sugar acceptors can
be explained on the basis of structural conformations of
carbohydrates, leading to the formation of distinctive a-p-q-D-
or a-p-p-L-glycosidic linkages. This paves the way for further
studies of utilizing rare L-glycopyranoses with retaining LeLoir
glycosyltransferases, which are especially interesting for the
production of oligosaccharides and glycans with unnatural
glycosidic linkages.
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