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General Formulation for the Buckling Resistance of 

Uniform and Non-Uniform Slender I-Section Beams 

José Osvaldo Ferreira Filho1 | Luís Simões da Silva1 | Trayana Tankova2 | Hermes Caravalho2 

1 Introduction 

The second generation of Eurocode 3 (EC3) [1], introduces 

the new method for Lateral-Torsional Buckling (LTB) 

proposed by Taras and Greiner [2], which serves as an 

alternative of the General Case for doubly-symmetric I-

section beams under fork boundary conditions at both 

ends. The approach leads to well estimated results and 

was recently extended for mono-symmetric I-section 

beams [3], but it is not applied for members under 

arbitrary boundary conditions or with variable cross-

sections along the length. For such members, the use of 

the General Method is recommended by the code, but has 

been appointed in the literature [4,5] as inconsistent and 

very time-consuming since it depends on non-linear 

analyses.  

In response to these limitations, Tankova et al. [6] 

proposed a General Formulation (GF) that allow for the 

verification of generic single members, built-up or not, 

uniform or not, with complex support conditions or not. 

This approach has proven to be a practical, design-focused 

solution, relying solely on linear buckling analyses (LBA), 

and it was recently extended for mono-symmetric I-

section beams [7]. However, it has only been validated for 

compact and semi-compact sections, and its application 

for slender sections remains unexplored.  

This paper aims to extend the General Formulation to deal 

with uniform and non-uniform slender I-section beams 

with arbitrary boundary conditions submitted to uniform 

bending moment. The buckling resistance of members 

with varying sections and slenderness is investigated using 

a calibrated numerical model. The numerical results are 

then compared with analytical results derived from the 

General Case (GC) and General Method (GM) in EC3 [1], 

as well as from the extended General Formulation, to 

assess the accuracy of each approach. 

2 Extension of the General Formulation for 

Slender Sections 

The General Formulation (GF) adopts the Ayrton-Perry 

design philosophy in a raw format of a linear interaction 

equation, in which the first- and second-order normal 

stresses are included and the global reduction factor, 𝜒, is 

not applied. There is no need to calibrate additional 

parameters, such as the critical location and loading 

factors. The critical buckling mode obtained from a 

previous LBA is used as the shape of the initial 
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imperfection and the pertinent eigenvalues - critical load 

multiplier, 𝛼𝑐𝑟, critical transverse displacements along z-

axis, 𝑤𝑐𝑟, and y-axis, 𝑣𝑐𝑟, and critical twist rotation, 𝜃𝑐𝑟, 

etc. - are used to calculate the second-order contributions. 

The developed interaction equation should be applied for 

all potential failure modes and the verification should be 

performed for a sufficient number of cross-sections along 

the member, including the end sections. 

The utilization ratio of a generic single member can be 

calculated by dividing the total longitudinal stress, 𝜎, from 

the first- and second-order forces - axial force, 𝑁(𝑥), first 

and second-order out-of-plane bending moments, 𝑀𝑧(𝑥) 

and 𝑀𝑧
𝐼𝐼(𝑥), first and second-order in-plane bending 

moments, 𝑀𝑦(𝑥) and 𝑀𝑦
𝐼𝐼(𝑥), and bi-moment, 𝑀𝑤

𝐼𝐼(𝑥) - to the 

yield stress, 𝑓𝑦. The verification of a single member with 

arbitrary geometry, boundary conditions and loading is 

performed checking if Eq. (1) is satisfied. 

𝑁(𝑥)

𝐴𝑖(𝑥)𝑓𝑦
+

𝑀𝑦(𝑥)

𝑊𝑦,𝑖(𝑥)𝑓𝑦
+

𝑀𝑧(𝑥)

𝑊𝑧,𝑖(𝑥)𝑓𝑦
+

𝑀𝑦
𝐼𝐼(𝑥)

𝑊𝑦,𝑖(𝑥)𝑓𝑦
+

𝑀𝑧
𝐼𝐼(𝑥)

𝑊𝑧,𝑖(𝑥)𝑓𝑦
+

𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
≤ 1.0   (1) 

where 𝐴𝑖(𝑥) is the relevant cross-section area, 𝑊𝑦,𝑖(𝑥) and 

𝑊𝑧,𝑖(𝑥) are the relevant section moduli relative to the y- 

and z-axes, respectively, which are defined according to 

Table 1 extracted from clause 8.2.2.6 of EC3 [1], and 

𝑊𝑤(𝑥) is the warping modulus at location x along the 

member obtained according Eq. (2). 

Table 1 Section properties according to the class of the cross-section 

Class Area 

𝑨𝒊 

Moment 

of inertia 

𝑰𝒚 

Moment 

of inertia 

𝑰𝒛 

Section 

modulus 

𝑾𝒚 

Section 

modulus 

𝑾𝒛 

1 𝐴 𝐼𝑦 𝐼𝑧 𝑊𝑝𝑙,𝑦 𝑊𝑝𝑙,𝑧 

2 𝐴 𝐼𝑦 𝐼𝑧 𝑊𝑝𝑙,𝑦 𝑊𝑝𝑙,𝑧 

3 𝐴 𝐼𝑦 𝐼𝑧 𝑊𝑒𝑙,𝑦
∗ 𝑊𝑒𝑙,𝑧

∗ 

4 𝐴𝑒𝑓𝑓 𝐼𝑦,𝑒𝑓𝑓 𝐼𝑧,𝑒𝑓𝑓 𝑊𝑒𝑓𝑓,𝑦
∗ 𝑊𝑒𝑓𝑓,z

∗ 

* The elastic section modulus corresponds to the extreme 

fibre with the maximum elastic stress. 

𝑊𝑤(𝑥) =
𝐶𝑤(𝑥)

𝑤𝑚𝑎𝑥(𝑥) 
   (2) 

where 𝐶𝑤(𝑥) is the warping constant and 𝑤𝑚𝑎𝑥(𝑥) is the 

maximum sectorial area.  

Differently from Tankova et al. [6] and Gomes Jr et al. [7], 

where only compact and semi-compact cross-sections 

were contemplated, in this work, as Class 4 cross-sections 

are analysed, the effective properties of the sections 

(Figure 1) should be calculated to consider the effects of 

the local buckling. 

 

Figure 1 Typical effective doubly-symmetric I-section beam 

In contrast to Eurocode 3, the general formulation 

dismisses the need of previously identifying the buckling 

mode, since the potential critical displacements - 𝑤𝑐𝑟, 𝑣𝑐𝑟, 

and 𝜃𝑐𝑟 - cannot simultaneously occur. Consequently, the 

verification process aligns with a particular buckling case.  

Concerning LTB, the components of the critical buckling 

mode shape are 𝑣𝑐𝑟(𝑥) and 𝜃𝑐𝑟(𝑥), and the general 

interactions exhibited in Eq. (1) becomes: 

𝜎(𝑥)

𝑓𝑦
=

𝑀𝑦(𝑥)

𝑊𝑦,𝑖(𝑥)𝑓𝑦
+

𝑀𝑧
𝐼𝐼(𝑥)

𝑊𝑧,𝑖(𝑥)𝑓𝑦
+

𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
   (3) 

The second-order contributions from 𝑀𝑧
𝐼𝐼(𝑥), which 

depends on the lateral displacement, 𝑣(𝑥), and 𝑀𝑤
𝐼𝐼(𝑥), 

which depends on the twist rotation, 𝜃(𝑥), are calculated 

by Eqs. (4) and (5).  

𝑀𝑧
𝐼𝐼(𝑥) = −𝐸𝐼𝑧,𝑖(𝑥)𝑣"(𝑥)   (4) 

𝑀𝑤
𝐼𝐼(𝑥) = −𝐸𝐶𝑤(𝑥)𝜃"(𝑥)   (5) 

In the case of tapered beams, an additional warping 

component from the inclination of the flanges is added 

leading the Eq. (5) to: 

𝑀𝑤
𝐼𝐼(𝑥) = −𝐸𝐶𝑤(𝑥) [𝜃"(𝑥) +

2

h
𝜃′(𝑥)ℎ′]   (6) 

In a complex configuration concerning members with 

different geometries, and boundary and loading 

conditions, the imperfection cannot be determined as in 

the new LTB method [2], i.e. by coupling the lateral 

displacement and the twist rotation, as it is done for simply 

supported beams [8]. Consequently, it was decided to 

adopt the both critical components of the mode shape, 

𝑣𝑐𝑟(𝑥) and 𝜃𝑐𝑟(𝑥), as initial imperfections, scaling them by 

the same amplitude. Then, the initial lateral displacement, 

𝑣0(𝑥), and the initial twist rotation, 𝜃0(𝑥), are calculated 

using Eq. (7) and (8), respectively: 

𝑣0(𝑥) = 𝑣𝑐𝑟(𝑥)𝛿0̅,𝐿𝑇𝐵   (7) 

𝜃0(𝑥) = 𝜃𝑐𝑟(𝑥)𝛿0̅,𝐿𝑇𝐵   (8) 

The resulting amplification relationship for lateral 

displacement, 𝑣(𝑥), and twist rotation, 𝜃(𝑥), is expressed 

by: 
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𝑣(𝑥) =
1

𝛼𝑐𝑟−1
𝑣0(𝑥)   (9) 

𝜃(𝑥) =
1

𝛼𝑐𝑟−1
𝜃0(𝑥)   (10) 

From the assumption that the real beam has the same 

buckling resistance of an equivalent simply supported 

beam, with the same geometry at the critical cross-

section, 𝑥𝑚, and the same elastic critical bending moment, 

𝑀𝑐𝑟, the second-order utilization factors for both can be 

equalled and the required amplitude of the generalized 

imperfection can be determined. It is further assumed that 

the location 𝑥𝑚 is the location where 𝑣"𝑐𝑟 reaches the 

maximum values along the beam. 

The second-order utilization factor for the equivalent beam 

at the critical cross-section, 𝑥𝑚, is given by: 

𝜀𝑀
𝐼𝐼(𝑥𝑚) =

𝑀𝑧
𝐼𝐼(𝑥𝑚)

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦
+

𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦
=

𝛼𝑐𝑟𝑀𝑦,𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟−1)
(1 +

𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑧,𝑖(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
+

𝐺𝐽(𝑥𝑚)

𝑀𝑐𝑟

𝑊𝑧,𝑖(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
) =

𝑁𝑐𝑟,𝑧𝑒̅0

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟−1)
  (11) 

From Eqs. (4) and (5), the second-order utilization factor 

for the real beam at the same location is expressed by: 

𝜀𝑀
𝐼𝐼(𝑥𝑚) =

𝑀𝑧
𝐼𝐼(𝑥𝑚)

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦
+

𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦
=

𝐸𝐼𝑧,𝑖(𝑥𝑚)𝛿̅0

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟−1)
[𝑣′′

𝑐𝑟(𝑥𝑚) +

𝑊𝑧,𝑖(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑧,𝑖(𝑥𝑚)
(𝜃"𝑐𝑟(𝑥𝑚) +

2

ℎ
𝜃′𝑐𝑟(𝑥𝑚)ℎ′)] 𝛿0̅   (12) 

For Class 4 cross-sections with slender flanges, the Eq. 

(12) becomes: 

𝜀𝑀
𝐼𝐼(𝑥𝑚) =

𝑀𝑧
𝐼𝐼(𝑥𝑚)

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦
+

𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦
=

𝐸𝐼𝑧,𝑖(𝑥𝑚)(𝑣"𝑐𝑟(𝑥𝑚)+ℎ𝜃"𝑐𝑟(𝑥𝑚)+2𝜃′
𝑐𝑟(𝑥𝑚)ℎ′)𝛿̅0

𝑊𝑧,𝑖(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟−1)
   (13) 

As: 

𝑊𝑧,𝑖(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑧,𝑖(𝑥𝑚)
=

𝐼𝑧,𝑖(𝑥𝑚)

𝜌𝑓𝑏

2

𝐶𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝑤𝑚𝑎𝑥(𝑥) 
𝐼𝑧,𝑖(𝑥𝑚)

=

2

𝜌𝑓𝑏

4

ℎ𝑏

=
ℎ

2𝜌𝑓
   (14) 

The difference between Eqs. (12) and (13) is the 

application of the reduction factor for the flange plate 

buckling, 𝜌𝑓, which is equal 0.5 or 1.0, when the flange is 

slender or not, respectively.  

For slender cross-sections, equalling Eqs. (11) and (13) 

yields the amplitude of the imperfection related to lateral-

torsional buckling, 𝛿0̅,𝐿𝑇𝐵, Eq. (15), that contains the 

equivalent geometrical imperfection, 𝑒̅0, and additional 

terms establishing the consistency with EC3 [1] stability 

design rules.   

𝛿0̅,𝐿𝑇𝐵 =
𝑁𝑐𝑟,𝑧𝑒̅0

𝐸𝐼𝑧,𝑖(𝑥𝑚)[𝑣"𝑐𝑟(𝑥𝑚)+
ℎ

2𝜌𝑓
(𝜃"𝑐𝑟(𝑥𝑚)+

2

ℎ
𝜃′𝑐𝑟(𝑥𝑚)ℎ′)]

= 𝑓𝜂𝑒̅0 

(15) 

Following [6], 𝑒̅0 is given by Eq. (16): 

𝑒̅0 = 𝛼𝐿𝑇(𝑥𝑚)(𝜆̅(𝑥𝑚) − 0.2)𝑓𝜂|𝛿𝑐𝑟(𝑥𝑚)|
𝑊𝑧,𝑖(𝑥𝑚)

𝐴𝑖(𝑥𝑚)
 (16) 

where 𝛼𝐿𝑇(𝑥𝑚) is the imperfection factor related to the LTB 

from EC3 [1], 𝜆̅(𝑥𝑚) is the non-dimensional slenderness at 

a given position, the factor 𝑓𝜂 is given by Eq. (17) and 

𝛿𝑐𝑟(𝑥𝑚) is the general displacement of the critical mode 

found by a geometric relationship between the lateral 

displacement and the rotation of the section (Figure 2), 

which is expressed by Eq. (18). 

𝑓𝜂 =
𝑁𝑐𝑟,𝑧

𝐸𝐼𝑧,𝑖(𝑥𝑚)[𝑣"𝑐𝑟(𝑥𝑚)+
ℎ

2𝜌𝑓
(𝜃"𝑐𝑟(𝑥𝑚)+

2

ℎ
𝜃′𝑐𝑟(𝑥𝑚)ℎ′)]

   (17) 

𝛿𝑐𝑟(𝑥) = 𝑣𝑐𝑟(𝑥) + (
ℎ(𝑥)

2
+ 𝑒𝑁) 𝜃𝑐𝑟(𝑥)   (18) 

Finally, the utilization ratio 𝜀𝑀(𝑥) can be expressed and the 

generalized imperfection factor, 𝜂(𝑥), is expressed by Eqs. 

(19) and (20): 

𝜀𝑀(𝑥) =
𝑀𝑦,𝐸𝑑(𝑥)

𝑊𝑦,𝑖(𝑥)𝑓𝑦
+

𝐸𝐼𝑧,𝑖(𝑥)[𝑣′′
𝑐𝑟(𝑥)+

ℎ

2𝜌𝑓
(𝜃"𝑐𝑟(𝑥)+

2

ℎ
𝜃′𝑐𝑟(𝑥)ℎ′)]

𝐴𝑖(𝑥)𝑓𝑦(𝛼𝑐𝑟−1)
 𝜂(𝑥) ≤ 1.0 (19) 

𝜂(𝑥) = 𝛼𝐿𝑇(𝑥)(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝛿𝑐𝑟(𝑥)| (20) 

 

Figure 2 General displacement of the critical mode 

Using the differential equation for flexural buckling - Eq. 

(21) -, the equivalent elastic critical force for out-of-plane 

buckling, 𝑁𝑐𝑟,𝑧,𝑒𝑞, is “retrieved” – Eq. (22):  

𝐸𝐼𝑧(𝑥)𝑣′′
𝑐𝑟(𝑥) + 𝑁𝑐𝑟,𝑧,𝑒𝑞𝑣𝑐𝑟(𝑥) = 0 (21) 

𝑁𝑐𝑟,𝑧,𝑒𝑞 =
𝐸𝐼𝑧,𝑖(𝑥𝑚)|𝑣′′

𝑐𝑟(𝑥𝑚)|

|𝑣𝑐𝑟(𝑥𝑚)|
 (22) 

This force is the one used herein for the calculation of the 

normalized slenderness – Eq. (23): 

𝜆̅(𝑥) = √
𝐴𝑖(𝑥)𝑓𝑦

𝑁𝑐𝑟,𝑧,𝑒𝑞
 (23) 

3 Numerical study 

3.1 Finite Element (FE) model 

The numerical model was developed in ABAQUS [9] and it 

is a simple extension of the numerical model proposed by 

Ferreira Filho et al. [10] for beams. The geometry of the 

models was simulated considering the nominal dimensions 

and overlaps between the parts of the cross-sections at 

the web-flange junctions were avoided using tie 
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constraints, which could also allow adequate connection. 

Figure 3 illustrated the base geometry of the model, 

showing the main geometrical parameters. As observed, 

he longitudinal welds between the web and the flanges 

were not modelled without loss of accuracy, as 

corroborated by previous studies [11]. 

The true stress-strain curve of the material was 

represented according to EC3-1-14 [12]. The four-node 

finite element with full integration S4 was implemented 

and the mesh was composed by 16 elements across the 

flanges’ width and other 16 across the web’s depth, in 

agreement with previous studies [11].  

The fork boundary conditions were simulated following the 

recommendations of Snijder et al. [13]. The restrictions to 

lateral and vertical displacements were inserted at the 

nodes coincident with the centroids of each end-section, 

as well as the restrictions to torsional rotation. At one side, 

the longitudinal displacements were also prevented at the 

centroid node (Figure 4a). In both ends, all nodes of each 

flange were coupled for all displacements and rotations to 

its middle node. The same was done for the web, but 

without coupling the nodes for the rotations around the 

vertical axis, which was responsible to turn the end 

sections infinitely rigid and able to warp (Figure 4b). The 

end bending moments were applied at the centroid nodes. 

 

Figure 3 Reference geometry of the numerical models 

 
(a) 

 
(b) 

Figure 4 Boundary conditions (a) and constraints (b) applied to the 

numerical model to simulate the fork-supported beams 

The initial geometrical imperfections were introduced with 

a shape related to LTB eigenmode from previous linear 

buckling analyses (LBA) and amplitude equal to L/1000, 

as recommended by ECCS [14]. The pattern and 

magnitude of the membrane residual stresses were 

adopted according to the novel model proposed by 

Schaper et al. [15] for welded I-section members with 

thermal-cut flanges. 

3.2 Validation 

Finally, the numerical model was compared to the 

experimental results on class 4 welded I-section beams 

executed in project STROBE [16], in which the main 

information of the members is given in details. The 

deviations from the results are shown in Table 2, in which 

good agreement was found between the numerical model 

and the experimental tests. Reasonable correlation was 

also achieved between the curves of vertical load versus 

vertical displacements, as observed in Figure 5. 

Furthermore, the same failure modes found in the 

experimental tests were reproduced by the numerical 

model. In Figure 6, the lateral-torsional buckling, which 

was the failure mode found for all members, is illustrated 

with different perspective views. 

Table 2: Experimental versus numerical results for ultimate load 

Prototype Ult. Resistance (kN) Deviation 

 EXP FEM 𝑭𝑬𝑴

𝑬𝑿𝑷
 

B5 1024.5 1018.3 0.99 

B7 1384.6 1395.2 1.01 

B8 1327.9 1329.2 1.00 

B11 1731.8 1822.7 1.05 

B12 1601.0 1620.1 1.01 

B13 1307.2 1331.4 1.02 

B14 1133.3 1142.8 1.01 
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(a) 

 
(b) 

Figure 5 Comparison between load versus displacement curves for the 

doubly-symmetric (a) and monosymmetric (b) beams 

 

Figure 6 Typical LTB failure mode (Example of beam B11) 

3.3 Parametric study 

A parametric study on prismatic and non-prismatic Class 

4 I-section beams under constant bending moment was 

executed, considering the class 4 sections for the steel 

grade S690 (Table 3). Stocky to slender members were 

analyzed with non-dimensional slenderness, 𝜆̅𝑧, varying 

from 1.0 to 7.0. Three types of boundary conditions 

further the fork supports were considered (Figure 7). 

Table 3: Experimental versus numerical results for ultimate load 

Type Section 1 

𝒉 𝒙 𝐛 𝒙 𝒕𝒘 𝒙 𝒕𝒇 

(mm) 

Section 2 

𝒉 𝒙 𝐛 𝒙 𝒕𝒘 𝒙 𝒕𝒇 

(mm) 

𝒉𝟏 𝒉𝟐⁄  

Uniform 700x200x8x16 700x200x8x16 1.00 

Uniform 850x200x8x16 850x200x8x16 1.00 

Uniform 925x200x8x16 925x200x8x16 1.00 

Uniform 1000x200x8x16 1000x200x8x16 1.00 

Non-Uniform 850x200x8x16 700x200x8x16 1.21 

Non-Uniform 925x200x8x16 700x200x8x16 1.32 

Non-Uniform 1000x200x8x16 700x200x8x16 1.43 

Non-Uniform 925x200x8x16 850x200x8x16 1.16 

Non-Uniform 1000x200x8x16 850x200x8x16 1.25 

Non-Uniform 1000x200x8x16 925x200x8x16 1.08 

 

Figure 7 Arbitrary boundary conditions 

4 Validation of GF for slender sections  

The results from the numerical model were compared to 

the analytical results from the General Formulation (GF) 

and EC3 [1]. The scatter plot of 𝑟𝑡 versus 𝑟𝑒 is shown for 

all sections covered herein, where 𝑟𝑒 is the ratio between 

the numerical and plastic resistance, and 𝑟𝑡 is the ratio 

between the analytical and the plastic resistance. The 

results for the uniform beams under fork supports is 

exhibited in Figure 8, whilst the ones for uniform beams 

under the arbitrary boundary conditions, in Figure 9. The 

results for the tapered beams are illustrated in Figure 10.  

 

Figure 8 Numerical versus analytical results for uniform beams with 

fork supports 
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Figure 9 Numerical versus analytical results for uniform beams with 

arbitrary boundary conditions 

As observed in Figure 7, both analytical methodologies 

provided safe-sided results for the simply-supported 

beams. Concerning the average of ratios 𝑟𝑁 (analytical 

over numerical resistance), the GF correlates better with 

the numerical model, showing an average 𝑟𝑁 of 1.15, while 

General Case displayed conservative results with an 

average 𝑟𝑁 equal to 1.34. 

For the results of beams under arbitrary boundary 

conditions (Figure 8), better agreement is found using the 

GF over the approaches of EC3 [1]. The GF showed an 

average 𝑟𝑁 equal to 1.15, whist General Case and General 

Method exhibited 1.55 and 1.48, respectively. 

The GF also reached better results than the General 

Method for the tapered members with an average 𝑟𝑁 of 

1.18, while using GM leaded to an average 𝑟𝑁 of 1.44. 

 

Figure 10 Numerical versus analytical results for tapered beams 

5 Conclusions 

In this paper, the General Formulation (GF) proposed by 

Tankova et al. [6] was extended to deal with slender I-

section beams. The numerical model built by Ferreira Filho 

et al. [10] was calibrated to run a parametric study of 

S690 slender I-section beams, in which 192 members 

were analysed and the LTB numerical resistances were 

compared to the analytical results from GF and EC3. The 

comparisons showed that the GF displays safe-sided 

results for all the range of members and it agrees better 

with the numerical model than the approaches from EC3. 

Finally, it is concluded that the GF can be a practical 

solution to deal with complex configurations of geometry 

and boundary conditions over the General Method. 

However, the parametric study presented here is limited, 

and a more general numerical study should be executed 

involving also different loads, steel grades, and also very 

stocky members. 
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