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The General Formulation has proven to be a practical, design-focused solution for
the stability design of different member configurations - built-up or not, uniform or
non-uniform, with complex or simple support conditions. It was recently extended
for mono-symmetric I-section beams, but its applicability to slender section
members remains unexplored. This work aims to expand the scope of the General
Formulation to include Class 4 I-section beams. A numerical model was calibrated
to assess the lateral-torsional buckling resistance of beams. A parametric study was
conducted on S690 HSS slender I-section beams under uniform bending moment,
considering different cross-sections, normalized slenderness, prismatic and non-
prismatic beams, simply-supported and arbitrary boundary conditions. Finally, the
numerical results were compared to the analytical ones of the General Formulation
and Eurocode 3, supporting the applicability of the General Formulation due to its
good correlation with the numerical model.
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1 Introduction

The second generation of Eurocode 3 (EC3) [1], introduces
the new method for Lateral-Torsional Buckling (LTB)
proposed by Taras and Greiner [2], which serves as an
alternative of the General Case for doubly-symmetric I-
section beams under fork boundary conditions at both
ends. The approach leads to well estimated results and
was recently extended for mono-symmetric I-section
beams [3], but it is not applied for members under
arbitrary boundary conditions or with variable cross-
sections along the length. For such members, the use of
the General Method is recommended by the code, but has
been appointed in the literature [4,5] as inconsistent and
very time-consuming since it depends on non-linear
analyses.

In response to these limitations, Tankova et al. [6]
proposed a General Formulation (GF) that allow for the
verification of generic single members, built-up or not,
uniform or not, with complex support conditions or not.
This approach has proven to be a practical, design-focused
solution, relying solely on linear buckling analyses (LBA),
and it was recently extended for mono-symmetric I-
section beams [7]. However, it has only been validated for

Stability, Complex Members, Slender Sections, Eurocode 3, High-Strength Steel

compact and semi-compact sections, and its application
for slender sections remains unexplored.

This paper aims to extend the General Formulation to deal
with uniform and non-uniform slender I-section beams
with arbitrary boundary conditions submitted to uniform
bending moment. The buckling resistance of members
with varying sections and slenderness is investigated using
a calibrated numerical model. The numerical results are
then compared with analytical results derived from the
General Case (GC) and General Method (GM) in EC3 [1],
as well as from the extended General Formulation, to
assess the accuracy of each approach.

2 Extension of the General Formulation for

Slender Sections

The General Formulation (GF) adopts the Ayrton-Perry
design philosophy in a raw format of a linear interaction
equation, in which the first- and second-order normal
stresses are included and the global reduction factor, y, is
not applied. There is no need to calibrate additional
parameters, such as the critical location and loading
factors. The critical buckling mode obtained from a
previous LBA is used as the shape of the initial
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imperfection and the pertinent eigenvalues - critical load
multiplier, «.,., critical transverse displacements along z-
axis, w,., and y-axis, v.., and critical twist rotation, 6.,
etc. - are used to calculate the second-order contributions.
The developed interaction equation should be applied for
all potential failure modes and the verification should be
performed for a sufficient number of cross-sections along
the member, including the end sections.

The utilization ratio of a generic single member can be
calculated by dividing the total longitudinal stress, o, from
the first- and second-order forces - axial force, N(x), first
and second-order out-of-plane bending moments, M,(x)
and M (x), first and second-order in-plane bending
moments, M, (x) and Mj/(x), and bi-moment, M;!(x) - to the
yield stress, f,. The verification of a single member with
arbitrary geometry, boundary conditions and loading is
performed checking if Eq. (1) is satisfied.

NG My M | MY M | e g (1)
Ai(0)fy Wy,i(x)fy Wa,i(x)fy Wy,i(x)fy Wa,i(x)fy Ww(X) fy

where A;(x) is the relevant cross-section area, W,,;(x) and
W,:(x) are the relevant section moduli relative to the y-
and z-axes, respectively, which are defined according to
Table 1 extracted from clause 8.2.2.6 of EC3 [1], and
W,,(x) is the warping modulus at location x along the
member obtained according Eq. (2).

Table 1 Section properties according to the class of the cross-section

Class Area Moment Moment Section Section
A; of inertia of inertia modulus modulus
I, I, w, w,
1 A 1, I, Wiy Woi,z
2 A 1, I, Wiy Woi,z
3 A Iy I, Wel,y* Wel,z*
4 Aesr lyers Lesr Werry™  Wepps

* The elastic section modulus corresponds to the extreme
fibre with the maximum elastic stress.

_ Cw
Wy () === (2)
where C,, (x) is the warping constant and wy,,(x) is the
maximum sectorial area.

Differently from Tankova et al. [6] and Gomes Jr et al. [7],
where only compact and semi-compact cross-sections
were contemplated, in this work, as Class 4 cross-sections
are analysed, the effective properties of the sections
(Figure 1) should be calculated to consider the effects of
the local buckling.

Zc

Figure 1 Typical effective doubly-symmetric I-section beam

In contrast to Eurocode 3, the general formulation
dismisses the need of previously identifying the buckling
mode, since the potential critical displacements - w,,, v,
and 6., - cannot simultaneously occur. Consequently, the
verification process aligns with a particular buckling case.

Concerning LTB, the components of the critical buckling
mode shape are v,(x) and 6.(x), and the general
interactions exhibited in Eq. (1) becomes:

o _ _My®) ME@) | M) (3)
Iy Wy,i(x)fy Wa,i(x)fy Ww (X) fy

The second-order contributions from M}(x), which
depends on the lateral displacement, v(x), and Ml (x),
which depends on the twist rotation, 6(x), are calculated
by Egs. (4) and (5).

M} (x) = —EL; (c)v"(x) (4)
M (x) = —EC, (x)8"(x) (5)

In the case of tapered beams, an additional warping
component from the inclination of the flanges is added
leading the Eq. (5) to:

MY () = —EC,(0) [0700) +26'Cor| - (6)

In a complex configuration concerning members with
different geometries, and boundary and loading
conditions, the imperfection cannot be determined as in
the new LTB method [2], i.e. by coupling the lateral
displacement and the twist rotation, as it is done for simply
supported beams [8]. Consequently, it was decided to
adopt the both critical components of the mode shape,
v-(x) and 6..(x), as initial imperfections, scaling them by
the same amplitude. Then, the initial lateral displacement,
vo(x), and the initial twist rotation, 6,(x), are calculated
using Eqg. (7) and (8), respectively:

vo(x) = UCT(X)SO,LTB (7)
Oo(x) = GCT(X)SO,LTB (8)

The resulting amplification relationship for Ilateral
displacement, v(x), and twist rotation, 6(x), is expressed
by:
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1

acr—1

v(x) = vo(x)  (9)
1

acr—1

0(x) =

6o(x) (10)

From the assumption that the real beam has the same
buckling resistance of an equivalent simply supported
beam, with the same geometry at the critical cross-
section, x,,, and the same elastic critical bending moment,
M., the second-order utilization factors for both can be
equalled and the required amplitude of the generalized
imperfection can be determined. It is further assumed that
the location x, is the location where v"., reaches the
maximum values along the beam.

The second-order utilization factor for the equivalent beam
at the critical cross-section, x,,, is given by:

11 _ M) MEGo) _ @erMyEa(m)@ofcr(em) (
ei (o) = = 1+
M( m) Wz,i(xm)fy Ww(xm)fy Wz,i(xm)fy(acr—1)
Ver(em) Wz i(em) | GJ(xm) Wz,i(x‘m)) — Ncr,z€o (1 1)
Ocr(xm) Wiy (xm) Mcr Wy (xm) Wz,iGem) fy(acr—1)

From Egs. (4) and (5), the second-order utilization factor
for the real beam at the same location is expressed by:

MY () MECon) _ Elgi(im)8o
Wz,i(xm)fy Ww(xm)fy - Waz,i(xm)fy(acr

elltn) ln) (g ) + 20 er Con)' )| 8, (12)

Wiy (Xm) 12,i(xm)

s,{,f(xm) = D [U”cr(xm) +

For Class 4 cross-sections with slender flanges, the Eq.
(12) becomes:

il MY (em) MY (Gem)
el (o = =
M( m) Wz_i(xm)fy Ww(xm)fy
EIz,i(xm)(V”cr(xm)+h9”cr(xm)"'zglcr(xm)h’)go (13)
Wz,i(xm)fy(“cr_l)
As:
1,:(xm)
Z’,l,f;n Cw(xm) 2
Wazilem) CwXm) _ = _ Psb _ h
Wiy () I i(m)  CwGm) = =g, (14
wXm) Izi(Xm le,i(xm) b Pf

The difference between Egs. (12) and (13) is the
application of the reduction factor for the flange plate
buckling, pf, which is equal 0.5 or 1.0, when the flange is
slender or not, respectively.

For slender cross-sections, equalling Egs. (11) and (13)
yields the amplitude of the imperfection related to lateral-
torsional buckling, &,.rs, Eq. (15), that contains the
equivalent geometrical imperfection, ¢,, and additional
terms establishing the consistency with EC3 [1] stability
design rules.

Ncr,z€0

SO,LTB = = f'IéO
Elyi(xm) V"cr(xm)+%(9"cr(xm)+%9’cr(xm)h’)]

(15)

Following [6], &, is given by Eq. (16):

— = Wy ilxm)

€ = a7 (tm) (AGem) — 0.2)fy18cr Ctm)| 255 (16)

where a,;(x,,) is the imperfection factor related to the LTB
from EC3 [1], A(x,,) is the non-dimensional slenderness at
a given position, the factor f, is given by Eq. (17) and
8.-(x) is the general displacement of the critical mode
found by a geometric relationship between the lateral
displacement and the rotation of the section (Figure 2),
which is expressed by Eq. (18).

NCT',Z

" h "
Eli(xm)|v cr(xm)+m(9 er(em)+201cr(Xm)h')

(17)

8er () = vy () + (2 + e ) 6, (x) - (18)

Finally, the utilization ratio ¢,(x) can be expressed and the
generalized imperfection factor, n(x), is expressed by Egs.
(19) and (20):

My,Ed(X)

EM(X) - Wy,i(x)fy

Elz,i(x)[V”cr(x)"'%(e"cr(x)+%‘9’cr(x)h’)]

Ai(x)fy(acr—1)

n(x) < 1.0 (19)
n(x) = air () (Ax) — 0.2)f,18.-(x)| (20)

8,00= V0 + (hw/2 + en) 6,00

h(x)

L (x)

Ze(®)

Figure 2 General displacement of the critical mode

Using the differential equation for flexural buckling - Eq.
(21) -, the equivalent elastic critical force for out-of-plane
buckling, N, ,.q, is “retrieved” - Eq. (22):

EL()v" o (x) + Ncr,z,eqvcr(x) =0 (21)

N _ E’z,i(xm)lv”cr(xm)|
crz.eq werGem)l

(22)

This force is the one used herein for the calculation of the
normalized slenderness - Eq. (23):

Ai()fy

Alx) = Nernen (23)
3 Numerical study
3.1 Finite Element (FE) model

The numerical model was developed in ABAQUS [9] and it
is a simple extension of the numerical model proposed by
Ferreira Filho et al. [10] for beams. The geometry of the
models was simulated considering the nominal dimensions
and overlaps between the parts of the cross-sections at
the web-flange junctions were avoided using tie
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constraints, which could also allow adequate connection.
Figure 3 illustrated the base geometry of the model,
showing the main geometrical parameters. As observed,
he longitudinal welds between the web and the flanges
were not modelled without loss of accuracy, as
corroborated by previous studies [11].

The true stress-strain curve of the material was
represented according to EC3-1-14 [12]. The four-node
finite element with full integration S4 was implemented
and the mesh was composed by 16 elements across the
flanges’ width and other 16 across the web’s depth, in
agreement with previous studies [11].

The fork boundary conditions were simulated following the
recommendations of Snijder et al. [13]. The restrictions to
lateral and vertical displacements were inserted at the
nodes coincident with the centroids of each end-section,
as well as the restrictions to torsional rotation. At one side,
the longitudinal displacements were also prevented at the
centroid node (Figure 4a). In both ends, all nodes of each
flange were coupled for all displacements and rotations to
its middle node. The same was done for the web, but
without coupling the nodes for the rotations around the
vertical axis, which was responsible to turn the end
sections infinitely rigid and able to warp (Figure 4b). The
end bending moments were applied at the centroid nodes.

TS TR |

Y

A

z X

Figure 3 Reference geometry of the numerical models

4 Ux, Uy, URz=0

Ux, Uy, Uz, URz=0

(a)

Ux, Uy, Uz, URx, URy, URz
are coupled

Ux, Uy, Uz, URx, URz
are coupled

Ux, Uy, Uz, URx, URy, URz
Y are coupled

A

z X

(b)

Figure 4 Boundary conditions (a) and constraints (b) applied to the
numerical model to simulate the fork-supported beams

The initial geometrical imperfections were introduced with
a shape related to LTB eigenmode from previous linear
buckling analyses (LBA) and amplitude equal to L/1000,
as recommended by ECCS [14]. The pattern and
magnitude of the membrane residual stresses were
adopted according to the novel model proposed by
Schaper et al. [15] for welded I-section members with
thermal-cut flanges.

3.2 Validation

Finally, the numerical model was compared to the
experimental results on class 4 welded I-section beams
executed in project STROBE [16], in which the main
information of the members is given in details. The
deviations from the results are shown in Table 2, in which
good agreement was found between the numerical model
and the experimental tests. Reasonable correlation was
also achieved between the curves of vertical load versus
vertical displacements, as observed in Figure 5.
Furthermore, the same failure modes found in the
experimental tests were reproduced by the numerical
model. In Figure 6, the lateral-torsional buckling, which
was the failure mode found for all members, is illustrated
with different perspective views.

Table 2: Experimental versus numerical results for ultimate load

Prototype Ult. Resistance (kN) Deviation
EXP FEM @
EXP
B5 1024.5 1018.3 0.99
B7 1384.6 1395.2 1.01
B8 1327.9 1329.2 1.00
B11 1731.8 1822.7 1.05
B12 1601.0 1620.1 1.01
B13 1307.2 1331.4 1.02
B14 1133.3 1142.8 1.01
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(a)

2000 —B11- Exp

1750 - = B11-FEM

1500 —B12 - Exp

- = B12-FEM

1250

1000 B13 - Exp

B13-FEM

750

Applied Load [kN]

——B14 - Exp

500
- - B14-FEM
250

0 10 20 30 40 50 60
Vertical Displacement at Load Applicaiton [mm]

(b)

Figure 5 Comparison between load versus displacement curves for the
doubly-symmetric (a) and monosymmetric (b) beams

Figure 6 Typical LTB failure mode (Example of beam B11)

3.3 Parametric study

A parametric study on prismatic and non-prismatic Class
4 I-section beams under constant bending moment was
executed, considering the class 4 sections for the steel
grade S690 (Table 3). Stocky to slender members were
analyzed with non-dimensional slenderness, 1,, varying
from 1.0 to 7.0. Three types of boundary conditions
further the fork supports were considered (Figure 7).

Table 3: Experimental versus numerical results for ultimate load

Type Section 1 Section 2 hy/h,
hxbxt, xt, hxbxt, xt;
(mm) (mm)
Uniform 700x200x8x16 700x200x8x16 1.00
Uniform 850x200x8x16 850x200x8x16 1.00
Uniform 925x200x8x16 925x200x8x16 1.00

Uniform 1000x200x8x16 1000x200x8x16 1.00
Non-Uniform 850x200x8x16 700x200x8x16 1.21
Non-Uniform 925x200x8x16 700x200x8x16 1.32
Non-Uniform 1000x200x8x16 700x200x8x16 1.43
Non-Uniform 925x200x8x16 850x200x8x16 1.16
Non-Uniform  1000x200x8x16 850x200x8x16 1.25
Non-Uniform  1000x200x8x16 925x200x8x16 1.08
g Fixed pinned ends
Fixed-pinned with lateral restraint
atinferior flange
% x J%
Fixed pinned with lateral restraint
at superior flange
X Lateral Restraint
Figure 7 Arbitrary boundary conditions
4 Validation of GF for slender sections

The results from the numerical model were compared to
the analytical results from the General Formulation (GF)
and EC3 [1]. The scatter plot of r, versus r, is shown for
all sections covered herein, where 7, is the ratio between
the numerical and plastic resistance, and . is the ratio
between the analytical and the plastic resistance. The
results for the uniform beams under fork supports is
exhibited in Figure 8, whilst the ones for uniform beams
under the arbitrary boundary conditions, in Figure 9. The
results for the tapered beams are illustrated in Figure 10.

0.50

—re/rt=1.0
15% safe
0.40 ® rt,GF
15% unsafe o
0.30 rt, EC3-Gen.Case _..."
<
0.20
0.10
e
0.00 “
0 0.1 0.2 03 04 0.5

e

Figure 8 Numerical versus analytical results for uniform beams with
fork supports
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0.80 —re/rt=1.0 L,
=-==-15% safe e ’
----15% unsafe , Jad

0.60 ® rt,GF -7

rt, EC3-Gen.Case
rt, EC3-Gen.Method ,

040

It

0.20

0.00
0 0.2 04 0.6 0.8

le

Figure 9 Numerical versus analytical results for uniform beams with
arbitrary boundary conditions

As observed in Figure 7, both analytical methodologies
provided safe-sided results for the simply-supported
beams. Concerning the average of ratios ry (analytical
over numerical resistance), the GF correlates better with
the numerical model, showing an average ry of 1.15, while
General Case displayed conservative results with an
average ry equal to 1.34.

For the results of beams under arbitrary boundary
conditions (Figure 8), better agreement is found using the
GF over the approaches of EC3 [1]. The GF showed an
average ry equal to 1.15, whist General Case and General
Method exhibited 1.55 and 1.48, respectively.

The GF also reached better results than the General
Method for the tapered members with an average ry of
1.18, while using GM leaded to an average ry of 1.44.

0.80 —re/rt=1.0 L,

15% safe /”

. .
— — 15% unsafe L, .7
0.60 , P
® rt,GF ,/’ s
rd
, -

rt, EC3-Gen.Method ¢ Phd

0.40
<

0.20

000 2
0

Figure 10 Numerical versus analytical results for tapered beams

5 Conclusions

In this paper, the General Formulation (GF) proposed by
Tankova et al. [6] was extended to deal with slender I-
section beams. The numerical model built by Ferreira Filho
et al. [10] was calibrated to run a parametric study of
S690 slender I-section beams, in which 192 members
were analysed and the LTB numerical resistances were
compared to the analytical results from GF and EC3. The
comparisons showed that the GF displays safe-sided

results for all the range of members and it agrees better
with the numerical model than the approaches from EC3.
Finally, it is concluded that the GF can be a practical
solution to deal with complex configurations of geometry
and boundary conditions over the General Method.
However, the parametric study presented here is limited,
and a more general numerical study should be executed
involving also different loads, steel grades, and also very
stocky members.

References

[1] EN 1993-1-1. (2022) Eurocode 3 - Design of Steel
Structures - Part 1-1: General Rules and Rules for
Buildings. Brussels: Comité Européen de
Normalisation (CEN).

[2] Taras, A.; Greiner, R. (2010) New design curves for
lateral-torsional buckling - proposal based on a
consistent derivation. Journal of Constructional Steel
Research 66(5):648-663.

[3] Simdes da Silva, L.; Gomes Junyor, 1.0.; Ferreira
Filho, J.0.; Carvalho, H. (2025). Ayrton-Perry
approach for the lateral-torsional buckling resistance
of mono-symmetric I-section beams. Thin-Walled
Structures, 211, 113125.
https://doi.org/10.1016/j.tws.2025.113125.

[4] Marques, L.; Simdes da Silva, L.; Greiner, R.; Rebelo,
C.; Taras, A. (2013) Development of a consistent
design procedure for lateral-torsional buckling of
tapered beams. Journal of Constructional Steel
Research, 89, pp. 213-235.

[5] Simdes da Silva, L.; Marques, L.; Rebelo, C. (2010)
Numerical validation of the general method in EC3-1-
1: lateral, lateral-torsional and bending and axial force
interaction of uniform members. Journal of
Constructional Steel Research, 66, pp. 575-590
(2010), http://dx.doi.org/10.1016/j.jcsr.2009.11.003

[6] Tankova, T.; Simdes da Silva, L.; Marques, L. (2018)
Buckling resistance of non-uniform steel members
based on stress utilization: general formulation.
Journal of Constructional Steel Research, 149, 239-
256 (2018)

[7] Gomes Jr., 1. O; Simdes da Silva, L.; Tankova, T.;
Carvalho, H.; Ferreira Filho, J.0. (2023) Lateral-
torsional buckling resistance of non-prismatic and
prismatic monosymmetric I-section steel beams
based on stress utilization. Engineering Structures,
305, 117758.
https://doi.org/10.1016/j.engstruct.2024.117758.

[8] Chen, F.; Astuta, T. (1977) Theory of Beam-Columns
Vol. 2: Space behaviour and design. McGraw-Hill.

[9] Abaqus v. 6.21. (2021), Dassault Systems/Simulia,
Providence, RI, USA.

[10] Ferreira Filho, J.0.; Tankova, T.; Carvalho, H.;
Martins, C.; Simdes da Silva, L. (2022) Experimental
and numerical flexural buckling resistance of high
strength steel columns and beam-columns.
Engineering Structures, 265, 114414.

85UB017 SUOWWIOD A 18810 8ot |dde 8Ly Aq peusenob 8.e sajoile YO 8sn JO Sa|nJ 10y Akeiqi8ul|uO /8|1 UO (SUORIPUOD-PUe-SWLBH W00 A8 | 1M A%eJq 1 BUI|UO//SANL) SUORIPUOD PUe SWe | 8u 88S *[9202/T0/ez] Uo Arlqiauliuo (1M ‘Wied L Aq 2800, 2d80/200T OT/I0p/W00" A8 1M ARe.q 1 uluo//:Sdny Wo.j pepeoiumoq ‘9 ‘520z ‘GL0.6052


https://doi.org/10.1016/j.tws.2025.113125
http://dx.doi.org/10.1016/j.jcsr.2009.11.003
https://doi.org/10.1016/j.engstruct.2024.117758

602

https://doi.org/10.1016/j.engstruct.2022.114414.

[11] Ferreira Filho, J.0.; Simd&es da Silva, L.; Tankova, T.;
Carvalho, H. (2023) Influence of geometrical
imperfections and residual stresses on the reliability
of high strength steel welded I-section columns using
Monte Carlo simulation. Journal of Constructional
Steel Research, 215, 108548.
https://doi.org/10.1016/j.jcsr.2024.108548.

[12] prEN 1993-1-14. (2022) Eurocode 3: Design of steel
structures - Part 1-14: Design assisted by finite
element analysis, Brussels: Comité Européen de
Normalisation (CEN).

[13] Snijder, H.H.; van der A, R.P.; Hofmeyer, H.; van
Hove, B. W. E. M. (2018) Lateral torsional buckling

design imperfections for use in non-linear FEA. Steel
Construction, 11, 49-56.

[14] ECCS. (1984) Ultimate Limit State Calculation of
Sway Frames with Rigid Joints, Brussels: Publication
No.33.

[15] Shaper, L.; Tankova, T.; Simdes da Silva, L.;
Knobloch, M. (2022) A novel residual stress model for
Welded I-sections, Journal of Constructional Steel
Research, 188, 107017.

[16] Tankova, T.; Rodrigues, F.; Leitdo, C.; Martins, C.;
Simodes da Silva, L. (2021) Lateral-torsional buckling
of high strength steel beams: Experimental
resistance, Thin-Walled Struct. 164 (2021) 107913.

85UB017 SUOWWIOD A 18810 8ot |dde 8Ly Aq peusenob 8.e sajoile YO 8sn JO Sa|nJ 10y Akeiqi8ul|uO /8|1 UO (SUORIPUOD-PUe-SWLBH W00 A8 | 1M A%eJq 1 BUI|UO//SANL) SUORIPUOD PUe SWe | 8u 88S *[9202/T0/ez] Uo Arlqiauliuo (1M ‘Wied L Aq 2800, 2d80/200T OT/I0p/W00" A8 1M ARe.q 1 uluo//:Sdny Wo.j pepeoiumoq ‘9 ‘520z ‘GL0.6052


https://doi.org/10.1016/j.engstruct.2022.114414
https://doi.org/10.1016/j.jcsr.2024.108548

