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Low-level terrain-following systems require the ability to rapidly and accurately 
respond to the environment to prevent inadvertent actions. Catastrophic and fatal 
results could occur if missed cues or latency issues in data processing are 
encountered. Spiking neural networks (SNNs) have the computational ability to 
continuously process spike trains from rapid sensory input. However, most models 
of SNNs do not retain information from the spike train of a previous time step 
because the membrane potential is rapidly reset to a resting potential after 
activation. A novel approach is presented, allowing the spike train of a previous 
time step to be 'remembered.' Results are presented showing rapid onset of a 
membrane potential that exceeds the threshold and spikes in the presence of the 
same continuous spike train without the latency of increasing the membrane 
potential from its resting state. 
 
Piloted operations for both man and unmanned aircraft grow in complexity, which can 

overtax a pilot’s cognitive ability. One area where this is especially true is with low altitude 
operations. This type of operation is often necessary for mission success, thereby giving the pilot 
a significant advantage by avoiding adversarial engagement. The number of visual cues a pilot 
must quickly process in order to avoid controlled flight into terrain (CFIT) coupled with parallel 
communications and weapons tasks can quickly saturate cognitive ability, severely degrading a 
pilot’s situation awareness (SA). This degradation in SA can negatively affect mission 
performance and result in unnecessary loss of life and assets.  

Terrain-following systems aid pilots with low altitude navigation. However, the latency 
with which these systems need to operate must be as small as possible allowing for high 
accuracy in terrain scanning. These systems should also be of low Size, Weight, and Power 
(SWaP) for easy integration as a subsystem to an overall SWaP-constrained aircraft system. 
Third generation neural networks, also known as SNNs, are modeled after the neurons of the 
brain. Much research has been done on the modeling of neuron function of the brain. Some 
models are considered more biologically plausible, while others are considered more biologically 
inspired, such as the Leaky Integrate-and-Fire (LIF) model, as they aim to borrow only certain 
advantageous neuron cell characteristics for easy practical implementation Hazan et al. (2018). 

This paper proposes a novel neuron model, termed a temporary memory neuron (TMN), 
based on the LIF model with a tunable "memory" parameter which is correlated to a limited 
presynaptic spike time frame. This neuron, with its temporary memory capability, integrates into 
a SNN architecture and reduces the latency required to identify a previously learned spike train. 
This reduction in latency allows the terrain-following system to more rapidly provide the pilot 
with critical time-of-flight information necessary for mission success. 
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I. RELATED WORK 
 

Different techniques have been explored that develop dynamic spike firing rates. The 
work by Triesch (2005) develops a mathematical model of a neuron that provides plasticity that 
could be intrinsic to the neuron. This model provides for an adjustment to the firing rate to 
approximate an exponential regime. While this method is novel, and provides a method for 
plasticity within the neuron (not just the synapse), it does not provide for a memory or temporary 
memory capability based on a sequential spike train that could decrease latency in the system. 
Other similar approaches have been explored as in Stemmler et al. (1999). In order to reduce 
latency, some have approached this concept by optimizing the parameters of the neuron model, 
to include the thresholds, based on the specific task to be solved. Diehl et al. (2015) developed an 
approach to optimize the accuracy or latency by adjusting the threshold levels until the 
appropriate values were obtained. It was found that to optimize one, the other was sacrificed on a 
spike-by-spike basis. Other intrinsic plasticity based neuron parameters, e.g. thresholds, have 
been developed as part of the neural models as in Pozo et al. (2010). However, these all have 
thresholds that are increased to prevent a specific neuron from overshadowing the response 
pattern. The development of the dynamic thresholds of the previous works do not produce a 
offset membrane potential allowing for an associated temporary memory function based on the 
previous input spikes. In contrast, the novel neuron model of this paper produces a temporary 
memory function based on an offset membrane potential. 
 

II. BACKGROUND 
 

The spikes that are received by the postsynaptic neuron affect the membrane potential of 
the soma. As the membrane potential is increased, it will eventually surpass a threshold that 
causes the soma to send a spike down its axon to be delivered to other neurons. Once the spike 
occurs the membrane potential enters a refractory period during which it remains unaffected by 
any presynaptic spikes. After the refractory period, the membrane potential is reset to its original 
resting value after which new presynaptic spikes will again influence the membrane potential 
Gerstner et al. (2002).  

The synapse resistance, or lack thereof, governs the amount that the presynaptic action 
potential effects the postsynaptic membrane potential. This process is translated into the artificial 
neural network (ANN) as the input weights of the ANN. The ability to adjust these weights is 
considered the synaptic plasticity. Less common, and less accounted for, is the intrinsic plasticity 
of a neuron that common neuron models do not take into account, i.e. the threshold values Hao et 
al. (2018). 
 
A. Leakey Integrate-and –Fire Model 
 

The LIF neuron model is one of the most common neuron models used in spiking neural 
networks. This model is represented with a capacitor in parallel with a resistor and driven by a 
current, where a time constant 𝜏𝜏𝑚𝑚 = 𝑅𝑅𝑅𝑅 is introduced. The leaky integrate and fire model 
expresses spikes based on a firing time 𝑡𝑡(𝑓𝑓). The LIF neuron builds up its membrane potential 
between spikes and will eventually reach the threshold if enough input spikes are received that 
overpower the leak function of this neuron, a refractory period is observed immediately 

487



 
 

following the induced postsynaptic spike. The refractory period is a finite amount of time in 
which incoming spikes are not allowed to have any influence on the membrane potential. 
 
B. Spike Response Model 
 

The Spike Response model (SRM) is a generalization of the leaky integrate and fire 
model, where the generalization is in the form of dependence on the last time a spike occurred 
Gerstner et al. (2002). The SRM evaluates the membrane potential by integrating over the past 
for a specific current time 𝑡𝑡. The state of a neuron is determined with respect to the membrane 
potential. This model defines a resting state 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, a spike response, as presynaptic spikes are 
encountered, 𝜖𝜖, the form of the action potential 𝜂𝜂, and synaptic weights 𝜔𝜔𝑖𝑖𝑖𝑖 Gerstner et al., 
(2002). The zeroth order of the SRM (𝑆𝑆𝑅𝑅𝑆𝑆0), is a simplistic "zero order" version of the SRM. 
Therefore, independent of the presynaptic neuron and the last firing time of the postsynaptic 
neuron 𝑡𝑡𝚤𝚤�, the postsynaptic potential is developed with each presynaptic spike weighted by the 
synaptic efficacy 𝜔𝜔𝑖𝑖𝑖𝑖. This model is mathematically represented by Gerstner et al., (2002): 
 

 𝑢𝑢𝑖𝑖(𝑡𝑡) = 𝜂𝜂(𝑡𝑡 − 𝑡𝑡𝑖𝑖) + �𝜔𝜔𝑖𝑖𝑖𝑖
𝑖𝑖

�𝜖𝜖𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑡𝑡𝑖𝑖
(𝑓𝑓)� + 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,

𝑟𝑟𝑗𝑗
(𝑓𝑓)

 (1) 

 
 
where, 𝑢𝑢𝑖𝑖(𝑡𝑡) is the membrane potential, 𝜂𝜂(𝑡𝑡 − 𝑡𝑡𝑖𝑖) is the action potential based on the time from 
the previous postsynaptic spike, 𝜔𝜔𝑖𝑖𝑖𝑖 is the synaptic efficacy, 𝜖𝜖𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑡𝑡𝑖𝑖

(𝑓𝑓)� is the postsynaptic 
potential based on the presynaptic spikes, and 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the resting membrane potential. 
 

 
 

III. TEMPORARY MEMORY NEURON MODEL 
 

The desire to develop a neuron-level capability to decrease latency for previously 
discovered spike trains is paramount to real-time detection and classification missions. The 
intrinsic speed of the cognitive neuromorphic architecture developed for SNNs will determine 
the baseline processing speed of the SNNs. However, this baseline still produces latency when a 
neuron requires multiple spikes (multiple number of events i.e. computational cycles) to reach a 
threshold and emit a spike. Assuming that a specific spike train indicates an event of interest, 
most neuron models require multiple spike trains between postsynaptic spikes. This 
representation of a neuron model introduces latency between postsynaptic spikes. 

While the novel approach presented in this paper is not suggesting that it is representative 
of a biological neuron, it is building on the capabilities of the biological neuron models to 
provide an advanced capability. This concept utilizes computational models of spiking neurons 
and synapses implementing the biologically inspired LIF model and more specifically the SRM 
model; adding a tunable memory component as in Dayan et al.(2001), and Gerstner et al., (2002). 
The LIF neuron integrates the input spikes modulated by the inter-connecting synaptic weights, 
leading to a change in its membrane potential. The 𝑆𝑆𝑅𝑅𝑆𝑆0, equation 1, is a generalized LIF model 
where the model parameters are based on the last output spike Gerstner et al.(2002). The 
temporal dynamics of the TMN neuron are formulated in equations 2 and 3, 

488



 
 

 

 𝑢𝑢𝑖𝑖(𝑡𝑡) = 𝜂𝜂(𝑡𝑡 − �̂�𝑡𝑖𝑖) + �𝜔𝜔𝑖𝑖𝑖𝑖
𝑖𝑖

�𝜖𝜖𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑡𝑡𝑖𝑖
(𝑓𝑓)� + 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜁𝜁𝑖𝑖(𝑡𝑡),

𝑟𝑟𝑗𝑗
(𝑓𝑓)

 (2) 

  
where 𝑢𝑢𝑖𝑖(𝑡𝑡) is the membrane potential of neuron 𝑖𝑖 at time 𝑡𝑡, and 𝜂𝜂(𝑡𝑡 − �̂�𝑡𝑖𝑖) is the model ‘form’ of 
the spike at some time 𝑡𝑡 after the last spike of neuron 𝑖𝑖, (�̂�𝑡𝑖𝑖), ∑ 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖  is the synaptic efficacy (the 
sum of the synaptic weights of the presynaptic neurons 𝑗𝑗 exciting the postsynaptic neuron 𝑖𝑖), 
∑ 𝜖𝜖𝑖𝑖𝑖𝑖 �𝑡𝑡 − 𝑡𝑡𝑖𝑖

(𝑓𝑓)�𝑟𝑟𝑗𝑗
(𝑓𝑓)  is the sum of the postsynaptic potential 𝜖𝜖𝑖𝑖𝑖𝑖 based on the current time and its 

relation to the presynaptic spikes of presynaptic neurons 𝑗𝑗 at time 𝑓𝑓, and the membrane resting 
potential of neuron 𝑖𝑖, 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The TMN neuron builds on the basic equation of the 𝑆𝑆𝑅𝑅𝑆𝑆0 model 
with the addition of 𝜁𝜁𝑖𝑖(𝑡𝑡), the neuron memory of neuron 𝑖𝑖 defined at time 𝑡𝑡 as shown in equation 
2 and developed in equation 3. The memory addition to the 𝑆𝑆𝑅𝑅𝑆𝑆0 model is: 
 

 𝜁𝜁𝑖𝑖(𝑡𝑡) = − �−
1

1 + 𝑒𝑒−�𝑟𝑟−(𝑟𝑟𝑖𝑖+𝜏𝜏𝑑𝑑)+𝜏𝜏𝑜𝑜𝑓𝑓𝑓𝑓�
+ 1� �−�𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − �𝑣𝑣 − 𝑣𝑣𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟���, (3) 

 
 
where 𝜏𝜏𝑑𝑑 and 𝜏𝜏𝑜𝑜𝑓𝑓𝑓𝑓 are time constants that set the point in time after neuron 𝑖𝑖 spikes allowing the 
membrane potential will be allowed to decrease back to its resting state, 𝜐𝜐 is the neuron threshold 
and 𝑣𝑣𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 is the desired level below the threshold value where the membrane potential will be 
temporarily set. The TMN allows for a neuron to spike more readily upon receiving a spike once 
it has produced a postsynaptic spike. This concept, built into an ensemble of neurons, will 
provide a quicker response to an already known spike train, preventing the latency between 
postsynaptic spikes. 
 
 

IV. RESULTS 
 

The TMN neuron simulated with a constant current input at set intervals. Various 
parameters were changed in the TMN neuron to illustrate the capability for this neuron to reduce 
latency upon receiving additional spikes. This simulation provides constant current input 
between 1000-1200ms (200ms period), 2000-2300ms (300ms period), 2800-3200ms (400ms 
period), and 4200-4250ms (50ms period) to observe the response of the TMN for the different 
time periods. For the simulation illustrated in this work, the membrane rest potential is set to -
70mV, the membrane reset potential is set to -75mV, the membrane threshold is set to -55mV 
and the refractory constant is set to 10ms. The temporary memory part of this neuron has the 
𝑣𝑣𝑜𝑜𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 set to 7mV the 𝜏𝜏𝑑𝑑 (governs the time until the membrane potential is allowed to decay to 
its rest state assuming no other spikes have occurred) is set to 20mS and the 𝜏𝜏𝑜𝑜𝑓𝑓𝑓𝑓 (governs the 
rate of the decay back to the rest potential) is set to 200ms.  

Figure 1(a) illustrates the TMN with an input current set to a magnitude of 10A. It is noted 
that with the varying time periods of, 200ms, 300ms, 400ms, 50ms, respectively, the number of 
spikes produced within the time periods would be fewer without the temporary memory. The initial 
spikes of each time period required significant more ramp up time as compared to subsequent 
spikes. It is also noted form figure 1(a) that the temporary memory is maintained for a specific 
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time period, afterward decaying back to its resting state in the absence of a spike (e.g. the 100ms 
and 200ms time periods). 

In contrast, figure 1(b) shows the effect of the temporary memory where an additional 
current was inserted at 139ms to 145ms allowing a post synaptic spike to occur where otherwise 
no spike would have occurred. This action reset the temporary memory values allowing for a new 
spike train to be recognized within the specified time frame.  
 

 
Figure 1. (a) Spike Response of a TMN neuron with 4 time periods (200ms, 300ms, 400ms, and 50ms) 
illustrating the temporary memory capability to produce subsequent spikes in a set time period, (b) 
illustrating the temporary memory capability to produce subsequent spikes in a set time period with an 
additional 6ms time period for starting at 139ms. 

 
 
 

V. CONCLUSIONS 
 

A novel neuron model based on the LIF neuron with a tunable temporary memory 
parameter is proposed. This tunable parameter allows for the temporary 'remembrance' of 
specific spike train inputs. After a prescribed time period previously learned spike trains are 
‘forgotten' allowing for future spike trains to be learned. This dynamic capability can be 
integrated into a third generation ANN system allowing for reduced latency in the recognition of 
specific inputs. An application where this concept could be of benefit is that of low altitude, high 
speed, terrain scanning systems. These systems require both low latency and low SWaP which 
third generation artificial neural networks show promise to deliver. Enabling a reliable terrain 
scanning navigation aid will help reduce cognitive overload and improve SA for pilots. Future 
work with this concept is underway where the optimal intrinsic neuron plasticity parameters such 
as sub-threshold voltage and temporary memory duration will be explored, modeling human 
sensory memory and working memory. 
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