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Solving the Online 3D Bin Packing Problem with
Graph-Based Reinforcement Learning

Giovanni Corvi

Abstract—The rapidly growing volume of parcel shipments is
straining transportation and logistics sectors, highlighting the
need for innovative solutions to optimize packing and loading
processes. The online bin packing problem (BPP), an NP-hard
computational problem, finds practical applications in numerous
sectors, including modern packaging and intelligent logistics. This
study proposes a novel reinforcement learning (RL) approach
to tackle the online 3D-BPP emphasizing applicability and
versatility. The key innovation is the representation of the packing
scene as a graph, enabling effective encoding of task-specific
high-level features. This graph-based structure serves as the
foundation for an RL agent designed to learn an optimal packing
strategy through dynamic interaction with the environment.
The proposed approach uniquely operates within the continuous
domain, enhancing generalization across diverse packing tasks.
Experimental evaluations in both simulated environments and a
real-world setting demonstrate that the solution achieves state-of-
the-art performance across multiple complex three-dimensional
packing scenarios.

I. INTRODUCTION

The logistic industry is witnessing an exponential rise of
parcels volumes, with projections indicating the number of
shipments will increase by 150% in the next four years [1].
This surge poses a substantial challenge for transportation
companies, requiring innovative solutions to efficiently man-
age the intricate network of product logistics. Optimizing
transportation resources, including the efficient packing of
items, emerges as a crucial factor. Achieving an accurate and
reliable solution in this context holds the potential to signifi-
cantly improve customer satisfaction and cost-effectiveness in
logistics, as well as ensuring personnel safety during loading
and unloading procedures.

The bin packing problem is a classical optimization problem
within the broader Cutting & Packing (C&P) domain, which
has attracted research attention since the 1960s. In industrial
applications, ’cutting’ problems involve segmenting materials
such as wood or paper rolls, while ’packing’ problems address
the arrangement of items into containers, often for logistical
purposes. Despite this distinction, the dynamic interaction
between material and space in both scenarios suggests that
packing problems can be conceptualized as cutting large
spaces into smaller units [2].

The online three-dimensional bin packing problem (3D-
BPP) is a variant of the classic NP-hard problem with sig-
nificant real-world applications in the logistic industry. Its
objective is to efficiently load items of varying sizes into
a minimum number of containers, also referred to as bins.
In contrast with the classical 3D-BPP, the online problem
requires real-time decision-making as items arrive sequentially
without prior knowledge of the set of incoming items and their

Fig. 1: Illustration of the real-world testing scenario. The system consists of a robotic
arm for picking and packing items, a conveyor belt to feed incoming items, and RGB-D
cameras mounted above to capture the packing scene and incoming item data.

dimensions. This scenario distinctly reflects the challenges
encountered in real-world logistics operations.

The real-world setting for the online 3D-BPP typically
features a conveyor belt delivering items to a robot manip-
ulator, with RGB-D cameras positioned above the picking
and packing areas. These sensors provide a 2.5D perspective
of both the incoming item and the current configuration of
the container. A solution in this scenario processes the visual
data to determine a three-dimensional pose for optimal item
placement.

Numerous variants of the bin packing problem have been
developed, each designed to meet the specific demands of
practical constraints in real-world scenarios. These constraints
range from safety considerations, such as weight limitations,
to logistical factors, like loading priorities. The current study
tackles a general version of the problem that is widely relevant
and designed to be adaptable to more specialized scenarios.
It particularly focuses on addressing the most frequently
encountered safety constraints.

Historically, heuristic methods, which are based on empir-
ical rules derived from hands-on packing experiences, have
been the dominant approach for solving the online 3D-
BPP. However, recent advancements have seen the emergence
of deep reinforcement learning as a promising alternative
approach. While learning-based approaches have generally
demonstrated superior performance compared to traditional
methodologies, a notable gap persists when assessing their
effectiveness in realistic scenarios. These methods are pre-
dominantly designed under the assumption of discrete settings,
limiting their applicability to specific cases and rendering them
impractical for real-world deployment.

This study aims to address the identified research gap by
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presenting a more versatile and practical solution to the online
3D bin packing problem. The proposed learning-based ap-
proach inherently operates within a continuous space, resulting
in state-of-the-art performance across diverse packing tasks.
The problem was formulated as a Markov decision process and
tackled with a reinforcement learning approach. A distinctive
feature, setting this RL solution apart from its predecessors,
lies in the novel representation of the container configuration.
The packing scene, combined with the characteristics of the
incoming item, is encoded as a graph. This representation
enhances data efficiency and provides the RL agent high-level
features tailored to the specific task.

The graph-structured data derived from the packing environ-
ment is processed using the Graph Attention Network version
2 (GATv2) architecture. The reinforcement learning agent is
subsequently trained with the Proximal Policy Optimization
(PPO) algorithm. Within the Isaac Gym platform, a custom-
build simulation environment was developed to leverage the
physics simulator’s advanced capabilities. This proved crucial
for assessing the full packing configuration’s stability, a task
that has historically posed significant challenges.

Finally, as illustrated in Fig. 1, the approach is rigorously
tested within a real-world scenario. This study was conducted
in collaboration with Fizyr, a company focused on developing
computer vision software for ’pick-and-place’ applications.
Their detection software played a crucial role to enable the
real-world implementation and evaluation of the proposed
solution. These tests confirmed the model’s performance
and demonstrated an effective simulation-to-reality transition,
highlighting the applicability of the proposed solution in
operational settings.

II. RELATED WORK

The original bin packing problem has numerous variants,
including natural generalizations such as 2D- and 3D-BPP,
where higher dimensions introduce significantly increased
complexity. Despite the practical relevance of the online 3D-
BPP, the overwhelming majority of current literature focuses
on the offline version of the problem [3]. Consequently, a wide
range of approaches has been proposed to tackle this variant.
These strategies include exact algorithms [4], constructive and
meta-heuristics [5], tree-search methods [6], machine learning
techniques [7], and approximation algorithms [8]. On the other
hand, only a handful of works attempted to develop end-to-end
solutions for the online 3D-BPP. Nevertheless, it is important
to note that the insights gained from valuable offline studies
can inform and guide the development of relevant approaches
for online problems.

This section begins by examining the most relevant solu-
tions for the online 3D-BPP, analyzing their strengths and
limitations. Subsequently, it explores the application of rein-
forcement learning (RL) algorithms for training a decision-
making agent in this setting. Finally, given the graph-structured
data collected from the environment, the section examines
various graph neural networks (GNNs) to select the most
suitable architecture.

A. Solutions to the online 3D-BPP

When addressing the online 3D-BPP, the literature presents
two primary methodologies: heuristics and learning-based
approaches. In general, heuristics are practical methods em-
ployed to address complex problems that prioritize efficiency
over finding optimal solutions. In the context of the 3D-BPP,
heuristic algorithms can be viewed as a distilled representation
of the practical knowledge gained from real-world packing
experiences. These methods can be divided into two essential
components. The first identifies potential empty spaces, known
as placement locations, that are suitable for item packing.
Common methods, drawing inspiration from offline studies,
include Corner Points (CPs) [9], Extreme Points (EPs) [10],
and Empty Maximal Spaces (EMSs) [5]. The second com-
ponent involves selecting an optimal placement location to
fulfill packing requirements. While constructive heuristics for
this task are sparse in online bin packing literature, methods
such as Deepest-Bottom-Left with Fill (DBLF) [11], First
Fit Decreasing (FFD) [12], and Best Fit Decreasing (BFD)
[13] have been employed. Although these heuristic methods
demonstrated acceptable performance, their generalization ca-
pabilities exhibited significant limitations.

In recent years, learning-based techniques, particularly rein-
forcement learning (RL), have emerged as promising solutions
for the online 3D-BPP. Kundu et al. [14] first introduced a
deep RL framework to address a vision-based online 2D-
BPP, employing a Double Deep Q-Network (DDQN) with
a convolutional neural network (CNN) to optimize packing
efficiency. A crucial aspect of this framework is the state-
action representation, which significantly impacts the com-
plexity of the learning problem and the agent’s ability to
capture relevant patterns. In the literature, the conventional
approach for representing the container involves discretizing
its bottom area to construct a heightmap. This results in
a two-dimensional (LxW) grid where each cell describes
the current height of the stacked items in the correspond-
ing region. Consequently, the action set is directly derived
from this heightmap, with each cell considered a potential
placement location. Inherent to this representation is a trade-
off between a higher resolution map, which exponentially
increases the action space thus significantly slowing down
policy convergence, and a lower resolution one, which limits
the action space while potentially sacrificing detail and policy
effectiveness. To address this challenge, two main approaches
have been proposed. The first method, employed in [15] and
[16], involves invalid action masking (IAM) to filter actions for
feasibility, leveraging stability analyses in the 3D-BPP context.
The second approach adopts a hybrid strategy, as illustrated in
the studies [17] and [18], where novel heuristics are integrated
with reinforcement learning for decision-making. However,
findings from studies such as Yang et al.’s [16] indicate that
hybrid methods for online 3D-BPP might present limitations
inherited from heuristic methodologies.

While these approaches offer potential remedies, the con-
ventional heightmap representation itself imposes inherent
limitations that are challenging to overcome. These solutions
have often been designed and evaluated on tailored datasets,
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and their applicability to practical scenarios, where continu-
ous space and dynamic environments are involved, remains
questionable.

B. Reinforcement learning

Reinforcement learning (RL) has gained significant atten-
tion in artificial intelligence research, with deep reinforcement
learning (DRL) emerging as a prominent field. By integrat-
ing neural network models into conventional RL algorithms,
DRL has proven successful in mastering complex behavioral
skills and addressing intricate control tasks [19]. The existing
research can be broadly categorized into value-based, policy-
based, and maximum entropy methods.

Value-based methods, such as Deep Q-Network (DQN) [20]
and Double Deep Q-Network (DDQN) [21], aim to approxi-
mate the optimal value function, which represents the expected
long-term reward for taking an action in a given state. On
the other hand, policy-based methods, including Asynchronous
Advantage Actor-Critic (A3C) [22], Trust Region Policy Op-
timization (TRPO) [23], Proximal Policy Optimization (PPO)
[24], and Actor-Critic using Kronecker-Factored Trust Region
(ACKTR) [25], directly optimize the agent’s policy function,
proving effective for scenarios with complex stochastic poli-
cies. Finally, maximum entropy methods, such as Soft Actor-
Critic (SAC) [26], leverage entropy regularization to encourage
exploration and diverse behavior, making them potentially
data-efficient but requiring careful tuning for optimal perfor-
mance. Among these approaches, PPO emerges as a com-
pelling choice due to its balance between sample efficiency and
simplicity. It consistently demonstrated strong performance
across a wide range of continuous control tasks, often outper-
forming more complex algorithms such as ACKTR, without
imposing significant computational overhead [27]. Addition-
ally, PPO’s strategy to handle the exploration-exploitation
trade-off renders it desirable for optimizing stochastic policies.
Its clipped objective function ensures stable learning dynamics
by encouraging incremental updates to the policy, making it
a robust and rational choice for tackling the online 3D-BPP
with the proposed state representation.

C. Graph neural networks

Graph neural networks (GNNs) have attracted significant
attention for their ability to analyze and model intricate
relationships within graph-structured data. Inspired by convo-
lutional neural networks, GNNs are specifically designed for
non-Euclidean data structures, showcasing remarkable efficacy
in tasks such as node classification, link prediction, and
knowledge graphs [28]. Employing a ’graph-in graph-out’
architecture, GNNs adeptly process input graphs, operating
on node, edge, and global embeddings while preserving the
inherent connectivity. At their core, GNNs iteratively propa-
gate information through nodes and edges using convolutional-
like operators, with two predominant approaches addressing
this critical operation: spectral and spatial methods. Spectral
approaches in GNNs involve representing graphs in the spec-
tral domain, utilizing principles from graph signal processing
[29] and defining convolutional operators through Fourier

transforms. The Graph Convolutional Network (GCN) [30] is
a widely used example of a spectral GNN architecture.

In contrast, spatial methods directly apply convolutions on
the graph by aggregating information from neighboring nodes.
Examples of spatial GNN architectures include GraphSAGE
[31], particularly suitable for large-scale graphs, and the graph
attention network (GAT) [32], which employs the attention
mechanism to prioritize the most relevant information during
aggregation. More recently, an enhanced version of the graph
attention network, GATv2 [33], was introduced to address a
limitation in GAT’s attention mechanism. By incorporating
dynamic attention, GATv2 achieves enhanced expressiveness,
leading to superior performance across node-, link-, and graph-
prediction tasks. In the context of the online 3D-BPP, which
requires learning complex spatial relationships within the
graph-structured environment, GATv2’s ability to capture local
spatial relationships makes it a compelling choice over spectral
approaches like GCN. Its dynamic attention mechanisms are
capable of learning intricate dependencies within the graph,
enabling the model to adapt to varying structural configura-
tions. By selecting GATv2, this study aims to harness these
advanced capabilities to enhance the learning and decision-
making processes in the online 3D bin packing scenario.

III. METHOD

A. Problem Formulation

The online 3D bin packing problem addressed in this
research is framed as an output maximization problem. Given
a container C, of size (W,L,H), the objective is to assign
a maximum-value subset I ⊆ I of items, where each item
i ∈ I has arbitrary size (wi, li, hi) and cuboid shape, to the
container. To model this problem effectively, it is formulated
as a Markov decision process (MDP), a key framework for
solving sequential decision-making problems. An MDP is typ-
ically expressed as a 5-tuple (S,A,P, ρ, γ), where S is the set
of observable states, A is the action set, P : S×A×S → [0, 1]
determines the transition probabilities from a state-action pair
to the following state, ρ : S × A → R is the reward function
and γ is the discount factor.

In the context of the online 3D-BPP, the environment
state combines the current configuration of the bin and the
characteristics of the incoming item, while the action specifies
the placement and orientation of the item within the container.
The objective is to devise a stochastic policy π : S → A, which
maps states to probability distributions over potential actions,
with π(a|s) denoting the probability of selecting action a
under state s. The policy aims to maximize the expected
cumulative discounted reward, defined as

Jπ = Eτ∼π

[ ∞∑
t=0

γtρ(st, at)

]
where τ = (s0, a0, s1, ...) is a trajectory sampled based on the
policy π. In this formulation, the online 3D-BPP environment
satisfies two fundamental MDP assumptions: it is fully ob-
servable and the next state solely depends on the current state
and action. Additionally, the environment is assumed fully
deterministic. Therefore, the transition probability function P
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Fig. 2: llustration of the graph structure’s evolution across six packing steps. At step 4, node J is removed as it becomes redundant due to the equal height of the adjacent items.
Similarly, nodes E and F are discarded in the final step. In contrast, node K is preserved in step 5, as the height difference between items requires its inclusion for accurately
describing the scene.

can be replaced with the transition function T : S × A → S
which maps a state-action pair (s, a) to a deterministic next
state s′.

The traditional 3D-BPP imposes three basic geometric con-
straints: all items must lie entirely within the container, no
item overlapping is allowed, and all items must be packed
orthogonally to the walls of the container. To address the
challenges faced in the real-world scenario, two additional
constraints are introduced. The first restricts the possible
orientations of items during the packing process. Specifically,
each item is limited to a single vertical orientation while no
restrictions are imposed on their horizontal direction. This is
done to accommodate the use of a suction cup end-effector
for the pick-and-place operations of items in the real-world
testing scenario. Moreover, this constraint mirrors common
practices observed in logistics when handling boxes marked
with a ”This way up!” sign, requiring that they be placed
on a predefined surface. The second constraint ensures the
structural integrity of the items and the safety of operators
involved in loading/unloading processes by imposing verti-
cal static stability. Implemented as a hard constraint within
the simulation environment, it terminates training episodes
whenever unstable stacking configurations are detected. In
such instances, a penalty in the form of a negative reward
is assigned to the agent.

B. State-Action Representation

Designing an appropriate state-action representation is a
critical aspect of solving problems via reinforcement learning.
It plays a significant role in determining how the agent
perceives and interacts with the environment, thereby im-
pacting its decision-making process and shaping the learning

outcomes. In the context of the online 3D-BPP, the state en-
vironment centers around the current container configuration,
complemented by the features of the incoming item.

The convention of representing the state of the container
through a heightmap grid, wherein each cell represents a
potential location for item placement, has posed challenges for
RL-based methods in dealing with large action spaces. This
limitation contributes to the observed lack of generalization
capabilities in previous approaches, particularly evident in
continuous environments where most methods struggle to
perform effectively.

In light of these considerations, the goal was to develop an
enhanced representation of the environment state. The chosen
strategy involves encoding the current container configuration
into a graph G = (V, E), where individual nodes v ∈ V
identify corners within the packing scene, while edges e ∈ E
represent the physical edges connecting these corners. In this
novel approach, the packing scenario is described not only
by the underlying graph structure but also through the feature
vectors associated with each node v. Leveraging this graph-
based representation enables the reinforcement learning agent
to operate in continuous space, which serves as a significant
advantage for optimizing packing strategies, particularly in
real-world settings.

The action representation directly follows the structure of
the environment state. As each node v in the graph struc-
ture corresponds to a corner in the scene, the action set A
naturally extends from the node set V . Given the constraint
on item orientations during packing, each node in the graph
structure offers a finite set of potential configurations for item
placement. Specifically, as illustrated in Fig. 3, each node-
item pair generates eight possible configurations linking the
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Fig. 3: Illustration displaying the eight configurations generated from a node-item pair, viewed from three different perspectives for a complete understanding of the resulting packing
configurations. It clarifies that while not all actions lead to feasible configurations, each one connects the incoming item with a corner.

incoming item with a corner in the scene. It’s worth noting
that heuristic methods indicate that the corner set inherently
includes configurations optimal for item placement.

The graph-based method employed to describe the packing
scenario relies on node feature vectors, which offer significant
versatility in representing the environment. Selecting suitable
features for each node requires careful consideration of task-
specific constraints and objectives. The chosen approach inte-
grates a combination of high- and low-level features. Specifi-
cally, the feature vector associated with a node v, identifying a
corner in the scene, is characterized by the following features:
◦ x, y representing the coordinates of the node v, with

the bottom-left corner of the container serving as the
reference point.

◦ hTL, hTR, hBL, hBR denoting the heights of the top-
left, top-right, bottom-left, and bottom-right corners, re-
spectively, relative to node v. Each value is crucial for
handling nodes shared by multiple items.

◦ dT , dB , dR, dL indicating the maximum distance along
the positive and negative vertical, and positive and neg-
ative horizontal directions, that can be traveled from the
node v without encountering a height change.

◦ s1, s2, ..., s8 representing the percentage of the supported
surface that an incoming item would have if paired with
node v, considering the eight different configurations
permitted by the orientation constraint.

◦ wi, li, hi denoting the dimensions of the incoming item i.
By incorporating these features into the node vectors, the rep-
resentation effectively captures both the current configuration
of the container C and the characteristics of the incoming item
i, ensuring a comprehensive representation of the environment
state. All spatial features, including coordinates, dimensions,
heights, and distances, are normalized with respect to the size
of the container C and its maximum allowed height, ensuring
scale-invariance.

C. Network Architecture & Training Method
GATv2. The architecture selected for processing the graph-

structured data obtained from the environment is the Graph

Fig. 4: Visualization of the low- and high-level features from a top view perspective. In
the top-left section, the primitive spatial features are shown, while the top-right illustrates
the ’distance to height change’ metric. The lower section displays the supported areas
for an incoming item across the eight configurations.

Attention Network version 2 (GATv2) [33]. Operating as a
spatial method, GATv2 updates the node features by perform-
ing a convolution-style operation to the graph, aggregating
information from neighboring nodes. As the name suggests,
it employs the attention mechanism which has become a
standard in sequence-based tasks such as machine translation
and natural language understanding. This technique involves
assigning different weights to input elements based on their
relevance to the current context, thereby enabling the model
to focus on critical information. As part of the update step,
GATv2’s attention mechanism computes coefficients (aij) to
represent the relative importance of features from neighboring
nodes (j) in the context of the current node (i). These coeffi-



6

cients commonly undergo a softmax function transformation,
generating a probability distribution that reflects the influence
of each neighbor on the current node’s update. This process
is iteratively applied across each layer of the network. In
the proposed method, the GATv2 model is configured with
5 layers, utilizes 32 hidden features, and employs 4 attention
heads.

Building upon the strengths of GATv2, the proposed model
incorporates skip connections. These connections establish
direct pathways between the input and output of consecutive
layers to preserve and reuse valuable insights. This component
effectively creates a shortcut within the network architecture,
facilitating the efficient flow of information and enhancing the
learning process for improved feature representation.

The problem is framed as a node-level task, with the model
designed to predict an eight-dimensional output for each node.
Each dimension corresponds to one of the possible orientations
supported by a corner, thereby generating eight distinct scores
per node. These scores indicate the suitability of each available
configuration for item placement.

PPO. The Proximal Policy Optimization (PPO) [24] frame-
work, a state-of-the-art on-policy reinforcement learning ap-
proach, is employed in this study. Inspired by the Trust Region
Policy Optimization (TRPO), PPO introduces a clipping mech-
anism within the objective function. This mechanism acts on
the probability ratio, denoted as r = π(a|s)

πold(a|s) , constraining
it within the interval [1 - ϵ, 1 + ϵ], effectively ensuring that
the policy updates are conservative. PPO leverages the actor-
critic framework, which involves the simultaneous learning of
both a policy function (actor) and a value function (critic). The
actor’s role is to select actions to maximize expected rewards,
while the critic estimates the long-term value of a given
state-action pair. A common architectural design involves
sharing parameters between the two functions to streamline the
learning process. In the proposed approach, the actor and critic
networks share three of their five layers, with an additional
permutation-invariant max layer introduced to the critic. This
layer is designed to derive a singular value from the final layer
of the network.

During training, the goal is to minimize the following
objective function with respect to the policy parameters θ:

LPPO(θ) = E
[
LCLIP (θ)− αLV F (θ) + βS[πθ]

]
where α, β are coefficients, LCLIP is the clipped policy loss,
LV F is the value function error term and S denotes the entropy
of the policy πθ. The optimization technique employed by PPO
proves particularly effective for controlling stochastic policies,
aligning well with the inherent demand for such policies in the
online bin packing problem. Throughout the training process,
the actor network’s outputs, consisting of eight values per
node, are transformed into a categorical probability distri-
bution. The action for the subsequent step is then selected
by sampling from this distribution, effectively balancing the
exploration-exploitation trade-off. In the proposed method, the
PPO model employs a clipping parameter ϵ = 0.2, a value loss
scaling factor α = 0.5, an entropy scaling factor β = 1e−2,
an Adam learning rate lr = 2.5e−4, and a discount factor
γ = 0.99.

Fig. 5: Illustration of the computations for compactness (top-left) and pyramidality (top-
right) through a two-dimensional example. The lower section displays a layer-building
strategy on the left and a wall-building strategy on the right. While the first typically offers
better volume utilization, it becomes less practical in scenarios with high heterogeneity
among items’ dimensions.

Reward function. Within the reinforcement learning frame-
work for the 3D-BPP, the reward function plays a critical role
in assessing packing quality, incentivizing stable and efficient
stacking. Drawing inspiration from Hu et al.’s study [34], the
proposed approach integrates two key aspects of a packing
scenario. Formally, for a stacking configuration s, the reward
function is defined as:

ρ(x) =

{
αc · C(s) + αp · P (s), if s is feasible.
−1, otherwise.

where P and C, as shown in Fig. 5, are the pyramidality
and compactness of the cargo, both scaled by their respective
coefficient. The pyramidality (P ) is computed as the ratio
of the total volume of packed items to the volume of the
region obtained by projecting all top faces toward the bottom
of the container. On the other hand, the compactness (C) is
determined by the ratio of the total volume of packed items
to the volume of the cuboid area defined by the maximum
height of the items and the base of the container. Intuitively,
both metrics favour tightly packed items, yet C = 1 only when
all items entirely occupy the container up to a certain height.
As a result, altering these coefficients, particularly their ratio,
profoundly influences the strategies adopted by the agent and
consequently affects its performance. Specifically, prioritizing
compactness is likely to encourage a layer-building policy,
whereas emphasizing pyramidality tends to promote a wall-
building policy. Finally, the reward is assigned a negative
value, acting as a penalty, whenever the agent achieves an
unstable stacking configuration or when an item is placed
outside the boundaries of the container.

D. Training Environment

The training environment for the 3D-BPP was developed
within Isaac Gym [35], a high-performance learning platform
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designed for training policies across a broad spectrum of
robotics tasks. This setup leverages Isaac Gym’s capabilities
to execute both physics simulations and neural network policy
training on the GPU, enabling efficient data transfer from
physics buffers to PyTorch tensors. A Python-based Tensor
API allows direct access to the data buffers, wrapping them
into PyTorch tensors and minimizing potential CPU bottle-
necks. As a result, the agent’s policy can interact with the
simulated environment by accessing and manipulating physics
data through these tensors.

In the custom-designed 3D-BPP environment, multiple sce-
narios are executed in parallel. As shown in Fig 6, each sce-
nario features a container, modeled as a flat surface, and a set
of cuboids, representing the items, that exceed the container’s
capacity. Once the scene is initialized, a dynamic queue of
items is formed for each scenario, advancing iteratively as
the agent strategically places each item until the end of the
episode is reached. With the aim of enhancing the model’s
ability to generalize to real-world scenarios without additional
training, efforts were directed toward bridging the reality
gap. Domain randomization, a proven strategy in narrowing
this gap, suggests that introducing substantial variability in
simulation facilitates effective generalization of models to the
real world. Consequently, every scenario features a unique set
of items, with their sequence randomized at the beginning of
each training episode, aiming to mimic the unpredictability
and diversity of real-world conditions.

Datasets. The approach was evaluated using two distinct
datasets, drawing inspiration from existing literature to assess
its performance against previous attempts. It’s important to
highlight that, consistent with prior research, the container
C, of size (W,L,H), is assumed to have a square base,
implying L = W . The items’ dimensions in both datasets
are constrained as follows:
L

10
≤ wi ≤

L

2
,

L

10
≤ li ≤

L

2
,

H

10
≤ hi ≤

H

2
∀ i ∈ I.

The first test set, referred to as the discrete dataset, is modeled
after the RS dataset introduced by Zhao et al. [15]. In this
case, the resolution is fixed at L = W = 10, generating
75 pre-defined item sizes (|I| = 75). Specifically, each
item’s dimensions (wi, li, hi) are independently and uniformly
sampled from the set {1, 2, ..., 5}. The subsets provided to each
scenario are constructed by randomly selecting items from the
full set I. It’s worth noting that random sampling introduces

Fig. 6: Snapshot of the simulation environment during training.

uncertainty regarding the optimality of a sequence, however
this approach mirrors more closely the variability encoun-
tered in practical applications. The utilization of this dataset
intentionally aligns with established benchmarks, enabling
a comprehensive evaluation of how the proposed approach
compares to previous methods.

The second test set, referred to as the continuous dataset,
is generated by sampling the width and length of the items
(wi, li) from a continuous uniform distribution within the
range [ L10 ,

L
2 ]. However, similarly to the first dataset, the

height dimension hi is uniformly sampled from the discrete
set {1, 2, ..., 5}. This approach aligns with the most commonly
employed continuous dataset found in the literature, enabling
the formation of layers in the packing configuration. The
continuous dataset was selected to highlight the progress
and potential of the proposed approach, demonstrating its
capability to handle the intricacies of real-world environments
with enhanced efficiency and adaptability.

Stability estimation. Determining the feasibility of a given
environment state is a crucial step in the reinforcement learn-
ing pipeline. In the context of the 3D-BPP, considering the
constraint previously discussed, this requires assessing the
vertical stability of a packing arrangement. Various approaches
have been explored in the literature, typically involving the
definition of hard constraints, to ensure vertical stability. For
instance, Schuster et al. [36] asserts that an item is vertically
stable if at least two opposite edges of its base are supported
from below. Alternatively, Nascimento et al. [4] introduces the
support factor approach for modeling vertical stability. This
method imposes that a minimum fraction ϕ ∈ (0, 1] of an
item’s bottom surface must be supported to achieve stability.

The proposed approach combines Schuster et al.’s stability
criteria with the advanced capabilities of the physics simulator
to determine the environment state’s feasibility. Initially, it
examines the stability of each newly placed item based on the
two-edges criteria. Following this preliminary check, the sta-
bility of the entire packing configuration is assessed. This eval-
uation leverages the physics simulator’s ability to aggregate
all rigid body states into a unified state tensor. Specifically, a
packing arrangement is identified as vertically stable on the
condition that, after a predefined number of simulation steps,
all items within the container maintain perfect parallelism to
the base and are completely stationary, exhibiting no linear or
angular velocity.

IV. RESULTS

To evaluate the performance of the proposed approach, a
comparative analysis was conducted with seven established
methods. These baselines can be categorized into two groups.
The first includes heuristic methods, such as the conventional
Deepest Bottom Left with Fill (DBLF) [11] and Extreme
Point Best Fit Decreasing (EP-BFD) [10], along with the
more recent OnlineBPH method [37]. The second group
consists of four learning-based methods [7], [15], [18], [38]
that leverage the DRL framework to learn a bin packing
policy. The experiments are performed using the discrete and
continuous datasets outlined in the previous section. Following
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the conventions of existing studies, the volume utilization
and the number of packed items serve as evaluation criteria
for the bin packing policies. The experimental setup featured
32 parallel scenarios, training both discrete and continuous
policies over 5,000 iterations, each comprising 128 simulation
steps.

A. Performance in the discrete scenario

Method Vol. Utilization Num. Items
Online BPH 52.1 ± 0.142 12.98
DBLF 60.5 ± 0.093 14.81
EP-BFD 63.9 ± 0.104 15.64
LSAH 52.6 ± 0.110 13.05
Zhao, 2021 70.4 ± 0.105 17.58
Zhao, 2022 73.1 ± 0.072 17.91
Pack-Heu-RL 73.8 ± 0.103 18.14
Proposed 73.6 ± 0.126 18.09

TABLE I: Results in the discrete setting

After experimentation, it was determined that setting both
αP and αC to 0.5 was optimal for training the model in
the discrete scenario. This balance was observed to promote
stacking strategies focused on layer building from the initial
training phases, aligning with the characteristics of the discrete
scenario which involves weakly heterogeneous items. Table I
presents the experimental results, showcasing the superiority
of learning-based methods over heuristic approaches. The
proposed method outperforms the majority of baselines in
terms of volume utilization and the number of packed items,
indicating its state-of-the-art performance in the discrete bin
packing scenario. This is especially significant given that the
model is designed for continuous environments. Despite a
marginally higher variance, the results are comparable to those
obtained by Zhao et al. [38] and Yang et al. [18], suggesting
that the proposed approach is competitive with established
benchmarks.

B. Performance in the continuous scenario

Method Vol. Utilization Num. Items
Online BPH 43.9 ± 0.119 10.77
LSAH 48.3 ± 0.110 11.86
Zhao, 2022 65.4 ± 0.057 16.12
Proposed 69.2 ± 0.083 17.23

TABLE II: Results in the continuous setting

In the continuous dataset evaluation, only a subset of
baseline methods is considered, as many solutions were not
designed to operate in this context. Specifically, while Zhao
et al.’s solution is inherently compatible with this data type,
LSAH, OnlineBPH, and DBLF required adaptations to func-
tion in this scenario. It is worth noting that the proposed
approach stands out as the only method capable of functioning
in continuous space without relying on heuristics. In contrast,
other learning-based approaches, such as Zhao (2022) [38]
and LSAH [7] employ Empty Maximal Spaces (EMS) and

Least Surface Area (LSA) heuristics, respectively, to generate
placement locations.

For this scenario, the reward coefficients were adjusted
to αP = 0.7 and αC = 0.3 to discourage a layer-building
strategy due to high item heterogeneity. The detailed
results, as shown in Table II, reveal that the proposed
method outperforms all competing approaches, with volume
utilization exceeding 69%. Such a result indicates that the
solution is capable of packing, on average, over one additional
item per container than its counterparts, demonstrating its
superior performance in the continuous bin packing scenario.

Fig. 7: Learning curves of the models trained in the discrete and continuous setting.

V. DISCUSSION

The experimental results across both the discrete and con-
tinuous bin packing scenarios clearly demonstrate the state-
of-the-art performance achieved by the proposed approach.
In the complex continuous setting, where item dimensions
exhibit high heterogeneity, the method obtained an average
volume utilization exceeding 69%, outperforming the packing
capabilities typically observed in humans. For reference, Zhao
et al. [38] evaluated over 50 human participants on the same
continuous dataset and reported an average volume utilization
of only 56.3%. Furthermore, the versatility of the approach
is highlighted by its impressive volume utilization of 69.7%
when the model trained on the continuous data was evaluated
in the discrete setting. This cross-scenario generalization ca-
pability likely stems from the method’s inherent operation in
continuous spaces without relying on heuristics.

Analyzing the learning curves in Fig. 7 offers insights into
the reward shaping and training dynamics. In the early stages,
the agent trained in the continuous setting outperformed its dis-
crete counterpart. This is likely attributed to the tailored reward
coefficients, which encouraged the continuous scenario agent
to adopt a wall-building strategy. This strategy is relatively
simpler to learn and can lead to reasonable volume utilization
rather quickly. In contrast, the discrete agent aimed to learn
the more complex layer-building approach, facing a steeper
learning curve during the early training phases. However, once
this strategy was mastered, the discrete scenario agent rapidly
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surpassed the continuous agent’s performance, reflecting the
ability to leverage layer-building for improved space utilization
with weakly heterogeneous items.

VI. REAL-WORLD EVALUATION

To transition the simulated policy into a real-world context,
a corresponding online bin packing scenario was recreated. A
robotic system, equipped with a Yaskawa robotic arm and two
RGB-D sensors, was developed to assess the actual packing
performance. The container for packing items is defined as a
650 × 650 × 600mm³ 3D region in front of the manipulator,
situated directly across from the the picking area. This setup
is shown in Fig. 1.

The main challenge encountered involved constructing the
environment state based on the current container configuration.
The novel representation removes the need to partition the
base area into cells and alleviates concerns about their sizes,
setting it apart from previous methodologies. Instead, Fizyr’s
detection software was employed to generate bounding boxes
for items placed within the container. These bounding boxes
serve as the foundation for constructing a three-dimensional
representation of the scene, used to determine the graph
structure and compute the features. The picking software is
also responsible for the real-time estimation of the item orien-
tation and dimension during the picking process. Ensuring the
accuracy of this estimation is crucial, as any error at this stage
propagates forward and introduces discrepancies between the
actual and perceived placement configurations.

An additional challenge emerged during implementation
when it was observed that the trained agent displayed a
tendency to distribute items uniformly on the base plane of
the bin. In practice, the robot arm was located beside the
bin rather than above it, posing a risk of colliding with items
in close proximity to the manipulator. To address this issue,
following insights from [39], slight adjustments were made
to the packing strategy, ensuring the start of the stacking
process from the farthest corners. Moreover, the addition of
strategically placed waypoints further reduced collision risks
by guiding the arm’s movements with precision. In real-world
tests, the method demonstrated robust performance, frequently
achieving volume utilization rates ranging from 65% to 75%.
The significance of this result is amplified by the fact that the
agent, trained on the continuous dataset, was not explicitly
fine-tuned for the real-world dataset used during these tests.

VII. FUTURE WORK

There is considerable interest in extending the proposed
method to address more complex variants of the bin pack-
ing problem. Such extensions may include scenarios where
multiple items are simultaneously observable within a buffer
zone, or those without constraints on item orientation. In the
former, the model’s feature vectors will require reconfiguration
to capture the characteristics of multiple items. For the latter,
an expansion of the action space is necessary to accommodate
all potential placement configurations generated from node-
action pairs. Additionally, adapting the model to enable the
packing of irregularly shaped items [40] represents another
interesting direction for research.

VIII. CONCLUSION

This work addressed the challenge of efficiently solving
the online 3D bin packing problem, a task with profound
implications for optimizing logistics and container loading
operations in real-world applications. The proposed solution
formulated the problem as a Markov decision process and
applied the reinforcement learning framework. A key inno-
vation is the introduction of a graph-based representation
for the packing scenario, which facilitates the efficient en-
coding of task-specific high-level features. In addition, this
representation enables the reinforcement learning agent to
learn an optimal packing policy while operating inherently
in the continuous domain. Extensive evaluations across both
simulated environments and a real-world setting validated the
versatility and effectiveness of the proposed method.
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APPENDIX A
RESULTS AND DISCUSSION OF APPROACH VARIATIONS

This section delves into the impact of specific hyperparame-
ters on the performance of the solution, with a particular focus
on reward coefficients and node features. To highlight their
effects, the results from three distinct variants of the proposed
approach are presented. Each variant involves a modification
to a single element, leaving the rest of the system unchanged,
to isolate and examine the impact of that component on
overall performance. These evaluations were conducted within
the continuous scenario, which more clearly delineates the
disparities in performance due to its complexity.

The first variant adjusts the reward coefficients αP and
αC to 0.5, mirroring the configuration used in the discrete
scenario. This balance promotes a layer-building strategy,
encouraging the sequential horizontal placement of items to
form layers, a technique typically suited to datasets featuring
low heterogeneity in items’ dimensions.
In contrast, the second variant, with reward coefficients set to
αP = 0.85 and αC = 0.15, primarily favors a wall-building
policy. This strategy involves stacking items vertically to create
column-like structures or walls.
The third variant maintains the original reward coefficients

(αP = 0.7, αC = 0.3) but modifies the node feature vectors.
Instead of employing the ’distance to height change’ metric, it
introduces a ’max supported square size’ feature. This feature,

Fig. 8: Visualization of the ’max supported square size’ feature from a top-view.

Fig. 9: Learning curves of the four models, trained in the continuous setting.

as shown in Fig 8, consists of four values indicating the max-
imum size of a square-based item that, when paired with the
node in the four configurations (top-left, top-right, bottom-left,
bottom-right), would have a fully supported base. This metric
considers only four configurations since rotating square-based
items around the vertical axis would not affect the outcome.
Despite its seemingly arbitrary nature, this feature provides
crucial spatial insights, enabling informed decision-making by
the agent.

Fig. 9 compares the performance of the three variants
against the original implementation. While Variants 1 and 3
showcased state-of-the-art performance in terms of volume
utilization, Variant 2 was notably less effective. The three
models achieved, respectively, an average volume utilization
of 65.4%, 62.3%, and 66.8%. The discussion will initially
focus on the first two variants, as their adjustments represent
contrasting approaches.

Variant 2, which predominantly adopted a wall-building
strategy, outperformed its counterpart in the initial stages of
training. However, its progress plateaued, ultimately resulting
in a policy that packed, on average, 2.3 fewer items per
container than the original solution. In contrast, Variant 1, em-
ploying a layer-building strategy, achieved volume utilization
on par with the current state-of-the-art method. Nonetheless,
it failed to ensure vertical stability as training concluded.
This is showcased in Fig. 11, which presents a graph of
’Instability-Induced Episode Ends’ (IIEE). This metric, rep-
resenting the percentage of training episodes terminated due
to unstable configurations, was not previously discussed as
vertical stability is treated as an absolute requirement, with the
expectation for solutions to obtain a final IIEE of zero. Indeed,
during the final thousand iterations, the original model, along
with Variants 2 and 3, approached this value. Achieving a
consistently zero IIEE during training proved challenging due
to the probabilistic nature of action selection. However, all
three methods effectively overcome this issue during testing
by simply selecting the highest-scoring action.

On the other hand, Variant 1 interestingly displays an
increase in IIEE during the later stages of training, aiming
to achieve higher long-term rewards. This is highlighted by a
corresponding rise in volume utilization. To mitigate the risk of
unstable configurations in real-world applications, introducing
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Fig. 10: Illustration capturing the initial and final stages of the manipulator implementing the trained policy in the real-world setting.

Fig. 11: Percentage of Instability-Induced Episode Ends for the four models trained
within the continuous setting.

a stability mask to filter unstable actions through heuristic
criteria could be considered, though it may impact overall
performance. In addition, increasing the penalty for reaching
an unstable configuration might improve the balance with the
rewards, leading to better training outcomes.

Finally, Variant 3 achieves similar performance to the
original implementation, differing by only a few percentage
points in average volume utilization. Given that both metrics
represent similar spatial characteristics, this underscores the
influence of node features on the effectiveness of the policy.
Moreover, it suggests that a further exploration of additional
features could provide greater insights into the problem and
potentially surpass the original method’s performance, high-
lighting the versatility of the proposed approach.

APPENDIX B
REAL-WORLD IMPLEMENTATION

Fig. 10 presents snapshots illustrating the real-world im-
plementation of the approach. Crucial to this transition is
the use of Fizyr’s detection software, which provides three-
dimensional bounding boxes for items within both the picking
and packing areas. In the first phase, the pick is executed based
on the estimated position, while the dimensions contribute to
the environment state, and the orientation is preserved for later
calculating the precise placement pose. When multiple items

are present in the picking area, the adopted convention is to
consider the tallest item the only observable by the agent.

During the packing phase, the bounding boxes enable
the creation of a three-dimensional simulated model of the
current container configuration. This simulation is crucial
for generating the graph structure and node features. The
graph-structured representation, including the incoming item’s
normalized dimensions, is fed to the pre-trained model, which
evaluates all possible placement configurations. The algorithm
then selects the highest scoring one and, employing the sim-
ulated representation as reference and considering the orginal
estimated orientation of the item, converts it into a three-
dimensional pose for the manipulator to place the item. The
accuracy of the detection software was remarkable, ensuring
high precision during item placements. This was particularly
impressive considering that any inaccuracy from the picking
phase would be propagated forward, resulting in mismatches
between actual and expected configurations.


