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Abstract

This research addresses the challenge of thermoacoustic instabilities and flashback in hydrogen com-
bustion under low-emission conditions. The study focuses on predicting the onset of flashback in a
simplified model of Ansaldo Energia’s GT36 reheat combustor, simulated at high pressure (20 bar) us-
ing Large Eddy Simulation (LES). Under lean, premixed conditions, the LES reveals unsteady flame
dynamics driven by strong pressure oscillations, leading to repeated autoignition events in the mixing
duct.

To this end, a data-driven framework was developed that combines LES-derived time series with di-
mensionality reduction via autoencoders and state identification through clustering. Instead of relying
on idealized in-flame probes, signals were extracted at the combustor wall, representing a step toward
practical sensor placement. An analysis of spatial correlations was first carried out to identify suitable
wall locations. Fourteen thermodynamic, velocity, and species mass fraction signals were then mon-
itored across multiple flashback events. Autoencoders with bottlenecks of two, three, and four latent
variables were trained to compress these correlated signals into compact trajectories. The three-latent
representation emerged as optimal: it preserved the cyclic structure of stable operation while isolating
transition sharpness and mid-frequency modes.

Clustering applied to this three-latent space, using a modularity-based graph clustering algorithm,
proved highly effective in predicting flashback. In this approach, the latent trajectories are tessellated
into discrete hypercubes, converted into a graph representation, and then partitioned by maximizing
modularity to reveal distinct dynamical states. Precursors were consistently identified with a maximum
lead time of ∼42 µs, sufficient for active control, with 1 very small false positive during the rapid flash-
back regime. Crucially, in the most severe case, a flashback event was successfully predicted and
suppressed, establishing the practical applicability of the framework for real-time instability mitigation.

Robustness analyses confirm the generality of these findings. Architectures with two latents failed to
capture transition dynamics, while four latents provided only incremental improvements, demonstrating
diminishing returns. Extreme-value robustness checks showed that rare outliers do not compromise
detection. Chronological validation confirmed generalization to unseen segments, and testing at a
second wall monitoring location revealed consistent performance for thermo-chemical variables, with
degradation confined to highly noisy channels such as pressure and transverse velocities. Together,
these results show that the clustering framework not only captures fundamental instability features
but also advances toward real-world feasibility by operating on wall-based measurements, bringing
predictive flashback control closer to deployment in practical gas turbine environments.
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1
Introduction

1.1. Hydrogen as a Fuel
The decarbonisation of energy systems is among the most pressing challenges of the twenty–first cen-
tury. In particular, the global effort to mitigate climate change requires a rapid reduction of greenhouse
gas (GHG) emissions from the power generation and industrial sectors. Gas turbines play a central
role in this transition: they offer high power density, rapid load–following capability, and compatibility
with existing infrastructure. Their flexibility makes them indispensable not only in conventional power
plants but also as backup for renewable sources with fluctuating output.

Hydrogen has emerged as a leading candidate to replace or complement natural gas in turbine applica-
tions. It is a carbon–free fuel that, when produced from renewable electricity via electrolysis, contributes
directly to the decarbonisation of energy supply chains. However, the use of hydrogen in gas turbines
also introduces substantial technical challenges. Among these are thermoacoustic instabilities, flash-
back, and increased susceptibility to autoignition due to hydrogen’s wide flammability limits, high flame
speed, and low ignition energy. These instabilities can result in significant efficiency losses, accelerated
component wear, or catastrophic failure.

Flashback, in particular, is a critical hazard. It occurs when the flame propagates upstream into the
premixing section of the combustor, leading to potential hardware damage and operational shutdown.
While conventional burners are designed with flame stabilisation mechanisms, hydrogen’s reactivity
and diffusivity increase the risk of flashback under lean premixed conditions that are otherwise desirable
for low NOx emissions. Detecting flashback precursors early and suppressing them before damage
occurs is therefore a key enabler for hydrogen–fired turbine technology.

1.2. Methods
Traditional approaches to modelling and predicting flashback rely on physics–based tools such as
Reynolds–Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES). LES, in particular, has
proven effective at resolving the unsteady flame dynamics that precede instabilities, capturing both
cycle–to–cycle variability and transient excursions. However, LES producesmassive, high–dimensional
datasets: hundreds of thousands of grid points and dozens of variables, sampled at microsecond res-
olution. Manually extracting reliable precursor signatures from such data is infeasible.

In parallel, recent advances in machine learning (ML) have opened new avenues for identifying precur-
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sors in complex, multiscale systems. Autoencoders, and more generally deep learning architectures,
are able to reduce high–dimensional correlated data into low–dimensional latent spaces that preserve
essential dynamics, called feature extraction. These latent spaces offer interpretable coordinates in
which cycles, transitions, and stochastic noise can be disentangled. When coupled with clustering al-
gorithms, they provide a natural way to identify state changes and isolate early precursors of instability.

This thesis builds on these opportunities by developing a data–driven framework for flashback predic-
tion. Starting from high–fidelity LES data of a hydrogen–fired reheat combustor, a set of thermodynamic,
velocity, and species mass fraction time series are extracted near the flame front. These signals are
then compressed using autoencoders with bottlenecks of two to four latent variables, producing com-
pact representations that can be systematically compared. The latent trajectories are subsequently
subjected to clustering analysis to detect precursor states that precede flashback events. The ulti-
mate objective is not merely dimensionality reduction but actionable prediction: a reliable signal that
flashback is imminent, available early enough to enable countermeasures such as water injection.

1.3. Challenges
While the outlook for hydrogen as a low–carbon energy carrier is promising, several practical chal-
lenges remain. First, hydrogen combustion poses intrinsic physical difficulties. Its high reactivity, wide
flammability limits, and low ignition energy make it prone to thermoacoustic instabilities and flashback,
phenomena that are harder to predict and control than in conventional hydrocarbon systems. Beyond
the technical aspects, public perception and safety concerns also complicate adoption: hydrogen is
often regarded as hazardous due to its diffusivity and history of high–profile accidents, which places a
premium on reliable monitoring and early–warning systems.

Second, the monitoring strategy itself introduces substantial difficulty. Most prior research has relied
on flame–front measurements, where the signals are rich in information and strongly correlated with
combustion dynamics. In contrast, industrially realistic sensors must be placed at the combustor wall,
where the signals are noisier, less direct, and more easily distorted by acoustic reflections or boundary
effects. Extracting precursor information from such wall data is significantly more challenging, yet
essential for practical applicability.

Finally, predictive frameworks must ultimately be judged on operational metrics: the ability to provide
sufficient precursor time for control action, while minimizing false positives that could lead to unnec-
essary interventions and false negatives that risk catastrophic events. Obtaining a balance between
sensitivity, robustness, and practicality is a large challenge in moving towards deployable hydrogen
combustion monitoring.

1.4. Objectives
The main objective of this thesis is to design and validate a data–driven framework for flashback pre-
cursor detection in hydrogen combustion, using LES data and machine learning methods. The work
pursues the following goals:

• To extract and preprocess time–series signals of thermodynamic, velocity, and species variables
from LES simulations of a reheat combustor under flashback–prone conditions, at practical loca-
tions such as the wall

• To design, train, and evaluate autoencoders with two to four latent variables, systematically as-
sessing their reconstruction fidelity, error distributions, and latent trajectories.

• To identify the latent dimensionality that best balances compression and expressivity, with partic-
ular emphasis on capturing transition dynamics preceding flashback.
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• To apply clustering in the optimal latent space to detect precursor states, and to quantify prediction
performance in terms of average precursor time, maximum precursor time, and rates of false
positives/negatives.

• To demonstrate the ability of the method to suppress flashback events by enabling countermea-
sures (e.g. water injection) within the available precursor time.

• To assess robustness by testing on unseen locations, extreme values, and reduced feature sets,
ensuring that the framework generalises beyond the training configuration.

In doing so, the thesis aims to establish a reproducible pathway from high–fidelity simulation data to
practical instability prediction tools. By quantifying precursor times, the work contributes to the feasibility
of online monitoring and control of hydrogen gas turbines, thereby supporting the broader transition
toward low–emission energy systems.



2
Emission Technology

This chapter provides an overview of emission technologies relevant to power generation and aerospace
applications. It begins by outlining current greenhouse gas (GHG) emissions and the global efforts to
mitigate them. Following this, the chapter explores the energy sector’s impact on emissions, highlight-
ing the continued reliance on fossil fuels and the shift towards renewable alternatives. The role of gas
turbines in both energy and aerospace industries is then examined, focusing on major manufacturers
and their advancements in low-emission combustion technologies. Finally, special attention is given to
Ansaldo Energia’s GT36 gas turbine, which incorporates sequential combustion to enhance efficiency
and reduce emissions.

2.1. Current Emissions
One of the largest discussion topics in today’s society is where global emissions are headed. Using
methods to generate power in current society has been useful for development. Still, it has caused
the release of tonnes of GHG that will continue to have negative effects for years. Jones et al. [67]
performed a study on the emissions of global GHG in the past years. This study is graphed in Figure 2.1.

Figure 2.1: Global GHG Emissions [67]
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Over the past several decades, international efforts to reduce GHG emissions have evolved through a
series of significant agreements and initiatives. The United Nations Framework Convention on Climate
Change (UNFCCC), established in 1994, marked the first major international treaty aimed at address-
ing climate change by stabilizing GHG concentrations to prevent dangerous anthropogenic interference
with the climate system [100]. Building upon this foundation, the Kyoto Protocol was adopted in 1997,
setting legally binding emission reduction targets for developed countries [119]. In 2015, the Paris
Agreement represented a landmark accord, with nearly all countries committing to limit global warm-
ing to below 1.5◦ C though progress has been mixed with global CO2 emissions continuing to rise,
underscoring the need for more effective implementation [82].

To address the root causes of the issue, it is essential to first identify the sectors that contribute most
to emissions. The European Parliament [91] collects data on GHG emissions within the EU, especially
regarding breakdown per sector. These findings for 2022 are presented in Figure 2.2.

Figure 2.2: EU GHG by Sector [91]

In Figure 2.2, it is clear that the production of energy is the most harmful to the environment. Further-
more, although the aviation sector is not one of the largest contributors to GHG emissions at 3.2%, it
is still an industry that requires improvement to prevent the drastic consequences that will follow if left
untreated.

2.2. Energy Sector
The energy sector, as clearly shown in Section 2.1, is responsible for the largest portion of GHG emis-
sions, as the most widespread sources of energy are coal, oil, and gas, which are all GHG emitters
[103]. The global energy consumption by source is presented in Figure 2.3.
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Figure 2.3: Energy Source Usage [103]

Even though attempts are being made to increase the renewable energy share in the energy sector,
oil, coal, and gas are much more prominent. The EU has made major strides in diversifying its energy
sources; even though developing nations such as China and India have made investments in cleaner
sources, they are more reliant on cheaper and easier methods of energy production such as oil, coal,
and gas [35].

Expanding further on gas consumption, this can be done through land-based gas turbines. These
are gas turbines that are purely created for power generation, that may be used for factories, plants,
or to provide electricity for living. Notable heavy-duty gas turbine producers are Siemens, General
Electric, Ansaldo, Mitsubishi, etc [19]. However, these gas turbines also contribute to GHG emissions.
The European Bureau for Research on Industrial Transformation and Emissions performed a study to
obtain the data relating to GHG emissions of combustion plants per country in 2013. This data is given
in Figure 2.4.
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Figure 2.4: GHG Emission and Power Statistics per Country in the EU, 2013 [74]

At 198,000 tonnes of NOx produced in a single year, although gas turbines are regarded as highly
efficient, improvements are still needed.

2.3. Aerospace Sector
Although the first airplane was invented in 1903, the aviation industry has expanded dramatically over
the past century. The use of combustion for propulsion enabled flights exceeding 10,000 km, but its
drawbacks were largely overlooked until the impacts of climate change became evident. Section 2.1
stated that international aviation was responsible for merely 3.2% of global GHG emissions in 2012 in
the EU. The drastic measures imposed highlight the EU’s determination to address even comparatively
minor sources of emissions.

Global CO2 emission in the aviation industry seems to steadily increase, as a study by Bergero et al.
in the website Our World in Data [102] dictates. The rise of CO2 in aviation is present in Figure 2.5.
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Figure 2.5: Global CO2 Emissions from Aviation [102]

Aviation emissions have a disproportionately high impact compared to other sources due to the altitude
at which they are released. Aircraft operate in the upper troposphere, where GHGs contribute to ra-
diative forcing, amplifying their environmental effects [114]. The Intergovernmental Panel on Climate
Change (IPCC) introduced the Radiative Forcing Index (RFI), a multiplier applied to CO2 emissions to
more accurately quantify their true atmospheric impact [49].

On top of this, many countries agreed on a set baseline for the Carbon Offsetting and Reduction
Scheme for International Aviation (CORSIA) . Starting in 2024, emissions from international aviation
must not exceed 85% of their 2019 levels, as enforced by the International Energy Agency (IEA)[62].

Furthermore, one must consider the efficiency requirements that are set by the EU on the combustion
of natural gas. These are enforced on the efficiency level of the best available technique, mentioned
as BAT-AEEL (best available technique-an energy efficiency level) . The requirements are given in the
Official Journal of the EU [29] and are shown in Figure 2.6.
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Figure 2.6: BAT-AEEL of Natural Gas Combustion [29]

These efficiency levels would also force gas turbine constructors to use smarter techniques to increase
efficiency and decrease emissions. Some techniques are proposed in the Journal such as advanced
control system, water/steam addition, dry low-NOx burners (DLN), low-NOx burners (LNB), selective
catalytic reduction (SCR), etc.

2.4. Gas Turbines
The usage of gas turbines has been prominent in both the energy and the aerospace sectors due to
their ease of operation and relatively high efficiency.

2.4.1. Current Constructors
Most notably, Siemens is a very large producer of industrial gas turbine engines. Their SGT series
of gas turbines comprises multiple gas turbines with different power outputs depending on demand.
To increase efficiency, most of the engines are compatible in combined cycle processes [113]. This
involves using the exhaust gas of the gas turbine engine to drive a heat recovery steam generator
(HRSG) to use the heat in the exhaust gas to heat steam. This steam is then converted to electricity
from the steam turbine [121]. Moreover, the engines are also capable of using certain BATs listed in
Section 2.3 such as water/steam addition, SCR, and DLN [113]. For example, their largest turbine
(SGT5-9000HL at 593MW) can lower the NOx emission to 2 parts per million per volume, dry (ppmvd)
and 10 ppmvd of CO using SCR.

Importantly, the Siemens engines are also equipped to combust hydrogen as well either using DLN or
wet low-NOx (WLN) burners. The capabilities of the Siemens gas turbines are given in Figure 2.7.
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Figure 2.7: Siemens GT H2 Combustion Capabilities [113]

The reason for this movement towards renewable fuels is due to the attempt of decarbonizing fuels,
and using sustainable and renewable methods of combustion.

Other large companies like GE Vernova are also making investments into gas turbines with hydrogen
combustion capabilities. Currently, their HA (heavy duty) gas turbines can burn up to 50% hydrogen
by volume [122] by also using BAT techniques such as DLN, depicting the movement of fuels towards
sustainability. Their plan for HA gas turbines is also visible in Figure 2.8.

Figure 2.8: GE Vernova’s Movement towards H2 [123]

Alongside GE Vernova, Mitsubishi has successfully operated its M501J gas turbine with a 30% hydro-
gen blend. The company is now advancing the development of a DLN system for 100% hydrogen firing,
with rig tests expected to be completed by March 2025 [88].

2.4.2. Reheat Combustor
A reheat combustor will be used in this work, to perform the necessary studies and assess the research
questions. Of interest is Ansaldo Energia, which has been developing single stage and sequential
combustors that can combust mixes of hydrogen. These are shown in Figure 2.9.
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Figure 2.9: Ansaldo Energia Engine Types [37]

Of these engines listed, the Ansaldo Energia GT36 depicts the best capability of combusting H2, by
using sequential combustion. Not only this, but recent reports from Ansaldo indicate that the engine
has been tested with 100% hydrogen, marking a very important milestone [9]. However, the primary
challenge of hydrogen combustion stems from its high reactivity, which increases the risk of flashback.
Unlike natural gas, hydrogen flames tend to shift upstream, making conventional combustion systems
struggle to accommodate hydrogen’s characteristics without sacrificing performance. Reducing fuel
injection helps mitigate flashback and stabilizes the flame position, but it also lowers exit temperatures,
significantly impacting efficiency. Furthemore, the GT36 shows cases of flashback using a trapped
vortex combustion system, which makes it an ideal engine to use as a test case.

Figure 2.10: Ansaldo Energia GT36 [36]

The GT36, shown in Figure 2.10, employs a sequential combustion system with two lean premixed
combustor stages to address this. The first stage stabilizes the flame using flame propagation assisted
by a vortex breakdown mechanism, while the second stage (or reheat stage) relies on autoignition
for stabilization. This design allows flexible fuel injection across both stages, making it particularly
advantageous for high-reactivity fuels like hydrogen.

In the first stage, fuel injection is reduced, which moves the flame position downstream, avoiding burner
wall overheating and decreasing residence time. This, combined with a lower equivalence ratio, results
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in a lower flame temperature. These factors contribute to a reduction in NOx emissions via the thermal
or Zeldovich pathway, where reactions such as

O2 +N ⇌ NO+O

O+N2 ⇌ NO+N

N+OH ⇌ NO+H

(2.1)

are suppressed [120]. Lower residence time and reduced kinetic energy of molecules further decrease
NOx formation by limiting high-activation-energy reactions. The unused fuel from the first stage is
redirected to the second stage, where autoignition sustains combustion. Here, the flame position is
independent of fuel quantity and is determined by the inlet temperature instead. The lower mean exit
temperature (MET) of the first stage, combined with air dilution between the stages, decreases the
inlet temperature of the second stage, pushing the flame downstream due to an increased ignition
delay time. This reduction in residence time further limits NOx formation. Additionally, the presence
of water vapor from the first stage further reduces NOx emissions by influencing equilibrium reactions.
According to Le Chatelier’s principle, added water suppresses reactions such as

2OH ⇌ H2O+O

OH+H2 ⇌ H2O+H
(2.2)

while increasing the formation of H2O and the reduction of OH radicals, thus limiting the availability of
O and OH species necessary for NOx production [20] [42].

Figure 2.11: Sequential Combustor Working Principle [20]

Figure 2.11 illustrates how these adaptations allow hydrogen integration while maintaining power and
efficiency. The red line represents the baseline case, while the green line shows the optimized system
with hydrogen. It is worth noting that in the GT26, sequential combustion consists of two combustion
stages separated by a high-pressure turbine. The first stage operates at pressures exceeding 30
bar, while the second stage functions at approximately half of the first stage pressure. In contrast,
the GT36 does not include a high-pressure turbine but still retains the advantages of the sequential
combustion concept. In this design, both combustion stages operate at similar pressures, following the
Constant Pressure Sequential Combustion (CPSC) principle [27]. Therefore, the possibility of hydrogen
flashback should be investigated, especially considering the higher pressure of the reheat combustion
chamber.



3
Hydrogen and Water Applications in

Engines

This chapter explores the application of hydrogen and water. It begins by comparing hydrogen’s com-
bustion properties with methane and highlights its potential as a low-emission fuel. Key instabilities
such as thermoacoustic effects, flashback, and autoignition are examined, with a focus on their impact
in reheat combustors like the GT36. Following this, the role of autoignition is analyzed through ignition
delay times and explosion limits. The final section discusses water injection as a method to suppress
flashback and reduce emissions. Spray characteristics, injection parameters, and timing strategies are
reviewed to assess their effectiveness in hydrogen-fueled systems.

3.1. Hydrogen
Using a sequential combustor such as the Ansaldo Energia GT36 mentioned in the previous chapter
can create opportunities to research the place of hydrogen as a sustainable fuel option, also due to
the ease of production. Hydrogen can be produced using various methods, which give the associated
hydrogen product a specific color to describe its nature. These are summarised in Figure 3.1.

Figure 3.1: Hydrogen Production Methods [3]

Naturally, green hydrogen is preferred due to its clean method of production. However, even if green
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hydrogen can be produced, its role in modern combustion must be studied.

3.1.1. Hydrogen Combustion
Hydrogen, as a fuel, has been an intriguing option for decades. Due to its high gravimetric density,
renewable nature and potential for cleaner emissions, it is currently regarded as the future of fuels
compared to other types, as shown in Figure 3.2.

Figure 3.2: Hydrogen Energy [38]

Although the gravimetric density is high, its volumetric density is much lower than other conventional
fuels, even when compressed or cooled to a liquid state. On top of this, extra infrastructure is required
to ensure that the hydrogen is stored properly in a tank that can sustain its compressed or liquified
state, incurring extra weight. However, under the right conditions, the absence of carbon molecules in
hydrogen can produce cleaner emissions during combustion.

In Table 3.1, hydrogen’s flammability characteristics are compared with methane, a commonly used
fuel in industrial gas turbines.

One of the most notable differences between these fuels is their energy content, represented by the
LHV. Hydrogen has an LHV of 119.93 MJ/kg, more than twice that of methane at 50.02 MJ/kg [117].
However, hydrogen’s low density of 0.090 kg/m3, compared to methane’s 0.716 kg/m3 [117], presents
challenges in fuel injection, storage, and mixing. The stoichiometric air-fuel ratio of hydrogen is also
higher at 34.3, nearly double that of methane at 17.23 [57]. This means that hydrogen combustion
requires a significantly larger volume of air to achieve complete oxidation.

In terms of flame characteristics, hydrogen exhibits an adiabatic flame temperature of 2376 K, which
is higher than methane’s 2223 K [13]. In a sequential combustor, this higher flame temperature can
lead to increased thermal efficiency but also raises concerns regarding NOx emissions and material
limitations. Additionally, hydrogen has an extensive flammability range, spanning from 4% to 75%
by volume in air, whereas methane’s range is much narrower at 5.3% to 15% [13]. While this broad
range offers flexibility in lean-burn operation, it also increases the risk of unintended ignition within the
combustor.
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Table 3.1: Hydrogen Combustion Properties - *At 20°C and 1 bar

Hydrogen Methane

Density [kg/m3] 0.090 0.716

Lower Heating Value (LHV) [MJ/kg] 119.93 50.02

Stoichiometric Air-Fuel Ratio 34.3 17.23

Adiabatic Flame Temperature* [K] 2376 2223

Flammability Limits (vol% in air) 4-75 5.3-15

Autoignition Temperature [K] 858 813

Minimum Ignition Energy* [mJ] 0.02 0.29

Laminar Flame Speed* [m/s] 3.06 0.376

Diffusion Coefficient in Excess Air [cm2/s] 0.7879 0.2398

Hydrogen’s autoignition temperature of 858 K is slightly higher than methane’s 813 K [13], making
hydrogen more resistant to autoignition in a sequential combustion environment. However, this still
requires careful management to avoid premature ignition, especially in the mixing section. Additionally,
hydrogen’s minimum ignition energy is just 0.02 mJ, significantly lower than methane’s 0.29 mJ [13],
highlighting its extreme sensitivity to ignition sources. While beneficial for ensuring reliable ignition, this
also poses safety and stability concerns.

A large challenge in using hydrogen in a sequential combustor is flashback prevention. Hydrogen’s
maximum laminar flame speed is 306 cm/s, much higher than methane’s 37.6 cm/s [13], meaning that
the flame can propagate upstream more easily. Furthermore, hydrogen has a much shorter quenching
distance of 0.51 mm [22], compared to 2.5 mm for methane [26]. This allows hydrogen flames to pass
through much smaller gaps, significantly increasing the risk of flashback into premixing zones. More
importantly, it can also burn closer to the wall, thus enabling boundary layer flashback.

Lastly, hydrogen’s mass diffusivity in excess air is 78.79 mm2/s, significantly higher than methane’s
23.98mm2/s [13]. This higher diffusivity enhances fuel-air mixing, which can contribute to more uniform
combustion and reduced emissions. However, it also affects flame anchoring and stability, requiring
careful control of local equivalence ratios. From these parameters, it can be concluded that while
hydrogen combustion is promising, it is also prone to instabilities such as flashback and uncontrolled
ignition.

3.1.2. Hydrogen Instabilities
In combustion, hydrogen’s instabilities make it difficult for hydrogen to be integrated into today’s gas
turbines. The main instabilities are summarised below.

Thermoacoustic instabilities are a critical concern in combustion research, characterized by large
amplitude oscillations of acoustic modes in a combustor, driven by the interaction between oscillatory
flow and unsteady heat release processes. When left unchecked, these instabilities can cause sig-
nificant issues such as vibrations in components, increased heat transfer rates, flame blow-off, and
flashback. Over time, the oscillations can damage the system, limiting the engine’s operating envelope
or even causing structural failures. The onset of self-sustaining combustion-driven oscillations depends
on the phase relationship between heat release fluctuations and pressure oscillations. If they are in
phase (within 90 degrees), instability may occur. Moreover, the heat release fluctuations must transfer
energy to the unstable acoustic modes faster than energy is dissipated, as formulated by the Rayleigh
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criterion. The oscillations grow exponentially at first before reaching a limit cycle, where the amplitude
stabilizes due to nonlinear effects [13].

Thermo-diffusive instabilities arise due to differential diffusion of heat and species, particularly in
lean hydrogen flames where the Lewis number (Le) of hydrogen is less than 1. This means mass
diffusion is faster than thermal diffusion. These instabilities amplify small perturbations in the flame
front, leading to the formation of cellular structures and flame fingers. The instability is driven by the
low Le of hydrogen, which causes strong differential diffusion effects within the flame front. When
thermo-diffusive instabilities are present, the flame exhibits a wide range of unstable wave numbers,
resulting in significant wrinkling of the flame front and enhanced flame propagation [18].

Hydrodynamic instabilities (Darrieus-Landau instability) are caused by the density change across
the flame front. This instability is present in all premixed flames and tends to form large-scale cusps
and fractal-like flame structures. Unlike thermo-diffusive instabilities, hydrodynamic instabilities do not
have an intrinsic length scale, leading to large-scale corrugations without the formation of small cellular
structures [18].

The thin flame front of hydrogen and its low Lewis number make it challenging to maintain stable
combustion. This characteristic often leads to a common issue in hydrogen combustion known as
flashback.

3.1.3. Flashback
Flashback remains a critical challenge in gas turbine design, often necessitating significant modifica-
tions to ensure safe and efficient operation. Its occurrence can compromise both system reliability and
performance, leading to severe safety hazards and operational inefficiencies. The primary mechanisms
responsible for flashback are outlined below [15].

Combustion instabilities, as discussed in subsection 3.1.2, may arise if the combustion process in-
duces large pressure fluctuations within the combustor. Sustained operation with high pressure fluctua-
tions must be avoided, as the combustor system may suffer damage due to fatigue. However, transient
high-pressure fluctuations are common. These transient events can lead to extremely low flow veloci-
ties, allowing the flame to propagate deep into the burner due to core flow and/or wall boundary layer
flashback. Although propagation is the mechanism leading to flashback in this case, combustor dam-
age occurs over a finite time, typically much longer than the duration of such transient events. Thus,
damage can be prevented if, after such an event, the flamemoves back into the combustor and does not
remain in the burner. The avoidance of combustor damage relies on flame quenching and extinction.

Flame propagation in the core flow may occur if there is an increase in the turbulent flame velocity
or a decrease in the flow velocity. The former can result from an increase in flame temperature or fuel
reactivity due to changes in fuel composition. Using hydrogen, which is known to have a higher flame
velocity, is even more risky for flashback. Experimental studies provide insights into flame propagation
under different conditions, but variations in pressure, temperature, and fuel composition can lead to
discrepancies between predictions and observed behavior.

Flame propagation within boundary layers may occur for similar reasons as core flow propagation.
Boundary layer flashback occurs when a flame propagates upstream into the boundary layer of a gas
turbine burner. This happens when the local flame speed exceeds the flow velocity within the boundary
layer, particularly near the wall where the velocity decreases due to the no-slip condition. However,
the likelihood of flashback is influenced by factors such as flame quenching due to heat loss to the
wall and flame stretch effects, which can counteract its occurrence. In the case of laminar boundary
layer flashback, the critical velocity gradient concept is used to describe the flame’s stabilization at
a penetration depth where the local velocity matches the flame speed. The critical velocity gradient
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depends on various factors, including fuel composition, temperature, pressure, and wall conditions.
Fuels like hydrogen significantly increase the risk of flashback due to their high flame speeds, making
them more challenging to control in gas turbine applications. Experimental studies, such as those
conducted by Dam et al. [32], have shown that blends with higher hydrogen fractions exhibit stronger
flashback tendencies.

Combustion-Induced Vortex Breakdown (CIVB)While the previously mentioned mechanisms apply
to any premixed burner, CIVB is specific to swirl-stabilized burners (not the case of the GT36). In
this scenario, the combustion process alters the burner fluid dynamics, causing the vortex breakdown
bubble to shift from the burner exit region to deep within the burner. One of the key mechanisms
responsible for this phenomenon is themisalignment between surfaces of constant pressure, generated
by the swirling flow, and surfaces of constant density, generated by combustion. This misalignment
induces baroclinic torque, which promotes negative velocity along the burner axis, further driving the
vortex breakdown process.

Autoignition flashback

In practical systems, this phenomenon can arise due to a reduction in flow velocity or an increase in
the temperature of the fuel/air mixture. The temperature rise of the premixed fuel may be caused by
convective heating from the burner surfaces, which, in turn, can be heated by radiative heat feedback
from the combustor. Recent studies (Fritz et al. [44]) have shown that autoignition may not be consid-
ered a form of flashback due to the mechanism that causes it not to be related to flame propagation.
However, autoignition is accepted as flashback, as its consequences are similar to the flame propaga-
tion of flashback mechanisms. As this is the prevailing flashback mechanism in the Ansaldo Energia
GT36 [104], this mechanism will be investigated further.

3.1.4. Autoignition
Autoignition refers to the spontaneous ignition of a combustible mixture due to the thermodynamic
conditions of the system. This process occurs when reactions are initiated and generate enough heat
to sustain combustion without an external ignition source. The onset of autoignition also requires a
certain amount of time, known as the autoignition delay time τig. This delay time can vary significantly,
from hundreds of microseconds to several seconds, depending on the initial thermodynamic state of
the mixture.

In a sequential combustor system like the GT36, the combustor is designed for autoignition. The
geometry of the reheat combustor must be built in a way that allows the time for mixing of the premixed
fuel to be completely homogeneous; however, the residence time in the mixing duct has to be shorter
than the τig to avoid premature autoignition. Furthermore, the conditions inside the combustor must be
ideal for the hydrogen to autoignite as safely and efficiently as possible, due to autoignition delay time
being influenced by temperature, pressure, and equivalence ratio. This is visible in Figure 3.3.



3.1. Hydrogen 18

Figure 3.3: Pressure and Temperature Influence on τig of Different Fuel Compositions [17]

The findings indicate that contrary to what would be predicted, ignition delay time does not always
decrease as pressure rises. For example, at 1000 K, the ignition delay time for the CH4/H2 blend Fig-
ure 3.3a is nearly constant with pressure. In the CO/H2 mixture, the impact of pressure is considerably
more noticeable (Figure 3.3b). The ignition delay durations at 1 atm are expected to be shorter than
those at 15 and 30 atm for temperatures ranging from around 1200 to 900 K. The anticipated ignition
delay times at 15 atm are, however, less than those at 30 atm at higher temperatures. Regarding
equivalence ratio, Benim and Syed [15] state that ignition delay time shows a mild increasing behavior
with an increasing equivalence ratio. It should be noted that in both subfigures, it is clear that the trends
are not linear, and that a slope is present, implying that there is a heavier dependency on temperature
in some regions. As the temperature is further increased past the bounds of Figure 3.3, local minima
of the τig are present, which correlate to the cross-over temperature, which will be explained further.
These minima also depict a behavior known as explosion limits.

The autoignition behavior of hydrogen is governed by three accepted explosion limits as discussed by
Sánchez, Fernández-Tarrazo, andWilliams [109], which delineate the boundary between explosive and
non-explosive regimes. These limits arise from the interplay between radical chain branching reactions,
diffusive transport of reactive species, and radical termination mechanisms. The pressure-temperature
graphs exhibit an S-shaped explosion boundary, whose structure is determined by these fundamental
processes. An example of this is shown in Figure 3.4.

Figure 3.4: a) Explosion Limit of Hydrogen without Wall Deactivation b) with Wall Deactivation [80]
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The first explosion is controlled by diffusion. At low pressures, the radical chain branching mechanism,
primarily governed by the reaction

H+O2 −−→ OH+O (3.1)

initiates combustion. The newly formed radicals participate in additional reactions such as:

H2 +O −−→ OH+H (3.2)
H2 +OH −−→ H2O+H (3.3)

The net effect is the overall chain-branching reaction:

3H2 +O2 −−→ 2H2O+ 2H (3.4)

Specifically Figure 3.4a shows that in the absence of wall deactivation of the radicals, the system is ex-
plosive in the lower pressure regime, being controlled by the two-body branching reaction Equation 3.1.
Figure 3.4b shows that in the presence of a wall, the diffusion of radicals (H, O, OH) to the chamber
walls outpaces their generation in the gas phase. Since radical recombination on the chamber walls
effectively removes active species, chain branching is suppressed, preventing an explosion. Given that
molecular diffusivity is inversely proportional to pressure, as the pressure increases, diffusive losses
become less significant, eventually allowing the reaction to self-sustain.

For the second explosion limit, as the pressure increases further, the radical destruction mechanism
becomes dominated by three-body termination reactions, particularly:

H+O2 +M −−→ HO2 +M (3.5)

where M represents a third-body collision partner. Equation 3.5, also known as R9, produces the
weakly-reactive HO2 radical, which becomes progressively more important and leads to the transition
to a weakly explosive regime. The formation of hydroperoxyl radicals (HO2) results in radical recombina-
tion, thereby reducing the overall concentration of chain carriers. The effectiveness of this termination
pathway increases with pressure due to the higher frequency of three-body collisions.

The second explosion limit is thus characterized by the competition between chain-branching and chain-
terminating reactions. When termination dominates, radical production is insufficient to sustain combus-
tion, leading to a non-explosive regime. The transition temperature at which the radical branching and
termination rates are exactly balanced is known as the crossover temperature. Below this temperature,
termination is favored, preventing explosion, whereas, above this temperature, branching dominates,
leading to ignition. As an example, The change from the first to the second explosion limit is seen by
the shape of the 1 atm curve of Figure 3.3.

Finally, at the third explosion limit (very high pressures), combustion transitions from a chemically con-
trolled to a thermally controlled explosion regime. In this regime, the dominant radical chain carriers
shift from H, O, and OH to HO2 and H2O2, with key reactions including:

H+O2 +M −−→ HO2 +M (3.6)
2HO2 −−→ H2O2 +O2 (3.7)

H2O2 +M −−→ 2OH +M (3.8)

Unlike in the first and second explosion limits, where radical transport and chemical kinetics determine
ignition, in the third limit, the explosion is driven by a thermal runaway process. The decomposition of
hydrogen peroxide releases heat, which in turn accelerates reaction rates, ultimately leading to a self-
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sustaining thermal explosion. At sufficiently high pressures, the heat release rate exceeds conductive
heat losses, resulting in an exothermic runaway. The third explosion limit therefore represents a tran-
sition from kinetic control to thermal ignition, where heat accumulation dictates the onset of explosion.
It is good to consider that Rouco Pousada et al. [104] determined that at T = 1180 K, the chemical
kinetics of the GT36 fall within the second ignition limit. This analysis offers crucial insights into the
species and reactions to focus on when investigating flashback precursors.

Naturally, autoignition is also affected by flow properties such as turbulence. Gruber et al. [51] per-
formed a DNS revealing that turbulence intensity has a direct and pronounced effect on the flame front
velocity, visible in Figure 3.5a. As the turbulence intensity increases, the flame front velocity also in-
creases. This acceleration is primarily attributed to the enhanced mixing of the reactant gases and the
associated increase in the rate of chemical reactions. The increased turbulence promotes more effi-
cient transport and distribution of reactants, leading to a faster and more uniform combustion process.
The relationship between turbulence and flame front velocity in hydrogen combustion is particularly sig-
nificant due to the high diffusivity and reactivity of hydrogen, which can amplify or suppress turbulent
flame propagation depending on the combustion regime.

Figure 3.5: Turbulent Flame Speed of Hydrogen affected by a) Flow Turbulence b) Temperature/Pressure

Additionally, the study explores the influence of compressibility effects on flame stability under turbulent
combustion conditions. It was found that compressibility significantly impacts the behavior of the flame
front, particularly at high turbulence levels. The combustion system exhibited unstable ignition and
flame behavior, especially when the reactant temperature approached the crossover temperature of
the mixture.

Finally, understanding autoignition requires comprehension of the mechanisms. Knowing explosion lim-
its and chemical kinetics allows for a more refined definition of autoignition; when a fuel-oxidizer mixture
reaches a critical state where radical production exceeds radical loss, leading to a self-sustaining com-
bustion reaction. In turbulent environments, autoignition does not occur uniformly but rather at discrete
locations, forming ignition kernels. These kernels develop in regions where the local temperature and
mixture composition favor radical accumulation.

In a study performed by Echekki and Chen [34], the ignition process is characterized by two main
stages:

1. Induction Stage: This phase is characterized by radical chain-branching reactions occurring in
a thermally frozen flow, meaning that heat release is minimal. The radical pool builds up due to
nonlinear chemical kinetics, without significant thermal feedback.

2. Thermal Runaway and Flame Formation: Once a critical radical concentration is reached,
exothermic reactions accelerate, leading to a rapid temperature rise and the formation of a prop-
agating premixed flame.
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Ignition kernels form in regions with low heat and radical dissipation. This condition ensures that radical
production outpaces radical loss, allowing the kernel to transition to a fully developed flame. Turbulence
also adds complexity to the ignition process by altering the transport of heat and reactive species. Two
key effects of turbulence on ignition kernels include:

• Scalar Dissipation Rate: High scalar dissipation rates, which correspond to strong mixing, can
suppress ignition by enhancing radical and heat losses from the ignition site. Conversely, lower
dissipation rates favor ignition by reducing these losses.

• Strain Rate and Mixing: Turbulent mixing can modulate the local concentration and tempera-
ture fields, influencing where ignition occurs. In some cases, turbulence enhances ignition by
increasing fuel-oxidizer contact, while in others, it delays ignition by increasing radical losses.

The influence of turbulence is non-monotonic; moderate turbulence can enhance ignition by promoting
mixture homogeneity, whereas excessive turbulence can suppress it by increasing radical loss rates.
The complexity of hydrogen combustion is further compounded by various control strategies aimed at
modulating flame behavior and emissions. One such approach is water injection, which introduces
additional variables affecting flame dynamics, temperature profiles, and chemical kinetics. The use of
water in engines spans a range of implementations, from relatively simple techniques to more advanced
systems, as discussed in the following section.

3.2. Water Injection
In the 20th century, adding water to combustion chambers gained popularity to temporarily boost power
production since it increased the mass flow inside the chamber. However, other side effects that were
not previously taken into account, such as the reduction in the maximum combustion temperature and
the corresponding decrease in NOx production and emission, have made the approach popular again
in recent years [30].

Today, many studies have been performed to understand the effect of water injection. Rrustemi et al.
[106] investigated how adding water affects the laminar flame speed of lean hydrogen-air mixtures
at elevated pressures. The findings indicate that water addition decreases the laminar flame speed
in these mixtures. This reduction is attributed to water’s thermal and chemical effects, which include
absorbing heat and diluting reactive species, leading to slower combustion reactions. Furthermore,
Concetti et al. [30] found that water injection reduces the total burning rate, flame area, and burning
rate per unit area due to cooling effects, with a significant impact only when evaporation is intense.
Hasslberger et al. [56] also performed a similar study using a DNS to find that the presence of water
droplets leads to significant reductions in flame temperature and burning velocity, primarily due to the
cooling effect from water evaporation. Notably, the influence of droplet size on the overall burning rate
is strongly non-linear, whereas the effect of water loading exhibits a fairly linear relationship. Water
injection can have multiple effects on a combustion reaction,

3.2.1. Spray Characteristics
To administer the water into the reheat combustor, sprays will be used. However, many parameters
can be adjusted to ensure optimal flashback suppression. These are mentioned below.

1. Spray Type: The type of spray, or atomizer type, can have a large influence on the path that the
water injection takes. More importantly, an atomizer is also responsible for breaking up the water
into droplets, such that the water can spread easier. Many types of atomizer types can be used,
although more common ones include the plain orifice/full cone spray and the simplex/hollow cone
spray[75]. A plain orifice injects a round liquid jet into the surrounding air, with finer atomization
achieved using smaller orifices. However, practical limitations due to clogging restrict the mini-
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mum orifice size to approximately 0.3 mm. In a simplex, liquid enters a swirl chamber through
tangential holes, creating a core of air or gas that extends from the discharge orifice to the rear
of the chamber. The liquid exits as an annular sheet, spreading radially to form a hollow coni-
cal spray with angles ranging from 30° to 180°, depending on the application. Finer atomization
occurs at higher delivery pressures and wider spray angles. An example is shown in Figure 3.6.

Figure 3.6: Atomizer Types [39]

2. Residence Time: Residence time is the time it takes for the water to stay in a certain domain,
and is very important for flashback control, efficiency, and emissions. A low residence time leads
to low NOx emissions [51], but could also mean lower evaporation efficiency.

3. Mass Flow and Velocity: The velocity of the water and its associated mass flow are extremely
important, as evidenced by Amani, Akbari, and Shahpouri [7], who found that the maximum tem-
perature in combustion was most sensitive to mass flow rate. Mass flow rate can also influence
the trajectory, residence time, evaporation ratio, etc. To estimate the injection velocity for a given
mass flow, the following equation can be used [42]:

vinj =
4ṁL

πd20ρL
(3.9)

where mL is the mass flow of the liquid, d0 is the injection diameter and the ρL is the density of
the liquid.

4. Sauter Mean Diameter (SMD): The SMD is the diameter of the sphere that has the same volume
to surface ratio as the particles of interest in the spray. It is indicative of the sizes of the particles
which affects evaporation, collisions, and residence time. A very small particle may have high
evaporation efficiency due to its smaller volume [105], while a larger droplet may be beneficial for
dispersion due to it being less affected by the core flow [42]. The SMD can be quantified using
[104]:

rSMD =

∑Ntot
i=1Nir

3
i∑Ntot

i=1Nir
2
i

(3.10)

5. Water Temperature: Since lower flame temperatures can reduce NOx emissions, excessively
high water droplet temperatures may be ineffective in achieving this reduction. Additionally, if
the water is too hot in the mixing duct, it may fail to absorb sufficient heat from the hydrogen,
increasing the risk of autoignition flashback. Conversely, if the water temperature is too low, it
can negatively impact thermal efficiency and shift the flame front closer to the mixing duct.

6. Swirl Number: This number can be used to quantify the swirling of the water when using a
swirling spray. Swirling is generally advantageous for mixing and ensuring droplet breakup, which
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means that the temperature of the core flowwill reduce, leading to lower emissions and the chance
of flashback. A high swirl is also correlated with higher combustion efficiency [7]. However, using
a spray with too high of a swirl number can lead to a flashback of the CIVB kind, shifting the vortex
breakdown bubble into the mixing duct [16].

7. Geometry and Placement: The geometry of an atomizer is defined by several parameters de-
pending on the configuration. In a solid cone atomizer, key factors include the orifice length,
diameter, and cone angle, while a simplex injector also considers the thickness angle, which de-
termines the ratio between the air core flow and the water flow. These parameters influence the
Sauter Mean Diameter (SMD) and significantly affect droplet dispersion within the combustion
chamber, particularly through the external angle and the thickness of the resulting annular sheet.
Additionally, the injection location plays a crucial role in suppressing flashback. While premixing
ducts are the most common injection sites, Farokhipour, Hamidpour, and Amani [40] found the
best injection location to be at the end of the primary zone within the post-flame region. However,
given that autoignition flashback propagates at nearly the speed of sound, positioning the injec-
tion point closer to the autoignition zone could reduce response time and enhance temperature
control.

Even when all the spray characteristics are set, the timing of the sprays is still something of importance.
This process of autoignition flashback begins with the precursor kernels, leading to autoignition in a
very small timeframe, in the order of milliseconds. Therefore, the water will spray during this timeframe,
but how the tapering will be performed is still yet to be explained. Studies such as Floris [42], Wang
et al. [126], and Rouco Pousada et al. [104] have attempted to use water spraying to avoid hydrogen
autoignition, but little attention has been paid to the timing of the sprays. There have been studies
[5, 125, 69] relating to internal combustion engines where the authors have discussed the timing of
the stages within the cylinder to reduce knocking, however, the dynamics within a gas turbine behave
much differently.

For instance, Floris [42] demonstrated that water spraying effectively suppressed flashback; however,
due to its oscillatory nature, the flashback reappeared shortly after. This behavior was particularly in-
fluenced by the rapid water injection rate, which contributed to compression effects on the hydrogen.
These compression effects may have played a role in enabling the flashback to return. Instead, imple-
menting a tapering water spray, where the mass flow gradually decreases over time while maintaining
efficient evaporation and combustion, could offer a more effective solution.
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Machine Learning Applications

This chapter introduces the data-driven tools used in the study. Key properties of chaotic time series
are reviewed, followed by the preprocessing steps (scaling, optional transforms) adopted for learning.
Dimensionality-reduction methods are presented with emphasis on autoencoders, together with regu-
larization and training choices. Clustering and regime labelling strategies are then described, including
metrics for evaluation (reconstruction error, lead time, and error rates) that will be used consistently in
subsequent chapters.

4.1. Chaotic Time Series
A chaotic dynamic time series is a sequence of data points generated by a deterministic system that
exhibits chaotic behavior, meaning the system is highly sensitive to initial conditions, leading to complex
and unpredictable patterns over time. Despite this randomness, the system’s evolution is governed by
underlying rules [71].

• Deterministic Nature: The system follows well-defined rules or equations without any random
input.

• Sensitivity to Initial Conditions: Small differences in initial conditions can result in vastly differ-
ent outcomes, commonly known as the ”butterfly effect.”

• Nonlinearity: The governing equations are nonlinear, meaning the output is not directly propor-
tional to the input.

• Aperiodicity: The system does not settle into a repeating cycle and continues to evolve unpre-
dictably.

Many examples of chaotic time series are present in society. Weather systems are chaotic, due to atmo-
spheric dynamics being highly sensitive to initial conditions, making long-term forecasting challenging.
Population dynamics such as logistic maps display chaotic behavior under specific conditions, leading
to unpredictable population fluctuations. More examples like traffic modeling, stock market information,
and solar system dynamics [71] can all fit under the umbrella of a chaotic system [98].

4.1.1. Analysis Methods
Due to the complex nature of chaotic time series, many different types of methods are used to analyze
its behavior.

24
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The Lyapunov exponent may be used to understand whether a time series exhibits chaotic behavior.
Lyapunov exponents quantify the average exponential rates at which nearby trajectories in a dynamical
system diverge or converge. If the largest Lyapunov exponent is positive, it signals that even the
smallest differences in initial conditions will amplify exponentially over time; a signature of chaos. The
inverse of this exponent, known as the Lyapunov time, provides a characteristic timescale over which
predictions of the system’s state remain reliable before uncertainties overwhelm the forecast. This
means that for chaotic time series, while short-term forecasting might be feasible, long-term predictions
are inherently limited by the rapid growth of errors. Foundational studies such as those by Wolf et al.
[129] have laid the groundwork for understanding and applying these concepts, and further elaborations
in nonlinear time series analysis by Kantz and Schreiber [70] continue to inform current methodologies
in quantifying and managing predictability in complex systems.

Moreover, one of the major ways of analyzing a time series is through phase space reconstruction.
Phase space representation is a technique that offers a geometric perspective on system behavior by
mapping all possible states and their trajectories. This approach is valuable for understanding complex,
chaotic, or nonlinear systems where traditional time-domain analysis may be insufficient. In dynamical
systems, the phase space is amultidimensional space where each dimension corresponds to one of the
system’s variables. A point in this space represents a specific state of the system, and its trajectory over
time illustrates the system’s evolution. This visualization aids in identifying patterns, stability, and the
nature of attractors within the system, which are sets of states toward which a system tends to evolve.
An advantage is time independence; phase space representations factor out the importance of the time
variable, and simplify the analysis of dynamical systems. Furthermore, they allow for the identification
of attractors, providing insights into the long-term behavior of the system. Finally, reconstructed phase
spaces can help distinguish between deterministic chaos and random noise, improving the reliability of
the analysis [23].

Another popular method is recurrence analysis. Recurrence analysis offers a powerful framework for
investigating the temporal dynamics of chaotic systems by examining when a system’s state recurs
over time. This method utilizes recurrence plots, which are two-dimensional visual representations
that mark the instances at which the state of a system returns to a previous neighborhood in phase
space. By quantifying these recurrences throughmetrics such as the recurrence rate, determinism, and
laminarity, collectively known as Recurrence Quantification Analysis (RQA) , researchers can detect
subtle changes in the system’s behavior and identify transitions between different dynamical regimes.
Such analyses have proven especially valuable in distinguishing deterministic chaos from stochastic
noise and in capturing the evolution of complex systems across diverse fields, from physiological signal
analysis to financial time series forecasting [85].

Finally, machine learning (ML) approaches have emerged as a powerful tool for analyzing and fore-
casting chaotic time series, offering a data-driven alternative to traditional analytical techniques. These
methods, ranging from recurrent neural networks (RNN) and long short-term memory networks (LSTM)
to reservoir computing, are capable of capturing the complex nonlinear relationships inherent in chaotic
systems without the need for explicit model formulations. For instance, reservoir computing has been
shown to effectively predict the short-term evolution of chaotic dynamics even in the presence of noise,
thereby enhancing the ability to model systems where deterministic chaos limits long-term forecast
horizons [65]. Similarly, adaptive neural network architectures learn to identify underlying structures
and patterns directly from data, improving short-term prediction accuracy despite the rapid divergence
of trajectories dictated by the system’s positive Lyapunov exponents. Although these machine learning
techniques extend the practical forecasting window, the intrinsic sensitivity to initial conditions, as quan-
tified by the Lyapunov time, continues to impose fundamental limits on long-term predictions [81]. ML
has advanced significantly in recent years, to the point where it is now commonly used alongside many
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established analytical methods. The effectiveness of ML, however, varies depending on the specific
approach employed, which will be explored in more detail.

4.2. Machine Learning
In the context of hydrogen combustion in sequential combustors, one of the most critical challenges is
the prediction and early detection of autoignition flashback events. As discussed in subsection 3.1.4,
these events can occur suddenly, initiated by localized ignition kernels that form in regions where radical
buildup, turbulence, and heat release converge. Given the short timescales involved—on the order of
milliseconds—there is a need for methods that can identify early precursor states in the combustion
chamber before the onset of flashback. These precursors are not easily detectable with traditional
thresholding or analytical models, due to the complex and chaotic behavior of the flow.

To address this, machine learning (ML) offers a promising data-driven framework capable of handling
nonlinear, high-dimensional time series data. ML is a subset of artificial intelligence (AI) that enables
computers and machines to mimic human learning, allowing them to perform tasks independently and
enhance their accuracy and performance over time through experience and data exposure [59].

Generally, machine learning can be split into three branches: supervised learning, unsupervised learn-
ing, and reinforcement learning. Reinforcement learning has seen some exploration in combustion
control and the prediction of extreme events in chaotic time series, but its use remains relatively limited
compared to more established methods like supervised or unsupervised learning. Therefore, these
two branches will be investigated in this work.

To implement a flashback detection pipeline, two ML architectures are required. The first algorithm will
extract a latent reduced representation of the combustion chamber time series—capturing the domi-
nant temporal patterns and state changes. The second algorithm will then operate on this reduced
representation to identify precursor states through clustering or classification, depending on data avail-
ability.

The studies reviewed in the remainder of this chapter are selected with the aim of identifying methods
that could be applied or adapted to this problem. Particular attention is given to works that attempt
precursor detection in chaotic or combustion-related systems, allowing parallels to be drawn between
their approaches and the objectives of this study.

4.2.1. Supervised Learning
In supervised learning, a labeled training dataset is used to comprehend the connections between input
and output data. Training datasets with input data and the associated labels are manually created by
data scientists. In real-world use applications, supervised learning teaches the model to apply the
appropriate outputs to fresh incoming data. Large datasets are processed by the model’s algorithm
during training in order to investigate possible correlations between inputs and outcomes. To determine
whether the model was successfully trained, its performance is then assessed using test data. The
process of testing a model using a different subset of the dataset is called cross-validation.

When training neural networks and other supervised learning models, the most popular optimisation or
learning algorithms are those in the gradient descent family, which includes stochastic gradient descent
(SGD). The loss function, an expression that quantifies the difference between the model’s predicted
and actual values, is used by the model’s optimisation method to evaluate accuracy. The main indicator
of model performance is the gradient, or slope, of the loss function. To minimise its value, the optimi-
sation algorithm moves down the gradient. In order to optimise the model, the optimisation algorithm
modifies the model’s parameters throughout training [14].
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Several studies have employed supervised learning methods to accurately predict combustion condi-
tions. For instance, Abdurakipov et al. [1], Han et al. [54], and Hanuschkin et al. [55] investigated the
use of logistic regression for classifying combustion regimes, while Bai et al. [12] and Abdurakipov
et al. [1] demonstrated the effectiveness of k-nearest neighbor algorithms in predicting combustion
performance. Support vector machines have also been widely explored for their robust classification
capabilities, as evidenced by the works of Bai et al. [12], Abdurakipov et al. [1], Han et al. [53], and Han
et al. [54]. In particular, Han et al. [54] demonstrated how combustion regimes can be classified from
pressure signal time series, a relevant insight for this work given the potential to extract similar features
in an unsupervised context. Moreover, Han et al. [54] extended the application of supervised meth-
ods by employing Gaussian processes, and González-Espinosa et al. [47] applied linear discriminant
analysis to further understand combustion behavior. In addition, artificial neural networks, particularly
those based on multilayer perceptron architectures (MLP), have been extensively used across multiple
studies (Bai et al. [12]; Abdurakipov et al. [1]; González-Espinosa et al. [47]; Han et al. [53]; Han et al.
[54]; Hanuschkin et al. [55]; Yang et al. [133]) to harness complex feature sets extracted from flame
images. For example, Bai et al. [12] showed that MLP-based architectures are capable of capturing
dynamic flame transitions, suggesting their structure could be repurposed for precursor detection us-
ing latent features. Therefore, many studies have attempted to use supervised learning techniques in
combustion applications, and even precursor detection.

In recent years, additional studies have further advanced the application of machine learning tech-
niques to forecast and manage chaotic dynamics. For instance, Pathak et al. [92] demonstrated that
reservoir computing could predict high-dimensional, spatiotemporally chaotic systems without an ex-
plicit model, therefore, underscoring its potential in forecasting turbulent flows. Similarly, Champion,
Brunton, and Kutz [24] employed data-driven approaches to uncover the underlying coordinates and
governing equations of complex systems, depicting the benefits of ML methods for real-time control
and prediction. Complementing these efforts, Xiao, Li, and Zhang [130] proposed an LSTM-based
framework specifically designed for the early detection of thermoacoustic instabilities, further illustrat-
ing the trend toward utilizing deep learning architectures for online monitoring in combustion processes,
especially applicable in this work.

Furthermore, more studies have employed advanced machine learning techniques to analyze pressure
time series and predict instabilities in thermoacoustic systems. For instance, Bury et al. [21] analyzed
pressure time series of thermoacoustic oscillations using a convolutional neural network LSTM (CNN-
LSTM) architecture inspired by critical slowing down theory, demonstrating that such a network can
effectively detect the onset of bifurcations—even though it sometimes struggled to correctly classify
the bifurcation type. This highlights the potential of deep learning models to extract subtle temporal
patterns from pressure time series—an ability that is important to this work’s aim of identifying flash-
back precursors in high-dimensional combustion signals. In another study, Asch et al. [10] compared
different neural network architectures, including feedforward, LSTM, and reservoir computing networks,
to predict extreme events in dynamical systems. Their sensitivity analysis revealed that while feedfor-
ward networks were highly sensitive to noise and hyperparameters, LSTM networks showed greater
robustness, and reservoir computing networks consistently delivered superior performance in predict-
ing complex behaviors; LSTM networks are therefore worth investigating in this work. McCartney,
Indlekofer, and Polifke [86] focused on precursor identification for thermoacoustic instabilities by apply-
ing supervised learning methods, where pressure signals were first categorized using Hidden Markov
Models and then analyzed further after being transformed through detrended fluctuation analysis. Ruiz
et al. [108] extended this approach by employing recurrence networks in combination with CNNs to clas-
sify the dynamic states in the pressure data, effectively differentiating between aperiodic and periodic
structures indicative of instability onset. These approaches emphasize the importance of identifying
dynamical structure in time series signals which is a principle that also underlies this thesis, where
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unsupervised learning is used to uncover precursor states from latent representations of combustion
dynamics.

Supervised learning has been very popular in cases ranging from combustion related studies, to purely
data driven time series. However, supervised learning requires training data. When attempting to
predict extreme events/precursors in chaotic time series, a label would be required for supervised
learning, which is very difficult to obtain because of data scarcity. Therefore, unsupervised learning
should be investigated as well.

4.2.2. Unsupervised Learning
Unsupervised learning is a fundamental approach in machine learning that enables models to discover
patterns and structures within unlabeled data. Unlike supervised learning, where models learn from
labeled examples, unsupervised learning algorithms operate independently to identify inherent rela-
tionships within datasets. The primary tasks of unsupervised learning include clustering, association
rule mining, and dimensionality reduction. Clustering algorithms, such as K-means and hierarchical
clustering, group data points based on similarities, making them useful for applications like customer
segmentation and image analysis. Association rule learning, exemplified by the Apriori algorithm, identi-
fies relationships between variables in large datasets, often employed in recommendation systems and
market basket analysis. Dimensionality reduction techniques, including principal component analysis
(PCA) and autoencoders, help manage high-dimensional data by preserving essential features while
reducing complexity. These approaches allow for efficient data analysis, revealing hidden structures
that can be utilized in various fields, from finance to healthcare [60].

Latent Representation Algorithm
Due to the large amount of data that the computational fluid dynamics (CFD) simulations produces,
a latent representation algorithm is necessary to decrease the data size. Using an algorithm for this
ensures that the important features of the data are well-represented, yet the computational load is much
lower.

Jonnalagadda et al. [68] introduced a co-kurtosis PCA method that uses fourth-order statistical mo-
ments to capture stiff chemical dynamics more effectively than traditional PCA. The authors found that
the co-kurtosis based reducedmanifold not only better reconstructed the original thermo-chemical state
but also provided more accurate predictions of species production and heat release rates, particularly
in regions where rapid chemical reactions occur. This is relevant for latent space construction; co-
kurtosis PCA may capture critical, extreme precursor states better than linear PCA. Malik et al. [83]
applied advanced manifold learning techniques, including local PCA, to high-fidelity reacting flow sim-
ulations to reduce data dimensionality and enable unsupervised classification of different combustion
regimes. The findings demonstrated that the approach significantly reduced the number of transport
equations and system stiffness, while still preserving critical physical details, thus offering a compu-
tationally efficient way to analyze complex combustion data. Finally, Amaduzzi et al. [6] focused on
quantifying parametric uncertainty in simulations of a hydrogen-fueled flameless combustion furnace
by coupling dimensionality reduction with nonlinear regression. The study concluded that by isolating
the dominant modes of the combustion process and constructing surrogate models, the method effec-
tively captured key combustion parameters, such as temperature profiles and emission indices, while
substantially reducing the computational cost.

Although both PCA and autoencoders are effective methods for reducing dimensionality, they have
various uses and perform better in particular situations. When interpretability and processing speed
are more important, PCA is a great option for straightforward, linearly separable data. However, com-
plicated, non-linear data that needs a more adaptable model to capture complex patterns are better
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suited for autoencoders. In this study, PCA is still a dependable, user-friendly method for rapid dimen-
sionality reduction and data exploration, however, autoencoders may provide a more potent answer for
non-linear data for many real-world tasks [61].

In a further study, Xu, Yang, and Zhang [132] introduce a novel deep learning framework that combines
a bidirectional LSTM variational autoencoder with aWasserstein distance–based classifier. They found
that this approach successfully projects the high-dimensional spatio-temporal data from circular flame
arrays into a low-dimensional latent space with non-overlapping clusters. This clear separation en-
ables effective unsupervised recognition and classification of various oscillatory modes, outperforming
traditional techniques like PCA and standard VAEs. Referring to this work, this is directly applicable,
showing how latent spaces can separate combustion states, much like flashback precursor clustering.
Furthermore, Ding et al. [33] present a convolutional autoencoder–based reduced order model to emu-
late the spatial distributions of key combustion variables. The study shows that by capturing the nonlin-
ear features of the combustion process, the autoencoder-based reduced order model (ROM) achieves
higher prediction accuracy than conventional POD-based models, while reducing computational time
by several orders of magnitude. This is useful for understanding nonlinear feature extraction; a con-
volutional AE could be adapted for spatial CFD fields leading to flashback. In another study, Xu et al.
[131] apply a multi-channel VAE to high-speed imaging data from a scramjet combustor. The method
extracts critical temporal features and clusters the time-series data into distinct groups corresponding
to different combustion modes. The results demonstrate that this unsupervised clustering approach re-
liably distinguishes between dynamic combustion states, providing a valuable tool for diagnosing and
controlling scramjet combustion instabilities. This further reinforces that variational autoencoder based
clustering works on combustion time series; relevant for this precursor state separation goal.

Iemura et al. [63] analyzed cool flame oscillations around a fuel droplet array using a variational autoen-
coder with proper orthogonal decomposition (VAE-POD)method that combines variational autoencoder–
based nonlinear attractor reconstruction with mode decomposition. The study concluded that this
novel approach successfully decomposed the complex spatiotemporal oscillations of multi-phase, multi-
species reacting fluids, thereby clarifying the underlying physical mechanisms governing cool flame
behavior. The output of interest for this study is the number of latent variables of the output of the VAE.
These latent variables capture oscillatory behavior, which is relevant for identifying flashback precursor
patterns. These can be visualized in the phase plane from [63], shown in Figure 4.1

Figure 4.1: Latent Variable Phase Space Representation [63]
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Precursor Detection Algorithm
A precursor algorithm to identify ignition kernels is essential to predict the onset of flashback.

For this purpose, studies involving clustering have been very popular. Fichera, Losenno, and Pagano
[41] study focuses on the nonlinear dynamics of a lean gas turbine combustor. The authors collected
pressure or flame emission signals under various operating conditions and then applied clustering
techniques to the chaotic time series data. By grouping similar dynamical behaviors, the methodology
helped to classify different combustion regimes, ranging from stable periodic operation to intermittent or
fully chaotic behavior. This is extremely important to this work, as it is a similar combustion system and
time series clustering goal; a useful baseline for flashback classification. Next, Han, Yang, and Song
[52] addresses the challenge of predicting chaotic time series over multiple time steps. It uses a local
Volterra model, a nonlinear system identification approach, to approximate the underlying dynamics. To
enhance prediction accuracy and efficiency, the study proposes clustering the phase space points (ob-
tained via time-delay embedding) to identify optimal neighboring points for model training. In essence,
by grouping similar phase points, the method selects the most representative local data, reducing com-
putational load while capturing the system’s evolution. This clustering helps localize relevant dynamics
before modeling, similar to the latent clustering performed in this work. In another study, Widiputra
et al. [128] propose an evolving clustering framework that continuously adapts as new data arrives.
The core idea is to extract and group local patterns (modeled by polynomial regression) from chaotic
time series. The evolving nature of the algorithm allows it to capture repeating patterns that change
over time, which is particularly useful for datasets such as stock prices or currency exchange rates. By
associating each cluster with a characteristic polynomial function, the method not only predicts future
values with high accuracy but also provides insights into the underlying structure of the chaotic process.
This highlights the value of dynamic, adaptive clustering, which could be applied to changing precursor
structures in CFD time series like this work.Finally, Kirichenko, Pichugina, and Zinchenko [72] take a
feature-based approach to clustering time series that exhibit complex (often chaotic) behavior. Instead
of comparing raw time series data point by point, the authors first extract a set of global statistical in-
dicators, such as measures of trend, seasonality, autocorrelation, and even indicators linked to chaos,
from each series. These feature vectors then serve as the basis for clustering (using algorithms like
k-means). By doing so, the work demonstrates that even subtle differences in the dynamical regimes
(for instance, slight changes in chaos intensity from logistic maps) can be effectively captured and
grouped. This approach not only improves clustering accuracy but also reduces the dimensionality of
the problem, making it scalable to larger datasets. It suggests that higher-level statistics (e.g. entropy,
autocorrelation) could be used as inputs/features in the latent space model.

Specific studies in combustion have also been prominent. Ji et al. [66] focused on improving safety eval-
uations for flammable liquids used in compression ignition engines. In this study, the authors compiled
a comprehensive database of liquid compounds, including not only conventional flammability parame-
ters (like flash point) but also properties related to flame propagation and aerosol formation. Two unsu-
pervised clustering methods, k�means and spectral clustering, were applied to group the compounds
based on their combustion-related characteristics. The study used the global mean silhouette value
to determine the optimal number of clusters and assess clustering performance. Spectral clustering
was found to outperform k-means, resulting in a more accurate classification of risk ratings. In addition,
the authors employed PCA and star coordinate diagrams to visualize the high-dimensional data in 2D,
making the cluster structures more interpretable. Ultimately, the clustering results were integrated with
an information entropy approach to develop a novel combustion risk index. Furthermore, Yu et al. [135]
combined detailed CFD simulations with the K�means clustering algorithm to gain a localized under-
standing of soot formation in an engine combustion chamber under varied operating conditions. First,
the CFD simulations produce high-resolution scalar distributions, primarily local equivalence ratio, and
temperature, which are important parameters influencing soot generation. The K-means algorithm is
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then applied to these datasets to automatically partition the combustion chamber into distinct zones,
categorizing them into areas with relatively low and high soot deposition. By correlating these clusters
with operating conditions, the study reveals how changes in parameters like oxygen concentration and
combustion boundaries affect both the spatial distribution and magnitude of soot production. By using
unsupervised clustering to analyze CFD outputs, it becomes similar to this work.

Finally, Golyska and Doan [46] investigated how data-driven clustering techniques can be employed
to detect early-warning signals of extreme events in chaotic dynamical systems. In many natural and
engineered processes, extreme events can have catastrophic consequences. The study proposes
a modularity-based clustering framework that analyzes state-space data to identify precursor states
that statistically lead to such extreme events. This framework involves partitioning the system’s state
space into clusters, constructing probability transition matrices between these clusters, and using state-
space tessellation to delineate regions that serve as early indicators. The approach was validated on
benchmark chaotic systems, including a turbulence model and a two-dimensional Kolmogorov flow,
both of which exhibit bursts in kinetic energy and dissipation. The clustering algorithm successfully
isolated the precursors, providing a probabilistic means to forecast the onset of extreme events.

Floris et al. [43] extends the previously established clustering framework, originally detailed in Golyska
and Doan [46]’s paper to a real-world combustion application. In this study, the authors apply an
unsupervised, data-driven clustering technique to sensor data from a lean hydrogen reheat combustor,
with the goal of detecting early precursor states that signal the onset of flashback. By successfully
identifying these precursor states, the article not only confirms the validity of the earlier clustering-based
methodology but also demonstrates its practical efficacy in predicting flashback events.

4.3. Research Questions
For this study, the modularity based clustering algorithm for precursor identification, developed by
Golyska and Doan [46] and further utilized by Floris et al. [43] will be employed. This data�driven
technique has been proven effective in complex systems and is particularly well�suited for turbulent
reacting systems, which are inherently chaotic and high-dimensional due to their wide range of spatio-
temporal scales and perturbations.

Furthermore, data is obtained from LES simulations under multiple scenarios. To continue Floris [42]’s
study and bring it one step closer to application, the sampling locations of the LES model will be in
areas more accessible and non-intrusive compared to [42]. Moreover, to manage the computational
load while preserving the essential nonlinear features of the chaotic combustion dynamics, an AE is
employed similar to [63] to obtain a low-dimensional latent representation of the high-dimensional time
series. The AE is adept at capturing the complex, nonlinear interactions in turbulent reacting flows by
encoding the underlying patterns into a compact latent space. The latent variables extracted from the
AE are then used as inputs to the modularity-based clustering algorithm, which partitions the latent
space into distinct clusters corresponding to potential precursor states. This integrated approach en-
ables the identification of early-warning signals for flashback events and enhances real-time monitoring
by reducing the data dimensionality without losing critical dynamic information.

Finally, the secondary part of this study will focus on water injection to suppress flashback. Floris [42]
had performed a similar study focusing on tuning the parameters of the water spray; however, he noted
that the flashback would return. For this purpose, the timing and tapering of the spray will be given
special attention and simulated in a LES. Based on the literature performed, the following research
questions can be posed:

1. To what extent can the modularity-based clustering algorithm, when applied to the AE-produced
latent variables, accurately identify precursor states to flashback events as simulated in a high-
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pressure LES with practical sampling locations?

2. To what extent can water injection suppress a detected flashback?



5
Simulation

In this chapter the numerical configuration used to generate the data is described. The dry LES setup
is detailed, including the governing equations, subgrid modelling, domain and mesh, boundary and
operating conditions, and numerics. The rationale for choosing LES over RANS and DNS is discussed
with reference to fidelity and computational cost, and validation checks (e.g., spectral content and
resolved kinetic energy) are reported to demonstrate adequacy of resolution. The resulting flow and
thermo-chemical fields are summarized to highlight the dominant unsteady mechanisms—autoignition,
relaxation, and flashback—that are later used as targets for precursor detection.

5.1. Dry LES Configuration
Computational fluid dynamics (CFD) is a cornerstone of modern engineering, offering insights that are
nearly impossible to obtain through physical experiments alone. From optimizing aircraft aerodynamics
to improving combustion in engines or predicting blood flow in arteries, CFD enables engineers to
visualize and quantify complex fluid behaviors with extraordinary detail. It saves time, reduces cost,
and allows for exploration far beyond what traditional testing can offer.

Among the many tools in CFD, there are three primary approaches used to simulate turbulent flow,
each offering a trade-off between accuracy and computational cost: Reynolds-Averaged Navier-Stokes
(RANS), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS). Their differences are
highlighted below.

33
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Figure 5.1: DNS, LES, and RANS comparison [93]

As shown in Figure 5.1, these methods differ in how they handle turbulence across scales. DNS re-
solves all turbulent eddies directly, capturing the full spectrum of flow behavior with the highest accuracy,
but at immense computational cost. RANS, on the opposite end, models all turbulence, making it far
more efficient but less detailed. LES strikes a middle ground: it resolves the large-scale turbulent struc-
tures explicitly while modeling the smaller, subgrid scales. This balance between fidelity and feasibility
makes LES the method of choice for this work.

Since LES provides high-fidelity detail, it requires incorporating a wide range of physical phenomena to
reach converged results. These may include heat transfer, chemical kinetics, and molecular diffusion.
In more complex cases, the model must also capture two-phase flow dynamics, where interactions
between liquid droplets, such as fuel or water, and the surrounding gas are significant. As a result,
accurately simulating turbulent combustion calls for a comprehensive and integrated approach that
accounts for all these coupled processes to reflect the system’s true behavior.

5.1.1. Governing Equations
In a LES, the governing equations are filtered Navier–Stokes equations, which are derived from the
Navier–Stokes equations by applying a spatial filter to separate large, resolved turbulent scales from
small, subgrid scales. The CFD used in this work, Converge CFD, uses the following equations: The
mass transport equation,

δρ

δt
+
δρui
δxi

= S (5.1)

and the momentum transport equation,

∂ρui
∂t

+
∂ρuiuj
∂xj
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∂xi
+
∂σij
∂xj

+ Si (5.2)

where σij is the viscous stress tensor, and is given as:
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+
∂uj
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)
(5.3)
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In these equations, ρ is density, u is velocity, P is pressure, δij is the Kronecker delta, ut is turbulent
velocity, and S is a source term. Next, the energy equation is given as:

∂ρe
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∂ρeuj
∂xj

= −P ∂uj
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∂
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∂ui
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+
∂
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(
ρ
∑
m

Dmhm
∂Ym
∂xj

)
+ S (5.4)

Here, e is the specific energy, Kt is turbulent conductivity, Dm is the species mass diffusion coefficient,
hm is the species specific enthalpy, and Ym is the mass fraction of speciesm. The turbulent conductivity
is given by:

Kt = K + cp
µt
Prt

(5.5)

where K is the conductivity, cp is the specific heat at constant pressure, and:

Prt =
cpµt
kt

(5.6)

is the turbulent Prandtl number. Finally, the species conservation equation is given by:

∂Ymρ

∂t
+
∂Ymρuj
∂xj

=
∂

∂xj

(
ρDm

∂Ym
∂xj

)
+ Sm (5.7)

where Sm is a general source term to account for evaporation, chemical reactions, and submodels, and
Dm is the local mixture-averaged diffusion coefficient. It is calculated as:

Dm =
1−Xm∑

j,j ̸=mXj

(
1

Dmj

) (5.8)

where Xm is the mole fraction of species m, and Dmj is the binary diffusion coefficient for species m
and j. In turbulent conditions, an extra term of turbulent mass diffusion coefficient Dt =

vt
Sct

must be
added to Dm.

Once the equations are determined, the final LES equations can be obtained by resolving the large
scale turbulence and modeling the subgrid scale. This can be done by filtering the relevant quantities
Q. In this LES, a mass-weighted, a Favre filtering is used:

ρ̄Q̃(x) =

∫
ρQ(x∗)F (x− x∗) dx∗ (5.9)

Here, F represents the LES filter, and the filtered variable Q̃ is defined as Q̃ = ρQ/ρ̄. In this context,
F is implemented as a box filter, and the filter width ∆ is related to the size of the computational cell.
Specifically, ∆ is given by ∆ = 3

√
V , where V is the volume of the cell.

With this filtering approach, certain quantities remain unresolved and must be modeled. These include
the subgrid-scale Reynolds stresses ũiuj − ũiũj , which require a turbulence model. Also requiring
modeling are the unresolved species transport terms ũjYk − ũj Ỹk and enthalpy transport terms ũjht−
ũj h̃t. In addition, the filtered laminar diffusion fluxes J̄kj and J̄hj , as well as the filtered chemical reaction
rate ¯̇ωk, must be accounted for.

5.1.2. Subgrid Scale Modeling
Each subgrid scale quantity must be accounted for. For this work, the one-equation viscosity model is
used to account for subgrid-scale Reynolds stresses. Originally developed by Yoshizawa and Horiuti
[134] and refined by Menon, Yeung, and Kim [87], this model uses a subgrid-scale kinetic energy
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equation to represent turbulent viscosity. It is shown as:
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∂ūi
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− ϵ+
∂
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∂k

∂xi

)
(5.10)

The equation includes terms on the right-hand side representing production, dissipation, and diffusion.
Furthermore, the kinetic energy, turbulent viscosity, and the sub-grid dissipation are:

k =
1

2
(uiui − ūiūi) (5.11)

νt = Ck
√
k∆ (5.12)

ϵ =
Cϵk

3/2

∆
(5.13)

Finally, the subgrid scale stress tensor is:

τij = −2νtS̄ij +
2

3
kδij (5.14)

In these supporting equations, Ck is the viscosity constant, Cϵ is the subgrid scale dissipation constant,
and σk is the reciprocal subgrid scale kinetic energy Prandtl number. They are set to:

Ck = 0.005 (5.15)
Cϵ = 1 (5.16)
σk = 1 (5.17)

as is recommended by the authors of the citations. Next, the chemical kinetics must be modeled.

5.1.3. Chemistry Model
To solve the chemical kinetics, the SAGE solver is used, which operates based on CHEMKIN input
formats. The description that follows is based on SAGE as implemented in Converge and Senecal et al.
[112]. Within Converge, the CVODE solver is employed to integrate the system of ordinary differential
equations (ODEs). The SAGE model in Converge also supports third-body reactions, allowing species-
specific efficiency factors. In addition, it can handle pressure-dependent reactions using the Lindemann,
Troe, SRI, or PLOG formulations [104].

The SAGE chemistry model computes reaction rates for each elementary step, while the CFD solver
subsequently solves the associated transport equations. A multi-step chemical reaction can be ex-
pressed as:

N∑
k=1

ν′k,ifk ⇋
N∑
k=1

ν′′k,ifk for i = 1, 2, . . . , I (5.18)

where v′

k,i and v
′′

k,idenote the stoichiometric coefficients for the reactants and products, respectively, k
represents the species, i the reaction index, I the total number of reactions, and fk the chemical symbol
for the corresponding species. The production rate of a given species is described by:

ω̇k =

I∑
i=1

νk,iqi for k = 1, 2, . . . , N (5.19)
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for a total of N species, and νk,i = ν
′′

k,i − ν
′

k,i. The rate of progress parameter, qi, is defined as:

qi = ki,f

N∏
k=1

[Xk]
ν′
k,i − ki,r

N∏
k=1

[Xk]
ν′′
k,i (5.20)

where [Xk] is the molar concentration of species k, and ki,f and ki,r and the forward and reverse rate
coefficients for a reaction i. The forward rate coefficient can be found using the Arrhenius equation:

ki,f = AiT
βi exp

(
−Ei
RT

)
(5.21)

where Ai is the pre-exponential factor, T is the temperature, βi is the temperature exponent, Ei is the
activation energy and R is the ideal gas constant. The reverse can be calculated by dividing Equa-
tion 5.21 by Ki,c where

Ki,c = Ki,p

(
Patm
RT

)∑M
m=1 νmi

(5.22)

and in turn,
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H0
k
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(5.25)

where H and S are enthalpy and entropy, respectively. In a computational mesh, the governing equa-
tions can now be written according to the above equations. These are the mass,

ω̇k =
d[Xk]

dt
(5.26)

and energy equation
dT

dt
=

∑
k

(
h̄k ω̇k

)∑
k ([Xk] c̄p,k)

(5.27)

In the energy equation, ω̇k is computed based on Equation 5.19, while h̄k and c̄p,k represent the molar
specific enthalpy and the molar specific heat at constant pressure, respectively. The heat release Q̇,
volume V , and species-specific thermodynamic properties such as hk and cp,k (for each species k)
are used to solve the temperature evolution at each time step. In Converge, the temperature that is
calculated from the energy equation is used to update the forward and reverse reaction rate coefficients
iteratively, repeating the process until convergence is achieved. Notably, this updated temperature is
used for the chemistry calculations rather than the actual cell temperature, which is only adjusted after
detailed chemistry has converged, using the resulting species concentrations. Furthermore, to ensure
accuracy of the LES, a thickened flame model (TFM) will be utilized.

5.1.4. Thickened Flame Model
The TFM is amesh refinement method that acts at the flame front, capturing better flame front dynamics.
This is because the mesh is generally not fine enough to capture these dynamics, therefore the flame
thickness increases without changing the laminar flame speed, which removes the need for subgrid
scale models.
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Firstly, the laminar flame thickness and speed must be found. This is accomplished by performing 1D
simulations across a range of inlet conditions by varying temperature, equivalence ratio, and pressure.
The TFM then interpolates these results. According to Turns [118], the laminar flame speed follows the
relation s2L ∝ α ω̇/[H2], where α is the thermal diffusivity of the mixture, ω̇ is the reaction rate, and [H2]

is the fuel concentration. Furthermore, the thermal diffusivity scales with temperature and pressure
according to the relation α ∝ TuT̄

3/2P−1, where T̄ is the mean temperature between the unburnt and
burnt gases. Both the reaction rate and the fuel concentration can also be described as functions of
temperature and pressure as follows:

ω̇ ∝ Tnb P
m exp

(
− EA
RTb

)
[F ] ∝ P

Tu
(5.28)

Substituting these relationships, the laminar flame speed sL can be expressed in terms of the burnt
and unburnt temperatures, as well as pressure. The flame thickness δl is then obtained from sL using
the relation δl = α/2sL. This gives:

sL ∝ T̄ 0.375TuT
−n/2
b P (n−2)/2 exp

(
− EA
RTb

)
(5.29)

δ ∝ T̄ 0.375T
n/2
b P−n/2 exp

(
EA
RTb

)
(5.30)

For this work, values for the laminar flame speed and flame thickness are adopted from the results
computed by Floris [42]. These preliminary values highlight key trends. Notably, pressure has a dual
effect: it reduces the flame speed at lower temperatures, but significantly increases it at higher temper-
atures due to enhanced hydrogen diffusion. This is particularly important in the context of flashback,
as higher flame speeds increase the risk of flashback.

Moreover, increasing pressure also reduces the flame thickness. For instance, at 30 atm, δL becomes
20 times smaller compared to its value at 1 atm. It is worth noting that both flame speed and thickness
are influenced by the chemical kinetics mechanism used. In this work, the mechanism developed by
Li et al. [78] is used throughout, and no further modifications are necessary.

The thermal diffusivity itself scales as α ∝ T̄ T 3/2P−1, where T is the average temperature between
the unburnt and burnt gases. Both the reaction rate and the fuel concentration can also be expressed
as functions of temperature and pressure, as described below.

Now that these parameters are determined, further explanation can be given on the TFM equations.
In Converge, the TFM is based on the formulation by Legier, Poinsot, and Veynante [76], dynamically
adjusts the flame structure and its interaction with turbulence using two key parameters: the thickening
factor F and the efficiency factorE. The thickening factor multiplies the original laminar flame thickness,
yielding F ·δL, where F typically ranges from 10 to 100 in gas turbine applications. The efficiency factor
accounts for subgrid scale flame wrinkling that is not directly resolved.

To maintain the correct flame dynamics despite artificial thickening, several physical properties are
rescaled. The thermal diffusivity becomes E · F · D, the laminar flame speed is updated to E · sL,
and the pre-exponential factor in the Arrhenius rate expression is modified to E·A

F . These modifications
enable direct resolution of the flame front without the need for filtering, similar to DNS, while leaving flow
features far from the flame unaffected. As a result, the scalar conservation equation is reformulated
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accordingly.
∂ρYi
∂t

+
∂ρYiuj
∂xj

=
∂

∂xj

(
ρ · E · F ·D∂Ym

∂xj

)
+
E

F
ω̇i (5.31)

where,
F = 1 + (Fmax − 1)S (5.32)

Here, S is the local flame sensor that determines the locality of the flame thickness, and Fmax is

Fmax =
nres∆x

δl
(5.33)

For Fmax, nres is the number of grid points across the flame and is equal to 5. ∆x is the local grid
spacing. Furthermore, S can be calculated as

S = max

[
min

(
β

(
|ω̃sens|

Ω̄sens,0(ϕ)
− 1

)
, 1

)
, 0

]
(5.34)

where |ω̃sens| is the local reaction rate, Ω̄sens,0 is the maximum reaction rate of the sensor from a laminar
flame at a given equivalence ratio, and β is a modeling parameter that determines the sensor thickness.
Next, to improve the accuracy of the sensor, a self-adjusting sensor by Schulz et al. [111] is applied
to the extremities of the flame to better capture the species gradients. It does so by utilized a passive
indicator function, ψ, and is transported as,

∂ρ̄ψ̃

∂t
+
∂ρ̄ũjψ̃

∂xi
=

∂

∂xi

(
FΞ∆ρ̄D̃ψ

∂ψ̃

∂xi

)
+

Ξ∆

F
ω̄ψ (5.35)

where ¯̇ωψ is a relaxation source term which varies predominantly based on τ0, the local relaxation time,
and τ1 = ατc. Here, τc is the characteristic flame time, defined as δL

SL
, and α is a parameter that

changes depending on whether the filtering is done upstream or downstream of the flame, due to the
high temperature gradient. Therefore, ¯̇ωψ is found as

ω̄ψ =


− ψ̃
τ1

if S < 0.05
ψ0−ψ̃
τ0

if S > 0.8

0 if 0.8 > S > 0.05

α1 =

{
α1, cold if T ≤ Ts

α1, hot if T > Ts
(5.36)

where Ts is the switch temperature. Finally, Ξ, the subgrid scale wrinkling factor remains as a parameter
to be found. This parameter is used to account for the subgrid scale flame surface that may be lost
when using a TFM, is defined as the ratio of the total flame surface to the resolved flame surface.
Two models may be used to find Ξ. The first, developed by Charlette, Meneveau, and Veynante [25],
assumes each turbulence function acts independently at the flame front:

Ξ∆ =

(
1 + min

[
∆

δl
− 1, Γ∆

(
∆

δl
,
u′∆
sl
, Re∆

)
u′∆
sl

])β
(5.37)

Γ∆ is an efficiency function that accounts for the straining effects of all turbulence scales smaller than∆.
Here, Re∆ represents the subgrid scale Reynolds number, and u′∆ denotes the local turbulent velocity
fluctuations. However, this model assumes that ∆/σ0

L ≫ 1, a condition that may not hold on finer
computational grids. An alternative approach was proposed by Colin et al. [28].

Ξ∆ = 1 + βColin
2 ln(2)

3cm + 5
[
Re1/2t − 1

]ΓColin(∆

δl
,
u′∆
sl

)
u′∆
sl

(5.38)
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where cms and βColin are parameters. Finally, the sensor S and the efficiency factor E can be rewritten:

S = max
[
min

(
ψ̃, 1

)
, S
]

(5.39)

E =
Ξ|δ=δL
Ξ|δ=FδL

(5.40)

Next, the mesh will be configured.

5.1.5. Mesh
Creating a high-quality mesh has a significant impact on both the accuracy of the simulation results
and the time required for convergence. A coarse mesh may lead to faster computation but at the
cost of reduced accuracy. Conversely, an overly fine mesh can dramatically increase computational
time without offering substantial improvements over a reasonably refined mesh. To understand the
resolution required, the Pope criterion will be used [96], which states that at least 80% of the kinetic
energy should be resolved by the mesh, as indicated below,

M(x, t) =
kr(x, t)

K(x, t) + kr(x, t)
(5.41)

Here, K represents the turbulent kinetic energy of the resolved scales, and kr denotes the subgrid
scale turbulent kinetic energy. The variable M serves as a metric for the turbulence resolution. All
three quantities are functions of both space and time. For reliable accuracy, the value ofM is typically
required to remain below 0.2 [96].
The computational grid is initialized with a baseline mesh size of 0.4 mm, which is considerably larger
than the flame thickness under 20 atm conditions. To capture finer-scale phenomena, the simulation
employs level 3 mesh embedding near walls and utilizes Automatic Mesh Refinement (AMR) based
on subgrid scale variations in velocity and temperature. The maximum refinement level, denoted by
s, is limited to 3, resulting in a refined mesh size of ∆xnew = ∆xbase/2

s. The subgrid scalar field, ϕ′,
is computed by subtracting the resolved scalar field ϕ̄ from the total scalar field ϕ, using a second
derivative approximation derived from a Taylor series expansion [95],

ϕ′
∼
= −α[k]

∂2ϕ̄

∂xk∂xk
(5.42)

This method, first used for temperature and other scalar fields, can be extended to vector fields as well.
The mesh is refined when calculated values surpass specified thresholds, as long as the total cell count
stays within a set limit (e.g., 10 million cells to maintain computational efficiency). If the values drop
below 20% of the threshold, the mesh is coarsened. Finally, the TFM model also modifies the mesh by
enforcing a minimum of 5 cells across the flame, ensuring refined resolution near the flame position. A
visualisation of the mesh at an arbitrary timestep is shown below,
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Figure 5.2: Mesh Setup with AMR

Once the mesh is defined in an adequate way, the numerical solver can be determined.

5.1.6. Numerical Methods
The numerical solution in Converge is based on the finite volume method (FVM) with implicit first-order
time integration. Pressure–velocity coupling is achieved using the PISO algorithm [64], with Rhie–
Chow interpolation [101] to prevent decoupling. Spatial discretization employs a hybrid central/upwind
scheme with limiters to ensure stability, while turbulence variables use fully upwind differencing. The
resulting linear systems are solved iteratively using Successive Over-Relaxation (SOR). A detailed
derivation of the discretization, PISO pressure–velocity correction steps, Rhie-Chow interpolation, and
SOR solver formulation is provided in Appendix A.

5.1.7. Boundary Conditions
Once the simulation technicals are determined, the boundary conditions can be set to start the simula-
tion. For this work, a simplified version of the Ansaldo Energia GT36 engine is used. Specifically, the
reheat combustor is of interest, which is displayed in 2D in Figure 5.3.

Figure 5.3: 2D Slice of the Ansaldo Energia GT36 - Simulated Geometry

This geometry is adapted from the work of Floris [42], Aditya et al. [4], and Rouco Pousada et al.
[104]. The geometry consists of a mixing duct with dimensions 3L x L x 1.5L where L = 1 cm, and the
combustion chamber of 3L x 2L x 1.5L. Furthermore, the general boundary conditions imposed at the
inlet, walls, and outlet are listed below.
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Inlet
The inlet conditions are imposed at the left-most of the mixing duct when observing Figure 5.3. Aditya
et al. [4] uses a case where the inlet conditions contain the products of the first combustion stage;
water, and a mixture of air and hydrogen. Furthermore, the velocity is uniformly set to 200 m/s while
the equivalence ratio is at a constant ϕ = 0.35. The pressure is set as a Neumann boundary condition,
while the mass fraction is set to the values listed in Table 5.1 Next, the temperature must be determined.

Table 5.1: Species Mass Fraction at Inlet

Species H2 O2 N2 He H2O Ar
Mass Fraction 0.007855 0.1780 0.7496 6.94E-07 0.05162 0.01286

A set 1100 K was used in the case of Aditya et al. [4], however Rouco Pousada et al. [104] indicates
other parameters with reference to the dependence of the autoignition delay time with the temperature
and pressure. Therefore, in this work, a delay time of approximately 0.15 ms is used with an inlet
temperature of 1180 K in order to keep the flame at its design location.

A Navier-Stokes Characteristic Boundary Condition (NSCBC) is employed to minimize the reflection of
acoustic disturbances at domain boundaries. This method is expanded on in Appendix B.

Walls
At all walls, a no-slip and isothermal boundary condition is imposed, with the wall temperature fixed at
750 K. Surface roughness effects are neglected, and subgrid scale turbulence near the wall is modeled
using the law of the wall approach. In the z-direction of Figure 5.3, translationally periodic boundary
conditions are applied. This configuration introduces a statistically homogeneous direction, which facil-
itates the collection of flow statistics and contributes to reduced computational cost.

Outlet
At the outlet, which is the far-right wall of the combustion chamber with respect to Figure 5.3, a simple
physical boundary condition of Dirichlet is employed, with a pressure of 20 atm. Further, the velocity
is a Neumann condition where backflow is neglected. Finally, σ = 0.25 similar to the inflow condition,
where NSCBC is used.

5.1.8. Initial Conditions
To establish a steady state, and to summarize subsection 5.1.7, the computational domain is initialized
with a uniform velocity of 200m/s and a temperature of 1180K. The initial species composition matches
the inflow, with the equivalence ratio set to ϕ = 0.35, and the pressure fixed at 20 atm. Following the
procedure in the work of Floris [42] and Rouco Pousada et al. [104], the flow is first advanced for
1ms under non-reacting conditions; combustion is then activated and the equivalence ratio is ramped
gradually over the next 0.8ms, as proposed in the works of Kruljevic et al. [73] and Gruber et al. [50].

Once these are set, the dry simulation setup can be considered concluded, and the results are obtained.
Next, the wet simulation will be outlined.

5.2. Wet Simulation
For the final simulation of this work, a wet simulation will be run to verify the precursors found. To
do so, the parameters of the sprays must be configured. However, this can be a difficult task due to
the injection process being quite complex, as it is a two-phase flow. Furthermore, due to the different
stages of injection, as is shown in Figure 5.4.
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Figure 5.4: Water Injection Process [127]

The injection process begins as water enters the nozzle. The high flow velocity can reduce static
pressure, leading to the formation of vapor cavities in the flow, which in turn affect how the spray
develops. Upon entering the combustion chamber, the liquid undergoes primary breakup, where gas–
liquid instabilities fragment the stream into droplets. This stage largely determines the subsequent
spray behavior. The droplets then experience secondary breakup, in which aerodynamic forces break
them into smaller fragments. At this point, droplets may either collide and merge into larger ones
(coalescence) or further disperse into finer droplets. This cycle of coalescence and dispersion continues
until the droplets reach the flame front and combust. Throughout this process, droplets are also subject
to evaporation due to pressure differences and turbulent mixing. The complexity of these interacting
mechanisms underscores the critical role of spray design parameters in injection systems.

An Euler-Lagrange modeling approach will be using in this work, where the gas phase is simulated
using the Eulerian method, solving the flow properties in control volumes. The liquid phase is a La-
grangian method, which will track the droplet’s motion relative to the local environment, including any
interventions such as other collisions. The continuous gas phase and discrete droplets influence each
other, making this approach possible. The droplet physics are implemented according to Converge
[31], where breakup and coalescence are ignored. Details of the spray solver are listed in Appendix C,
based on the report of Kruljevic et al. [73].

5.2.1. Spray design
To identify a spray configuration that suppresses flashback while respecting practical constraints, a
concise set of tunable variables: atomizer type, injection location, nozzle diameter d0, liquid mass flow
rate ṁL, Sauter mean diameter (SMD), cone angle β, and cone thickness angle τ are used. These vari-
ables jointly determine the injection velocity Vinj, which is treated as an additional key design parameter.
Swirl is deliberately excluded to avoid confined-jet vortex breakdown and to isolate autoignition-driven
flashback.

As a suppression of the flashback is necessary, the work of Floris [42] is referenced. Since a very
similar work and identical chamber is used in the simulation, the most successful configuration in that
work will be used in this work. Therefore, unlike the exploratory approach, this work fixes each attribute
to the best-performing values identified in [42] and report those choices alongside the rationale.

In relation to the reference work, a hollow-cone spray is used at the inlet with six nozzles to accelerate
coverage of the mixing duct. The symmetric layout above is retained to maximize early-area coverage
at fixed response time. This is shown in Figure 5.5
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Figure 5.5: Nozzle Configuration

where,

Table 5.2: Nozzle Coordinates

Nozzle N1 N2 N3 N4 N5 N6

x [cm] 0 0 0 0 0 0
y [cm] 0.25 0.25 0.25 -0.25 -0.25 -0.25
z [cm] 0.375 0 -0.375 0.375 0 0.375

Further, the other characteristics can be determined.

Geometry
These variables were explored empirically in the work of Floris [42], and the values that were found are
in Table 5.3, where d0 is the nozzle diameter. The angles are shown in Figure 5.6.

Table 5.3: Geometry Parameters

Parameter Value Units
d0 0.1 mm
β 55 deg
τ 20 deg

Figure 5.6: Spray Angle Definition
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Here, the external angle β and thickness angle τ set the effective travel path.

Injection velocity
Injection velocity is a key design parameter for flashback suppression, as it directly influences the spray
response time. For the selected inlet hollow-cone configuration (x = 0, β = 55◦, τ = 20◦), the response
velocity is estimated from

Vresponse =
1

cos(β − τ)

∆x

tpred
, (5.43)

where ∆x is the travel distance to the sampling location and tpred the prediction time. The actual
injection velocity is given by

Vinj =
4ṁL

πd20ρL
. (5.44)

In this work, the target response velocity is Vresponse ≈ 610m/s, and the injector geometry and mass
flow rate are chosen such that Vinj ≈ 767m/s, providing a margin above the requirement. Furthermore,
the mass flow can be determined as the only remaining unknown variable, and is ṁL=0.006 kg/s per
nozzle).

SMD
The SMD not only affects particle drag but also strongly influences droplet evaporation dynamics. It
governs the timescale over which liquid droplets vaporize and, in doing so, absorb heat from the sur-
rounding flow, producing a cooling effect. In water sprays not specifically designed for flashback sup-
pression, the SMD must remain below a critical threshold; exceeding this limit results in droplets that
cannot fully evaporate within the available residence time, thereby reducing overall spray efficiency. As
used in Floris [42], SMD = 2e− 5 meters.

Atomization Regime Constraint
In this work, the Rosin-Rammler particle distribution is applied while neglecting break-up phenomena.
Therefore, it is necessary to verify whether the spray’s atomization regime aligns with this assump-
tion. To do so, the criteria outlined by Floris [42], following the work of Reitz [99] are used. Reitz
[99] explains that there are four atomization regimes, which occur sequentially as the injection velocity
increases. In the Rayleigh Jet Breakup Regime, droplet formation is driven by axisymmetric surface
oscillations caused by surface tension, resulting in droplet diameters larger than the jet itself. In the
First Wind-Induced Breakup Regime, surface tension is supplemented by static pressure differences
between the jet and the surrounding gas flow, causing breakup a few jet diameters downstream of the
nozzle and producing droplets approximately the size of the jet diameter. The Second Wind-Induced
Breakup Regime occurs when increased relative velocity between the liquid and gas phases amplifies
short-wavelength surface waves, leading to droplet formation. Finally, in the Atomization Regime, fine
droplets form immediately as the liquid exits the nozzle, fully atomizing the jet. These four regimes are
illustrated in Figure 5.7.
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Figure 5.7: Regimes based on the Ohnesorge and Reynolds number [99]

To fit the constraint of the atomization regime, the design of the spray must be set so that the Reynolds
and Ohnesorge numbers fit,

ReL = ρLVinjd0/µL (5.45)

and
Oh = µL/

√
ρLσd0 (5.46)

This is satisfied using the value of Floris [42], ReL ≈ 0.92× 105 and Oh ≈ 9.8× 10−3.

Expected Results
According to Floris [42], the adopted configuration achieves ηe ≈ 96.3%, indicating near-complete
evaporation within the control volume of interest.

Table 5.4: Final Spray Parameters

Parameter Value Units
d0 0.1 mm
ṁL (per nozzle) 0.006 kg/s
SMD 2e-5 m
β 55 deg
τ 20 deg
Vresponse 610 m/s
Vinj 767 m/s
ReL 0.92e5 -
Oh 9.8e-3 -

Finally, the simulation sampling locations can be discussed.
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5.2.2. Obtaining Data
Previously, it was noted that this study builds on the work of Floris [42], which focused on extracting
data from the flame front. In contrast, the present work seeks to move the topic closer to practical
application by obtaining data from more relevant regions of the simulation, such as the walls. Due to
the nature of the flashback, the sampling locations are purely within the mixing duct, and is visible in
Figure 5.8.

Figure 5.8: Sampling Locations

Four sampling points were selected at different heights and distances from the mixing duct outlet. This
setup allows each point to be observed and evaluated to determine which provides the most reliable
results.



6
Algorithm

This chapter specifies the end-to-end precursor-detection pipeline. The feature set extracted from the
LES is introduced, after which dimensionality reduction is performed using an autoencoder to obtain
a compact latent representation. The latent variables are segmented by clustering to define normal,
precursor, and extreme regimes, and decision rules are stated for online mapping of unseen points
to fixed clusters. Hyperparameters and regularization choices are documented, and the evaluation
precursor time, false positives/negatives, and robustness tests across latent dimensionality are defined.

6.1. Dimensionality Reduction
The Large Eddy Simulation (LES) performed in this study produces a comprehensive set of physi-
cally relevant flow variables. As outlined in chapter 5, several distinct quantities are available, each
providing insight into the underlying turbulent flow dynamics. While the full set of variables offers a de-
tailed description of the system, directly supplying many features to the clustering algorithm is neither
computationally efficient nor methodologically optimal. High-dimensional datasets are susceptible to
the disadvantage of dimensionality, which can degrade clustering performance by obscuring intrinsic
relationships between data points.

To mitigate this issue, a dimensionality reduction step is introduced. The primary objective is twofold:
to reduce computational cost by lowering the dimensionality of the dataset, and to perform feature
extraction, retaining only the most concrete structures and patterns relevant to the problem.

Autoencoders have demonstrated strong capability in this regard. As shown by Iemura et al. [63],
autoencoder architectures can successfully compress high-dimensional flow data into a latent repre-
sentation that is both compact and physically interpretable. The resulting latent variables can be readily
projected into a phase space diagram, thereby enabling clearer visualisation of the system’s dynamical
behaviour.

Following the approach in [63], this work employs a similar autoencoder-based dimensionality reduc-
tion framework. The implementation utilises the Keras API from the TensorFlow library, chosen for its
flexibility in model architecture design, efficient GPU utilisation, and integration with established deep
learning workflows. The architecture will be discussed next.

6.1.1. Autoencoder Architecture
For an autoencoder, the architecture can be visualised in Figure 6.1.

48
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Figure 6.1: Autoencoder Architecture [48]

The schematic in Figure 6.1 illustrates a fully connected feedforward autoencoder. The architecture
consists of three main components: the encoder, the bottleneck (latent space), and the decoder. The
encoder, shown on the left, maps the high-dimensional input data onto a lower-dimensional representa-
tion through a series of hidden layers. Each circle denotes a neuron, and each directed edge represents
a trainable weight parameter connecting two neurons in adjacent layers. The magnitude and sign of
these weights determine the influence of one neuron on another in the forward pass.

The bottleneck layer, located at the center of the architecture, contains the smallest number of neurons
in the network. This layer constitutes the latent space in which the compressed representation of the
input data is stored. By constraining the capacity of this layer, the network is forced to learn an efficient
encoding that preserves the most effective features of the original data while discarding redundancies,
known as feature extraction.

Following the bottleneck, the decoder reconstructs the input data from the latent representation. The
decoder mirrors the encoder in structure, progressively increasing the dimensionality of the data until
it matches the original input space. As in the encoder, neurons in each layer are fully connected to
neurons in the adjacent layer via trainable weights.

Each neuron in the network computes its output as a weighted sum of the outputs from the previous
layer, to which a bias term is added. This sum is then passed through a non-linear activation func-
tion to introduce non-linearity into the model, enabling it to capture complex relationships in the data.
Mathematically, the output yj of neuron j in a given layer is expressed as

yj = ϕ

(
n∑
i=1

wijxi + bj

)
, (6.1)

where xi denotes the output of neuron i from the previous layer, wij is the weight connecting neuron i
to neuron j, bj is the bias associated with neuron j. The trainable parameters wij and bj are optimised
during training via backpropagation to minimise the reconstruction loss. The activation function, ϕ(·),
will be discussed next.

6.1.2. Activation Function
The activation function ϕ(·) governs how the weighted sum of inputs to a neuron is transformed be-
fore being passed to the next layer. Its choice directly influences the representational capacity of the
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network, the learning dynamics, and the interpretability of the latent space. Non-linear activation func-
tions enable the network to model complex, non-linear relationships in the data, while linear activations
preserve strictly linear transformations, which can be advantageous in cases where the underlying
mapping is approximately linear or when interpretability is prioritised. Consequently, the selection of
an activation function should be guided by the characteristics of the data, the intended use of the la-
tent representation, and the reconstruction requirements. Several activation functions are commonly
employed in autoencoder architectures:

The sigmoid activationmaps any real-valued input into the interval (0, 1), making it suitable for modelling
probabilities or normalised features. It is defined as

ϕsigmoid(z) =
1

1 + e−z
. (6.2)

While the sigmoid is smooth and differentiable, it suffers from the vanishing gradient problem for large
positive or negative inputs, which can slow convergence in deep networks.

The rectified linear unit (ReLU) activation is defined as

ϕReLU(z) = max(0, z). (6.3)

It is computationally efficient and mitigates the vanishing gradient problem by allowing gradients to
pass through unchanged for positive inputs. However, it can lead to “dead neurons” when weights are
updated such that the neuron output remains at zero.

The linear activation function simply outputs the input without modification:

ϕlinear(z) = z. (6.4)

It is typically used in the output layer of autoencoders when the reconstruction target contains continu-
ous, unbounded values, allowing the network to produce unrestricted real-valued outputs.

In practice, different layers within an autoencoder may employ different activation functions. Non-linear
functions such as ReLU or sigmoid are commonly used in the encoder and decoder hidden layers to
capture complex dependencies in the data, while a linear activation is often adopted in the final output
layer to facilitate accurate reconstruction of continuous-valued inputs. Furthermore, these facilitate
backpropagation, which relies on a loss metric.

6.1.3. Loss Function
The loss function quantifies the discrepancy between the autoencoder’s reconstructed output and the
original input, guiding the optimisation process during training. Its choice depends on the nature of the
data, the scale of the variables, and the intended emphasis on specific reconstruction characteristics.
In general, the objective is to minimise a measure of reconstruction error, ensuring that the latent
representation retains the most relevant information for accurate reconstruction.

For continuous-valued data, the most widely used metric is the mean squared error (MSE), defined as

LMSE =
1

N

N∑
i=1

(xi − x̂i)
2
, (6.5)

where xi and x̂i denote the original and reconstructed values, respectively, and N is the total number
of data points. MSE penalises larger errors more heavily, making it sensitive to outliers, and is suitable
when reconstruction fidelity in terms of absolute magnitude is important.
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In cases where different features or variables carry differing levels of physical importance or have
varying scales, a weighted MSE can be used:

LWMSE =
1

N

N∑
i=1

wi (xi − x̂i)
2
, (6.6)

where wi is the non-negative weight assigned to the i-th feature or sample. By appropriately selecting
wi, the loss function can prioritise accurate reconstruction of variables deemed more significant for the
application.

An alternative is the mean absolute error (MAE), given by

LMAE =
1

N

N∑
i=1

|xi − x̂i| , (6.7)

which applies a uniform penalty to all deviations, making it more robust to outliers and potentially better
suited for data with heavy-tailed distributions.

For inputs that are normalised to the range (0, 1) and can be interpreted probabilistically, the binary
cross-entropy (BCE) loss is often employed:

LBCE = − 1

N

N∑
i=1

[xi log x̂i + (1− xi) log(1− x̂i)] . (6.8)

This metric is particularly suitable for binary or probabilistic data, as it aligns with the probabilistic inter-
pretation of certain activation functions, such as the sigmoid. In the present work, the reconstruction
error is quantified using a MSE, due to all features being given equal weight.

6.1.4. Optimizer
The optimizer governs how the network’s trainable parameters are updated during training to minimise
the chosen loss function. It determines both the direction and magnitude of parameter updates based
on the gradient of the loss with respect to the weights and biases. The selection of an optimization
algorithm affects the convergence rate, stability of training, and the quality of the final solution.

The most basic approach is stochastic gradient descent (SGD), in which parameters are updated ac-
cording to

θt+1 = θt − η∇θL(θt), (6.9)

where θ represents the set of all trainable parameters, η is the learning rate, and ∇θL is the gradient of
the loss with respect to θ. While SGD is conceptually simple and computationally efficient, it can suffer
from slow convergence and sensitivity to the choice of η.

Several extensions to SGD have been developed to improve performance. SGD with momentum ac-
cumulates a velocity vector in parameter space that smooths updates and accelerates convergence,
particularly in regions with high curvature or noisy gradients.

Adam (adaptive moment estimation) combines the benefits of momentum with per-parameter adaptive
learning rates. It maintains exponentially decaying averages of past gradients and squared gradients,
allowing it to adjust the step size for each parameter individually. Its parameter update rule can be
expressed as

θt+1 = θt − η
m̂t√
v̂t + ϵ

, (6.10)
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where m̂t and v̂t are bias-corrected estimates of the first and second moments of the gradient, and ϵ is
a small constant to prevent division by zero. Adam is widely adopted due to its robustness and minimal
hyperparameter tuning.

RMSProp also adapts learning rates per parameter by maintaining a moving average of the squared
gradients, effectively normalising updates and improving performance on non-stationary problems.

The choice of optimizer should be guided by the characteristics of the dataset, the scale of the network,
and the sensitivity of the application to convergence stability. For many deep learning applications,
Adam offers a good balance between convergence speed and stability, though SGD and RMSProp
remain viable alternatives, particularly when fine control over generalisation behaviour is required. For
this work, Adam is chosen.

6.1.5. Training
Once the concrete architectures of the autoencoder have been determined, the training takes place.
As explained, the features that are taken from the LES results are time series, and are used to train the
model. Initially, these features are all normalised between 0 and 1. This is done such that inherently
high-valued features such as pressure and temperature do not dominate over smaller-valued features
such as the numerous mass fractions. Furthermore, the features are split into training, validation, and
testing groups. The training set is used to update the network weights, the validation set is used to
monitor performance and prevent overfitting, and the testing set is reserved for the final evaluation of
the trained model. The split used in this work is 80%,10%,10%, respectively, a common split.

During training, the network parameters are iteratively updated using the chosen optimizer to minimise
the selected loss function, as described in the preceding sections. Each training iteration, or epoch,
consists of a forward pass, where the input data are propagated through the encoder, bottleneck, and
decoder, and a backward pass, where gradients are computed via backpropagation and used to adjust
the weights and biases. However, a few parameters have to be determined manually to see which
combination results in the lowest loss. These parameters are called hyperparamaters.

6.1.6. Hyperparameter Tuning
To optimise the architecture and training configuration of the autoencoder, a hyperparameter search
was performed using the Optuna framework. The search objective was to minimise the validation loss,
defined as the mean squared error between the input features and their reconstruction.

The hyperparameters explored covered both architectural and training choices. On the architectural
side, the number and width of hidden layers in the encoder and decoder were selected from predefined,
strictly decreasing sequences, with the constraint that the narrowest hidden layer remained wider than
the latent dimension so that the intended bottleneck occurs at the latent code. The output activation
was varied among linear, sigmoid, and ReLU: sigmoid is well matched to min-max normalized targets
in [0, 1], linear is appropriate for standardized or otherwise unbounded targets, whereas ReLU can
introduce a zero floor and bias low-amplitude reconstructions. An optional L1 activity regularization
term was applied to the latent layer to promote sparse, low-magnitude codes, which often yields more
compact and separable latent clusters in the presence of multimodal dynamics (e.g., high- vs. low-
frequency cycles). Finally, L1 and L2 kernel regularization weights on the layer matrices were tuned
on logarithmic scales to control capacity and overfitting, with L1 encouraging weight sparsity (implicit
pruning) and L2 providing smooth weight decay.

Training-related hyperparameters included the learning rate of the Adam optimiser (with AMSGrad en-
abled) and the batch size. The search process was guided by early stopping, learning rate reduction
on plateau, and Optuna’s pruning mechanism, which terminates underperforming trials based on in-
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termediate validation loss. Each candidate model was trained for a maximum of 50 epochs, with the
best-performing configuration selected based on the lowest observed validation loss. 50 epochs was
chosen as at this point, the loss change was negligible.

This approach enabled a systematic exploration of the interaction between architectural depth, latent di-
mensionality, regularisation strength, activation functions, and optimisation settings, leading to a model
configuration that balanced reconstruction fidelity with generalisation capability. Table 6.1 gives the
summary of the hyperparameter turning variables.

Table 6.1: Summary of hyperparameters explored during Optuna search.

Hyperparameter Search Range / Options Description

Hidden layer widths {12, 10, 8, 6, 4} (strictly decreasing; depth ≤ 4) Neurons per hidden layer
in encoder/decoder;
narrowest hidden layer
must exceed the latent
dimension.

L1 regularisation weight [10−8, 10−5] (log scale) L1 penalty on layer
weights to encourage
sparsity.

L2 regularisation weight [10−6, 10−4] (log scale) L2 penalty on layer
weights (weight decay) to
reduce overfitting.

Encoder activation {ReLU, Sigmoid, Linear} Activation for encoder
hidden layers (mirrored in
decoder).

Output activation {ReLU, Sigmoid, Linear} Activation applied to the
decoder output layer.

Latent activity L1 [10−8, 10−4] (log scale) Optional L1 activity
regularisation on latent
outputs (promotes sparse
codes).

Learning rate [10−4, 10−3] (log scale) Adam optimiser step size.
Batch size {16, 32, 64} Samples per update.

Once the dimensionality reduction has been performed, the precursor identification process begins.

6.2. Precursor Identification
After the autoencoder has been created, the latent variables that are produced can be used for the
precursor identification. This algorithm was developed by Golyska and Doan [46], and consists of
mimicing a complex system as a weighted graph in the phase space. This approach can identify
communities, which serve as precursor clusters belonging to an extreme event. This identification
process is outlined in these sections.

6.2.1. Phase Space and Tesselation
To begin the identification, the latent variables are plotted in a multi-dimensional phase space diagram.
As an example, a two dimensional phase space diagram is shown, with fictional data.
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Figure 6.2: Phase Space Diagram with two variables [46]

In Figure 6.2, the evolution of two variables is depicted. This representation is inherently time-independent,
serving solely to illustrate the progression of the variables within the phase space. When additional
latent variables are considered, the dimensionality of the diagram correspondingly increases. To ef-
ficiently represent such higher-dimensional trajectories, tessellation is employed to compress the de-
scription of the system’s evolution. To do so, the diagram is divided into M sections along each di-
mension, with the resulting regions referred to as hypercubes. The procedure begins by normalizing
the phase space across all dimensions, thereby facilitating the identification of hypercubes containing
points of the trajectory. Subsequently, the trajectory’s time series in the normalized phase space is ex-
amined and converted into a sequence of hypercube indices. This transformation yields a discrete time
series that maps the system’s path by specifying the hypercube occupied at each time step. For com-
putational efficiency, tessellation is implemented using sparse matrices, ensuring that only non-empty
hypercubes are retained in memory, each assigned a unique index. This approach enables precise
discretization of the system’s trajectory, avoiding both overlaps and voids, as illustrated in Figure 6.3.

Figure 6.3: Phase Space Tessellation

Once the system has been tessellated, the transition probability matrix can created.
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6.2.2. Transition Probability Matrix
Once the tessellation is complete, it must be known how the individual data points transition from one
state to another. An example of such a matrix is shown in Figure 6.4

Figure 6.4: Transition Probability Matrix Format [45]

where in this case, the matrix indices indicate the probability of a hypercube in an nth state transitioning
to another in an mth state. Normally, this is found using,

Pij =
m
(
Bi ∩ F1(Bj)

)
m(Bi)

, i, j = 1, . . . , N (6.11)

where Pi,j represents the probability that the system transitions from hypercube Bi to hypercube Bj .
Moreover, m(Bi) indicates the number of phase space points in a hypercube Bi. The parameter N
indicates the total number of hypercubes, while F1 denotes the temporal forward operator, which maps
the current state of the system to its state at the next time step. However, the equation used in the
work of Golyska and Doan [46] uses a backwards operator, shown as,

Pij =
m
(
Bi ∩ F−1(Bj)

)
m(Bi)

, i, j = 1, . . . , N (6.12)

Here, F−1 denotes the temporal backstep operator, which maps the current state of the system to its
state at the preceding time step. The outcome of this step is a sparse transition probability matrix P of
size Mn, where n is the number of dimensions of the phase space. A visualization of P is presented
in Figure 6.5, which reveals that the matrix is predominantly diagonal, indicating that the trajectory
remains within a given hypercube for several consecutive time steps. The non-zero off-diagonal entries
correspond to transitions between different hypercubes.
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Figure 6.5: Tessellated Data to Transition Probability Matrix [46]

The transition probability matrix can be recast as a weighted, directed graph, where each node corre-
sponds to a hypercube in the tessellated trajectory and each directed edge denotes a possible transition
between hypercubes. The weight of an edge encodes the probability associated with the corresponding
transition. An illustrative example of this is Figure 6.6,

Figure 6.6: Weighted, Directed Graph [46]
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6.2.3. Modularity
In this phase of the algorithm, the resulting network is partitioned into communities according to the
modularity metric. Modularity quantifies the quality of a network division by measuring the difference
between the proportion of intra-community edges observed and the proportion expected under a ran-
dom null model. A high modularity value signifies that the inter-community edge count is substantially
lower than expected by chance, thereby indicating a statistically significant community structure rather
than a merely sparse interconnection.

The community detection procedure is implemented using the Python Modularity Maximization library
[136], which follows the methodology proposed by Newman and Leicht [90, 77]. Furthermore, the
computational efficiency enhancement introduced by Golyska and Doan [46] is retained in this imple-
mentation.

To create a modularity metric, the expected number of edges of a community is required. The expected
number of edges is estimated by constructing a random network that preserves the degree sequence
of the original graph. Each vertex i is assigned a degree ki, interpreted as the number of incident
half-links. The total number of half-links is therefore∑

i

ki = 2m, (6.13)

where m denotes the total number of edges in the network.

A half-link from vertex i can connect to any of the remaining 2m−1 half-links, excluding self-connections.
For a vertex j with kj half-links, the probability that one of i’s half-links connects to j is given by

kj
2m− 1

≈ kj
2m

(6.14)

for large networks. Consequently, the probability that vertices i and j are connected is approximately

kikj
2m

. (6.15)

For a given pair (i, j), the modularity, as defined in Equation 6.16, measures the deviation between the
observed adjacency Aij and its expected value kikj

2m , where Aij is the (i, j)-th entry of the adjacency
matrix, equal to 1 if an edge exists and 0 otherwise. This formulation excludes multi-edges between
the same vertex pair. Summing over all vertex pairs in a graph partitioned into two communities, with
n denoting the number of vertices, yields the modularity expression:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj), (6.16)

where δ(ci, cj) = 1 if vertices i and j belong to the same community, and 0 otherwise. In this formulation,
si and sj denote the community assignments of vertices i and j, respectively. The contribution to
modularity arises exclusively from pairs of vertices within the same community, as indicated by the
Kronecker delta function δsi,sj .

The modularity expression can be extended to account for the directionality of edges in a graph:

Q =
1

m

∑
ij

(
Aij −

kini k
out
j

m

)
δsi,sj (6.17)
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where kini and koutj denote the in-degree and out-degree of vertices i and j, respectively. The probability

of an edge from vertex j to vertex i in the corresponding model is kini k
out
j

m . Unlike the undirected case
in Equation 6.16, the factor of 2 does not appear in the denominator because the network is directed.

Following the method of Newman [90], the problem of modularity maximization can be reduced to parti-
tioning the network into two communities. For computational convenience, Equation 6.17 is expressed
in vector form as:

Q =
1

2m

∑
ij

(
Aij −

kini k
out
j

m

)
(sisj + 1) (6.18)

which simplifies to:
Q =

1

2m

∑
ij

siBijsj =
1

2m
sTBs (6.19)

Here, si ∈ {+1,−1} encodes the community membership of vertex i, and δsi,sj = 1
2 (sisj + 1). The

vector s collects all si values, while B is the modularity matrix with elements

Bij = Aij −
kini k

out
j

m
. (6.20)

The optimization objective is to maximize Q for a given modularity matrix B. In the case of directed
graphs, B is generally asymmetric; therefore, symmetry is restored by adding its transpose. The re-
sulting expression becomes:

Q =
1

4m
sT
(
B+BT

)
s. (6.21)

This maximization problem is treated as an eigenvalue problem. The community assignment vector s
is expressed as:

s =
∑
l

alvl

where vl are the eigenvectors of (B + BT ) and al = vTl s. Substituting into the modularity definition
yields:

Q =
∑
l

alv
T
l (B+BT )

∑
j

ajvj =
∑
l

βl
(
vTl s

)2 (6.22)

where βl and vl are the eigenvalues and corresponding eigenvectors. The maximum value of Q is
attained when s aligns with the eigenvector associated with the largest eigenvalue. Given the constraint
si = ±1, the closest discrete approximation is selected. The signs of the components of the leading
eigenvector determine community membership, enabling the bipartition.

The algorithm recursively divides the network into communities, stopping when no further increase in
modularity is achieved. Instead of modularity itself, the change in modularity ∆Q is evaluated for each
subdivision:

∆Q =
1

4m
sT
(
B(g) +B(g)T

)
s (6.23)

where
B

(g)
ij = Bij − δij

∑
k∈g

Bik (6.24)

and g denotes the subgraph under consideration. The process is iterative: after each division, the mod-
ularity matrix is updated (deflated), a new subgraph is formed, and the procedure repeats. Iterations
continue until either the maximum iteration limit is reached or the number of communities falls below a
user-specified threshold.
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In the final steps of the clustering process, a community affiliation matrix is created. This ensures that
the clusters identified in the previous step can be mapped to the vertices of the original graph. This
matrix is then used to deflate the original probability transition matrix P, producing a new transition ma-
trix P(1) that characterizes the dynamics of the updated network. This marks the point in the algorithm
where the iterative procedure, as described in the preceding section, begins.

P(1) = DTPD (6.25)

An illustration of both the original probability transition matrix and the deflated matrix is presented in
Figure 6.7.

Figure 6.7: Deflation Matrix Visualization [46]

6.2.4. Cluster Classification
The final stage of the algorithm concerns the identification of extreme and precursor clusters. Extreme
clusters are determined during the tessellation phase, in which hypercubes corresponding to extreme
states are marked. Precursor clusters are then defined as those exhibiting transitions to extreme clus-
ters, as indicated by the final transition probability matrix. Any cluster with a nonzero probability of
transitioning into an extreme cluster is classified as a precursor cluster, irrespective of the magnitude
of the probability. A visual representation of the identification procedure for both extreme and precursor
clusters is provided in Figure 6.8 and Figure 6.9.

Figure 6.8: Extreme Event of Tessellated Data [46]
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Figure 6.9: Precursor Clusters of the Weighted, Directed Graph [46]

Evidently, the definition of what constitutes an extreme cluster is of critical importance, as it determines
when the time series transitions into an extreme state, thereby defining the onset of precursor clusters
and the initiation of spray activation. In the work of Floris [42], a fixed threshold was employed to define
extreme events, based on the temperature feature.

In the present study, however, normalized latent variables are utilized, which precludes the use of a
physically grounded fixed threshold. Since flashback events are rapid and cyclic in nature, the latent
variables exhibit sharp fluctuations analogous to those observed in the raw features. Consequently,
the normalized value corresponding to the occurrence of these fluctuations is adopted as the defining
threshold for extreme clusters. This threshold is further validated through the robustness analysis to
ensure its reliability.

6.3. Robustness Testing
This section outlines the tests conducted to evaluate whether the modularity-based clustering analysis
can be applied reliably across different scenarios.

First, the sampling locations are systematically varied. As previously discussed in subsection 5.2.2, this
is done to assess the effect of sampling depth within the mixing duct. Each location yields a distinct
set of results, and by varying these locations, it becomes possible to extract more informative and
representative features from the dataset.

Although one location is selected as the primary sampling site, a second location is reserved as a
robustness benchmark. Features from this robustness site are passed through the trained autoencoder
to assess out–of–sample reconstruction and generalization to previously unseen data. The resulting
latent representations are then subjected to the same clustering procedure, providing an independent
check on site selection: if reconstruction quality and clustering performance at the robustness site are
comparable to, or exceed those at the primary site, the alternative location may be preferable; if they
degrade materially, the original choice is validated.

Next, the input to the autoencoder consists of a diverse set of 14 features, each capturing different
aspects of the system’s behaviour. While the architecture of the network is optimised, the number of
latent dimensions is treated as a free parameter and is varied between 2 and 4. This choice allows
for an assessment of how the dimensionality of the latent space influences the performance of the
clustering algorithm. Although using four latent dimensions may encode slightly richer information
than three, the improvement in clustering quality may be marginal while incurring a significantly higher
computational cost. Also for comparison, and following the methodology of Floris [42], the selected
features are also provided directly to the clustering algorithm in their raw form. This parallel approach
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enables a direct evaluation of clustering accuracy between the autoencoder-based representation and
the baseline used in prior work.

Also, the definition of the extreme event threshold is varied. As established, the identification of extreme
clusters plays a central role, since it determines when precursor clusters are formed and when the
mitigation strategy (sprays) is activated. In Floris [42], the temperature feature allowed for the use of
a fixed, physically motivated threshold. In the present work, however, normalized latent variables are
employed, which precludes the direct use of a physics-based cut-off value. Instead, the threshold is
defined based on the normalized latent values corresponding to the rapid fluctuations observed during
flashback events. By changing this defining value and verifying it through robustness analysis, the
sensitivity of the clustering performance to threshold selection can be assessed.

Finally, the robustness test conducted for themodularity-based clustering algorithm evaluates its predic-
tive capability in an online setting with limited data availability. Owing to the substantial computational
cost associated with converging the probability transition matrix, the algorithm is unable to perform clus-
tering in real-time, i.e., it cannot recompute the probability transition matrix upon the arrival of each new
data point in the time series. Consequently, it becomes important to assess whether the algorithm pos-
sesses sufficient robustness to reliably predict the behaviour of previously unseen data, based solely
on patterns learned from past time series.

To investigate this, the dataset containing the time series of the selected features is partitioned into
training and test subsets. The clustering procedure is first applied to the training set, producing clusters
corresponding to normal, extreme, and precursor states, along with the associated probability transition
matrix. The centroids of these clusters are then recorded and subsequently employed for classification
of the test set. Specifically, the state of each new data point in the test sequence is determined by
computing its distance to the pre-identified cluster centroids, according to the following formula:

ϵ =

√√√√ n∑
i=1

(
ϕ̃i − ϕ̃i,cluster

)2
(6.26)

where ϕ̃i denotes the current state of the incoming data, n is the number of features, and ϕ̃i,cluster repre-
sents the centroid of the corresponding cluster obtained from the training set. To properly account for
the influence of the different features, both the test data states and the cluster centroids are normalized
using min–max normalization.

Once the closest cluster has been identified, the current state is assigned the label of that cluster. A
precursor to an extreme event is thus detected whenever the data point is classified into a precursor
cluster. In this manner, the approach enables an online prediction of system behaviour and provides
an assessment of the robustness of the clustering algorithm. Furthermore, this test also serves as a
useful indicator of the method’s performance when only shorter time series are available.



7
Outcome

In this chapter, results addressing the research questions are presented and discussed. First, the LES
outcomes and observed phenomena are summarized with emphasis on autoignition and flashback
behaviour. Next, dimensionality-reduction results are analysed to justify the final feature and latent-
dimension choices. The clustering-based segmentation and precursor detection are then evaluated,
including robustness tests on unseen locations and alternative latent dimensions. Finally, the features
of Floris [42] are given to the clustering algorithm as a test, and the water spray results are presented
as a form of flashback suppression.

7.1. LES
In this section, the results of the 3D LES of the Ansaldo Energia GT36 are presented. The methodology
employed is described in Section 5.1. Before analyzing the combustion dynamics, the quality of the
LES must be assessed to ensure it has run as expected. For this purpose, Pope’s criterion is applied,
as introduced in Equation 5.41. While Tecplot provides the subgrid-scale kinetic energy directly as a
standard variable, K, the turbulent kinetic energy of the resolved scales must be computed as

K = 1
2

(
ũ2 + ṽ2 + w̃2

)
, (7.1)

where ũ, ṽ, and w̃ are the time-averaged RMS values of the perturbations of the velocity components.
Using this variable, Pope’s criterion can be evaluated across the entire mesh, where values of 0.2 or
lower are considered acceptable for a high-quality LES. The results at a representative timestep are
shown in Figure 7.1.

62
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Figure 7.1: Pope’s Criterion for the 3D LES

As can be seen, nearly all regions of the LES exhibit values approaching zero, which demonstrates that
most of the turbulent kinetic energy is resolved rather than modeled. This confirms that the LES quality
is excellent. However, certain localized regions within the outer recirculation zone (ORZ) display slightly
higher values, with some small zones surpassing 0.2, as is evident from the legend. These elevated
values can be attributed to the strong velocity gradients and wall-bounded shear layers present in
this region, which naturally enhance the subgrid-scale contribution. Since these zones are spatially
confined and intermittent, the overall LES quality remains robust.

7.1.1. Flashback Evolution
The flame structure obtained in this LES can be compared with the works of Floris [42], Rouco Pousada
et al. [104], and Kruljevic et al. [73]. These studies identify two key flow regions: the central developing
zone (CDZ), a high-momentum core jet that issues from the swirler and convects downstream before
interacting with recirculation zones, and the outer recirculation zones (ORZ), which form near the com-
bustor walls due to flow separation and swirl-induced corner vortices. Both CDZ and ORZ exhibit
similar spatial extents and dynamics to those observed here, including a shear layer separating them,
as shown in Figure 7.2. This agreement provides additional confidence in the predictive capabilities of
the present LES, as the large-scale flow organization and flame anchoring mechanisms are consistent
with prior experimental and numerical investigations.

Figure 7.2: Flame Shape

The flashback process is illustrated in Figure 7.4. Combustion begins at t = 1ms, after the inert flow has
fully developed. Autoignition first occurs near the expansion step, where the balance between ignition
delay time and flow-through time anchors the flame base [panel (a)]. The initial heat release generates
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a strong pressure wave (Figure 7.3), which propagates both downstream and upstream, reflects off the
chamber walls, and interferes constructively along the centerline. The resulting compressive heating
raises the local temperature, producing positive fluctuations that accelerate a secondary autoignition
event [panel (b)].

Figure 7.3: Pressure Rise at Ignition Kernel

The secondary autoignition launches another upstream-traveling pressure wave, imposing an unfavor-
able gradient on the incoming flow. This so-called “piston effect” compresses and heats the reactants,
shortening the autoignition delay throughout the mixing duct and enabling kernels to form further up-
stream [panel (c)]. The boundary layer is especially susceptible due to its low velocities and longer
residence times, which allow kernels to survive and propagate, ultimately causing boundary-layer flash-
back. The flame then advances upstream, nearly reaching the inlet, where the shortened ignition delay
matches the local residence time under elevated pressures and temperatures [panel (d)].

Once the pressure wave reaches the inlet, compressive forcing ceases and the system enters a re-
laxation phase. Pressure and temperature return toward baseline values, and the flame is convected
downstream, often stabilizing at a position further downstream than its original anchoring point. The
cyclic nature of this process is evident: ignition kernels reappear in the recirculation zones, repeating
the sequence of autoignition, pressure-wave generation, compressive heating, boundary-layer flash-
back, and relaxation.
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Figure 7.4: Flashback Evolution

Autoignition, the dominant propagation regime for the GT36, is highly sensitive to temperature. As
discussed in subsection 3.1.4, the autoignition delay strongly depends on temperature near the cross-
over point. With an inlet temperature of 1180 K, only a small increase is sufficient to shift the flame
position. The cross-over temperature of roughly 1350 K is quickly reached once ignition kernels form,
as observed slightly upstream of the step before full autoignition occurs in the premixing tube.

The pressure wave in this configuration attains amplitudes up to 26 atm at the inlet, propagating at
nearly 650 m/s (the local speed of sound in the mixture). This results in a pronounced piston effect,
reducing the incoming flow velocity from about 200 m/s to below 100 m/s, as shown in Figure 7.5. The
effect intensifies with larger equivalence ratios and higher inlet velocities. Contrary to expectations,
higher bulk velocities here amplify compressive heating, thereby facilitating autoignition. Equivalence
ratios above ϕ = 0.2 have been shown to generate stronger pressure waves [50].
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Figure 7.5: Piston Effect on Velocity Magnitude

Finally, boundary layer flashback further promotes upstream propagation through localized wall heating.
It occurs when the turbulent burning velocity exceeds the local near-wall flow velocity, aided by vortical
structures that induce boundary layer separation. For hydrogen, the risk is especially high due to its
very small quenching distance of 0.64 mm. Under the present conditions, the laminar flame speed
is about 13 m/s, but turbulence enhances the effective turbulent flame speed to above 60 m/s for
an inlet turbulence intensity of 0.1 [50]. This, combined with hydrogen’s reactivity, strongly favors
wall-adjacent propagation. BL flashback differs from autoignition-driven movement, as it arises from
flame front propagation rather than compression heating. In Figure 7.4(d), near-wall flame propagation
surrounded by autoignition fronts confirms the coexistence of both mechanisms. In this LES, the piston
effect and reduced velocities near the wall create favorable conditions for BL flashback, which in turn
elevates local temperature and pressure, accelerating subsequent autoignition and aiding upstream
flame movement.

7.1.2. Mass Fractions
To further understand the dynamics of the flashback, certain mass fractions are observed. These were
chosen specifically due to their attributes that can provide insight about the flashback regime. As the
sampling point can be 1 of 4 in Figure 5.8), the far-right point S3 will be taken as a measurement here
due to its vicinity to the flame front, but slightly further distance compared to S4 to allow for a longer
relaxed state.
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Figure 7.6: Normalized Mass Fraction of Species H2O,H2O2,HO2

The temporal evolution of the normalized mass fractions of HO2, H2O2, and H2O was extracted at
a probe located just inside the boundary layer along the upper wall, immediately downstream of the
sudden expansion. The near-wall region is characterized by reduced axial velocity, longer residence
time, enhanced heat loss to the wall, and strong shear; all four effects modulate both the pre-ignition
chemistry and the transition to stable combustion. Prior to t ≈ 0.00284 s, themixture at the point remains
in a low-temperature regime. In this stage, HO2 and H2O2 accumulate steadily while H2O remains
nearly constant, reflecting inhibited chain-branching below the crossover temperature. When the local
temperature crosses the crossover threshold at t ≈ 0.00284 s, raised in this case by compressive
heating associated with the previously discussed pressure wave, the chemistry undergoes a qualitative
transition. The accumulated H2O2 rapidly decomposes,

H2O2 −−→ 2OH (7.2)

and the resulting OH radicals accelerate key branching and consumption pathways, exemplified by

H2 +OH −−→ H2O+H (7.3)

H+O2 −−→ OH+O (7.4)

which collectively precipitate the observed surge in H2O. At the same instant, H2O2 collapses and HO2

exhibits a sharp peak, marking the ignition transition at the wall-adjacent location.

Unlike centerline probes, the near-wall signal does not relax monotonically after ignition. Instead, HO2

shows pronounced post-ignition oscillations and intermittent persistence. These features arise from
boundary-layer transport: the low axial velocity increases the local residence time, permitting pockets
of relatively colder mixture to survive within the shear layer, while wall heat losses and small-scale
vortices intermittently quench and re-ignite the radical pool. Hydrogen’s small quenching distance fur-
ther accentuates this behaviour, so that HO2 can be periodically replenished even as H2O2 remains
depleted. Meanwhile, the steady rise of H2O indicates the establishment and subsequent advance of a
deflagration layer along the wall, consistent with boundary-layer flashback. Therefore, the observation
at this specific point captures the coupled mechanism by which crossover-triggered autoignition, am-
plified by compressive heating, seeds near-wall flame propagation; the boundary layer then sustains
andmodulates the process through extended residence time, shear-inducedmixing, and wall-mediated
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heat transfer.

Figure 7.7: Normalized Mass Fraction of Species O,O2,OH

In Figure 7.7, prior to t ≈ 0.00284 s, both O and OH remain negligible, while O2 persists near its
maximum normalized value. This regime corresponds to the pre-ignition stage, dominated by low-
temperature chemistry in which HO2 and H2O2 act as the primary radical carriers. Radical generation
is strongly suppressed, consistent with the extended induction period near the wall where residence
times are longer and heat losses are significant.

Once the crossover temperature is reached, however, a sharp rise in O and OH is observed around
t ≈ 0.00285–0.00290 s. This marks the transition from low-temperature to high-temperature chemistry,
driven primarily by the rapid decomposition of hydrogen peroxide as in Equation 7.2, which releases
highly reactive OH radicals. The simultaneous growth of O is linked to classical chain-branching reac-
tions such as Equation 7.4, and the subsequent radical recycling through

O+H2 −−→ OH+H.

Together, these reactions create a strongly coupled O/OH radical pool that accelerates ignition and
sustains high reactivity in the system.

During this stage, O2 begins to decrease steadily, reflecting its consumption through radical-driven
oxidation pathways. The rise and subsequent oscillations of O and OH can be attributed to the near-
wall location of the probe. Here, the extended residence time within the boundary layer promotes
localized radical accumulation, while wall heat transfer intermittently quenches radical growth. This
competition manifests as fluctuations in the radical pool, indicating that ignition near the wall is subject
to both autoignition chemistry and deflagration-like propagation effects.

7.1.3. Sampling Points
It was previously noted that wall-adjacent sampling locations may behave differently. Therefore, a
robustness analysis is required to identify the most suitable location for data extraction (see Figure 5.8).
The data should meet the following criteria:

1. Cycles: The time series should capture the flashback dynamics, exhibiting clear cyclic behavior
with pronounced excursions (positive or negative) from the nominal level.
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2. Noise: Because the wall region is more turbulent than the centerpoint, some noise is expected.
While informative, this noise should not be so large that it impairs the model’s ability to form
coherent clusters.

3. Relaxation: Sampling locations at different streamwise positions experience different flashback
durations. Very long flashback periods with minimal relaxation can blur the distinction between
normal and precursor clusters, whereas very short flashbacks with long relaxation may provide
too little information about flashback behavior.

4. Regularity: More regular temporal patterns, both in cycle shape and in the magnitudes reached
and then recovered, improve learnability and typically yield better predictive performance.

To perform an analysis, a thermodynamic property, a velocity vector, and a mass fraction will be eval-
uated to be diverse. Initially, the temperature was observed. These are shown in Figure 7.8

Figure 7.8: Temperature Extraction at Different Points

The temperature histories at the four probes exhibit clear flashback cycles at all locations. Cycle promi-
nence increases toward the flame: S3–S4 routinely attain hot-plateau levels of∼1900–1950K, whereas
S1 often peaks only at ∼1550–1600K and at times does not fully enter the hot state. Noise is present
everywhere but is proportionally largest in S1, whose cool-phase baseline shows higher-frequency
variability; by contrast, S3–S4 display comparatively smooth hot plateaus, which should facilitate clus-
ter separability. Relaxation behavior varies systematically with position: S1 exhibits long cool intervals
punctuated by short hot excursions, while S4 remains hot for longer with brief relaxation phases (S2–S3
are intermediate). In terms of regularity, S3–S4 show themost consistent periods and peakmagnitudes,
whereas S1 exhibits stepwise ramps and occasional irregular cycles. However, the relaxation state is
better for the further locations, and quite short for S4, which almost shows instant jumps after relaxation.
Furthermore, the velocity ux can be observed.



7.1. LES 70

Figure 7.9: Velocity Extraction at Different Points

The cyclicity of ux is expressed as periodic decelerations from a quasi-steady baseline. Cycle amplitude
and clarity increase toward the flame: S3–S4 display deeper and more repeatable troughs with rapid
recoveries, whereas S1 shows shallower excursions and occasional cycles that do not fully decelerate.
High-frequency noise is present at all locations but is proportionally largest at S1; generally, all locations
present clean extrema and smooth inter-event segments, which should aid cluster separability. As for
relaxation, similarly, the difference in time spent in the high-ux (relaxed) state is negligible between the
locations. Regularity is highest at S3–S4, which exhibit more consistent inter-event spacing and trough
depths. Finally, a mass fraction can be evaluated.
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Figure 7.10: Oxygen Mass Fraction Extraction at Different Points

TheO2 mass–fraction has cycles whose clarity increases toward the flame. At S1, the series stays near
a high-O2 baseline (∼0.17–0.18) with intermittent, relatively shallow depletions (∼0.13–0.15), yielding
weaker contrast and a comparatively ragged baseline. S2 shows deeper, more frequent depletions
(down to ∼ 0.11–0.12) with clearer recoveries. Closer to the flame, S3 and S4 display the strongest
cyclic signature: extended low-O2 phases (∼ 0.1–0.11) followed by brief returns to the high state, with
sharp extrema and consistent period and amplitude. Noise levels are modest overall but smallest at
S3–S4, whose repeatable trough depths and inter-event spacing should enhance cluster separability.
Relaxation duration varies monotonically with position: S1 exhibits long relaxed (high-O2) intervals and
short depletions, whereas S4 shows the opposite, with S2–S3 intermediate.

Considering all the criteria (cycles, noise, relaxation, regularity), for each type of feature, S3 and S4
would provide the most insight about the flashbacks. However, the relaxation state of S4 is very short
and may not give enough information to the clustering algorithm about a normal state; therefore S3 will
be used.

7.1.4. Features
Based on the results provided in this section, and the analysis performed on the LES, the following 14
features will be used moving forward:

1. P (Pressure)

2. ρ (Density)

3. T (Temperature)

4. U (Velocity in the x-direction)

5. V (Velocity in the y-direction)

6. W (Velocity in the z-direction)

7. YH (Mass fraction of H radical)
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8. YH2 (Mass fraction of molecular hydrogen)

9. YH2O (Mass fraction of water)

10. YH2O2 (Mass fraction of hydrogen peroxide)

11. YHO2
(Mass fraction of hydroperoxyl radical)

12. YO (Mass fraction of atomic oxygen)

13. YO2
(Mass fraction of molecular oxygen)

14. YOH (Mass fraction of hydroxyl radical)

7.2. Dimensionality Reduction
Furthermore, to condense these 14 variables into workable data for the clustering algorithm, a dimen-
sionality reduction will be used. As the latent variables are ranged from 2-4, 3 different optimisations
have been run to obtain the optimal solution for each situation. A few parameters are concrete and
do not change for the simulations, shown in Table 7.1. Once the trainings have been performed, the

Table 7.1: Training configuration and autoencoder architecture

Parameter Value
Epochs 50
Loss function MSE
Input/Output dimensions 14 (first encoder and last decoder layers)

autoencoder’s decoder output is a full reconstruction of the original input time series, which can be
qualitatively compared to the inputs, as an understanding of how the latent variables are constructed.
The thermodynamic and velocity based features are shown in Figure 7.11.

Figure 7.11: LES Extracted Thermodynamic and Velocity based Features
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Across the features, common trends coexist with clear distinctions. Pressure and the transverse veloc-
ity components (v and w) are dominated by high-frequency noise with large excursions at flashback
instants; this variability is unlikely to aid clustering and may hinder identification of precursor clusters.
By contrast, density and temperature exhibit nearly identical cyclic structure, apart from the expected
sign inversion (temperature rises coincide with density drops), which is suited for precursor detection.
The streamwise velocity u combines both behaviors, showing discernible cycles superposed with noise.
Because all signals were sampled at S3, their relaxation durations and cycle regularity are aligned, re-
ducing variation and therefore benefiting the algorithm. The mass fractions were also extracted and
are shown in Figure 7.12.

Figure 7.12: Mass Fraction Features

Relative to Figure 7.11, the mass-fraction features are more mutually similar, exhibiting pronounced
cyclic patterns whose frequency varies modestly across species. Certain species (e.g., OH) display
greater high-frequency fluctuations than others (e.g., H2O); nevertheless, both retain a clear flashback
signature that is informative for analysis. Many species alternate between active and relaxed states
at either high or low concentration levels; this bimodality is consistent across cycles and, rather than
posing difficulties, is unlikely to impede (and may even facilitate) precursor identification.

As a summary of the trainings, their train/validation/test losses were compared in Figure 7.13. The trend
is monotonic: increasing the latent dimension lowers loss on all splits. Moving from 2→3 latents yields
the largest drop (train: 3.7×10−3 → 2.9×10−3, val/test: 3.1×10−3 → 2.3×10−3), indicating that a 2D
code is under–parameterised for the data’s variability. The step from 3→4 latents brings a smaller, but
consistent, refinement (val/test to ≈ 2.0×10−3), suggesting diminishing returns beyond three degrees
of freedom. Across all settings the ordering train > val ≈ test persists, with validation never exceeding
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training, consistent with a chronological split in which later segments are slightly “cleaner,” and with no
evidence of overfitting. In practical terms, three latents capture most of the recoverable structure; a
fourth latent mainly polishes mid–frequency details, while not producing further gains.

Figure 7.13: Comparison of Different Losses of Autoencoder Structures

After this figure, the details of the best configuration, the 3 latent structure, is provided in the subsections
relating to the optimisations. The discussion of the 2 and 4 latent variable structures can be found in
Appendix D and Appendix E respectively.

7.2.1. 3 Latent Variables
The optimal optimisation results are shown with this configuration.

Table 7.2: Summary of hyperparameters explored for 3 latent variables

Hyperparameter Search Range / Options Best value
Hidden layer widths Combinations from {12, 10, 8, 6, 4} (strictly decreasing, depth ≤ 4) (12, 8, 6)

L1 regularisation weight [10−8, 10−5] (log scale) 2.320× 10−8

L2 regularisation weight [10−6, 10−4] (log scale) 2.632× 10−5

Encoder activation {ReLU, Sigmoid, Linear} linear
Output activation {ReLU, Sigmoid, Linear} sigmoid
Latent activity L1 [10−8, 10−4] (log scale) 1.232× 10−8

Learning rate [10−4, 10−3] (log scale) 8.976× 10−4

Batch size {16, 32, 64} 16

The 3-latent search in Table 7.2 converges to a near-linear architecture with hidden widths (12, 8, 6), a
linear encoder, and a sigmoid output. Regularisation is dominated by L2 (2.632× 10−5), while both the
weight L1 (2.320×10−8) and latent activity L1 (1.232×10−8) are effectively zero, indicating that all three
latent coordinates are consistently utilised without requiring explicit sparsity pressure. The optimiser
hyperparameters (learning rate 8.976 × 10−4, batch size 16) remain in the same stable regime as in
other runs. The resulting latent trajectories are shown in Figure 7.14.
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Figure 7.14: 3 Latent Variables Visualized

With three latents in Figure 7.14, the code remains cycle–locked but is very expressive. The second
latent (orange) acts as a quasi-binary state variable, switching cleanly between active and relaxed
phases. The first latent (blue) provides a continuous modulation within each cycle, tracking baseline
level and slow intra-cycle morphology. The third latent (green) concentrates around the edges of the
cycle: it rises sharply at onset and relaxes more gradually, capturing asymmetry between ignition/flash-
back entry and recovery, as well as medium-frequency structure that would otherwise be compressed.
This division of roles—(i) state, (ii) envelope/shape, (iii) transition sharpness, yields trajectories that are
stable across cycles with limited drift and only mild saturation at plateaus. Furthermore, the reconstruc-
tions of the thermodynamic and velocity features are shown in Figure 7.15.

Figure 7.15: Reconstruction of Thermodynamic and Velocity Features with 3 Latent Variables
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The reconstructions in Figure 7.15 remain excellent for the strongly cyclic, high–SNR variables (T and
ρ), with only slight clipping at extrema. The noisier channels show clearer benefits from the three–
dimensional bottleneck: for pressure P , the slow envelope and secondary modulations are tracked
more faithfully, with reduced underestimation of intermediate peaks, while the sharpest spikes are still
damped. The streamwise velocity u shows improved amplitude recovery and reduced phase lag around
ramps, bringing the reconstruction closer to the baseline across cycles. The transverse velocities v and
w exhibit better baseline alignment and less systematic bias; although high–frequency excursions re-
main smoothed, their magnitude is less underpredicted. In short, the third latent dimension is used
to capture moderate–frequency structure in P , u, v, and w, while T and ρ are already reconstructed
near ceiling fidelity. The latent trajectories in Figure 7.14 illustrate how distinct modes—state, enve-
lope, and transition sharpness—map onto the observed improvements in these reconstructions. The
corresponding species behaviour is shown in Figure 7.16.

Figure 7.16: Testing of Mass Fraction Features with 3 Latent Variables

The reconstructions in Figure 7.16 are uniformly strong across species. Bulk species (YH2O, YH2
, YO2

)
are essentially at ceiling, with waveforms and phase reproduced nearly perfectly and only marginal
plateau bias. Clearer gains are visible in radicals and intermediates: YH, YO, YOH exhibit steeper ramps
and better peak alignment, while YHO2 and YH2O2 show sharper, less rounded pulses with improved
timing. The multi–modal YO signal tracks intermediate maxima with reduced baseline drift. Residual
discrepancies remain minor, including slight under/overshoot at the sharpest extrema (consistent with
sigmoid saturation) and a small phase lag of only a few samples in the fastest transitions. The test
reconstructions are considered next.
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Figure 7.17: Testing of Thermodynamic and Velocity Features with 3 Latent Variables

Figure 7.18: Testing of Mass Fraction Features with 3 Latent Variables

Relative to the training reconstructions in Figure 7.15, the test outputs in Figure 7.17 remain strong for
T and ρ (near-identical phase and waveform, with only mild peak clipping). The noisier channels show
the expected test–time smoothing: P , v, and w have slightly smaller amplitudes and occasional short
lags at sharp ramps compared to train, while u retains accurate envelope tracking across cycles.

The species in Figure 7.18 generalise well and closely mirror their training counterparts in Figure 7.16.
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Bulk species (YH2O, YH2 , YO2 ) remain essentially at ceiling on test; radicals/intermediates (YH, YO, YOH, YHO2 , YH2O2 )
show minor additional attenuation at sharp extrema relative to train but preserve the improved timing
and peak matching. Residual discrepancies are limited to slight clipping near the most abrupt transi-
tions, consistent with the sigmoid output nonlinearity.

Furthermore, the mean squared error distribution is as follows:

Figure 7.19: MSE Distribution for 3 Latent Variables

Figure 7.19 shows a right–skewed per–sample MSE distribution with most mass concentrated at very
small errors (≲ 3×10−3) and a curtailed long tail, indicating that only a small fraction of samples are
challenging to reconstruct. Variance is reduced across all splits, with the tightest spread on valida-
tion/test. The ordering train > val > test persists, which points to cleaner held–out segments rather
than overfitting. Overall, the three–latent model achieves both low central tendency and dispersion of
error, with tail events largely confined to sharper transients (e.g. in P, u, v, w) and the more structured
species. Finally, the loss is shown:
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Figure 7.20: Loss Evolution for 3 Latent Variables

The training/validation curves in Figure 7.20 show a rapid drop over the first ∼3 epochs, followed by
a smooth, monotonic decline and a long, shallow tail. The validation curve remains slightly below
the training curve throughout, never turning upward, which indicates an absence of overfitting and, as
before, suggests that the training segment is intrinsically harder/noisier than validation. The overall
behaviour corroborates the reconstruction and MSE results that having 3 latent variables lowers both
the central tendency and dispersion of the error without inducing validation drift.

7.2.2. Summary
Across the three autoencoders (2, 3, and 4 latents), reconstruction quality improves monotonically with
latent dimension. The largest gain occurs from 2→3 latents; adding a fourth latent yields a consistent
but smaller refinement. Variables with strong, low–frequency cyclicity (T and ρ) and the bulk species
(H2O, H2, O2) are reconstructed almost perfectly in all settings. The noisier/less regular channels (P , u,
v, w) and the more structured species (e.g. H, O, OH, HO2, H2O2) benefit most from the added capacity:
amplitude bias decreases, mid–frequency content is better captured, and small phase lags are reduced.
Per–sample MSE histograms are right–skewed but shift left and tighten from 2→3→4 latents, indicating
both fewer high–error outliers and lower central tendency. Loss trajectories are smooth and monotone
with validation below training throughout, consistent with a chronological split in which the held–out
segments are slightly cleaner; there is no evidence of overfitting.

A 3–dimensional bottleneck is a strong operating point: it captures nearly all recoverable structure at
modest complexity, while a 4–dimensional code mainly polishes transition dynamics (diminishing re-
turns). For downstream clustering, the latent space should, by design, separate state from noise, so it
is expected to have cleaner group structure when clustering zt (or short time–window summaries of zt)
rather than the raw features. With a 2 latent code, one coordinate typically behaves like a state/phase
indicator and the other as a continuous intensity; therefore, two compact clusters (relaxed vs. active)
are expected with transition samples forming a narrow bridge or fuzzy boundary between them. Moving
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to 3 latents should make the transition dynamics more explicitly represented (e.g., onset/offset sharp-
ness), so a separate “precursor/transition” cluster is more likely to emerge and cluster quality metrics
(e.g., silhouette) would be expected to improve. A 4 latent code would mainly refine this picture: a
substructure within the active state (early/late active, strong/weak cycles) and slightly cleaner bound-
aries would be anticipated, but with diminishing returns and a higher risk that very brief events form
tiny fragments if the clustering method is too aggressive. In conclusion, the three-latent configuration
is adopted for all subsequent clustering analyses, as it achieves the best balance of accuracy and
interpretability with minimal complexity.

7.2.3. Robustness
As a robustness test of unseen data, a step is taken past the test section, where data fromS4 is sampled.
These datapoints are run through the autoencoder’s best pretrained configuation; the 3 latent variable
structure. The final encoder output is shown in Figure 7.21,

Figure 7.21: Latent Variables of the S4 Sampling Point

where the latent variables qualitatively resemble Figure 7.14, regarding high and low frequency nodes
such as noise and cycles, respectively. The reconstruction of the decoder is then plotted against the
original S4 data, which is shown in Figure 7.22 and Figure 7.23.
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Figure 7.22: Reconstruction of Thermodynamic and Velocity Features of S4

Figure 7.23: Reconstruction of Mass Fraction Features of S4

A comparison of the reconstruction input overlays for the S4 data in Figure 7.22 against those from
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the Figure 7.15 S3 training reveals clear variable-dependent generalization. For the thermo-chemical
variables T and ρ, the external reconstructions are high-fidelity: the periodic depressions, recovery
phases, and pulse shapes are reproduced with only minor peak clipping. In contrast, P , U , V , and
W degrade highly at S4: the decoder exhibits variance shrinkage (from the amplitude compression),
and suppression of sharp excursions, so bursts and troughs visible in the inputs are flattened in the
reconstructions. At S3, these same variables are tracked more closely, with moderate smoothing but
substantially better amplitude agreement.

Furthermore, a side-by-side inspection of the species mass–fraction reconstructions in Figure 7.23
and Figure 7.16 shows that the autoencoder transfers remarkably well from the training location to S4.
For all plotted channels (YH, YH2

, YH2O, YH2O2
, YHO2

, YO, YO2
, YOH), S3 exhibits near-perfect overlap be-

tween input and reconstruction, with only minor smoothing at sharp corners. At S4, the cycles remain
highly faithful; periods, smaller cycles, and decay tails are preserved. However, small, systematic de-
viations appear: peaks are slightly attenuated and occasionally clipped (most visible for radical-rich
channels YHO2 , YOH, YO), and some rising edges show a subtle temporal lag relative to the input. More-
over, stable bulk species such as YH2

and YO2
are reproduced almost indistinguishably from the truth.

These patterns suggest that the learned thermo-chemical features generalizes well across locations;
the residual errors are characteristic of mild low-pass smoothing and output saturation near extrema,
likely arising from distribution shift outside the training min–max range and the decoder’s sigmoid out-
put. Overall, the autoencoder captures species dynamics robustly at the unseen location, with only
modest peak underestimation concentrated in fast, radical transients. The general conclusion might
be that the noisy features may be under-representated while the low frequency modes match very well
for S4. This is visible in Figure 7.24,

Figure 7.24: MSE for S4

where the Figure 7.24 shows the distribution of theMSE of S4 overlayed on the previous Figure 7.19. S4
(red) remains clearly shifted to the right relative to the train/validation/test splits and exhibits a heavier
upper tail (extending to roughly 6×10−2), indicating both more frequent and larger errors at the unseen
location. Nevertheless, there is substantial overlap with the in-split distributions near zero, showing
that many external time steps are still reconstructed well while a smaller fraction accounts for the long
tail of larger errors. Bar heights reflect sample counts and depend on sequence length and binning;
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the primary comparative signals are the lateral shift of the external distribution and its pronounced right
tail.

Figure 7.25: MSE by Feature

Furthermore, Figure 7.25 summarizes the MSE with a logarithmic y–axis. Errors are smallest for
thermo–chemical variables such as YH2

, YO2
, YH2O, and remain low for T and ρ, indicating close form

agreement. Intermediate errors are observed for radical–rich species (YO, YOH, YH2O2 , YH), while the
other channels U , V , W , and P dominate the error budget by over an order of magnitude. Because
values are scaled and the decoder output is bounded, excursions beyond the training range and mild
peak clipping can inflate MSE; nonetheless, the ranking clearly localizes where generalization is weak-
est (primarily the velocity/pressure signals). Finally, the scatter plot in Figure 7.26 is obtained by plotting
the first two latent variables, similar to a phase diagram. Each dot is one time sample. The blue cloud
delineates the S3 data, while the orange cloud shows how S4 maps into the same space. Substantial
overlap indicates that the external inputs are encoded near the training data and are thus easier to
reconstruct; systematic offsets or shape differences (”latent drift”) indicate distribution shift, where the
decoder must extrapolate and reconstruction error typically grows. In the illustrated case, the exter-
nal points partly overlap the training manifold but deviate along specific regions, consistent with the
observed degradation for some of the velocity and pressure channels.
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Figure 7.26: Latent drift for S3 (blue) and S4 (orange)

Now, the precursor detection can be discussed.

7.3. Precursor Detection
This section presents the results of the precursor detection analysis. As introduced in Section 6.2, the
modularity-based clustering algorithm operates on the latent variables, representing them in a phase
space diagram along with a probability transition matrix. These components are then used to construct
a weighted graph, which serves as the basis for clustering. Using a modularity metric, the network
is partitioned into clusters, with the goal of categorizing the time series into normal, precursor, and
extreme states.

The section begins with the best-case configuration, using data from S3 and three latent variables. The
process described above is detailed step by step. Following this, a robustness analysis is carried out,
exploring the impact of varying latent variable structures, extreme-value thresholds, and clustering on
unseen data. Finally, the original features employed by Floris [42] are incorporated to highlight how the
present work builds upon prior research.

7.3.1. Tessellation and Weighted Graph
Initially, the latent variables are normalized, such that one does not have more influence than the other.

To begin, a latent variable is chosen to bear the extreme threshold. This variable is chosen as the
second variable in Figure 7.14 referred to as L1, due to its regular and cyclic nature. Moreover, it
resembles the temperature plot very closely, a feature used in [42]. However, the extreme value that is
set is more arbitrary, due to the normalized values of the latent variables. The best configuration has
been found using an extreme value of 0.25, shown in Figure 7.27.
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Figure 7.27: Extreme Threshold on Chosen Latent Variable

This extreme value has little effect on the precursor time, as will be discussed in the robustness. The
time series is also split, where the first part is used in this section, and the following part in the robust-
ness. Furthermore, the phase space of the time series is shown in Figure 7.28, where L1 is plotted
against the first latent variable, L0, where L1 and L0 are both normalized using min-max.

Figure 7.28: Phase Space Diagram of L1 against L0, Extreme=0.25

After this, the diagram is tessellated. The extreme regions are identified and stored separately in
order to initialize the clustering algorithm with two distinct communities: an extreme community and a
non-extreme one, a modification to the algorithm of Golyska and Doan [46] by Floris [42] where any
community above the threshold is immediately separated as extreme. The tessellation is shown below.
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Figure 7.29: Tessellation of L1 against L0

In this diagram, the chosen tessellation size, M = 30, reflects a balance between computational effi-
ciency and the accuracy with which the tessellated phase space represents the underlying trajectory.
As noted in the analysis by Golyska and Doan [46], too few tessellation sections fail to capture the sys-
tem dynamics in sufficient detail, making it difficult to distinguish between normal and precursor clusters.
On the other hand, increasingM excessively results in significantly higher computational costs, scaling
withMNf , where Nf is the number of features; without improving prediction performance.

In the subsequent stage, the algorithm proceeds into an iterative loop. The system is initially ex-
pressed as a transition probability matrix, which is then converted into a graph and partitioned using
the modularity-based clustering approach. The resulting reduced graph is subsequently mapped back
into a transition probability matrix, and this process is repeated. At the conclusion of each iteration, the
transition probability matrix together with the reduced graph defines the current state of the system, as
illustrated in Figure 7.30 and Figure 7.31.
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Figure 7.30: Transition Probability Matrix

Figure 7.31: Weighted Directed Graph

The loop continues until one of two termination criteria is met: either the maximum number of iterations
is reached, or the number of clusters decreases below a prescribed threshold. The maximum number
of iterations is fixed at 10, as beyond this point no significant structural changes in the system are
observed. The minimum number of clusters is set to 15 in order to preserve a sufficiently detailed
representation of the system’s dynamics while maintaining computational tractability.
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7.3.2. First Clustering
Furthermore, the identified clusters are shown in the phase space diagram and tessellated graph in

(a) Clustered trajectory in phase space (b) Clustered tessellated space

Figure 7.32: Visualization of clustering applied to the system: (a) trajectory in phase space and (b) corresponding tessellated
representation.

Based on the graphs above, the clusters in Figure 7.33 are found,

Figure 7.33: Cluster Types

where the red, orange, and blue colors correspond to the extreme, precursor, and normal clusters,
respectively. The plot represents the number of hypercubes assigned to each cluster or community.
As shown, clusters 2, 3, 4, 5, and 8 correspond to normal behavior, while clusters 1, 5, and 8 are
identified as precursors; the remaining clusters are classified as extreme. In general, the more regular
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a time series is, the fewer clusters are required in each category. This is because a narrow value range
is typically represented by a single cluster, whereas if the precursor states span a broader range of
values, the formation of multiple clusters would be necessary to capture their variability.

7.3.3. Time Series Result
Finally, based on these clusters, the affiliation can be created between the clusters and indices, forming
the final partition of the time series, found in Figure 7.34

Figure 7.34: Fully Clustered L1

From the clustering results, the temporal evolution of the combustor can also be interpreted directly
from the temperature signal. Figure 7.34 shows the normalized latent variable evolution sampled over
time, with the background color denoting the cluster type: blue corresponds to normal operation, orange
to precursor states, and red to extreme states.

It can be observed that prior to each flashback event, the algorithm consistently identifies a precursor
state (orange) before the system transitions into the extreme regime (red) without any false negatives
(FN), with one small false positive at 2.7 ms, occuring right after an extreme event. This general
behavior demonstrates the ability of the method to provide a predictive warning ahead of the rapid
rise in temperature associated with flashback. In addition, the time intervals spent in the normal regime
reveal the strongly unstable character of the combustor: the system frequently departs from the normal
state into precursor or extreme conditions.

The clustering is therefore not based solely on instantaneous values of the latent variables, but rather
on the trajectory of the system through the phase space. This is evidenced by the classification of short
segments into distinct clusters even when their latent values overlap. As a result, the approach high-
lights the dynamical precursors of flashback events and underscores its potential as an early-warning
diagnostic tool for unstable combustion systems. The exact indices are reflected onto the temperature
plot in Figure 7.35.
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Figure 7.35: Clusters Mapped onto Temperature

As observed, the similarity between one of the latent variables and the temperature feature results
in a one-to-one mapping of the extreme and precursor zones. The maximum warning time identified
is approximately 42 µs, which corresponds to a temperature difference exceeding 100 K, highlighting
the importance of such a prediction horizon. Moreover, even when extreme events occur in close
succession, leaving only a short relaxation period, the algorithm is still able to distinguish between
normal and precursor clusters. Next, the robustness analysis will be performed.

7.3.4. Robustness Analysis
This subsection will discuss all the robustness analysis performed on the precursor detection.

Latent Variable Structure
For the robustness study, clustering is carried out in the latent space learned by the autoencoder.
Although the three-dimensional embedding yielded the strongest reconstruction performance, the clus-
tering algorithm is also applied to embeddings with d ∈ {2, 4} latent dimensions to assess sensitivity to
representation size, specifically, whether clustering benefits from more or less information, or whether
the d = 3 configuration remains optimal as found before. For each case, one latent variable was found
that corresponded mostly to the cyclic variations of features like temperature. This latent variable was
chosen to set the threshold of extreme. Firstly, the result of the two latent structure is shown,
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Figure 7.36: Clustering Analysis for 2 Latent Variables

Relative to the 3 latent configuration in Figure 7.34, the 2 latent case produces a noticeably more frag-
mented segmentation (many short orange slivers) and several precursor intervals that do not terminate
in an event (FP). In both configurations the extreme events are consistently preceded by a precursor
(no false negatives are evident). However, the 3 latent model yields cleaner, longer, and more stable
precursor windows immediately upstream of each event, whereas the 2 latent model tends to compress
the precursor and insert false ones. Hence, with comparable absence of false negatives but a lower
false–positive rate and much shorter warning lead times, the 3 latent configuration provides the more
reliable early–warning signal. Furthermore, the 4 latent structure is shown in Figure 7.37

Figure 7.37: Clustering Analysis for 4 Latent Variables

Using four latent variables yields a more reactive, but less precise—segmentation of the latent variable.
It should be noted that the latent variable corresponding to the temperature feature, in this structure,
was upside down. Extreme events remain consistently preceded by a precursor (no false negatives),
and the onset of each precursor is essentially unchanged relative to the 3 latent configuration, indicating
that early-warning lead time does not improve with d = 4. The principal difference is additional false
positives (30 total) and unstable precursor duration; the trailing boundary between precursor and event
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toggles frequently, while the first index of the precursor is stable. Consequently, the 4 latent model
offers no gain in warning time and degrades precision, whereas the 3 latent configuration provides
cleaner, longer precursor windows with fewer false activations and is therefore preferred. It should be
noted that the clustering time was two orders of magnitude longer for the 4 latent model; an additional
disadvantage. It is concluded that a 3 latent variable model is indeed better for both the autoencoder,
and the clustering algorithm. Next, the extreme value is varied.

Extreme Value Threshold
Secondly, the extreme value threshold was varied, to see whether a small increment can drastically
change the precursor time, or the false positive rate. For all values attempted, the false negatives
were zero, indicating there was no presence of an extreme event without a precursor, however false
positives did happen. For this analysis, three flashbacks were observed with long precursors, indicating
that they should be more sensitive to extreme value changes. These flashbacks correspond to times
1.5 ms, 1.85 ms, and 3 ms in Figure 7.34. Their precursor duration is shown below,

Table 7.3: Precursor intervals identified at different extreme value thresholds.

Threshold Precursor 1 [ms] Precursor 2 [ms] Precursor 3 [ms] False Positives
0.28 1.407–1.420 1.720–1.749 2.911–2.942 3
0.27 1.386–1.413 1.704–1.749 2.903–2.940 4
0.26 1.387–1.412 1.704–1.749 2.904–2.930 1
0.25 1.388–1.412 1.704–1.746 2.906–2.925 1
0.24 1.386–1.412 1.704–1.746 2.905–2.925 2
0.23 1.388–1.406 1.704–1.741 2.906–2.922 2
0.22 1.388–1.406 1.704–1.741 2.906–2.921 3

The principal outcome of the threshold ranges in Table 7.3 is that the onset of the precursor is essentially
invariant to the extreme–value threshold. Across thresholds 0.27 → 0.22, the first detected time of
Precursor 1 stays within 1.386–1.388ms (a spread of ≤ 0.002ms), Precursor 2 is fixed at 1.704ms, and
Precursor 3 lies in 2.903–2.906ms (spread ≤ 0.003ms). Only the most stringent case (0.28) delays
the onset slightly (by 0.015–0.021ms), as expected from a harder threshold. By contrast, the trailing
boundary between precursor and the extreme event shifts by up to 0.014–0.021ms as the threshold is
varied, which merely changes where the thresholded signal crosses into the event; it does not affect the
early-warning lead time. In other words, the detector consistently captures the very first departure from
nominal behavior, while threshold changes mostly trim the end of the precursor segment. Practically,
a mid-range choice (e.g. 0.25–0.26) yields only one false positives in these tests while preserving the
same invariant onset, therefore, 0.25 is adopted as the default in subsequent analyses. Next, the
unseen data is clustered.

Unseen Data
This section examines the robustness of the algorithm with respect to the available time–series length,
serving also as a first step toward online deployment. Because updating clusters in real time is compu-
tationally prohibitive, performance is assessed in a ”train-on-prefix, predict-on-suffix” protocol: clusters
are learned from an initial segment of the data, and the remaining samples are assigned without reclus-
tering. Each new point is labelled as normal, precursor, or extreme according to the distance to the
nearest precomputed cluster, and the prediction time is evaluated exactly as in the baseline analysis.

Concretely, out of a 3.7 ms record (4500 time steps), the first 2.3 ms (2330 steps) are used to form
clusters in the latent variables. The suffix is then classified by nearest–cluster assignment, and the
resulting continuation of the latent variable is shown in Figure 7.38.
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Figure 7.38: Nearest Cluster Analysis for Unseen Data

Figure 7.38 presents six flashback episodes classified by mapping each sample to the nearest precom-
puted cluster. The regime labelling is coherent across all events: every flashback is preceded by a
precursor interval, no missed precursors are observed, and nominal segments appear only between
events. In five of the six cases the standard sequence normal to precursor to extreme is recovered.
The fourth episode exhibits essentially no normal relaxation and maintains an elevated relaxation tem-
perature; consequently, no nominal label is assigned, an outcome that is plausibly consistent with the
underlying physics.

A single weakness is a very short (≈ 2 µs) precursor appended to the end of the first flashback. In the
remaining episodes the termination of the extreme phase coincides with an abrupt drop (large negative
temperature gradient), whereas in the first episode the relaxation is more gradual; the time-invariant,
distance-based classifier thus carves out a small precursor-like sliver at the tail of the event. Precursor
durations are shorter on average (≈ 23 µs), largely reflecting the generally shorter relaxation intervals
in this late-time segment and the single short false positive. Overall, the fixed clusters transfer well
to unseen sequences: regime transitions are identified consistently and the early-warning signal is
preserved.

7.3.5. S4 Clustering
As a last robustness, the latent variables in Figure 7.21 produced from the robustness section of the
autoencoder, subsection 7.2.3, will be given to the clustering algorithm. Again, the latent variable
corresponding to a cylic temperature feature is used as a control.
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Figure 7.39: Final Time Series for S4

Figure 7.39 shows the first latent coordinate for S4. The segmentation remains quite coherent, where
each extreme event is preceded by a single, precursor interval, and no missed precursors are evident.
Precursor onsets align with the steep upward gradients of L1, and the return to normal typically follows
the subsequent rapid decay. However, the maximum precursor time (corresponding to the second
flashback as was for Figure 7.34) is only 22 µs, as opposed to 42 µs. Furthermore, two clear false
positives are present before the first two flashbacks, including no normal phases for the ares preceeding
flashbacks 4, 5, 7 and 8. Naturally, this is not an error of the clustering algorithm, rather a feature of
the S4 location. The reason why S4 was not chosen as the primary location of investigation was due to
its small relaxation time meaning a much narrower width between flashbacks as compared to S3. This
makes it much harder for the clustering algorithm to understand when or if the normal event actually
take place between later flashbacks. Therefore, while the final time series in this location is not perfect,
the location iteself inhibits better accuracy.

7.4. Feature Feeding
Although the robustness analysis has been completed, an additional investigation is carried out. This
study follows Floris [42] closely, with the main differences being the sampling at a practical location
and the use of an autoencoder to extract features from the simulation variables. Specifically, data are
taken from the wall, passed through the autoencoder to obtain latent variables, and then supplied to
the clustering algorithm.

To assess whether the autoencoder is truly necessary, an alternative approach is considered in which
the raw features from S3 are provided directly to the clustering algorithm. For this purpose, the best
features identified by Floris [42] are used, with the same extreme threshold of 1300K for the temperature.
The selected features are temperature, pressure, x-velocity, density, and the natural logarithm of YOH
(which was shown to be more accurate). In total, five features are input directly into the algorithm. The
results are presented below, with plots of pressure and temperature shown for comparison.
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Figure 7.40: Clustering Results on the Time Series of Pressure

Figure 7.41: Clustering Results on the Time Series of Temperature

Figure 7.41 and Figure 7.40 show the result of the partitioning. To make it clear, temperature was
used as an extreme-value threshold to generate the clusters. These clusters were then mapped onto
the pressure time series, allowing for a direct comparison of turbulent features. The temperature plot
shows strong agreement with the data, with almost no false positives due to the relatively low noise in
the temperature signal. Every extreme event is preceded by a precursor cluster, with the importance
that the 4th, 5th, 7th, and 8th flashbacks, are preceded only by a precursor cluster and not by a normal
cluster.

From these observations, it can be concluded that the autoencoder and the temperature-based ap-
proach yield comparable accuracy. However, there is a significant difference in precursor duration. In
the temperature plot, the average precursor time is only 20, µs, with a maximum of 27, µs, compared
to 42, µs when using the autoencoder. While the temperature signal captures the extreme events with
high accuracy, the autoencoder inherently produces longer precursors because it draws from a broader
set of features.

When comparing the temperature-only case in Figure 7.41 to the autoencoder in Figure 7.35, it be-
comes evident that precursors in the temperature approach occur only when the temperature begins
to rise. In addition, while the latent variable selected for the extreme-value threshold closely resem-
bles the temperature, its behavior during the relaxation phases is noticeably different. Specifically, the
temperature signal remains largely stagnant during relaxation and only begins to rise once a precursor
event is initiated. In contrast, the latent variable produced by the autoencoder does not remain flat in
these phases; instead, it exhibits a slight upward gradient. This subtle increase allows the autoencoder
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to identify precursor activity earlier. Thus, it is not that the autoencoder interprets stagnant regions as
precursors, but rather that its latent representation avoids complete stagnation, enabling the detection
of precursors that the raw temperature signal alone would miss. This suggests that although temper-
ature alone is a strong indicator, the autoencoder provides an earlier warning of extreme events by
leveraging more comprehensive information from the system.

It should also be noted that, when comparing the flashbacks between the two approaches, the autoen-
coder identifies a greater proportion of flashbacks that are preceded by both a normal and a precursor
cluster. In contrast, the temperature-based plot shows a larger number of flashbacks that are pre-
ceded only by a precursor cluster and lack a corresponding normal cluster. This distinction highlights
the broader sensitivity of the autoencoder, which is able to capture a more complete sequence of clus-
ter transitions leading into an extreme event. This investigation, therefore, makes a strong case for the
use of an autoencoder to capture more information. Finally, the flashback will attempt to be supressed
in the next section.

7.5. Flashback Suppression
In this final section, the flashback suppression attempt will be shown. As a reminder, the parameters
used are in Table 5.4. The second flashback in Figure 7.34 had a precursor time of 42 µs, therefore the
sprays will be turned on 42 µs before the time corresponding to the jump in temperature in Figure 7.35.
The outcome is shown in Figure 7.42. To help understand the timescales, the subplots’ times are shown
in Table 7.4

Table 7.4: Subplot Timestamps and Deltas

Item t [s] t [ms] ∆t from spray start [µs]

(a) 0.00259705 2.59705 -195.95
Spray start 0.00279300 2.79300 0.00
(b) 0.00282706 2.82706 34.06
(c) 0.00288305 2.88305 90.05
(d) 0.00293008 2.93008 137.08
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Figure 7.42: Flashback Suppression Attempt

Figure 7.42 presents temperature fields at four instants relative to the spray-start time. Panel (a) doc-
uments the end of the preceding cycle: the flashback has penetrated almost to the inlet, after which
the system relaxes. By (b) the sprays have already begun (+34 µs after ts) and, although little or no
flashback is apparent to the eye, the precursor detector has already triggered, providing an early warn-
ing before a visible intrusion develops. In (c) (+70 µs) the system is in the extreme phase: the spray
has propagated slightly upstream in the mixing duct and has met the flashback front; a brief upstream
excursion of the flame is arrested as the spray pushes it downstream. Finally, (d) (+117 µs) shows
the front driven fully back into the combustion chamber, illustrating effective flashback suppression on
O(102 µs) time scales. Themeasurements here are taken at S3, near the spray–flashback interaction in
panel c. Choosing a sampling point further upstream, e.g., at the inlet, reduces the attainable lead time
because the “extreme” state is defined by the flashback reaching that location; in such a configuration
the front necessarily arrives sooner at the sensor, leaving a smaller precursor window.

Overall, the empirical approach produced a satisfactory spray design capable of effectively suppressing
flashback. Nevertheless, the design is still preliminary and leaves considerable room for improvement.
In this study, the water velocity approached the speed of sound in the mixture, a challenging condition to
achieve in practice. Since this work remains theoretical, future improvements could include extending
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the precursor time to allow injection at lower velocities. Injecting the water more slowly would not only
be more practical, but also enable tapering of the injection rate so that the spray does not contribute to
the piston effect or promote the formation of ignition kernels.



8
Conclusion and Recommendations

8.1. Conclusion
This thesis has investigated the prediction and mitigation of flashback in hydrogen combustion, with
particular emphasis on data-driven detection methods that leverage practical monitoring locations. Us-
ing a simplified model of Ansaldo Energia’s GT36 reheat combustor at 20 bar, Large Eddy Simulation
(LES) was performed under lean, premixed conditions. The simulations employed the Thickened Flame
Model (TFM) for combustion closure, the SAGE detailed chemistry solver with a hydrogen–air mecha-
nism to capture radical pathways, and Navier–Stokes Characteristic Boundary Conditions (NSCBC) to
ensure stable wave propagation at the inlets and outlets. Together, these modeling choices provided
a high-fidelity description of the coupled fluid–chemistry dynamics while keeping the computational
cost reasonable. The resulting LES revealed repeated autoignition-driven flashback events in the mix-
ing duct, triggered by the convergence of high-amplitude pressure waves that reflect off combustor
walls and induce compressive heating. These waves accelerate chemical kinetics in the boundary lay-
ers, leading to early autoignition and flame propagation. Once expelled back into the combustor, the
process repeats, establishing a self-sustained cycle of autoigntion, propagation, and expulsion. This
recurring behaviour created a challenging but representative dataset, heavy in nonlinear dynamics, that
could be used to test and develop precursor detection strategies.

The proposed framework integrates dimensionality reduction through deep autoencoders with state
identification via modularity-based clustering. Fourteen thermodynamic, velocity, and species mass
fraction variables were extracted from locations on the combustor wall, rather than at the flame front.
This choice reflects a deliberate step towards practical applicability, since wall-mounted probes for pres-
sure or temperature are feasible in industrial combustors, whereas intrusive in-flamemeasurements are
not. A preliminary analysis of the extracted features showed that, compared to flame-front signals, the
wall data are substantially noisier and exhibit stronger high-frequency fluctuations. Nevertheless, the
dominant cyclic behaviour associated with flashback and recovery phases remains clearly imprinted
in variables such as temperature T , density ρ, and key species including YOH and YHO2 . Pressure
P and velocity components (u, v, w) displayed higher levels of noise but still preserved phase-locked
modulation tied to flashback events. This combination of noise and structure makes wall features more
challenging to model but also more representative of realistic monitoring conditions, thereby justifying
their use as the primary data source for precursor detection.

Autoencoders with two, three, and four latent variables were trained to compress the high-dimensional,

99
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correlated wall-based time series into compact representations. Each network consisted of a feed-
forward encoder–decoder architecture with strictly decreasing hidden layer widths, linear activations in
the encoder, and a sigmoid output layer to account for the min–max scaling of the input data. Training
was performed for 50 epochs with mean squared error (MSE) as the loss function, optimised via Adam,
and with both L1 and L2 regularisation terms applied to discourage overfitting and enforce sparsity
where beneficial. The two-latent bottleneck was found to be under-parameterised, encoding only the
dominant cyclic envelope while systematically discarding high-frequency excursions and sharp tran-
sients. A three-latent model yielded the largest improvement: the added dimension isolated transition
sharpness and mid-frequency structure, while regularisation values near zero indicated that all latent
coordinates were actively utilised. A fourth latent dimension produced incremental refinements, particu-
larly in noisy velocity and radical channels, but did so under stronger latent activity penalties, indicating
diminishing returns. Taken together, these results established the three-latent model as the optimal
trade-off between expressiveness and interpretability, providing a stable, low-dimensional, and physi-
cally meaningful representation of system dynamics.

Building on this reduced representation, a modularity-based clustering algorithm was applied to detect
precursors of flashback. The latent trajectories were tessellated into hypercubes, mapped into a graph,
and clustered by maximizing modularity to identify distinct dynamical states. To improve robustness,
an extreme-value filter was applied: points exceeding a threshold of 0.25 in the latent coordinate most
strongly correlated with temperature were classified instantly as extreme. This latent was selected
because temperature exhibits the clearest cyclic behaviour and thus provides a stable reference for
distinguishing genuine precursor dynamics from background variability. The approach proved highly
effective: precursor states were consistently identified with a maximum lead time of approximately
42 µs, sufficient for active control. Importantly, the method achieved this with only one small false
positive at the fast flashback regime, demonstrating its reliability in discriminating genuine precursors
from background fluctuations. Therefore, clustering enabled the successful prediction and subsequent
suppression of an oncoming flashback, demonstrating the framework’s practical applicability for real-
time instability mitigation.

The robustness of the framework was evaluated through several tests. Varying latent dimensionality for
clustering showed that two latents caused a low false positive rate, but a correspondingly low precursor
time, while four latents caused a fragmented clustering scheme; three latents remained the optimal
balance. Threshold sensitivity analysis confirmed that precursor onset was unaffected by changing
the extreme-value cutoff (0.22–0.28), proving that the chosen 0.25 had negligible impact on the early-
warning index. Tests on unseen data segments demonstrated reliable online prediction, with slightly
shorter precursor durations ( 23 µs) but consistent detection. Using an unseen monitoring location
(S4) confirmed that the autoencoder generalized to new signals, though warning times shortened ( 22
µs) and false positives rose, reflecting noisier dynamics. A feature-feeding comparison showed that
raw variables without an autoencoder reproduced precursors but with shorter precursor times ( 20 µs),
while autoencoder latents achieved earlier and more stable predictions ( 42 µs).

Finally, the precursor window was used for active control. Triggered sprays arrested and then expelled
an advancing flashback within 100 µs, proving that the method not only predicts but also enables
suppression.

Overall, this thesis shows that by combining wall-based sensing, deep autoencoder representations,
and modularity-based clustering, it is possible to reliably detect flashback precursors in hydrogen com-
bustion with actionable lead times. The demonstration of precursor-based suppression illustrates that
data-driven approaches can move beyond offline diagnostics to active intervention, offering a step for-
ward in ensuring safe and stable operation of next-generation hydrogen gas turbines.
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8.2. Recommendations
This study demonstrated that precursor detection and suppression of flashback in hydrogen combus-
tion can be achieved using wall-based sensor data, autoencoder-based dimensionality reduction, and
modularity-driven clustering. Building on these findings, several directions for future work can be iden-
tified:

• Extreme value definition. In this work, the extreme cluster was defined by a fixed threshold
(0.25) on the latent variable most strongly correlated with temperature. While sensitivity tests
showed that this choice had little influence on the earliest precursor index, a more general defi-
nition could be sought. For example, gradient-based metrics across all latent variables could be
used to identify sharp excursions without predefining a value. Although challenging due to the
nonlinear behaviour of the latents, such an approach could exploit the full latent space rather than
a single coordinate.

• Inlet fluctuations. The LES setup imposed steady inlet conditions. Introducing synthetic turbu-
lence through digital filter methods or similar techniques would provide a stronger test of robust-
ness under fluctuating inflow, which is expected in real combustors. This is particularly relevant
since the wall signals already exhibit significant noise, and additional unsteadiness would probe
the algorithm’s limits.

• Multi-location encoding. All analyses here were based on a single wall location. A potential
extension would be to incorporate multiple monitoring points. One possibility is a hierarchical
autoencoder: each location is compressed individually, followed by a second-stage encoder that
combines them into a unified latent representation. This could yield a more global view of system
dynamics, though at the cost of added complexity.

• Flashback suppression. The spray suppression case was exploratory and not systematically
optimised. In practice, the design of injectors (diameter, cone angle, velocity, droplet size dis-
tribution) requires detailed investigation. Moreover, the successful case in this work relied on
near-sonic injection velocities, which are unlikely to be feasible in realistic combustors. Longer
precursor times or alternative actuation methods would relax these requirements and should be
studied further.

• Flashback sequencing. The dataset used here was generated under conditions chosen to en-
sure multiple flashbacks. As a result, once initiated, flashbacks occurred quasi-periodically, which
may have simplified detection. In reality, the first flashback in a combustor is the most critical, as
subsequent ones are influenced by prior events. Future work should therefore focus on detection
and suppression at the very first occurrence, which represents the truest analogue to operational
conditions.

Through these avenues, the proposed approach can move from proof-of-concept to a deployable early-
warning and control system, supporting safer and more reliable hydrogen-based combustion technolo-
gies.
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A
Numerical Solver

For Converge, certain numerical schemes are required. The governing equations are discretized using
the finite volume method (FVM). Pressure–velocity coupling is handled with the Pressure-Implicit with
Splitting of Operators (PISO) algorithm [64], with Rhie–Chow interpolation [101] to avoid pressure–
velocity decoupling. At each iteration, the resulting linear systems are solved using Successive Over-
Relaxation (SOR).

A.1. Finite-Volume Discretization
In the FVM framework, the domain is partitioned into control volumes whose cell-center values are
advanced using face fluxes and source terms. For a transported scalar ϕ, starting from the 1D transport
equation and applying the divergence theorem,

∂ϕ

∂t
+
∂(uϕ)

∂x
= 0 ⇒ ∂ϕ

∂t
+

1

V

∫
S

(u·n)ϕ dS = 0, (A.1)

where V is the cell volume, n is the outward unit normal, and S is the cell-face area. Discretizing the
surface integral over all faces yields

∂ϕ

∂t
+

1

V

∑
i

uf,i ϕf,i Si = 0. (A.2)

Face values uf,i and ϕf,i are extrapolated from adjacent cells. A hybrid scheme blends upwind (stable
but diffusive) and central differencing (accurate but less stable):

ϕf,i− 1
2
= (1− β)ϕf,i−1 +

β

2
(ϕf,i−1 + ϕf,i) , (A.3)

where β controls the upwind/central mix. Owing to hydrogen’s high diffusivity and flashback risk, β = 1

(central) is used for all transported scalars except turbulence, which is treated fully upwind. Step limiters
enforce monotonicity, reverting to first-order upwind when needed. Time integration uses an implicit
first-order (backward Euler) scheme.
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A.2. PISO Algorithm
The PISO method [64] couples pressure and velocity efficiently, allowing larger time steps with fewer
iterations. Starting from a momentum predictor with interim values denoted by (·)⋆ and previous-time
fields by superscript n,

ρn u⋆i
∆t

− ρn uni
∆t

= −∂P
n

∂xi
+H⋆

i , (A.4)

the velocity is corrected to satisfy mass conservation using an updated pressure P ⋆,

ρ⋆ u⋆⋆i
∆t

− ρn uni
∆t

= −∂P
⋆

∂xi
+H⋆

i . (A.5)

Combining the predictor/corrector with continuity yields a pressure equation (for an ideal gas, ρ⋆ =

P ⋆/(ZnRnTn) with Z=1):

∂2

∂xi∂xi
(P ⋆ − Pn)− (P ⋆ − Pn)

ϕn

∆t2
=

(
∂(ρnu⋆i )

∂xi
− S

)
1

∆t
. (A.6)

A second correction further refines ui and P ,

ρ⋆⋆ u⋆⋆⋆i

∆t
− ρn uni

∆t
= −∂P

⋆⋆

∂xi
+H⋆

i , (A.7)

after which the pressure equation is updated and the corrected velocity is recomputed. Two correc-
tion loops typically suffice. Temperature and other scalars are corrected similarly. In this setup, the
PISO loop uses a convergence multiplier of 20.0, enforces a minimum of two and a maximum of nine
corrections, and stops when

|Ψ−Ψt−1|
|Ψ⋆|

< Ψtol, Ψtol = 10−4. (A.8)

A.3. Rhie-Chow interpolation
To prevent pressure–velocity decoupling on collocated grids, Rhie–Chow interpolation [101] modifies
face velocities during correction using pressure gradients over neighboring cells. In 1D notation (cell i,
face i+ 1

2 ),

u⋆i+ 1
2
= u⋆i + u⋆i+ 1

2
− ∆t

ρ

(
Pi+1 − Pi

∆x

)
+

∆t2

ρ

(
Pi+1 − Pi− 1

2

2∆x
+
Pi+2 − Pi

2∆x

)
, (A.9)

which damps checkerboarding while preserving coupling.

A.4. Linear solver
At each iteration the discretized systemAx = b is solved with SOR. Convergence is monitored via the
normalized residual

r(n) =
∥Ax(n) − b∥2

∥b∥2
, (A.10)

and over-relaxation with factor ω accelerates decay of r(n). The SOR update for component i is

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi −∑
j<i

aij x
(k+1)
j −

∑
j>i

aij x
(k)
j

 . (A.11)



B
Navier-Stokes Characteristic

Boundary Condition

This method is derived from the eigenanalysis of the Euler equations, allowing pressure waves that
match the far-field (upstream or downstream) conditions to pass through the boundaries, while reflect-
ing others. In CONVERGE CFD, NSCBC implementation follows the approach outlined by Thompson
[115], [116], and Poinsot and Lelef [94].

The three-dimensional Euler equations yield five characteristic eigenvalues, each corresponding to
different wave types at the boundary:

λ1 = u,

λ2 = u,

λ3 = u,

λ4 = u− c,

λ5 = u+ c,

Here, λ1 to λ3 represent entropy and vorticity waves, while λ4 and λ5 correspond to acoustic waves.
The wave propagation speed is given by λ, with direction dn

dt = λ.

At a subsonic inlet, four eigenvalues are positive (incoming) and one is negative (outgoing), neces-
sitating four physical boundary conditions and one numerical condition. Conversely, at a subsonic
outlet, four eigenvalues are negative (outgoing) and one is positive (incoming), requiring one physical
condition and four numerical ones.

During the LES, to update the velocity, density, and pressure in each iteration, a correction-based
NSCBC is employed. Its purpose is to utilize the local one-dimensional inviscid (LODI) formulation
where if U(ρ, p, u, v, w) would represent the state vector, the time derivative of its residual R would be,

∂U

∂t
= −R (B.1)
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The residual given at the end of the PISO algorithm is,

RP = −U
n+1,P − Un

dt
(B.2)

Next, the correction-based NSCBC will adjust the incoming waves into corrected waves that match the
boundary conditions that are imposed (C). By doing so, R is able to be split into R = ML, where M is
a matrix system found in the work of Poinsot and Lelef [94], and L is a wave amplitude vector:

Un+1,C = Un − dt
(
RP −Rin,PBC +Rin,CBC

)
(B.3)

The incoming characteristic residuals are modeled as Rin,PBC =MLin and Rin,CBC =MLin,C , whereM is
a transformation matrix. At the inlet, where four waves propagate into the domain, the wave amplitude
vectors are defined as:

Lin = (0, L2, L3, L4, L5), Lin,C = (0, LC2 , L
C
3 , L

C
4 , L

C
5 ).

At the outlet, only one incoming wave is present, and the vectors become:

Lin = (L1, 0, 0, 0, 0), Lin,C = (LC1 , 0, 0, 0, 0).

The corrected characteristic wave amplitudes LCi for the inlet are obtained from the following expres-
sions:

∂u

∂t
= − 1

2ρc
LC5 = −K(u− u∞), (B.4)

∂v

∂t
= −LC3 = −K(v − v∞), (B.5)

∂w

∂t
= −LC4 = −K(w − w∞), (B.6)

∂T

∂t
= − T

ρc2
LC2 = −K(T − T∞), (B.7)

where u∞, v∞, w∞, and T∞ denote the far-field (Dirichlet) values.

For the outlet, the incoming wave component is computed using:

L1 = K(p− p∞), (B.8)

with p∞ representing the far-field pressure. The corrected amplitude LC1 is then:

∂p

∂t
= −1

2
LC1 = −K(p− p∞). (B.9)

The relaxation coefficient K, used to enforce far-field conditions smoothly, is given by:

K = σ(1−M2)
c

L
, (B.10)

In this formulation,M denotes theMach number, σ is a user-defined tuning parameter, andL represents
the characteristic length, set to 0.06m in this work. The relaxation constant K plays a signifcant role
in ensuring the accuracy and stability of the boundary treatment, making the appropriate selection of σ
essential.
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If σ is chosen too large, it may amplify wave magnitudes excessively, causing numerical instabilities or
divergence as the velocity field diverges from the desired target. On the other hand, selecting a very
low σ value results in boundaries that are nearly transparent to outgoing waves, but this can lead to
a gradual deviation of the mean solution due to viscous and transverse effects inherent in the Navier-
Stokes equations.

Therefore, an ideal σ must balance these effects—minimizing reflections while maintaining solution
stability and accuracy. In this work, a value of σ = 0.25 is adopted, following the recommendation by
Rudy and Strikwerda [107].



C
Spray Characteristics

This appendix chapter details the characteristics of the spray model.

C.1. Injection Size Distribution
The Rosin–Rammler distribution is used for this parameter. Since coalescence and break-up are ne-
glected, a more complex, non-uniform distribution is applied to compensate. This approach strikes a
balance between accuracy and the reduced computational cost. The cumulative probability distribution
function in this context is,

p(r) = 1− exp
(
ζCRR

)
, 0 < ζ < ζmax (C.1)

In this equation, ζ = r
r̃ with a maximum value of ζmax = ln 1000

1
CRR . This is done to limit the maximum

radius, using the CRR constant. Next,

r̃ = Γ

(
1− 1

CRR

)
rSauter (C.2)

where rsauter is the Sauter radius, and Γ is the Gamma function. Finally, the injected radius is r = r̃ζ.
Next, the particle dynamics will be explored.

C.2. Particle Dynamics
As a Lagrangian motion will be used for the path of the droplets, a deep understanding of the particle
dynamics is needed. An initial spraying of the droplets resulting in an interaction of the fluid with gas,
which is modeled by Newton’s second law,

ρdVd
dui
dt

= Fd,i (C.3)

where ρd is the droplet’s density, Vd is droplet’s volume, ui is the velocity of droplet, and Fd,i is the sum
of all forces. The subscript i represents each droplet. It should be noted that pressure and body forces
are neglected, and primarily drag is considered for simplicity, and is shown as

Fd = Fdrag =
1

2
CDAρgu

2
dg (C.4)
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where udg = ug + u
′

g − ud and ug is the gas velocity, u
′

g is the turbulent gas fluctuations, and ud is the
droplet velocity. A is the frontal area, ρg is the density of the gas. Considering that the frontal area is
a function of evaporation (breakup and coalescence as well had they not been ignored), the area is
variable. Furthermore, as

Vd =
4

3
πr3 (C.5)

Equation C.3 can be rewritten as,
dui
dt

=
3

8

ρg
ρd
CD

u2dg
r

(C.6)

Finally,CD, the drag coefficient, can bemodeled using an assumption that the droplet remains spherical.
Then, according to Liu, Mather, and Reitz [79], it can be modeled as:

CD =


24
Red

(
1 + 1

6Re
2/3
d

)
, Red ≤ 1000,

0.424, Red > 1000,
(3.37)

where Red is the Reynolds number of the droplet, depending on the gas properties, its diameter, and
its relative velocity udg. Although this formulation of the drag coefficient is simple, this value is under-
predicted at high Weber numbers, due to the droplet forming a disc-like geometry. This would lead to
a higher drag value than is predicted, so Liu, Mather, and Reitz [79] proposes an extra equation,

CD = CD,sphere (1 + 2.632 y) (C.7)

where y is the drop distortion. At zero distortion, the drag coefficient remains as a sphere, however at
1, the drag of a disc is used. For under-damped drops,

y(t) =Wec + e−t/td
[
(y(0)−Wec) cos(ωt) +

1

ω

(
dy

dt
(0) +

y(0)−Wec
td

)
sin(ωt)

]
(C.8)

where,

Weg =
ρgu

2
relro
σ

(C.9)

Wec =
CF
CkCb

Weg (C.10)

1

td
=
Cd
2

µl
ρlr2o

(C.11)

ω2 = Ck
σ

ρlr3o
− 1

t2d
(C.12)

where Ck, CF , and Cb are model constants; ω denotes the oscillation frequency; Weg is the Weber
number of the droplet; urel represents the velocity relative to the local flow; σ is the droplet surface
tension; µl is the liquid viscosity; and r0 is the radius of the droplet in its undisturbed state. Furthermore,
a turbulent dispersion model is needed to provide accuracy.

C.3. Turbulent Dispersion
Turbulence strongly influences droplet motion, making it challenging to predict particle dispersion. Drag
forces cause droplets to decelerate, transferring their momentum to the surrounding fluid at smaller
scales. In LES analyses, accurately estimating velocities at these subgrid scales is essential and can
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be approached using a simple Taylor expansion,

usub,i = Cles
dx2

24

∂2ūi
∂xj∂xj

(C.13)

where d is a characteristic cell dimension obtained by the cube root of the volume of the cell. Cles is a
pre-determined constant, and ūi is the average velocity. The turbulent parts of the velocity are selected
in intervals of the turbulence characteristic time, td. This value is the lesser of the time it takes for the
droplet to pass an eddy, and the time for the eddy to dissolve,

td = min

(
ksg
εsg

, cps
k
3/2
sg

εsg

1

|ui + u′i − udg,i|

)
(C.14)

where cps is an empirical constant, ksg is the turbulent kinetic energy, ϵsg is the turbulent dissipation
rate and is written as,

ksub =
1

2
u2sg,i (C.15)

εsg =
k
3/2
sub
d

(C.16)

Next, the droplet’s evaporation will be modeled.

C.3.1. Evaporation
Due to the immense heat in the combustion settings, this naturally causes the droplets to evaporate
either fully or partially. This is reflected in their radius, which is variable during the LES. Furthermore,
their influence on the temperature of the flow, and their convective effects coupled with mass diffusion
make the modeling of the droplet evaporation tricky. The ratio of convective heat transfer and mass
diffusion is called the Sherwood number, Shd. The evolution of drop radius can be modeled using the
equation,

dr0
dt

= −αsprayρgD

2ρlr0
Bd Shd (C.17)

where αspray is the mass transfer coefficient scaling factor, ρgρl a ratio of the gas to liquid density, D is the
liquid-air mass diffusivity at temperature T̂ = (Tg − 2Td)/3, and Sherwood number [8]. It also includes
the Spalding mass transfer number, Bd, which is a normalized ratio of water vapor mass fraction Y ∗

1 to
overall vapor mass fraction, Y1. The Spalding mass transfer number and Sherwood number are thus
found as,

Bd =
Y ∗
1 − Y1
1− Y ∗

1

(C.18)

Shd =
(
2.0 + 0.6Re

1/2
d Sc1/3

) ln(1 +Bd)

Bd
(C.19)

The Red and Schmidt (Sc) numbers can be found using these formulas,

Red =
ρgas

∣∣∣ui + u′i − u′dg

∣∣∣ d
µair

(C.20)

Sc =
µair

1.293D0

(
T̂
273

)n0−1 (C.21)



C.3. Turbulent Dispersion 119

where D0 and n0 are found experimentally. For Equation C.18, the water vapor mass fraction is found
as,

Y ∗
1 =

WCnH2m

WCnH2m +Wmix

(
pg
pv

− 1
) (C.22)

where W is the molecular weight, and pg is the gas pressure, and pv is the vapor pressure of the droplet.
Once the evolution is determined, the heat transfer attributes must also be evaluated. For droplets that
are smaller than a certain radius,

ĀdQd = clm
⋆
d

dTd
dt

− dmd

dt
Hvap (C.23)

will be used, where Ad is the droplet surface area, cl is the liquid specific heat, md is the droplet mass,
and Hvap is the latent heat taken at the droplet conditions. Furthermore, Qd, the heat conduction to
the droplet surface area is found using the Ranz-Marshall correlation, assuming only that conduction
takes place. This is given by,

Qd =
βsprayNud kair (Tgas − Td)

d̄0
(C.24)

where βspray denotes the scaling factor for the heat transfer coefficient, kair is the thermal conductivity
evaluated at T̂ , and Nud represents the droplet Nusselt number. The Nusselt number is obtained from,

Nud =
(
2.0 + 0.6Re

1/2
d Pr

1/3
d

) ln(1 +Bd)

Bd
(C.25)

which also incorporates the droplet Prandtl number, Prd, evaluated at T̂ . Here, the Nusselt number is
determined similar to the Sherwood number in Equation C.19, instead using the Prandtl number,

Prd =
µgas(T̂ ) cp(T̂ )

Kgas(T̂ )
(C.26)

where Kgas is a modeling constant. For droplets with a radius greater than a certain threshold, a more
comprehensive effective thermal conductivity model developed by Abramzon and Sirigano [2] is used,
accounting for spherically symmetric temperature distribution and potential recirculation effects. The
governing heat transfer equation for the droplet is given by

ρcp
∂T

∂t
=

1

r2
∂

∂r

(
keffr

2 ∂T

∂r

)
(C.27)

where r is the radial distance from the droplet center. At the droplet surface, the boundary condition is
expressed as

keff
∂T

∂r

∣∣∣∣
r=Rd

= h (Tg − T (Rd, t)) + ρL
dRd
dt

(C.28)

where h is the droplet–gas convection coefficient, Tg is the gas temperature, Rd(t) is the droplet radius,
cp is the droplet specific heat, L is the latent heat of evaporation, k is the droplet thermal conductivity,
and T (Rd, t) is the droplet surface temperature. Furthermore, if recirculation effects are considered,
the effective thermal conductivity keff replaces k, with keff = χk, where the enhancement factor χ is
given by

χ = 1.86 = 0.86 tanh (2.225 log10 (0.03333Ped)) (C.29)

where Ped is the Peclet number of the droplet. Despite most droplets evaporating before reaching the
wall, this interaction must also be considered.
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C.4. Drop-Wall Interaction
The occurence of the droplet reaching the wall is a rare but important interaction that must be accounted
for. This model is based on the formulations of Naber and Reitz [89] and Manuel et al. [84], focusing
on the angled impingement of liquid jets on a solid surface. It employs a three-dimensional empirical
framework that enforces both mass and momentum conservation. In this formulation, the velocity
component parallel to the wall remains unchanged, while the perpendicular component plays a decisive
role in determining the nature of the impact. The model categorizes the impact behavior into two distinct
regimes, defined by the Weber number (We) at the instant of collision:

Wei =
ρlV

2
n d0
σ

(C.30)

where Vn is the velocity perpendicular to the surface. If the We number is less than 80, the droplet
bounces back in an elastic manner, where the outgoing normal velocity is,

Vn,o = Vn,i

√
Weo
Wei

(C.31)

Here, the Weber number of the droplet that bounces back (Weo is,

Weo = 0.678Wei exp (−0.04415Wei) (C.32)

This is an empirical law based on the observations of Wachters and Westerling [124]. When the imping-
ing Weber number is above 80, the jet model is applied. Therefore, the leaving droplet is analagous to
a liquid jet leaving tangent to the surface. This sheet thickness that follows from the impinging jet is,

h(ψ) = hπe
β(1−ψ/π) (C.33)

where hπ is the sheet height when the droplet hits the wall perpendicularly. The sheet’s thickness
depends on the impingement angle, the β modeling parameter, and the angle at which the droplet
leaves the surface. The equations for these are,

sinα =

(
eβ + 1

eβ − 1

)
1

1 +
(
π
β

)2 (C.34)

ψ =
π

β
ln
[
1− n

(
1− e−β

)]
(C.35)

where n is a random number between 0 and 1. Finally, the collisions can be modeled.

C.5. Collisions
The selected collision model is the NTC approach introduced by Schmidt and Rutland [110], which
is based on stochastic sub-sampling of droplet parcels within each computational cell. The algorithm
begins by grouping parcels that occupy the same cell, after which a randomized subset of all possi-
ble parcel pairs is selected. The total number of collisions occurring over a time interval ∆t is then
calculated by summing the probabilities of all sampled collision pairs.

Mcoll =
1

2

N∑
i=1

N∑
j=1

Vi,jσi,j∆t

∀
(C.36)
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where N is the number of droplets, and σi,j = π(ri + rj)
2 calculates the cross-sectional area of the

collision. To more accurately account for collision probabilities, the term qV σ is introduced, where
q represents the number of droplets in a parcel and Np denotes the total number of parcels within
a computational cell. Incorporating this factor, the refined expression for estimating the number of
collisions is given by,

Mcand =
N2
p (qV σ)max∆t

2∀
(C.37)

and

Mcoll =

√
Mcand∑
i=1

qi

√
Mcand∑
j=1

qjVi,jσi,j
(qV σ)max

(C.38)

A selected subset of parcels is employed to approximate the entire population, resulting in a method
that is considerably faster than other approaches with comparable accuracy. This outcome is then used
to identify candidate pairs of parcels that may be involved in potential collisions. The presence of an
actual collision between candidate parcels i and j is subsequently verified by:

r <
qjVi,jσi,j
(qV σ)max

(C.39)

where r is a random float between 0 and 1, and qg indicates the drop count in the path of the collisions.
Once this condition is satisfied, a collision is initiated. The outcome of the collision, ranging from
mere contact to coalescence, deformation, or rebound, is governed by the model proposed by Post
and Abraham [97], which classifies the interaction based on the Weber number. For more intricate
behaviors, the criteria outlined by Ashgriz and Poo [11] as well as by Hou and Schmidt [58] are employed
to distinguish among merging, stretching, or separation phenomena.
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2 Latent Variable Analysis

This appendix documents the d = 2 bottleneck, included to illustrate the representational limits of too
few latent variables. Comparisons are made primarily against the chosen d = 3 model.

Table D.1: Summary of hyperparameters explored for 2 latent variables

Hyperparameter Search Range / Options Best value
Hidden layer widths (12, 6)

L1 regularisation weight 8.989× 10−6

L2 regularisation weight 2.137× 10−5

Encoder activation linear
Output activation sigmoid
Latent activity L1 3.146× 10−6

Learning rate 8.914× 10−4

Batch size 16

The 2-latent model converged to a shallow, near-linear architecture with minimal regularisation. This
implies a compact, low-capacity code.
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Figure D.1: 2 Latent Variables Visualized

Figure D.1 shows one coordinate acting as a quasi-binary state variable (on/off phases) and the other
encoding continuous intensity/shape. Together they form a thin loop in 2D latent space—cycle-locked
but highly compressed.

Figure D.2: Reconstruction of Thermodynamic and Velocity Features (d = 2)

Reconstructions (Figure D.2) are strong for cyclic, high-SNR variables (T, ρ) but systematically under-
represent high-frequency dynamics in P, u, v, w. With only two latents, variance is allocated to dominant
modes, leaving sharp transients smoothed out.
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Figure D.3: Species Reconstructions (d = 2)

Species reconstructions (Figure D.3) show the same pattern: bulk species at ceiling, radicals/interme-
diates smoothed. The test set (??, ??) preserves this ranking, with slightly more smoothing and small
phase lags at sharp ramps.

Figure D.4: MSE Distribution (d = 2)
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The MSE histogram (Figure D.4) is broad and right-skewed, with a heavy tail from transient-rich win-
dows. Loss evolution (Figure D.5) plateaus near 4 × 10−3, reflecting the representational ceiling of a
2D code.

Figure D.5: Loss of 2 Latent Variables

The takeaway versus d = 3 is that two latents capture cycle phase and intensity but discard much of
the mid/high-frequency structure. Compared with the 3-latent model, the reconstructions are visibly
smoother, losses higher, and test generalisation weaker. This configuration demonstrates the lower
bound of representational adequacy and motivates the need for a third latent.



E
4 Latent Variable Analysis

This appendix documents the d = 4 bottleneck, included to illustrate the effect of adding capacity
beyond the chosen d = 3 model. Comparisons are made primarily against d = 3.

Table E.1: Summary of hyperparameters explored for 4 latent variables

Hyperparameter Search Range / Options Best value
Hidden layer widths (10, 8, 6)

L1 regularisation weight 8.327× 10−6

L2 regularisation weight 4.340× 10−5

Encoder activation linear
Output activation sigmoid
Latent activity L1 5.000× 10−5

Learning rate 9.795× 10−4

Batch size 16

The 4-latent model retains a near-linear architecture but introduces strong regularisation, particularly a
heavy latent L1 penalty, encouraging sparsity.
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Figure E.1: 4 Latent Variables Visualized

Figure E.1 shows clearer role division: (i) baseline offset, (ii) smooth intra-cycle modulation, (iii) state/in-
tensity, (iv) a sparse transition detector. Relative to d = 3, the fourth coordinate mainly isolates short-
lived ramps, reducing redundancy.

Figure E.2: Reconstruction of Thermodynamic and Velocity Features (d = 4)

Reconstructions (Figure E.2) remain ceiling-level for T, ρ; gains appear in P, u, v, w, with reduced am-
plitude bias and lag. Compared with d = 3, the improvement is modest—slightly sharper envelopes,
but qualitatively similar.
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Figure E.3: Species Reconstructions (d = 4)

Species reconstructions (Figure E.3) are uniformly excellent. Radicals/intermediates benefit marginally:
peaks are a touch sharper, troughs less filled. Relative to d = 3, differences are incremental, not
transformative.
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Figure E.4: Thermodynamic/velocity reconstructions (d = 4, test)

Figure E.5: Species reconstructions (d = 4, test)

Test results confirm this: cyclic variables unchanged, noisy channels modestly improved, radicals
slightly sharper. Again, the step from 2→3 yields the largest benefit; 4 is a refinement.
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Figure E.6: MSE Distribution (d = 4)

MSE distributions (Figure E.6) shift further left compared with d = 3 (Figure 7.19), with fewer tail out-
liers. Loss evolution (Figure E.7) mirrors this: a lower asymptotic level than d = 3, but with slower
convergence.

Figure E.7: Loss of 4 Latent Variables

Overall, 4 latents improve reconstructions and reduce error variance, especially for transients, but only
incrementally relative to three. The gains are consistent but small, reflecting diminishing returns. The
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4D bottleneck therefore validates the 3D choice as a near-optimal operating point: compact, expressive,
and sufficient.
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