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Abstract

This paper studies the effect of railway track design parameters on the expected long-term degradation of
track geometry. The study assumes a geometrically perfect and straight track along with spatial
invariability, except for the presence of discrete sleepers. A frequency-domain two-layer model is used of
a discretely supported rail coupled with a moving unsprung mass. The susceptibility of the track to
degradation is objectively quantified by calculating the mechanical energy dissipated in the substructure
under a moving train axle for variations of different track parameters. Results show that, apart from the
operational train speed, the ballast/substructure stiffness is the most significant parameter influencing
energy dissipation. Generally, the degradation increases with the train speed and with softer substructures.
However, stiff subgrades appear more sensitive to particular train velocities, in a regime which is mostly
relevant for conventional trains (100-200 km/h) and less for high-speed operation, where a stiff subgrade
is always favorable and can reduce the sensitivity to degradation substantially, with roughly a factor up to
7. Also railpad stiffness, sleeper distance and rail cross-sectional properties are found to have considerable
effect, with higher expected degradation rates for increasing railpad stiffness, increasing sleeper distance
and decreasing rail profile bending stiffness. Unsprung vehicle mass and sleeper mass have no significant
influence, however, only against the background of the assumption of an idealized (invariant and straight)
track. Apart from dissipated mechanical energy, the suitability of the dynamic track stiffness is explored
as an engineering parameter to assess the sensitivity to degradation. It is found that this quantity is
inappropriate to assess the design of an idealized track.

Keywords: Track degradation, Long-term track performance, Track settlement, Energy dissipation, Track
design, Dynamic track stiffness.



1 Introduction and scope

Degradation of the railway substructure, in terrhseaitlements and the development of geometrical
deviations of the track, has become a significasiié in recent years. Improving the long-term stinat
performance avoids the need of frequent inspeeatimhmaintenance and leads to an increased avilabil
for railway tracks. In order to achieve such an riowed long-term performance, it is essential to
understand the relation between track degradatimhtieack parameters. Such an understanding can be
particularly relevant during the design stage & track. Traditionally, railway track (and espelyial
substructure) design is strongly focused on bearapacity, and therefore on the instantaneous ant-sh
term response. This means that the design is mpsilgly static or quasistatic, without any proper
consideration in the time domain, for example dpéw the allowable track deflection under a gi\aedtie
load [1]. Because degradation is a time-dependestegs, induced by a loading process with a time
history, such a design can never anticipate onadiegion mechanisms and is therefore ‘blind’ forgon
term developments. This can be illustrated alsmftbe variables considered in track design: loading
expressed in terms of forces, and the structusglarse typically in terms of displacements, stressel
strains. These are variables apt to describe tsta space and time. Degradation is howeveitsimost
elementary form, always a mechanical energy diisipgrocess, described in terms of variables sgch
power and energy that account for variation in time

Earlier studies in this field [2, 3] identified @sprimary source of track degradation, apart from
autonomous soil settlement, the occurrence of amjm component of the axle load. This component
gives rise to a dynamic - and therefore highlyoédfit - compaction of the subgrade, leading tagintar
track settlement [2]. Such a dynamic component atayr in principle due to three effects:

i.  Wheel out-of-roundness (OOR) of the rolling stonktably lower-order OOR leading to
low-frequency dynamic wheel-track interaction [2];
ii.  Longitudinal variability of the cross-sectional pesties of the track itself - either periodic
or non-periodic, leading to transition radiatiortle track under moving axle loads [3];
iii.  Track irregularity, notably the relatively shortweadefects in the loaded track geometry,
which lead to the highest train-track interactiorcés.

The existence of a dynamic axle load as a sourckegifadation has as its point of departure aniegist
track, at some point during its service life, wiglven parameters and train loading. The scope isf th
paper is situated on a different level. It addrese effects of the track design itself, and more
specifically of the elastic and inertial propertigsits components and their spatial configuratiom,the
expected degradation rate. The point of departurthis first study into this subject is a straigid
uniform track with no spatial variation except fbat periodic one given by the discrete sleepepstp
thereby purely considering the effects of trackgteshoices.
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The theoretical, qualitative and quantitative mbdglof degradation, especially for granular and
porous materials such as ballast and soil, is ele complex and very sensitive to specific materia
properties [4, 5]. This is reflected in the emptioature of many track degradation models desugibi
long-term behavior of railway track, as found ie titerature. Dahlberg [5] provides an overviewsath
empirical models. Sato [6] observed that trackessttnt could be divided into two phases and intcedu
two different mathematical expressions describimgghort-term and long-term settlement, on theshafsi
curve-fitting. Using field data and a multivarialskgression analysis, Lyngby [7] developed a madel
investigated the effect of axle load and differgqtes of track components (rail, sleeper, soil)track
degradation. Sadeghi and Askarinejad [8] examihedsensitivity of the track deterioration to stuuet
and traffic parameters, by employing a track quatitlex derived from track geometry data. Varanglas
al. [9] have employed an empirical model for thddsa settlement together with a train/track moidel
order to predict settlement of ballasted track Hjpadly at transition zones. Abadi et al. [10] dse
measured data from the Southampton railway te$icitity (SRTF) in order to evaluate the capability
different empirical ballast settlement models. Thadicated that there is a significant differenetween
the results predicted by different previously-depeld empirical models. Soleimanmeigouni et al. [11]
reviewed and classified available models for trgelometry degradation. Empirical models may help
engineers to make a rough maintenance forecasilofay tracks; however, these models do not have a
theoretical basis nor provide any fundamental imtsilyloreover, only a limited humber of parametears o
factors have been taken into account for most efehempirical relationships. In order to avoid the
difficulties inherent to a proper constitutive mditg of cohesive and non-cohesive granular materia
involved in the track substructure, this study usekfferent approach to get a grip on the comjdene
of degradation. In line with the earlier study [B]can be stated that dissipation of mechanicatgnin a
component or system is a precondition for - or ewenost elementary representation of - its degiauat
In other words, a conservative system is free gfratation. It is therefore sufficient to determihe
effect of parametric variation of the propertiesaofmechanical system under time-dependent loading o
localized energy dissipation in order to assessstiseeptibility of the system to degradation ofcéijie
components.

The first step in the investigation therefore coisgs the development of a model for short-term
dynamic analysis of the track, capable to desdtibemechanical energy flux of relevant individualck
components during the loading process. A seconmcsissists in the parametric evaluation of this ehod
with respect to dissipated energy. Energy disspatalthough a very suitable quantity for theouwdtic
analysis, is in itself also a rather abstract gtyanthich cannot be measured in the field. In pgtoften
a different engineering parameter is employed:dyreamic track stiffness. This is a measurable quyant
for which good results have been obtained in pracind reported in the literature over the pastsyéa
the sense that dynamic track stiffness variatiamrsetate with degradation hotspots. This fact ishat
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basis of the development of e.g. the Swedish @létiffness measurement vehicle. Berggren et al. [1
13] analyzed dynamic track stiffness measured akhegtrack and indicated that variations of track
stiffness significantly affect the degradation rafethe track. Variation of track stiffness withinshort
distance and its effect on track settlement havenlgiscussed in [14]. Identification of substruetur
properties using measured dynamic stiffness of tthek was carried out in [15, 16]. Using an
experimental approach, Luomala and Nurmikolu [1ftided the effect of maintenance on the track
stiffness measured at bridge transition zones.oliigh not theoretically derived or proven, an encpliri
relationship between stiffness variation and degfiad makes physically sense. The dynamic track
stiffness is the resistance against deflection eepeed in the wheel-rail contact by the movingedxlad.
Variation of this experienced resistance therefeesgls to a variation in the structural responseingpv
along with the load, and therefore to a variatibthe mechanical energy contained in this respdhsan

be expected that this energy flux is at least alytdissipated in the structure, localized at thpssitions
where an energy excess occurs. In practice, suameasured stiffness variation accounts for non-
uniformity of the track cross-sectional propertiebereas in this study a uniform track is assumee gt

for the sleeper periodicity. Nonetheless, the saimgsical reasoning can be applied to periodical-non
uniformity. Therefore, this paper ‘tests’, in arthstep, the applicability of the dynamic stiffnésworder

to describe the sensitivity of the degradation tatparametric design choices. The theoreticalniafn

of this dynamic track stiffness is further elabethin paragraph 2.2.3.

Concerning the first step of the analysis mentidoeftire, many different track models have been
proposed by researchers in order to study diffeaspects of track dynamics. They can be divideal int
two categories: analytical-numerical frequency-domenodels and different types of time-domain
models. The first type of models is computationalificient and provides better insight into theteys
response. It is therefore very apt for parametralyses aiming at fundamental understanding. Fregyue
domain models have been applied in the past witardint degrees of complexity and with differermaj
ranging from very simple beam-on-elastic-founda{iBOEF) models [18-22] to more sophisticated two-
or three-layer linear beam models accounting fecrdite sleeper spacing and transient loading [23-28
and finally fully three-dimensional beam or platelalfspace models (eventually with stratificatictme
latter ones with the aim of predicting environmémntéiration due to moving trains [29-34]. Given the
scope of the present study and its preliminaryattar, it is chosen to adopt a model that is onharel
no more complicated than strictly necessary, ondteer hand able to describe all individual track
components and take into account energy dissipdtiothe substructure or subsoil. Therefore, this
individual sleeper support is represented by disdkelvin-Voigt elements. Although this represeiaia
can describe both the elastic resistance and timpidg offered by the ballast and the soil suppgrtime
sleeper when loaded by a train passing axle, gertainly not the most appropriate one to quarttify
damping/dissipation in the subgrade in an accwate However, given the aim of this work, to stilkg



effect of parametric variation on the dissipate@rgy as such, and to draw relative conclusionss it
sufficient. Moreover, it allows for an approachthe frequency domain. A second consideration is tha
increasing subgrade model complexity may easilygssigan accuracy which is only fictitious. As has
been mentioned, the interaction between the discskteper, the ballast layer and the deeper soil is
extremely difficult to model; the very few constite ballast models that exist (such as [35]) shmth

an enormous bandwidth and a very high degree oflinearity. Using a basic description while
accounting for elementary features is, againsthihiskground, not necessarily a bad choice for oivigi
comparative results. On the other hand, the adapejeetsentation implies a limitation of the trapeed

in the model to subcritical velocities, becauseydai these velocities the eigenfield (surface dispment
field) moving along with the axle load is confintmlits immediate environment and there is no energy
radiation. The rail itself is modeled using bothldttBernoulli and Timoshenko theory. Further, with
respect to the train, the unsprung vehicle masgigded in the model, coupled to the track bylieel-

rail contact stiffness.

The main contribution of the present work, withpest to the state of the art in the modeling of
track degradation, is the systematic assessmettteofole of different track design parameters with
respect to the susceptibility to substructure ddafian. In this sense, it can be considered asardic
‘benchmarking’ of traditional track design, withspect to its expected long-term performance. The
assessment is relative and not quantitative. Tomrethe work does not allow for a quantificatioihn o
degradation itself, for a given design at any manakeming the service life. In order to do so, thelic
loading process itself should be taken into accaalong with the cyclic energy dissipation resgtinto
the development of the geometry in terms of ongsettjements. This would involve the incorporatidn
the already discussed mechanisit) @nd the associated dynamic axle load, which iside the scope of
the present work.

The outline of this paper is as follows. Sectiorcdhtains the mathematical framework of the
study, in terms of formulations employed for dynammodeling of the wheel/track system and
expressions for both the energy dissipated in thstsucture and the dynamic track stiffness. Sec3io
presents results from a parametric study, in lifth & discussion on the influence of track desigrtte
energy dissipated in the substructure and the uisagineering parameters to assess long-term bahavi
Section 4 closes with conclusions.

2 Theor etical framework

In the first part of this section, a frequency-domenodel is developed for dynamic analysis of a
discretely supported rail subjected to a moving ellmass. Analytical closed-form expressions for the



energy dissipated in the substructure and thecstati dynamic track stiffness are derived in tteoéd

part.
2.1 A frequency-domain model for wheel/track dynamics

As has been discussed in the introduction, a twerlerack model is adopted, and subjected to Igadin

a moving wheel mass. The two-layer track model asmgosed of a rail, modelled as an infinite
Timoshenko beam, railpads as Kelvin-Voight elemenlsepers as rigid masses, and discrete sleeper
supports by ballast and subsoil again as Kelvingiibelements. The moving wheel mass is coupleleo t
track through a contact spring, representing alised Hertzian contadt,. A schematic overview of the
model is shown in Fig. 1. It is assumed in thigigtthat the discrete supports are identical andriek
model is therefore periodic. Since the model isquie, an analytical approach can be employed,dagse
expressing the periodic response of the track em-track interaction force as Fourier series.

ElL pA Gk — v

-0 +co
<+— ey —>
S

S

A A A A A A A A A A A A A A v a4
— 1, —!

Fig. 1. A schematic of the mathematical model ofrdilvay track subjected to a moving wheel mass

For the track model shown in Fig. EJ,G and pAdenote the bending stiffness, shear modulus and mas
per unit length of the rail, respectively;the Timoshenko shear coefficient of the cross seaif the rail
beam; M, the sleeper massk and c, the stiffness and the damping of the railpalis;and c, the
stiffness and the damping of the ballast/substrecty the sleeper distancem, the unsprung wheel
mass, and/ the train speed. As mentioned, the track is coupdethe moving wheel through a linear
contact spring. The equation of the motion of thevimg wheel can now be written as follows:

m, W, (1) =k, (w, (vt.,t) - w, (1)) + m,,g, 1)
where m,, g is half the axle load,w, (t)is the wheel displacement ang, (vt,t) denotes the rail

displacement at the wheel-rail contact point. Bypkaying the Timoshenko beam theory and considering
N, +1 supports along the model, the equations of mdtiothe rail can be written as:
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I (xt) 07w, (xt) Y, (x.t) _ IV < | A
pA—atz ;(Ac;—ax2 +KAG—aX =—F ()(x - W) i:%/zRo(t V)J(x i), )
pt T gy 068 p g WD) | aGy, (xt) =0, (3)
ot ox 0x

in which () represents the Dirac-delta function amdt) and R (t) are defined in the following
equations:

F.(t) =k, (w,(vt,t) = w, (1)), (4)

R, (1) =k {w,(0,1) —w,_ {0} +c{ W(0, § —w (I}, (5)

where w, ((t) is the displacement of the sleepeixato. Taking into account the interaction force between
the rail and the sleeper at 0 defined in Eq. (5), the equation of the motiontfus sleeper is given as:

MW, o(t) = Ry(t) = c 3, {t) —k w ,(1). ©
As mentioned, it is assumed that the discrete stppothe model are identical and the model isogk.

Consequently, the following relationship can belelhed between the reaction force of ithesupport
and the reaction force of the supportato, i.e. R (t) andR,(t)

—R(t-
RO =R,t-="). (7)

Since the model is assumed to be periodic wittp#redd equal td, / v, the displacement and the rotation
angle of the cross-section of the rail, the disphaent of the moving wheel and the wheel-rail cdantac
force satisfy the following equations:

Wb(X + IS,t +|—S) = Wb(X,t)
Vv

U+t ) =g, ()
Vv

- ®)

W, (t+2) 2w, ()
V

Ft+) =F,(0)
\'

Therefore, the contact force can be expressed Bgueer series and the following equation can be
written:

2nv.

F=Y Fe ©)

m=-co

where j>=-1 and F,, are the unknown coefficients of the contact foféerthermore, Eq. (8) can be
utilized in order to find the following relationgds for the Fourier transform of the beam displacegraad
rotation:



W, (X, @) = jwb(x+|s,t+'—5)e’j“d = &My K+l w) (10)
b \Y
&, (%, @) =P, (x+1_,w). (11)

It can be concluded from the latter relationshipat tthe Fourier transform of the displacement and
rotation of the infinite beam are spatially permdind they can therefore be expressed using tloaviob
Fourier series:

2
im(ZZy x

W, (X, @) = e""x’VZW(a))e L (12)

b= Y @, @e - (13)

m=-co

where W, (w) and @, (w) are the unknown frequency-dependent coefficiefitthe displacement and
rotation responses. It is worth noting that thenbelsplacement and rotation responses given in @g83.
and (13) satisfy the periodicity conditions intradd in Eqgs. (10) and (11). One can now take thei€&ou
transform of the both sides of Eqgs. (2) and (3hwéspect to time, use Eq. (9) and obtain the viofig
equations:

2nv

2.~ t
- PASW, (X, ) — Kk AG 0 V\g(;( @) +KkAG Owb(x @) _ j Z F e J(x—vt)e “dt (14)
X L
f Nzlz R)(t——)c)'(x il )e’“dt,
(15)

-pl &/, (x,w) - El

M—KAGM"'KAGI%(X'M) =0,
ax aX

where R (w) is the Fourier transform o (t). The Fourier representations of the responsesigiv&gs.
(12) and (13) as well as their derivatives can udesstuted into the latter equations in order talfthe
following relationship between the unknown coeféfitis of the displacement and rotation of the beam:

G (@) =M (W] (@), (16)

where ', (w) is defined below:

(an \C/()J KAG
My, (@)= > : (17)
El [z”m \‘/"J +KAG - pl of

Moreover, in order to be able to find the unknovweefficients of the beam displacement in terms ef th
contact force coefficients (from Eq. (14)), theatian force of the support at=0 in the frequency



domain, i.e.R (@), must also be found and substituted into Eq. (I4king the Fourier transform of Eq.
(5) with respect to time yields:

R(@) = (jax, +k,) (W0, @) = W, (). (18)

The displacement of the sleeper ato in the frequency domain, i.ew, ,(w), can be found by
combining the latter equation with the Fourier sfanm of Eq. (6):

jax:P +kp
~aM, + jafc, +¢) +(k,+k,)

W, (@) = W,(0,0), (19)

and subsequently, the reaction force can be oldtdipesubstituting Eq. (19) into Eq. (18):

jac, +k )(~#M_ +jax, +k,) |
(Jacp-i- P)( S+Ja1: + ) W(O,C{)) (20)

R = —WM_+jalc, +c) +(k +k) |

Finally, the reaction force of the supportxat 0 can be expressed in terms of the unknown coeffiisief
the beam displacement; this can be carried outibying Eqg. (20) together with the frequency respe
defined in Eq. (12):

R(@=Y GW, (@), (21)

m=-co

where G(w) is defined in the following equation:

(je, +kp)(—a)2MS+jaLb+kb)

G(w) = _
="M, iate, +o) +(k, 1K) (22)
Employing Egs. (12), (13) and (16), it is possitoieewrite Eq. (14):
> {Wm(w)e'(s_“)x [/(Aca[zlﬂ —5’} +KAG | [lﬂ —9} n.(@ - psz] o e”'s_v)x} -
oo s Vv sV v
(23)

N, /2

- z R)(CO)C)_(X - i|s)e-1w(u5/v).

i=-N,/2

The reaction force given in Eq. (21) can now bestitiied into Eq. (23) and the following equatianc

be derived:
L 2mm W, il 2m @
< i * J(T_;)x < . -iMw 1_ I(T*C)x
Z \Nm(a)) /\m,Timoshenko(a))e : +25(X_I|s)G(a))e ' +_Fme : = 0’ (24)
m=—o iz \'
whereA | .J(w)is defined as:



A

m,Timoshenko(

7 =KAG[2|Lm —i’} 4 1[2:“_“ —Q}KAG M’ () - pAGS . (25)
\" \"

S S

Both the Euler and the Timoshenko beam theoriesrapbemented in this paper for comparison. An
equation relating the unknown coefficients of tleaim displacement to the unknown coefficients of the
contact force was already derived for the Timosbemiodel (see Eq. (24)). The same procedure can be

followed and a similar equation can be found far Buler model. In fact, to be able to use Eqg. {@4}he

Euler beam, one needs to replage,, ....(@)in this equation withA . («) defined in the following

equation:

S

4
. 2m  w
/\m,EuIer(a)) = El |:|__;:| _IOM (26)
In the rest of the section, to provide a generahfdation including both the beam theories, we wik
A, (w), Which is defined as\’ (w) and A’ __(w) for the Timoshenko and Euler beams, respectively.

m, Timoshenko m,Euler

Using the sampling property of the Dirac comb a#i agits periodicity, Eqg. (24) can be rewritten as

. j(272m a})x 1 7(21) . J(Znn)x 2nm_m
Z{V_Vm(w){e Loy /\m(a))+|—G(a))eJv Ze ' :|+—Fme - }=0 27)
\%

m=-c s n=—o

By eliminating e from Eq. (27), it takes the following form:

+00

_ '(zﬂ)x oo 1(2m>>< _ s
Z{Wm(a;){/\m(w)eJ . +%G(w)2e s :l+%|:me " }: 0 (28)

m=-e

By truncating the latter equation and considerdng +1 terms of the infinite series(=-N,,...,N,), and
using linear independence of the exponential fonsti the following equation in matrix form can be

introduced:

_ 1—
CO oy apeian s pW i+ 11 = _; Foan o (29)

whereco, W andF are given as follows:
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G(w) G(w) G(w) Gw | W, (@) F.,
A (@) +— == == == _ _
‘ I I I I W, (@)
G(w) A (@4 G(w) G(w) G(w) B ~ B _
co=| | L L | W=l W | F=F
5 S 5 e i (30)
W (@ F
G(w) G(w) G(w) A, (@) + G(w) .
L I I I ' I V_VNK (@) ENK

Now, if we define @ as the inverse oo, i.e. ®= CO*, the unknown coefficients of the beam
displacement can be found in terms of the contacefcoefficients and elements ®f

— 1
Wm (a)) - —; Z e"‘*(N‘*l)vn‘f(N‘*l) ! treen N“ (31)
n=-N,

-r|
3
I
|
zZ

where @, ; is the(i,j)th element ofe . Substituting Eqg. (31) into (12) yields:

im 2 x

R 1 » v N, N, _
W, (X, @) :_\_/e o Z Z em+(r\h+1).n+(r\h+1)':n e " . (32)
m=-N, n=-N,
w, (x,t) , i.e. the response of the beam in time domaim,beaobtained from the latter equation by taking
the inverse Fourier transform with respectto

2,

1 & N X _im=)x
Wb(X,t) = _; Z Z (g(t_;))m+(N‘+1),n+(N‘+1) Fn e . ' (33)
where (6(t)); ; is defined as follow:
ot —ime e“d
( ( ))i,j - 2”:[0 i, w. (34)

Utilizing Egs. (4), (9) and (33), the displacementthe moving wheel can be obtained in terms of the
contact force coefficients:

.21V,

N, jm(=)t

F o1 =]
Ww (t) == Z {Em + % n;\‘ (H(o))m+(NI +1),n+(N, +1) Fn } e ) ' (35)

m=-N,

Both the response of the infinite beam and the npwheel have been found as a function of the cbnta
force (see Egs. (33) and (35)). Therefore, thespomses can be substituted into Eq. (1) in order to
establish the following set of algebraic equations:

2 —
2mv ) |F 1 &
W(I—j {k_-"; Z’;‘ (6(0))m+(N‘+1)vn+(Nt+1)F } Foo m=-N,,...N,,m# 0 (36)
s H n=-N,
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It should be noted that the contact force coeffitieorresponding tan=0 is equal to the static wheel
load, i.e.F, =-m_g . Eq. (36) can be written in a matrix form:

- -F
¢2N‘><2N‘ sz‘XI = Toejle‘xr (37)
whered, f and@” are given below:
[ ¢1,1 ¢l,2 ¢1Nt ¢1N(+ 2 ¢1N‘+ 3 ¢ 1R+ 1 ]
¢2.1 ¢z,2 ¢2Nt ¢2N‘+ 2 ¢ N+ 3 ¢ 28+ 1
¢N(.1 ¢Nl 2 ¢Nl N, ¢Nl N +2 ¢N( N+ 3 ce ¢Nl N+ 1
¢ = ! (38)
¢N‘+2,l ¢N‘+2,2 ¢N‘+ 2N, ¢N‘+ 2N, + 2 ¢N‘+ N+ 3t ¢N‘+ 28+ 1
¢N\ +3,1 ¢N‘+3,2 ¢N‘+3,N\ ¢N\+3,N‘+2 ¢N\+3N‘+3 ¢N\+ 3N+ 1
_¢2N\+1,1 ¢2Nt+1,2 ¢2N\+JN\ ¢N\+ N+ 2 ¢|g\+ N+ 3 °°° ¢m\+ n+ 1
E, [ (0(0),.; |
Fon (B(0), .
_ | E R CI(O) N
Fe F_i1 = N, N, +1 ' (39)
Fl (g(o))Nt+2,N\ +1
FZ (0(0))N\ +3,N, +1
L R | (000)),1 11
The elements ob in Eq. (38) are calculated from the following etjoia:
2 6(0)). ,
¢ij:i_ .Is 2+( O, ifi=]
Tk, m@mv(i-N,-1)
(40)
6(0)). .
g, =0 i # ]
’ v
Finally, the unknown coefficients of the wheel-r@aintact force can be found from Eq. (37):
_ -E .
2N, x1 :_O¢ 12N\><2N‘e N x 1T (41)
v

As soon as the unknown coefficients of the corftace are found, the dynamic response of the beaim a
the moving wheel can be obtained from Eq. (33)(@5J, respectively.
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2.2 Parameters for assessment of long-term performance

As has been discussed in Section 1, this study diossiders mechanical energy dissipation in the
substructure, represented by Kelvin-Voight elemamtder the individual sleepers, as a measure for
evaluating long-term performance of railway traglséervice. As an engineering parameter, dynamik tra
stiffness variation was adopted. This quantity Wélconsidered relative to the static track stéfeavhich

is therefore derived as well.

2.2.1 Mechanical energy dissipation in the substructure
The velocity response of the sleepexato in the frequency-domain can be obtained usindgrdguency

response in Eqg. (19):

jeof ja, +k,)
M, +jalc, +c) + (K, +K,)

U, o(0) = jwW, {a) = W, (0, @), (42)

where the frequency response of the beam=0, i.e. W, (0,w), is given in Eq. (32). For one passage of
the moving wheel, the energy dissipated by the tautisire/ballast damping in the support located at
x=0 is calculated as:

Eieso™ [ FodVodt = [ cy, (07 dt, (43)

in which v, (t) is the velocity response of the sleepexkato in the time domain, and can be obtained by
taking the inverse Fourier transform of Eq. (42).

2.2.2 The static track stiffness

Differential equations governing the static resgooka discretely supported Timoshenko beam under a
static load (atx = x_) are given as:

0y,(%) O'w,(X) _ | |
KA == KAG— = = Foé(x—xp)—iz%zkp(wb(lls)-Wa,)5(x"' ) (44)
~El 9 dsz(X) - KAG—aWb(X) +KkAGY,(x) =0. (45)
ox ox

The static deflection of thi¢h sleeper, i.ew,;, can be found from its static equilibrium equation
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[k -
W, _[kp +kbjwb(”s)' (46)

One can now Substitute Eq. (46) into Eq. (44), @keourier transform with respectxand derive the

following equation:

A N,/2 k _
KAGEW, (&) + | EkAGY,(§) =Fg '™ = > kK, w, (il )e " . (47)
i==Ny/2 kp + kb
Furthermore, (&) can be found from the Fourier transformation of @&):
" _ 1EKAG A
AGE (—EI e KAijm- (48)

The latter equation is substituted into Eq. (4% tre inverse Fourier transform is then appliedriter to
obtain the following expression for the static deflon of the beam:

Ny/2 k
Wb(x):FOY(x—xF)—A > (l;]:k Jwb(iIS)Y(x—ils), (49)

where Y(x) is defined below:

(KAGX 2 _ 6El )x
Y(x)=
12E1 kKAG

Jsign(x ) (50)

in which sign(x)is the sign function. It must be noted that in &&f) the deflection of the beam at the
sleeper locations, i.ay,(il), is unknown. To be able to use this equation Btaining the static deflection
of the beam under the static load,(il,) must first be found. Eq. (49) is therefore solved 1 times (at

x =il_,i=-N_/2,..,N_/2) and the following set of equations in matrix foisrobtained:

() {3
() M

a, 4, ¢1N5+ 1
@, o ¢2N5+ 1

w, (0) =F, Y(-.><F) . (51)

(Ep) T e
2 2
() )
2 2

where the elements of the matgpare defined as:
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k, +k,

- [%]Y«i i) i

in which i'and j' arei-(N_/2)-1 and j-(N_/2)-1, respectively. The static deflection of the beam,

1+(ﬂJY(o) i=]

, (52)

w, (x) , can be obtained by solving Eq. (51) and substguhe solution into Eq. (49). The static stiffaes
of the beam may then be calculated as the ratilbeofpplied static force to the obtained statided#ibn.

2.2.3 The dynamic track stiffness

The dynamic track stiffness can be defined in diif¢ ways, see e.g. [12]. Two definitions of this
parameter are proposed here and ‘tested’ in theefrnaork of this paper; (1) the ratio of the statiad
(half the axle load or wheel load) to the dynamgpthcement of the contact point defined in a mgvin
reference system, and (2) the ratio of the corfiteice (including the static wheel load and dynataitns)
to the dynamic displacement of the contact poinfindd in a moving reference system. For the
wheel/track model developed in this section, th& filefinition of the dynamic stiffness is matheiceity

given below:
kd _ I:a><leload/2
W (= X/ V) (53)

The beam displacement defined in Eq. (33) can Hstduted into the latter equation, yielding the
dynamic stiffness:

-FVv
N, N, _ Jm(z—")x ’ 54
3 Y OO nFre 4)

m=-N, n=-N,

kdyn,l =

Similarly, the second definition of the dynamidfstess can be expressed as:

kdyn,z = = 2, " (55)

N, N, _ jm(l—)x
Z z (9(0))m+(N\+l),n+(N\+l) l:n € :
m=-N, n=-N,
Utilizing the latter equations, it is now possilie calculate minimum and maximum values, and
subsequently the amplitude of the variation, fa ttynamic stiffness over a certain length of ttaekr
Since the periodic nature of the discrete suppsrtse only source of non-uniformity for the coresied

model, these values are obtained over a sleepefrbfact, maximum variation of the dynamic stiféses
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normalized with respect to the minimum static sgfis (i.e. the static stiffness calculatec at_/2) and
the following parameter is introduced:

[Akdyn,i Jxlooz[maX(kdyni )_ min«dyni, ) x 100 (56)

t,min 5Jx=ls/2

where k can be obtained using the mathematical formulagieen in the previous subsection, and

st,min

i =1,2 refers to the two definitions of the dynamic stéés in Egs. (54) and (55).

3 Parametric study of track design and evaluation

In this section, a parametric study is carried with respect to the effect on energy dissipatiorh@
substructure; afterwards the relation with the psmal engineering parameters (Egs. (43) and (56)) is
explored. The following design and operational ablés are taken into consideration: speed of the
moving wheel, magnitude of the unsprung mass prafile (bending stiffness, shear stiffness andshas
sleeper mass and spacing, rail pad stiffness anpidg and ballast stiffness and damping. To each
parameter a nominal value is assigned, correspgndicharacteristics of typical Dutch track; a lowed

an upper limit are assigned as well, so that fopalameters variation within a bandwidth is considl.
Nominal values and lower and upper limits are givemable 1. Moreover, a static wheel load of k0D

is used; a shear coefficient of 0.34 is assumedhferTimoshenko rail model [36], and the linearized
contact stiffnes,, is calculated as/3x10” [@Q, whereQ is the static wheel load [37]. A convergence
study is carried out in order to determine the neindf sleepers required for simulations. Obtairesliits

are shown in Fig. 2. It can be seen that the totahber of 15 sleepers is sufficient for a reliable
calculation of the energy dissipation in the suligtire. Moreover, the importance of the beam theory
used in the mathematical model is investigated.aldbd results are shown in Fig. 3, showing the
dissipated energy in the substructure for both besrdels and using nominal values in Table 1. As can
be seen, there is a significant difference, pdaityr at higher speeds for which the Euler model
underestimates the dissipated energy. Therefoee,Ttmoshenko model is employed for the further
analysis in this paper.

Table 1. Nominal values and lower and upper limits for tlaggmeters of the model

Parameters | Lower value |  Nominal value | Upper value
Rail
Bending stiffnessEl), MNm? - 4.25 (54E1 profile) | 6.11 (60E1)
Mass per lengthp@), kgm® - 54.4 (54E1 profile) | 60.34 (60E1)
Sleeper
Sleeper masdMy), kg 50 142.5 202
Distance between sleepel$,(m 0.5 0.6 0.7
Pads
Pad stiffnessk), MNm'* 30, 200 1000 1000*
Pad dampingd), kNm's 20 30 1970
Ballast
Ballast/subgrade stiffnesk), MNm™* | 40 [ 50 | 60
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Ballast/subgrade damping,), kNm's | - | 55 | -
M oving wheel
Speed (km/h) 0 - 300
Unsprung mass (kg) 600 900 1200

* The pad stiffness in the order of 1000 MN/m cepends to the Corkelast pad used for typical

Dutch track

46

-#Typical Dutch track, v = 200 km/h

S s &~
w ~ <]

Dissipated energy (N.m)

i
[N}

4.1 1 .

3 5 T 9 11 13 15 17 18 21 23 25

Number of sleepers

Fig. 2. Model convergence;= 200 km/h and the nominal values listed in Tdblave been used for wheel/track

parameters

©Euler model
-+Timoshenko model

Dissipated energy (N.m)
w B (8]

N
T

0 | L L L

50 100 150 200 250
V (km/h)

300

Fig. 3. Dissipated energy calculated using EulerBintbshenko models; nominal values listed in Tdbleave been

used for wheel/track parameters

3.1 Wheel/track receptance

17



The wheel-track system under consideration canhbeacterized by its receptance function. Therefore,
the response to a unit harmonic force is examina.hin the literature, analytical formulations are
available [23, 38, 39], providing information orsomance behavior of railway tracks. However, they d
not include a moving wheel. It will be shown thaffetent results are obtained for the receptance
including the unsprung vehicle mass, notably inltvefrequency range. In order to find the receptan
function for the model, a discretely supported Tsimenko beam coupled to a wheel mass is considered,
and response of the beam to a unit harmonic farabiained utilizing the approach proposed in [40].
According to this approach, discrete supports, sindlarly the wheel-beam interaction in this studye
represented by corresponding external forces. Respaf the model to all external forces is theraivigd
employing Green’s function of an infinite Timoshenkeam and the superposition principle. A more
detailed explanation of the procedure is providedppendix A.

Using the nominal values of track parameters gimehable 1 and considering three different values o
the unsprung mass, the frequency response of thelitdack model is obtained and illustrated in Biglt
can be observed that the wheel mass (or, dynaméeittack interaction) has a significant influerore
the frequency response. In fact, compared to tiggnat track model (solid curve in Fig. 4), thestir
resonance peak in the frequency response of thésrahifted to a lower frequency. This is impottan
since it will be shown in the next subsections thatfirst resonance frequency of the wheel/trackieh
plays a significant role in the analysis of the ayic stiffness variation of the track and the eperg
dissipation in the substructure. The presence @fstarp peak available at ~900 Hz in the frequency
response of the model (referred to as the ‘pinriedgul frequency’) is due to the fact that the resgads
calculated at midspan. It can be seen that the lwhass has no significant effect on the pinned-géhn
frequency.

7

107 ¢

~ 108
<
E
)
Q
T 19
< 107
2 - - Wheel/track model, m, = 600 kg
@
= - Wheel/track model, m =900 kg
& 10 --.Wheel/track model, m, =1200 kg

10 —Track model

211 L . . | L ’
10
10’ 10? 10°

Frequency (Hz)
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Fig. 4. Amplitude of the wheel/track receptance glated at midspan
3.2 Dissipated energy; a parametric study

This paragraph considers the effect of track desagiables on the mechanical energy dissipatiottnén
substructure, considering nominal, minimum and maxn values as listed in Table 1. For the parametric
study carried out in this subsection, the dissighateergy in Eq. (43) is normalised with respecth®
ballast dampingg,. Results are generally depicted graphically asatfon of the train speed.

The effect of the substructure/ballast stiffnestiustrated in Fig. 5 and is significant. For lawe
values of the ballast/soil stiffness (i.e. softkiaed foundations), the dissipated energy growslisapnd
rather uniformly with the speed. For an increasirggiff substructure a different behavior appewiith a
much less rapid growth and at the same time andtsfieak in the speed domain. For example, for the
ballast stiffness of 200 MN/m, a main peak appeaosind 155 km/h. This can be explained by the fact
that at this speed the sleeper passing frequergyv(fil,) coincides with the first resonance peak in the
receptance function of the wheel/track model asudised in the previous subsection. A second, smalle
peak is observed at the speed of 77.5 km/h. Ttik pan be explained by the presence of multiplehef
sleeper passing frequency in the contact force, thedfrequency of the second dynamic term, i.e.
F,exp(j2m(2v/1,)t), which is close to the first resonance frequenicthe wheel/track model. A three-
dimensional (3D) plot provides a more comprehenspeesentation of substructure dissipation in2ibe
substructure stiffness — speed domain; such aigpltterefore shown in Fig. 6. From this figure the
following conclusions can be drawn with practicalewance: ij the optimum substructure stiffness
depends strongly on the operational speed regionesthndard passenger and freight transport a highe
stiffness is favorable;i] the level of mechanical energy, cyclically disdgd in the substructure - and
therefore the degradation of high-speed trackdigser as compared to conventional lines (rougtitk
a factor 2 to 3), andii{) the degradation may be very sensitive to padictiain velocities, due to
resonances in the track receptance. At 300 km/bgrade stiffening may reduce the sensitivity to
degradation with a factor up to 7-8. It is impottémremark that these factors say something athmut
susceptibility to degradation at the onset of thaeding process and may change over the servicge life
when track unevenness starts to grow and needsitccbrporated in the modeling.

According to the simulation, the dissipated enepgyvs without any limit as a function of speed.
Physically, such unbounded behavior does not matkees This phenomenon is due to the model adopted
in this paper, which is only valid in the subcricspeed domain and cannot be employed for critical
transcritical load speeds, exceeding the Rayleighewspeed of surface waves. The beam model has a
critical velocity equal to the speed of bending&sheaves travelling through the beam, which is much
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higher. In the framework of this study, this is adimitation because of the fact that nearly i&irts run
at subcritical speeds during daily operation.
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Fig. 5.  Effect of ballast/subgrade stiffness ondfssipated energy; unit damping , and nominal valaesther
parameters
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Fig. 6. 3D plot of the dissipated energy for thddsdlsubgrade stiffness range 25-205 MN/m; unitgiamc, , and
nominal values for other parameters

The effect of the railpad stiffness is shown in.Fig The influence of this parameter on the
dissipated energy and the long-term degradatitessssignificant as for the ballast/substructuifénsts;
however, degradation increases with the pad stiffrfer the entire speed domain. Especially for -high
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speed tracks this may become an important paramgiteen the cyclic and cumulative effect of

dissipation.
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Fig. 7.  Effect of pad stiffness on the dissipateergn in the substructure; unit dampiog , and noininlues for other
parameters

Fig. 8 shows the influence of the unsprung mastherenergy dissipated in the substructure. It @n b
concluded that the unsprung mass has a neglidifglet @n the long-term performance/degradatiorhef t
substructure. It should be mentioned here thatdahiglusion needs to be considered with care atigein
framework of this study, which examines the sevigjtiof a spatially invariant and geometrically famt
track to degradation. The effect of the unsprurtgole mass may become significant for spatiallyiasmtr
and irregular track.
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Fig. 8.  Effect of unsprung mass on the dissipateniggnin the substructure; unit dampieg , and noiiahies for
other parameters

The influence of the sleeper distance on the disstbenergy is illustrated in Fig. 9. Increasing
the distance between sleepers results in a higiheiof degradation for the track for all speedsraéduer,
the importance of the first resonance frequencthefwheel/track model becomes more pronounced for
larger values of the sleeper distance.

Fig. 10 and Fig. 11 show the results obtained ffiergnt values of sleeper mass and the pad damping
respectively. Although the effect of these paramsebecomes more important with increasing spee&y, th
have a negligible influence on the energy dissipaiethe substructure. Here, the same remark shmuld
added as for the unsprung mass: the same conclissioot necessarily valid for spatially variant and
irregular track. The effect of the rail profile ¢sis-sectional properties) is illustrated in Fig, 42owing
that a stiffer rail increases the long-term perfance for the entire speed domain.
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Fig. 9.  Effect of sleeper distance on the dissipatestgy in the substructure; unit dampieg  , andinahvalues for
other parameters
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In order to allow for a comparison of the relateffect of a variation of different track design
parameters at a given train velocity, minimum arakimum values of the dissipation obtained at three
practically relevant speeds,=80, 140 and 250 km/h, are taken from these figanespresented in Table
2. This table allows for an easy comparison ofdfficiency of different track design modificatioftr a
given train speed. For example, at 250 km/h, opiimgi the ballast/subgrade stiffness is 2.9 timesemo
efficient than optimizing the railpad stiffness. ntay be concluded in general that, apart from the
operational train speed, the largest effect indatext of sensitivity to degradation can be aahithy
adapting the ballast/substructure stiffness; dlecailpad stiffness, the sleeper spacing angraflle can
have significant effects, whereas other paramdtave a negligible effect — given the assumptiorth wi
respect to the track in this study.

Table 2. Minimum and maximum values of the dissipated enangize substructure (N.m, multiplied 10")
and their difference4 ) calculated for a single passing axle

Speed/ Ky Kp I m, M, C, Rail profile

Parameter

min

max

min

max

min

max

min

Max

min

max

min

max

min

max

A

80 km/h

0.58]

0.47

0.16

0.30

0.14

0.26

0.35

0.09

0.29

0.34

0.05

0.30

0.31

0.01

0.30

0.30

0.00

0.22

0.30

0.08

140 km/h

0.24

0.99

0.75

0.25

0.56

0.31

0.44

0.27

0.55

0.57

0.02

0.56

0.57

0.01

0.55

0.56

0.01

0.40

0.56

0.16

250 km/h

0.26

1.86

1.60

0.47

1.02

0.55

0.83

1.23

0.40

1.01

1.03

0.02

0.97

1.05

0.08

0.99

1.02

0.03

0.74

1.02

0.28
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3.3 The dynamic track stiffness; a parametric study

The dynamic track stiffness is defined as the rafidhe applied force to the dynamic displacement
response of the track [12]. For a railway trackema moving axle load, the dynamic track stiffneas
also be described as the resistance against deflestperienced in the wheel-rail contact by thes/img
axle load. As exposed in ref. [3], fluctuationgtod dynamic stiffness along the track lead to Viania in

the wheel/track interaction force. These variatiomply a spatial variation of the mechanical energy
contained in the moving displacement field, whishpartly dissipated in the track, especially atkpea
fluctuations. Therefore, the dynamic stiffness, amate specifically its spatial variation along theck, is

an important and practically relevant parametetr ity indicate the track degradation rate. A pateme
study is carried out in this subsection, examirmg relation between track parameters and the dgnam
stiffness. It is important to realise that, givéie tassumptions of this study, the variation ofdieamic
stiffness in the model is exclusively due to thecdeéte sleeper spacing, whereas practical experigith
this parameter [12] is always based on real tragkh the full range of sources of discontinuityat exist

in practice.

Adopting the nominal values, the lower and the upipats of track parameters listed in Table 1,
the non-dimensional definition of the dynamic si#f§s variation according to Eq. (56) can be plaied
function of speed. For the first definition of thgnamic stiffness, the effects of track paramefexsept
the pad damping which has no significant influenae illustrated in Fig. 13. The operational speed
window, with a lower limit of 80 km/h and an uppimnit of 140 km/h, for conventional rail networka$
been indicated in this figure using two dasheddiné\ critical velocity can be observed with exteem
stiffness variation. At this critical velocity, thsleeper passing frequency coincides with the first
resonance frequency of the wheel/track model. peeds exceeding 200 km/h, the stiffness variaton i
relatively small and becomes nearly independespegd and other track parameters. It is clear ffign
13 that the relationships of substructural eneiggipation and dynamic stiffness variation with speed
are entirely different. The effect of a higher hatfsoil stiffness, leading to a higher stiffneasation and
therefore to an assumed higher degradation rapgedicted incorrectly. At the same time, the dffeaf
increasing railpad stiffness, increasing sleepacisiy, decreasing rail profile stiffness, leadia@thigher
degradation rate, are correctly predicted, as aelihe either negligible or non-unique effectsailipad
damping, sleeper mass and unsprung mass. Summggiiizinay be concluded that the dynamic stiffness
according to (Eq. (54)) is an inappropriate paramgt predict the sensitivity to degradation, gitke
model assumptions (track uniformity and straighghdaa this study. In other words, this engineering
parameter cannot be used at the design stage.
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Fig. 13. Effect of different parameters on the fisfinition (Eq. (54)) of the dynamic stiffness iaion; (a) ballast stiffness,
(b) pad stiffness, (c) sleeper distance, (d) ungpraass, (e) sleeper mass and (f) rail profile

Similarly, the effect of track parameters on dymastiffness variation is investigated using the
second definition in Eq. (55); obtained results sttewn in Fig. 14. Compared to the first definitien
different behavior is found as a function of speeith no peak and the largest magnitude of theatian
at the highest speed (300 km/h). Physically, tiad definition makes more sense than the first as
it uses the ratio of the total contact force te tleflection of the contact point. In this case, dynamic
stiffness appears to be dominated by dynamic fatzns of the contact force, in particular in thghh
speed range. Also here, the effect of the ballass@il stiffness is incorrectly predicted, togethéth
other parameters, whereas the effect of other peEmsuch as the railpad stiffness and the refiler
cross-sectional properties is correctly predicted¢an be concluded that the dynamic track stifniss
inappropriate for assessment of a railway track wéspect to long-term behaviour, when this track i
idealized assuming invariability of cross-sectiopatameters and straightness.
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Fig. 14. Effect of different parameters on the selcdefinition (Eq. (55)) of the dynamic stiffnesa) pallast stiffness, (b) pad
stiffness, (c) sleeper distance, (d) unsprung nfaysleeper mass and (f) rail profile

4 Conclusions

This paper studied the effect of railway track dagparameters on the expected long-term performance
assuming spatial invariability (except for the mmse of the discrete sleepers) and geometrical
straightness of the track. The susceptibility of thack to degradation was objectively quantifigd b
calculating the mechanical energy dissipated irsthestructure under a moving axle load for variegiof
different track parameters. Hereto, a frequencyaomwo-layer model was used of a discretely
supported rail coupled with a moving, unsprung malse analysis showed that, apart from the
operational train speed, the ballast/substructtifimnesss is the most significant parameter influegc
energy dissipation. Increased degradation rateshmmefore be expected for ballasted high-speeablin
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with respect to conventional track; the differeigeoughly a factor 2 to 3. The difference betwsery
poor and stiff subsoil is roughly a factor 7 too8 & high-speed line at 300 km/h; for conventidnatk,
this can be in the same range. However, in theerdram 100 — 200 km/h subgrade stiffening is not
necessarily a solution, as the dissipation showaalitbed peaks as a function of the speed with asing
stiffness. These factors say something about theegtibility to degradation at the onset of thedlng
process and may change over the service life, vitemk unevenness starts to grow and needs to be
incorporated in the modeling. Also railpad stiffagsleeper distance and rail profile were fountidee
considerable effect and therefore to be effectiortrol parameters, with degradation increasing with
railpad stiffness, increasing sleeper distance dewleasing rail profile bending stiffness. The uasg
vehicle mass and sleeper mass were found to hawggndicant influence, however, only against the
background of the assumption of a perfect (invamaad straight) track. Apart from dissipated medtein
energy, the suitability of the dynamic track stifés was explored as an engineering parameter éssass
the sensitivity to degradation in the design st#geas found that this quantity is inappropriatghie case

of an idealized track. That leaves the possibdjign that the parameter works well, even theolbtjdar
realistic tracks including the full range of posiiiles for spatial variation of cross-sectionabperties
that exist in practice.
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Appendix A. Receptance of a discretely supported Timoshenko beam coupled with an oscillator

In this appendix a mathematical formulation is dedi of the receptance of an infinite Timoshenkabea
with discrete supports, coupled with a stationahe& mass. A schematic overview of the model is
shown in Fig. 1; the only difference is that, imsteof a moving wheel, a stationary wheel is considie
here and that the model is excited by a harmomcefof amplitudeF,, at x = x.. The response of an
infinite Timoshenko beam to a unit harmonic fortexa x', i.e. the Green'’s functiorG(x,x'), is given

as [41]:

G (x,x")=u,e Mkl gheh ] (A1)

where k and k, are complex wavenumbers defined as follows:
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Moreover, u,and u, are given by:

j plaf -kGA -Elk,?
" OKGEl  2AK, (k2 +k;?) (A.4)

y= 1 pla)z—KGA+EIk22. (A.5)
© KGEl  2Ak, (K +k,)

The discrete supports and the wheel-track coumlamgbe replaced by corresponding external forees, a
the total response of the Timoshenko beam at abyramy pointx can be found using the Green’s
function defined in (A.1) and the superpositiompiple:

Ng/2

W, (X) = FOG(x,xF)—( D ZW(il )(xil S)J+Z W {0)G (x,0), (A.6)

i==Ng/2

where z_and z , are the dynamic stiffness caused by the suppodsiawheel, respectively. The last
term in the latter equation is added to the tataponse of the infinite Timoshenko beam with digcre
supports available in the literature, in order nclude the track-wheel coupling and investigate its
influence on frequency response of railway tradke Tollowing analytical expressions can be derifiged
zandz, :

_ (kp +jwcp)(_Msw2+ijb+kb)

T M+, +ey) + (K, k) (A7)
_ k.maf (A.8)
"k, -meS

It must be noted that the right-hand side of (A&@htains the unknown response of the model at stgppo
locations. Therefore, in order to be able to obtheresponse at any arbitrary location along tthektby
utilizing this equation, the unknown response @f slystem at the support locations must be fouisd fir
This can be carried out by settimg-il_, i =-N_/2,..,N_ /2, in (A.6), generating\s+1 linear equations and

solving the system of equations.
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