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Abstract 

This paper studies the effect of railway track design parameters on the expected long-term degradation of 

track geometry. The study assumes a geometrically perfect and straight track along with spatial 

invariability, except for the presence of discrete sleepers. A frequency-domain two-layer model is used of 

a discretely supported rail coupled with a moving unsprung mass. The susceptibility of the track to 

degradation is objectively quantified by calculating the mechanical energy dissipated in the substructure 

under a moving train axle for variations of different track parameters. Results show that, apart from the 

operational train speed, the ballast/substructure stiffness is the most significant parameter influencing 

energy dissipation. Generally, the degradation increases with the train speed and with softer substructures. 

However, stiff subgrades appear more sensitive to particular train velocities, in a regime which is mostly 

relevant for conventional trains (100-200 km/h) and less for high-speed operation, where a stiff subgrade 

is always favorable and can reduce the sensitivity to degradation substantially, with roughly a factor up to 

7. Also railpad stiffness, sleeper distance and rail cross-sectional properties are found to have considerable

effect, with higher expected degradation rates for increasing railpad stiffness, increasing sleeper distance

and decreasing rail profile bending stiffness. Unsprung vehicle mass and sleeper mass have no significant

influence, however, only against the background of the assumption of an idealized (invariant and straight)

track. Apart from dissipated mechanical energy, the suitability of the dynamic track stiffness is explored

as an engineering parameter to assess the sensitivity to degradation. It is found that this quantity is

inappropriate to assess the design of an idealized track.

Keywords: Track degradation, Long-term track performance, Track settlement, Energy dissipation, Track 

design, Dynamic track stiffness. 
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1 Introduction and scope 

Degradation of the railway substructure, in terms of settlements and the development of geometrical 

deviations of the track, has become a significant issue in recent years. Improving the long-term structural 

performance avoids the need of frequent inspection and maintenance and leads to an increased availability 

for railway tracks. In order to achieve such an improved long-term performance, it is essential to 

understand the relation between track degradation and track parameters. Such an understanding can be 

particularly relevant during the design stage of the track. Traditionally, railway track (and especially 

substructure) design is strongly focused on bearing capacity, and therefore on the instantaneous or short-

term response. This means that the design is mostly purely static or quasistatic, without any proper 

consideration in the time domain, for example specifying the allowable track deflection under a given axle 

load [1]. Because degradation is a time-dependent process, induced by a loading process with a time 

history, such a design can never anticipate on degradation mechanisms and is therefore ‘blind’ for long-

term developments. This can be illustrated also from the variables considered in track design: loading is 

expressed in terms of forces, and the structural response typically in terms of displacements, stresses and 

strains. These are variables apt to describe a ‘status’ in space and time. Degradation is however, in its most 

elementary form, always a mechanical energy dissipation process, described in terms of variables such as 

power and energy that account for variation in time.  

Earlier studies in this field [2, 3] identified as a primary source of track degradation, apart from 

autonomous soil settlement, the occurrence of a dynamic component of the axle load. This component 

gives rise to a dynamic - and therefore highly efficient - compaction of the subgrade, leading to irregular 

track settlement [2]. Such a dynamic component may occur in principle due to three effects: 

i. Wheel out-of-roundness (OOR) of the rolling stock, notably lower-order OOR leading to 

low-frequency dynamic wheel-track interaction [2]; 

ii. Longitudinal variability of the cross-sectional properties of the track itself - either periodic 

or non-periodic, leading to transition radiation in the track under moving axle loads [3]; 

iii. Track irregularity, notably the relatively short-wave defects in the loaded track geometry, 

which lead to the highest train-track interaction forces. 

The existence of a dynamic axle load as a source of degradation has as its point of departure an existing 

track, at some point during its service life, with given parameters and train loading. The scope of this 

paper is situated on a different level. It addresses the effects of the track design itself, and more 

specifically of the elastic and inertial properties of its components and their spatial configuration, on the 

expected degradation rate. The point of departure in this first study into this subject is a straight and 

uniform track with no spatial variation except for that periodic one given by the discrete sleeper support, 

thereby purely considering the effects of track design choices.  



3 

 

The theoretical, qualitative and quantitative modelling of degradation, especially for granular and 

porous materials such as ballast and soil, is extremely complex and very sensitive to specific material 

properties [4, 5]. This is reflected in the empirical nature of many track degradation models describing 

long-term behavior of railway track, as found in the literature. Dahlberg [5] provides an overview of such 

empirical models. Sato [6] observed that track settlement could be divided into two phases and introduced 

two different mathematical expressions describing the short-term and long-term settlement, on the basis of 

curve-fitting. Using field data and a multivariable regression analysis, Lyngby [7] developed a model and 

investigated the effect of axle load and different types of track components (rail, sleeper, soil) on track 

degradation. Sadeghi and Askarinejad [8] examined the sensitivity of the track deterioration to structural 

and traffic parameters, by employing a track quality index derived from track geometry data. Varandas et 

al. [9] have employed an empirical model for the ballast settlement together with a train/track model in 

order to predict settlement of ballasted track specifically at transition zones. Abadi et al. [10] used 

measured data from the Southampton railway testing facility (SRTF) in order to evaluate the capability of 

different empirical ballast settlement models. They indicated that there is a significant difference between 

the results predicted by different previously-developed empirical models. Soleimanmeigouni et al. [11] 

reviewed and classified available models for track geometry degradation. Empirical models may help 

engineers to make a rough maintenance forecast of railway tracks; however, these models do not have a 

theoretical basis nor provide any fundamental insight. Moreover, only a limited number of parameters or 

factors have been taken into account for most of these empirical relationships. In order to avoid the 

difficulties inherent to a proper constitutive modelling of cohesive and non-cohesive granular materials 

involved in the track substructure, this study uses a different approach to get a grip on the complex issue 

of degradation. In line with the earlier study [3], it can be stated that dissipation of mechanical energy in a 

component or system is a precondition for - or even a most elementary representation of - its degradation. 

In other words, a conservative system is free of degradation. It is therefore sufficient to determine the 

effect of parametric variation of the properties of a mechanical system under time-dependent loading on 

localized energy dissipation in order to assess the susceptibility of the system to degradation of specific 

components. 

The first step in the investigation therefore comprises the development of a model for short-term 

dynamic analysis of the track, capable to describe the mechanical energy flux of relevant individual track 

components during the loading process. A second step consists in the parametric evaluation of this model 

with respect to dissipated energy. Energy dissipation, although a very suitable quantity for theoretical 

analysis, is in itself also a rather abstract quantity which cannot be measured in the field. In practice, often 

a different engineering parameter is employed: the dynamic track stiffness. This is a measurable quantity 

for which good results have been obtained in practice and reported in the literature over the past years, in 

the sense that dynamic track stiffness variations correlate with degradation hotspots. This fact is at the 
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basis of the development of e.g. the Swedish rolling stiffness measurement vehicle. Berggren et al. [12, 

13] analyzed dynamic track stiffness measured along the track and indicated that variations of track 

stiffness significantly affect the degradation rate of the track. Variation of track stiffness within a short 

distance and its effect on track settlement have been discussed in [14]. Identification of substructure 

properties using measured dynamic stiffness of the track was carried out in [15, 16]. Using an 

experimental approach, Luomala and Nurmikolu [17] studied the effect of maintenance on the track 

stiffness measured at bridge transition zones. Although not theoretically derived or proven, an empirical 

relationship between stiffness variation and degradation makes physically sense. The dynamic track 

stiffness is the resistance against deflection experienced in the wheel-rail contact by the moving axle load. 

Variation of this experienced resistance therefore leads to a variation in the structural response moving 

along with the load, and therefore to a variation of the mechanical energy contained in this response. It can 

be expected that this energy flux is at least partially dissipated in the structure, localized at those positions 

where an energy excess occurs. In practice, such a measured stiffness variation accounts for non-

uniformity of the track cross-sectional properties, whereas in this study a uniform track is assumed except 

for the sleeper periodicity. Nonetheless, the same physical reasoning can be applied to periodical non-

uniformity. Therefore, this paper ‘tests’, in a third step, the applicability of the dynamic stiffness in order 

to describe the sensitivity of the degradation rate to parametric design choices. The theoretical definition 

of this dynamic track stiffness is further elaborated in paragraph 2.2.3. 

Concerning the first step of the analysis mentioned before, many different track models have been 

proposed by researchers in order to study different aspects of track dynamics. They can be divided into 

two categories: analytical-numerical frequency-domain models and different types of time-domain 

models. The first type of models is computationally efficient and provides better insight into the system 

response. It is therefore very apt for parametric analyses aiming at fundamental understanding. Frequency-

domain models have been applied in the past with different degrees of complexity and with different aims, 

ranging from very simple beam-on-elastic-foundation (BOEF) models [18-22] to more sophisticated two- 

or three-layer linear beam models accounting for discrete sleeper spacing and transient loading [23-28] 

and finally fully three-dimensional beam or plate on halfspace models (eventually with stratification), the 

latter ones with the aim of predicting environmental vibration due to moving trains [29-34]. Given the 

scope of the present study and its preliminary character, it is chosen to adopt a model that is on one hand 

no more complicated than strictly necessary, on the other hand able to describe all individual track 

components and take into account energy dissipation in the substructure or subsoil. Therefore, this 

individual sleeper support is represented by discrete Kelvin-Voigt  elements. Although this representation 

can describe both the elastic resistance and the damping offered by the ballast and the soil supporting the 

sleeper when loaded by a train passing axle, it is certainly not the most appropriate one to quantify the 

damping/dissipation in the subgrade in an accurate way. However, given the aim of this work, to study the 
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effect of parametric variation on the dissipated energy as such, and to draw relative conclusions, it is 

sufficient. Moreover, it allows for an approach in the frequency domain. A second consideration is that 

increasing subgrade model complexity may easily suggest an accuracy which is only fictitious. As has 

been mentioned, the interaction between the discrete sleeper, the ballast layer and the deeper soil is 

extremely difficult to model; the very few constitutive ballast models that exist (such as [35]) show both 

an enormous bandwidth and a very high degree of non-linearity. Using a basic description while 

accounting for elementary features is, against this background, not necessarily a bad choice for obtaining 

comparative results. On the other hand, the adopted representation implies a limitation of the train speed 

in the model to subcritical velocities, because only for these velocities the eigenfield (surface displacement 

field) moving along with the axle load is confined to its immediate environment and there is no energy 

radiation. The rail itself is modeled using both Euler-Bernoulli and Timoshenko theory. Further, with 

respect to the train, the unsprung vehicle mass is included in the model, coupled to the track by the wheel-

rail contact stiffness.   

The main contribution of the present work, with respect to the state of the art in the modeling of 

track degradation, is the systematic assessment of the role of different track design parameters with 

respect to the susceptibility to substructure degradation. In this sense, it can be considered as a dynamic 

‘benchmarking’ of traditional track design, with respect to its expected long-term performance. The 

assessment is relative and not quantitative. Therefore, the work does not allow for a quantification of 

degradation itself, for a given design at any moment during the service life. In order to do so, the cyclic 

loading process itself should be taken into account, along with  the cyclic energy dissipation resulting into 

the development of the geometry in terms of ongoing settlements. This would involve the incorporation of 

the already discussed mechanism (iii) and the associated dynamic axle load, which is outside the scope of 

the present work.  

The outline of this paper is as follows. Section 2 contains the mathematical framework of the 

study, in terms of formulations employed for dynamic modeling of the wheel/track system and 

expressions for both the energy dissipated in the substructure and the dynamic track stiffness. Section 3 

presents results from a parametric study, in line with a discussion on the influence of track design on the 

energy dissipated in the substructure and the use of engineering parameters to assess long-term behavior.  

Section 4 closes with conclusions. 

2 Theoretical framework 

In the first part of this section, a frequency-domain model is developed for dynamic analysis of a 

discretely supported rail subjected to a moving wheel mass. Analytical closed-form expressions for the 
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energy dissipated in the substructure and the static and dynamic track stiffness are derived in the second 

part.  

2.1 A frequency-domain model for wheel/track dynamics 

As has been discussed in the introduction, a two-layer track model is adopted, and subjected to loading by 

a moving wheel mass. The two-layer track model is composed of a rail, modelled as an infinite 

Timoshenko beam, railpads as Kelvin-Voight elements, sleepers as rigid masses, and discrete sleeper 

supports by ballast and subsoil again as Kelvin-Voight elements. The moving wheel mass is coupled to the 

track through a contact spring, representing a linearised Hertzian contact, kH. A schematic overview of the 

model is shown in Fig. 1. It is assumed in this study that the discrete supports are identical and the track 

model is therefore periodic. Since the model is periodic, an analytical approach can be employed, based on 

expressing the periodic response of the track and train-track interaction force as Fourier series. 

 

 

 Fig. 1. A schematic of the mathematical model of the railway track subjected to a moving wheel mass 

For the track model shown in Fig. 1, ,EI G and Aρ denote the bending stiffness, shear modulus and mass 

per unit length of the rail, respectively; κ the Timoshenko shear coefficient of the cross section of the rail 

beam; sM  the sleeper mass; pk and pc  the stiffness and the damping of the railpads; bk  and bc  the 

stiffness and the damping of the ballast/substructure; sl  the sleeper distance; wm  the unsprung wheel 

mass, and v the train speed. As mentioned, the track is coupled to the moving wheel through a linear 

contact spring. The equation of the motion of the moving wheel can now be written as follows: 

( )w w H b w tot( ) ( , ) ( ) ,m w t k w vt t w t m g= − +ɺɺ  (1)  

where totm g  is half the axle load, w ( )w t is the wheel displacement and b ( , )w vt t denotes the rail 

displacement at the wheel-rail contact point. By employing the Timoshenko beam theory and considering 

s 1N +  supports along the model, the equations of motion for the rail can be written as: 
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in which (.)δ  represents the Dirac-delta function and 
c ( )F t  and 

0 ( )R t  are defined in the following 

equations: 

( )c H b w( ) ( , ) ( ) ,F t k w vt t w t= −  (4)  

0 p b s,0 p b s,0( ) { (0, ) ( )} { (0, ) ( )},R t k w t w t c w t w t= − + −ɺ ɺ  (5)  

where s,0( )w t is the displacement of the sleeper at 0x = . Taking into account the interaction force between 

the rail and the sleeper at 0x =  defined in Eq. (5), the equation of the motion for this sleeper is given as: 

s s,0 b s,0 b s,00( ) ( ) ( ) ( ).M w t R t c w t k w t= − −ɺɺ ɺ  (6)  

As mentioned, it is assumed that the discrete supports in the model are identical and the model is periodic. 

Consequently, the following relationship can be established between the reaction force of the ith support 

and the reaction force of the support at 0x = , i.e. ( )iR t and 0( )R t : 

0( ) ( ).s
i

il
R t R t

v
= −  (7)  

Since the model is assumed to be periodic with the period equal to s /l v , the displacement and the rotation 

angle of the cross-section of the rail, the displacement of the moving wheel and the wheel-rail contact 

force satisfy the following equations: 

s
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v

l
w t w t

v
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
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

 (8)  

Therefore, the contact force can be expressed as a Fourier series and the following equation can be 

written: 

s

2
j ( )

c ( ) e ,

v
m t

l

m
m

F t F

π+∞

=−∞

= ∑  (9)  

where 2j 1= −  and mF  are the unknown coefficients of the contact force. Furthermore, Eq. (8) can be 

utilized in order to find the following relationships for the Fourier transform of the beam displacement and 

rotation: 
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It can be concluded from the latter relationships that the Fourier transform of the displacement and 

rotation of the infinite beam are spatially periodic and they can therefore be expressed using the following 

Fourier series: 
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where ( )mW ω  and ( )m ωψ  are the unknown frequency-dependent coefficients of the displacement and 

rotation responses. It is worth noting that the beam displacement and rotation responses given in Eqs. (12) 

and (13) satisfy the periodicity conditions introduced in Eqs. (10) and (11). One can now take the Fourier 

transform of the both sides of Eqs. (2) and (3) with respect to time, use Eq. (9) and obtain the following 

equations: 
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where 
0

ˆ ( )R ω  is the Fourier transform of 
0 ( )R t . The Fourier representations of the responses given in Eqs. 

(12) and (13) as well as their derivatives can be substituted into the latter equations in order to find the 

following relationship between the unknown coefficients of the displacement and rotation of the beam: 

*( ) ( ) ( ),mm m Wω ω ωψ = Π  (16) 

where * ( )m ωΠ  is defined below: 

*
2

2
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2
j

.
2

s
m

s

I

m
AG

l v

m
EI AG

l v

ω

ρ ω
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π ω κ
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 (17) 

Moreover, in order to be able to find the unknown coefficients of the beam displacement in terms of the 

contact force coefficients (from Eq. (14)), the reaction force of the support at 0x =  in the frequency 
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domain, i.e. 
0

ˆ ( )R ω , must also be found and substituted into Eq. (14). Taking the Fourier transform of Eq. 

(5) with respect to time yields: 

( )( )0 p p b s,0
ˆ ˆ ˆ( ) j (0, ) ( ) .R c k w wω ω ω ω= + −  (18) 

The displacement of the sleeper at 0x =  in the frequency domain, i.e. s,0ˆ ( )w ω , can be found by 

combining the latter equation with the Fourier transform of Eq. (6): 
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and subsequently, the reaction force can be obtained by substituting Eq. (19) into Eq. (18): 
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Finally, the reaction force of the support at 0x =  can be expressed in terms of the unknown coefficients of 

the beam displacement; this can be carried out by utilizing Eq. (20) together with the frequency response 

defined in Eq. (12): 
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Employing Eqs. (12), (13) and (16), it is possible to rewrite Eq. (14): 
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The reaction force given in Eq. (21) can now be substituted into Eq. (23) and the following equation can 

be derived: 
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where *

,Timoshenko( )m ωΛ is defined as: 
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Both the Euler and the Timoshenko beam theories are implemented in this paper for comparison. An 

equation relating the unknown coefficients of the beam displacement to the unknown coefficients of the 

contact force was already derived for the Timoshenko model (see Eq. (24)). The same procedure can be 

followed and a similar equation can be found for the Euler model. In fact, to be able to use Eq. (24) for the 

Euler beam, one needs to replace *

,Timoshenko( )m ωΛ in this equation with *

,Euler( )m ωΛ  defined in the following 

equation: 
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In the rest of the section, to provide a general formulation including both the beam theories, we will use 
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2
j( ) j( )

2

s

1
( ) e e 0.e ( ) ( )e

1
m

x x
l v

m m

m n

m
x x

l v v
m

n

l
W F

v
G

l

π ωπ ω ω π

ω ω ω
+∞ +∞ −

=−∞ =−∞

− −
+ =Λ +

   
  
    

∑ ∑  (27) 

By eliminating 
j( )

e
x

v

ω
−

 from Eq. (27), it takes the following form: 

ss

2
j( ) j( )

s

2
j( )

2

s

1
( ) e e 0.( )e ( )

1
m

x x
l

m m

m n

m
x

l

m

n

l
W F

v
G

l

ππ π

ω ω ω
+∞ +∞

=−∞ =−∞

+ =Λ +
   
  
    

∑ ∑  (28) 

By truncating the latter equation and considering 
t2 1N +  terms of the infinite series (

t t,...,m N N= − ), and 

using linear independence of the exponential functions, the following equation in matrix form can be 

introduced: 

t t t t(2 1) (2 1) (2 1) 1 (2 1) 1

1
,N N N N

v
+ × + + × + ×= −CO W F  (29) 

where CO , W  and F  are given as follows: 
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t t

t

t t

t

t

t

1s s s s

1

s s s s 0

1

s s s s

( )( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )
( )

, ,( )

( )

( ) ( ) ( ) ( )
( )

( )

N N

N

N N

N

N

N

W FG G G G

W Fl l l l

G G G G

l l l l W

W

G G G G

l l l l W

ωω ω ω ω
ω

ω

ω ω ω ω
ω

ω

ω

ω ω ω ω
ω

ω

− −

−

− + −

− +

Λ +

Λ +
= = =

Λ +

  
  
  
  
  
  
  
  
  
     

CO W F

…

⋮
…

⋮ ⋮ ⋮ ⋱ ⋮

⋮
⋯

t

1

0

1

.

N

F

F

F

+

 
 
 
 
 
 
 
 
 
 
 

⋮

⋮

 
(30) 

Now, if we define ΘΘΘΘ  as the inverse of CO , i.e. -1CO=ΘΘΘΘ , the unknown coefficients of the beam 

displacement can be found in terms of the contact force coefficients and elements of ΘΘΘΘ : 

t

t t

t

( 1), ( 1) t t

1
( ) , ,..., ,

N

m m N n N n
n N

W F m N N
v

ω + + + +
=−

= − Θ = −∑  (31) 

where 
,i jΘ  is the (i,j)th element of ΘΘΘΘ . Substituting Eq. (31) into (12) yields: 

t t

s

t t

t t

2
j ( )

j /

b ( 1), ( 1)

1
ˆ ( , ) e e .

N N m x
lx v

m N n N n
m N n N

w x F
v

π
ωω −

+ + + +
=− =−

= − Θ∑ ∑  (32) 

b ( , )w x t  , i.e. the response of the beam in time domain, can be obtained from the latter equation by taking 

the inverse Fourier transform with respect to ω : 

t t

s

t t

t t

2
j ( )

b ( 1), ( 1)

1
( , ) ( ( )) e ,

N N m x
l

m N n N n
m N n N

x
w x t t F

v v

π

θ + + + +
=− =−

= − −∑ ∑  (33) 

where ,( ( ))i jtθ  is defined as follow: 

j

, ,

1
( ( )) e .

2
t

i j i jt dωθ ω
π

+∞

−∞

= Θ∫  (34) 

Utilizing Eqs. (4), (9) and (33), the displacement of the moving wheel can be obtained in terms of the 

contact force coefficients: 

t t

s

t t

t t

2
j ( )

w ( 1), ( 1)

H

1
( ) ( (0)) e .

vN N m t
lm

m N n N n
m N n N

F
w t F

k v

π

θ + + + +
=− =−

= − +
 
 
 

∑ ∑  (35) 

Both the response of the infinite beam and the moving wheel have been found as a function of the contact 

force (see Eqs. (33) and (35)). Therefore, these responses can be substituted into Eq. (1) in order to 

establish the following set of algebraic equations: 

t

t t

t

2

w ( 1), ( 1) t t

s H

2 1
( (0)) , ,..., , 0.

N
m

m N n N n m
n N

Fmv
m F F m N N m

l k v

π
θ + + + +

=−

+ = = − ≠
  
  

   
∑  (36) 
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It should be noted that the contact force coefficient corresponding to 0m =  is equal to the static wheel 

load, i.e. 
0 totF m g= − . Eq. (36) can be written in a matrix form: 

t t t t

0
2 2 2 1 2 1,N N N N

F

v
∗

× × ×

−
=fϕ θϕ θϕ θϕ θ  (37) 

where ϕϕϕϕ , f  and ∗θθθθ  are given below: 

t t t t

t t t t

t t t t t t t t t t

t t t t t t t t t t

t t t

1,1 1,2 1, 1, 2 1, 3 1,2 1

2,1 2,2 2, 2, 2 2, 3 2,2 1

,1 ,2 , , 2 , 3 ,2 1

2,1 2,2 2, 2, 2 2, 3 2,2 1

3,1 3,2

N N N N

N N N N

N N N N N N N N N N

N N N N N N N N N N

N N N

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+ + +

+ + +

+ + +

+ + + + + + + + +

+ +

=

… …

… …

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

… …

… …

…

ϕϕϕϕ

t t t t t t t

t t t t t t t t t t

3, 3, 2 3, 3 3,2 1

2 1,1 2 1,2 2 1, 2 1, 2 2 1, 3 2 1,2 1

,

N N N N N N N

N N N N N N N N N N

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

+ + + + + + +

+ + + + + + + + +

 
 
 
 
 
 
 
 
 
 
 
 
  

…

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

… …

 (38) 

t
t

t
t

t t

t t

t t

t
t t

1, 1

2, 1
1

, 1
1

2, 11

2 3, 1

2 1, 1

,

( (0))

( (0))

( (0))
.

( (0))

( (0))

( (0))

N
N

N
N

N N

N N

N N

N N N

F

F

F

F

F

F

∗

θ

θ

θ

θ

θ

θ

+−

+− +

+−

+ +

+ +

+ +

= =

  
  
  
  
  
  
  
  
  
  
  
  

    

f

⋮⋮

⋮ ⋮

θθθθ  (39) 

The elements of ϕϕϕϕ  in Eq. (38) are calculated from the following equation: 

2
,s

, 2

H w t

,

,

( (0))1

(2 ( 1))

.

( (0))

= − + =
− −

= ≠









i j

i j

i j

i j

l
if i j

k m v i N v

if i j
v

θ
ϕ

π

θ
ϕ

 (40) 

Finally, the unknown coefficients of the wheel-rail contact force can be found from Eq. (37): 

t t t t

0
2 1 2 2 2 1.N N N N

F

v
−1 ∗

× × ×

−
=f ϕ θϕ θϕ θϕ θ  (41) 

As soon as the unknown coefficients of the contact force are found, the dynamic response of the beam and 

the moving wheel can be obtained from Eq. (33) and (35), respectively.  
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2.2 Parameters for assessment of long-term performance 

As has been discussed in Section 1, this study first considers mechanical energy dissipation in the 

substructure, represented by Kelvin-Voight elements under the individual sleepers, as a measure for 

evaluating long-term performance of railway track in service. As an engineering parameter, dynamic track 

stiffness variation was adopted. This quantity will be considered relative to the static track stiffness, which 

is therefore derived as well. 

2.2.1 Mechanical energy dissipation in the substructure 

The velocity response of the sleeper at 0x =  in the frequency-domain can be obtained using the frequency 

response in Eq. (19): 

( )
s,0 s,0 b2

s p b p b

p pj
ˆ ˆ ˆ( ) j ( ) (0, ),

j ( ) ( )

j
v w w

M c c k k

c kω
ω ω ω ω

ω ω

ω
= =

− + + + +

+
 (42) 

where the frequency response of the beam at 0x = , i.e. 
b

ˆ (0, )w ω , is given in Eq. (32). For one passage of 

the moving wheel, the energy dissipated by the substructure/ballast damping in the support located at 

0x =  is calculated as: 

s,0 s,0

2
diss,0 c,0 b( ) ( ) ,( )v t v tE F t dt c dt

+∞ +∞

−∞ −∞

= =∫ ∫  (43) 

in which 
s,0( )v t  is the velocity response of the sleeper at 0x =  in the time domain, and can be obtained by 

taking the inverse Fourier transform of Eq. (42). 

2.2.2 The static track stiffness 

Differential equations governing the static response of a discretely supported Timoshenko beam under a 

static load (at 
Fx x= ) are given as: 

( )
s

s

2 /2
b b

0 F p b s s, s2
/2

( ) ( )
( ) ( ) ( ),

N

i
i N

x w x
AG AG F x x k w il w x il

x x

ψ
κ κ δ δ

=−

∂ ∂
− = − − − −

∂ ∂ ∑  (44) 
 

2

b b
b2

( ) ( )
( ) 0.

x w x
EI AG AG x

x x

ψ
κ κ ψ

∂ ∂
− − + =

∂ ∂
 (45) 

The static deflection of the ith sleeper, i.e. 
s,iw , can be found from its static equilibrium equation: 
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p

s, b s

p b

( ).i

k
w w il

k k
=

+

 
  
 

 (46) 

One can now Substitute Eq. (46) into Eq. (44), take a Fourier transform with respect to x and derive the 

following equation: 

s

sF

s

/2
p b jj2

b b 0 b s
/2 p b

ˆˆ ( ) j ( ) e ( )e .
N

ilx

i N

k k
AG w AG F w il

k k
ξξκ ξ ξ ξκ ψ ξ −−

=−

+ = −
+

 
  
 

∑  (47) 

Furthermore, bˆ ( )ψ ξ  can be found from the Fourier transformation of Eq. (45): 

b b2

j
ˆ ˆ( ) ( ).

AG
w

EI AG

ξκ
ψ ξ ξ

ξ κ
=

+
 
 
 

 (48) 

The latter equation is substituted into Eq. (47) and the inverse Fourier transform is then applied in order to 

obtain the following expression for the static deflection of the beam: 

s

s

/2
p b

b 0 F b s s
/2 p b

( ) ( ) ( ) ( ),
N

i N

k k
w x F x x w il x il

k k=−

= ϒ − − ϒ −
+

 
  
 

∑  (49) 

where ( )xϒ is defined below: 

( )2 6
( ) sign( ),

12

AGx EI x
x x

EI AG

κ

κ

−
ϒ =

 
  
 

 (50) 

in which sign( )x is the sign function. It must be noted that in Eq. (49) the deflection of the beam at the 

sleeper locations, i.e. 
b s( )w il , is unknown. To be able to use this equation for obtaining the static deflection 

of the beam under the static load, 
b s( )w il must first be found. Eq. (49) is therefore solved 

s
1N +  times (at 

s s s
, / 2,..., / 2ix il i N N= = − ) and the following set of equations in matrix form is obtained: 

( )

s

s

s s s s

s s

b s s

s

b s

b

s

b s

s

b s

F

1

1,1 1,2 1, 1

2,1 2,2 2, 1

0

1,1 1,2 1, 1

2 2

1
2

0

1
2

2

N

N

N N N N

N N
w l l

N
w l

w F

N
w l

N
w l

x

φ φ φ

φ φ φ

φ φ φ

−

+

+

+ + + +

− −
ϒ

−
+

=

−

−    
    

 
   
        

  
   
   
   
       

      
  

    

⋮

⋮

⋯

⋯

⋮ ⋱ ⋮

⋯

( )

s

s

s

s

s

s

F

F

F

F

1
2

1
2

2

,

N
l

N
l

N
l

x

x

x

x

−
ϒ +

ϒ

ϒ −

ϒ

−

−

−

−

  
  

 
   
     

 
 
 
 
 
 
   

      
  

    

⋮

⋮

 (51) 

 

where the elements of the matrix φφφφ are defined as: 
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( )

( )( )

p b

p b

,

p b

s

p b

1 0

,

' '

i j

k k
i j

k k

k k
i j l i j

k k

φ

+ ϒ =
+

=

ϒ − ≠
+

  
   

  

 
  
 

 (52) 

in which 'i and 'j  are ( )s 2 1i N− −  and ( )s 2 1j N− − , respectively. The static deflection of the beam, 

( )bw x , can be obtained by solving Eq. (51) and substituting the solution into Eq. (49). The static stiffness 

of the beam may then be calculated as the ratio of the applied static force to the obtained static deflection. 

2.2.3 The dynamic track stiffness 

The dynamic track stiffness can be defined in different ways, see e.g. [12]. Two definitions of this 

parameter are proposed here and ‘tested’ in the framework of this paper; (1) the ratio of the static load 

(half the axle load or wheel load) to the dynamic displacement of the contact point defined in a moving 

reference system, and (2) the ratio of the contact force (including the static wheel load and dynamic terms) 

to the dynamic displacement of the contact point defined in a moving reference system. For the 

wheel/track model developed in this section, the first definition of the dynamic stiffness is mathematically 

given below: 

axleload
dyn,1

b

/ 2
.

( , / )

F
k

w x t x v
=

=
 (53) 

The beam displacement defined in Eq. (33) can be substituted into the latter equation, yielding the 

dynamic stiffness: 

t t

s

t t

t t

2
j ( )

( 1), ( 1)

0
dyn,1

( (0)) e

.
N N m x

l

m N n N n
m N n N

F

F v
k π

θ + + + +
=− =−

−=

∑ ∑
 

(54) 

Similarly, the second definition of the dynamic stiffness can be expressed as: 

s

t t

s

t t

t t

2
j ( )

2
j ( )

( 1), ( 1)

dyn,2

e

( (0)) e

.

v
m t

l

m
m

N N m x
l

m N n N n
m N n N

F

F

v
k

π

π

θ

+∞

=−∞

+ + + +
=− =−

−
=

∑

∑ ∑
 (55) 

Utilizing the latter equations, it is now possible to calculate minimum and maximum values, and 

subsequently the amplitude of the variation, for the dynamic stiffness over a certain length of the track. 

Since the periodic nature of the discrete supports is the only source of non-uniformity for the considered 

model, these values are obtained over a sleeper bay. In fact, maximum variation of the dynamic stiffness is 
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normalized with respect to the minimum static stiffness (i.e. the static stiffness calculated at 
s / 2x l= ) and 

the following parameter is introduced:  

s

dyn, dyn, dyn,

st,min st /2

max( ) min( )
100 100,i i i

x l

k k k

k k
=

  ∆ −
 × = ×       

 (56) 

where 
st ,mink  can be obtained using the mathematical formulation given in the previous subsection, and 

1,2i =  refers to the two definitions of the dynamic stiffness in Eqs. (54) and (55). 

3 Parametric study of track design and evaluation 

In this section, a parametric study is carried out with respect to the effect on energy dissipation in the 

substructure; afterwards the relation with the proposed engineering parameters (Eqs. (43) and (56)) is 

explored. The following design and operational variables are taken into consideration: speed of the 

moving wheel, magnitude of the unsprung mass, rail profile (bending stiffness, shear stiffness and mass), 

sleeper mass and spacing, rail pad stiffness and damping and ballast stiffness and damping. To each 

parameter a nominal value is assigned, corresponding to characteristics of typical Dutch track; a lower and 

an upper limit are assigned as well, so that for all parameters variation within a bandwidth is considered. 

Nominal values and lower and upper limits are given in Table 1.  Moreover, a static wheel load of 100 kN 

is used; a shear coefficient of 0.34 is assumed for the Timoshenko rail model [36], and the linearized 

contact stiffness Hk  is calculated as 223 3 10 Q× ⋅ , where Q is the static wheel load [37]. A convergence 

study is carried out in order to determine the number of sleepers required for simulations. Obtained results 

are shown in Fig. 2. It can be seen that the total number of 15 sleepers is sufficient for a reliable 

calculation of the energy dissipation in the substructure. Moreover, the importance of the beam theory 

used in the mathematical model is investigated. Obtained results are shown in Fig. 3, showing the 

dissipated energy in the substructure for both beam models and using nominal values in Table 1. As can 

be seen, there is a significant difference, particularly at higher speeds for which the Euler model 

underestimates the dissipated energy. Therefore, the Timoshenko model is employed for the further 

analysis in this paper. 

Table 1. Nominal values and lower and upper limits for the parameters of the model 

Parameters Lower value Nominal value Upper value 
Rail 

Bending stiffness (EI), MNm2 - 4.25 (54E1 profile) 6.11 (60E1) 
Mass per length (ρA), kgm-1 - 54.4 (54E1 profile) 60.34 (60E1) 

Sleeper   
Sleeper mass (Ms), kg 50 142.5 202 

Distance between sleepers (ls), m 0.5 0.6 0.7 
Pads 

Pad stiffness (kp), MNm-1 30, 200 1000 1000* 
Pad damping (cp), kNm-1s 20 30 1970 

Ballast 
Ballast/subgrade stiffness (kb), MNm-1 40 50 60 
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Ballast/subgrade damping (cb), kNm-1s - 55 - 
Moving wheel 

Speed (km/h) 0 - 300 
Unsprung mass (kg) 600 900 1200 

 

* The pad stiffness in the order of 1000 MN/m corresponds to the Corkelast pad used for typical 
Dutch track 

 

 

 

 Fig. 2. Model convergence; v = 200 km/h and the nominal values listed in Table 1 have been used for wheel/track 
parameters 

 

 

 Fig. 3. Dissipated energy calculated using Euler and Timoshenko models; nominal values listed in Table 1 have been 
used for wheel/track parameters 

3.1 Wheel/track receptance 
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The wheel-track system under consideration can be characterized by its receptance function. Therefore, 

the response to a unit harmonic force is examined here. In the literature, analytical formulations are 

available [23, 38, 39], providing information on resonance behavior of railway tracks. However, they do 

not include a moving wheel. It will be shown that different results are obtained for the receptance 

including the unsprung vehicle mass, notably in the low-frequency range. In order to find the receptance 

function for the model, a discretely supported Timoshenko beam coupled to a wheel mass is considered, 

and response of the beam to a unit harmonic force is obtained utilizing the approach proposed in [40]. 

According to this approach, discrete supports, and similarly the wheel-beam interaction in this study, are 

represented by corresponding external forces. Response of the model to all external forces is then obtained 

employing Green’s function of an infinite Timoshenko beam and the superposition principle. A more 

detailed explanation of the procedure is provided in Appendix A. 

Using the nominal values of track parameters given in Table 1 and considering three different values of 

the unsprung mass, the frequency response of the wheel/track model is obtained and illustrated in Fig. 4. It 

can be observed that the wheel mass (or, dynamic wheel/track interaction) has a significant influence on 

the frequency response. In fact, compared to the original track model (solid curve in Fig. 4), the first 

resonance peak in the frequency response of the rail is shifted to a lower frequency. This is important 

since it will be shown in the next subsections that the first resonance frequency of the wheel/track model 

plays a significant role in the analysis of the dynamic stiffness variation of the track and the energy 

dissipation in the substructure. The presence of the sharp peak available at ~900 Hz in the frequency 

response of the model (referred to as the ‘pinned-pinned frequency’) is due to the fact that the response is 

calculated at midspan. It can be seen that the wheel mass has no significant effect on the pinned-pinned 

frequency. 
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 Fig. 4. Amplitude of the wheel/track receptance calculated at midspan  

3.2 Dissipated energy; a parametric study 

This paragraph considers the effect of track design variables on the mechanical energy dissipation in the 

substructure, considering nominal, minimum and maximum values as listed in Table 1. For the parametric 

study carried out in this subsection, the dissipated energy in Eq. (43) is normalised with respect to the 

ballast damping, cb. Results are generally depicted graphically as a function of the train speed. 

The effect of the substructure/ballast stiffness is illustrated in Fig. 5 and is significant. For lower 

values of the ballast/soil stiffness (i.e. soft trackbed foundations), the dissipated energy grows rapidly and 

rather uniformly with the speed. For an increasingly stiff substructure a different behavior appears, with a 

much less rapid growth and at the same time a distinct peak in the speed domain. For example, for the 

ballast stiffness of 200 MN/m, a main peak appears around 155 km/h. This can be explained by the fact 

that at this speed the sleeper passing frequency (i.e. s/v l ) coincides with the first resonance peak in the 

receptance function of the wheel/track model as discussed in the previous subsection. A second, smaller 

peak is observed at the speed of 77.5 km/h. This peak can be explained by the presence of multiples of the 

sleeper passing frequency in the contact force, and the frequency of the second dynamic term, i.e. 

( )2 sexp 2 ( )2F j tv lπ , which is close to the first resonance frequency of the wheel/track model. A three-

dimensional (3D) plot provides a more comprehensive representation of substructure dissipation in the 2D 

substructure stiffness – speed domain; such a plot is therefore shown in Fig. 6. From this figure the 

following conclusions can be drawn with practical relevance: (i) the optimum substructure stiffness 

depends strongly on the operational speed regime; for standard passenger and freight transport a higher 

stiffness is favorable; (ii) the level of mechanical energy, cyclically dissipated in the substructure  - and 

therefore the degradation of high-speed tracks - is higher as compared to conventional lines (roughly with 

a factor 2 to 3), and (iii) the degradation may be very sensitive to particular train velocities, due to 

resonances in the track receptance. At 300 km/h, subgrade stiffening may reduce the sensitivity to 

degradation with a factor up to 7-8. It is important to remark that these factors say something about the 

susceptibility to degradation at the onset of the loading process and may change over the service life, 

when track unevenness starts to grow and needs to be incorporated in the modeling. 

According to the simulation, the dissipated energy grows without any limit as a function of speed. 

Physically, such unbounded behavior does not make sense. This phenomenon is due to the model adopted 

in this paper, which is only valid in the subcritical speed domain and cannot be employed for critical or 

transcritical load speeds, exceeding the Rayleigh wave speed of surface waves. The beam model has a 

critical velocity equal to the speed of bending/shear waves travelling through the beam, which is much 
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higher. In the framework of this study, this is not a limitation because of the fact that nearly all trains run 

at subcritical speeds during daily operation.  

 

 bcFig. 5. Effect of ballast/subgrade stiffness on the dissipated energy; unit damping , and nominal values for other 

parameters 

 

 

 
bcFig. 6. 3D plot of the dissipated energy for the ballast/subgrade stiffness range 25-205 MN/m; unit damping , and 

nominal values for other parameters 

The effect of the railpad stiffness is shown in Fig. 7. The influence of this parameter on the 

dissipated energy and the long-term degradation is less significant as for the ballast/substructure stiffness; 

however, degradation increases with the pad stiffness for the entire speed domain. Especially for high-
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speed tracks this may become an important parameter, given the cyclic and cumulative effect of 

dissipation.   

 

 bcFig. 7. Effect of pad stiffness on the dissipated energy in the substructure; unit damping , and nominal values for other 

parameters 

Fig. 8 shows the influence of the unsprung mass on the energy dissipated in the substructure. It can be 

concluded that the unsprung mass has a negligible effect on the long-term performance/degradation of the 

substructure. It should be mentioned here that this conclusion needs to be considered with care and in the 

framework of this study, which examines the sensitivity of a spatially invariant and geometrically perfect 

track to degradation. The effect of the unsprung vehicle mass may become significant for spatially variant 

and irregular track.   
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bcFig. 8. Effect of unsprung mass on the dissipated energy in the substructure; unit damping , and nominal values for 

other parameters 

The influence of the sleeper distance on the dissipated energy is illustrated in Fig. 9. Increasing 

the distance between sleepers results in a higher rate of degradation for the track for all speeds. Moreover, 

the importance of the first resonance frequency of the wheel/track model becomes more pronounced for 

larger values of the sleeper distance.  

Fig. 10 and Fig. 11 show the results obtained for different values of sleeper mass and the pad damping, 

respectively. Although the effect of these parameters becomes more important with increasing speed, they 

have a negligible influence on the energy dissipated in the substructure. Here, the same remark should be 

added as for the unsprung mass: the same conclusion is not necessarily valid for spatially variant and 

irregular track. The effect of the rail profile (cross-sectional properties) is illustrated in Fig. 12, showing 

that a stiffer rail increases the long-term performance for the entire speed domain. 

 

 
bcFig. 9. Effect of sleeper distance on the dissipated energy in the substructure; unit damping , and nominal values for 

other parameters 
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bcFig. 10. Effect of sleeper mass on the dissipated energy in the substructure; unit damping , and nominal values for other 

parameters 

 

 

 
bcFig. 11. Effect of the pad damping on the dissipated energy in the substructure; unit damping , and nominal values for 

other parameters  
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bcFig. 12. Effect of rail profile on the dissipated energy in the substructure; unit damping , and nominal values for other 

parameters  

In order to allow for a comparison of the relative effect of a variation of different track design 

parameters at a given train velocity, minimum and maximum values of the dissipation obtained at three 

practically relevant speeds, v = 80, 140 and 250 km/h, are taken from these figures and presented in Table 

2. This table allows for an easy comparison of the efficiency of different track design modifications for a 

given train speed. For example, at 250 km/h, optimizing the ballast/subgrade stiffness is 2.9 times more 

efficient than optimizing the railpad stiffness. It may be concluded in general that, apart from the 

operational train speed, the largest effect in the context of sensitivity to degradation can be achieved by 

adapting the ballast/substructure stiffness; also the railpad stiffness, the sleeper spacing and rail profile can 

have significant effects, whereas other parameters have a negligible effect – given the assumptions with 

respect to the track in this study. 

Table 2. Minimum and maximum values of the dissipated energy in the substructure (N.m, multiplied by 410 ) 
and their difference (∆ ) calculated for a single passing axle 

Speed/ 
Parameters 

bk  pk  
sl  wm  sM  pc  Rail profile 

min max ∆  min max ∆  min max ∆  min Max ∆  min max ∆  min max ∆  min max ∆  

80 km/h 0.11 0.58 0.47 0.16 0.30 0.14 0.26 0.35 0.09 0.29 0.34 0.05 0.30 0.31 0.01 0.30 0.30 0.00 0.22 0.30 0.08 

140 km/h 0.24 0.99 0.75 0.25 0.56 0.31 0.44 0.71 0.27 0.55 0.57 0.02 0.56 0.57 0.01 0.55 0.56 0.01 0.40 0.56 0.16 

250 km/h 0.26 1.86 1.60 0.47 1.02 0.55 0.83 1.23 0.40 1.01 1.03 0.02 0.97 1.05 0.08 0.99 1.02 0.03 0.74 1.02 0.28 
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3.3 The dynamic track stiffness; a parametric study 

The dynamic track stiffness is defined as the ratio of the applied force to the dynamic displacement 

response of the track [12]. For a railway track under a moving axle load, the dynamic track stiffness can 

also be described as the resistance against deflection experienced in the wheel-rail contact by the moving 

axle load. As exposed in ref. [3], fluctuations of the dynamic stiffness along the track lead to variations in 

the wheel/track interaction force. These variations imply a spatial variation of the mechanical energy 

contained in the moving displacement field, which is partly dissipated in the track, especially at peak 

fluctuations. Therefore, the dynamic stiffness, and more specifically its spatial variation along the track, is 

an important and practically relevant parameter that may indicate the track degradation rate. A parametric 

study is carried out in this subsection, examining the relation between track parameters and the dynamic 

stiffness. It is important to realise that, given the assumptions of this study, the variation of the dynamic 

stiffness in the model is exclusively due to the discrete sleeper spacing, whereas practical experience with 

this parameter [12]  is always based on real tracks, with the full range of sources of discontinuity that exist 

in practice.  

Adopting the nominal values, the lower and the upper limits of track parameters listed in Table 1, 

the non-dimensional definition of the dynamic stiffness variation according to Eq. (56) can be plotted as a 

function of speed. For the first definition of the dynamic stiffness, the effects of track parameters (except 

the pad damping which has no significant influence) are illustrated in Fig. 13. The operational speed 

window, with a lower limit of 80 km/h and an upper limit of 140 km/h, for conventional rail networks has 

been indicated in this figure using two dashed lines.  A critical velocity can be observed with extreme 

stiffness variation. At this critical velocity, the sleeper passing frequency coincides with the first 

resonance frequency of the wheel/track model. For speeds exceeding 200 km/h, the stiffness variation is 

relatively small and becomes nearly independent of speed and other track parameters. It is clear from Fig. 

13 that the relationships of substructural energy dissipation and dynamic stiffness variation with the speed 

are entirely different. The effect of a higher ballast/soil stiffness, leading to a higher stiffness variation and 

therefore to an assumed higher degradation rate, is predicted incorrectly. At the same time, the effects of 

increasing railpad stiffness, increasing sleeper spacing, decreasing rail profile stiffness, leading to a higher 

degradation rate, are correctly predicted, as well as the either negligible or non-unique effects of railpad 

damping, sleeper mass and unsprung mass.  Summarizing, it may be concluded that the dynamic stiffness 

according to (Eq. (54)) is an inappropriate parameter to predict the sensitivity to degradation, given the 

model assumptions (track uniformity and straightness) in this study. In other words, this engineering 

parameter cannot be used at the design stage. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 Fig. 13. Effect of different parameters on the first definition (Eq. (54)) of the dynamic stiffness variation; (a) ballast stiffness, 
(b) pad stiffness, (c) sleeper distance, (d) unsprung mass, (e) sleeper mass and (f) rail profile 

Similarly, the effect of track parameters on dynamic stiffness variation is investigated using the 

second definition in Eq. (55); obtained results are shown in Fig. 14. Compared to the first definition, a 

different behavior is found as a function of speed, with no peak and the largest magnitude of the variation 

at the highest speed (300 km/h). Physically, this second definition makes more sense than the first one, as 

it uses  the ratio of the total contact force to the deflection of the contact point. In this case, the dynamic 

stiffness appears to be dominated by dynamic fluctuations of the contact force, in particular in the high-

speed range. Also here, the effect of the ballast/subsoil stiffness is incorrectly predicted, together with 

other parameters, whereas the effect of other parameters such as the railpad stiffness and the rail profile 

cross-sectional properties is correctly predicted. It can be concluded that the dynamic track stiffness is 

inappropriate for assessment of a railway track with respect to long-term behaviour, when this track is 

idealized assuming invariability of cross-sectional parameters and straightness. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 Fig. 14. Effect of different parameters on the second definition (Eq. (55)) of the dynamic stiffness; (a) ballast stiffness, (b) pad 
stiffness, (c) sleeper distance, (d) unsprung mass, (e) sleeper mass and (f) rail profile  

4 Conclusions 

This paper studied the effect of railway track design parameters on the expected long-term performance, 

assuming spatial invariability (except for the presence of the discrete sleepers) and geometrical 

straightness of the track. The susceptibility of the track to degradation was objectively quantified by 

calculating the mechanical energy dissipated in the substructure under a moving axle load for variations of 

different track parameters. Hereto, a frequency-domain two-layer model was used of a discretely 

supported rail coupled with a moving, unsprung mass. The analysis showed that, apart from the 

operational train speed, the ballast/substructure stiffness is the most significant parameter influencing 

energy dissipation. Increased degradation rates can therefore be expected for ballasted high-speed lines 
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with respect to conventional track; the difference is roughly a factor 2 to 3. The difference between very 

poor and stiff subsoil is roughly a factor 7 to 8 for a high-speed line at 300 km/h; for conventional track, 

this can be in the same range. However, in the range from 100 – 200 km/h subgrade stiffening is not 

necessarily a solution, as the dissipation shows localized peaks as a function of the speed with increasing 

stiffness. These factors say something about the susceptibility to degradation at the onset of the loading 

process and may change over the service life, when track unevenness starts to grow and needs to be 

incorporated in the modeling. Also railpad stiffness, sleeper distance and rail profile were found to have 

considerable effect and therefore to be effective control parameters, with degradation increasing with 

railpad stiffness, increasing sleeper distance and decreasing rail profile bending stiffness. The unsprung 

vehicle mass and sleeper mass were found to have no significant influence, however, only against the 

background of the assumption of a perfect (invariant and straight) track. Apart from dissipated mechanical 

energy, the suitability of the dynamic track stiffness was explored as an engineering parameter to assess 

the sensitivity to degradation in the design stage. It was found that this quantity is inappropriate in the case 

of an idealized track. That leaves the possibility open that the parameter works well, even theoretically, for 

realistic tracks including the full range of possibilities for spatial variation of cross-sectional properties 

that exist in practice.  
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Appendix A. Receptance of a discretely supported Timoshenko beam coupled with an oscillator 

In this appendix a mathematical formulation is derived of the receptance of an infinite Timoshenko beam 

with discrete supports, coupled with a stationary wheel mass. A schematic overview of the model is 

shown in Fig. 1; the only difference is that, instead of a moving wheel, a stationary wheel is considered 

here and that the model is excited by a harmonic force of amplitude 
0F , at Fx x= . The response of an 

infinite Timoshenko beam to a unit harmonic force at x x′= , i.e. the Green’s function, ( , )G x x′ , is given 

as [41]: 

1 2j
1 2( , ) e e ,k x x k x xG x x u u′ ′− − − −′ = +  (A.1) 

where 1k and 2k are complex wavenumbers defined as follows: 
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Moreover, 1u and 2u are given by: 
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The discrete supports and the wheel-track coupling can be replaced by corresponding external forces, and 

the total response of the Timoshenko beam at any arbitrary point x can be found using the Green’s 

function defined in (A.1) and the superposition principle: 

s

s

/2

b 0 F s b s s w b
/2

( ) ( , ) ( ) ( , ) (0) ( ,0),
N

i N

W x F G x x Z W il G x il Z W G x
=−

 
= − +  

 
∑  (A.6) 

where 
sZ and 

wZ are the dynamic stiffness caused by the supports and the wheel, respectively. The last 

term in the latter equation is added to the total response of the infinite Timoshenko beam with discrete 

supports available in the literature, in order to include the track-wheel coupling and investigate its 

influence on frequency response of railway track. The following analytical expressions can be derived for 

sZ and 
wZ : 

( )( )
( ) ( )

2
p p s b b

s 2
s p b p b

j j
,

j

k c M c k
Z

M c c k k

ω ω ω
ω ω

+ − + +
=

− + + + +
 (A.7) 

2
H w

w 2
H w

.
k m

Z
k m

ω
ω

=
−

 (A.8) 

It must be noted that the right-hand side of (A.6) contains the unknown response of the model at supports 

locations. Therefore, in order to be able to obtain the response at any arbitrary location along the track by 

utilizing this equation, the unknown response of the system at the support locations must be found first. 

This can be carried out by setting 
s s s, / 2,..., / 2x il i N N= = − , in (A.6), generating Ns+1 linear equations and 

solving the system of equations. 
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