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1
Introduction

Closed-loop control systems, which utilize output signals for feedback to generate control inputs, can
achieve high performance and robustness against system changes and uncertainties. However, robust-
ness of feedback control loops can be lost if system changes and uncertainties are too large. Adaptive
control combines the traditional feedback structure with providing adaptation mechanisms that adjust
a controller for a system with parametric, structural and environmental uncertainties to achieve desired
system performance [1]. The design of control methods like PID, pole placement, optimal or nonlinear
control methods is based on certain knowledge of the system parameters. In contrast, adaptive con-
trollers do not need such knowledge. They adapt to parameter uncertainties by using performance error
information on line. They can also be implemented on top of robust and optimal control methods, which
are of fixed gain nature. While robust control is a powerful method to overcome parameter variations of
the system model, it also depends on the range of uncertainty domain itself [2]. For example, sometimes
a large amount of uncertainty can be handled, while another time only a small amount of uncertainty
can be accommodated.

Interest in adaptive controls started growing in the 1950s due to the need of high performance flight
control systems. Model reference adaptive control (MRAC) was developed to solve the autopilot problem
in [3]. An adaptive pole placement scheme based on the optimal linear quadratic problem was given
by [4]. State space techniques and stability theory based on Lyapunov were introduced in the 1960s.
Developments in Dynamic Programming [5] and stochastic control, system identification and parame-
ter estimation reformulated adaptive control methods. In the 1970s, the development and progress in
computers and electronics made the implementation of complex controllers feasible and contributed to
an increased interest in applications of adaptive control. A Lyapunov stability based design approach
was used to design and analyze MRAC schemes [6]. By the mid 1980s, robust adaptive control methods
had been developed to counteract the lack of robustness in adaptive control. In the 1990s, efforts were
made to extend results for linear systems to non linear systems. Also, neural networks were used ap-
proximators of unknown nonlinear functions, which led to the use of online parameter estimators to train
or update the weights of the neural networks. In the 2000s, Reinforcement Learning (RL) had started
being used for adaptive control.

A major constraint for adaptive controllers is that to adapt to uncertainties and converge to new parame-
ters successfully, signals which are generated inside the time varying feedback loop of the unknown plant
i.e. the regression vectors, must be persistently exciting. In practice, even after ensuring persistence
of excitation, the estimated parameter may converge to some unexpected position due to measurement
noise. Another drawback is that they do not always adapt well to non-linear systems. Also, most of the
adaptive control methods work well primarily for linear systems. In addition, there are always unmodeled
dynamics at high frequencies, which lead to lack of initial stability.

In this thesis, RL has been used for an adaptive controller for an Anti-Lock Braking System (ABS) con-
troller. In contrast to [7], which gives a data-driven method to apply model free Q-learning for ABS
control, model based RL has been used here. Model based Adaptive Dynamic Programming (ADP) using
Value Iteration has also been used in [8] for wheel slip control. But the difference is that [8] uses a neural
network as the value function approximator, while this thesis uses a different function approximator for
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2 1. Introduction

the value function, which is a simplified implementation of the method given by [9]. This is because the
disadvantage of approximators like expansions with fixed or adaptive basis functions, regression trees,
local linear regression and deep neural networks is that they are difficult to tune for convergent learning.
Another difference is that the focus in [8] is to find an optimal switching schedule, while the focus of
this thesis is to obtain a smooth control input with minimum chattering and steady state error. [9] uses
fuzzy sets, which also have been used by [10] for ABS control. The advantage of fuzzy control is that it
is able to handle the uncertainties in the slip dynamics very well.

1.1. Goal of the thesis
Given a baseline nonlinear controller of an ABS (Anti-lock Braking System) of a passenger car, obtained
as a symbolic approximation of an optimal control law derived as a solution to the Bellman equation, we
want to develop a robust and convergent method to adapt online its parameters to dry asphalt and wet
asphalt, in order to take care of mild process variations or a model-plant mismatch e.g the road surface
might suddenly change from wet asphalt to dry asphalt or vice versa.

1.2. Outline
The thesis has been outlined in the following way:

1. Chapter 2 explains the preliminaries i.e. model based Reinforcement Learning, the Bellman equa-
tion and the RL methods used for robustness and adaptation.

2. Chapter 3 explains the wheel dynamics, tire model, current control principles and the performance
criteria used for ABS. It also shows results for a hand tuned Proportional-Integral (P-I) controller
and a hand tuned proportional controller.

3. Chapter 4 explains the application procedure of RL to ABS and the results for initial robustness of
the controller on dry asphalt and wet asphalt.

4. Chapter 5 explains the details of the adaptation of the control policy and results for the adaptations
of both nominal and robust policies to dry asphalt and wet asphalt. It also shows results for adaptive
P-I control e.g. adaptive or fixed proportional and integral gains with fixed or adaptive slip setpoint.

5. Chapter 6 explains the conclusions and the future work possible.



2
Preliminaries

This chapter presents the concepts of Reinforcement Learning that will be used to obtain the control
policy, and make it robust and adaptive.

2.1. Model-Based Reinforcement Learning

Reinforcement learning (RL) is a machine learning method that can be used for self tuning adaptive
control and optimal control. It is based on the model used by humans for learning. In the RL setting,
there is an agent and an environment, and they are explicitly separated from each other. The environment
represents the system in which the task is defined. The agent is a decision maker, whose goal it is to
accomplish the task. The problem is solved by letting the agent interact with the environment. Each
action of the agent changes the state of the environment. The environment responds by giving the
agent a reward for what it has done. Based on this reward, the agent adapts its behavior. The agent
then observes the state of the environment and determines what action it should perform next. In this
way, the agent learns to act, such that its reward is maximized or minimized. RL can be model-based
or model-free. If the model of the system is unknown, RL is model-free. In this thesis, model-based
RL has been used since the dynamic system of interest is known to be described by the state transition
function:

𝑥፤ዄኻ = 𝑓(𝑥፤ , 𝑢፤) (2.1)

where 𝑥፤ , 𝑥፤ዄኻ ∈ 𝒳 ⊂ ℝ፧ are the current and next state respectively, and 𝑢፤ ∈ 𝒰 ⊂ ℝ፦ is the current
input. This function does not have to be stated by explicit equations; it can be e.g. a generative model
given by a numerical simulation of complex differential equations. The control goal is specified through
a reward function which assigns a scalar reward 𝑟፤ዄኻ ∈ ℝ to each state transition from 𝑥፤ to 𝑥፤ዄኻ:

𝑟፤ዄኻ = 𝜌(𝑥፤ , 𝑢፤ , 𝑥፤ዄኻ) (2.2)

This function is defined by the user and typically calculates the reward based on the difference between
the current state and a given constant reference state 𝑥፫ that should be attained. The goal is to find an
(approximately) optimal control policy 𝜋 : 𝒳 → 𝒰 such that in each state it selects a control action so
that the expected cumulative discounted reward over time, called the return, is maximized:

𝑅᎝ = 𝐸{
ጼ

∑
፤዆ኺ

𝛾፤𝜌(𝑥፤ , 𝜋(𝑥፤), 𝑥፤ዄኻ)} (2.3)

Here 𝛾 ∈ [0, 1] is a discount factor and the initial state 𝑥ኺ is drawn uniformly from the state space domain
𝒳 or its subset. The return is approximated by the value function 𝑉᎝ : 𝒳 → ℝ defined as:

𝑉᎝(𝑥) = 𝐸{
ጼ

∑
፤዆ኺ

𝛾፤𝜌(𝑥፤ , 𝜋(𝑥፤), 𝑥፤ዄኻ)| 𝑥ኺ = 𝑥} (2.4)

3



4 2. Preliminaries

2.2. The Bellman equation

Equation 2.4 can be written as a recursive equation between the value function at one time step and the
value function at the next time step, known as the Bellman equation [5]:

𝑉(𝑥) = 𝜌(𝑥, 𝑢, 𝑓(𝑥, 𝑢)) + 𝛾𝑉(𝑓(𝑥, 𝑢)) (2.5)

An approximation of the optimal V-function, denoted by �̂�∗(𝑥), can be computed by solving the Bellman
optimality equation:

�̂�∗(𝑥) = max
፮∈𝒰

[𝜌(𝑥, 𝑢, 𝑓(𝑥, 𝑢)) + 𝛾�̂�∗(𝑓(𝑥, 𝑢))] . (2.6)

In discrete state and action space, the number of states and actions are finite. With continuous-valued
state and input spaces, the number of states and actions are infinite. Policy iteration and value iteration
cannot be used directly to solve the Bellman equations. A solution can be found if one obtains an approx-
imation to the optimal value function instead of the exact optimal value function i.e. using approximate
dynamic programming (ADP) or Reinforcement learning (RL) [11]. As given in [9], function approxima-
tors like expansions with fixed or adaptive basis functions, regression trees, local linear regression and
deep neural networks can be used to represent the model and its dynamics i.e. policy mappings. The
disadvantage of these approximators is that they are difficult to tune for convergent learning and can also
affect the control performance negatively e.g. chattering control signals and steady state errors. Thus,
focus is required not only on finding the control policy but also on achieving good control performance.

2.3. Fuzzy V Iteration

To obtain the optimal value function 𝑉∗(𝑥), [9] uses Fuzzy-V iteration method based on Fuzzy Q iteration
[12]. Triangular membership functions are defined which are centered at points 𝐶 = {𝑐ኻ, 𝑐ኼ, ...., 𝑐ፍ}
distributed over a rectangular grid in state space such that

𝜙፟,፣(𝑐።) = 1 for 𝑗 = 𝑖
𝜙፟,፣(𝑐።) = 0 for 𝑗 ≠ 𝑖 (2.7)

The functions are normalized i.e. ∑ፍ፣዆ኻ 𝜙፟,፣(𝑥) = 1 and for a state variable 𝑗 are defined as:

𝜙፟,ኻ(𝑥፣) = max (0,min (1,
𝑐ኼ − 𝑥፣
𝑐ኼ − 𝑐ኻ

))

𝜙፟,ፍᑛ(𝑥፣) = max (0,min (1,
𝑥፣ − 𝑐ፍᑛዅኻ
𝑐ፍᑛ − 𝑐ፍᑛዅኻ

))

𝜙፟,።(𝑥፣) = max (0,min (
𝑥፣ − 𝑐።ዅኻ
𝑐። − 𝑐።ዅኻ

,
𝑐።ዄኻ − 𝑥፣
𝑐።ዄኻ − 𝑐።

))

(2.8)

for 𝑖 = 2, 3, 4, ....𝑁፣ዅኻ. The value function is approximated as 𝑉(𝑥) = 𝜃ዉ𝜙፟(𝑥)where 𝜙፟ = [𝜙፟,ኻ 𝜙፟,ኼ, ....𝜙፟,ፍ]ዉ,
and 𝜃 = [𝜃ኻ 𝜃ኼ .....𝜃ፍ]ዉ is a parameter vector found by the iteration

𝜃። ← max፮∈𝒰
[𝜌(𝑐። , 𝑢, 𝑓(𝑐። , 𝑢)) + 𝛾𝜃ዉ። 𝜙፟(𝑓(𝑐። , 𝑢))] until ‖𝜃፥ − 𝜃፥ዅኻ‖ጼ ≤ 𝜖፟ (2.9)

where 𝜌(⋅) is the reward function, 𝑓(⋅) is the state transition function, 𝛾 < 1 is the discount factor,
𝒰 = {𝑢ኻ, 𝑢ኼ, 𝑢ኽ....𝑢ፌ} and 𝜖፟ is a user defined threshold.

2.4. Robust methods for value function estimation

The value function can be obtained in a robust way to account for uncertainties in the transition model.
Also, due to multiple possible transition models with each having its own uncertainty, one input for the
current state can lead to multiple states:

𝑥፤ዄኻ,፣ = 𝑓፣(𝑥፤ , 𝑢፤) for 𝑗 = 1, 2, ...𝑛፦ (2.10)

where 𝑛፦ is the number of transition models. If the controller is trained for all such transitions or a
combination of such transitions, initial robustness before adaptation can be achieved.



2.5. Policy Formulation 5

Algorithm 1: Fuzzy V - Iteration for discrete actions and continuous states
Input: 𝑥ኺ, 𝜌, 𝛾, 𝜖፟, 𝒳, 𝒰
Define 𝐶 = {𝑐ኻ, 𝑐ኼ, ...., 𝑐ፍ} for each state variable in 𝒳
Define 𝜙፟ = [𝜙፟,ኻ 𝜙፟,ኼ, ....𝜙፟,ፍ]ዉ with ∑ፍ፣዆ኻ 𝜙፟,፣(𝑥) = 1 for each state variable in 𝒳
𝜃ኺ ← 0
𝑙 ← 0
do

for 𝑖 = 1…𝑁 do

𝜃። ← max፮∈𝒰 [𝜌(𝑐። , 𝑢, 𝑓(𝑐። , 𝑢)) + 𝛾𝜃ዉ𝜙፟(𝑓(𝑐። , 𝑢))]
end
𝑙 ← 𝑙 + 1

while‖𝜃፥ − 𝜃፥ዅኻ‖ጼ ≤ 𝜖፟;
Output: 𝜃∗ = 𝜃፤

2.4.1. Average method

The optimal value function can be obtained from maximizing the average of the RHS of the Bellman
equation of all the models involved to make the controller more robust:

𝑉∗(𝑥) = max
፮∈𝒰

1
𝑛፦

፧ᑞ
∑
፣዆ኻ
[𝜌(𝑥, 𝑢, 𝑓፣(𝑥, 𝑢)) + 𝛾𝑉∗(𝑓፣(𝑥, 𝑢))] (2.11)

2.4.2. Max-Min method

Another way to make the controller robust is to obtain the optimal value function by choosing the
maximum of the minimum of the RHS of the Bellman equation among all the models i.e maximize
performance for the worst case:

𝑉∗(𝑥) = max
፮∈𝒰

( min
Ꮃ፟ , Ꮄ፟ ,… ᑟ፟ᑞ

([𝜌(𝑥, 𝑢, 𝑓ኻ(𝑥, 𝑢)) + 𝛾𝑉∗(𝑓ኻ(𝑥, 𝑢))], …… , [𝜌(𝑥, 𝑢, 𝑓፧ᑞ(𝑥, 𝑢)) + 𝛾𝑉∗(𝑓፧ᑞ(𝑥, 𝑢))]))
(2.12)

2.5. Policy Formulation

There are two primary methods to derive the control policy from the value function [9]: online and offline
maximization.

2.5.1. Hill climbing policy

The first method is based on an online maximization of the RHS of the Bellman optimality equation:

𝑢∗ = argmax
፮∈𝒰

[𝜌(𝑥, 𝑢, 𝑓(𝑥, 𝑢)) + 𝛾𝑉 (𝑓(𝑥, 𝑢))] (2.13)

The advantage of this method is that stability is guaranteed since it is hill climbing the Lyapunov function
[11]. The first disadvantage is that maximization is a computationally intensive process; using the
simplest method produces only discrete actions. The second disadvantage is that the process model
must be available for online use; if the process model is computationally intensive, then the process
takes more time.

2.5.2. Interpolated policy

The second method applies the Bellman equation off-line and uses basis functions to interpolate online
(interpolated policy). This method is used for this thesis. For all states 𝑐።, 𝑖 = 1, 2, … , 𝑁, the optimal
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control action 𝑝። is computed offline:

𝑝። = argmax
፮∈𝒰

[𝜌(𝑐። , 𝑢, 𝑓(𝑐። , 𝑢)) + 𝛾𝜃ዉ𝜙፟ (𝑓(𝑐። , 𝑢))] (2.14)

and the control actions are collected in a vector: 𝑝 = [𝑝ኻ, … , 𝑝ፍ]
ዉ ∈ 𝑈ፍ. In an arbitrary state 𝑥, the

corresponding control action is then obtained by interpolation:

𝑢 (𝑥) = 𝑝ዉ𝜙፟ (𝑥) (2.15)

where 𝜙፟ (𝑥) are the same basis functions as defined for 𝑉(𝑥). The advantage of this method is its
computational simplicity: most computations are done off-line (vector 𝑝 is actually obtained for free as a
byproduct of the fuzzy value iteration algorithm) and the online interpolation is computationally cheap.
Another advantage is that (2.15) directly produces continuous control actions. However, the control
signal is not necessarily smooth and the interpolation can also result in a steady-state error. Therefore,
[9] proposes a symbolic approximation method which is computationally effective and also yields smooth
controls. A simplified version of this method is applied here. The policy is approximated analytically. For
a typical optimal control problem, the policy surface can be split into saturated parts where the control
signal attains the minimal or maximal possible value, and a rather steep transition between the two parts.
The transition is generally nonlinear, but often can be well enough approximated by a linear function.
The overall policy is then described by:

𝑢 (𝑥) = sat(𝜓𝜑(𝑥)) (2.16)

with 𝜓 obtained by using linear regression on samples of the steep transition augmented with samples
on the boundaries between the transition and the saturated hyper planes, and 𝜑(𝑥) being the basis
function vector. The function sat(⋅) defined as follows:

sat(𝑧) = max (𝑈min, min (𝑈max, 𝑧))

The control policy is approximated as a piece-wise linear function with 𝑛 parameters and 𝑛 basis functions:

𝑢(𝑥) = sat([𝜓ኻ 𝜓ኼ 𝜓ኽ . . . 𝜓፧ዄኻ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥ኻ
𝑥ኼ
.
.
𝑥፧
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

) = sat(𝜓ኻ𝑥ኻ + 𝜓ኼ𝑥ኼ + .....𝜓፧𝑥፧ + 𝜓፧ዄኻ) (2.17)

where 𝜓ኻ, 𝜓ኼ,.....,𝜓፧ዄኻ are the policy parameters and 𝑥ኻ, 𝑥ኼ,....., 𝑥፧ are the state variables.

2.6. Actor-only RL methods

A model of the value function can be learned from samples corresponding to single steps in the trajecto-
ries of the agent. Such a model is called a critic and the policy is called the actor. As given in the review
[13], RL algorithms which search for a policy in the state action space can be divided into into three
groups: actor-only, critic-only and actor-critic methods. The majority of actor-only algorithms work with
a parameterized family of policies and optimize the cost defined directly over the parameter space of the
policy. A major advantage of actor-only methods over critic-only methods is that they allow the policy
to generate actions in the complete continuous action space.

2.6.1. Standard policy gradient

A policy gradient method is generally obtained by parameterizing the policy 𝜋 by the parameter vector
𝜓 ∈ ℝ፩. Assuming that the parameterization is differentiable with respect to 𝜓, the standard gradient of
the cost function 𝐽 with respect to 𝜓 is described by

∇Ꭵ𝐽 =
𝜕𝐽
𝜕𝜋Ꭵ

𝜕𝜋Ꭵ
𝜕𝜓 (2.18)

By using standard optimization techniques, a locally optimal solution of the cost 𝐽 can be found. The
standard gradient ∇Ꭵ𝐽 is estimated per time step and the parameters are then updated in the direction
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of this gradient. For example, a simple gradient ascent method would yield the policy gradient update
equation

𝜓፤ዄኻ = 𝜓፤ + 𝛼ፚ,፤∇Ꭵ𝑉፤ (2.19)

where 𝛼ፚ,፤ is the learning rate of the actor. The main advantage of actor-only methods is their strong
convergence property, which is naturally inherited from gradient descent methods. Convergence is
obtained if the estimated gradients are unbiased and the learning rates 𝛼ፚ,፤ satisfy

ጼ

∑
፤዆ኺ

𝛼ፚ,፤ = ∞ and
ጼ

∑
፤዆ኺ

𝛼ኼፚ,፤ < ∞ (2.20)

A drawback of the actor-only approach is that the estimated gradient may have a large variance. Also,
every gradient is calculated without using any knowledge of past estimates.

2.6.2. Natural policy gradient
Standard gradient descent is most useful for cost functions that have a single minimum and whose
gradients are isotropic in magnitude with respect to any direction away from its minimum [14]. In
practice, these two properties are almost never true. The existence of multiple local minima of the
cost function is a known problem in RL and is usually overcome by exploration strategies. Also, the
performance of methods that use standard gradients relies heavily on the choice of a coordinate system
over which the cost function is defined. In robotics, it is common to have a curved state space e.g.
because of the presence of angles in the state. A cost function will then usually be defined in that curved
space too, possibly causing inefficient policy gradient updates to occur. The natural gradient incorporates
knowledge about the curvature of the space into the gradient. It is a metric based not on the choice of
coordinates, but on the space that those coordinates parameterize. If a function 𝐽(𝜓) is parameterized
by 𝜓 in Euclidean space, the squared Euclidean norm of an increment Δ𝜓 is given by

‖Δ𝜓‖ኼፄ = Δ𝜓
ዉΔ𝜓 (2.21)

When 𝜓 is transformed to other coordinates �̃� in a non-Euclidean space, the squared norm of the
increment Δ�̃� with respect to that Riemannian space is given by:

‖Δ�̃�‖ኼፑ = Δ�̃�
ዉ𝐺(�̃�)Δ�̃� (2.22)

where 𝐺(�̃�) is the Riemannian metric tensor, a 𝑛 × 𝑛 positive definite matrix characterizing the intrinsic
local curvature of a particular manifold in an n-dimensional space. For Euclidean spaces, 𝐺(�̃�) is the
identity matrix. Standard gradient descent for the new parameters �̃� would define the steepest descent
with respect to the norm ‖Δ�̃�‖ኼ = Δ�̃�ዉΔ�̃�. This would result in a different gradient direction, despite
keeping the same cost function and only changing the coordinates. The natural gradient avoids this
problem and always points in the “right” direction by taking into account the Riemannian structure of the
parameterized space over which the cost function is defined. Now ̃𝐽(�̃� +Δ�̃�) is minimized while keeping
Δ�̃� small. This results in the natural gradient ∇̃Ꭵ̃ ̃𝐽(�̃�) which is a linear transformation of the standard
gradient ∇Ꭵ̃ ̃𝐽(�̃�) by the inverse of 𝐺(�̃�)

∇̃Ꭵ̃ ̃𝐽(�̃�) = 𝐺ዅኻ(�̃�)∇Ꭵ̃ ̃𝐽(�̃�) (2.23)

For a manifold of distributions, the Riemannian tensor is the Fisher Information Matrix (FIM) [15].

2.6.3. Episode based actor-only methods

A majority of suitable actor-only methods found in literature are based on episodic RL. In episodic RL, the
agent executes a task until a terminal state is reached. Executing a policy from an initial state until the
terminal state, called a Monte Carlo roll-out, leads to a trajectory 𝜏፫ which contains information about the
states visited, actions executed,and rewards received i.e. 𝜏፫ = [𝑥ኻ…ፍዄኻ, 𝑢ኻ…ፍ], where 𝑁 is the number
of discrete time steps, 𝑥ኻ…ፍዄኻ = [𝑥ኻ, 𝑥ኼ, 𝑥ኽ…𝑥ፍዄኻ] is the state vector and 𝑢ኻ…ፍ = [𝑢ኻ, 𝑢ኼ, 𝑢ኽ…𝑢ፍ] is the
control input/action vector. The policy is executed 𝐾 times with the same parameters 𝜓. The expected
return to be maximized is:
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𝐽(𝜓) =∑
𝕂
𝑝(𝜏፫)𝑅(𝜏፫) (2.24)

where 𝕂 is the set of all episodes, 𝑝(𝜏፫) is the probability of a episode and 𝑅(𝜏፫) is the return of an
episode given by:

𝑝(𝜏፫) = 𝑝(𝑥ኻ)
ፍ

∏
፤዆ኻ

𝑝(𝑥፤ዄኻ|𝑥፤ , 𝑢፤)𝜋(𝑢፤|𝑥፤ , 𝑘) and 𝑅(𝜏፫) =
1
𝑁

ፍ

∑
፤ዄኻ

𝜌(𝑥፤ , 𝑢፤ , 𝑥፤ዄኻ) (2.25)

where 𝑝(𝑥ኻ) is the initial state distribution, 𝑝(𝑥፤ዄኻ|𝑥፤ , 𝑢፤) is the next state distribution, and 𝜌(𝑥፤ , 𝑢፤ , 𝑥፤ዄኻ)
is the immediate reward. To find the lower bound on the return 𝐽(𝜓), the episodes are weighed
with the returns 𝑅(𝜏፫) and are matched with a new policy parameterized by 𝜓ᖣ [16]. This matching
of the success-weighted path distribution is equivalent to minimizing the Kullback- Leibler divergence
𝐷(𝑝Ꭵᖤ(𝜏፫)||𝑝Ꭵ(𝜏፫)𝑅(𝜏፫)) between the new path distribution 𝑝Ꭵᖤ(𝜏፫) and the reward-weighted previous
one 𝑝Ꭵ(𝜏፫)𝑅(𝜏፫). This results in a lower bound on the expected return using Jensen’s inequality and the
concavity of the logarithm [16], [17]:

log 𝐽(𝜓ᖣ) = log∑
𝕂

𝑝Ꭵ(𝜏፫)
𝑝Ꭵ(𝜏፫)

𝑝Ꭵᖤ(𝜏፫)𝑅(𝜏፫) ≥∑
𝕂
𝑝Ꭵ(𝜏፫)𝑅(𝜏፫) log

𝑝Ꭵᖤ(𝜏፫)
𝑝Ꭵ(𝜏፫)

∝ −𝐷(𝑝Ꭵ(𝜏፫)𝑅(𝜏፫)||𝑝Ꭵᖤ(𝜏፫)) = 𝐿Ꭵ(𝜓ᖣ)
(2.26)

where 𝐷(𝑝(𝜏፫)||𝑞(𝜏፫)) = ∑𝕂 𝑝(𝜏፫) log(𝑝(𝜏፫)/𝑞(𝜏፫)) is the Kullback-Leibler divergence. As pointed out
in [16], 𝑝Ꭵ(𝜏፫)𝑅(𝜏፫) is an improper probability distribution i.e the immediate costs sum to a constant
number and are always positive. The policy improvement step is equivalent to maximizing the lower
bound on the expected return, resulting in EM (Expectation Maximization) algorithms.

2.7. Policy Learning by Weighting Exploration with the returns
(PoWER)

REINFORCE [18] estimates the standard gradient, which is not robust when noisy, discontinuous utility
functions are involved. Also, it requires the manual tuning of the learning rate 𝛼ፚ, which is not straight-
forward, but critical to the performance [19], [17]. The PoWER algorithm [17] addresses these issues by
using reward based averaging. Reward-weighted averaging follows the natural gradient, without having
to actually compute the gradient or the Fisher Information Matrix. Differentiating the function 𝐿Ꭵ(𝜓ᖣ)
given in equation 2.26 gives:

∇Ꭵᖤ𝐿Ꭵ(𝜓ᖣ) =∑
𝕂
𝑝Ꭵ(𝜏፫)𝑅(𝜏፫)∇Ꭵᖤ log 𝑝Ꭵᖤ(𝜏፫) (2.27)

where ∇Ꭵᖤ log 𝑝Ꭵᖤ(𝜏፫) = ∑
ፍ
፭዆ኻ ∇Ꭵᖤ log 𝜋(𝑢፭|𝑥፭ , 𝑡) is the log derivative of the path distribution. Substituting

Equation 2.25 in Equation 2.27 gives:

∇Ꭵᖤ𝐿Ꭵ(𝜓ᖣ) = 𝔼(
ፍ

∑
፤዆ኻ

∇Ꭵᖤ log 𝜋(𝑢፤|𝑥፤ , 𝑘)𝑄᎝(𝑥, 𝑢, 𝑘)) (2.28)

where 𝑄᎝(𝑥, 𝑢, 𝑘) is the state action value function.

Methods like REINFORCE and [20] use state independent, Gaussian noise i.e. 𝜀፤ ∼ 𝒩(0, ∑). Reward-
Weighted Regression is obtained for episodic RL by setting Equation 2.28 to 0 and solving for 𝜓ᖣ. This
naturally yields a weighted regression method with the state-action values 𝑄᎝(𝑥, 𝑢, 𝑘) as weights. [17]
takes the stochastic policy 𝜋(𝑢|𝑥, 𝑘) to be 𝑢፤ = 𝜓ዉ𝜑(𝑥, 𝑘) + 𝜀(𝜑(𝑥, 𝑘)), where the perturbation is ap-
proximated as 𝜀(𝜑(𝑥, 𝑘)) = 𝜀ዉ፤𝜑(𝑥, 𝑘) like in [21]. This gives 𝑢፤ = (𝜓ዉ + 𝜀ዉ፤ )𝜑(𝑥, 𝑘). Thus, PoWER
implements a policy perturbation scheme where the parameters of the policy rather than its output are
perturbed i.e 𝜋Ꭵዄ᎒ᑜ(𝑥) rather than 𝜋Ꭵ(𝑥) + 𝜀፤. The policy 𝑢 ∼ 𝜋(𝑢፤|𝑥፤ , 𝑘) = 𝒩(𝑢|𝜓ዉ𝜑(𝑥, 𝑢), ∑̂(𝑥, 𝑘)) is
substituted in Equation 2.28 and solved after setting it to 0. The update rule obtained is:



2.7. Policy Learning by Weighting Exploration with the returns (PoWER) 9

Algorithm 2: Policy learning by Weighting Exploration with the returns (PoWER)
Input: initial policy parameters 𝜓ኺ
repeat

Sample: Perform episode(s) using 𝑢፤ = (𝜓ዉ + 𝜀ዉ፤ )𝜑(𝑥, 𝑘) with 𝜀፤ ∼ 𝒩(0, 𝜎ኼ።፣) and collect all
(𝑘, 𝑥፤ , 𝑢፤ , 𝑥፤ዄኻ, 𝜀፤ , 𝑟፤ዄኻ) for 𝑘 = 1, 2… ,𝑁 + 1
Estimate: Use unbiased estimate 𝑅(𝑥, 𝑢, 𝑘) = ኻ

ፍ ∑
ፍ
፤዆ኻ 𝜌(𝑥፤ , 𝑢፤ , 𝑥፤ዄኻ)

Reweight: Compute importance weights and reweight episodes, discard low importance roll-outs
Update policy using 𝜓፤ዄኻ = 𝜓፤ + ⟨∑

ፍ
፤዆ኻ 𝜀፤𝑅(𝑥, 𝑢, 𝑘)⟩/⟨∑

ፍ
፤዆ኻ 𝑅(𝑥, 𝑢, 𝑘)⟩

until 𝜓።ዄኻ ≈ 𝜓።;

𝛿𝜓 = (𝔼(
ፍ

∑
፤዆ኻ

𝑀፤𝑄᎝፤,፤ᑣ(𝑥, 𝑢, 𝑘)))
ዅኻ

(𝔼(
ፍ

∑
፤዆ኻ

𝑀፤𝜀፤ᑣ፤ 𝑄᎝፤,፤ᑣ(𝑥, 𝑢, 𝑘)))

≈ (
ፊ

∑
፤ᑣ዆ኻ

ፍ

∑
፤዆ኻ

𝑀፤𝑄᎝፤,፤ᑣ(𝑥, 𝑢, 𝑘))
ዅኻ
(

ፊ

∑
፤ᑣ዆ኻ

ፍ

∑
፤዆ኻ

𝑀፤𝜀፤ᑣ፤ 𝑄᎝፤,፤ᑣ(𝑥, 𝑢, 𝑘))

(2.29)

where 𝑀፤ = 𝜑፤𝜑ዉ፤ (𝜑ዉ፤ ∑𝜑፤). The parameter vector 𝜓 is updated as 𝜓 ← 𝜓 + 𝛿𝜓.

Algorithm 3: Adaptation of ABS control policy parameters by PoWER (Policy Learning by Weighting
Exploration with Returns) with constant parameter variance
Input: 𝑥ኺ, 𝜌off, 𝜓ኺ, 𝜎ኼ, Initial surface, Final Surface, 𝜓∗, 𝑁noiseless, 𝑁iter, 𝑁best
Calculate ideal return for an episode using ideal parameters of the final surface 𝜓∗ i.e. 𝑢፭ = 𝜓∗ፓ𝜑(𝑥, 𝑡)
and 𝑅∗ = 𝜌off − 𝑑∗፱ where 𝑑∗፱ is the ideal braking distance
Simulate first episode with zero exploration i.e. 𝑢፭ = 𝜓ፓኺ𝜑(𝑥, 𝑡) and record 𝑑፱,ኺ
Record 𝑅noiseless,ኺ = 𝜌off − 𝑑፱,ኺ
for 𝑖 = 0…𝑁iter-1 do

Calculate return of the 𝑖th episode using 𝑅። = 𝜌off − 𝑑፱,።
Store and sort the return in an importance sampling table
𝑝num ← 0
𝑝dnom ← 0
for 𝑗 = 1…𝑁best do

𝜀 ← 𝜓best − 𝜓።
𝑝num ← 𝑝num + 𝜀𝑅።
𝑝dnom ← 𝑝dnom + 𝑅።

end
𝜓።ዄኻ ← 𝜓። + 𝑝num/𝑝dnom
if 𝑖 > 0 & 𝑖 mod 𝑁noiseless = 0 then

Simulate noiseless episode using 𝜓።ዄኻ and record 𝑅noiseless,።/ፍnoiselessዄኻ = 𝜌off − 𝑑፱,።ዄኻ
end
if 𝑖 < 𝑁iter − 1 then

𝜓።ዄኻ ← 𝜓።ዄኻ + √𝜎ኼ𝜀።ዄኻ
end
Simulate (𝑖 + 1)th episode and record 𝑑፱,።ዄኻ

end
Record 𝑅ፍiter = 𝜌off − 𝑑፱,ፍiter
Output: 𝜓 = 𝜓ፍiter , 𝑅 = 𝑅ፍiter
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For the update, the return of an episode 𝑅(𝜏፫) can also be used instead of the state-action value function
𝑄(𝑥, 𝑢, 𝑘). In order to reduce the number of episodes in this on-policy scenario, importance sampling
can be used as described in the context of reinforcement learning in [22]. Samples with very small
importance weights are discarded. In [17], the state 𝑥 and time 𝑘 are stored in the trajectory and is
used to calculate 𝜑(𝑥, 𝑘). As per [19], since the parameter vector 𝜓 does not depend on the state and
the sum in Equation 2.29 is not over the state, it is not necessary to store the state in the trajectory.

Algorithm 4: Adaptation of ABS control policy parameters by PoWER (Policy Learning by Weighting
Exploration with Returns) with adaptive parameter variance
Input: 𝑥ኺ, 𝜌off, 𝜓ኺ, 𝜎ኼኺ , Initial surface, Final Surface, 𝜓∗, 𝑁noiseless, 𝑁iter, 𝑁best
Calculate ideal return for an episode using ideal parameters of the final surface 𝜓∗ i.e. 𝑢፭ = 𝜓∗ፓ𝜑(𝑥, 𝑡)
and 𝑅∗ = 𝜌off − 𝑑∗፱ where 𝑑∗፱ is the ideal braking distance
Simulate first episode with zero exploration i.e. 𝑢፭ = 𝜓ፓኺ𝜑(𝑥, 𝑡) and record 𝑑፱,ኺ
Record 𝑅noiseless,ኺ = 𝜌off − 𝑑፱,ኺ
for 𝑖 = 0…𝑁iter − 1 do

Calculate return of the 𝑖th episode using 𝑅። = 𝜌off − 𝑑፱,።
Store and sort the return in an importance sampling table
𝑝num ← 0
𝑝dnom ← 0
for 𝑗 = 1…𝑁best do

𝜀 ← 𝜓best − 𝜓።
𝑝num ← 𝑝num + 𝜀𝑅።
𝑝dnom ← 𝑝dnom + 𝑅።

end
𝜓።ዄኻ ← 𝜓። + 𝑝num/𝑝dnom
𝑣num ← 0
𝑣dnom ← 0
for 𝑗 = 1…2 × 𝑁best do

𝜀 ← 𝜓best − 𝜓።
𝑣num ← 𝑣num + 𝜀ኼ𝑅።
𝑣dnom ← 𝑣dnom + 𝑅።

end
𝜎ኼ።ዄኻ ← 𝜎ኼ። + 𝑣num/𝑣dnom
if 𝑖 > 0 & 𝑖 mod 𝑁noiseless = 0 then

Simulate noiseless episode using 𝜓።ዄኻ and record 𝑅noiseless,።/ፍnoiselessዄኻ = 𝜌off − 𝑑፱,።ዄኻ
end
if 𝑖 < 𝑁iter − 1 then

𝜓።ዄኻ ← 𝜓።ዄኻ + √𝜎ኼ𝜀።ዄኻ
end
Simulate (𝑖 + 1)th episode and record 𝑑፱,።ዄኻ

end
Record 𝑅ፍiter = 𝜌off − 𝑑፱,ፍiter
Output: 𝜓 = 𝜓ፍiter , 𝑅 = 𝑅ፍiter

2.8. Summary

In this chapter, the definitions and concepts of Reinforcement Learning used to derive the control policy
i.e. Value Iteration using fuzzy sets, methods for initial robustness of the control policy, and methods
used for adaptation of the policy parameters i.e. episode based actor-only RL methods were introduced.
These form the basis of the results shown in Chapters 4 and 5.



3
ABS model and baseline controller

This chapter first describes the model and parameters of the ABS system i.e. the single corner model
and the Pacejka tire model, followed by the the current principles being used for its control. Finally, the
performance of a simple proportional controller for ABS is shown.

3.1. Single corner wheel dynamics

The quarter car model has been used for modelling the wheel dynamics of the car. The wheel slip 𝜅 is
defined by the formula

𝜅 = 𝑣፱ − 𝜔𝑟፭
max{𝑣፱ , 𝜔𝑟፭}

(3.1)

where 𝜔 denotes the angular velocity of the wheel, 𝑣፱ is the linear velocity of the wheel/chassis and 𝑟፭
is the effective rolling radius of the wheel. For braking, 𝑣፱ −𝜔𝑟፭ > 0, hence the wheel slip is given by:

𝜅 = 𝑣፱ − 𝜔𝑟፭
𝑣፱

= 1 − 𝜔𝑟፭𝑣፱
(3.2)

The normalized wheel deceleration 𝜂፰ is given by

𝜂፰ = −
�̇�𝑟፭
𝑔 (3.3)

where �̇� is the wheel angular acceleration and 𝑔 is the acceleration due to gravity.

Figure 3.1: The single corner model

The wheel dynamics on a sloped road are described by the following equations:

𝐽፰�̇� = 𝑟፭𝐹፱ − 𝑇፛
𝑚�̇�፱ = 𝐹፠ −𝑚𝑎፱ = 𝐹፠ − 𝐹፱

(3.4)

11
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where 𝑇፛ is the braking torque on the wheel, 𝐹፱ is the longitudinal tire-road contact force, 𝐽፰ and 𝑚 are
the moment of inertia of the wheel and the single-corner mass respectively, 𝐹፠ is the gravitational force
due to the slope of the road, and 𝑎፱ is the longitudinal acceleration. The parameters of the system are
given in Table 3.1.

Table 3.1: ABS system parameters

Parameter Symbol Value Units
Wheel Inertia 𝐽፰ 1.2 𝑘𝑔𝑚ኼ
Tire radius 𝑟፭ 0.305 𝑚

Corner car mass 𝑚 450 𝑘𝑔
Gravity acceleration 𝑔 9.81 𝑚/𝑠ኼ

3.2. Pacejka Tire Model

The tire dynamics can be best modelled by the Pacejka model [23]. It is named the ’magic formula’ tire
model because there is no particular physical basis for the structure of the equations chosen, but they
fit a wide variety of tire constructions and operating conditions.

Figure 3.2: The forces and moments on a tire

Each tire is characterized by 10 to 20 coefficients for each important force that it can produce at the
contact patch, typically lateral force 𝐹፲, longitudinal force 𝐹፱, and self-aligning torque 𝑀፳, as a best fit
between experimental data and the model. These coefficients are then used to generate equations
showing how much force is generated for a given vertical load 𝐹፳ on the tire, camber angle 𝛾፜, lateral
slip angle 𝛼፬ and longitudinal slip 𝜅. The longitudinal force 𝐹፱ is written as:

𝐹፱ = 𝐹፳𝜇፱(𝛼፬ , 𝛾፜ , 𝜅) (3.5)

where 𝜇፱ is the coefficient of friction. For braking in a straight line, the camber angle 𝛾፜ and the lateral
slip angle 𝛼፬ are approximately 0. This leads to the magic formula for longitudinal force as a function of
vertical load 𝐹፳ and longitudinal slip 𝜅:

𝐹፱(𝜅) = 𝐹፳ ⋅ 𝐷 ⋅ sin (𝐶 ⋅ tanዅኻ[𝐵(1 − 𝐸)𝜅 + 𝐸 ⋅ tanዅኻ(𝐵𝜅)]) (3.6)

where 𝐵, 𝐶, 𝐷 and 𝐸 represent curve fitting constants. The values of these constants are found out
by fitting them with available values of 𝐹፱ from test data in the above equation. The values of the
coefficients given in Table 3.2 are taken from [24]. The following assumptions have been made for the
quarter car model and tire model:

1. For simplicity, the road is assumed to be flat i.e 𝐹፠ = 0.
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2. The four wheels are treated as dynamically decoupled, i.e. the dynamic load transfer phenomena
due to pitch motion are neglected.

3. The suspension dynamics are neglected.

4. Since pitch dynamics are neglected, the wheel radius is assumed to be constant.

5. The response of the tire to change in longitudinal slip is assumed to be instantaneous i.e. transient
tire behavior is neglected.

6. Delay due to actuator dynamics has not been taken into account.

7. All 4 wheels are assumed to be in contact with the same surface at any instant of time i.e. cases
where one or two wheels are on one surface and the other three or two wheels respectively are
on another surface have not been considered.

Table 3.2: Magic Formula Coefficients

Surface 𝐵 𝐶 𝐷 𝐸
Dry asphalt 10 1.8 1 0.97
Wet asphalt 12 2.4 0.82 1
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Figure 3.3: Longitudinal braking force vs longitudinal slip for dry and wet asphalt

3.3. Current control methods for ABS

Traditionally, deceleration control has been used for ABS because the wheel deceleration can be easily
measured using a wheel encoder [25], [26]. However, if the road surface rapidly changes, on-line
estimation of friction characteristics are required [27]. Differentiating Equation 3.2 with respect to time:

�̇� = −�̇�𝑟፭𝑣፱
+ 𝜔𝑟፭�̇�፱𝑣ኼ፱

(3.7)

In the equilibrium condition, the rate of change of 𝜅 will be 0. Using this, the second equation of Equation
3.4 and Equation 3.3:

�̇� = 𝜔�̇�፱
𝑣፱

⟹ �̇� = −(1 − 𝜅)𝐹፱𝑚𝑟፭
⟹ 𝜂፰ =

𝐹፱(1 − 𝜅)
𝑚𝑔

(3.8)
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The graph of 𝜂፰ vs 𝜅 for dry and wet asphalt is shown in Figure 3.4. The line for reference value of
𝜅 of dry asphalt intersects the curves at unique equilibrium points. This means that a single 𝜅 setpoint
ensures a stable equilibrium for both dry and wet asphalt. For this reason, the control of wheel slip is
easier as one reference slip value provides robust performance, which will thus be sub-optimal. The
reference value of 𝜅 is found out from Figure 3.3. The slip where the magnitude of the longitudinal force
is maximum is the reference slip value 𝜅.
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Figure 3.4: ᎔ᑨ vs ᎗ with unique equilibrium points

For deceleration control, adaptation of reference value is required as can be seen from Figure 3.5. The
line for reference value of 𝜂፰ intersects the curve of wet asphalt at only one point but the curve of dry
asphalt at two points, resulting in two equilibrium points. As the equilibrium is not unique, adaptation
of reference value is required to ensure stable equilibrium.
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Figure 3.5: ᎔ᑨ vs ᎗ with non-unique equilibrium points

In addition to sub-optimal performance on other surfaces, another drawback of wheel slip control is that
wheel slip is difficult to measure because accurate estimation of the linear velocity of the car is difficult,
especially at low speeds. A mixed slip controller which controls both the wheel slip and deceleration uses
a convex combination of 𝜅 and 𝜂፰ to define a parameter 𝜖፰:

𝜖፰ = 𝛼፰𝜅 + (1 − 𝛼፰)𝜂፰ (3.9)

where 𝛼፰ is a constant. For 𝛼፰ = 1, a pure slip controller is obtained and for 𝛼፰ = 0, a pure deceleration
controller is obtained. Since the goal is to obtain optimal performance on all surfaces, the setpoint of
𝜅 should not be fixed. Hence, if a mixed slip controller is being used, the reference values of the two
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variables 𝜅 and 𝜂፰, and the value of the parameter 𝛼፰ need to be adapted online according to the
surface. After the reference values 𝜅 and 𝜂፰ have been found, the reference value of 𝜖፰ is found out
using

𝜖፰ = 𝛼፰𝜅 + (1 − 𝛼፰)𝜂፰ (3.10)

The goal is to minimize the error between 𝜖፰ and 𝜖፰. The wheel angular acceleration �̇� and angular
speed 𝜔, and the wheel/chassis linear acceleration 𝑎፱ and linear velocity 𝑣፱ are measured after each
time step. These values are used to calculate 𝜅, 𝜂፰ and 𝜖፰. The controller applies corrective brake
pressure according to the the error with respect to the reference value 𝜖፰.

3.3.1. Performance Criteria

The performance of the ABS controller can be determined on the basis of passenger safety and comfort.
For safety purposes, the braking distance of the car should be minimized and thus is used as the primary
metric. For the purpose of comfort, variation i.e. standard deviation of the vehicle deceleration is used
as the secondary metric. The vehicle deceleration is measured through an accelerometer and thus can
be used to calculate the standard deviation.

3.4. Proportional-Integral controller for pure slip control

A P-I controller has to work on the basis of the maximum braking torque possible (not the controller limit)
such that the longitudinal braking force is maximized. Using Equation 3.7, Equation 3.4 and Equation
3.2:

�̇� = (1 − 𝜅)[𝑇፛ − 𝑟፭𝐹፱𝐽፰𝜔
− 𝐹፱
𝑚𝑣፱

]

⟹ �̇� = 1 − 𝜅
𝐽፰𝜔

[𝑇፛ − 𝑟፭𝐹፱ −
𝐹፱𝐽፰(1 − 𝜅)

𝑚𝑟፭
]

⟹ �̇� = 1 − 𝜅
𝐽፰𝜔

[𝑇፛ − 𝜁(𝜅)] where 𝜁(𝜅) = 𝐹፱[𝑟፭ +
𝐽፰(1 − 𝜅)
𝑚𝑟፭

]

(3.11)

The graph of 𝜁(𝜅) vs 𝜅 is shown in Figure 3.6. The points corresponding to the peaks of the curves are
the ideal values of the braking torque 𝑇፛ for the respective surfaces.
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Figure 3.6: Graph of variation of ᎓(᎗) with ᎗

A discrete time proportional-integral controller was implemented for pure wheel slip control for different
initial conditions. The initial speed was kept the same (80 km/h) but different initial wheel slips ([0:0.2:1])
were implemented. The slips are referred to as Slip 1, Slip 2, Slip 3, Slip 4, Slip 5, Slip 6 respectively.
The control law for the wheel slip at the 𝑘th time step is:
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𝑇፛,፤ = 𝐾፩(𝜅 − 𝜅፤) + 𝐾።∑
፤
(𝜅 − 𝜅፤) + 𝑇፛,፦ፚ፱ (3.12)

where 𝑇፛,፦ፚ፱ is the ideal braking torque found from the peaks of Figure 3.6. The reference value of 𝜅
was chosen according to the surface using Figure 3.3. The values of gains taken are 𝐾፩ = 10000 and
𝐾፩ = 200000. The performance on dry and wet asphalt is compared in Figure 3.7.

0 0.5 1 1.5 2 2.5

time [s]

0

5

10

15

20

25

S
p

e
e

d
s
 [

m
/s

]

Hand tuned PI controller on dry asphalt

Vehicle speed 1

Wheel contact speed 1

Vehicle speed 2

Wheel contact speed 2

Vehicle speed 3

Wheel contact speed 3

Vehicle speed 4

Wheel contact speed 4

Vehicle speed 5

Wheel contact speed 5

Vehicle speed 6

Wheel contact speed 6

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

0

5

10

15

20

25

S
p

e
e

d
s
 [

m
/s

]

Hand tuned PI controller on wet asphalt

Vehicle speed 1

Wheel contact speed 1

Vehicle speed 2

Wheel contact speed 2

Vehicle speed 3

Wheel contact speed 3

Vehicle speed 4

Wheel contact speed 4

Vehicle speed 5

Wheel contact speed 5

Vehicle speed 6

Wheel contact speed 6

0 0.5 1 1.5 2 2.5

time [s]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
o

n
g

it
u

d
in

a
l 
a

c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Hand tuned PI controller on dry asphalt

Acceleration 1

Acceleration 2

Acceleration 3

Acceleration 4

Acceleration 5

Acceleration 6

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
o

n
g

it
u

d
in

a
l 
a

c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Hand tuned PI controller on wet asphalt

Acceleration 1

Acceleration 2

Acceleration 3

Acceleration 4

Acceleration 5

Acceleration 6

0 0.5 1 1.5 2 2.5

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o

n
g

it
u

d
in

a
l 
w

h
e

e
l 
s
lip

 [
-]

Hand tuned PI controller on dry asphalt

Actual slip 1

Actual slip 2

Actual slip 3

Actual slip 4

Actual slip 5

Actual slip 6

Reference slip

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o

n
g

it
u

d
in

a
l 
w

h
e

e
l 
s
lip

 [
-]

Hand tuned PI controller on wet asphalt

Actual slip 1

Actual slip 2

Actual slip 3

Actual slip 4

Actual slip 5

Actual slip 6

Reference slip



3.4. Proportional-Integral controller for pure slip control 17

0 0.5 1 1.5 2 2.5

time [s]

0

500

1000

1500

2000

2500

3000

B
ra

k
in

g
 t
o
rq

u
e
 [
N

m
]

Hand tuned PI controller on dry asphalt

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

0

500

1000

1500

2000

2500

3000

B
ra

k
in

g
 t
o
rq

u
e
 [
N

m
]

Hand tuned PI controller on wet asphalt

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Figure 3.7: Performance comparison on dry and wet asphalt

If integral gain is removed to simplify the analysis:

𝑇፛,፤ = 𝐾፩(𝜅 − 𝜅፤) + 𝑇፛,፦ፚ፱ (3.13)

The control input without integral gain will offset the setpoint 𝜅 from its ideal value since 𝑇፛,፦ፚ፱ is
constant for a given surface. Using Equation 3.2:

𝑇፛,፤ = −𝐾፩𝑟፭(
𝜔
𝑣፱
− 𝜔፤
𝑣፱,፤

) + 𝑇፛,፦ፚ፱ (3.14)

Since the state vector at any time step 𝑘 is 𝑥፤ = [𝑣፱,፤ 𝜔፤]ዉ, this control method is equivalent to state
feedback control. The value of 𝐾፩ is taken to be 10000, and the setpoint values of slips for dry and wet
asphalt are found to be 2.4 𝜅፝፫፲ and 1.6 𝜅፰፞፭ respectively. The performance on dry and wet asphalt is
compared in Figure 3.8.
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Among the two controllers, the simple proportional controller is found to perform better. Speeds for
lower initial slips converge to zero faster. This difference is marginal on dry asphalt but not small on wet
asphalt. Both controllers suffer from control input chattering at speeds just before ABS is switched off.
For the P controller, the reason for chattering can be seen from the policy surface. The transition is too
steep at the speed of 3 m/s.
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Figure 3.8: Performance comparison on dry and wet asphalt

For the P controller, the braking distances on dry and wet asphalt are given in Table 3.3. When compared
with the ideal braking distances from Chapter 4 i.e. 25.31 m for dry on dry and 31.04 m for wet on wet,
it can be seen that on dry asphalt, all braking distances except 1 are marginally higher, and on wet
asphalt, all braking distances except 1 are higher with the maximum increment being 0.43 m.
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Table 3.3: Braking distance [m]

Surface Slip 1 Slip 2 Slip 3 Slip 4 Slip 5 Slip 6
Dry asphalt 25.36 25.29 25.31 25.32 25.32 25.33
Wet asphalt 31.05 31.03 31.11 31.21 31.35 31.47

For the P controller, the standard deviation in deceleration [m/s2] on dry and wet asphalt are given in
Table 3.4. When compared to ideal values from Chapter 4 i.e. 0.4481 for average on dry and 0.4023 for
dry on wet, the comfort levels are much worse for all initial conditions on both dry and wet asphalt.

Table 3.4: Standard deviation in acceleration [m/s2]

Surface Slip 1 Slip 2 Slip 3 Slip 4 Slip 5 Slip 6
Dry asphalt 0.8476 0.7964 1.1647 1.1808 1.1035 1.0796
Wet asphalt 1.788 1.7604 1.7602 1.7363 1.7801 1.7051

3.4.1. Proportional control with gain scheduling

The control input for proportional gain is given by Equation 3.14:

𝑇፛,፤ = −𝐾፩𝑟፭(
𝜔
𝑣፱
− 𝜔፤
𝑣፱,፤

) + 𝑇፛,፦ፚ፱ (3.15)

This equation can be rearranged to give:

𝑇፛,፤ = 𝑐ኻ + 𝑐ኼ
𝜔፤
𝑣፱,፤

+ 𝑇፛,፦ፚ፱

= 1
𝑣፱,፤

(𝑐ኽ𝑣፱,፤ + 𝑐ኼ𝜔፤)
(3.16)

where 𝑐ኻ, 𝑐ኼ and 𝑐ኽ are constants. Thus, the control input is inversely proportional to the linear velocity.
This explains the observation that the transition in the policy surfaces in Figure 3.8 becomes more steep
as lower velocities are approached. This steep transition leads to control input chattering. To avoid
chattering, gain scheduling can be used to cancel the part ኻ

፯ᑩ,ᑜ
and the final control input can be written

as:

𝑇፛,፤ = 𝑐ኽ𝑣፱,፤ + 𝑐ኼ𝜔፤ + 𝑐ኾ = [𝑐ኽ 𝑐ኼ 𝑐ኾ] [
𝑣፱,፤
𝜔፤
1
] (3.17)

3.5. Summary

In this chapter, model and parameters of the ABS system were presented along with the mixed slip
control method being used currently. The advantages and disadvantages of pure wheel slip control and
pure deceleration control were discussed. Results for a hand tuned PI controller were compared with
that of a hand tuned proportional controller for pure wheel slip control. Derivation of the control policy
of a proportional controller with gain scheduling was also shown.





4
ABS control through offline
Reinforcement Learning

As discussed in Chapter 2, there are two policy approximation methods using online interpolation between
optimal actions computed offline:

Non-linear interpolation The control action is given by

𝑢 (𝑥) = 𝑝ዉ𝜙 (𝑥) (4.1)

where 𝜙 (𝑥) are the same basis functions as defined for 𝑉(𝑥) and 𝑝 = [𝑝ኻ, … , 𝑝ፍ]
ዉ ∈ 𝑈ፍ are the optimal

control actions.

Piecewise linear approximation The policy is approximated as a piece-wise linear function with
three parameters and three basis functions:

𝑢(𝑥) = sat(𝜓𝜑(𝑥)) = sat([𝜓ኻ 𝜓ኼ 𝜓ኽ] [
𝑥ኻ
𝑥ኼ
1
]) = sat(𝜓ኻ𝑥ኻ + 𝜓ኻ𝑥ኼ + 𝜓ኽ) (4.2)

where 𝜓ኻ, 𝜓ኼ, 𝜓ኽ are the policy parameters and 𝑥ኻ, 𝑥ኼ are the state variables i.e. chassis linear velocity
𝑣፱ and wheel angular velocity 𝜔 respectively. This policy is similar to Equation 3.17 i.e. the control input
for proportional control after gain scheduling.

Table 4.1: Parameters of each policy

Parameter Dry asphalt policy Wet asphalt policy Average policy Max-Min policy
𝜓ኻ -556.5 -577.7 -568.3 -577.2
𝜓ኼ 218.9 192.9 196.9 192.7
𝜓ኽ 1347.7 1017.4 1192.3 1016

The parameters of wet asphalt policy and max-min policy are almost equal. This is because wet asphalt
is the worst case among dry asphalt and wet asphalt i.e. the RHS of the Bellman equation will be lower
for wet asphalt as the peak longitudinal force available on wet asphalt is lower than that on dry asphalt.
Hence, the performance of max-min policy is not shown.

4.1. Fuzzy-V iteration and system parameters

The parameters of the fuzzy value iteration algorithm are listed in Table 4.2. The number of member-
ship functions for each state variable is chosen large (41) in order to get a dense coverage of the state
space domain of interest. The controller is trained for a maximum possible initial speed of 25 m/s. The
maximum input braking torque is taken as 1800 Nm. The discount factor 𝛾 = 0.999 is selected close to
one, so that virtually too much discounting takes place towards the end of a typical closed-loop transient

21



22 4. ABS control through offline Reinforcement Learning

lasting about 3/0.005 = 600 samples (𝛾ዀኺኺ ≈ 0.55).

Table 4.2: Fuzzy Value iteration parameters

Parameter Symbol Value Units
State domain 𝒳 [25] × [25/𝑟፭] m/s × rad/s
Number of BF 𝑁፟ 1681 = 41 × 41 –
Discount factor 𝛾 0.999 –

Convergence threshold 𝜖፟ 0.001 –
Sampling period 𝑇፬ 0.005 s

The discrete-time model (2.1) is obtained by numerically integrating the continuous-time dynamics (3.4)
using the fourth-order Runge-Kutta method with the sampling period of 𝑇፬ = 0.005 s. The state vector
consists of the car linear velocity and the wheel angular velocity i.e. 𝑥፤ = [𝑣፱,፤ 𝜔፤]ዉ, and the reward
function is defined as:

𝑟፤ዄኻ = 𝜌(𝑥፤ , 𝑢፤ , 𝑥፤ዄኻ) = −|𝑥፫ − 𝑥፤|
ዉ 𝑄 (4.3)

where 𝑥፫ = [0 0]ዉ is the reference state, and 𝑄 = diag(𝑇፬ , 0) is a weighting matrix, specifying that
instantaneous reward is the negative of the distance travelled in one sampling period and thus the total
braking distance must be minimized. The initial speed of the car for calculation of the parameters of the
control policy is taken as 80 km/h. The threshold speed for switching off ABS control is chosen as 2 m/s.
The Simulink model used for simulation is given in Figure 4.1.

(a) The controller structure (b) The ABS system

Figure 4.1: The Simulink model

4.2. Results for non-linear interpolation
Results are shown for only one initial speed i.e. 80 km/h for comparison with the results of piecewise
linear interpolation, since it is the policy that will be used for adaptation.

4.2.1. Initial speed = 80 km/h

The braking distances on dry and wet asphalt are given in Table 4.3. As expected, the average policy
performs better on dry and wet asphalt than wet and dry asphalt policies respectively. On dry asphalt,
the average policy is 5.31% worse while the wet policy is 14.96% worse than the ideal. On wet asphalt,
the average policy is 6.56% worse while the dry policy is 19.94% worse than the ideal.

Table 4.3: Braking distance [m]

Surface Dry asphalt policy Wet asphalt policy Average policy
Dry asphalt 25.4 29.2 26.36
Wet asphalt 37.29 31.1 33.14

The standard deviation in deceleration [m/s2] for each policy on dry and wet asphalt are given in Table
4.4. In terms of comfort of the passenger, dry on dry performs better than wet on dry but average
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on dry performs better than both dry on dry and wet on dry. Average on wet does not give the best
performance but since it is better than wet on wet, it is a better choice as it performs well on both dry
and wet asphalt.

Table 4.4: Standard deviation in deceleration [m/s2]

Surface Dry asphalt policy Wet asphalt policy Average policy
Dry asphalt 1.0877 1.3573 1.0281
Wet asphalt 0.5733 1.2882 0.8539

Performance on dry asphalt

As seen from the Figure 4.2, the performance of the average policy is good when compared to the ideal
case i.e. dry on dry. The time taken to stop is marginally higher, the deceleration is slightly lower with
minor variations, the wheel slip is mostly constant with minor variations, and the control policy is more
smooth i.e. less chattering. The most noticeable lacking part is that the attained wheel slip is almost
half of the ideal value.
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Figure 4.2: Performance comparison on dry asphalt

Performance on wet asphalt

As seen from the Figure 4.3, the performance of the average policy is worse as compared to the ideal
level i.e. wet to wet. The time taken to stop is marginally higher, but the variation in contact velocity
is increased, the deceleration is slightly lower with more variation, the wheel slip is varying more and is
not close to the ideal value, and the control policy is less smooth i.e. increased chattering.

0 0.5 1 1.5 2 2.5 3

time [s]

0

5

10

15

20

25

S
p

e
e

d
s
 [

m
/s

]

wet on wet

Vehicle speed

Wheel contact speed

0 0.5 1 1.5 2 2.5 3 3.5

time [s]

0

5

10

15

20

25

S
p

e
e

d
s
 [

m
/s

]

ave on wet

Vehicle speed

Wheel contact speed



4.3. Results for piecewise linear approximated policy 25

0 0.5 1 1.5 2 2.5 3

time [s]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
o

n
g

it
u

d
in

a
l 
a

c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

wet on wet

0 0.5 1 1.5 2 2.5 3 3.5

time [s]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
o

n
g

it
u

d
in

a
l 
a

c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

ave on wet

0 0.5 1 1.5 2 2.5 3

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o

n
g

it
u

d
in

a
l 
w

h
e

e
l 
s
lip

 [
-]

wet on wet

Actual slip

Reference slip

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o

n
g

it
u

d
in

a
l 
w

h
e

e
l 
s
lip

 [
-]

ave on wet

Actual slip

Reference slip

Figure 4.3: Performance comparison on wet asphalt

4.3. Results for piecewise linear approximated policy

Results for the linear piecewise approximated policy are shown and compared with that of the non linear
policy for the initial speed of 80 km/h. Results for the the linear policy using same parameters for 60
km/h are also shown.
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4.3.1. Initial speed = 80 km/h

The braking distance [m] for each policy on dry and wet asphalt are given in Table 4.5. The performance
pattern is similar to that of the non-linear interpolation. The average policy performs better on dry and
wet asphalt than wet and dry asphalt policies respectively. On dry asphalt, the average policy is 5.69%
worse while the wet policy is 19.16% worse than the ideal. On wet asphalt, the average policy is 5.48%
worse while the wet policy is 18.36% worse than the ideal. However, on comparing the braking distances
with that of linear interpolation in Table 4.5, it is seen that on dry asphalt, the average policy performs
exactly the same, while the dry policy performs marginally better and the wet policy performs worse.
On wet asphalt, all the three policies perform marginally better. Thus, linear interpolation is the overall
better performer in terms of braking distance, since braking on wet asphalt is more critical.

Table 4.5: Braking distance [m]

Surface Dry asphalt policy Wet asphalt policy Average policy
Dry asphalt 25.31 30.16 26.75
Wet asphalt 37.27 31.04 32.75

The standard deviation in deceleration [m/s2] for each policy on dry and wet asphalt are given in Table
4.6. The pattern is similar to that of non-linear interpolation. Average on dry performs better than both
dry on dry and wet on dry. Average on wet does not give the best performance but is better than wet
on wet. On comparing these results with that of non-linear interpolation in Table 4.6, it is seen that on
both surfaces, the comfort level has improved significantly for all policies.

Table 4.6: Standard deviation in deceleration [m/s2]

Surface Dry asphalt policy Wet asphalt policy Average policy
Dry asphalt 0.4869 0.5474 0.4481
Wet asphalt 0.4023 0.7967 0.6797

Performance on dry asphalt

As seen from the Figure 4.4, the performance of the average policy is good when compared to the
ideal case i.e. dry on dry. The time taken to stop is marginally higher, the deceleration is slightly
lower but mostly constant, the wheel slip is mostly constant, and the control policy is smooth i.e. no
chattering. The only lacking part is that the wheel slip is almost half of the ideal value. On comparing
the performance of non-linear interpolation in Figure 4.2 with that of linear interpolation in Figure 4.4 for
policies of respective surfaces i.e. dry on dry, it is seen that for linear interpolation, the rate of change of
wheel contact velocity, vehicle deceleration and wheel slip is more smooth, and chattering in the control
input is lower. Also, the average policy reduces variations in wheel angular speed, wheel slip, vehicle
deceleration and control input to a large extent.
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Figure 4.4: Performance comparison on dry asphalt

Performance on wet asphalt

As seen from the Figure 4.5, the performance of the average policy is close to the ideal level i.e. wet to
wet. The time taken to stop is marginally higher, the deceleration is slightly lower but mostly constant,
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the wheel slip is mostly constant and close to the ideal value, and the control policy is smooth i.e. no
chattering. On comparing the performance of non-linear interpolation in Figure 4.3 with that of linear
interpolation in Figure 4.5 for wet on wet, it is seen that for linear interpolation, the rate of change of
wheel contact velocity, vehicle deceleration and wheel slip is more smooth, and chattering in the control
input is much lower. Also, the average policy is able to reduce variations in wheel angular speed, vehicle
deceleration, wheel slip and control input to a large extent.
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Figure 4.5: Performance comparison on wet asphalt

4.3.2. Initial speed = 60 km/h

To test the robustness of the control policy, it was tested for an initial speed of 60 km/h using the same
parameters as derived for 80 km/h. The braking distances on dry and wet asphalt are given in Table 4.7.
The policies are found to work well on both surfaces, but not as good as for 80 km/h. On dry asphalt,
the average policy is 6.24% worse while the wet policy is 20.7% worse than the ideal. On wet asphalt,
the average policy is 6.09% worse while the wet policy is 20.67% worse than the ideal.

Table 4.7: Braking distance [m]

Surface Dry asphalt policy Wet asphalt policy Average policy
Dry asphalt 14.25 17.2 15.14
Wet asphalt 21.19 17.56 18.63

The standard deviation in deceleration [m/s2] for each policy on dry and wet asphalt are given in Table
4.8. The comfort level follows a similar pattern to that of 80 km/h. Average on dry performs better than
both dry on dry and wet on dry. Average on wet performs better than wet on wet but worse than dry on
wet. However, the magnitudes of the standard deviation have increased for all the cases as compared
to those of 80 km/h. This is strange since the initial speed has reduced. This result again shows that
the policy parameters for 80 km/h do not work as well for 60 km/h.

Table 4.8: Standard deviation in deceleration [m/s2]

Surface Dry asphalt policy Wet asphalt policy Average policy
Dry asphalt 0.5531 0.6173 0.5047
Wet asphalt 0.4297 0.879 0.7335

The average policies on dry and wet asphalt are compared with the ideal values in Figure 4.6 and Figure
4.7 respectively. Although the performance for 60 km/h is not as good as for 80 km/h, the control inputs
are free from chattering. The analysis in this section shows that policy parameters derived for higher
speeds can be used for lower speeds with marginal decrease in performance.
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Policy comparison on dry asphalt

Figure 4.6: Policy comparison on dry asphalt

Policy comparison on wet asphalt

Figure 4.7: Policy comparison on wet asphalt

4.4. Summary

In this chapter, the results for the two interpolation methods for deriving the policy from optimal actions
computed offline were shown. The parameters of each linear policy and Fuzzy-V iteration were also
shown and discussed. The piecewise linear approximation is found to perform better than non-linear
interpolation in terms of smoothness of control policy, deceleration, wheel slip, and wheel linear and
contact velocities, as well as in terms of braking distance and comfort. The same policy can also be
used for lower speeds without a significant drop in performance. Thus, the policies obtained through
piecewise linear approximation will be used for adaptation in Chapter 5. The piecewise linear policy is
found to be similar to that of a proportional controller with gain scheduling.



5
Policy and PI controller adaptation
results

There are three possible variations of PoWER:

1. The parameter variance can be kept constant or can be adapted for each episode.

2. The random exploration during each episode can be kept constant or can be varied at each time
step of the episode.

3. Equal or different random exploration can be used for each parameter.

4. Each basis function or only one of the basis functions can be assumed to be active at each time
step.

Constant and different random exploration for each parameter, and the assumption of activation of only
one basis function at a time step has given better results for adaptive parameter variance than time
varying exploration, constant parameter variance and the assumption that all basis functions are active
simultaneously. The results have been shown for 4 adaptations:

1. Wet asphalt policy to dry asphalt (called wet to dry)

2. Average policy to dry asphalt (called ave to dry)

3. Dry asphalt policy to wet asphalt (called dry to wet)

4. Average policy to wet asphalt (called ave to wet)

For each adaptation, an optimal initial variance vector was found out by trial and error. Optimality here is
defined in terms of the final return, not the speed of convergence. For each adaptation, the result for this
optimal initial variance (named as optimal adaptive parameter variance in graphs) has been compared
with that of an non-optimal initial variance vector (named as adaptive parameter variance in graphs)
found out by averaging the four initial variance vectors. This is done because a single initial variance
vector must be used for robust performance. The value of the initial robust variance vector obtained is
𝜎ኼ = [25 37 317]ዉ.

5.1. Algorithm parameters

The Simulink model used is shown in Figure 5.1. Multiple wheel slip initial conditions have been taken
into account i.e. 𝜅ኺ = [0 0.2 0.4 0.6 0.8 1] and are referred to as Slip 1, Slip 2, Slip 3, Slip 4, Slip
5, Slip 6 respectively. The initial chassis speed is kept the same i.e. 80 km/h for all wheel slips. The
return of the 𝑗th episode is calculated using 𝑅፣ = 𝜌off − 𝑑፱,፣ where 𝜌off is the reward offset and 𝑑፱,፣ is
the average braking distance for all initial conditions for that episode. The reward offset is taken to
be 200 to ensure that the return is positive as PoWER requires the episode return to be positive [17].
The number of iterations are taken to be 300 as these were sufficient to show return and parameter
convergence while not taking too much time (approx 60 seconds on a dual core computer). After every
10 iterations, a noiseless trial i.e. an episode without random exploration but with parameters updated
through importance sampling is conducted to test the true performance.

31
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(a) The controller structure (b) The ABS system

Figure 5.1: The Simulink model

5.2. Piecewise linear policy adaptation results

The braking distances on dry and wet asphalt are given in Table 5.1. On dry asphalt, the braking distances
of ave to dry are slightly lesser than those of wet to dry for both optimal and robust variances, for each
initial condition. For wet to dry, braking distances of optimal variances are slightly lower than that of
robust variances for all initial conditions. For ave to dry, braking distances for both variances are same.
On wet asphalt, braking distances of ave to wet for both optimal and adaptive variances are lesser than
those of robust variances of dry to wet, but are mostly same as those of optimal variances of dry to
wet, for all initial conditions. The braking distances of optimal variances are lower than robust variances
for all initial conditions. When compared with the ideal braking distances from Chapter 4 i.e. 25.31 m
for dry on dry and 31.04 m for wet on wet, the adaptations to dry asphalt are successful with all initial
conditions except 1 achieving a lower braking distance, and adaptations to wet asphalt achieving a lower
braking distance for 3 out of 6 initial conditions with the maximum increment being 0.34 m.

Table 5.1: Braking distance [m]

Case Method Slip 1 Slip 2 Slip 3 Slip 4 Slip 5 Slip 6
Wet to Dry Optimal variance 25.32 25.25 25.25 25.26 25.26 25.28

Robust variance 25.33 25.26 25.26 25.26 25.27 25.28
Ave to Dry Optimal variance 25.31 25.24 25.24 25.25 25.25 25.26

Robust variance 25.31 25.24 25.24 25.24 25.25 25.26
Dry to Wet Optimal variance 30.88 30.86 30.94 31.05 31.18 31.31

Robust variance 30.96 30.94 31.01 31.12 31.25 31.38
Ave to Wet Optimal variance 30.88 30.86 30.95 31.06 31.18 31.31

Robust variance 30.88 30.87 30.94 31.05 31.18 31.31

The standard deviation in deceleration [m/s2] for each adaptation are given in Table 5.2. On dry asphalt,
the comfort performance of optimal variances is better than that of robust variances for each respective
initial condition, and the difference in performance is lesser for ave to dry and wet to dry. Also, the
deviation values are much less for Slip 2 - Slip 6 as compared to Slip 1. The same pattern is seen on wet
asphalt. When compared to ideal values from Chapter 4 i.e. 0.4481 for average on dry and 0.4023 for
dry on wet, it is seen that the adaptations to dry asphalt perform well, but adaptations to wet asphalt
do not.

Table 5.2: Standard deviation in acceleration [m/s2]

Case Method Slip 1 Slip 2 Slip 3 Slip 4 Slip 5 Slip 6
Wet to Dry Optimal variance 0.4871 0.1409 0.1408 0.1411 0.1424 0.1451

Robust variance 0.4891 0.1492 0.1491 0.1493 0.1504 0.1527
Ave to Dry Optimal variance 0.4862 0.134 0.134 0.1345 0.1361 0.1392

Robust variance 0.4864 0.134 0.134 0.1345 0.1361 0.1393
Dry to Wet Optimal variance 0.8303 0.7656 0.7725 0.7808 0.7923 0.8016

Robust variance 0.8365 0.774 0.7762 0.7836 0.794 0.8061
Ave to Wet Optimal variance 0.8302 0.7655 0.7724 0.7806 0.7922 0.8014

Robust variance 0.8307 0.7705 0.7729 0.7812 0.7927 0.8020



5.2. Piecewise linear policy adaptation results 33

5.2.1. Adaptation of wet asphalt policy to dry asphalt

The result comparison of optimal and robust parameter variance for wet to dry is shown in Figure 5.2.
The initial optimal variance vector is taken as 𝜎ኼ = [40 60 500]ዉ. The return converges faster for optimal
variance as it is greater than than robust variance. The final return for both variances is the same.
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The parameters show convergent behaviour for both variances and converge to similar values except for
parameter 3. The optimal and robust variances perform the same in terms of convergence of speeds,
deceleration and wheel slip. The control input is free from chattering for both.
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Figure 5.2: Performance comparison for wet to dry

5.2.2. Adaptation of average policy to dry asphalt

The result comparison of optimal and robust parameter variance for ave to dry is shown in Figure 5.3.
The initial optimal variance vector is taken as 𝜎ኼ = [18 20 200]ዉ. The return converges faster for robust
variance as it is greater than than optimal variance. The final return for both variances is the same.
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The parameters show convergent behaviour for both variances and converge to similar values except for
parameter 3.
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The optimal and robust variances perform the same in terms of convergence of speeds, deceleration
and wheel slip. The control input is free from chattering for both.
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Figure 5.3: Performance comparison for ave to dry

5.2.3. Adaptation of dry asphalt policy to wet asphalt

The result comparison of optimal and robust parameter variance for dry to wet is shown in Figure 5.4.
The initial optimal variance vector is taken as 𝜎ኼ = [40 60 500]ዉ. The return converges faster for optimal
variance as it is greater than than robust variance. It also converges to a slightly higher value.
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The parameters show convergent behaviour for both variances and converge to different values as the
final return is different. The optimal variance performs marginally better than robust variance in terms of
convergence of speeds, deceleration and wheel slip. The control input is free from chattering for both.
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Figure 5.4: Performance comparison for dry to wet

5.2.4. Adaptation of average policy to wet asphalt

The result comparison of optimal and robust parameter variance for ave to wet is shown in Figure 5.5.
The initial optimal variance vector is taken as 𝜎ኼ = [2 7 68]ዉ. The return converges faster for robust
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variance as it is greater than than optimal variance. The final returns are nearly equal. Random drops
in the return are much less sharper for optimal variance.
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The parameters show convergent behaviour for both variances and converge to similar values. The
optimal and robust variances perform almost the same in terms of convergence of speeds, deceleration
and wheel slip. The control input is free from chattering for both.
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Figure 5.5: Performance comparison for ave to wet

5.3. Adaptive Proportional-Integral (PI) control
A discrete time P-I and P controller for pure wheel slip control on dry and wet asphalt was implemented
with the following cases:

1. Fixed 𝜅 setpoint, adaptive proportional gain 𝐾፩ and integral gain 𝐾።
2. Adaptive 𝜅 setpoint, proportional gain 𝐾፩ and integral gain 𝐾።
3. Adaptive 𝜅 setpoint, fixed proportional gain 𝐾፩ and integral gain 𝐾።
4. Adaptive 𝜅 setpoint, fixed proportional gain 𝐾፩
5. Adaptive 𝜅 setpoint and proportional gain 𝐾፩

PoWER was used for adaptation in each case. The Simulink model used is shown in Figure 5.6. The ABS
system is the same as in the previous case. Multiple wheel slip initial conditions have been taken into
account i.e. 𝜅ኺ = [0 0.2 0.4 0.6 0.8 1]. The initial chassis speed is kept the same i.e. 80 km/h for all
wheel slips. The return of the 𝑗th episode is calculated using 𝑅፣ = 𝜌off − 𝑑፱,፣ where 𝜌off is the reward
offset and 𝑑፱,፣ is the average braking distance for all initial conditions for that episode. The reward
offset is taken to be 200 to ensure that the return is positive as PoWER requires the episode return to
be positive [17]. The number of iterations are taken to be 300 as these were sufficient to show return
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and parameter convergence while not taking too much time. After every 10 iterations, a noiseless trial
i.e. an episode without random exploration but with parameters updated through importance sampling
is conducted to test the true performance. Adaptive parameter variance was used for all adaptations.

Figure 5.6: The Simulink model

5.3.1. Fixed slip setpoint, adaptive proportional gain and integral gain

The initial values of the gains and variance were taken as 𝐾፩ = 10000 and 𝐾። = 200000, 𝜎ኼ =
[1000000 1000000]ዉ respectively. The reason for using large values is that it gives faster convergence.
The slip setpoint was found for each surface from Figure 3.3. The result comparison for dry and wet
asphalt is shown in Figure 5.7. The return converges faster for wet asphalt but does not converge to the
ideal values for both surfaces. The parameters also show convergence.
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For dry asphalt, the speeds converge to zero in the same time for all the initial conditions but there are
a lot of oscillations in the angular wheel velocity, linear deceleration and wheel slip for lower initial slips.
These oscillations increase at lower speeds. This behaviour is due to significant chattering in the control
input as seen from the graph of braking torque.
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In contrast, for wet asphalt, the speeds converge to zero in different times and there are minor oscillations
in the wheel angular velocity just before ABS is switched off. The deceleration is mostly constant as the
ideal slip value is attained and both oscillate just before ABS is switched off. The ideal slip is attained
after longer times for lower wheel slips. The smooth behaviour is due to smooth control input, except
before ABS is about to be switched off. This PI controller works better on wet asphalt than on dry asphalt
in terms of stability of control input.
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Figure 5.7: Performance comparison on dry and wet asphalt

5.3.2. Adaptive slip setpoint, proportional gain and integral gain

The initial values of the gains, setpoint and variance were taken as 𝐾፩ = 10000, 𝐾። = 200000, 𝜅 = 0 and
𝜎ኼ = [1000000 1000000 0.0001]ዉ respectively. The result comparison for dry and wet asphalt is shown
in Figure 5.8. The return almost converges to the ideal value for dry asphalt but the same does not
happen for wet asphalt. More iterations are needed for both surfaces for convergence. All parameters
except 𝐾፩ for wet asphalt and slip setpoint for dry asphalt show convergence.

For dry asphalt, the speeds converge to zero in almost the same time for all the initial conditions but
there are a some oscillations in the angular wheel velocity and wheel slip for lower initial slips at lower
speeds (approx 4 m/s). This behaviour is due to significant chattering in the control input at lower
speeds. However, the linear deceleration is mostly constant till 1.8 seconds, which is better than that of
the previous PI controller. Oscillatory behaviour is also seen for wet asphalt, in contrast to that of the
previous PI controller. The speeds converge to zero in different times and there are larger oscillations in
the wheel angular velocity, deceleration and wheel slip for lower initial slips at lower speeds (approx 6
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m/s). These oscillations are caused due to chattering in the control input. Compared to the previous PI
controller, this PI controller works better on dry asphalt but worse on wet asphalt in terms of stability of
control input.
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Figure 5.8: Performance comparison on dry and wet asphalt

5.3.3. Adaptive slip setpoint, fixed proportional gain and integral gain

The initial values of the setpoint and variance were taken as 𝜅 = 0 and 𝜎ኼ = 0.0001 respectively. The
fixed values of the gains were taken as 𝐾፩ = 10000 and 𝐾። = 200000. The result comparison for dry
and wet asphalt is shown in Figure 5.9. The return converges to the ideal value for dry asphalt but only
converges to a sub-optimal value for wet asphalt.

For dry asphalt, the speeds converge to zero in almost the same time for all the initial conditions but
there are minor oscillations in the angular wheel velocity, linear deceleration, and wheel slip for lower
initial slips just before ABS is switched off. This behaviour is due to minor chattering in the control input
at lower speeds (approx 3 m/s). Oscillatory behaviour is also seen for wet asphalt at low speeds, and is
much lesser than that of the previous PI controller. The speeds converge to zero in different times and
there are larger oscillations in the wheel angular velocity, deceleration and wheel slip for lower initial
slips. Chattering in the control input occurs at approx 4 m/s. In terms of stability of control input, this
controller works better than the previous 2 PI controllers on dry asphalt, and better than the previous
controller but not as good as the first PI controller on wet asphalt.
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Figure 5.9: Performance comparison on dry and wet asphalt

5.3.4. Adaptive slip setpoint, fixed proportional gain

The initial values of the setpoint and variance were taken as 𝜅 = 0 and 𝜎ኼ = 0.0005 respectively. The
fixed value of the gain was taken as 𝐾፩ = 10000. The result comparison for dry and wet asphalt is shown
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in Figure 5.10. The return converges to the ideal value faster for wet asphalt than for dry asphalt. The
slip setpoint converges to higher values than those found by the previous controller since integral gain
is absent here.
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For dry asphalt, the speeds converge to zero in the same time for all the initial conditions with minor
oscillations in the angular wheel velocity and and wheel slip for lower initial slips just before ABS is
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switched off. These oscillations are higher for linear deceleration since it is proportional to the rate of
change of angular speed. This behaviour is due to minor chattering in the control input at very low
speeds (approx 2.5 m/s). On wet asphalt, the speeds converge to zero in the same time and there
are larger oscillations in the wheel angular velocity, deceleration and wheel slip for lower initial slips
at speeds just before and after ABS is switched off, but are much lesser than that of the previous PI
controller. Chattering in the control input occurs at approx 3 m/s. In terms of braking distance, this
controller performs better than the last 3 PI controllers on both dry and wet asphalt.
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Figure 5.10: Performance comparison on dry and wet asphalt
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5.3.5. Adaptive slip setpoint and proportional gain

The initial values of the setpoint, proportional gain and variance were taken as [𝜅 𝐾፩] = [0 10000] and
𝜎ኼ = [0.0005 1000000]ዉ respectively. The result comparison for dry and wet asphalt is shown in Figure
5.11. The return converges to the ideal value faster for wet asphalt than for dry asphalt. The slip setpoint
converges to higher values than those found by the previous PI controllers since integral gain is absent.
The proportional gains converge to lower values for both surfaces.
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For dry asphalt, the speeds converge to zero in the same time for all the initial conditions with minor
oscillations in the angular wheel velocity and and wheel slip for lower initial slips just before ABS is
switched off. These oscillations are higher for linear deceleration since it is proportional to the rate of
change of angular speed. This behaviour is due to minor chattering in the control input at very low
speeds (approx 2.5 m/s). On wet asphalt, the speeds converge to zero in the same time and there
are larger oscillations in the wheel angular velocity, deceleration and wheel slip for lower initial slips at
speeds just before and after ABS is switched off, similar to those of the previous P controller. Chattering
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in the control input occurs at approx 3 m/s. This controller performs similar to the previous P controller
on both dry and wet asphalt.

Figure 5.11: Performance comparison on dry and wet asphalt

The braking distances for this P controller on dry and wet asphalt are given in Table 5.3. When compared
with the ideal braking distances from Chapter 4 i.e. 25.31 m for dry on dry and 31.04 m for wet on wet,
it can be seen that on dry asphalt, all braking distances are marginally higher, and on wet asphalt, the
braking distances are lower for 3 out of 6 initial conditions and higher in the other 3 with the maximum
increment being 0.37 m. When compared with the distances obtained through adaptation in Table 5.1,
it can be seen that the braking distances are marginally higher than those of wet to dry and ave to dry
for all except 4 respective initial conditions, and are marginally higher than that of dry to wet and ave to
wet for each respective initial condition with the maximum increment being 0.11 m.

Table 5.3: Braking distance [m]

Surface Slip 1 Slip 2 Slip 3 Slip 4 Slip 5 Slip 6
Dry asphalt 25.34 25.26 25.26 25.26 25.28 25.28
Wet asphalt 30.99 30.97 31.04 31.16 31.29 31.41

The standard deviation in deceleration [m/s2] for this P controller on dry and wet asphalt are given in
Table 5.4. When compared to ideal values from Chapter 4 i.e. 0.4481 for average on dry and 0.4023
for dry on wet, the comfort levels are much worse for all initial conditions on both dry and wet asphalt.
When compared with the values obtained through adaptation in Table 5.2, it can be seen that the comfort
levels are much worse for all initial conditions on both dry and wet asphalt.

Table 5.4: Standard deviation in acceleration [m/s2]

Surface Slip 1 Slip 2 Slip 3 Slip 4 Slip 5 Slip 6
Dry asphalt 1.0551 0.7933 0.7998 0.6245 0.8508 0.699
Wet asphalt 1.562 1.5228 1.488 1.5484 1.5538 1.4935

5.4. Summary

In this chapter, the results of adaptation of the piecewise linear approximated policy using optimal and
robust initial parameter variance methods was shown and discussed for four adaptations. The adapta-
tions of average policy to dry and wet asphalt perform well for both the variance methods. To compare
the performance, the results for an adaptive PI controller for 5 cases of adaptations were also shown.
The P controllers with adaptive slip setpoint and fixed proportional gain, and adaptive slip setpoint and
proportional gain perform better than all PI controllers. In comparison to the piecewise linear policy
adaptations, the P controllers perform slightly lower in terms of braking distance but much worse in
terms of comfort of the passengers.



6
Conclusions and Future Work

This chapter presents the conclusions derived from the performed simulations and methods to improve
the current implementation. Other applications of the controller are also discussed.

6.1. Conclusions
The following conclusions can be made, starting from Chapter 4:

1. The piecewise linear approximated policies perform better than policies obtained through non-
linear interpolation on both dry asphalt and wet asphalt in terms of safety and comfort. The
braking distances are almost equal for dry asphalt but are lesser for wet asphalt, which is more
critical. Comfort is significantly i.e. about 2.5 times higher on both surfaces.

2. Among linear policies, the average policy performs reasonably well on both surfaces. For the speed
for which it is derived i.e. 80 km/h, its performance in terms of braking distance is behind the best
by 5.58% on average while the worst is behind by 18.76% on average. The same policy can
also be used at a lower speed without much drop in performance e.g 60 km/h with 1% drop in
performance.

3. Adaptation of average policy to both dry and wet asphalt is faster than that of wet to dry and dry to
wet respectively for both optimal and robust initial parameter variance methods. This is expected,
since the parameters of the average policy are between the parameters of dry and wet policies.

4. In [17], PoWER converges for the underactuated swing-up task [28] in about 150 iterations. Com-
pared to this, the adaptations wet to dry, ave to dry, and dry to wet take 100-150 iterations, and
ave to wet with optimal performance takes 100 iterations.

5. The convergence speed and final return depend largely on the choice of exploration and parameter
variance. Optimal initial variance leads to higher returns but may be slow e.g ave to wet. Robust
initial variance leads to faster or slower convergence depending on the adaptation e.g. faster for
ave to wet but slower for dry to wet. A trade-off has to be made between speed of convergence
and the final return.

6. Ave to dry performs equally well as the ideal policy i.e. dry on dry in terms of braking distance for
all initial conditions and and marginally lower in terms of comfort than the ideal i.e. average on dry
for only one initial condition, for both optimal and robust variance methods. Ave to wet performs
better than the ideal i.e. wet on wet in terms of braking distance for 3 out of 6 initial conditions but
worse in terms of comfort for all initial conditions, for both optimal and robust variance methods.
Since safety is the the primary concern and the drop in comfort level is not too much, the average
policy is a better choice as it is good on both dry and wet asphalt.

7. Ave to dry and ave to wet give the same braking distances for optimal and robust variance methods
for 5 out of 6 and 3 out of 6 initial conditions respectively. in terms of comfort, the optimal variance
method performs slightly better than the robust variance method for ave to dry and ave to wet for
all initial conditions.
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8. Among adaptive PI controllers, the third controller, with adaptive slip setpoint and fixed gains
performs best on dry asphalt in terms of stability of control input. The first controller, with fixed
slip setpoint and adaptive gains performs best on wet asphalt, but the performance is not good as
that of the model based adaptive controller for 5 out of 6 initial conditions. For all PI controllers
and P controllers, gain scheduling is needed to prevent chattering at low speeds [29].

9. A simple adaptive proportional controller with adaptive slip setpoint and adaptive or fixed gain
performs the better than all PI controllers on both dry and wet asphalt for all initial conditions and
has minor control input chattering at low speed. Its performance can be compared to the model
based RL controller only in terms of braking distance, since comfort performance is much worse.

10. In terms of stability of the control input, the adaptations of the piecewise linear policy perform
much better than all the PI controllers, for which gain scheduling has to be used at low speeds to
prevent chattering. No such chattering is seen for the adaptations.

11. The piecewise linear policy is found to be similar to that of proportional control with gain schedul-
ing. This explains the lack in performance of the adaptive proportional controller without gain
scheduling.

6.2. Future Work

The current implementation of the adaptive controller can be improved by nullifying the current assump-
tions made for the purpose of simplicity. Also, there are other subsystems of a vehicle for which this
controller can be implemented. It can also be implemented for robots.

6.2.1. ABS (Anti-lock Braking System)

1. The road can assumed to be inclined instead of flat.

2. Suspension dynamics can be taken into account.

3. Pitch and roll dynamics can be taken into account by using the half car or full car model instead
of the quarter car model on a turn or banked road instead of a straight line. This will lead to the
radius of the wheel being dynamic.

4. Transient tire behaviour can be taken into account.

5. Delay due to actuator dynamics can be taken into account.

6. One or two wheels can be assumed to roll on a different surface than the other three or two wheels
respectively.

7. A lower sampling period can be chosen e.g. 𝑇፬ = 0.001 s.

6.2.2. Lateral and vertical stability control of a vehicle

1. Similar to controlling the linear chassis velocity and wheel angular velocity for longitudinal stability,
this controller can also be implemented for controlling the lateral velocity, yaw rate, and body roll
angle for lateral stability during cornering. [30] implements neural network based RL for active roll
control of a heavy vehicle.

2. It can also be implemented in active or semi-active suspensions for continuously controlling the
sprung mass acceleration and suspension travel, and improving the road holding capacity on a
straight road or while turning. [31] uses Continuous Action Reinforcement Learning Automata
(CARLA) for control of a semi-active suspension.

6.2.3. Motion control of a robot

The controller can be used for improvement of motion control of a robot such as the Jackal [32] which
uses a skid-steering mechanism [33] . Currently, it has pre-defined discrete levels of speed. After
a speed is chosen, the voltage to the DC motors in the wheels is controlled automatically. Due to
switching between discrete levels of speed, the motion is jerky at times and can be improved by using
this controller to make it continuous through continuous voltage control.
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