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Summary

The Aerosol Optical Depth (AOD), a measure of the scattering and absorption of light by
aerosols, has been extensively used for scientific research such as monitoring air quality
near the surface due to fine particles aggregated, aerosol radiative forcing (cooling effect
against the warming effect by carbon dioxide CO2), aerosol long-term trend analysis and
the climate change on regional and global scale.

Aerosols vary greatly over time and space. This is because of the short lifetime of
aerosols (a few hours to a week), and also because of the heterogeneous distribution
of sources and the variable effectiveness of atmospheric mixing though turbulence. To
monitor aerosols, observations by space-borne instruments have a huge advantage (nearly
global coverage daily) over ground-based measurements (point observation). Global
quantitative aerosol information has been derived from satellite measurements for decades.
The MODerate resolution Imaging Sepctroradiometer (MODIS) AOD product is proven
to be mature and is extensively applied in different scientific fields. The current AOD
product generated with the collection 6 (C6) Dark Target (C6_DT) algorithm over land
is still suffering from errors or biases due to parameterization, assumptions, modeling,
and retrieval techniques as well as ill-posed problems, presenting large uncertainties
including regional bias, angular effects and a large number of unphysical negative val-
ues. Chapter 1 discusses the challenges and limitations in the current satellite aerosol
retrieval algorithm.

Owing to the use of static aerosol properties (predefined aerosol models and fixed
vertical profile over the globe), the MODIS algorithm may give serious errors since aerosols
can change over time and are distributed very diversely at different altitude levels. To
quantify these errors, in Chapter 3 the sensitivity of AOD retrieval to the variation of
aerosol vertical profiles and types with the MODIS algorithm is evaluated by a set of
experiments. It was found that the AOD retrieval shows a high sensitivity to different
vertical profiles and types.

As suggested by the sensitivity study, it is necessary to investigate the impact of dy-
namical aerosol properties in a real case. To do this, an adaptive development of the
MODIS C6_DT algorithm was implemented to consider realistic aerosol vertical profile
in the retrieval (Chapter 4). MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) measurements were used. Inferred from CALIPSO data,
the vertical profile was applied into the new algorithm to generate an accurate Top Of
the Atmosphere (TOA) reflectance for the retrieval. The AOD retrieval was compared
between C6_DT and the new algorithm with cases of heavy smoke and dust. The dif-
ference in the retrieval was significant between C6_DT and the new algorithm, which
demonstrated that C6_DT would give large errors in the retrieval for these cases.

In the MODIS algorithm, the assumption of the surface with isotropic reflection (Lam-
bertian) is inconsistent with the well-known fact that the surface has a strong anisotropic
reflection (non-Lambertian), and could lead to large uncertainties in estimating the sur-
face contribution to satellite measurements, with resulting errors in the AOD retrieval.

xi



xii Summary

Chapter 5 describes a newly developed algorithm (BRF_DT) by considering non-Lambertian
surface reflectance characterized by Bidirectional Distribution Reflectance Function (BRDF),
where the surface reflection is described by four reflectance properties — bidirectional,
directional-hemispherical, hemispherical-directional, and bihemispherical reflectance
and coupled into the radiative transfer process to generate an accurate TOA reflectance.
In addition, a parameterization of spectral relationship inherited from C6_DT was ap-
plied to constrain the surface BRF. The remaining three components are determined by
MODIS BRDF/albedo product. As shown by sample plots and histograms as well as anal-
ysis and comparison against AERONET measurements, the AOD retrievals were signifi-
cantly improved by BRF_DT especially for areas with heavy aerosol loading.

For the case of areas with light aerosol loading, the parameterization of spectral sur-
face BRF should be further refined to yield a better retrieval. Chapter 6 shows that a
new parameterization was derived for the BRF_DT algorithm (called BRF_DT2) by using
3 years of BRF data from AERONET-based Surface Reflectance Validation Network (AS-
RVN). The contribution to the TOA reflectance dominated by the surface BRF was well
estimated. As a result, negative retrievals and angular biases were significantly reduced
in BRF_DT2. A summary of the current and future research of satellite aerosol retrieval
is introduced in Chapter 7.



Samenvatting

De Aerosol Optische Dikte (AOD), een grootheid die de hoeveelheid verstrooiing en ab-
sorptie van licht door aërosolen kwantificeert, is uitgebreid gebruikt in wetenschappe-
lijke studies, zoals de monitoring van luchtkwaliteit nabij het aardoppervlak door fijn-
stof, de aërosol-stralingsforcering (verkoelend effect in tegenstelling tot het verwarmende
effect door kooldioxide CO2), aërosol langetermijn-trendanalyse, en klimaatveranderin-
gen op regionale en mondiale schaal.

Aërosolen variëren sterk in tijd en ruimte. Dit is het gevolg van de korte verblijftijd
van aërosolen in de atmosfeer (van een paar uur tot een week), en ook door de hete-
rogene verdeling van bronnen en de variabele effectiviteit van atmosferische turbulente
mixing. Om aërosolen te monitoren, zijn waarnemingen door satellietinstrumenten zeer
voordelig (bijna complete mondiale bedekking) ten opzichte van grondwaarnemingen
(puntwaarnemingen). Mondiale kwantitatieve aërosolinformatie is afgeleid uit satelliet-
waarnemingen in de afgelopen decennia. MODerate Imaging resolution Spectroradio-
meter (MODIS) AOD heeft zich bewezen als een state-of-the-art product en is uitgebreid
toegepast in het wetenschappelijke veld. Desondanks heeft het huidige AOD product,
geproduceerd door het Collection 6 (C6) Dark Target (C6_DT) algoritme over land, te
maken met veel fouten en afwijkingen door parametrisaties, aannames, modellering,
simulaties, and retrievaltechnieken in het algoritme en door het wiskundige ondergede-
termineerde probleem (meer onbekenden dan waarnemingen), resulterend in een re-
latieve lage nauwkeurigheid, inclusief regionale afwijkingen, hoekafhankelijkheden en
een grote hoeveelheid niet-fysische negatieve waarden. Hoofdstuk 1 beschrijft de uitda-
gingen en de beperkingen in het huidige satellietretrieval-algoritme.

Door het gebruik van constante aërosoleigenschappen (voorgedefinieerde aërosol-
modellen en constante verticale profielen rond de aarde), kan het MODIS algoritme se-
rieuze fouten in de retrieval geven, omdat aërosolen in de tijd kunnen veranderen en ze
zeer divers over verschillende hoogtelagen zijn verdeeld. Om deze fouten te kwantifice-
ren, wordt in hoofdstuk 3 de gevoeligheid van de AOD retrieval als functie van de variatie
van aërosol verticale profielen en aërosoltypes door het MODIS algoritme, in een aantal
experimenten geëvalueerd. Dit bracht een grote gevoeligheid van de AOD retrieval voor
verschillende profielen en typen aan het licht.

Als gesuggereerd door de gevoeligheidsstudie, is het nodig om de invloed van dyna-
mische aërosolprofielen met echte data te onderzoeken. Hiervoor werd een aangepaste
versie van het MODIS C6_DT algoritme gemaakt, om een realistisch aërosol verticaal
profiel in de retrieval mogelijk te maken (hoofdstuk 4). MODIS en Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO) metingen werden gebruikt. Af-
geleid uit CALIPSO-metingen, werd het verticale profiel gekoppeld aan het nieuwe algo-
ritme, om een nauwkeurige reflectantie aan de top van de atmosfeer te genereren voor
de retrieval. De AOD retrievals uit C6_DT en het nieuwe algoritme werden vergeleken
voor gevallen met dikke rookpluimen en (woestijn)stof. Een significant verschil werd
aangetoond tussen C6_DT en het nieuwe algoritme, wat demonstreert dat C6_DT grote
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fouten geeft in deze gevallen.
In het MODIS algoritme wordt aangenomen dat het oppervlak een isotrope (Lamber-

tiaanse) reflector is, wat inconsistent is met het bekende feit dat het oppervlak een sterke
anisotrope (niet-Lambertiaanse) reflectantie heeft, wat kan leiden tot grote onzekerhe-
den in de schatting van de oppervlaktebijdrage aan de satellietmetingen, met fouten in
de retrieval tot gevolg. In hoofdstuk 5 wordt een nieuw ontwikkeld algoritme (BRF_DT)
beschreven, dat gebruik maakt van niet-Lambertiaanse oppervlakte-eigenschappen, ge-
karakteriseerd door Bidirection Distribution Reflectance Function (BRDF), waarin de re-
flectantie van het oppervlak wordt beschreven door vier componenten - bi-directionele,
directioneel-hemisferische, hemisferisch-directionele, en bi-hemisferische reflectantie
en gekoppeld aan het stralingstransport-proces, om een nauwkeurige reflectantie aan
de top van de atmosfeer te genereren. Tegelijkertijd wordt een parametrisatie van de
spectrale relatie overgenomen van C6_DT om de oppervlakte BRF te beschrijven. De
drie overgebleven componenten worden bepaald met het MODIS BRDF/albedo pro-
duct. Zoals wordt getoond in zowel voorbeeldgrafieken en histogrammen als analyses
en vergelijkingen met AERONET-metingen, worden de AOD retrievals aanzienlijk verbe-
terd door BRF_DT, met name in gebieden met hoge aërosolconcentraties.



1
Introduction

The eternal mystery of the world is its comprehensibility.

Albert Einstein
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2 1. Introduction

1.1. Importance of atmospheric aerosol
An atmospheric aerosol is a suspension of liquid or solid particles distributed in the air,
with a radius ranging from a few nm to over 100 µm. Aerosols from natural sources,
e.g., volcanic ash, sea spray, dust, and human activities e.g., industrial emission, forest
fire smoke and fossil fuel burning affect human health, cloud formation, precipitation,
and climate change (GCOS, 2007; IPCC, 2013) (see Figure 1.1). Near land surfaces, high

Aerosol 

Absorbing 

Surface 

Cloud 

Cloud condensation nuclei  

Figure 1.1: Schematic of aerosol effects on air quality and climate. Aerosols have an important impact on
climate by their direct and indirect effects. Most aerosols (except black carbon) can directly absorb and scatter
solar radiation, cooling the atmosphere globally (direct effects). On the other hand, aerosols can play a role as
cloud condensation nuclei (CCN) through their hygroscopic properties, affecting cloud formation and albedo
(indirect effects). In addition, aerosols aggregated and lifted in the boundary layer of the atmosphere can lead
to air pollution. For example, these aerosols significantly reduce the visibility. Collocated with viruses, they
can be inhaled by human causing human disease (e.g., lung disease and flu).

concentrations of aerosols can lead to poor air quality. In general, all aerosols are in-
haled by humans, but small aerosols penetrate the lungs deeper, causing more dam-
age, such as fine aerosols with aerodynamic diameter < 2.5 µm combined with various
micro-organisms (Laden et al., 2000; Samet et al., 2000; Pope III et al., 2002; Pope III and
Dockery, 2006). In addition, these aerosols can substantially reduce visibility because
they scatter and absorb solar radiation. Recently, many events of severe air pollution in
Beijing, China occurred (see Figure 1.2) because much of the aerosol load comes from
vast arid zones to the east of the city. The rapid industrialization of the country especially
the region around the capital has made this problem even worse, in terms of aerosol den-
sity, event frequency, as well as health impact.

Aerosols also have a significant impact on climate due to their direct and indirect
effects (Kaufman et al., 2002; Myhre, 2009; IPCC, 2013). Most aerosols affect the climate
directly by cooling the atmosphere globally through reflecting solar radiation into outer
space, whereas absorbing aerosols e.g., black carbon, locally warm the atmosphere and
cool the surface; this is also called the direct effect of aerosol. The net effect of aerosols
is cooling, as compared to greenhouse gases CO2 which lead to warming. As for indirect
effects on climate, aerosols can play a role as cloud condensation nuclei through their
hygroscopic properties, and influence the formation and albedo of clouds and further
influence the precipitation locally and globally.

Aerosols are distributed unevenly in the atmosphere, showing a strong variability in
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Figure 1.2: Haze in Eastern China, observed by MODIS/Terra on Dec 7th, 2013. The brightest areas indicates
cloud or fog. Haze is given as gray color. Figure courtesy of NASA MODIS rapid response team.

space and time. Aerosols can move with the wind, sink by their gravity and be removed
by the weather e.g., precipitation and cloud formation, on a regional scale, to yield a
rapid change or fluctuation in their concentration and chemical composition.

Many studies have been done to obtain aerosol properties with ground-based and
space-borne instruments. Observing the earth from space, satellites have the unique ad-
vantage of large or even global coverage. Therefore, they have been extensively used to
retrieve aerosol properties, such as the single viewing satellite sensor MODerate Resolu-
tion Imaging SpectroRadiometer (MODIS) (Remer et al., 2005; Levy et al., 2007b, 2013b;
Hsu et al., 2004, 2006, 2013; Sayer et al., 2013, 2015, 2016), the Advanced Very High
Resolution Radiometer (AVHRR) (Stowe et al., 1997; Mishchenko et al., 1999), multi-
angle viewing sensor Advanced Along-Track Scanning Radiometer (AATSR) (North, 2002;
North et al., 1999; Grey et al., 2006; Thomas et al., 2009), Multi-angle Imaging Spectro-
radiometer (MISR) (Martonchik et al., 1998, 2002, 2009; Keller et al., 2007), PoLariza-
tion and directionality of the Earth’s Reflectances (POLDER) (Tanré et al., 2011; Herman
et al., 2005; Dubovik et al., 2011), and active detection sensors Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) (Liu et al., 2008b,a).

One aerosol property, Aerosol Optical Depth (AOD), describes the radiation attenua-
tion in the atmosphere and has gained a lot of attentions from the scientific community.
This is because AOD can be applied to characterize aerosol concentrations and evaluate
the impact of aerosols on climate. AOD is used to indicate the aerosol amount or par-
ticulate matter concentration (aerodynamic diameter < 2.5 µm, PM2.5) near the surface
(e.g., Chu et al., 2003; Engel-Cox et al., 2004; Nicolantonio. et al., 2007; Hoff and Christo-
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pher, 2009; Wu et al., 2012). It is also used to estimate the aerosol direct radiation forcing
(e.g., Yu et al., 2006; Bellouin et al., 2008; Myhre, 2009), as well as for long-term trend
analysis of aerosol (e.g, Li et al., 2009; Zhang and Reid, 2010; Guo et al., 2011) and data
assimilation studies (Zhang and Reid, 2010; Hyer et al., 2011; Liu et al., 2011; Schwartz
et al., 2014).

1.2. The MODIS AOD product
To retrieve AOD, the MODIS Dark Target (DT) AOD algorithm has been proven to be
mature. The algorithm has experienced several generations of developments (Remer
et al., 2005; Levy et al., 2007b,a, 2013b) and extensive and rigorous validations against
the ground “truth” data collected by AErosol Robotic NETwork (AERONET) (e.g., Levy
et al., 2005, 2010; Tao et al., 2015; Wu et al., 2017b). Because of this and its high spatial
(10 km × 10 km at near-nadir) and temporal resolution (nearly daily coverage over the
globe), the MODIS AOD product has become one of the most popular aerosol products
and been widely applied in different scientific fields.

The accuracy of the DT algorithm critically depends on the presence of a dark target
in each scene. This is not a problem over the ocean, which is mostly very dark outside
of the sun glint. However, a lack of really dark targets could be a major source of errors
over land. Problems areas include arid zones, desert and urban regions. Currently, the
MODIS Collection 6 DT (C6_DT) AOD product over ocean has a relatively high accuracy
with Expected Error (EE, one standard deviation in Gaussian function) of +(0.04 + 10%),
-(0.02 + 10%) (Levy et al., 2013b). However, the accuracy of the MODIS AOD over land
is still low, with EE of ±(0.05 + 15%) (Levy et al., 2013b). Three well-known causes of the
low accuracy are listed below:

1. For each retrieval, the performance of the MODIS C6_DT algorithm is highly de-
pendent on the number of the MODIS measurements (Levy et al., 2013b; Wu et al.,
2017b). These measurements are chosen by the dark target selection (Levy et al.,
2007b) and averaged over the box of 20 × 20 pixels (500 m resolution) in an image
in the retrieval. A high number of measurements (e.g., ≥ 50) can lead to a high
quality AOD with C6_DT algorithm, while fewer measurements e.g., ≤ 20, lead to a
lower quality AOD. In fact, the MODIS science team recommends to use the AOD
product with the best quality only, which would result in a huge reduction (about
50%) in AOD retrievals (Wu et al., 2017b).

2. The MODIS C6_DT algorithm presents a regional bias in the AOD retrieval. The
overestimation (about 15% in average) of the retrieval has been found in Eastern
China (Tao et al., 2015; Wu et al., 2017b), and in North America (Wu et al., 2017b).
Eck et al. (2013) and Wu et al. (2017a), showed that there was a significant bias over
biomass-burning areas in South Africa.

3. The MODIS C6_DT algorithm gives a strong angular dependence of the retrieval
(Wu et al., 2017b, 2016a). In the algorithm, the retrievals are much better at a small
scattering angle (the angle between the direction of the solar incident flux and the
direction of the reflected flux into the view of the sensor) than at a large scattering
angle. More details about this are discussed in section 5.4.2 and 6.4.2.
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The current uncertainty level of AOD retrievals over land leads to a large uncertainty
(±0.03 or 15 ∼ 20%) in the global mean AOD (Levy et al., 2013b) that can not well meet
the need of the precision (δτ: 0.01 ∼ 0.02) in the estimate of direct aerosol forcing (e.g.,
McComiskey et al., 2008). For the estimation of PM2.5 concentration near the surface,
it can lead to even large errors (> 20%) along with other meteorology factors (e.g., Hoff
and Christopher, 2009). To be specific, the regional biases and angular dependence chal-
lenge the estimate of the surface-level PM2.5 concentration using MODIS AOD data.
This mainly leads the relationship between AOD and PM2.5 concentration to vary across
different regions, i.e., difficult to apply in other regions, though the estimate also de-
pends on other conditions such as the aerosol vertical profile, humidity and aerosol
chemical composition as well as wind velocity and direction. (e.g., Engel-Cox et al., 2004;
Gupta et al., 2006; Koelemeijer et al., 2006; Hutchison et al., 2008; Liu et al., 2007; Wu
et al., 2012). Although the method that uses multi-source satellite AOD products cali-
brated with AERONET data can significantly improve the accuracy in predicting surface
PM2.5 concentration(van Donkelaar et al., 2016), it may not perform well where there is
few AERONET sites/data since the AOD data were not well calibrated. For assimilation
studies, the systematic bias of MODIS AOD data (e.g., regional bias) can degrade anal-
yses and forecasts, such as resulting in a large number of outliers(e.g., Zhang and Reid,
2006; Zhang et al., 2008). Although empirical corrections proposed by Zhang and Reid
(2006) were used to reduce the bias and benefited data assimilation (Zhang and Reid,
2006; Zhang et al., 2008; Shi et al., 2011; Saide et al., 2013), they may also introduce some
unknown artificial errors into the assimilated data. Recently, the importance of aerosols
and their climate impacts on regional scale (mainly over land) has been highlighted by
aerosol trend analysis Chin et al. (2014), which means the analysis can be seriously af-
fected by the regional bias in AOD, if used this data. In summary, all the applications
have strongly demonstrated the urgent needs for reducing the uncertainties, biases, an-
gular dependence in the MODIS AOD retrievals.

1.3. Potential source of errors in the AOD retrieval

The low accuracy of the AOD retrieval is caused by many potential error sources, such
as cloud mask, instrument calibration, surface effects and aerosol properties (Li et al.,
2009; Kokhanovsky et al., 2010). The instrument calibration is dependent on the sensor
quality, e.g., signal to noise ratio, and calibration method applied. i.e whether on-board
or vicarious, which directly determines the quality of the satellite measurements and
affects the retrieval accuracy. This issue is more related to the measurement, and should
be better left to the instrument team. Presently, the cloud mask method is well developed
(Ackerman et al., 1998, 2010; Martins et al., 2002), which removes the pixels of clouds or
contaminated by a cloud i.e cloud brightening effect. Additionally, thin-cirrus can be
accurately detected and removed in the MODIS C6 algorithm (Levy et al., 2013b).

However, in the AOD retrieval algorithm, it is still a challenging task to deal with the
issue of the surface effects and aerosol properties. Many attempts have been made to-
wards resolving this for decades, but there are many limitations, which are shown below.
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Aerosol properties
In the AOD retrieval, it is necessary to understand the aerosol optical properties, such as
the single scattering albedo and phase function. This is because these properties deter-
mine the efficiency of aerosol scattering and absorption and directly affect the algorithm
accuracy. For the MODIS AOD product, the first mature version Collection 4 (C4) was de-
scribed in Remer et al. (2005), where three non-dust or fine models (Kaufman et al., 1997;
Remer and Kaufman, 1998; Remer et al., 1998) and one dust model were characterized.
With the single-view measurement by MODIS, it is not possible to retrieve the non-dust
model simultaneous with AOD and surface reflectance in the algorithm. Thus, it was as-
sumed that the non-dust model could be selected and applied according to seasons and
geography.

Later, to pursue more reliable AOD retrievals, these aerosol models were further re-
fined in the second-generation retrieval algorithm collection 5 (C5), by performing clus-
ter analysis (Omar et al., 2005) for the aerosol climatology of almucantar retrievals (Levy
et al., 2007b,a). In C5, the spheroid shape of the dust particles was applied instead of the
sphere shape, which is consistent with the recent studies in Dubovik et al. (2002b, 2006).
Nevertheless, the assumption about the non-dust model choice in C4 still remained in
C5, and even in the latest version C6_DT (Levy et al., 2013b). This assumption could
cause problems when some unusual aerosol source arises since the fine aerosol model
is predefined in the AOD retrieval. As an example, in this thesis it is shown that smoke
by a forest fire that appears in North America (Canada) (Lee et al., 2015) and in South
Africa (Eck et al., 2013) would be wrongly assumed by the algorithm. As a result, serious
errors could be introduced in the retrieval. The retrieval would be better if it included a
realistic aerosol model.

Another aerosol property, i.e. its vertical profile, should be well defined. Many stud-
ies have assumed that most aerosols are statically located in the atmosphere boundary
layer (below 3 - 4 km, near the surface) (e.g., Hsu et al., 2004; Levy et al., 2007b; Thomas
et al., 2009). This is true for most cases where aerosols are lifted from the ground. How-
ever, in many cases aerosols can reach much higher elevations due to either convection
or high altitude source injection (volcanoes or pyrocumulus), such as the dust layers that
can reach high altitude (3 to 6 km) in North Africa and Arabian Peninsula (e.g., Liu et al.,
2008a), and the smoke plumes that can rise up to 6 to 9 km by wildfire over North Amer-
ica (e.g., Lee et al., 2015). Additionally, the negative bias of the retrievals presented in
the heavy dust region (Levy et al., 2010; Sayer et al., 2013) is probably due to neglecting
the elevated dust layer. Therefore, a more comprehensive study has been carried out to
include a dynamic distribution of the aerosol layer.

Estimation of surface effects
To retrieve the AOD over land, it is necessary to accurately estimate the surface reflected
radiance and distinguish it from the aerosol signal. This is because under low to moder-
ate atmospheric opacity, terrestrial surfaces can contribute significantly to the planetary
radiance at the Top Of Atmosphere (TOA), due to their high reflectance compared to
that atmospheric constituents. It is not an easy task to achieve this, since the contri-
bution from a bright surface to the TOA radiance can be higher than the one from the
atmosphere, which makes it difficult to separate the aerosol contribution from the TOA
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radiance (Hsu et al., 2013). In addition, the complicated anisotropic reflection at the
land surface itself makes this task more challenging.

A simple approach has been developed that takes advantage of dark or darker sur-
faces at different bands to obtain a relatively accurate estimation of the atmosphere con-
tribution to the radiance at TOA, by two versions of the algorithms MODIS DT and Deep
Blue. The MODIS DT land AOD algorithm makes use of the presence of a dark surface at
two visible channels 0.47 µm and 0.66 µm and the approximate transparency of the at-
mosphere at a relatively long wavelength 2.12 µm, to estimate the effects of atmospheric
scattering and surface reflection on the TOA reflectance (Remer et al., 2005; Levy et al.,
2007a,b, 2013b). The MODIS Deep Blue AOD algorithm is similar, but uses the charac-
teristics of a darker surface at blue channels 0.412µm and 0.470 µm and little absorption
by dust at a red channel (e.g., 0.670 µm) (Hsu et al., 2004, 2006).

By taking account of the surface anisotropic reflection, the algorithms can yield a rel-
atively good retrieval of AOD (Lyapustin et al., 2011a,b; Yang et al., 2014). Nevertheless,
some shortages or problems should be pointed out. The algorithm in Lyapustin et al.
(2011a,b) is critically computationally complex and time-consuming because it needs
to process a large amount of accumulated satellite data over multiple days. As for the
algorithm developed by Yang et al. (2014), there are mistakes in the calculation of the
transmitted radiance and the surface contribution. To balance the complexity or com-
putational efficiency and the accuracy, a simple and reliable framework is needed for the
retrieval, with respect to the effects of surface anisotropic reflection in the retrieval (see
Chapter 5).

Algorithm intrinsic errors

The algorithm intrinsic errors are the errors that occur in the retrieval with a “perfect”
measurement. These errors are usually related to the approach applied in the algorithm.
In the retrieval procedure, two major approaches have been developed: LookUp Table
(LUT) and radiative transfer modeling. Through pre-calculation, the LUT approach has
been adopted by most authors in the retrieval since this approach is fast and can well
balance computational cost and accuracy, whereas radiative transfer modeling has not
been widely applied due to its highly computational cost.

Nevertheless, using the LUT approach, some intrinsic errors could happen (Levy
et al., 2007b; Kokhanovsky et al., 2010). However, few authors have investigated these
errors in detail. In this thesis, it is shown that these errors are mainly attributed to the
underlying assumptions and the optimization techniques applied in the retrieval. A bet-
ter AOD could be retrieved if the intrinsic errors are well understood and evaluated.

Summary

As we discussed above, the potential source errors in the algorithm mainly lie in the inap-
propriate assumptions of the aerosol model and static aerosol vertical distribution over
the globe, and the underestimation/overestimation of the surface contribution to the
TOA radiance, not considering the surface anisotropic reflection. In addition, algorithm
intrinsic errors are also a major source of uncertainty in the retrieval.
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1.3.1. Scope and objectives
Given the limitations and potential source errors in recent studies as aforementioned,
the main research question in this thesis now can be formulated as:

How to improve the Aerosol Optical Depth retrieval over land with MODIS mea-
surements?

To this end, a new algorithm should be developed by accurately characterizing aerosol
and surface properties such as a realistic aerosol model, dynamic vertical profile and
surface anisotropic reflection. To achieve the goal, the main problem is subsequently
divided into four specific questions:

1. What are the main weaknesses in the current MODIS C6_DT AOD retrieval algo-
rithm?

2. How sensitive is the AOD retrieval over land to aerosol vertical profiles and types
using the MODIS algorithm?

3. How to couple the surface anisotropic reflection into radiative transfer modeling
to yield a better retrieval?

4. How to account for the angular effects and improve the AOD retrieval?

1.4. Outline
This dissertation is organized in seven chapters to answer the above questions:

Chapter 2 presents the basic theory of the satellite AOD retrieval. The simulation of
TOA radiance is introduced with the related aerosol properties and the surface reflec-
tion. In addition, a brief review of the MODIS AOD algorithm is given here (related to
Question 1).

Chapter 3 investigates the sensitivity of aerosol optical depth retrieval with the MODIS
algorithm to aerosol vertical distributions and types (related to Question 2). The algo-
rithm is completely recoded in another programming language that allows to manipu-
late it and do experiments. Four experiments were performed, using different aerosol
properties including 3 possible non-dust aerosol models and 14 vertical distributions.
The algorithm intrinsic uncertainty was investigated as well as the interplay effect of
aerosol vertical profile and type on the retrieval.

Chapter 4 applies the knowledge from the previous study (chapter 3) to a real case,
giving evaluations on the impact of aerosol vertical distribution on the retrieval using
CALIPSO and MODIS data (related to Question 2). An adaptive development of the
MODIS C6_DT algorithm was implemented to consider realistic vertical profiles in the
retrieval. This new algorithm makes use of aerosol vertical profile extracted from CALIPSO
measurements to generate an accurate TOA reflectance for the retrieval, where the pro-
file is assumed to be a single and homogeneous layer horizontal, represented as a Gaus-
sian function with a single variable of the mean height in the vertical. The AOD retrieval
with C6_DT and with our new algorithm for cases of heavy dust and smoke was com-
pared.

Chapter 5 focuses on improving the aerosol optical depth retrieval by considering the
anisotropic reflection of the surface. A new algorithm called BRF Dark Target was devel-
oped in which the framework of the radiative transfer theory with a Lambertian surface
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was changed into the one with a non-Lambertian surface (related to Question 3). The
surface Bidirectional Reflectance Distribution Function (BRDF) is adopted to determine:
bidirectional, directional-hemispherical, hemispherical-directional and bihemispheri-
cal reflectance, and included into the radiative transfer equation to generate an accurate
TOA reflectance. The results are compared to C6_DT and validated with AERONET data.

Chapter 6 reduces the angular bias of the retrieval by the dark target algorithm by re-
fining the parameterization of the spectral surface Bidirectional Reflectance Factor (BRF)
at visible and shortwave infrared wavelengths (related to Question 4). For areas with
low aerosol loading, the contribution of the surface BRF to the TOA reflectance becomes
dominant and should be estimated more precisely. We update the parameterization of
surface reflectance using 3 years of data acquired by the AERONET-based surface re-
flectance validation network (ASRVN). In addition, the Normalized Distribution Vege-
tation Index (NDVI) was removed from the parameterization due to its angular depen-
dence. The results were compared with the ones in Chapter 5 and the ones in C6_DT.

Chapter 7 presents a summary of the main results and contributions of the satellite
AOD retrieval over land. Suggestions and recommendations are given for future research
such as the development of a higher spatial resolution (3 km ×3 km) product and the
extension to a broader spectrum of land surface conditions, including a bright surface
(desert).
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2.1. Introduction
In the previous chapter, we discussed the potential source of errors in the current MODIS
algorithm, which motivated the goal of this investigation as a whole: how to improve the
MODIS AOD retrieval over land.

As a first step towards this, the chapter gives insight into the AOD retrieval algorithm,
including the parameters required for Radiative Transfer (RT) modeling and retrieval
techniques. Section 2.2 introduces the aerosol properties including AOD, the size dis-
tribution, single scattering albedo and scattering phase function. Several typical aerosol
types were considered in this evaluation. Section 2.3 illustrates the analytical RT equa-
tion for the simulation of Top Of Atmosphere (TOA) reflectance. A LookUp Table (LUT)
approach is introduced in section 2.4. Section 2.5 presents two major models of the sur-
face reflection (isotropic and anisotropic reflection) used in the aerosol retrieval algo-
rithm. Section 2.6 presents a method to account for single scattering by an aerosol mix-
ture (nondust mixed with dust aerosols). Aerosol measurements are briefly introduced
in section 2.7, including MODIS and CALPSO data, as well as ground based AERONET
data. Finally, a brief review of the operational MODIS algorithm is given in section 2.8,
including the assumptions and “a priori” surface and aerosol properties and how to deal
with the ill-posed problem (more unknowns than measurements), as well as the retrieval
approach (LookUp Table). A conclusion is drawn in section 2.9.

2.2. Aerosol properties
Solar radiation is scattered and absorbed by atmospheric aerosols. To describe the at-
tenuation (scattering and absorption) of incident light by aerosols, the aerosol optical
depth (AOD, τ) is introduced, which is the integral of the aerosol extinction coefficient
βext over the altitude z in the atmosphere, given as:

τ(z) =
∫ z

0
βext (z ′)dz ′ (2.1)

Assuming a direct radiance I0 traversing an aerosol layer straightly (i.e. ignoring the scat-
tering), the attenuation of the radiance is expressed as (e.g., Van de Hulst, 1957; Liou,
2002):

I = I0exp(−τ/µ) (2.2)

This equation is the so-called Beer-Bouguer-Lambert law, which illustrates the exponen-
tial attenuation of the direct radiance I0. Note that µ in equation 2.2 is the cosine value
of the zenith angle θ of I0. A complete description of the radiation transfer process is
introduced in section 2.3.

For the attenuation, aerosol size is the determining parameter. This is because the
size of aerosol particles is comparable to the wavelength of the light which is well ex-
plained by Lorenz-Mie theory (e.g., Mie, 1908). The extinction of the radiation is depen-
dent on the size distribution, shape (e.g., sphere or non-sphere) and chemical composi-
tion (related to complex refractive index (m +ki )) of the aerosols.

Figure 2.1 shows that the scattering patterns are significantly different with different
size particles. The small spherical aerosol (e.g., 10−4 µm relative to the wavelength of the
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incident light) tends to equally scatter the radiation in the forward and backward direc-
tions. When the aerosol becomes larger, the scattered radiation becomes increasingly
larger in the forward direction. The aerosols that have different chemical compositions

1.1 Concepts, Definitions, and Units 7

(c)

(b)

Forward

(a)
Incident Beam

Figure 1.4 Demonstrative angular patterns of the scattered intensity from spherical aerosols of three
sizes illuminated by the visible light of 0.5 μm: (a) 10−4 μm, (b) 0.1 μm, and (c) 1 μm. The forward
scattering pattern for the 1 μm aerosol is extremely large and is scaled for presentation purposes.

particles whose sizes are comparable to or larger than the wavelength, i.e., x � 1,
the scattering is customarily referred to as Lorenz–Mie scattering. The mathematical
theory of Lorenz–Mie scattering for spherical particles will be presented in Chapter 5.
Figure 1.4 illustrates the scattering patterns of spherical aerosols of size 10−4, 0.1, and
1 μm illuminated by a visible light of 0.5 μm. A small particle tends to scatter light
equally in the forward and backward directions. When the particle becomes larger,
the scattered energy becomes increasingly concentrated in the forward direction with
increasingly complex scattering features. Because of the spherical symmetry with
respect to the incoming light beam, the scattering patterns for other planes are the
same as the ones presented in Fig. 1.4. The scattering of sunlight by spherical cloud
droplets and raindrops produces the magnificent rainbows and glory that we see in our
daily life.

In situ observations and electronic microscopic photography have shown that
aerosols in the atmosphere, such as minerals, soot, and even oceanic particles, exhibit
a wide variety of shapes ranging from quasi-spherical to highly irregular geometric
figures with internal structure. The shape and size of ice crystals are governed by
temperature and supersaturation, but they generally have a basic hexagonal structure.
In the atmosphere, if ice crystal growth involves collision and coalescence, the crys-
tal’s shape can be extremely complex. Recent observations based on aircraft optical
probes and replicator techniques for widespread midlatitude, tropical, arctic, and con-
trail cirrus show that these clouds are largely composed of ice crystals in the shape
of bullet rosettes, solid and hollow columns, plates, and aggregates, and ice crystals
with irregular surfaces with sizes ranging from a few micrometers to thousands of
micrometers. The scattering of sunlight by some of the defined ice crystals produces

Figure 2.1: The visible light of 0.5 µm scattered by 3 different aerosol particles. Spherical shape is assumed for
the particles with the size: (a) 10−4 µm, (b) 0.1 µm, and (c) 1 µm. Figure is from Liou’s book (Figure 1.4 in page
7 in Liou (2002)).

behave differently in the transmission and absorption of the radiation with wavelength.
Let the absorbing and scattering efficiencies of a particular aerosol type be defined

as Qabs =σabs /(πr 2) and Qsca =σsca/(πr 2) [dimensionless], respectively. The cross sec-
tion σabs and σsca in units of area [cm2] represent the interaction of the beam with the
geometrical area of a particle. In the simple case where there is only a single aerosol type,
the net effect of the absorbing and scattering properties can be parameterized in term of
the ratio of its cross sections σabs /σsca , or of the ratio of its efficiencies Qabs /Qsca . The
extinction cross sections σext or efficiency Qext is the sum of absorbing and scattering
cross sections or efficiencies, respectively, e.g., σext =σabs +σsca or Qext =Qabs +Qsca .
The single scattering albedo (SSA, ω0) is the ratio σsca/σext . Weak or strong absorb-
ing aerosols are defined by their SSA. Most aerosols are scattering and weakly-absorbing
particles except for the black carbon aerosols which are strongly absorbing. Given as
the value of the complex refractive index, σsca and σabs is obtained using Mie formu-
lae. A numerical calculation of Mie formulae (MIEV code) has been implemented by
Wiscombe (1980), which shows accurate reproduction of spherical aerosol optical prop-
erties. The corresponding scattering phase function p is also determined to describe the
angular pattern of the radiation scattering by the aerosol, which is given as (e.g., Liou,
2002):

p = 2π

k2σsca
(i1 + i2) (2.3)

Where i1 and i2 are the intensity functions which are functions of the particle radius r ,
the index of refraction m, the incident wavelength λ, and the scattering angleΘ, and k =
2π/λ.

For a group of aerosols, the absorbing and scattering quantities are described as ab-
sorbing βabs and scattering coefficients βsca in units of inverse length [cm−1], which are



2

14 2. Aerosol retrieval from satellite measurements: algorithm basics

obtained by integrating the absorbing/scattering cross sections or efficiencies over the
size distribution N (r ) in unit of [cm−3µm−1] of the group aerosols, e.g,

βabs =
∫
σabs N (r )dr

βsca =
∫
σsca N (r )dr (2.4)

The size distribution N (r ) is defined in Appendix A. Similarly, the phase function P for
the group of aerosols is calculated as:

P = 2π

k2βsca

∫
[i1(r )+ i2(r )]N (r )dr (2.5)

The size distribution N (r ) can be represented by different functions such as power-
law, gamma and log-normal function (e.g., Liang, 2003). One of the distributions, log-
normal size distribution has been widely applied in a number of satellite aerosol al-
gorithm and in-situ AERONET site (e.g., Martonchik et al., 1998; Dubovik et al., 2002a;
Remer et al., 2006; Levy et al., 2007b,a), since the assumption of lognormality allows ac-
curate calculation of optical properties for most aerosols (Levy et al., 2007a).

2.2.1. Aerosol type
There are three major sources of aerosols in the atmosphere (Kokhanovsky, 2008). Aerosols
can be generated from the oceanic surface due to wave breaking, i.e., sea salt. Aerosols
can originate from the land surface e.g., desert dust, forest fire, volcanic ash and indus-
trial emissions. Some aerosols can be generated by gas-to-particle conversion through
chemical reactions between gaseous constituents, and/or by aggregation. Aerosols pro-
duced from the land surface can be classified into different types based on their source
region and chemical composition. Three main aerosols from the land surface are dis-
cussed below.

Atmospheric dust mainly originates from dry regions by the wind. Specifically, the
mobilization of dust over erodible terrain depends on the cube of the wind speed at the
surface and is dispersed in the boundary layer by the wind shear. Dry regions are North
Africa (e.g., Sahara desert and Libian deserts), the Middle East (Saudi Arabian lowlands)
and North West China (e.g., Takla Makan and Gobi deserts). They all fall roughly in broad
latitude belts corresponding to the sinking branches of the Hadley cell of the general
circulation of the atmosphere, and in both hemisphere, well known as “global dust belt”
(e.g., Prospero et al., 2002; de Graaf, 2006; Liu et al., 2008a). Dust particles are sometimes
lifted to high altitude (> 3 km) and can be transported far away from the source region,
presenting a large horizontal and vertical coverage. By design, Mie theory only applies
to spherical particles, and that the shape of dust particles is generally far from spherical,
hence requiring more complex models. Fortunately, by assuming that coarse aerosols
are randomly oriented spheroids, Dubovik et al. (2006) have successfully modeled the
dust optical properties (e.g., ω0 and P ) by creating a bridge between T-matrix method in
Mishchenko and Travis (1994) and geometric-optics-integral equation method in Yang
and Liou (1996).
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Smoke originates from the combustion of biomass such as forest and grass. Biomass-
burning can occur in the areas with abundant vegetation under both wet and dry condi-
tions, e.g., wet areas: Indonesia, Amazon basin and Siberia; dry areas: Southern Africa,
Brazil, Canada and Australia. Southern Africa has been found to be the world’s largest
biomass-burning source (e.g., Crutzen and Andreae, 1990; Giglio et al., 2006; van der
Werf et al., 2010; Eck et al., 2013). Small particles (radii: 0.1 − 1 µm) are produced in the
process of biomass combustion (e.g., Kokhanovsky, 2008). Smoke has an important ef-
fect on global climate. This is because the high hygroscopicity of smoke particles makes
them very efficient cloud condensation nuclei (CCN), affecting cloud albedo and precip-
itation (e.g., de Graaf, 2006). Smoke particles can also absorb solar radiation due to the
generally strong light absorption (e.g., black carbon).

Urban industrial particles are produced by urban and industrial emissions, e.g., emis-
sions from power plants, industries and mobile sources. The source of emissions has
changed with time due to human activities. In earlier studies, urban industrial aerosols
are mainly located in developed countries such as the eastern US and western Europe
(e.g., Remer et al., 2005). Later, Levy et al. (2007a) have demonstrated that there are more
urban industrial aerosol present in most Asia regions. Recently, China (eastern part) has
been suffering more and more serious air pollution (see Figure 1.2) due to urban and
industrial emissions that are due to the rapid economic development (e.g., Wu et al.,
2012; Guo et al., 2016b,a). These particles can have a significant impact on human daily
life. Since most aerosols are emitted at or near the surface, and since they often remain
confined in the lower atmospheric layers due to gravitational settling, they tend to affect
visibility and air quality etc. For instance, the aggregated aerosol near the surface affects
the traffic (e.g., an airplane takes on and off). In addition, the inhalation of polluted air
and in particular fine aerosol particles collocated with viruses by humans and animals
can cause severe ailments (e.g., lung disease and flu). Most of urban industrial aerosols
have been found to have weakly-absorbing properties (e.g., Remer and Kaufman, 1998;
Dubovik et al., 2002a; Remer et al., 2005; Levy et al., 2007a, 2013b). The thick layers of
urban and industrial aerosols can largely scatter the solar radiation into outer space and
significantly reduce the atmospheric temperature.

2.3. Radiative Transfer in the atmosphere
The radiation transmitted in the atmosphere is a complicated process that requires us
considering not only the attenuation of the direct radiation (the same as Beer-Bouguer-
Lambert law in equation 2.2), but also the scattering of radiation. In the solar spectral
range, the total change of the radiance in a layer of a plane parallel atmosphere can be
described as (e.g., Kuznetsov et al., 2012; Liou, 2002):

µ
dI (τ,µs ,µ,φ)

dτ
=− I (τ,µs ,µ,φ)+ ω0(τ)

4π

∫ 2π

0
dφ′

∫ 1

−1
P (τ,Θ)I (τ,µs ,µ′,φ′)dµ′

+ ω0(τ)

4π
F0P (τ,Θ)e−τ/µs (2.6)

This equation is known as the radiative transfer equation, where P is scattering phase
function. On the right hand side, the first term I indicates the attenuation of radiance in
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the direction of the transfer, the second term describes the scattering of radiation com-
ing into the medium along the direction of the transfer (or multiple scattering), and the
third term represents the single scattered solar radiation. The summary of the second
and third term is the so called source function, indicating the scattering of the radiation.

In equation 2.6, the directions of solar incident radiation and diffuse radiation are
described by the corresponding zenith angles (θs and θ) and the relative azimuth angle
φ. µs , µ are the cosine value of the corresponding zenith angles, i.e. µs = cos(θs ) and
µ = cos(θ). Θ is the scattering angle, which is equivalent to Θ = cos−1(−cosθs cosθ +
sinθs sinθcosφ). F0 is the parallel solar beam.

If the optical properties of the medium and their boundary conditions are known,
then we can solve the radiative transfer equation with approximations and numerical
methods.

2.3.1. Radiative Transfer code
The analytical RT equation has been implemented by a series of numerical methods.
Four frequently used RT codes were introduced and discussed in (Kotchenova et al.,
2008). These codes are MODTRAN (moderate resolution atmospheric transmittance and
radiance code) (Berk et al., 1999; Acharya et al., 1999), RT3 (radiative transfer) (Evans and
Stephens, 1991), 6SV1.1 (second simulation of a satellite signal in the solar spectrum,
vector, version 1.1) (Kotchenova and Vermote, 2007) and SHARM (spherical harmonics)
(Lyapustin, 2005). Initially developed from the LOW resolution TRANsmittance 7 (LOW-
TRAN7) model, MODTRAN (version 4) can model the absorption and scattering in the
atmosphere with high spectral resolution up to 1 cm−1 and is preferable for the sim-
ulation or atmospheric correction of narrow band and hyperspectral radiometric data.
SHARM is applied for Multi-Angle Implementation of Atmospheric Correction (MAIAC)
with MODIS data (Lyapustin et al., 2011a,b, 2012). Similar to SHARM, 6S with has been
used for the MODIS atmospheric correction (Vermote et al., 1997).

Due to the inaccurate parameterization of the phase function (Henyey-Greenstein
function) and neglecting polarization, MODTRAN may lose some accuracy in the simu-
lation of TOA radiance (Kotchenova et al., 2008). The Henyey-Greenstein (HG) function
is a simplified expression of the aerosol phase function which is represented with asym-
metry factor g of aerosol particles, defined as (Henyey and Greenstein, 1941):

PHG(cosΘ) = (1− g 2)/(1+ g 2 −2g cosΘ)3/2 (2.7)

HG function can flatten the peak scattering in the forward direction. For instance, dust
usually has a peak forward scattering due to their large particle size (effective radius =
0.68). Using HG function can obscure the forward scattering of dust and cause some
errors in the RT process, resulting in uncertainties in the aerosol retrieval. Without con-
sidering the polarization effect, it can give a significant error in the retrieval (Levy et al.,
2004). This problem can occur in SHARM since it does not take into account the effect
of the polarization. With a high customization in atmospheric properties (atmospheric
profile and aerosol optical properties) and accurate simulation, RT3 is used for the oper-
ational MODIS aerosol retrieval over land algorithm (Levy et al., 2007b, 2010, 2013b). It
is preferable to use RT3 code in our study since it can reduce the inconsistency between
the algorithms by us and the MODIS team.
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2.4. Simulation with a Look-Up Table approach
Confronted with a large amount of satellite data, the method of direct RT calculation
has not been widely applied in aerosol retrieval algorithm due to its extreme computa-
tional cost. The function relating TOA spectral radiance to e.g. AOD can be constructed
in tabular from, i.e a Look Up Table (LUT), that can be applied to retrieve aerosol prop-
erties, e.g., as implemented in the MODIS algorithm. The LUT approach is fast and has
been implemented in a number of retrieval algorithms with different space-borne sen-
sors (e.g., Martonchik et al., 1998; Hsu et al., 2004; Remer et al., 2005; Levy et al., 2007b;
Thomas et al., 2009). The LUT describes the radiation-field in the upper and lower at-
mosphere within the sun-surface-sensor system, including the radiance reflected by the
atmosphere, the downward (upward) transmitted radiance at the atmospheric bottom
and top, respectively, and the atmospheric backscattering ratio. The LUT accounts for
these processes by using effective atmospheric spectral reflectance and transmittance
obtained by re-sampling a large number of cases calculated with a RT code without
knowing the reflectance at the underlying surface. After the calculation, they are stored
in the LUT, indexed as illumination and viewing geometries (see Figure 2.2), wavelengths
and aerosol properties. If the surface reflection is known, then we can simulate the TOA
radiance by coupling with surface reflectance using LUT approach.

vs

v

s



x

z

y

Figure 2.2: Schematic of illumination and viewing geometry on the surface target. The red solid lines (black
dash curves) indicate the directions of the incident and reflected radiation, which are described as solar zenith
angle θs and viewing zenith angle θv (measured from zenith direction z), and solar azimuth angle φs and
viewing azimuth angleφv (measured from horizontal direction x). The dotted red lines represent the extension
of the direction of the incident radiation. The scattering angle Θ is given as the angle between the direction of
the incident radiation and the one of the reflected radiation received by the sensor.

2.5. The surface below the aerosol layer
Land surface usually has a strong impact on the satellite aerosol retrieval due to the
strong radiation reflection. Moreover, the surface reflection cannot be easily modeled in
the retrieval algorithm. The surface can be quite diverse with different land cover types
and terrain, such as mountains with green forest and bare soil, and urban area with the
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mixture of buildings and green vegetations, showing different reflectance characteristics.
For an accurate AOD retrieval, one needs to understand the reflection characteristic

of the underlying surface and separate the surface and atmospheric contributions to the
radiometric measurements. A lot of algorithms assume the surface to be a Lambertian
reflector, i.e., isotropic reflection in all direction (e.g., Hsu et al., 2004; Levy et al., 2007b),
to reduce the computational complexity and the number of unknown variables in the
retrieval.

If the surface is assumed to be a Lambertian reflector, the contributions of the surface
and the atmosphere to the radiance measured at TOA can be separated (Kaufman et al.,
1997), viz (see Figure 2.3).

ρ∗
λ(i , v) = ρa

λ(i , v)+ Tλ(i )Tλ(v)ρs
λ

1− sλρ
s
λ

, (2.8)

where radiance is normalized to the related reflectance through equation 2.9,

ρ(i , v) = πI (i , v)

cosθs F0
(2.9)

the symbol “i ” means the direction of the incident or solar flux, defined by solar zenith
angle θs and solar azimuth angle φs , and “v” indicates the direction of the reflected flux
into viewing or sensor, defined by sensor zenith angle θv and sensor azimuth angle φv

(see Figure 2.2), λ indicates wavelength, ρs
λ

is the reflectance of the Lambertian surface,
ρa
λ

is the normalized flux reflected by the atmosphere, T (i )λ is the normalized downward
flux for zero surface reflectance, T (v)λ is the normalized upward total transmittance into
the satellite field of view and sλ is the atmospheric backscattering ratio. A Lambertian
surface (Equation 2.8) has been assumed in MODIS AOD algorithm (dark target and deep
blue) (Levy et al., 2007b; Hsu et al., 2004, 2006).

Atmosphere reflected flux 

Flux reflected by  

the surface and atmosphere 

Atmospheric Backscattering 

𝑖 𝑣 

Atmosphere 

Surface 

Downward transmittance 

Upward transmittance 

Figure 2.3: The TOA flux observed by the satellite when the surface is assumed to be a Lambertian reflector.

However, this assumption is generally inconsistent with the fact that the surface is
well known to be non-Lambertian (anisotropic), i.e. with the reflectance strongly de-
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pendent on the angle. Schaepman-Strub et al. (2006) illustrated how the Bidirectional
Reflectance Distribution Function (BRDF) can be accounted using nine anisotropic re-
flectance properties. Many surface BRDF models have been applied in retrieval algo-
rithms especially the ones designed for multi-angle viewing imaging radiometers (e.g.,
Martonchik et al., 1998; Dubovik et al., 2011; Lyapustin et al., 2011a,b; Pinty et al., 2000b,a,
2005, 2006).

2.6. Single scattering by an aerosol mixture
According to the C6_DT algorithm (Levy et al., 2013b), the total spectral ρtot∗ at the top
of the atmosphere is assumed to be the weighted sum of the spectral reflectance in fine
aerosol-dominated atmosphere (ρ f ∗) and that in coarse aerosol-dominated atmosphere
(ρc∗), i.e.,

ρtot∗ = ηρ f ∗+ (1−η)ρc∗ (2.10)

Where η is the fine / coarse aerosol ratio, and is defined in Remer et al. (2005). Aerosols
with a particle size distribution characterized by a fine mode are moderately-absorbing
(generic), absorbing (smoke) and weakly-absorbing (urban industrial) aerosols, whereas
coarse aerosol is dust (Levy et al., 2007a, 2013a). This method to calculate the total spec-
tral ρtot∗ is also called Standard Linear Mixing (SLM) method, which is exact for the
single scattering in the atmosphere-surface system. For multiple scattering, the SLM
method is still a good approximation due to the small difference in single scattering
albedo between the 3 fine aerosol models. As compared to the Modified Linear Mix-
ing (MLM) proposed by Abdou et al. (1997), the SLM method gives a small difference (<
1%) in the simulation of TOA reflectance.

2.7. Aerosol measurements
Both space-borne and ground-based instruments are used to observe the atmosphere
and characterize aerosol. Here we introduce a few types of measurements that are used
in our study, including MODIS, CALIOP and AERONET data.

MODIS data
The MODIS instrument is operated on board both the Terra and Aqua satellites, both
observing the TOA radiance at 36 bands with spatial resolution from 250 m to 1 km (de-
pending on bands and sensor viewing angle) (see Figure 2.4).

Terra and Aqua were launched in 1999 and 2002 respectively. The equator cross-
ing times for Terra and Aqua are 10:30 and 13:30 local time respectively, monitoring the
earth daily with nearly global coverage. The raw image data has a swath width of 2330
km. Since the footprint of the Instantaneous Field of View (IFOV) becomes larger as the
across-track distance increases, the pixels near the edge are clipped, resulting in a swath
width of 2030 km (e.g., Sayer et al., 2015). To obtain high quality measurements, on-
board lunar calibration is applied by using onboard solar diffuser (SD) and SD stability
monitor (Guenther et al., 2002; Xiong et al., 2003b,a,d,c, 2005d,a,b,c, 2007). Accuracy was
found to be 2% for reflectance at Reflective Solar Bands (RSB) under typical conditions
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(Toller et al., 2013). Recently, several studies demonstrated that the older MODIS on-
board Terra is degrading (Levy et al., 2010, 2013b; Sayer et al., 2015), which would have
impacts on the aerosol retrieval epsecially on the retrieval trend analysis (Levy et al.,
2013b). This requires additional efforts to improve the radiometric quality by the MODIS
team. MODIS Aqua data will be used for our aerosol retrieval.

Figure 2.4: Schematic of MODIS, CALIOP instrument, and sun photometer. Figure courtesy of NASA MODIS,
CALIPSO and AERONET team.

CALIOP data
CALIOP is a lidar instrument on board the CALIPSO satellite. This active lidar instrument
retrieves the vertical profile of clouds and aerosols in the atmosphere by measuring the
backscatter signal of its nadir-pointing laser at 532 and 1064 nm. It has been operational
since June 2006. The fundamental sampling resolution of the data is 30 meters vertical
and 333 meters horizontal. The samples located between -2 and 40 km (30 km for the
1064 nm) are used to generate the profile. The data acquired between 30 and 34 km are
selected for the calibration as they contain virtually no signals from aerosol or clouds. In
addition, an on-board averaging method was developed by considering that weaker sig-
nals are received from the higher atmospheric layers. This method produces full (lower)
resolution in the lower (higher) atmosphere such that resolution of 30 m vertical (333
m horizontal) is only up to 8 km altitude (Winker et al., 2006). The averaging method
would not affect the quality and usefulness of the data due to the relative homogeneity
of the upper atmosphere (e.g., altitude between 20 and 40 km). More details about the
calibration are described in Winker et al. (2006) and Hostetler et al. (2008).

CALIOP Level 1 and 2 data are produced by CALIPSO science team (Vaughan et al.,
2005; Liu et al., 2005; Winker et al., 2006; Hostetler et al., 2008; Young et al., 2008). The
Level 1 data is the measurement of attenuated backscatter coefficients at 532 and 1064
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nm after instrument calibration. The Level 2 data provide users with the vertical features
and properties of cloud and aerosols. One of the Level 2 products — Vertical Feature
Mask (VFM) is generated from the Level 1 data with the feature finder algorithm that
detects and determines cloud and aerosol layers (Vaughan et al., 2005).

AERONET AOD data
The sun photometers deployed in the global AERONET network acquire observations of
the extinction of incoming direct solar radiation under cloud-free condition at a number
of wavelengths (0.34, 0.38, 0.44, 0.67, 0.87, and 1.02 µm). These measurements are ana-
lyzed to characterize aerosols in terms of an AOD and probable aerosol type, at high fre-
quency (e.g., every 15 min or better). These AOD retrievals have been systematically used
in the validation of aerosol products derived from satellites because of their uniqueness
and high quality (AOD uncertainties ∼0.01-0.02).

2.8. MODIS collection 6 dark target algorithm over land
MODIS measurements include contributions due to light scattering from aerosols, clouds,
atmospheric gases and the surface, as well as from multiple scattering due to the radia-
tive interactions between those constituents. Algorithms have been developed to derive
aerosol information from MODIS measurements. After several generations of develop-
ment (from collection 4 to 6), the operational MODIS Dark Target (DT) AOD retrieval
algorithm (C6) over land has been proven to be a mature algorithm. Compared to the
previous versions, the current algorithm focused on the upgrade of the calculation at
the MODIS central wavelengths, the estimation of Rayleigh Optical Depth (ROD) and
the atmospheric gas correction. The core of the algorithm is still unchanged.

The algorithm can retrieve the AOD over vegetated areas using three channels (two
visible 0.466- and 0.644µm and one shortwave infrared channel 2.11µm), where the sur-
face is relatively dark at two visible channels and the atmosphere is nearly transparent at
long wavelength (2.11 µm). It does not work well over bright surfaces e.g., arid zones and
deserts, or snow and ice since its accuracy depends on the darkness of the surface target.
Lambertian surface is assumed in the algorithm. Here, we give a brief introduction on
the MODIS algorithm, including data preparation, ill-posed problems, assumptions on
aerosol and surface properties and the retrieval procedure.

MODIS data preparation
Since the MODIS LUT is generated assuming a gas free atmosphere, the effects of gases
need to be taken into account, prior to apply the retrieval procedure. Gases include water
vapor (H2O), ozone (O3), and carbon-dioxide (CO2) and other gases (e.g., N2O and CH4).
For the gas correction, ancillary data are used i.e., gas optical depth from NCEP (National
Center of Environment Prediction) (Levy et al., 2013b). If NCEP data are missing, then
the US 1976 optical depths are used instead. This gas correction approach assumes that
there is no interaction between gases and particulates in the atmosphere, and that their
effects are additive.

In the algorithm, MODIS level 1B data are firstly processed for atmospheric gas cor-
rection (e.g., water vapor, ozone, and carbon dioxide), then aggregated into 20 × 20 pix-
els (500 m spatial resolution) for cloud mask and dark surface selection, resulting in the
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mean reflectance (the dataset of “Mean_Reflectance_Land” in MODIS level 2 data) with
the resolution of 10 × 10 km.

Ill-posed problems
In the MODIS algorithm, the surface effects on the AOD retrieval are mitigated by the
dark target selection. However, this increases the number of unknowns which have
to be determined with limited measurements (three single-viewing channels, 0.466-,
0.644 and 2.11 µm) that are insufficient to solve the inverse RT problem. This is a well
known ill-posed problem since measurements are fewer than unknowns. For the AOD
retrieval, many variables in the surface-atmosphere system need to be constrained, such
as aerosol model and its vertical profile, and spectral surface reflectance.

“A priori” assumptions on aerosol and surface
Aerosol properties: fixed aerosol properties are applied in the MODIS algorithm. Based
on geolocation and seasons, an aerosol model is selected among three non-dust aerosols
(absorbing, moderately-absorbing, and weakly-absorbing). Aerosol layers are assumed
to be static over the globe and dispersed within the atmospheric boundary layer (below
3 - 4 km), with an exponential decrease with altitude.
Parameterization of the spectral surface reflectance: a parameterization is applied to
constrain the spectral surface reflectance in the retrieval. The parameterization is de-
rived at two visible bands 0.466- and 0.644 µm and one shortwave infrared band 2.11
µm, by analyzing 4 years of co-located MODIS and AERONET data (Levy et al., 2007b).
The relationship is assumed to be a function of scattering angleΘ and Normalized Differ-
ence Vegetation Index at infrared wavelengths (N DV ISW I R ) to account for its variability
with surface type and geometrical illumination and viewing angle. N DV ISW I R is de-
scribed in equation 2.18, where ρm is the TOA reflectance observed by MODIS. Note that
sl opeN DV ISW I R

0.644/2.11 in Levy et al. (2007b) was corrected in Levy et al. (2013b). The corrected
one is given here.

ρs
0.644 = ρs

2.11 · sl ope0.644/2.11 + yi nt 0.644/2.11 (2.11)

ρs
0.466 = ρs

0.644 · sl ope0.466/0.644 + yi nt 0.466/0.644 (2.12)

sl ope0.644/2.11 = sl opeN DV ISW I R
0.644/2.11 +0.002Θ−0.27 (2.13)

yi nt 0.644/2.11 = −0.00025Θ+0.033 (2.14)

sl ope0.466/0.644 = 0.49 (2.15)

yi nt 0.466/0.644 = 0.005 (2.16)

sl opeN DV ISW I R
0.644/2.11 =


0.58; (N DV ISW I R < 0.25)

0.58+0.2(N DV ISW I R −0.25); (0.25 < N DV ISW I R < 0.75)

0.48; (N DV ISW I R > 0.75)

(2.17)

with N DV ISW I R andΘ:

N DV ISW I R = ρm
1.24 −ρm

2.11

ρm
1.24 +ρm

2.11

(2.18)

Θ = cos−1(−cosθs cosθv + sinθs sinθv cos(φs −φv )) (2.19)
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Algorithm implementation
The algorithm starts when the preparation of MODIS measurements is completed. With
the aid of “a priori” assumptions on surface and aerosol parameters, the AOD is re-
trieved. The retrieval includes two steps: the (forward) simulation and retrieval (see Fig-
ure 2.5). India Haze 

Haze 

Cloud 

Step 1: 

Simulation  

TOA radiance at 3 channels 

Step 2: 

Retrieval 

AOD and other two parameters 

① 

② 

LookUp Table 

Input (wav, AOD, model, geometry) 
(surface + atm.---aerosol) 

T(i), T(v), s, ρa (w,    ,m,  g)       Parameterize 

Simplified RTE  

Matched? 

MODIS radiance 
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2.12 & η  
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Figure 2.5: The MODIS aerosol retrieval algorithm with the LUT approach. The algorithm includes two steps:
simulation of the TOA reflectance at the three channels and retrieval of AOD as well as other two parameters
(red text).

Simulation: with the four parameters (ρa , T (i ), T (v) and s) in the LUT, the TOA re-
flectance ρ∗ is simulated at three channels (0.466-, 0.644- and 2.11 µm) using equation
2.8 and 2.10 (see step 1 in Figure 2.5). The simulations are iterated through 7 aerosol
loadings (0.0, 0.25, 0.5, 1.0, 2.0, 3.0 and 5.0), 13 fine ratios ranging from -0.1 to 1.1 with
the interval of 0.1 and the 2.11 µm surface reflectance. This gives a database on ρ∗ =
ρ∗
λ

(τ,η,ρs
2.11). Note that the spectral surface reflectance at the two visible wavelengths

is not explicitly shown since they are parameterized as a function of the 2.11 µm sur-
face reflectance. ρs

2.11 is also a function of aerosol loadings and fines ratios, i.e. ρs
2.11 =

ρs
2.11(τ,η).

Retrieval: the AOD retrieval is achieved by best fitting of the simulated TOA reflectance
with the measured one in the three channels (see step 2 in Figure 2.5). At the same time,
the other two parameters η and ρs

2.11 are also retrieved. In this process, there may be a
fitting error ε, which gives the quality of the retrieval.

2.9. Conclusion
In this chapter, we have given an overview of the MODIS algorithm for AOD retrieval
with satellite data, including the parameterization, simulation and retrieval technique
applied in the algorithm. The definitions and parameterization of aerosol properties
and surface reflection in the RT calculation have been explained. A simple and accurate
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LUT simulation is applied, which includes coupling with a Lambertian surface. Finally,
the operational MODIS algorithm (C6_DT over land) was introduced and discussed, in-
cluding “a priori” assumptions on aerosol properties (the fixed aerosol model and static
profile over the globe) and surface reflection (isotropic reflection).

The assumptions applied in C6_DT, however, lead to potential errors since these as-
sumptions are inconsistent with the fact that aerosol properties vary greatly over time
and space, including aerosol type and vertical profile and the land surface reflectance
usually is anisotropic. Therefore, in the remainder of this thesis, improvements to the
algorithm are proposed, tested and applied.
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3.1. Introduction
AOD retrieval by the MODIS algorithm assumes a fixed aerosol type with static vertical
profile over the globe. The predefined aerosol properties cannot hold for unusual oc-
currences, such as smoke raised by forest fire versus the fixed aerosol type or the static
profile, or dust lifted to high elevation versus the static profile, which may lead to inacu-
curate retrieval. To improve the retrieval accuracy, the effect of aerosol type and vertical
distribution on the AOD retrieval should be well investigated and evaluated.

To understand these impacts on the AOD retrieval and further improve the retrieval,
a sensitivity experiment was designed to investigate the variation of the retrieval due
to the dynamic aerosol vertical profiles and different types with the MODIS C6_DT al-
gorithm. In the experiment, synthetic data on the Top Of Atmosphere reflectance are
simulated, using an off-line method with LookUp Tables (LUT). Section 3.2 presents the
background on the MODIS aerosol retrieval, including the MODIS retrieval algorithm
(Levy et al., 2007a, 2013b), and some aerosol climatology. Three non-dust models and
one dust model from Levy et al. (2007a) are briefly introduced, as well as many kinds of
aerosol vertical profiles. Section 3.3 gives the data and method applied in the sensitiv-
ity test. Four experiments are performed with extensive variability in aerosol properties.
The experiment results and discussion are illustrated in section 3.4. Conclusions and
recommendations are drawn in Section 3.5.

3.2. Background on MODIS Aerosol Retrieval
3.2.1. Aerosol Properties
Aerosol model
The MODIS C6_DT algorithm, applied to the dark surface, considers four aerosol models
(3 non-dust and one dust) (Levy et al., 2007a, 2013a). The aerosol models are defined by
the bi-lognormal size distribution and refractive indices, given in Table 3.1. More details
about the size distribution are provided in Appendix A. The bi-lognormal distribution
has two modes (fine and coarse), which is consistent with Dubovik’s work that the par-
ticles with the radius < 0.6 µm are referred to as fine mode, those with radius size > 0.6
are referred to as coarse mode (Dubovik et al., 2002a). The size distribution and refrac-
tive indices uniquely determine the aerosol optical properties, such as single scattering
albedoω0 and re f f , and the phase function P . These optical properties describe the effi-
ciency of aerosols scattering and absorption in the radiative transfer process. The optical
properties of the four models are shown in Table 3.2 (ω0 and re f f ), and in Figure 3.1 (P ).

The particle size directly determines the scattering of the light, a schematic of scatter-
ing by a particle is shown in Figure 2.1 in Chapter 2. The effective radius of the four types
is given in Table 3.2. The dust model presents a significant large particle size (re f f = 0.68)
as compared to the non-dust models (re f f < 0.261). The particle size can be also seen
in Figure 3.1 A, where the volume size distribution is given for the four aerosol models.
Figure 3.1 B illustrates the corresponding phase function. Due to large particle size, the
phase function of the dust presents a peak at the scattering angle of 0◦, showing larger
value than the non-dust models. From Table 3.2, we note that the smoke presents strong
absorption with ω0 = 0.87, other two fine models present less.

It is possible that for some regions the predefined aerosol model is wrong. The errors
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Aerosol Model Mode rv (µm) σ V0 (µm3/µm2) Refracitve Index
Generic

Accum 0.1552 0.44205 0.0960 1.43 − 0.009i
Coarse 3.2689 0.7782 0.0922 —

Smoke
Accum 0.1383 0.4231 0.09423 1.51 − 0.02i
Coarse 3.92235 0.76375 0.06499 —

UrbanIndustrial
Accum 0.1821 0.44065 0.097227 1.42 − 0.00625i
Coarse 3.39575 0.8414 0.05996 —

Speriod/Dust
Accum 0.1466 0.68238 0.04277 1.5017 − 0.002i
Coarse 2.2 0.57429 0.32618 —

Table 3.1: Aerosol physical properties. Four aerosol models are presented with bi-lognormal modes (accumu-
lative and coarse). For each mode, three parameters are listed, including the volume modal radius rv , standard
deviation of the volume distribution σ, and total volume of the mode, V0. Note that the parameters are given
at wavelength of 0.55 µm and AOD = 0.5. The symbol of “—” indicates the same value as the above row. More
details are illustrated in Levy et al. (2007a).

Aerosol Model ω0 re f f , µm
Moderately Absorbing/Generic 0.920 0.261
Absorbing/Smoke 0.869 0.208
Non-absorbing/UrbanIndustrial 0.947 0.256
Speriod/Dust 0.953 0.680

Table 3.2: The properties of aerosol models used in MODIS C6 algorithm. Single scattering albedo ω0 and
effective radius re f f for aerosol model are presented. Table courtesy of Levy et al. (2007a).

from this possible wrong assumption are investigated in this study.

Aerosol Vertical Distribution
Generally, the aerosol vertical distribution is controlled by the aerosol layer shape and
the altitude of the layer lower or upper boundary, which can be modeled using an expo-
nential, power, Gaussian or random function.

Varying the scale height h, exponentially-distributed aerosols tend to change more
the layer shape and less the layer height. Thus, to clearly show the effect of the layer
shape on the AOD retrieval, an exponential distribution is selected, which can be written
as:

τλ,zi = τλ(e−zi /h −e−zi+1/h) (3.1)

where z is the altitude in the atmosphere (zi starts from 0 km, i.e., the surface), τλ is
spectrally dependent, hereafter we use τ for 0.55 µm unless specified otherwise.

Figure 3.2 shows the exponential distribution varying with the scale height h, ranging
from 1 to 6 in steps of 1. With the increase of scale height, the profile becomes more
homogeneous, since the aerosols are distributed more evenly over the column. ExpH1
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Figure 3.1: Size distribution and phase function for four aerosol models. The result is reproduced using the
data provided by Levy et al. (2007a).

indicates the exponential distribution with the scale height of 1, other ExpH series follow
the same rule. Note that one of ExpH series i.e., the ExpH2 distribution is applied in the
MODIS C6_DT algorithm over land.
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Figure 3.2: Exponential distribution as a function of scale height, ranging from 1 to 6 by step of one (see ExpH1,
ExpH2,. . . and ExpH6). The total AOD (τtot ) is set as 0.5. The tail of the distribution beyond 15 km is vertically
cut off since the AOD becomes negligible at high elevation.

To demonstrate the effect of the layer height on the retrieval, two continuous aerosol
layers (each layer is 1 km thick) in the atmosphere are assumed:

τλ,zi = τλ(e/(1+e))

τλ,zi+1 = τλ(1/(1+e)) (3.2)

The two-layer distributions are called Exp2L series, varying the bottom layer height
from the surface to the altitude of 7 km. In the series, Exp2L0 means aerosols distributed
from the altitude of the surface to 2 km, other Exp2L series follow the same rule.

Combining these two series (ExpH and Exp2L), we get 14 possible aerosol vertical
distributions in total, where 6 distributions are from ExpH series and 8 distributions from
Exp2L series.
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3.3. Data and Method
Several studies demonstrated that there are some intrinsic uncertainties in the MODIS
algorithm (C5_DT over land) (Kokhanovsky et al., 2010; Levy et al., 2007b). To better un-
derstand how the AOD retrieval is affected by the variability in aerosol properties, the
intrinsic uncertainty needs to be fully evaluated and discussed before our sensitivity
test. In addition, regarding the real case, we need to consider the uncertainty of both
aerosol type and its vertical profile in the retrieval. Thus, we designed an experiment
to evaluate the sensitivity of the AOD retrieval to aerosol type and vertical distribution
by performing four experiments: (1) simulation of the “ideal” condition, i.e. when the
algorithm assumptions on the choice of aerosol models and vertical profile are exactly
valid; (2) simulation of the possible aerosol vertical profiles that are different from the
algorithm assumption i.e. the static profile; (3) simulation of the possible aerosol types
that are different from the algorithm assumption i.e. the predefined aerosol type; and (4)
simulation of both aerosol vertical profiles and types being different from the algorithm
assumptions.

The MODIS C6 DT algorithm over land (Procedure A) was used for the experiments.
Note that Experiment 1 is designed to test the algorithm intrinsic errors, and Experiment
4 is used to test the interaction of aerosol vertical distribution and type on the retrieval.
The set up of the experiments is given below.

3.3.1. Experiment Set up

With the four parameters (ρa , Fd , T and s) in LUT, the TOA reflectance was simulated
for 3 aerosol mixtures (weakly-absorbing, moderately-absorbing and absorbing aerosols
mixed with dust). Seven aerosol loadings (0.0, 0.25, 0.5, 1.0, 2.0, 3.0 and 5.0) and 5 fine
ratios (0, 0.2, 0.5, 0.8 and 1) were used to characterize the mixtures. The experiment was
done with 1520 geometrical combinations (0◦ ≤ φ ≤ 180◦, θ ≤ 60◦, θ0 ≤ 48◦). For the
experiment, we assumed that the surface reflectance at 2.11 µm ρs

2.11 was 0.15 with the
ratios for visible bands (0.466 and 0.644 µm) versus 2.12 µm (i.e., ρs

0.644 = 0.5ρs
2.11 and

ρs
0.466 = 0.25ρs

2.11).

To perform Experiments 2 and 4, we need to create the corresponding LUTs with the
different aerosol vertical distributions (14 in total). As for Experiments 3 and 4, aerosol
models applied in the simulation are different from that in the retrieval.

In the experiments, the relative difference δ(τ) of the AOD retrieval is defined as:

δ(τ) = τ−τref

τref
(3.3)

where the subscript ref means the reference value of τ. For Experiment 1, the AOD used
in the forward calculation (simulation) is viewed as the reference, whereas for the other
Experiments, the retrieved AOD with ExpH2 is viewed as the reference. The results of
the experiments are summarized by averaging 1520 geometrical combinations unless
specified otherwise.
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3.4. Experiment Results and Discussions
3.4.1. Experiment 1
Result
Figure 3.3 presents the results with a moderately absorbing aerosol model (generic). In
this figure, we note that the AOD is always overestimated while the surface reflectance
is underestimated. The errors on the four parameters increase with the mixing ratio
between fine and coarse aerosol, and become larger as aerosol loading increases. For
instance, the largest relative error δ(τ) (7%) was found when the fine ratio η is 0.5 under
extreme heavy loading (τ = 5.0). Accordingly, the retrieved fine ratio also give errors of
about 16% (0.08). Nevertheless, under aerosol loading τ ≤ 0.5, the errors become small
(<0.2%). The results with other aerosol models show a similar uncertainty (not shown
here).
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Figure 3.3: The uncertainty of four retrieval parameters as function of fine ratio η in C6 algorithm. Note that
the result is achieved by averaging the values of the parameters (τ,η,ε, and ρs

2.11) over 1520 geometrical com-
binations, assuming aerosol model as Moderately absorbing (Generic model in the figure) with the surface
reflectance ρs

2.11 = 0.15 in the retrieval. (a) shows the relative difference of mean AOD between the retrieved
and the expected one (reference) (e.g., when aerosol loading is set as 0.5, then the expected AOD should be 0.5
exactly); (b–d) show the mean values of fine ratio η, fitting error ε and the surface reflectance ρs

2.11, respectively.

Discussion
To check the intrinsic error source and its potential effects on the sensitivity test, we
recoded the C6_DT standalone algorithm with the complete understanding of the pro-
cedure implemented in the algorithm. We found that the intrinsic errors are attributed
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to the underestimation/overestimation of the 2.11 µm surface reflectance ρs
2.11, shown

as two issues:

• Issue 1: In the MODIS algorithm, the ρs
2.11 is firstly determined, given as a function

of the atmospheric condition (aerosol loadings and fine ratios). Obviously, this is
inconsistent with the fact that the surface reflectance is invariant with the atmo-
spheric condition. The ρs

2.11 should be independently retrieved as the other two
free variables (τ and η).

• Issue 2: to find the possible ρs
2.11 with the rearranged Equation (2.10), the MODIS

measurement is expected to be divided into two parts: one part is the reflectance
from fine-mode dominated atmosphere, and the one from coarse-mode domi-
nated atmosphere, while the algorithm assumes the measurement to be identical
to each part. By doing this, the uncertainty of the retrieval with heavy aerosol load-
ing becomes large. Nevertheless, the uncertainty is expected to be small with low
aerosol loading since the TOA reflectance is dominated by the surface contribution
and little affected by the atmospheric aerosol.

Figure 3.4 illustrates Issue 1 in the algorithm. In this figure, we selected a simula-
tion with generic mixture (η = 0.5 and τ = 0.5) under a given geometry (nadir view and
θ0 = 24◦). Figure 3.4a shows the derived ρs

2.11 as a function of aerosol loading and fine
ratio. This ρs

2.11 was used to generate the surface reflectance at two visible bands (0.466
and 0.644 µm) with the experimental relationship of surface reflectance for VISvs2.11
(see equation 2.12 and 2.11), resulting in the simulated TOA reflectance at the two vis-
ible bands (see Figure 3.4b). From Figure 3.4b, we can clearly see that the simulation
significantly deviates from the truth, showing a clock-wise twist around the point (lo-
cated at η= 0.5 and τ= 0.5). This is due to the algorithm allowing the surface reflectance
ρs

2.11 to vary with the atmospheric conditions.
Figure 3.5 presents Issue 2 in the algorithm. In this figure, we chose similar synthetic

data as in Figure 3.4 (the effect of Issue 1). Note that the data are generated with heavy
aerosol loading (τ ≥ 2.0). To remove the effect of Issue 1, the aerosol loading and fine
ratio are assumed as known in the retrieval. From Figure 3.5b, we note that the simula-
tion is always lower than the truth, and this becomes significant for the extreme heavy
aerosol mixture (τ = 5.0 and η = 0.5). This would cause the overestimation of the AOD
retrieval.

The intrinsic errors in the AOD retrieval are attributed to the wrong estimation of
the surface reflectance (the net effect of Issues 1 and 2). These errors could introduce
extra uncertainty in the sensitivity test (Experiment 2 to 4), since a distorted (twist and
compact) simulation space is created in the retrieval due to the incorrect estimation of
the surface reflectance. Nevertheless, the experiments still can reveal the retrieval errors
of the algorithm when the aerosol properties are not properly defined.

3.4.2. Experiment 2
Result
Figure 3.6 presents the AOD errors with the four simulations (ExpH2, ExpH3, Exp2L0 and
Exp2L3), where the ExpH2 LUT is applied in the retrieval process. The result with the
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Figure 3.4: The surface reflectance ρs
2.11 and simulation in the retrieval (Issue 1). These parameters are pro-

duced by the C6_DT algorithm with a synthetic measurement. The mixture of generic + dust (η = 0.5 and
τ= 0.5) is selected to construct the synthetic data at the given geometrical angle (nadir view, θ0 = 24◦). In the
algorithm, the possible values of ρs

2.11 are obtained (a), shown as a function of aerosol loading and the fine
ratio. Note that the ρs

2.11 was plotted out only with aerosol loading (0.25, 0.5 and 1.0), shown as “black *”, “red
triangle” and “green triangle”, respectively. Other values with large aerosol loading were not shown. With the
experimental relationship of surface reflectance for VISvs2.11, the possible ρs

2.11 is further applied to gener-
ate the simulation for the TOA reflectance at two visible bands (0.466 and 0.644 µm) at each node of aerosol
loading (0.25 and 0.5) and fine ratio, given in (b). “White” line indicates the simulation, where “solid ”and
“dash” line means the simulation varied with aerosol loading and fine ratio, respectively. To compare with the
simulation, the corresponding “truth” value is also given, plotted as “black” line.

smoke model is given. The results with other models are not shown due to the relatively
small errors. We can see that the errors are substantially related to the aerosol vertical
distributions. Concretely, the cases with a higher aerosol layer (e.g., ExpH3 and Exp2L3)
cause the underestimation of the retrieved AOD. In contrast, the simulation with a lower
aerosol layer (e.g., Exp2L0) causes the overestimation. This become more significant
with the absorbing (smoke) or large size aerosols (dust) as the aerosol loading increases.
Normally, the errors with the smoke and dust (η= 0 in Figure 3.6) range from 5% to 15%,
while showing smaller values ( <5%–8%) with urban industrial and generic model.

To further clarify the sensitivity of the AOD retrieval to the vertical distribution, we
performed the retrieval with the simulations which were created with 14 distributions
(6 “ExpH” and 8 “Exp2L”). Pure smoke and dust were selected with τ = 0.5. To check
whether the sensitivity is dependent on the illumination/viewing geometry, we performed
the numerical experiement with five angles, which are described as: solar zenith angles
of 0◦, 12◦, 24◦, 36◦ and 48◦ under nadir view. We change the reference AOD in the evalu-
ation, where the AOD obtained with the “ideal” simulation with ExpH2 and Exp2L0 was
selected as “reference” for “ExpH” and “Exp2L” series, respectively.

Figure 3.7 presents the AOD errors with “ExpH” and “Exp2L” series distributions,
where the smoke model is given. It seems that the retrieval is more sensitive to the
“Exp2L” series than to the “ExpH” series. The errors δ(τ) are from 5% to 10% with “ExpH”
simulations, whereas they are from 3% to over 20% with “Exp2L” simulations. The errors
are strongly dependent on the angles, showing an increase with the decrease of the solar
zenith angle (or with the increase of the scattering angle). Focusing on the Exp2L4 simu-
lations, we can see the error δ(τ) is 10% at the angle θ0 = 0◦, and increasingly large (25%)
at the angle θ0 = 48◦. Generally, the large difference between the vertical distributions
would give a significant error δ(τ). Specifically, the AOD difference increases linearly
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Figure 3.5: The surface reflectance ρs
2.11 and simulation in the retrieval (Issue 2). Selected was similar syn-

thetic data as in Figure 3.4, but with heavy aerosol loading (τ ≥ 2.0). Note that that the aerosol loading and
fine ratio are assumed as known for the simulation. The possible surface reflectance ρs

2.11 varies with aerosol
loading and fine ratio, given as “solid” and “dash” line, respectively in (a). The corresponding simulation of
TOA reflectance is given in (b). Other symbols are similar to Figure 3.4.

0.25 0.5 1.0 2.0 3.0 5.0
AOD at 0.55 µm

-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30

δ(
τ)
 (
%
)

ρ s2.11=0.15

ExpH3S_ExpH2R-Ref

τ0.55: Diff (Smoke)

η=0.0

η=0.2

η=0.5

η=0.8

η=1.0

0.25 0.5 1.0 2.0 3.0 5.0
AOD at 0.55 µm

-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30
35
40
45
50
55
60

δ(
τ)
 (
%
)

ρ s2.11=0.15

Exp2L0S_ExpH2R-Ref

τ0.55: Diff (Smoke)

η=0.0

η=0.2

η=0.5

η=0.8

η=1.0

0.25 0.5 1.0 2.0 3.0 5.0
AOD at 0.55 µm

-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30

δ(
τ)
 (
%
)

ρ s2.11=0.15

Exp2L3S_ExpH2R-Ref

τ0.55: Diff (Smoke)

η=0.0

η=0.2

η=0.5

η=0.8

η=1.0

(a) (b) (c)

Figure 3.6: The AOD errors caused by different aerosol vertical distributions. The errors δ(τ) are calculated
by averaging over 1520 geometrical combinations, shown as a function of aerosol loadings in (a–c); In (a), the
label of “ExpH3S_ExpH2R-Ref” indicate the AOD difference δ(τ) between “ExpH3_ExpH2R”and “Ref”, where
“ExpH3S_ExpH2R” means the AOD is achieved with ExpH3 simulation, but using ExpH2 LUT in the retrieval.
As for “Ref”, the AOD is retrieved with ExpH2, using the LUT with the same distribution as in the simulation.
Other labels are similar too.

with the layer height (“Exp2L ”series) in Figure 3.7. For example, with nadir view and
solar zenith angle θ0 = 24◦, we can see that there is a linear increase of the δ(τ) between
Exp2L1, Exp2L4 and Exp2L7, with the AOD errors of 5%, 15% and 20%, respectively.

Discussion
For the case of an elevated aerosol layer (e.g., Exp2L3 relates to Exp2L0), the TOA re-
flectance presents lower values due to less isotropic scattering reflected by the Rayleigh
layer under the aerosol layer. With the increase of the aerosol-mixture layer height, the
TOA reflectance decreases at short wavelength (e.g., 0.466 µm), which leads to a reduc-
tion of AOD retrieval.

Figure 3.8 presents the Exp2L simulation series (7 points) falling within the Exp2L0
simulation space. The result is shown with the smoke model. From this figure, we can see
that the 0.466 µm reflectance at TOA is significantly decreasing with the increase of the
layer height (Exp2L0 → Exp2L7). The reflectance with ExpH series also shows a similar
trend, where the mean layer height is determined by the scale height (not shown).
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Figure 3.7: The AOD errors caused by different aerosol vertical distributions. The AOD obtained with the
“ideal” simulation with ExpH2 and Exp2L0 was selected as “reference” in the comparison of the retrieval with
“ExpH” and “Exp2L” series, respectively. The difference for “ExpH” and “Exp2L” are given in (a,b), respectively.
Note the results are obtained with pure smoke aerosol at τ= 0.5, under 5 angles (nadir view with 5 solar zenith
angles θ0). The 2.11 µm surface reflectance is set as 0.15.

With a given aerosol vertical distribution related to the “reference” one, the effect is
different for different aerosol models, where the magnitude of the effect is mainly de-
pendent on their single scattering albedo ω0 (see Table 3.2). The Rayleigh scattering
under the aerosol layer is more absorbed by the strongly-absorbing aerosol layer, lead-
ing to much lower TOA reflectance. Therefore, the effect becomes larger with strongly-
absorbing aerosols. This is the main reason why the largest difference δ(τ) (30%) is
found with the smoke model since the model has the lowest single scattering albedo
(ω0 = 0.869).

The impact of illumination and viewing geometry on the sensitivity to aerosol ver-
tical distribution depends on the optical properties, especially on the phase function of
the aerosol mixture. The atmospheric scattering is attenuated with increasing scattering
angle (see Figure 3.8) due to the shorter atmospheric path. However, it is not the case for
the dust-dominated atmosphere, in which the atmospheric scattering is still strong at a
large scattering angle due to the peak forward scattering of the dust (see phase function
in Figure 3.1b). In addition, the discrepancy of the TOA reflectance caused by the vertical
distributions does not change too much with different scattering angles. As a result, the
AOD errors due to the vertical distribution strongly depends on the scattering angle.

3.4.3. Experiment 3
Result

Figure 3.9 presents the AOD errors due to a wrong assumption on the aerosol model,
where the generic and smoke model were used for the forward simulation but using the
urban industrial LUT in the retrieval. Some abbreviations of aerosol models are used (G:
Generic, S: Smoke, U: Urban industrial). Averaging over 1520 geometrical combinations,
the error δ(τ) is roughly <8% under τ≤ 1.0, and increases under the heavy aerosol load-
ing (τ ≥ 2.0) with the value >8%. Obviously, the improper selection of the pure aerosol
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Figure 3.8: The simulations with smoke model, under a given viewing geometry. (a,b) show the results with
nadir view and solar zenith angle θ0 = 0◦ and θ0 = 48◦, respectively. The Exp2L simulation series are created
with τ= 0.5, shown as 7 points in the figure. The 2.11 µm TOA reflectance is not shown due to its near nonsen-
sitivity to the aerosol vertical distribution. The ρs

2.11 is set as 0.15.

(η= 1.0) gives the largest errors compared to the case with the other aerosol mixtures.

The sensitivity of the retrieval to aerosol type is further evaluated, using pure aerosols.
Similar to Experiment 2, the simulation is with τ = 0.5, at 5 angles. The result is shown
in Figure 3.10, giving comparable errors <8%. This means that the retrieval presents a
medium sensitivity to the aerosol type. With different angles, the sensitivity does not
vary too much with the discrepancy <5%. There is an approximate symmetry in the dif-
ference between the pairs such as S_U (smoke simulated but with urban industrial in the
retrieval, U_S, G_S and others are similar to S_U) and U_S, presenting an overestimation
of AOD in S_U and underestimation in U_S with nearly the same degree.

Discussion

Due to a relatively small difference of the single scattering albedo between non-dust
aerosols, the AOD retrieval does not change too much with a different aerosol model
when aerosol loading is low (e.g., τ ≤ 0.5). As aerosol loading increases, the error of the
AOD retrieval becomes significant especially for the large difference between the ob-
served and simulated aerosol, such that the strongly absorbing aerosol (smoke, ω0 =
0.869) is wrongly assumed as non-absorbing one (urban industrial, ω0 = 0.947), the er-
ror cloud be up >10%.

The sensitivity of the retrieval to aerosol type does not show a strong dependence on
the zenith angle as in Experiment 2. This is because the non-dust aerosol models are
nearly isotropic in their phase function (see Figure 3.1).
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Figure 3.9: The AOD errors by wrongly assuming aerosol models. The mean errors δ(τ) are calculated by av-
eraging over 1520 geometrical combinations, with ρs

2.11 = 0.15, shown as a function of aerosol loadings. The
“reference” AOD is the one that is achieved in the algorithm by the correctly choosing aerosol model. Some
abbreviations of aerosol models are used (G: Generic, S: Smoke, U: urban industrial). “G_U” in (a) means the
relative difference between the result with that generic aerosol is observed while urban industrial one is given
in the retrieval and “reference”. Similarly, the result with “S_U” is shown in (b).

3.4.4. Experiment 4
To show the interplay effect on the AOD retrieval by the improper assumption of both the
aerosol vertical distribution and type on the AOD retrieval, we selected two aerosol mod-
els (smoke and urban industrial) and vertical distributions (ExpH2 and Exp2L3) in this
experiment. Specifically, for the experiment, the simulation is created using the smoke
aerosol with Exp2L3 distribution, but using the LUT of urban industrial with ExpH2 dis-
tribution. The result is given below.

Figure 3.11 illustrates the AOD errors in this experiment. The result is roughly equiv-
alent to the one that negatively biases the result in Figure 3.9b. In this figure, we can see
that the AOD retrieval is significantly overestimated, with δ(τ) > 6%. For example, when
aerosol loading is 1.0, the error could be up to 15% in this case.

3.5. Conclusions & Recommendation
It is well-known that the aerosol properties are one of largest uncertainty sources in the
MODIS algorithm since the assumption of the fixed aerosol properties remains in Col-
lection 5 and 6. With the aid of the Cloud-Aerosol Lidar and infrared Pathfinder Satellite
Observation (CALIPSO) that can provide aerosol information about its type and vertical
profile, we might put constraints on the aerosol properties to improve the retrieval. How-
ever, as the first step of the improvement, the retrieval uncertainty caused by improper
assumptions should be quantified. In this study, we designed experiments to evaluate
the sensitivity of the retrieval to aerosol vertical distribution and type. Four experiments
were performed with the C6_DT algorithm over land, where the intrinsic uncertainty is
also evaluated.

Due to the uncertainty in estimating the surface reflectance, it was found that there is
intrinsic uncertainty in the algorithm, with the AOD retrieval error below 0.2% and >3%
under low aerosol loading (τ≤ 0.5) and heavy aerosol loading (τ> 3.0), respectively.
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Figure 3.9.
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The algorithm shows high sensitivity to both aerosol vertical distribution and type of
the retrieval.

• With the simulations varied with 4 vertical distributions (ExpH2, ExpH3, Exp2L0
and Exp2L3), about 5% errors can be found in the retrieval. Even larger errors are
shown in ExpH and Exp2L simulation series, ranging from 2% to 30% when aerosol
loading of 0.5 is assumed. In the vertical distribution, the aerosol layer height is the
main variable that affects the retrieval, where the errors significantly increase with
the aerosol layer height.

• Furthermore, the errors caused by the layer height present a strong angular depen-
dence due to the large discrepancy of the phase function between non-dust and
dust aerosols.
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• Generally (τ ≤ 0.5), errors in aerosol type assumption can lead to uncertainty up
to 8% in the AOD retrieval with the algorithm. By combining the uncertainty of
the aerosol type (urban industrial replaced with smoke) with its vertical profiles
(ExpH2 replaced with Exp2L3), the AOD errors present a significant negative bias
with δ(τ) >6%. The errors can be up to 15% when aerosol loading of 1.0 is ob-
served.

In addition, sensitivity to the aerosol properties of the retrieval is insignificant for
weakly- and non-absorbing aerosols (e.g., urban industrial and generic) especially when
low aerosol loading is observed. Thus to improve the retrieval, more attention should
be paid to the cases of air pollution caused by forest fires or extreme dust events. These
cases usually are consistent with a heavy and thick elevated aerosol layer, and have a
strong impact on climate regionally and globally. We assume that for these cases the bias
of the MODIS AOD retrieval can be reduced by 15% based on this study. We also note
that the algorithm intrinsic uncertainty refers to the retrieval techniques. This uncer-
tainty should be reduced to near zero by optimizing the retrieval techniques especially
the estimation of the surface reflectance. This would help further improve the retrieval
accuracy especially when dealing with heavy aerosol loading.



4
Retrieval of AOD using CALIPSO to

capture aerosol vertical distribution:
case study over dust and smoke regions

Based on: Wu, Y., de Graaf, M., and Menenti, M. (2017). The impact of aerosol vertical distribution on
aerosol optical depth retrieval using CALIPSO and MODIS data: case study over dust and smoke regions. JGR-
atmosphere, 122(16):2016JD026355.

39



4

40
4. Retrieval of AOD using CALIPSO to capture aerosol vertical distribution: case study

over dust and smoke regions

4.1. Introduction
In the previous chapter, we have demonstrated that the AOD retrievals are quite sensitive
to the variation of aerosol vertical profile and type. The previous study was still limited
to synthetic data. However, for a real case, it needs a further and deeper investigation to
understand the impact of dynamic aerosol properties on the retrieval.

In this study, we developed a new algorithm (called Gau_DT) to retrieve the AOD by
considering a dynamic aerosol profile with the synergistic use of MODIS and CALPSO
data. The inferred aerosol vertical profile from CALPSO data is parameterized into the
algorithm to generate an accurate Top Of the Atmosphere (TOA) reflectance for the AOD
retrieval. Section 4.2 introduces the Gau_DT algorithm, including the investigation of
the relationship between the profile and TOA reflectance, as well as the discussions on
the sensitivity of the AOD retrieval to the variation of the profile. Section 4.3 introduces
CALIPSO Level 2 data and the derivation of aerosol vertical distribution from it. Section
4.4 provides case studies (smoke and dust aerosol) to show the impact of aerosol verti-
cal distribution on the AOD retrieval with the comparison between Gau_DT and C6_DT
AOD. Conclusions are presented in section 4.5.

4.2. Method
The new algorithm is based on the MODIS C6_DT algorithm (Levy et al., 2007b, 2013b).
The aerosol vertical distribution and its parameterization in the new algorithm are de-
tailed as below.

4.2.1. Aerosol vertical distribution
The distribution of aerosols in the atmosphere can be very diverse and be different at
different elevations. Different distributions of aerosol in different atmospheric layers
have been applied in a number of studies. For example, the Gaussian distribution was
applied for the dust layer in the Deep Blue AOD algorithm (Hsu et al., 2004), for typical
smoke to retrieve the layer height (Lee et al., 2015), and in the POLDER aerosol retrieval
algorithm (Dubovik et al., 2011), whereas the exponential distribution was applied for all
aerosol models in the MODIS DT AOD algorithm over land (Levy et al., 2007b).

The distribution of aerosols in a layer can be represented as Gaussian and exponen-
tial function, as well as power law or random function. To reduce the number of the
distributions, we classified them into two groups based on their characteristics. Expo-
nential and power law functions are lumped into one group, because both of them in-
dicate more aerosols in the lower boundary layer and less in the upper boundary layer.
Random and Gaussian distributions are lumped into another group. The random dis-
tribution with a limited geometric thickness (e.g., 2 km) to some degree can be viewed
as a homogeneous layer, thus can be approximately represented as a Gaussian function.
Thus, exponential and Gaussian distributions were selected for further analysis.

The vertical profile (layer shape and altitude) is controlled by one or two variables
in the selected distributions such as a scale height h in the exponential distribution (see
equation 3.1 and Figure 3.2), and the mean height µ and the thickness σ of the aerosol
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layer in the Gaussian distribution:

τλ,zi = τλ
1p
2π

(e−(zi−µ)2/2σ2 −e−(zi+1−µ)2/2σ2
) (4.1)

where zi is the altitude of the ith aerosol layer.
For the Gaussian distribution, aerosol layers are assumed to have a limited thick-

ness, where the aerosol particles are truncated into the interval of Gaussian 2-σ. We
note that with a low mean height (e.g., µ = 0 km) the Gaussian distributions will give
some aerosols below the surface. This is invalid for the real case. To avoid this situation,
we keep the aerosols above the surface and remove the aerosols below the surface, but
the total amount of aerosol is still kept the same as other normal cases (e.g., µ >= 3).
Additionally, the vertical resolution of the aerosol layer is also taken into account since
the resolution can change the layer shape. Six kinds of Gaussian distributions (Gau1 →
Gau6) are given in Table 4.1 and shown in Figure 4.1. They differ in three variables: mean
height (0 and 3 km), geometrical thickness (0.5 and 1 km) and vertical resolution (0.5 and
1 km).

Name µ or h (km, depending on distribution) σ (km) Resolution (km)
Gau1 0 0.5 0.5
Gau2 0 1.0 0.5
Gau3 0 1.0 1.0
Gau4 3 0.5 0.5
Gau5 3 1.0 0.5
Gau6 3 1.0 1.0
GauH0 0 1.0 1.0
GauH1 1 1.0 1.0
. . . . . . . . . . . .
GauH10 10 1.0 1.0
ExpH1 1 — 1.0
ExpH2 2 — 1.0
. . . . . . . . . . . .
ExpH6 6 — 1.0

Table 4.1: Gaussian (Gau1 → Gau6 and GauH0 → GauH10) and Exponential distributions (ExpH1 → ExpH6)
of aerosol layers varying with the mean height µ or the height scale h. The geometric thickness σ of the layers
is applicable for Gaussian distributions. The symbol of “—” indicates a missing value for Exponential distribu-
tions. Considering the limited aerosol-atmosphere layers in RT code, vertical resolutions of 0.5 and 1.0 km for
the layers are also given.

The relationship between the TOA reflectance and aerosol vertical distribution
To parameterize the aerosol vertical profile into the algorithm, the relationship between
the TOA reflectance and aerosol vertical profile needs to be quantified. Since the TOA
reflectance is nearly insensitive to the aerosol vertical profile at long wavelengths (e.g.,
0.644 and 2.12 µm) (Wu et al., 2016b), we focused on the variation of the TOA reflectance
at short wavelength (0.466 µm) over the different profiles including 6 Gaussian (Gau1 →
Gau6) and 6 exponential distributions (ExpH1 → ExpH6) (see Table 4.1).
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Figure 4.1: Discrete Gaussian distributions. The distributions shown in the figure is also given in Table 4.1. The
total AOD τtot is set as 0.5.

Figure 4.2 presents the simulated 0.466 µm reflectance at TOA with Gaussian dis-
tributions (Gau1 → Gau6). Smoke and dust models were used. The TOA reflectance is
nearly insensitive to the shape of the aerosol vertical distribution such as the geometri-
cal thickness and vertical resolution of the aerosol layer, while it shows high sensitivity to
the mean height. The result with exponential distributions is similar (not shown here).
A similar result was also demonstrated in Lee et al. (2015). We found that the TOA re-
flectance with dust model presents less variation with the mean height than with smoke
model. This is because dust is less absorbing than smoke.
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Figure 4.2: The TOA reflectance at 0.466 µm when the Gaussian distributions “Gau1-6” are used. The defini-
tion of these distributions is also shown in Table 4.1. The reflectance is calculated for the smoke (a) and dust
model (b) with a given Solar zenith angle θ0 = 48◦ and relative azimuth angle φ = 180◦ , AOD (0.5) and surface
reflectance ρs

2.11 = 0.15. We assume that the surface reflectance ratios of 0.466/2.11 and 0.644/2.11 are 0.25
and 0.5, respectively.

Since the mean height is a major factor that influences the TOA reflectance, it is ex-
pected that the TOA reflectance with Gaussian distribution is similar to the one with
exponential distribution when their mean heights are equal. To prove this, we simulated
the TOA reflectance with one exponential ExpH2 and two Gaussian distributions (µ= 0
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and µ= 3, labeled as “GauH0” and “GauH3”, respectively).
Figure 4.3 illustrates the TOA reflectance with the three distributions (ExpH2, GauH0

and GauH3), given as a function of viewing angles. From this figure, we can see that the
ExpH2 reflectance mostly falls within the envelope of the GauH0 and GauH3 reflectance.
Note that in ExpH2 distribution the mean height is −2ln(0.5) = 1.4 km (between 0 and
3 km). Nevertheless, with a large viewing angle (e.g, θv > 80◦), the TOA reflectance with
ExpH2 distribution is less than that with GauH3. This is mainly due to different vertical
slant path depending on layer/height thickness in the calculation of radiative transfer.

0 10 20 30 40 50 60 70 80 90
Viewing zenith angle (θ)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
fl
e
ct
a
n
ce
 (
0
.4
6
6
 µ
m
)

Smoke

ρ s2.11=0.15

(a)ExpH2

GauH0

GauH3

0 10 20 30 40 50 60 70 80 90
Viewing zenith angle (θ)

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
if
fe

re
n
ce

 o
f 

R
e
fl
e
ct

a
n
ce

 (
0

.4
6

6
 µ
m

)

Smoke

ρ s2.11=0.15

(b)GauH0-ExpH2

GauH3-ExpH2

1

Figure 4.3: The TOA reflectance at 0.466 µm with exponential and Gaussian distributions. All the Gaussian
distributions have the same geometrical thickness σ = 1 km and vertical resolution (1 km). “GauHx” means
that Gaussian distribution with the mean height of x km. “ExpH2” indicates the exponential function with the
scale height of 2. Figure (a) shows the TOA reflectance as a function of viewing zenith angle. Figure (b) shows
the difference of the TOA reflectance (e.g., “GauH0-ExpH2”), where the dashed line means zero difference.
Figure (c) presents the discrete distributions. Other symbols are similar to Figure 4.2.

To further clarify the relationship between the layer mean height and the TOA re-
flectance, the Gaussian distribution was selected for the aerosol layer where both the
geometrical thickness σ and the vertical resolution of the layer are fixed at 1 km. Taking
into account that the layer may climb up to higher altitude such as the dust layers that
can reach 3 to 6 km in North Africa and Arabian Peninsula (Liu et al., 2008a; Huang et al.,
2015), we extend the mean height to a wider range (e.g., 0 - 10 km) for analysis.

Figure 4.4 presents the TOA reflectance with the Gaussian distributions where the
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smoke model is used. With a given geometrical viewing, the TOA reflectance decreases
quasi-linearly with increasing altitude of the aerosol layer. This is due to that more
isotropic scattering reflected by the Rayleigh layer is attenuated by the aerosol layer.
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Figure 4.4: The TOA reflectance at 0.466 µm with different mean height (0 − 10 km, GauH0 → GauH10 in Table
4.1). Other symbols are similar to Figure 4.3.

In summary, the TOA reflectance is highly sensitive to the mean height of the aerosol
layer, and nearly insensitive to the layer shape. Further, with the increase of the mean
height, the TOA reflectance presents a linearly decreasing trend.

4.2.2. The sensitivity of the AOD retrieval to aerosol vertical distribution
Experiment set up
Wu et al. (2016b) demonstrated that the AOD retrieval is affected by different aerosol
vertical profiles. Nevertheless, the dependence of the retrieval on the layer mean height
was not fully evaluated and needs to be further clarified for our study. To address this,
we designed a synthetic experiment in which the TOA reflectance was simulated with
Gaussian distributions using off-line LUTs. Four mean heights (0, 3, 6, and 9 km) were
set for the distribution (labeled as GauH0, GauH3, GauH6, and GauH9). The MODIS
C6_DT algorithm over land (procedure A) is used in this experiment.

Likewise chapter 3 (section 3.3.1), the experiment is also extensively evaluated with
aerosol properties and the observation and illumination geometries, as well as the eval-
uation of the AOD retrieval errors.

Experiment results
Figure 4.5 presents the AOD errors with the four simulations (GauH0, GauH3, GauH6,
and GauH9), where the ExpH2 LUT is used in the retrieval procedure. The result with
smoke mixtures is shown in the figure, whereas the results with other mixtures are not
given due to their generally small errors (δ(τ) < 10%). The AOD errors are highly depen-
dent on the mean height. Specifically, the simulation with a low aerosol layer (GauH0)
gives an overestimation of the retrieved AOD. By contrast, the simulation with a high
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layer (GauH3, GauH6, and GauH9) cause an underestimation. In addition, the under-
estimation becomes even larger when a higher layer (e.g, GauH6 and GauH9) is used in
the simulation. Furthermore, the error increases with increasing AOD. With AOD ≤ 2.0,
the errors are limited to 5-20% , whereas the errors increase by > 10% when AOD ≥ 3.0.
With the increase of aerosol loading, the errors with dust model (η = 0) do not steadily
increase as with other pure fine models. This points to possible issues with the scattering
phase function of the dust model.
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Figure 4.5: The errors δ(τ) of AOD retrievals with different vertical distributions (a - d: µ = 0, 3, 6, and 9 km).
Smoke model is used in the experiment. The mean differences δ(τ) are calculated by averaging over 880 geo-
metrical combinations, shown as a function of aerosol loadings and fine ratios.

4.2.3. New AOD retrieval with dynamic aerosol vertical distribution
The experiment suggests that dynamic profile for aerosol layer has a significant im-
pact on the AOD retrieval. To investigate this impact, we developed a new algorithm
(Gau_DT) by parameterizing the profile into the retrieval. In this algorithm, the LUT is
precalculated with a known vertical profile which is simply described as the Gaussian
distribution, with the mean height µ as single variable. The geometrical thickness σ and
the vertical resolution are fixed at 1 km. To avoid too many LUTs that would require
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huge data storage, 3 basic LUTs were prepared with the layer mean height of 0, 3 and
6 km. The LUTs will be further linearly interpolated or extrapolated to the measured
mean height in the retrieval. The measurements are extracted from MODIS level 2 prod-
uct “Mean_Reflectance_Land” (MYD04_L2), which is obtained through gas correction,
cloud and water mask and dark target filtering, re-sampled to 10 × 10 km. As for the
mean height, we derived this parameter from CALPSO data. More details on CALPSO
data are introduced in the next section, as well as the derivation of the mean height.

4.3. CALIPSO VFM Data
We use the VFM data for the detection of the aerosol layer. Figure 4.6 (a) shows a sample
plot of total attenuated backscatter at 532 nm observed during daytime using CALIPSO
Level 1 data (dataset: “Total_Attenuated_Backscatter_532”). Figure 4.6 (b) presents verti-
cal feature mask observed at the same time and place, using CALIPSO Level 2 VFM data
(dataset: “Feature_Classification_Flags”). In this figure, several target types are deter-
mined such as clear air, cloud, aerosol and the surface. Combining Figure 4.6 (a) and (b),
it is apparent that the most attenuated backscatter is determined as “cloud” (white color
in Figure 4.6 (a) and cyan color in (b)), whereas the moderately attenuated backscatter is
determined as aerosol (orange color in Figure 4.6 (b)). Note that there is no signal (black
color) below the cloud in Figure 4.6 (b).

Details on the derivation of the aerosol height are introduced as below.

4.3.1. The derivation of aerosol vertical distribution (layer mean height)
The mean height of aerosol layer is derived from Level 2 VFM product in two steps (also
see Figure 4.7):

• Step 1: in this step, clear air and aerosol layers are to be determined within a win-
dow of 0.5 × 10 km (16 × 30 pixels in VFM data). An extraction method was devel-
oped for these layers. This method searches and counts aerosol pixels from the top
to the bottom of the vertical column. The window that has more than 50% aerosol
pixels will be assigned as “aerosol”. If it is not the case, we count clear air pixels.
The window that has more than 50% clear air pixels will be assigned as “clear air”,
otherwise, it is given as “blank”. In the search process, aerosol pixels are always
detected in the column first, then clear air pixels. If no aerosol pixel is found, then
the whole column is assigned as “blank”.

• Step 2: aerosol layer boundary and the layer mean height are extracted. In each
vertical column with a width of 10 km, the top and base height of each aerosol
layer are detected. The layer mean height is calculated by averaging the height of
the top and base. Aerosol vertical profile is assumed to be a single layer.

Figure 4.6 (c) illustrates the vertical feature mask with Step 1. Four types are given in
the figure. They are air/cloud, clear air, aerosol and others (could be surface, air, cloud or
mixture of them). The undetermined area (white color) indicates that there is no aerosol
found in the column. Figure 4.6 (d) shows the boundary and mean height of the aerosol
layer after Step 2.
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Figure 4.6: Atmosphere vertical profile measured by CALIPSO. The data is captured on 16th July, 2009 during
daytime. It is shown as Figure (a-d), based on the different process Levels. Figure (a) shows the total attenuated
backscatter at 532 nm (data from CALIPSO Level 1). Figure (b) presents the vertical feature mask (data from
CALIPSO Level 2 Vertical Feature Mask), where several types are classified such as Cloud, Clear Air and Aerosol
etc. Figure (c) gives the result of types (aerosol, cloud and clear air) after the aggregation of CALIPSO Level 2
data. Figure (d) illustrates the aerosol layer boundary (top: yellow, bottom: green) and mean height (thick red),
respectively. The two dashed lines (black) in (d) indicate the region in Figure 4.9.
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Figure 4.7: Flowchart for the derivation of aerosol layer mean height using CALIPSO Level 2 (VFM) data.
Aerosol and clear pixels are detected and determined in the window of 16 × 30 pixels when the window moves
from the top to the bottom of the vertical column. Aerosol pixels are firstly detected. If the window has more
than 50% aerosol pixels, it will be assigned as “aerosol”. If not, we count clear air pixels. The window that has
more than 50% clear air pixels will be assigned as “clear air”, otherwise, it will be assigned as “blank”. The de-
tected aerosols (0.5 × 10 km) are further used to derive the base and top altitude, resulting in the mean height.
More details are given in the text.

Due to the nadir view only of CALIPSO, the derived height has a narrow swath (30
m). To solve the mismatch between MODIS (10 km) and aerosol height data, we re-
sampled the height data into seasonal (5 × 5 degrees) and real-time dataset (10 × 10 km),
respectively. The seasonal dataset is obtained by averaging the height data over a season,
whereas the real-time dataset is obtained by assuming the height to be homogeneous
across the CALIPSO track and extending it to the whole MODIS swath (2030 km). These
two datasets are used for the new algorithm. We note that the assumptions of a single
layer and horizontal homogeneity for the aerosol profile can hold well for the cases of a
long range pollution of dust or smoke since the aerosol layers tend to be homogeneous
(Lee et al., 2015). It may not hold well for the cases that have complicated atmospheric
conditions. In addition, zero values for the layer height could happen under a clear sky.
For this case, we use the mean height of ExpH2 (1.4 km) instead.

4.4. Results and Discussions
Gau_DT was applied to smoke and dust regions. Cases of light moderately-absorbing
and non-absorbing aerosols are not discussed here. This is because for these cases the
impact can be easily covered by some other potential errors that could arise from in-
strument measurement uncertainty (e.g., calibration and random errors in channels)
and from the inappropriate assumptions on the aerosol model and the relationship of
surface reflectances in visible versus short wave infrared. Through a sensitivity anal-
ysis, Levy et al. (2007b) demonstrated that 3-5% errors (Mean Square Error) of the re-
trieval could be accounted by the errors of MODIS measurements or the spectral surface
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reflectance (presented in Table 4b in Levy et al. (2007b)), and would be even larger by
combining these two error sources. These errors are comparable to the ones due to the
aerosol dynamic vertical distribution when moderately-absorbing (generic) and non-
absorbing (urbanIndustrial) aerosols are observed especially under light aerosol loading
(e.g., AOD).

4.4.1. AOD validation with AERONET data
The new AOD retrievals were validated using AERONET AOD data. Following the method
introduced in Petrenko et al. (2012), MODIS AOD pixels within a circle of 25 km centered
at a ground site were selected and averaged where the maximum pixels is limited to 25.
AERONET measurements were averaged over a ±30 minutes interval centered on the
Aqua satellite overpass time. A valid collocation requires that at least 3 MODIS pixels
and 2 AERONET measurements are present within a selected spatial-temporal window
(Levy et al., 2013b). For the comparison with Gau_DT, C6_DT AOD was also added. The
AOD bias in the DT algorithms is evaluated as:

Bias = (DT - AERONET) / AERONET (4.2)

Three years (2008 - 2009) of MODIS data were collected over Middle Asia (dust) and
Middle Africa (smoke) areas. The related information for the areas is given in Table 4.2.
To clearly show the difference between Gau_DT and C6_DT AOD, we chose the data with
the layer height > 2 km. There are 437 and 470 cases collected with seasonal and real-
time height dataset, respectively.

Figure 4.8 shows scatter plots of MODIS AOD versus AERONET data. There are some
improvements on AOD retrieval bias. From Figure 4.8 (a-b), we can see that the bias was
reduced in Gau_DT. The reductions are 3% (-3.3% to -0.3%) and 4% (-5.6% to -1.6%) with
seasonal height dataset and with real-time dataset, respectively. The improvement be-
comes more significant for higher layers (height > 2.5 km), as shown in Figure 4.8 (c). We
found that the bias was reduced by 5.2% (from -6.2% to -1%) with the real-time dataset.
This demonstrates that Gau_DT can substantially reduce the negative bias due to the el-
evated aerosol layers. Nevertheless, the AOD uncertainty in Gau_DT still remains since
there are trivial improvements in the correlation coefficient R. This uncertainty is mainly
attributed to the other potential errors, i.e., errors in the spectral surface reflectance.
Note that the results with the seasonal dataset are not shown due to too few cases with
height > 2.5 km.

Region Period Geoinformation
Middle Asia (Dust) 2008 – 2010 15◦ – 30◦N, 70◦ – 93◦E
Middle Africa (Smoke) 2008 – 2010 20◦S – 0◦, 10◦ – 40◦E

Table 4.2: Information of smoke and dust regions.

To get a better insight, two concrete cases of dust and smoke were selected which are
located at Mongu (Middle Africa) and Pantnagar (Middle Asia), respectively. The results
are shown with the real-time height dataset.

Figure 4.9 shows C6_DT and Gau_DT AOD over Middle Africa area, obtained on 16
July, 2009. The CALIPSO track is across the MODIS image from the bottom to the top,
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Figure 4.8: Scatter plot of MODIS AOD versus AERONET data. MODIS AOD of Gau_DT (red) and C6_DT (gray)
present as a function of AERONET data. Figure (a) is the result with seasonal aerosol height (5 × 5 degrees).
Figures (b-c) are the results with real-time aerosol height (10 × 10 km, 75 s delay after MODIS measurements).
The symbol of “H” is the mean height of aerosol layers retrieved from CALIPSO measurements.

denoted as a red line in Figure 4.9 (d). The mean height of aerosol layers is given as red
line in Figure 4.6 (d). In Figure 4.9 (a), there are a lot of smoke plumes caused by fires
where most plumes are originated from the eastern part (24◦ - 32◦E), and raised up to a
higher level. The climbed-up layers present much higher altitude (height > 2.5 km, see
Figure 4.6) than the assumption (height = 1.4 km) in C6_DT. As result, we can see that
for the eastern part (Figure 4.9 (d)) Gau_DT AOD can differ by > 5% (> 0.02) with C6_DT.
Further, the new retrieval was found to be less biased by 5% than C6_DT against Mongu
measurements. Nevertheless, for the western area, Gau_DT and C6_DT AOD do no differ
too much. This is mainly because the impact due to the elevated layers is small under
the oblique viewing and light aerosol loading (AOD < 0.1).

Figure 4.10 presents the MODIS DT AOD with the dust event, acquired on 17 July
2008. In Figure 4.10 (b-c), there is no AOD retrieval over large bare soil areas since the
DT algorithms cannot be applied over bright surface areas. The retrievals become avail-
able over North India (dark surface area). Dust particles were well detected by both the
DT algorithms (fine ratios η retrieved as 0). The dusts were from the Middle East (e.g.,
Iran or Sahara desert) by long distance transport, with the layer mean height ranging
from 2.8 to 3.5 km (see Figure 4.11). Regarding this highly elevated layer, Gau_DT AOD
presents significantly larger (5% - 10%: 0.02 - 0.04) value than C6_DT. In other words,
this means that in this case C6_DT can always give a negative retrieval bias by up to 10%.
Particularly, the new retrievals around Pantnagar increased by 5% (0.025) compared to
C6_DT and are closer to the ground truth.

4.5. Conclusion
The MODIS C6_DT algorithms can successfully retrieve AOD by using a fixed vertical
profile for the aerosol layer over the globe. However, the assumption of the static vertical
distribution may lead to some errors in the AOD retrieval especially for elevated aerosol
layers.

In this study, a new algorithm was developed that is based on the MODIS C6_DT al-
gorithm to account for the impact of dynamic aerosol profile in the AOD retrieval, by us-
ing MODIS and CALIPSO measurements. The relationship between the TOA reflectance
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Figure 4.9: The smoke event over Middle Africa. Figures (a-d) are: MODIS true color image (by the combination
of channel 4, 3, and 2), C6_DT and Gau_DT AOD, and their difference overlap the MODIS image, respectively.
The CALIPSO track (red line) is plotted in Figure (d). Small red circles in Figure (a-d) indicate the location of
AERONET site Mongu (15.25◦S, 23.15◦E).

and aerosol vertical profile was extensively investigated as well as the sensitivity of the
AOD retrieval to the aerosol vertical distribution. We found that in the aerosol vertical
profile the layer mean height is the major variable that influences the TOA reflectance.
Specifically, the TOA reflectance linearly decreases with increasing mean height. This
leads to a high sensitivity of AOD retrieval to different profiles especially when smoke or
dust aerosols are observed. Normally, the use of the fixed profile (ExpH2 in C6_DT) can
cause a 5% to 20% error in the retrieval for smoke or dust cases owing to the dynamic
profile. To reduce these errors, the profile was parameterized into the algorithm where
the profile was assumed to be a Gaussian function with the mean height as single vari-
able. Three basic LUTs are precalculated and linearly interpolated to the measured mean
height in the retrieval process.

The new algorithm was applied to smoke and dust regions with three years (2008-
2010) of data. The mean height of the aerosol layer was derived from CALIPSO VFM
data and re-sampled as seasonal (5 × 5 degrees) and real-time dataset (10 × 10 km),
respectively. Aerosol vertical profiles are assumed to be a single layer and homogeneous
at spatial, i.e., 5 × 5 degrees. To show the impact of the vertical profile on the retrieval,
the new AOD are compared with C6_DT and validated against AERONET data.

The results show that elevated aerosol layers have a strong influence on the MODIS
AOD retrieval. Generally, the elevated layers can negatively bias the retrieval by 3 - 5%
in C6_DT. The biases are reduced to within -1.6% by the new algorithm. This becomes
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Figure 4.10: The dust event over Middle Asia. Figure (a-d) illustrate similar images as in Figure 4.9. Small red
circles in Figure (a-d) indicate the location of AERONET site Pantnagar (29.05◦N, 79.52◦E).

more significant with the increase of layer height (e.g., > 2.5 km). Two specific cases were
shown over AERONET site Mongu (smoke) and Pantnagar (dust).

For the elevated layers such that high altitude (3 - 6 km) dusts frequently occurs over
the “dust belt” (Sahara desert, Middle East and Taklamakan desert) during summer (Liu
et al., 2008a), the new AOD retrieval can improve the estimate of the direct radiative
effect by > 5% when aerosol loading is << 1.0 (Anderson et al., 2005; Levy, 2007). Never-
theless, we note that the AOD uncertainty remains due to the errors in spectral surface
reflectance. These are subjects for further study.
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Figure 4.11: Dust layer information derived from CALIPSO. The data is collected on 23th May, 2009 during
daytime. Symbols are similar to that in Figure 4.6 (d). The two dashed lines indicate the region in Figure 4.10.





5
AOD retrieval considering surface BRDF

effects

Based on: Wu, Y., de Graaf, M., and Menenti, M. (2017). MODIS Aerosol Optical Depth retrieval over land
considering surface BRDF effects. manuscript.

55



5

56 5. AOD retrieval considering surface BRDF effects

5.1. Introduction
In the previous chapter, we investigated the effect of aerosol properties on the AOD re-
trieval with the MODIS algorithm. However, this algorithm still uses a simple RT model
of TOA reflectance, by assuming isotropic reflection at the surface. A high quality AOD
retrieval requires us accurately interpret satellite observations by taking account of the
anisotropic reflection of the surface and its contribution to the observations since there
are no actual surfaces with a null reflectance (full absorption). For instance, the surface
BRF can vary by a factor of up to 5 or more across the range of illumination and ob-
servation angles. Moreover, the contributions of surface direct and diffuse reflection to
the satellite measurements can diverge and need to be treated separately, while they are
viewed to be identical in the simple RT model with a Lambertian surface. These contri-
butions not only depend on the surface reflection itself, but also depend on the radiation
interaction between the surface and the atmosphere. At light aerosol loading, the radi-
ation interaction is small and the surface direct reflection has a strong impact on the
measurements since the solar radiation is lightly scattered by the atmosphere. At larger
aerosol loading but not extremely large, the interaction due to the surface diffuse reflec-
tion becomes significant and is an important contribution to the observations. Simply
applying a Lambertian surface model to these cases, the surface contribution to the TOA
reflectance is not well estimated and would result in significant errors in the retrieval.

In this Chapter, we present an improvement in the MODIS AOD DT algorithm by
coupling the surface BRDF (called BRF_DT) with radiative transfer in the atmosphere.
Section 5.2 introduces the data used in the algorithm. The BRF_DT algorithm is pre-
sented in section 5.3, including the simulation of the TOA reflectance coupled with a
non-Lambertian surface using a LookUp Table approach. The parameterization of the
surface reflectance is introduced as well as the retrieval errors due to its uncertainty.
In addition, a protocol to assess the quality of the retrieval with the algorithm C6_DT
is defined and applied to the new algorithm. Section 5.4 presents the comparison be-
tween BRF_DT and C6_DT AOD and the validation with AERONET AOD. Conclusions
are drawn in section 5.5.

5.2. Data
5.2.1. MODIS measurements
To be consistent with data preprocessing in C6_DT, BRF_DT directly makes use of the
dataset “Mean_Reflectance_Land” in the MYD04_L2 product as input data.

5.2.2. MODIS BRDF/albedo products
The MODIS BRDF/albedo products (MCD43A1) (Lucht et al., 2000; Schaaf et al., 2002),
including the surface BRF, black-sky and white-sky albedos, is created using the 8-day
(Terra and Aqua) surface reflectance product (MOD09) that has been atmospherically
corrected by the internal aerosol retrieval algorithm (Vermote et al., 1997; Vermote and
Kotchenova, 2008). The semi-empirical BRDF kernel model (RossThick-LiSparse (LSRT)
model) that is made up of Lambertian Ki so , geometric-optical Kg eo and volume scatter-
ing kernels Ksca was applied to reconstruct the surface BRDF/albedo by a linear combi-
nation of the kernels.
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Note that each BRDF kernel is predefined and has its own assumption on the back-
ground surface. Specifically, the volume scattering kernel Kvol assumes “a dense leaf
canopy”, whereas the geometrical scattering kernel Kg eo assumes “ a sparse ensemble of
surface objects casting shadows on the background” (Lucht et al., 2000). These kernels
are given as a function of an illumination and viewing angle and thus can be precom-
puted and stored.

Figures 5.1 and 5.2 show the BRDF kernels and shape as functions of viewing zenith
angle (under solar principle and cross-principle plane). The positive (negative) viewing
zenith angle indicates the backward (forward) direction. Specifically, the shape of BRDF
using the observed model parameters is given in Figure 3 (right panel). The BRDF shows
a large value at viewing zenith angle around 45◦ where solar zenith angle = 45◦. Obvi-
ously, if there is completely back surface, the aerosol retrieval is definitely not related to
the surface BRDF since there is no contribution from the surface to the observation.LUCHT et al.: ALGORITHM FOR THE RETRIEVAL OF ALBEDO 981

Fig. 2. Principal plane and cross-principle solar plane plots of the RossThick (upper curves) and LiSparse-R (lower curves) BRDF model kernel values(arbitrary
units; the LiSparse-R kernel values were divided by 2 for better plotting). The sun is located at positive zenith angles of 0 (dotted lines), 20 (dashedlines), 45 (solid
lines), and 70 (dashed-dotted line) solar zenith angle. The parameterh=b of the LiSparse-R kernel was set to 2.0 and the parameterb=r to 1.0.

Fig. 3. BRDF shapes which the Ross–Li BRDF model acquires under natural conditions on the principal solar plane for a solar zenith angle of 45. Left panel:
shape of the BRDF using typical values for the model parameters. The two solid lines represent the maximal volume scattering and geometric-optical scattering
found for 18 field-observed BRDF’s representing a wide range of barren and vegetated cover types in the red and near-infrared wavebands. The dotted lines are
intermediate cases where the parameters take on either their respective maximal value, half of it, or are zero in all possible combinations. Right panel: shape of the
BRDF using observed model parameters in the red (solid lines) and near-infrared (dotted lines) wavebands. The datasets used represent sparse brushland, dense
broadleaf forest, dense barren trees on snow, dense needleleaf forest, sparse grass, dense grassland, and barren soil (data collected by numerous investigators).

Here, is the overlap area between the view and solar shadows.
The term should be constrained to the range [1,1], as
values outside of this range imply no overlap and should be
disregarded. Note that the dimensionless crown relative height
and shape parameters and are within the kernel and
should therefore be preselected. For MODIS processing and the
examples given in this paper, and (i.e., the
spherical crowns are separated from the ground by half their
diameter). Generally, the shape of the crowns affect the BRDF
more than their relative height [33].

Full derivations of the RossThick and the LiSparse kernels
can be found in Wanneret al. [33]. The combination of the
RossThick with the LiSparse-R kernel has been called the
RossThick–LiSparse-R model, but will here be simply referred
to as the Ross–Li BRDF model, as it is the standard model to
be used in MODIS BRDF processing. Fig. 2 shows the shapes
of these kernels for different solar zenith angles, and Fig. 3
shows the shape of the resulting BRDF when using realistic
model parameters taken from BRDF datasets observed in the
field over a variety of land cover types. Note that the behavior
of the two kernels is different in nature over large angular

ranges. While they are not perfectly orthogonal functions, as
would be ideal for the inversion process, they are sufficiently
independent to allow stable recovery of the parameters for
many angular sampling distributions. The absence of excessive
kernel-to-kernel correlation is key to reliable inversions.

When deriving the model parametersby minimization of
the error term , care should be taken that the resulting model
parameters are not negative. This is required from physical con-
siderations and in order to maintain the semiorthogonality of
the scattering kernels. If the mathematical inversion produces a
negative parameter, the next best valid value for this parameter
is zero, under which imposed condition, the remaining kernel
parameters should be rederived [35].

B. Ross–Li Polynomial Albedo Representation

The solar zenith angle dependence of the black-sky albedo in-
tegrals of the RossThick and LiSparse-R kernels are rel-
atively benign functions, shown in Fig. 4. Therefore, a simple
mathematical expression may be found to express these func-
tions. Such a representation may be more convenient in land

Figure 5.1: Principal plane and cross-principle solar plane plots of the RossThick (upper curves) and LiSparse-
R (lower curves) BRDF model kernel values (arbitrary units; the LiSparse-R kernel values were divided by 2
for better plotting). The sun is located at positive zenith angles of 0 (dotted lines), 20 (dashed lines), 45 (solid
lines), and 70 (dashed-dotted line) solar zenith angle. The parameter h = b of the LiSparse-R kernel was set to
2.0 and the parameter b = r to 1.0. Figure is copied from Lucht et al. (2000).

Note that black-sky and white-sky albedos are virtual concepts and they imply some
assumptions on the atmosphere. The black-sky albedo assumes a totally transparent
atmosphere where a diffuse flux is absent, whereas the white-sky albedo assumes a to-
tally homogeneous atmosphere where a direct flux is absent. The black-sky albedo is a
function of solar zenith angle, whereas the white-sky albedo is independent on the il-
lumination and viewing angle. The kernels of black-sky and white-sky albedos are the
integrals of the BRDF model kernels (see equation 25 and 26 in Lucht et al. (2000)) and
also can be precomputed. By minimizing the difference between the atmospherically
corrected reflectance and the BRDF kernel model, the model parameters are retrieved
and used to generate the surface BRDF/albedo with the calculated kernels.

The BRDF/albedo product has a high accuracy with errors of < 5% and < 10% with
the high and low quality, respectively (validation results see http://landval.gsfc.nasa.gov/,
accessed in August 2016), with the spatial resolution of 500 m. The studies in Taberner
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LUCHT et al.: ALGORITHM FOR THE RETRIEVAL OF ALBEDO 981

Fig. 2. Principal plane and cross-principle solar plane plots of the RossThick (upper curves) and LiSparse-R (lower curves) BRDF model kernel values(arbitrary
units; the LiSparse-R kernel values were divided by 2 for better plotting). The sun is located at positive zenith angles of 0 (dotted lines), 20 (dashedlines), 45 (solid
lines), and 70 (dashed-dotted line) solar zenith angle. The parameterh=b of the LiSparse-R kernel was set to 2.0 and the parameterb=r to 1.0.

Fig. 3. BRDF shapes which the Ross–Li BRDF model acquires under natural conditions on the principal solar plane for a solar zenith angle of 45. Left panel:
shape of the BRDF using typical values for the model parameters. The two solid lines represent the maximal volume scattering and geometric-optical scattering
found for 18 field-observed BRDF’s representing a wide range of barren and vegetated cover types in the red and near-infrared wavebands. The dotted lines are
intermediate cases where the parameters take on either their respective maximal value, half of it, or are zero in all possible combinations. Right panel: shape of the
BRDF using observed model parameters in the red (solid lines) and near-infrared (dotted lines) wavebands. The datasets used represent sparse brushland, dense
broadleaf forest, dense barren trees on snow, dense needleleaf forest, sparse grass, dense grassland, and barren soil (data collected by numerous investigators).

Here, is the overlap area between the view and solar shadows.
The term should be constrained to the range [1,1], as
values outside of this range imply no overlap and should be
disregarded. Note that the dimensionless crown relative height
and shape parameters and are within the kernel and
should therefore be preselected. For MODIS processing and the
examples given in this paper, and (i.e., the
spherical crowns are separated from the ground by half their
diameter). Generally, the shape of the crowns affect the BRDF
more than their relative height [33].

Full derivations of the RossThick and the LiSparse kernels
can be found in Wanneret al. [33]. The combination of the
RossThick with the LiSparse-R kernel has been called the
RossThick–LiSparse-R model, but will here be simply referred
to as the Ross–Li BRDF model, as it is the standard model to
be used in MODIS BRDF processing. Fig. 2 shows the shapes
of these kernels for different solar zenith angles, and Fig. 3
shows the shape of the resulting BRDF when using realistic
model parameters taken from BRDF datasets observed in the
field over a variety of land cover types. Note that the behavior
of the two kernels is different in nature over large angular

ranges. While they are not perfectly orthogonal functions, as
would be ideal for the inversion process, they are sufficiently
independent to allow stable recovery of the parameters for
many angular sampling distributions. The absence of excessive
kernel-to-kernel correlation is key to reliable inversions.

When deriving the model parametersby minimization of
the error term , care should be taken that the resulting model
parameters are not negative. This is required from physical con-
siderations and in order to maintain the semiorthogonality of
the scattering kernels. If the mathematical inversion produces a
negative parameter, the next best valid value for this parameter
is zero, under which imposed condition, the remaining kernel
parameters should be rederived [35].

B. Ross–Li Polynomial Albedo Representation

The solar zenith angle dependence of the black-sky albedo in-
tegrals of the RossThick and LiSparse-R kernels are rel-
atively benign functions, shown in Fig. 4. Therefore, a simple
mathematical expression may be found to express these func-
tions. Such a representation may be more convenient in land

Figure 5.2: BRDF shapes which the Ross-Li BRDF model acquires under natural conditions on the principal
solar plane for a solar zenith angle of 45 . Left panel: shape of the BRDF using typical values for the model pa-
rameters. The two solid lines represent the maximal volume scattering and geometric-optical scattering found
for 18 field-observed BRDF’s representing a wide range of barren and vegetated cover types in the red and
near-infrared wavebands. The dotted lines are intermediate cases where the parameters take on either their
respective maximal value, half of it, or are zero in all possible combinations. Right panel: shape of the BRDF
using observed model parameters in the red (solid lines) and near-infrared (dotted lines) wavebands. The
datasets used represent sparse brushland, dense broadleaf forest, dense barren trees on snow, dense needle-
leaf forest, sparse grass, dense grassland, and barren soil (data collected by numerous investigators). Figure is
copied from Lucht et al. (2000).

et al. (2010) and Pinty et al. (2010) have shown that on regional and global scales the
white-sky albedo product well agrees with similar products generated based on the Mul-
tiangle Imaging Spectroradiometer (MISR) land surface BRF parameter. This product
is not accurate when the land surface conditions change rapidly over a short period or
when large solar zenith angle (> 70◦) applies to the observation. This product is used to
constrain the surface reflectance in the AOD retrieval. There is some circularity in the
retrieval using such a product of atmospheric correction. But the aerosol retrieval in the
MCD43A1 product is independently done where the retrieval depends on its own aerosol
climatology (aerosol model and loading). Any uncertainty in MCD43A1 product due to
the errors in the atmospheric correction can propagate into the BRF_DT algorithm. But
it leads not much error in the retrieval. The sensitivity study (in section 5.3.3) shows
that the retrieval errors due to the BRDF/albedo uncertainty are smaller than 6.5%. This
is mainly because the important factor surface BRF is also retrieved other than using
MCD431 product. More details about the use of the product in the surface reflectance
parameterization are given in the next sections, as well as the effect of the product un-
certainty in the AOD retrieval.

5.3. BRF_DT AOD algorithm
Based on the MODIS C6_DT algorithm (Levy et al., 2013b), the BRF_DT algorithm is
newly developed to improve AOD retrievals. It takes into account the surface BRDF ef-
fects in the retrieval, which differs from C6_DT where a Lambertian surface is assumed.
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To reduce the computational cost of the AOD retrieval, a LUT approach was applied in
the new algorithm, to couple the TOA reflectance with the non-Lambertian surface as
well as the parameterization of the surface reflectance in the retrieval.

5.3.1. Coupling the TOA reflectance with a non-Lambertian surface
High quality AOD retrieval requires accurate estimates of the contribution of anisotropic
or non-Lambertian surface to the TOA radiance. Coupling the TOA radiance with surface
BRDF effects was originally proposed by Li et al. (1996), and further improved and vali-
dated by Qin et al. (2001) (see equation 5.1). It has a high accuracy (0.7% on average) over
several surface cover types (Qin et al., 2001), and is applied in this study. Here, we briefly
introduce the TOA radiance by considering non-Lambertian surface, and the retrieval
algorithm.

According to the four-stream theory (Verhoef, 1985), the radiation field can be di-
vided into directional (d), and hemispheric part (h) indexed by the subscripts “d” and
“h”. Since we have an incident and reflected radiation, we get four combinations of these
subscripts: “dd”, “dh”, “hd” and “hh”.

A sketch diagram is shown of the TOA radiance observed by a satellite radiometer in
Figure 5.3. In this figure, we have a parallel solar beam F0 with a zenith angle θs as inci-
dent radiation at TOA. This radiation is scattered and absorbed by the atmosphere before
reaching the bottom boundary of the atmosphere. Part of the scattered radiation can get
into the view of the sensor, called “path reflected radiance” ρa . A fraction of the scat-
tered radiation propagates forward, called downward radiance including hemispherical
and directional transmitted radiance tdd (i ) and tdh(i ), and interacts with the underlying
surface. Regarding the underlying surface as a non-Lambertian, the anisotropic reflec-
tion of the surface is simply described by four reflectance properties: hemispherical-
directional 1© (Rhd ), bihemispherical 2© (Rhh), bidirectional 3© (Rdd ) and directional-
hemispherical reflection/reflectance 4© (Rdh), respectively, see Figure 5.3. The down-
ward radiation undergoes complicated reflections at the surface and scattering in the
atmosphere.

The directional flux reflected by the surface could be from the downward transmitted
radiance after 1© or 3©, whereas the corresponding hemispherical component is from
the downward transmitted radiance and determined by 2© or 4©. Here we neglect the
multiple reflections between the lower atmosphere and the surface (e.g., strong specular
reflection) for the directional flux. The atmosphere backscattering ratio is denoted as
s. Finally, there is a directional flux from the lower atmosphere, through the directional
transmission tdd (v) into the view of the sensor. Similarly, the sensor receives another
directional flux which is from the diffuse flux undergoing the hemispherical-directional
transmission thd (v). Therefore, the TOA reflectance captured by the sensor (radiance
converted to reflectance by normalization) is composed of two parts: the atmospheric
reflectance (path reflectance) and the reflectance contributed by the interaction of the
surface and the atmosphere, which is written as follows (a complete derivation is given
Appendix B):

ρ∗(i , v) = ρa(i , v)+ T(i )R(i , v)T(v)− tdd (i ) |R(i , v)| tdd (v)s

1−Rhh s
, (5.1)
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Figure 5.3: The TOA flux observed by the satellite considering the surface BRDF effects. The surface BRDF is
simply described as 4 elements: hemispherical-directional 1© (Rhd ), hemispherical-hemispherical 2© (Rhh ),
directional-directional 3© (Rdd ) and directional-hemispherical reflectance/reflection 4© (Rdh ), also shown
in Figure B. Parameters in the radiation-field are solar beam F0, solar beam scattered and attenuated by the
atmosphere at the bottom layer tdh (i ) and tdd (i ), respectively, (or called the downward diffuse/directional
transmitted radiance), the radiance reflected by the atmosphere ρa , the directional/diffuse flux from the bot-
tom atmosphere through directional transmission tdd (v)/thd (v), atmospheric backscattering ratio s. More
details are explained in the text.

where,

R(i , v) =
[

Rdd Rdh

Rhd Rhh

]
T(i ) =[

tdd (i ) tdh(i )
]

T(v) =
[

tdd (v)
thd (v)

]
(5.2)

For convenience, the dependence of each term on wavelength λ is not explicitly
shown here and in subsequent equations. The second term on the right hand side of
equation 5.1 shows the contribution of the surface to TOA reflectance. R is the sur-
face reflectance matrix, which is made up of four components: directional-directional
Rdd , directional-hemispherical Rdh , hemispherical-directional Rhd and bidirectional-
hemispherical surface reflectance Rhh , its determinant is |R| = Rdd Rhh −RdhRhd . Then
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we have the atmospheric transmittance matrix variables T(i ) (T(v)) in equation 5.2 and
the correspoinding scalar variables in equation 5.3 and 5.4.

T (i ) = tdd (i )+ tdh(i ) (5.3)

T (v) = tdd (v)+ thd (v) (5.4)

where

tdd = tdd (µ,τa) = exp(−τa/µ) (5.5)

µ = cosθ (5.6)

τa is the total optical depth of the atmosphere, which equals to the sum of AOD and
Rayleigh Optical Depth.

We note that equation 5.1 can be approximately or even completely identical to equa-
tion 2.8 under certain conditions. Two cases are discussed below.

• Case One: a Lambertian surface, where the four components in R are equal to ρs ,
makes equation 5.1 to be identical to equation 2.8.

• Case Two: low spectral AOD atmosphere, where the directional incident radiation
is less scattered by the atmosphere, leads to a small or nearly zero diffuse radia-
tion. Specifically, we have nearly zero values for the diffuse transmittance tdh(i )
and thd (v), and atmospheric backscattering ratio s. Therefore the surface contri-
bution to the TOA reflectance can be approximated as tdd (i )Rdd tdd (v) for both
equation 2.8 and 5.1, thus these two equations are approximately identical. The-
oretically, Case Two will be used for supporting our assumptions in the new algo-
rithm discussed next.

Nevertheless, the real case that neither has a Lambertian surface nor low spectral AOD
atmosphere, requires us to consider the contribution of diffuse-radiation to the reflectance
at TOA with equation 5.1.

5.3.2. Parameterization of the surface reflectance in the AOD retrieval
Three parameters, AOD, fine mode aerosol ratio η and surface BRF Rdd , are retrieved in
the BRF_DT algorithm by fitting the simulated TOA reflectance (using equation 5.1 and
2.10) to MODIS measurements at three wavelengths (0.466, 0.644 and 2.12 µm).

In the new algorithm, three more unknowns (Rdh , Rhd and Rhh) are present in the
retrieval compared to C6_DT, which can be determined using the MODIS BRDF/albedo
product. Specifically, Rhh and Rdh are directly provided by MODIS BRDF/albedo MCD43A1
white-sky and black-sky albedo. According to the study in Snyder (1998) , we assume that
reciprocity law is valid for the reflectance over structured surfaces (e.g., forest canopies
and grasslands) as well as over a flat surface. This law allows us to interchange Rhd (i )
with Rdh(v) for any i = v . Note that this law does not require the occurrence that the
solar zenith angle and viewing zenith angle are equal. Further, a few assumptions and
considerations about the spectral surface reflectance apply as follows.
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• Assuming that C6 surface reflectance relationship of VISvsSWIR is suitable for the
case of surface BRF Rdd . Although a Lambertian surface is assumed in the rela-
tionship (equation 2.8), we note that the relationship is derived under low AOD (τ
at 0.55 µm < 0.2, hereafter we use τ for 0.55 µm) which approximately meets the
requirement in Case Two (mentioned above) where the directional incident radi-
ation is less scattered by the atmosphere. Therefore, the relationship applied for
surface BRF is reasonable.

• Assuming that the atmosphere is nearly transparent at 2.11 µm, then we have a
low spectral AOD atmosphere that matches Case Two (mentioned above). In this
case, we have a high similarity between equation 2.8 and 5.1, which means the
reflectance at TOA using equation 2.8 would not yield too large error. Some evi-
dence supports the assumption. The surface reflectance retrieved at 2.11 µm has
a very high accuracy (98.62% overall falls in “good” observation 0.005 + 0.05ρs )
when assuming Lambertian surface (Vermote and Kotchenova, 2008). By compar-
ing the Lambertian surface reflectance and surface BRF Rdd , it was found that the
difference in the surface reflectance becomes significant at shorter wavelengths
(Wang et al., 2010). Alternatively, it demonstrates that the surface reflectance at
longer wavelength would not differ too much using equation 2.8 and 5.1 after re-
arrangement. On the other hand, by considering the BRDF effect at 2.11 µm, the
AOD retrieval does not improve due to relatively large errors in the BRDF/albedo
product MCD43A1. We conclude that the TOA reflectance at 2.11 µm can be ap-
proximately calculated using equation 2.8. Note that this assumption may not
hold well for a heavy AOD atmosphere since the solar radiation at 2.11 µm can
be significant scattered by the thick aerosol layer.

5.3.3. AOD retrieval error caused by BRDF/albedo uncertainty
Owing to the use of BRDF/albedo data in the BRF_DT algorithm, the retrieved AOD may
suffer from the uncertainty of these data. To test the effects of the BRDF/albedo uncer-
tainty in the retrieval, we performed a sensitivity study over a typical vegetation area. The
surface BRF Rdd ,2.12 is calculated with the BRDF kernel code brdf_forward (see website
https://www.umb.edu/spectralmass/terra_aqua_modis/modis_user_tools), giv-
ing a value around 0.15. In this test, we set 10% uncertainty for the BRDF/albedo at two
visible bands (0.466 and 0.644 µm). The results show that the errors of the AOD retrieval
are< 6.5% due to the BRDF/albedo uncertainty. This demonstrates that the albedo prod-
uct can be well used for the AOD retrieval in the new algorithm.

5.3.4. Quality assurance of AOD retrievals
Since BRF_DT makes use of the same measured mean reflectance (“Mean_Reflectance_Land”)
as C6_DT (Levy et al., 2013b), the Quality Assessment (QA) of the retrievals applied in
C6_DT is also available for BRF_DT. This is because QA, roughly describing the number
of dark target pixels used in the retrieval, is flagged in the mean reflectance. The QA
systems with the dark target method proceeds over 20 × 20 pixels box (500 m resolu-
tion), which requires the measured 2.12 µm reflectance in the box falling between 0.01
and 0.25. By removing the brightest 50% and the darkest 20% of the measured 0.66 µm

https://www.umb.edu/spectralmass/terra_aqua_modis/modis_user_tools
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reflectance over the box, a maximum of 120 pixels were selected to calculate the mean
reflectance. More than 20, 30 and 50 pixels used out of possible 120 pixels are labeled
as QA=1, 2 and 3, respectively. The detailed procedure is described in Levy et al. (2007b)
and Levy et al. (2013b). The AOD with QA=0 is not discussed here since multiple factors
can reduce QA to 0 such as a large fitting error in the retrieval and the detected thin cirrus
pixels, in addition to the few dark target pixels used.

5.4. Results and Discussions
The BRF_DT algorithm was used in three case studies: 2008 and 2010 two years data
from Eastern China (20◦N - 50◦N, 100◦E - 125◦E) and North America (25◦N - 65◦N, 135◦W
- 60◦W), and four months (January and July in 2008 and 2010, respectively) for global
land areas (see Table 5.1). The AODs with different QAs are shown here, where QA ≥ 1
(marginal and better quality) is labeled as “QA123”, QA=3 (the best quality) labeled as
“QA3”.

Area Lat Long Period
Eastern China 20◦N - 50◦N 100◦E - 125◦E 2008 and 2010
North America 25◦N - 65◦N 135◦W - 60◦W 2008 and 2010
Global land — — Jan and Jul in 2008 and 2010

Table 5.1: Information of three case studies.

5.4.1. AOD comparison between BRF_DT and C6_DT
Figure 5.4 presents a sample over south of China. We can roughly see a high aerosol
loading over this area where the AOD retrieved by both DT algorithms are > 0.3. As in-
dicated by a yellow ellipse area (Guangdong province) in the figure, BRF_DT gives lower
AOD than C6_DT with the AOD difference being > 0.1, which becomes significant when
a high aerosol loading occurs.

Figure 5.5 shows part of Mexico. We note that a clean sky is present over this area
where the retrieved AOD by both DT algorithm is in good agreement and mostly < 0.05,
except for the central portion of the area i.e. the Sierra Madre Mountain in Mexico (in-
dicated by a yellow ellipse) where the AOD difference goes up to 0.06. In this region, the
bright surface is characterized by sparse grass/vegetation, bare soil and rocks. C6_DT
AOD is apparently affected by this bright surface, showing a large spatial variability while
BRF_DT performs better giving smoother AOD retrievals. Due to the surface effects, the
large errors of C6_DT AOD may be denoted by the QA flag. To evaluate this, the AOD
retrievals over this area were separated into two groups: one with the best quality (QA3)
and the other with a lower quality (QA12), shown in Figure 5.6. We found, however, that
the errors on AOD still largely remain in C6_DT for both groups. This demonstrates that
QA flag cannot identify good retrievals with C6_DT in this case.

Figures 5.7, 5.8 and 5.9 show histograms of MODIS AOD for Eastern China and North
America for four months (January, April, July, and October in 2008), and for global land
for two months (January and July in 2008), respectively. Note that an AOD bin labeled
as -0.05 means the AOD ranges from -0.05 to -0.03. Negative retrievals are allowed in
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Figure 5.4: AOD over China with QA ≥ 1 (labeled as “QA123”). Figure A-D show MODIS RGB true color, C6_DT,
BRF_DT and the difference (BRF_DT - C6_DT AOD), respectively.

the MODIS algorithms and used to make an unbiased statistical analysis (Levy et al.,
2007b). This is because the retrievals can be underestimated or overestimated due to
the positive or negative uncertainty in the surface reflectance and aerosol properties.
Relative or normalized frequencies are given in the plots instead of a total number of
AOD retrievals in each bin, because in BRF_DT nearly one-seventh of the retrievals are
missing compared to C6_DT, due to cloudy or cloud-contaminated pixels screened out
in MCD043A1 during the 8-days period.

Over Eastern China, BRF_DT histograms tend to shift to low bins compared to C6_DT
especially for January. This may be caused by the difference between the DT algorithms
in estimating the bright surface contribution. Due to less vegetation and more bare soil
present in January than in other months, a relatively large AOD is retrieved by C6_DT,
while a small AOD is retrieved by BRF_DT. This effect caused by a bright surface is also
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Figure 5.5: AOD over Mexico with QA ≥ 1 (labeled as “QA123”). Symbols are similar to Figure 5.4.

shown in Figure 5.5 as discussed above.

In contrast, the histograms of C6_DT and BRF_DT AOD over North America and
global land areas (Figure 5.8 and 5.9) do not show very significant differences as Eastern
China. This is mainly due to the relatively low aerosol loading (mostly τ < 0.25) atmo-
sphere over North America and global land areas that would make equation 5.1 close to
2.8 where the diffuse radiation is less observed by MODIS (refer to Case Two discussed
above).

5.4.2. Validation with AERONET AOD
The new AOD retrievals were validated using AERONET AOD data with the rule intro-
duced in section 4.4.1 in Chapter 4. To check the performance of the BRF_DT and C6_DT
algorithm on QA and scattering angle, the corresponding AOD validation with AERONET
measurement is shown.
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Figure 5.6: AOD with other QA over Mexico. QA=3 was labeled as “QA3”, and QA=1 or 2 labeled as “QA12”.
Symbols are similar to Figure 5.4.

AOD validation with QA

In preparation of the validation experiment, the retrieved AOD were separated into 5
groups based on the combination of QAs, with statistics such as the percentage of data
within EE, above EE and below EE, bias (mean(MODIS AOD)-mean(AERONET AOD)),
and correlation coefficient R in the linear regression.

Tables 5.2, 5.3 and 5.4 show the statistics of the AOD validation in Eastern China,
North America, and global land area, respectively. We note that the retrievals over global
land are fewer than over North. America since we just use four months of data for global
land whereas two years of data for N. America. The results show that the QA flags work
well when using the BRF_DT algorithm. Generally, both DT algorithms show that the
AOD accuracy increases as QA flag. For example, QA3 AOD shows 63.7-74% and 71.1-
79.5% of retrievals falling within EE for C6_DT and BRF_DT, respectively, which is higher
than any other QA or combinations. Compared to C6_DT, BRF_DT shows improvements
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Figure 5.7: Histogram for Eastern China DT AOD (at 0.55 µm) from Aqua for four months. Plotted are data
from C6_DT and BRF_DT with QA ≥ 1, labeled as “QA123”. Bin labels represent the lower boundary of the bin.

Figure 5.8: Histogram for North America DT AOD (at 0.55 µm) from Aqua for four months. Other symbols are
similar to Figure 5.7.

of the AOD retrievals with a larger fraction of retrievals falling within EE, except for QA1
over Eastern China, where a 3 % decrease was found due to too few collocations (60).

Figure 5.10, 5.11 and 5.12 show the scatter plots and box plots for AOD with QA123
and QA3. For the best quality QA3, the accuracy of AOD over Eastern China gets sub-
stantially improved in BRF_DT, then North America, with the increase of 7.4% (71.1%
− 63.7%) and 5.5% (79.5% − 74%) retrievals falling within EE, respectively, where the bi-
ases are significantly reduced from 0.059 to -0.001 and from 0.023 to 0.013. The AOD over
global land is less improved with the increase of 2.7% in the retrievals falling within EE.
The correlation coefficient R increases only for North America (from 0.80 to 0.83), while
it slightly decreases for Eastern China (from 0.94 to 0.93) and global land (from 0.81 to
0.80). AOD with a general quality (QA123) are similar to but show larger improvements
where the retrievals falling within EE in BRF_DT increase by 6.4% (66.9% − 60.5%), 9.5%
(72.5% − 63.0%) and 5.8% (69.2% − 63.%) over C6_DT, for Eastern China, North America,
and global land, respectively.

QA123 AOD in BRF_DT that can meet the 1-σ interval (66%) of EE requirement will
be used for a further analysis, which is given in the next section.
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Figure 5.9: Histogram for global land DT AOD (at 0.55 µm) from Aqua for two months. Other symbols are
similar to Figure 5.7.

QA N % within EE % above EE % below EE Bias R
1 60 50.0 45.0 5.0 0.075 0.935

— 46.7 40.0 13.3 0.022 0.750
12 268 53.7 44.0 2.2 0.097 0.931

— 55.2 31.0 13.8 0.020 0.838
123 694 60.5 34.0 5.5 0.072 0.932

— 66.9 20.7 12.4 0.001 0.895
23 621 62.6 31.4 6.0 0.070 0.939

— 66.8 20.6 12.6 0.004 0.910
3 501 63.7 29.5 6.8 0.059 0.940

— 71.1 16.8 12.2 -0.001 0.927

Table 5.2: The statistics of AOD validation over Eastern China. Normal font applies to the C6_DT algorithm,
whereas “bold” applies to the BRF_DT algorithm. “—” inicates the same number N in the line above. QA1
means QA=1, QA123 means QA ≥ 1, other QAs are similar to.

AOD validation with the scattering angle
To check whether the performance of DT algorithms depends on geometrical illumina-
tion and viewing angle, the MODIS AOD co-located with AERONET measurements were
grouped into 20 equal bins and sorted by the scattering angle (the angle between the di-
rection of the solar incident flux and the direction of the reflected flux into the view of
the sensor). Eastern China was not shown due to too few co-locations in this region.

Figure 5.13 presents the AOD errors with the two DT algorithms as a function of scat-
tering angle, where AOD retrieval with QA123 are used. One standard deviation 1-σ (“box
height”), median (“star or circle”) of AOD error and EE line (“dashed line”) are plotted in
the figure.

The AOD retrievals were significantly improved at small scattering angles (Θ < 140◦
and Θ< 125◦ for global land and North America, respectively) in BRF_DT where the 1-σ
errors are well within the EE line. Nevertheless, this is not the case at a large scattering
angle (Θ≥ 140◦ andΘ≥ 125◦ for global land and North America, respectively), where the
retrievals were improved less when Θ > 160◦. On the other hand, the positive biases of
AOD were substantially reduced in BRF_DT where the median errors of AOD get close to
zero, although there are small negative biases at small scattering angles (Θ< 110◦).

5.4.3. Summary
Based on the sample plots and histograms as well as analysis and comparison against
AERONET measurements, the AOD retrievals in C6_DT were improved by applying BRF_DT.
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Figure 5.10: The comparison of AOD between C6_DT and BRF_DT algorithm over Eastern China. That shown
are scatter and box plots of the retrieved AOD with QA ≥ 1 and QA=3 filtered against AERONET AOD. In scatter
plots, dash line is Expected Error (EE) ±(0.05+15%) and the solid line is one-one line. Note that QA ≥ 1 was
labeled as “QA123” and QA=3 labeled as “QA3”. The AOD error (retrieved AOD - AERONET AOD) in box plots
are broken into equal numbers bins of AERONET AOD. Dash line and solid black line are zero error and EE,
respectively. For each box-whisker, width is 1-σ of the AOD bin, whereas height, whiskers, middle line and red
dots are the 1-σ, 2-σ, mean, and median of the AOD error, respectively.

Figure 5.11: Except for North America, others are the same as Figure 5.10.
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QA N % within EE % above EE % below EE Bias R
1 408 33.3 60.3 6.4 0.120 0.465

— 44.4 51.2 4.4 0.101 0.527
12 1645 39.1 56.7 4.2 0.104 0.605

— 52.3 45.0 2.7 0.079 0.663
123 4399 63.0 31.4 5.5 0.047 0.701

— 72.5 22.8 4.7 0.031 0.742
23 4015 66.3 27.7 6.0 0.040 0.721

— 75.0 20.0 5.0 0.025 0.761
3 3269 74.0 19.4 6.6 0.023 0.799

— 79.5 15.0 5.5 0.013 0.827

Table 5.3: The statistics of AOD validation over North America. Other symbols are similar to Table 5.2.

QA N % within EE % above EE % below EE Bias R
1 264 46.6 47.0 6.4 0.081 0.721

— 55.3 39.4 5.3 0.062 0.651
12 1100 50.7 44.4 4.9 0.072 0.751

— 61.0 33.8 5.2 0.051 0.711
123 2755 63.4 27.3 9.4 0.029 0.777

— 69.1 18.9 11.9 0.009 0.761
23 2444 66.0 23.7 10.3 0.021 0.781

— 70.7 16.2 13.0 0.002 0.772
3 1923 69.7 18.1 12.2 0.006 0.809

— 72.4 12.7 14.9 -0.009 0.800

Table 5.4: The statistics of AOD validation over global land. Other symbols are similar to Table 5.2.

Since much of the Earth land surface is not “dark”, these results are dependent on whether
the applied RT model considers the surface anisotropic reflection. The overestimation
of MODIS AOD occurring in the case of heavy aerosol loading (τ> 0.4) or bright surface
(e.g, Eastern China) was corrected to a large extent. In this case, the surface contribu-
tion to the TOA reflectance especially the contribution by surface diffuse reflection is
well modeled by BRF_DT, thus yielding a better retrieval. Regional AOD biases can be
reduced by the new algorithm. For the case of light aerosol loading (τ < 0.25) and dark
surface, the retrievals were less improved (e.g, QA3 AOD over the global land area). This
is because the surface BRDF effects are relatively small under these conditions, which
substantially reduce the difference in performance between the two DT algorithms.

Further, the angular dependence of the AOD on the scattering angle was significantly
reduced, where the overestimations of retrievals were corrected at a small scattering an-
gle. Nevertheless, we found that the overestimation remains at a large scattering angle
(> 140◦). This demonstrates that the strong surface reflectance effect due to the specular
reflection or no shadow surface in backward-scattering with the sun behind the sensor,
is still underestimated in BRF_DT algorithm, leading to an overestimation of the AOD.
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Figure 5.12: Except for global land, others are the same as Figure 5.10.

Figure 5.13: AOD at 0.55 µm error as function of scattering angle with QA ≥ 1 (labeled as “QA123”). AOD errors
are defined as MODIS retrieved AOD - AERONET AOD, broken into equal number bins of scattering angles,
the data are plotted for North America and global land respectively. The dash line and solid balck line is EE
and zero error. For each box, width is 1-σ of the scattering angles bin, whereas height, middle line are the 1-σ,
mean of the AOD error. The colored box “gray” is for C6_DT and “blue” for BRF_DT, whereas red symbols “star”
and “circle” are the median of AOD error for C6_DT and BRF_DT, respectively.

5.5. Conclusions
The MODIS AOD produced by the operational algorithm C6_DT can well meet the ex-
pected accuracy level of ±(0.05+15%) over the global land. However, the AOD over some
region violates this accuracy requirement. This problem mainly lies in the uncertainty of
the surface contribution in the retrieval since a Lambertian surface is assumed into the
algorithm while real land surfaces are non-Lambertian.

In this Chapter, we introduced a new version of the algorihtm to retrieve AOD by
considering surface BRDF effects called BRF_DT algorithm. In this algorithm, a lot of
legacies were inherited from the C6_DT algorithm, including the gas correction, cloud
mask and dark target selection in MODIS data preprocessing as well as the QA flags.
The problems were solved in calculating direct atmospheric transmittance and the TOA
reflectance in a previous study Yang et al. (2014).
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In BRF_DT, three parameters, surface BRF at 2.11 µm, AOD, and fine ratio η, are re-
trieved. The surface anisotropic reflection is well constrained by using a parameteriza-
tion of spectral surface BRF and determining surface BRDF albedo (Rdh , Rhd , and Rhh).
Specifically, the C6 version relationship is applied for the spectral surface BRF. Rdh and
Rhh are provided by MODIS MCD43A1 black and white sky albedo. Reciprocity law is
assumed for hemispherical-directional Rhd and directional-hemispherical Rdh surface
reflectance. Particularly, the TOA reflectance at the long wavelength 2.11 µm is approx-
imately calculated by equation 2.8 due to weak BRDF effects at this wavelength, which
differ from the visible (0.466 and 0.644 µm) TOA reflectance that are taken into account
by equation 5.1.

The BRF_DT algorithm was applied to three study areas (Eastern China, North Amer-
ica, and global land). With comparisons between the DT algorithms, the results show
that the AOD retrievals were significantly improved by BRF_DT. With the best quality
AOD (QA3), the number of retrievals falling within EE increases by 7.4%, 5.5% and 2.7%
for Eastern China, North America and global land, respectively. Regarding the low qual-
ity AOD (QA=1 or 2), the number of retrievals (QA ≥ 1) falling within EE increases by
6.4%, 9.5% and 5.8% for these study areas, respectively. Particularly, these retrievals can
meet the expected accuracy level ±(0.05 + 15%), which means that more reliable AOD
retrievals are available for practical use that would greatly benefit users for scientific re-
search. For instance, the retrievals with the full quality (QA123) can give about 50% more
points than with the best quality only (QA3). The problem of data gaps due to bright
surfaces (e.g, urban and bared soil areas) can be greatly alleviated. This would benefit
the aerosol-related research, such as the research on monitoring urban air quality and
aerosol radiative forcing.
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spectral reflectance

6.1. Introduction
Following the selection of dark target pixel in the C6_DT algorithm, a new AOD retrieval
algorithm called BRF_DT was developed to take into account the anisotropic reflectance
of the land surface, and has shown improvements over C6_DT (Chapter 5). BRF_DT
still gives a strong angular dependence of the retrieval, however, including a lot of neg-
ative retrievals (physically invalid). This is attributed to the parameterization of spectral
surface reflectance that causes large errors in the retrieval when aerosol loading is low.
Therefore, the parameterization of spectral surface reflectance should be further refined,
by considering the variability of the parameterization with land cover and illumination
and view angles.

This study aims at reducing the angular dependency of the retrieval by updating the
parameterization of the spectral surface BRF. The improved BRF_DT algorithm is called
BRF_DT2 here. Section 6.2 describes the AERONET-based Surface Reflectance Valida-
tion Network (ASRVN) data to derive the relationship between the VIS and SWIR spec-
tral surface BRF. Section 6.3 describes how this relationship was obtained with 3 years
(2005-2007) of ASRVN data. Section 6.4 presents the AOD retrieval by the new algorithm,
and its validation with AERONET measurements. The AOD retrievals of the current and
operational MODIS C6_DT algorithm and the previous BRF_DT algorithm are used in
this Chapter to evaluate the algorithms and get a better understanding of the differences
in accuracy. Conclusions are presented in section 6.5.

6.2. ASRVN data
The ASRVN algorithm provides high quality data on spectral surface bidirectional re-
flectance and albedo by explicitly performing atmospheric correction, using 50 × 50
km2 samples of MODIS level 1B data and AERONET aerosol and water-vapor informa-
tion (Wang et al., 2009). With a semi-analytical Green function solution (Lyapustin and
Knyazikhin, 2001), LSRT BRDF kernels (the same kernel model as in MCD43A1) are in-
tegrated into radiative transfer calculation to generate accurate TOA reflectance. The
weights of three LSRT BRDF kernels and the surface BRF are retrieved by the ASRVN al-
gorithm by fitting the simulated TOA reflectance with MODIS measurements over a 4- to
16-day period.

Although the ASRVN BRF data are not yet fully validated with ground truth, it is ex-
pected to have a higher accuracy (e.g., errors < 5%) than MODIS BRDF/albedo products.
There are two motivations to use the ASRVN data. Firstly, by using AERONET ground
measurements, the information on aerosol and water vapor is well integrated in the at-
mospheric correction. Secondly, a more accurate shape of the surface BRF can be cap-
tured by ASRVN dataset since it does not rely on the assumption of a Lambertian surface
which can flatten the variation of surface BRF with geometrical illumination and view
angles (Wang et al., 2010). Since the LSRT BRDF kernels are applied in the ASRVN algo-
rithm, the errors would be large at a large scattering angle (e.g., sun behind the sensor)
and a large solar or view zenith angle (Lucht et al., 2000). This BRF data is used to update
the parameterization of spectral BRF in the new algorithm. More details are discussed in
section 6.3.



6.3. Updating BRF ratios of VIS/SWIR

6

75

6.3. Updating BRF ratios of VIS/SWIR
To constrain the surface BRF at visible and 2.12 µm wavelengths in the AOD retrieval,
the BRF ratios of visible wavelengths to 2.12 µm were applied in this study. Three years
(2005-2007) of ASRVN data from Terra satellite were downloaded (> 28,000 cases). To
match the grid resolution (10 km) of MODIS measurements in the algorithm, data were
averaged over a 10 × 10 km2 window with the center at AERONET locations where only
the cases that have more than 80% good quality (ASRVN quality flag = 0) falling within
the window were used. Additionally, the surface brightness and atmospheric condition
(e.g., aerosol loadings) that may have effects on the ratios of the spectral BRF are taken
into account in this study. The procedure to derive the BRF ratios is also shown in Figure
6.1.

MODIS L1B data 
(500 m at near-nadir)

ASRVN algoirhtm with LSRT 
BRDF kernels model

BRF data
50 × 50 km area centered 

at AERONET 

Explicitly performing atmospheric 
correction over a 4- to 16-day peroid

Collect data in 2005 - 2007 
Average over 10 × 10 km 

window centered at 
AERONET 

Filtered with 
Rdd, 0.466 < 0.06
Rdd, 0.644 < 0.15
Rdd, 2.12< 0.25

τ0.55 < 0.2

AERONET

Water vapor content Spectral AOD data

Calculate BRF ratios of 
0.466/2.12 and 0.644/2.12

Figure 6.1: Flowchart for the derivation of BRF ratios using ASRVN BRF data. With a semi-analytical Green
function solution, the ASRVN algorithm integrates LSRT BRDF kernels into radiative transfer calculation to
generate accurate TOA reflectance. This algorithm retrieves the BRF data from MODIS L1B measurements,
by explicitly performs atmospheric correction with the information of water vapor content and spectral AOD
provided by AERONET. The retrieved BRF data are given in samples of 50 × 50 km with the center at AERONET
locations. Three years (2005 - 2007) of BRF data are collected and averaged over the window of 10 × 10 km with
the center at AERONET locations, and further filtered with the surface brightness and atmospheric condition,
e.g., Rdd ,0.466 < 0.06, Rdd ,0.644 < 0.15 and Rdd ,2.12 < 0.25 with τ0.55 < 0.2. The BRF ratios of 0.466/2.12 and
0.644/2.12 are calculated from the filtered data.

To ensure that dark target pixels are used, the BRF dataset was filtered with Rdd ,0.466 <
0.06, Rdd ,0.644 < 0.15 and Rdd ,2.12 < 0.25. The data retained past the filtering are expected
to match the required dark surface properties in the DT algorithm in which the measure-
ments are selected after masking the pixels of cloud, water and snow-ice over the 20 ×
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20 pixels box (500 m resolution) with the measured 2.12 µm reflectance ranging between
0.01 and 0.25, and removing the brightest 50% and the darkest 20% of the measured 0.66
µm reflectance (Remer et al., 2005; Levy et al., 2007b, 2013b).

The dataset was further filtered with light aerosol loading (τ at 0.55 µm < 0.2, here-
after we use τ for 0.55 µm), to account for the high accuracy of the BRF data for this case
(2739 cases). Under light aerosol loading, the measured radiation at TOA is dominated
by the directional radiance determined by the bidirectional reflection at the surface. In
contrast under heavy aerosol loading, the TOA reflectance is dominated by the diffuse
surface reflection. Therefore, the surface BRF is expected to be more accurate under
light aerosol loading than under heavy aerosol loading. Actually, with τ < 0.2 the BRF
ratio 0.466 µm to 2.11 µm (0.466/2.12) would differ 10% in linear correlation coefficients
(R) from that with full aerosol loading.

Figure 6.2 presents scatter plots of the surface BRF ratios for VIS vs SWIR filtered
by the dark target and low aerosol loading (τ < 0.2). The BRF ratios obtained by lin-
ear regression were 0.268 and 0.589 for 0.466 vs 2.12 and 0.644 vs 2.12, respectively. We
note that the 0.466 vs 2.12 data points have a low correlation coefficient R (0.49), with a
larger dispersion than 0.644 vs 2.12 (R=0.89). The low correlation of BRF for VIS vs SWIR
especially for 0.466 vs 2.12 implies that other factors may have strong effects on the re-
flectance and their ratios. These factors could be the illumination and view angle and
surface cover type. The details of their effects on the ratios are discussed below.

Figure 6.2: The BRF visible (0.466 and 0.644 µm) versus 2.12 µm wavelength, filtered by the dark surface se-
lection i.e. Rdd ,0.466 < 0.06, Rdd ,0.644 < 0.15 and Rdd ,2.12 < 0.25. The data was selected with AOD < 0.2. The
ratios are obtained by forcing linear regressions through the origin.

6.3.1. BRF ratios of VIS/SWIR with scattering angle
It was shown that the BRF ratios VIS/SWIR may depend on view and illumination angle
over a vegetated area (e.g., Gatebe et al., 2001). This is because vegetation (e.g., plant
canopies) is not randomly oriented (Rondeaux and Vanderbilt, 1993), which could lead
to different ratios with different angles. Generally, the illumination and viewing angle
are: solar zenith angle, solar azimuth angle, sensor zenith angle and sensor azimuth



6.3. Updating BRF ratios of VIS/SWIR

6

77

angle. To simplify the notation for illumination and view angles, we use one variable
— the scattering angle (see Figure 2.2 and equation 2.19) instead, which is a function of
these four angles (e.g., Levy et al., 2007b; Hsu et al., 2013).

Sorted by the scattering angle, the data (2739 cases) were put into 20 groups of equal
size (about 140 points for each bin of the scattering angle), where the median values of
each bin were used for the linear or non-linear regression.

Figure 6.3 A - C presents the dependence of the surface BRF on the scattering angle
at three wavelengths (0.466, 0.644 and 2.12 µm). The BRFs at 0.644 and 2.12 µm present
a fairly flat trend with increasing scattering angle and their low correlation coefficients R
(< 0.45). This is not the case for the 0.466 µm BRF data, which show a significant increas-
ing trend (R = 0.75) with the scattering angle. This suggests that the angular shape of the
surface BRF tends to be more important at a shorter wavelength. This is comparable
with the findings of Wang et al. (2010).

Figure 6.3: The dependence of the spectral BRF on the scattering angle. The dataset (2739 cases) with the dark
target pixels was sorted and grouped into 20 bins by the scattering angle. Each bin has around 140 cases. On all
subplots, dot, the height of box and the length of whisker for each bin indicate the median value, 1-σ and 2-σ of
the reflectance or ratios, respectively. The width of box means 1-σ of the scattering angle for each bin. The first
row shows the surface BRF at each wavelength (0.466, 0.644 and 2.12 µm) as function of the scattering angle.
The second row shows the ratios of the surface BRF 0.466/2.12 and 0.644/2.12 as a function of the scattering
angle.

Figure 6.3 D and E show the dependence of BRF and their ratios on the scattering an-
gle for 0.466/2.12 and 0.644/2.12, respectively. We note that the ratio 0.644/2.12 is nearly
insensitive to the scattering angle with a small slope (0.00027) of the regression, but with
large uncertainties. The insensitivity of the ratio is due to their similar and nearly flat
trend with the scattering angle. The large uncertainties are mainly due to the diverse
surface type. This will be further discussed in the next section. To account for the non-
linearity of the 0.466/2.12 ratio with the scattering angle, a second-order polynomial fit
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was applied. In addition, data with last bin (large scattering angle) were neglected in the
fitting process because of the large errors of the BRF in this case as mentioned above.

6.3.2. Effects of surface type or N DV ISW I R in the BRF ratios of VIS/SWIR
To evaluate the variability of the BRF ratios with land cover or season, the MODIS Land
Cover Type/Dynamics MCD12C data during the year of 2006 were used for this analysis.
The BRF data with urban and non-urban types were regrouped and further separated
into summer and winter cases (summer: June-July-August, winter: December-January-
February). For urban sites, the ratios of VIS/SWIR (0.466/2.12: ∼ 0.3, 0.644/2.12: > 0.6)
are generally higher than non-urban sites (0.466/2.12: 0.23 - 0.28, 0.644/2.12: 0.58 - 0.59),
while presenting less seasonal variability.

The variability of the BRF ratios due to the change of surface properties might be
parameterized using the refined vegetation index N DV ISW I R (see equation 2.18). How-
ever, due to the directional effect, N DV ISW I R is insufficient to account for the impact of
land cover.

Figure 6.4 shows the dependence of the MODIS observations ρobs
1.24 and ρobs

2.12 and
N DV ISW I R on the scattering angle. These observations were also filtered as done to con-
struct the same dark target pixels dataset as in section 6.3. The medians of ρm

1.24 (R=0.89)
are much more dependent on the scattering angle than ρm

2.12 (R=0.47). As a result, we can
see that the median of N DV ISW I R (R=0.874) also gives a significant increasing trend with
increasing scattering angle. This suggests that the N DV ISW I R can differ by 0.2 with dif-
ferent scattering angles. This strong dependency of NDVI on surface anisotropy has also
been extensively documented in Meyer et al. (1995). The difference of 0.2 in N DV ISW I R

would lead to a larger bias by > 0.012 (≥ 5%) in the AOD retrieval when τ ≤ 0.25 using
C6_DT relationship.

Figure 6.4: The dependence of the MODIS observation at 1.24 and 2.12 µm (obs. in A) and N DV ISW I R (B) on
the scattering angle. Blue and red indicate the observation at 1.24 and 2.12 µm, respectively. Except for the
color, other symbols are as in Figure 6.3.

Unfortunately, it is not easy to correct the directional effects on N DV ISW I R . If we
simply follow the linearly regressed relationship in Figure 6.4B, the effects will be poorly
corrected because the nonlinearity and large uncertainty ±(0.05+0.15) add up to a com-
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parable magnitude as the directional difference (0.2) in the relationship.

6.3.3. Final BRF ratios of VIS/SWIR
Results of the analysis on the 3-year ASRVN BRF dataset over around 100 AERONET sites
show that the BRF ratio of VIS/SWIR has a dependence on the scattering angle and sur-
face type. Due to the disturbance of the directionality, the N DV ISW I R cannot be used to
refine the BRF ratio. Thus, N DV ISW I R will not be taken into account in the BRF param-
eterization. The final ratios in BRF_DT2 are:

R0.644/2.12 = Rdd ,0.644

Rdd ,2.12

= 0.00027Θ+0.5651 (6.1)

R0.466/2.12 = Rdd ,0.466

Rdd ,2.12

= −2.663055×10−5Θ2 +8.592420×10−3Θ−0.3671062 (6.2)

6.3.4. AOD errors caused by BRF ratio uncertainties
To clarify the effect of omitting N DV ISW I R in the AOD algorithm, we compared the un-
certainty in the retrievals between BRF_DT and BRF_DT2 over the global land area. To
avoid the angular effects in the results, the retrievals were sorted in bins of the scattering
angle. It was found that these algorithms give a similar (< 1%) uncertainty in the retrieval
(more details in Section 6.4.2). This demonstrates that the removal of N DV ISW I R would
not cause too much error in the new algorithm.

We also note that the BRF ratios still have a large uncertainty even by accounting for
the scattering angle, which may cause errors in the AOD retrieval. The standard devia-
tion of the estimated 0.644 vs 2.12 ratio is about ±0.1 and even larger for 0.466/2.12 ratio
(about ±0.12). To evaluate the effects of the uncertainty in the BRF ratios on the AOD re-
trieval, we performed a sensitivity test for a given typical vegetation area where Rdd ,2.12 is
around 0.15 calculated with the BRDF kernel code brdf_forward (see website https://
www.umb.edu/spectralmass/terra_aqua_modis/modis_user_tools). In this test,
we added one standard deviation on the BRF ratios (e.g., R0.466/2.12±0.12,R0.644/2.12±0.1).
We found that the ratios uncertainty can cause > 0.054 (> 22%) errors in the AOD re-
trieval when τ ≤ 0.25. Nevertheless, the errors become small with increasing aerosol
loading. For example, when τ= 0.5, the error becomes 0.025 (5%).

Nevertheless, these errors can be generally well absorbed by the expected error (EE)
envelope ±(0.05 + 15%). Thus, the current ratios can be used for the new algorithm.

6.4. Results & Discussion
The BRF_DT2 algorithm was applied to the areas with light aerosol loading (τ< 0.2) since
heavy aerosol loading (e.g, τ= 0.5) would not produce very different results by updating
the new BRF ratios as we discussed. Two cases were selected, in which 2008 and 2010
data are over North America (25◦N - 65◦N, 135◦W - 60◦W), and 4 months (January and
July in 2008 and 2010, respectively) of data are from the global land areas, see Table 6.1.
We note that the global land and North America areas give a mean AOD of 0.15 and 0.1,

https://www.umb.edu/spectralmass/terra_aqua_modis/modis_user_tools
https://www.umb.edu/spectralmass/terra_aqua_modis/modis_user_tools
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respectively. The AOD with the best quality QA=3 (labeled as “QA3”) is presented.

Area Lat Long Aerosol Loading
North America 25◦N - 65◦N 135◦W - 60◦W Light (AOD=0.1)

Global land — — Medium (AOD=0.15)

Table 6.1: Information on two case studies. Here, the AOD is obtained by averaging the corresponding
AERONET measurements.

To better understand the difference among the DT algorithms, the MODIS C6_DT
and BRF_DT AOD retrievals were also investigated in this study. The comparisons were
divided into two parts: one is a cross-comparison of AOD retrievals among DT algo-
rithms, the other is the evaluation of their performance against AERONET AOD.

6.4.1. Cross comparison among DT AODs
Figure 6.5 shows an example of Argentina retrieved on 16 January 2008, which illustrates
the new AOD and the difference between C6_DT and BRF_DT AOD. The AOD over this
area is normally < 0.25. Several surface types are shown in Figure G, including dense
dark vegetation (farmland and forest), dry grass or bare soil, and green grass from the
western coast to northwestern regions.

In Figure 6.5 D (areas south of 45◦S), the differences in the AOD retrievals with both
BRF_DT2 - C6_DT and BRF_DT2 - BRF_DT do not vary with N DV ISW I R . This demon-
strates again that the omission of N DV ISW I R in the parameterization does not signifi-
cantly affect the retrieval.

In the yellow ellipse area shown in Figure 6.5, we can see that BRF_DT and BRF_DT2
AOD are spatially smoother than C6_DT. This to some degree demonstrates that BRF_DT
and BRF_DT2 AOD are much less affected by the anisotropic reflection of the underly-
ing surface. For the whole land area shown in Figure 6.5, the difference of BRF_DT2 -
BRF_DT AOD presents a significant dependence on the scattering angle, where a posi-
tive difference of 50% (0.06) was found at small scattering angles (Θ≤ 130◦), and a neg-
ative difference (-0.06) at large scattering angles (Θ≥ 150◦), while a weaker dependence
was found for the difference BRF_DT2 - C6_DT AOD.

Figure 6.6 and 6.7 present global maps (1◦ × 1◦) of mean AOD retrieved by C6_DT,
BRF_DT and BRF_DT2, in January and July 2008, respectively. The new algorithm shows
a mean AOD of around 0.144 (January, July: 0.127, 0.160), with a reduction of ∼ 0.03 com-
pared with C6_DT. Roughly, the reductions (∼ 0.1) mainly appear in large aerosol loading
areas, such as northern South America, central Africa (around the Equator) and south-
ern China (around 30◦E), whereas light loading areas (e.g., South America and Australia)
give an increase of AOD (∼ 0.04). The mean AOD difference is small (0.002) between the
new algorithm and BRF_DT. This is mainly due to the compensation between small and
large scattering angles in the averaging process over 1 month. We will further evaluate
the AOD difference between the algorithms in the validation section.

Figures 6.8 and 6.9 show histogram of MODIS AOD (QA=3) for North America over
4 months (January, April, July and October in 2008), and the global land with 2 months
(January and July in 2008) of data, respectively. Several AOD bins range from -0.05 to 3.0,
where each bin is labeled as one number (e.g., one bin labeled as -0.05 means that the
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Figure 6.5: AOD over Argentina. Figure A-C show the AOD retrieved by the C6_DT, BRF_DT and BRF_DT2 algo-
rithm. AOD with QA=3 was labeled as “QA3”. Figure D and E show the AOD difference between DT algorithms.
Figure F - H show the MODIS scattering anle, the MODIS RGB “true color” and N DV ISW I R . The MODIS RGB
image is obtained through combination of MODIS three channels 1, 4 and 3.

AOD varies between -0.05 and -0.03). Due to the mask of cloudy or cloud-contaminated
pixels in ancillary data (8-day MCD43A1), the number of BRF_DT and BRF_DT2 re-
trievals was near one-seventh less than C6_DT. Thus, the normalized frequency is given
for each bin.

A significant difference was found between C6_DT/BRF_DT and the new algorithm.
It seems that the difference is dependent on the months or seasons. We can see that a
small difference appears in April and July for North America in Figure 6.8. The variation
of vegetation amount with the seasons or months is a key factor for accurate retrievals.
For North America, the vegetation is abundant and green in spring (e.g., April) and sum-
mer (July) and less abundant in autumn (October) and winter (January). N DV ISW I R is
saturated over the area with abundant green vegetation, thus showing less directionality
than the less vegetated area (e.g., sparse vegetation and bare soil). As a result, BRF_DT
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Figure 6.6: January 2008 maps (1◦ × 1◦) of mean AOD filtered with the best quality QA=3 (labeled as “QA3”)
over global land. Figure A-C show the AOD retrieved from C6_DT, BRF_DT and BRF_DT2, respectively. Figure
D and E show the AOD difference of BRF_DT2 - C6_DT and BRF_DT2 - BRF_DT, respectively.

and BRF_DT2 give similar AOD retrievals for a vegetated area and different retrievals
with lower vegetation cover.

In the global land area the differences are not so significant as for North America. The
differences are smaller in January, and larger in July compared to North America. This
is because for the global land the mean vegetation amount does not vary too much over
time.

Particularly, the negative retrievals (-0.05 < AOD < 0.0, the sum of the first three bins)
are significantly reduced with the new algorithm, compared with C6_DT and BRF_DT.
The reduction of the negative retrievals is more significant in North America, with the
decrease by 16% (-0.16 = 0.19-0.35) in January and 7% in October. The reduction be-
comes only 4% for the global land area. Obviously, the negative retrievals tend to be
more likely with low aerosol loading ( see also Figure 6.6 and 6.7). To further clarify the
reduction of the negative retrievals, we evaluate similar histograms for light aerosol load-
ing: Brazil and Australia (see Figure 6.10). The location of these areas is given in Table
6.2. We found that the reduction was 6% - 11% and 11% - 23% in the Brazil and Australia
areas when applying the new algorithm, respectively.

Area Lat Long
Australia 15◦S - 35◦N 105◦E - 155◦E

Brazil 20◦S - 0◦ 55◦W - 30◦W

Table 6.2: Location of the areas in Brazil and Australia evaluated in the case studies.

6.4.2. Validation with AERONET AOD
The validation method is similar to the one applied in Chapter 4. By this method, we
evaluated the AOD accuracy of the DT algorithm against AERONET measurements, as
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Figure 6.7: July 2008 maps (1◦ ×1◦) of mean AOD filtered with the best quality QA=3 (labeled as “QA3”) over
global land. Other symbols are similar to Figure 6.6.
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Figure 6.8: Histograms of North America DT AOD (at 0.55 µm) from Aqua for 4 months. Plotted are data from
C6_DT, BRF_DT and BRF_DT2 with QA=3, labeled as “QA3”. Bin labels represent the lower boundary of the
bin. For example, a bin labeled as -0.05 means the AOD between -0.05 and -0.03.

well as the angular dependence of retrievals.

Overall performance of the AOD retrieval

Results are compared with the C6_DT EE ±(0.05 + 15%) over land.

Figure 6.11 presents scatter plots of DT AOD retrievals against AERONET over the
global land. We can see that there are more retrievals falling within the EE when using
BRF_DT2 than C6_DT and BRF_DT, with the increase of 2 and 4.5 % respectively.

Compared with BRF_DT, a 1 % increase of retrievals falling within EE was found in
BRF_DT2 for North America (not shown). Although the increase is not significant, it
does not really mean small changes between these two algorithms. Applying a stricter EE
envelope ±(0.03+ 10 %) for North America, the difference of AOD falling within EE was
found to be large (5 %= 64.4–59.5 %) for BRF_DT2–BRF_DT. Nevertheless, this accuracy
is so strict that the new retrievals cannot meet the requirement of 1σ interval (66 %).
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Figure 6.9: Histograms of the global land DT AOD (at 0.55 µm) from Aqua for 2 months. Other symbols are
similar to Figure 6.8.

-0
.0

5
-0

.0
3

-0
.0

1
0.0

0
0.0

1
0.0

3
0.0

5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.4

0
0.5

0
0.7

0
1.0

0
1.5

0
2.0

0
3.0

0

AOD Bins (0.55 µm)

0.00

0.05

0.10

0.15

0.20

0.25

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy Brazil: Jan 2008 (QA3)

C6_DT

BRF_DT

BRF_DT2

-0
.0

5
-0

.0
3

-0
.0

1
0.0

0
0.0

1
0.0

3
0.0

5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.4

0
0.5

0
0.7

0
1.0

0
1.5

0
2.0

0
3.0

0

AOD Bins (0.55 µm)

0.0

0.1

0.2

0.3

0.4

0.5

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy Brazil: Jul 2008 (QA3)

C6_DT

BRF_DT

BRF_DT2

-0
.0

5
-0

.0
3

-0
.0

1
0.0

0
0.0

1
0.0

3
0.0

5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.4

0
0.5

0
0.7

0
1.0

0
1.5

0
2.0

0
3.0

0

AOD Bins (0.55 µm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy Australia: Jan 2008 (QA3)

C6_DT

BRF_DT

BRF_DT2

-0
.0

5
-0

.0
3

-0
.0

1
0.0

0
0.0

1
0.0

3
0.0

5
0.1

0
0.1

5
0.2

0
0.2

5
0.3

0
0.4

0
0.5

0
0.7

0
1.0

0
1.5

0
2.0

0
3.0

0

AOD Bins (0.55 µm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy Australia: Jul 2008 (QA3)

C6_DT

BRF_DT

BRF_DT2

Figure 6.10: Histograms of the AOD (at 0.55 µm) in Brazil and Australia. The AOD data is from the global land
area. Other symbols are similar to Figure 6.8.

Angular Performance of the AOD retrieval
In order to test whether the AOD retrieval depends on the scattering angle, the MODIS
AOD retrievals co-located with AERONET measurements were sorted and grouped into
20 equal bins by the scattering angle.

Figure 6.12 presents the AOD errors of DT algorithms as a function of scattering an-
gle, where the errors are defined as the absolute difference of MODIS - AERONET AOD
at 0.55 µm. Several statistics are reported for each bin, which are the 1-σ interval and
median (star or circle) of AOD errors that are used to indicate the uncertainty and bias,
respectively.

Generally, the errors of the AOD retrievals in all the algorithms vary with the scatter-
ing angle. We can see that the 1-σ errors increase with increasing scattering angle. This
is mainly due to the estimation accuracy of the surface contribution varying with the
scattering angle. The AOD retrieval with the DT algorithms is expected to be accurate
when a dark surface is observed since the TOA reflectance is mainly determined by the
atmosphere rather than by the surface. Normally, the surface appears darker in the for-
ward scattering angle (eg., Θ< 115◦, many shadows observed) while it appears brighter
in the backscattering angle (few shadows observed).

The new algorithm presents apparent advantages in the AOD retrieval compared to
C6_DT, where the errors of the 1-σ are getting smaller especially for North America. This
is mainly due to the accurate estimation of the surface anisotropic reflection in the new
algorithm.

Compared to BRF_DT, the new algorithm shows similar 1-σ errors for the two cases.
The angular effect on N DV ISW I R in the C6 parameterization leads to a weaker constraint
on the spectral surface reflectance, resulting in less accurate retrievals than expected.
Conversely, this proves again that the removal of N DV ISW I R in the new parameteriza-
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Figure 6.11: The comparison of AOD among the DT algorithms over land. The DT algorithms are C6_DT,
BRF_DT and BRF_DT2. The retrieved AOD is filtered with QA = 3, shown against AERONET AOD. The dashed
line is Expected Error (EE) ±(0.05+15%) and the solid line is the one to one line, respectively. Note that QA=3
is labeled as “QA3”.

tion would not give a large error in the AOD retrieval.
Significant differences are observed in the median value of the errors between BRF_DT

and BRF_DT2. Over the global land area, the angular bias is largely corrected in the new
algorithm compared with BRF_DT, where at small and large scattering angles (Θ< 130◦
and Θ > 150◦) the median errors of around -0.025 (-17%) and 0.04 (27%), are reduced
to ±0.012 (±8%). The angular correction was also found over North America, although
there is still a small positive bias in the new algorithm, over all the scattering angles.

6.5. Conclusions
In the AOD retrieval with satellite measurements, the accurate estimation of the sur-
face contribution is required. Benefiting from the accurate estimation of the surface
anisotropic reflectance, the BRF_DT algorithm can yield a better retrieval as compared
to C6_DT. However, applied in BRF_DT, the surface reflectance relationship inherited
from MODIS C6_DT can lead to an angular dependence of the AOD retrieval. The prob-
lem is due to at least two possible issues. The relationship that is derived by assuming
a Lambertian surface, is not suitable to estimate the land surface BRF. The vegetation
index N DV ISW I R applied in the relationship may have a directional effect, and needs to
be reconsidered for the AOD retrieval.

To investigate and improve this situation, BRF_DT was further developed by using
new spectral ratios for surface BRF (called BRF_DT2). Three years of ASRVN BRF data
were collected and filtered with the dark surface constraints, to derive the new relation-
ship to estimate the surface spectral reflectance. The surface BRFs at 0.466 and 0.644 µm
are estimated as a linear function of that at 2.12 µm and the scattering angle. To test the
performance of the new algorithm, two areas with different aerosol loading were used:
data from North America (light, AOD = 0.1) and the global land area (medium, AOD =
0.15). For the case studies, a cross-comparison of C6_DT, BRF_DT and BRF_DT2 AOD
was discussed, as well as the validation with AERONET AOD. The results show that un-
der light aerosol loading (AOD < 0.2) multiple improvements in the AOD retrieval can be
achieved with the new algorithm compared to C6_DT and BRF_DT:

• The negative retrievals (-0.05 < τ0.55 < 0.0) were significantly reduced, where the
reduction can be up to 16% - 23% for some clean air regions (τ< 0.1). The problem
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spectral reflectance

Figure 6.12: AOD at 0.55 µm error as a function of scattering angle with QA=3 (labeled as “QA3”). AOD error
is defined as MODIS retrieved AOD - AERONET AOD, broken into equal number bins of scattering angles, the
data are plotted for North America and the global land. The dash line and solid black line are EE and zero
error. For each box, width is 1-σ of the scattering angles bin, whereas height, middle line are the 1-σ, mean
of the AOD error. Shown in the first and second column is the performance between C6_DT and BRF_DT2
and between BRF_DT and BRF_DT2, respectively. Gray indicates C6_DT and BRF_DT and blue is BRF_DT2,
whereas red stars are the median of AOD error for C6_DT and BRF_DT and red circles are for BRF_DT2.

of a large number of negative AOD in C6_DT (Levy et al., 2013b), and as well as in
BRF_DT, was alleviated with the new algorithm. The ideal result should give none
with very accurate surface and aerosol models. Since there are always some un-
certainties in these models, obtaining zero negative retrieval becomes impossible.

• The percentage of the retrievals falling within the accuracy level EE=±(0.05+15%)
increases 2% and 4.5% for the AOD retrieval over the global land area compared
to BRF_DT and C6_DT, respectively. Although a small increase was found in light
aerosol loading area North America as compared to BRF_DT, it can still give a sig-
nificant increase (5%) with a stricter accuracy level ±(0.03+10%).

• The angular bias of the AOD retrieval is largely corrected. At small and large scat-
tering angles (Θ < 130◦ and Θ > 150◦), the underestimation (-17%) and overesti-
mation (27%) of the retrieval in BRF_DT are reduced to ±8% in the new algorithm,
for the global land area. Findings in the North America case study were similar,
although a small positive bias of the retrieval remains.

We note that BRF_DT2 does not improve the retieval much over dark surface since
the dark surface (e.g., areas in summer) has a small contribution to the TOA reflectance.
But the retrievals were significantly improved over not-quite-so-dark surface. This is can
be found in areas in Winter (less abundant vegetation), such as North America in January
and Australia in July.
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7.1. Conclusion
In this thesis, we have improved the retrieval of Aerosol Optical Depth (AOD) over land
with Moderated Resolution Imaging Sectroradiometer (MODIS) radiometric data. Ef-
forts were invested towards on resolving the main problem targeted by this study: how
to improve the MODIS AOD retrieval over land. A brief overview of our research is given
as:

• We have explored the potential error sources in the current version of the MODIS
algorithm (collection 6 dark target) (in Chapter 2).

The error sources could result from the inappropriate choice of aerosol proper-
ties such as predefined aerosol models and a static aerosol vertical profile over the
globe, and the land surface that is assumed to be a Lambertian (isotropic reflec-
tion).

• We have evaluated the sensitivity of aerosol optical depth (AOD) retrieval to aerosol
vertical profile and type over land with the operational MODIS algorithm (in
Chapter 3).

In this study, a high sensitivity of the retrieval to different aerosol types and vertical
profiles was found under extensive conditions, including 3 aerosol mixtures (3 fine
or non-dust aerosols strongly-absorbing smoke, moderately-absorbing generic and
non-absorbing urban industrial mixed with dust) and 14 different vertical profiles.
With pure smoke or dust aerosols, the retrieved AOD shows errors ranging from
2% to 30% for a series of vertical distributions. Aerosol type errors in the algorithm
can lead to errors of up to 8% in the AOD retrieval. The interaction of aerosol type
and its vertical profile can give the AOD retrieval errors by over 6%. In addition,
the intrinsic errors were found to be > 3% when τ > 3.0.

• We have developed a new algorithm to obtain an accurate retrieval by consider-
ing a dynamic aerosol vertical distribution (in Chapter 4).

The impact of the profile on the AOD retrieval was investigated by the synergy
of MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) data, over dust and smoke regions. The aerosol vertical distribution
has a strong impact on the AOD retrieval. The assumed aerosol layers close to the
ground can negatively bias the retrievals in C6_DT. Regarding the elevated smoke
and dust layer, the new algorithm can improve the retrieval by reducing the nega-
tive biases by 3 - 5%.

• We have taken into account the land surface anisotropic reflection in our study
that would give an accurate estimation of the surface contribution to the top of
the atmosphere and yield a better retrieval, with valid physical assumptions (in
Chapter 5).

The AOD retrieval was significantly improved by our algorithm compared with
C6_DT over case studies including Eastern China, North America and global land
area. For these cases, all the new retrievals (Quality Assurance QA≥1) can meet the
requirement of the Expected Error (EE) ±(0.05 + 15%). We found that the retrieval
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points falling within the EE increase from 2.7% to 7.5% for the best quality flag only
(QA=3), and from 5.8% to 9.5% for the marginal and better quality flag (QA ≥ 1).

• We have derived an empirical relationship for the spectral surface Bidirectional
Reflectance Factor (BRF) using three years of data from ASRVN “IBRF” dataset,
to improve the retrieval (in Chapter 6).

The retrieval was improved by reducing the angular dependence, including fewer
occurrence of the negative retrievals. At small and large scattering angles (Θ< 130◦
and Θ > 150◦), the underestimation (-17%) and overestimation (27%) of the re-
trieval in the previous algorithm are reduced to ±8% in the new algorithm over
the global land. The reduction of the negative retrievals can be up to 16%-23% for
some clean air regions (τ0.55 < 0.15). Further, as compared to AERONET measure-
ment, the new retrievals falling within the EE increase to 74.2%, with the increase
of 2% and 4.5% than our previous algorithm and C6_DT, respectively.

7.2. Reflection
This thesis is devoted to improving the MODIS-derived AOD (τ) over the dark land sur-
face.

In this study, we contribute to a better understanding of the variation of τ due to dif-
ferent aerosol properties including aerosol type (composed of single scattering albedo
ω0 and phase function P ) and their vertical profile. Significant biases in the AOD prod-
uct can be mainly explained by improper assumptions on aerosol properties. The im-
proper assumption of aerosol type would lead to errors in the AOD retrieval since the
TOA reflectance is not accurately simulated due to the use of unrealistic optical prop-
erties in modeling scattering and absorption by aerosols. In addition, for an elevated
aerosol layer, the TOA reflectance presents lower value due to less isotropic scattering
reflected by the Rayleigh layer under the aerosol layer. This becomes more significant
for the case of an absorbing and large particle layer since the isotropic scattering is more
suppressed. Furthermore, for certain geometrical view and illumination angles, espe-
cially at larger viewing angles, high biases in the AOD are caused by improper character-
ization of the vertical profile.

A further study was to investigate the impact of an aerosol vertical profile on the re-
trieval using MODIS and CALPSO data. A numeric experiment was carried out to quan-
tify the relationship between the profile and TOA reflectance. It was shown that the mean
height of the vertical profile is the main variable that influences the TOA reflectance.
As the mean height increases, the TOA reflectance decreases linearly. Therefore, a new
algorithm called Gau_DT was developed in which the vertical profile is derived from
CALIPSO measurement and parameterized into the RT calculation to yield an accurate
TOA reflectance. Over heavy smoke and dust regions (South Africa and the Middle East),
a positive difference (3- 5%) Gau_DT-C6_DT AOD was found. This can be used to explain
the occurrence of the negative bias of the AOD product over the heavy dust region in the
previous study (Levy et al., 2010; Sayer et al., 2013). It also means that the negative bias
of the MODIS AOD product can be corrected by our new algorithm.

Another contribution was the analysis of intrinsic errors in the C6_DT algorithm.
Through performing the simulation experiment, it was shown that the algorithm always
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gives overestimations of the AOD retrieval. We found this is due to the incorrect esti-
mation of the surface reflectance in the retrieval procedure. The intrinsic errors should
be further reduced by accurately estimating the surface reflectance in the retrieval. This
would further improve the MODIS AOD accuracy.

In addition, this thesis has been devoted to improving the AOD retrieval by con-
sidering the anisotropic reflection of the land surface. It is well known that the land
surface has anisotropic reflection, i.e., Bidirectional Reflectance Distribution Function
(BRDF), which is dependent on the wavelength and the illumination and view angle. We
simplified the complicated surface BRDF as: bidirectional, directional-hemispherical,
hemispherical-directional, and bihemispherical reflectance, and applied these param-
eters in the RT process to generate an accurate TOA reflectance. Thus, the background
surface contribution is precisely estimated and separated from the TOA reflectance, yield-
ing a better retrieval. In this way, the developed new algorithm has an advantage com-
pared with the previous one where a Lambertian surface (isotropic reflection) is as-
sumed. The validation results show that the regional bias over some regions (e.g, Eastern
China and North America) was significantly corrected by the new algorithm. In addition,
the AOD data with marginal and better quality becomes available that meets the quality
requirements. This means we have more data over the same area.

Finally, this study shows that the angular effects of the AOD retrieval were largely
reduced, by refining the relationship of the spectral surface BRF. The Lambertian-based
relationship applied in the previous study is not suitable for the surface BRF. In addition,
although the relationship varies with surface cover type by considering the vegetation
index, this index itself has a directional effect and affects the estimation of the surface
reflectance, and finally introduces the uncertainty in the retrieval. This situation has
been improved by our study. It was found that the improvement mainly takes effect
for light aerosol loading (e.g., North America and global land area, τ < 0.15), where the
radiation-field is dominated by the direct radiation since the solar radiation is much less
scattered by low-τ atmosphere. The improvement also gives fewer occurrence of the
negative retrievals, i.e. more meaningful data can be provided to users.

7.3. Outlook and future perspective
7.3.1. Implication of new aerosol data
A new global map of AOD created in this thesis (Figures 6.6 and 6.7) shows that the
overestimation in C6_DT was essentially reduced in the high aerosol loading area (AOD
around 0.4), e.g., Middle Africa, India and Eastern China, whereas the underestimation
(e.g., negative values) was corrected in the light aerosol loading area (AOD around 0.05),
e.g., Brazil and Australia. For example, the positive bias was reduced by about 15% (from
0.059 to 0.001) over Eastern China. This new map can greatly benefit the communities in
monitoring air quality, estimating radiative forcing, as well as data assimilation studies
that are used for forecasts and climate change and trend.

To predict the surface level PM2.5 concentration, more accurate data including fewer
occurrence of negative values can effectively reduce the troubles and problems (e.g., un-
reliable data over few AERONET site) brought by the retrieval with multi-source data and
calibration with AERONET data applied, but would be expected to give the same accu-
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racy or even higher in the prediction. The performance of data assimilation for trend
analysis and forecasts can be greatly enhanced using this new data as some unknown
artificial errors introduced by using empirical corrections described in Zhang and Reid
(2006) can be removed. For the estimate of direct radiative forcing following the method
in Anderson et al. (2005) and Levy (2007), this new map can improve accuracy by up 15%
on regional scale when aerosol loading is << 1.0. Particularly, the AOD data with full
quality (QA123) in this study can give much larger coverage (50%) than the operational
products, which can significantly reduce problems of data gaps. Additional information
on aerosol layer height provided by the algorithm can help the understanding the AOD-
PM2.5 relationship in monitoring air quality. This data to some degree can also meet the
need for detailed information on atmospheric aerosol such as vertical profile (GCOS,
2011, 2016), to better understand and quantify their impacts.

7.3.2. Applying the aerosol retrieval algorithm to other sensors
The BRF_DT2 algorithm is an adaptation of DT algorithm, which retrieves aerosol (τ and
η) and surface properties (ρs ) over a dark surface with the observations at three channels.
This algorithm relies on a few assumptions and the prior knowledge on the spectral sur-
face reflectance. Specifically, the algorithm needs the observations at two visible bands
that contain large signals from atmospheric aerosol scattering and small signals from the
surface. These observations can be effectively used to retrieve aerosol properties. The
algorithm also needs the observation at a longer wavelength that mainly contains the
signals from the surface. In addition, prior knowledge of the spectral surface reflectance
between the two short wavelengths and the long wavelength should be available. Based
on this, we would say yes for Terra since it has the same channels as Aqua. The algo-
rithm can be also applied to MODIS-like sensors VIIRS. It may be applicable to sensors
carried by the Sentinel satellites, e.g., MSI on S2. It may not be possible for AASTR instru-
ment since this instrument does not have a similar long wavelength as MODIS, although
AASTR does have a bi-angular view (useful for BRDF) and a SWIR channel at a shorter
wavelength.

7.3.3. Shortages and future plan
This research dealt with several issues and has shown the improvement of the AOD re-
trieval with MODIS measurement. Suffering the complexity of the retrieval over the land
surface, many efforts still need to be done in the following domains.

• The assumption of the nearly-transparent atmosphere at 2.11 µm may not hold
well when a thick aerosol layer is observed (Chapter 5). The atmosphere becomes
semi-transparent and turbid since the solar radiation at this wavelength can be
significantly scattered due to the thick aerosol layers. This assumption should be
replaced by a better or less stringent one for the development of the aerosol re-
trieval algorithm.

• There is still an ill-posed problem (measurements fewer than unknowns) in our
research, although we have integrated Lidar detection sensor CALIPSO (belonging
to A-train constellation) with MODIS measurement to consider the aerosol vertical
profile in the AOD retrieval. A number of parameters need to be constrained espe-



7

92 7. Conclusion

cially the parameters of the surface reflection, such as three terms of surface BRD-
F/albedo provided by MODIS MCD43A1 BRDF/product (black-sky and white-sky
albedo) and the empirical relationship for the spectral surface BRF derived from
ASRVN dataset. Errors from these products or datasets can propagate into the iso-
lation process of surface and aerosol contribution and in turn the AOD retrievals. A
new approach should be developed to reduce the uncertainty of the AOD retrieval
using multiple retrievals (more than 3) and optimization retrieval technique.

• Although the layer height inferred from CALIPSO data was used to correct the AOD
bias due to the elevated aerosol layers and may improve the retrievals for the cases
of a long range pollution of dust or smoke, the algorithm is not able to update long-
term data over land areas. There are mainly two reasons for that. First, the results
with considering the layer height would not be significant over other areas where
some other aerosols (non-dust and non-smoke, e.g., urban and industrial emis-
sions) have negligible effects on the Rayleigh scattering below the aerosol layer.
Second, there are some limitations to use CALIPSO data including occasional (10
× 10 km) and seasonal (5 × 5 degrees) gridded data. The occasional data that is
obtained by assuming the height to be homogeneous across the CALIPSO track
and extending it to the wider MODIS swath (2030 km) may not be applicable for
the cases that have complex atmospheric conditions such as the atmosphere over
rugged mountain areas. In addition, this data may also have a problem of data
missing due to cloud mask. The seasonal data that is obtained by averaging the
height data over a season may lose some accuracy in the averaging process and
cannot be applied in real-time scale.

• The errors due to the improper aerosol type can be corrected using real aerosol
type information from CALIPSO VFM data which obtain aerosol type by using the
extinction coefficients. Taking account this information into the algorithm, there
would be a similar problem as the layer height that needs to assume the homo-
geneity of aerosol sources. In addition, to be consistent with the MODIS algorithm,
aerosol type knowledge from CALIPSO data should be built on the same model as
the algorithm does, such as the same size distribution and complex refractive in-
dex.

• This thesis focused on the retrieval limited to the dark land surface. Generally, the
dark land surface is vegetated area (e.g., forest, grass or black soil), this excludes
other bright land surface such as deserts and urban area. To achieve the retrieval
globally, a future study could be done over bright areas.

• The AOD product with high spatial resolution (e.g., 3 km × 3 km pixel) should be
developed for fine scientific research such as monitoring the air quality in cities,
while the produced AOD (10 km × 10 km) by our algorithm may not meet this
demand.
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Aerosol size distribution

We give a brief review of the aerosol size distribution that applied in the MODIS AOD
algorithm (Levy et al., 2007a). For any size distribution, the particles number N related
to area A and volume V distributions are:

d N

d lnr
= 1

πr 2

d A

d lnr
= 3

4πr 3

dV

d lnr
, (A.1)

where d N /d lnr is the number size distribution, with the radius r in µm. In the MODIS
C6_DT algorithm over land, the aerosol models are assumed with bi-lognomal distribu-
tion. For the size distribution, each lognormal mode has 3 free variables, including the
median radius of the volume size distribution rv (µm in unit), the standard deviation of
the radius σ, and the volume of particles per cross section of atmospheric column V0

(µm3/µm2 in unit). Thus, for each single lognormal mode, the number size distribution
is represented as:

d N

d lnr
= N0

σ
p

2π
exp(− ln(r /rg )2

2σ2 ), (A.2)

where rg and N0 are the median radius and the amplitude of the number size distribu-
tion, respectively, defined as:

rg =rv exp(−3σ2)

N0 =
∫

d N

d lnr
d lnr =V0

3

4πr 3
g

exp(−9

2
σ2) (A.3)

The effective radius re f f in µm of a lognormal mode is given as:

re f f =
∫ ∞

0 r 3 d N
d lnr d lnr∫ ∞

0 r 2 d N
d lnr d lnr

= rg exp(
5

2
σ2) (A.4)

For lognormal bimodal (1 and 2 for accumulative and coarse mode, respectively), the
total number size distribution is:

d N

d lnr
= d N1

d lnr
+ d N2

d lnr
, (A.5)

And the corresponding effective radius can be written as:

re f f =
∫ ∞

0 r 3 d N1+d N2
d lnr d lnr∫ ∞

0 r 2 d N1+d N2
d lnr d lnr

(A.6)
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B
The TOA reflectance coupling with

non-Lambertian surface

The TOA reflectance coupling with surface BRDF was originally proposed by Li et al.
(1996), and further applied by Qin et al. (2001) (equation 5.1), and Yang et al. (2014).
Here we basically follow the idea of Li et al. (1996), but deduce the calculation of TOA
reflectance in a more rigorous way and correct some errors in Li et al. (1996); Yang et al.
(2014).

According to the four-stream radiation theory (Verhoef, 1985), the radiation field of
upper (or lower) boundary of atmosphere can be view as four components: directional
flux F+ and F−, hemispherical flux E+ and E− (lower boundary: F+ and F−,and E+ and
E− ). The symbol of “+” and “−” means the up and down direction for flux. Note the
position of “+” and “−” in F or E .

(1) Assuming ideal black surface below the atmosphere, the upper atmospheric re-
flectance (up direction) are:

σ+
dd =δF+

δF− ,σ+
dh = δE+

δF− , (B.1)

where δ indicates infinitesimal quantity. The lower atmospheric reflectance (down di-
rection) are similar to:

σ−dd =δF−
δF+

,σ−dh = δE−
δF+

σ−hd =δF−
δE+

,σ−hh = δE−
δE+

(B.2)

The ratios of the flux after upward-transmitting the whole atmospheric layer to the
upward-incident flux at lower atmosphere (also called atmosphere transmittance) are:

t+dd =δF+

δF+
, t+dh = δE+

δF+

t+hd =δF+

δE+
, t+hh = δE+

δE+
(B.3)

The ratios of the flux after upward-transmitting the whole atmospheric layer to the downward-
incident flux at upper atmosphere are:

t−dd = δF−
δF− , t−dh = δE−

δF− (B.4)
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(2) The surface reflectance are defined as:

Rdd =δF+
δF−

,Rdh = δE+
δF−

Rhd =δF+
δE−

,Rhh = δE+
δE−

(B.5)

More details about these four parameters, please refer to Schaepman-Strub et al. (2006)
(case 1, 3, 7, and 9).

Ignoring the effect of atmospheric gas absorption and the impact of neighborhood
surface, the flux received by sensor (higher than TOA level) is:

F+(i , v) =F−(i ) ·σ+
dd (i , v)+F+(i , v) · t+dd (v)+E+ · t+hd (v) (B.6)

Since the transmitted flux is the same as the incident flux, there is tdd (v, v) = tdd (i , v).
We use tdd (v) to present tdd (i , v). Two fluxes are unknown in equation B.6. They are F+
and E+. To get the explicit expressions of these two fluxes, the radiation field in the lower
atmosphere is introduced, where we have four fluxes F−, F+, E− and E+:

F−(i ) =F−(i ) · t−dd (i ) (B.7)

F+(i , v) =F−(i ) ·Rdd (i , v)+E− ·Rhd (v) (B.8)

E− =F−(i ) · t−dh(i )+E+ ·σ−hh (B.9)

E+ =F−(i ) ·Rdh(i )+E− ·Rhh (B.10)

In this radiation field (equations B.7-B.10), the multiple bounces between the atmo-
sphere and the surface are neglected for directional flux F due to the weak directional
reflection of the lower atmosphere (σ−dd , σ−dh , and σ−hd ). For instance, addition term
of E+σhd is removed on the right side of B.7. But we take account of the multiple bounces
for hemispherical flux E .

Combine equation B.9 and B.10, then we get E+:

E+ =F−(i ) ·Rdh(i )+F−(i ) · t−dh(i ) ·Rhh

1−σ−hh ·Rhh
(B.11)

Substitute equation B.11 into equation B.9, E− is solved, then F+.
Now, we go back to calculate the direction flux received by viewer/sensor (equation

B.6), by substituting equation B.7, B.8, B.9 and B.10 into it. Note some directions (i , v)
are not explicitly shown.

F+ =F− ·σ+
dd +F+ · t+dd (v)+E+ · t+hd (v)

=F− ·σ+
dd

+F−
{[

t−dd (i ) t−dh(i )
][

Rdd Rdh

Rhd Rhh

][
t+dd (v)
t+hd (v)

]}

+F−


[
t−dd (i ) t−dh(i )

][
Rdh

Rhh

][
Rhd Rhh

][
t+dd (v)
t+hd (v)

]
σ−hh

1−Rhh ·σ−hh

 (B.12)
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Rewrite equation B.12 with matrix form (matrices defined in equation 5.2, some “+−”
are not explicitly shown),

F+ =F− ·σ+
dd +F− · T(i )RT(v)− tdd (i ) · ∣∣R∣∣ · tdd (v) ·σ−hh

1−Rhh ·σ−hh
(B.13)
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