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On Motions That Allow for Identification of Hinge Joint Axes from Kinematic
Constraints and 6D IMU Data

Danny Nowka1, Manon Kok2, Thomas Seel1

Abstract— In inertial motion tracking of kinematic chains,
inertial measurement units (IMUs) are attached to each segment
in order to track their motion in three-dimensional space. Deter-
mining the relations between the functional axes of a joint and
the local coordinate system of the attached sensor is a crucial
requirement. For the case of hinge joints, methods have been
proposed that exploit kinematic constraints to automatically
identify the local hinge joint axis coordinates from the raw
data of almost arbitrary motions. However, to current date, it
remains unclear which joint motions are sufficiently rich for
the joint axis to become identifiable. We consider a commonly
used gyroscope-based kinematic constraint and present a novel
accelerometer-based kinematic constraint. We study conditions
of identifiability by analyzing the nonlinear constraint equations
and present practical conditions for the minimum excitation
that is required. Among other results, we prove that planar
motions and subsequent motions of both ends of the joint are
sufficient as long as the joint axis does not remain perfectly hor-
izontal. Theoretical results are validated in experimental studies
of a human upper limb wearing an exoskeleton. Despite the
typical IMU-related measurement inaccuracies and although
the human elbow joint is only an approximate hinge joint, the
cost function defined by the kinematic constraints exhibits a
distinct global minimum at the true joint axis coordinates if
the motion fulfills the proposed requirements.

I. INTRODUCTION

In recent years, the importance of miniature inertial mea-
surement units (IMUs) for motion tracking is increasing
rapidly across different application fields due to improved
accuracy, cost and flexibility. Common use cases include hu-
man motion analysis [1], [2], vehicle motion state estimation
[3], [4], robotics [5], [6] and real-time motion tracking for
feedback control of exoskeletons and neuroprostheses [7],
[8]. In many of these applications, IMUs are used to track the
motion of a kinematic chain, i.e. a number of rigid segments
that are pairwise interconnected by joints with one, two or
three rotational degrees of freedom.

When inertial sensors are attached to the segments, the
local measurement coordinate systems of the sensors are,
in general, not well aligned with the functional joint axes.
Figure 1 illustrates this fact for the example of a hinge joint,
i.e. a joint with one rotational degree of freedom. In order
to determine useful kinematic quantities from the sensor
readings, one must identify the relation between the func-
tional axes of the joint and the sensor coordinate systems.
In human motion tracking, this process is sometimes called
anatomical calibration. Both in mechatronic systems and in
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measurement coordinate
system of inertial sensor 1
here: ĵ1 = 1√

2
[1, 1, 0]ᵀ

measurement coordinate
system of inertial sensor 2
here: ĵ2 = [0, 0, 1]ᵀ

functional joint axis j
hinge joint
moving freely
in 3D space

Fig. 1: Model of two rigid segments connected by a hinge
joint. An IMU is attached to each segment with an unknown
orientation. Under certain conditions, the joint axis coordi-
nates ĵ1, ĵ2 can be identified from measured raw data.

human motion tracking, a standard solution is to perform
a precise motion of the joint around isolated degrees of
freedom prior to the actual motion of interest. The local joint
axis coordinates are then identified from the measurements
taken during this precise calibration motion, see e.g. [9]–
[11]. Obviously, the accuracy of such a calibration crucially
depends on the precision of the performed motion.

In many applications, including human motion tracking,
it seems desirable to overcome this limitation and to enable
sensor-to-segment calibration from more arbitrary motions,
see e.g. [12], [13]. It is often even desirable to supersede
calibration motions entirely by identifying the joint axis coor-
dinates directly from the data of the actual motion of interest,
which is sometimes called plug-and-play motion tracking.
This goal has been pursued in a number of publications
proposing algorithms that exploit kinematic constraints to
identify the joint axis coordinates from data of not precisely
defined motions. For the case of hinge joints, methods
have been proposed for joint axis and position identification
[14], for joint angle estimation [15], and for sensor-to-joint
position estimation [16]. Similar approaches have recently
been studied for two-dimensional joints [17], [18]. While
several experimental proofs of concept have been provided
for certain types of motion of certain joints, previous work
lacks a thorough analysis of the conditions that a motion
must fulfill to render the joint axis coordinates identifiable.
For example, a motion with a constant joint angle – i.e.
without relative motion between both ends of the joint –
is not sufficient for joint axis identification, since the joint
behaves like a single rigid body. In contrast, moving the joint
along all degrees of freedom is intuitively expected to yield
sufficient excitation.
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The current contribution considers one-dimensional joints
and provides a rigorous analysis of the uniqueness of so-
lutions under different motions. Beside the commonly used
gyroscope-based constraint, we propose an accelerometer-
based constraint. This constraint facilitates exploitation
of kinematic constraints for motions with small velocity
changes, i.e. motions for which the accelerometer mea-
surement is dominated by the gravity, and complements
the gyroscope-based constraints, especially for motions with
small angular velocities. We analyze the set of nonlinear
constraint equations for multiple samples taken during a mo-
tion and study conditions that the measured acceleration and
angular rate must fulfill to make the joint axis coordinates
identifiable.

The remainder of this contribution is organized as fol-
lows. In Section II the mechanical model is explained, the
optimization-based approach for joint axis identification by
exploitation of kinematic constraints is reviewed briefly, and
the novel constraint is introduced. In Section III we formulate
our problem description. In Section IV we analyze the set
of nonlinear constraint equations for multiple samples taken
during a motion and study conditions that the measured
acceleration and angular rate must fulfill to assure that this
set of equations has a unique solution. Finally, in Section V,
we validate the theoretical results experimentally using a
mechanical and a biological joint.

II. KINEMATIC MODEL AND CONSTRAINTS

A. Kinematic Model of a Hinge Joint System

The hinge joint is modeled as shown in Figure 1. Two
rigid segments represent both ends of the joint and are
mechanically linked such that there remains one rotational
degree of freedom in between. The system can be in any
orientation w.r.t. an inertial frame E , i.e. it has four rotational
degrees of freedom in total. The joint axis is represented by
the unit-length joint axis vector, whose coordinates in the
inertial frame are denoted j. Obviously, -j represents the
same joint axis. An IMU is rigidly attached to each segment
with an arbitrary orientation. The corresponding intrinsic
measurement frames of the sensors are denoted by S1 and S2.

The coordinates of the joint axis in frames S1 and S2
are denoted by j1 and j2, respectively. Since the inertial
sensors remain rigidly attached to the segments during any
motion, ji, i ∈ {1, 2}, are constant parameters that describe
the time-invariant relation between the inertial sensor and the
functional joint axis. This relation must be known in order to
calculate meaningful kinematic quantities, e.g. joint angles.

Both sensors provide measurement of the acceleration ai
and angular velocity ωi, where the subscript i ∈ {1, 2}
indicates the corresponding sensor Si. In the following we
assume all measurement errors and noise to be negligible. As
explained above, we aim to determine j1 and j2 from these
measurements of the inertial sensors. This can be achieved
by exploitation of kinematic constraints.

B. Gyroscope-based Kinematic Constraint

We first review the gyroscope-based constraint proposed
in [14]. Given any angular velocity of the first sensor ω1,
the second sensor’s angular velocity must be

ω2(t) = R(t)ω1(t) + α̇(t)j2, (1)

where α(t) is the unknown joint angle and R(t) is an
unknown time-variant rotation matrix that describes the
relative orientation of S1 and S2. Note that ω2 can be
decomposed into a rotation around the joint axis and a
portion perpendicular to the joint axis, i.e. trivially

ω2(t) = (jᵀ2ω2(t)j2) + (ω2(t)− jᵀ2ω2(t)j2). (2)

Using (1), we rewrite the first term as follows

jᵀ2ω2(t)j2 = jᵀ2 (R(t)ω1(t))j2 + jᵀ2 (α̇(t)j2)j2

= jᵀ2 (R(t)ω1(t))j2 + α̇(t)j2, (3)

and find the second term on the right-hand side of (2) to be

ω2(t)− jᵀ2ω2(t)j2 = R(t)ω1(t)− jᵀ2 (R(t)ω1(t))j2.

Since by definition j2 = R(t)j1, we obtain the relation

ω2(t)− jᵀ2ω2(t)j2 = R(t)
(
ω1(t)− jᵀ1ω1(t)j1

)
.

To eliminate the rotation matrix R(t), we take the Euclidean
norm on both sides, which is invariant under rotation:

‖ω2(t)− jᵀ2ω2(t)j2‖2 = ‖ω1 − jᵀ2ω1(t)j2‖2 . (4)

Since j1, j2 have unit length, this is equivalent to

‖ω1(t)× j1‖2 = ‖ω2(t)× j2‖2 . (5)

Note that this reasoning holds for each moment in time. The
constraint (5) must therefore be fulfilled by all gyroscope
readings of any motion of a hinge joint system. It is a com-
pact equation that couples the parameters of interest directly
with the raw data without requiring strapdown integration or
any type of sensor fusion. However, (5) is nonlinear in both
ji and ωi, i = 1, 2. Moreover, the terms are invariant with
respect to the signs of j1 and j2. Therefore, the constraint
is always fulfilled by the two correct axis coordinate pairs
(j1, j2) and (−j1,−j2) as well as by two coordinate pairs
(−j1, j2) and (j1,−j2) that suffer from non-matching signs,
cf. [12]. While practical solutions have been proposed to
match the signs, it seems desirable to find a constraint that
allows discrimination between the two correct and the two
false sign combinations.

C. Accelerometer-based Kinematic Constraint

We now present a novel kinematic constraint that is
based on accelerometer readings. Accelerometers measure
the specific force, which is the acceleration due to change
of velocity plus an acceleration due to gravity acting on the
proof mass of the accelerometer. When velocity changes are
much smaller than 9.8 m

s2 , the acceleration measurements can
accurately be approximated to solely represent the gravity
vector, which implies that

a2(t) ≈ R(t)a1(t). (6)

4326

Authorized licensed use limited to: TU Delft Library. Downloaded on March 16,2022 at 13:04:59 UTC from IEEE Xplore.  Restrictions apply. 



We exploit the fact that the inner product is invariant under
rotation. Taking the inner product with j2 on both sides
yields

jᵀ2a2(t) = jᵀ2R(t)a1(t) = jᵀ1a1(t), (7)

i.e. the projections of the measured accelerations onto the
joint axis must have same length for all t. Mathematically
similar constraints have been used by [16] and by [19]. The
acceleration-based constraint has three main advantages:
• It does not require strapdown integration or orientations,
• it is linear in both ji and ai, and
• unlike (5), it is sign-sensitive in the sense that
jᵀ2a2(t) = jᵀ1a1(t)⇒ (−j2)ᵀa2(t) = (−j1)ᵀa1(t)

; jᵀ2a2(t) = (−j1)ᵀa1(t)

; (−j2)ᵀa2(t) = jᵀ1a1(t).

The main disadvantage of the accelerometer-based constraint
is that it only holds if the change of velocity, i.e. also the
rotation, is negligible in both sensors. In Section V we will
evaluate the usefulness of the constraint for typical human
upper limb motions.

III. PROBLEM FORMULATION

We formulate the problem of axis identification as a set
of nonlinear equations. Consider a perfect hinge joint system
with measurements ai(tk),ωi(tk), k = 1, 2, ..., N taken by
both sensors i = 1, 2, at N sample instants. We then find
the following set of constraint equations:

jᵀ1 j1 = jᵀ2 j2 = 1, (8)
h1(tk) = h2(tk) = 0 ∀k ∈ {1, 2, ..., N}, (9)
h1(tk) : = ‖ω1(tk)× j1‖2 − ‖ω2(tk)× j2‖2 , (10)
h2(tk) : = jᵀ1a1(tk)− jᵀ2a2(tk). (11)

Obviously, there are always at least two pairs of joint axis
coordinates that fulfill all of these constraint equations: the
true joint axis coordinates (ĵ1, ĵ2) and the equivalent pair
(−ĵ1,−ĵ2). However, if excitation is weak there might be
other axis coordinate pairs that also fulfill (8) and (9).
The core question of this contribution is which minimum
requirements the motion, and thus the measured accelerations
and angular rates, must fulfill to assure that (8), (9) hold only
for the true joint axis coordinate pairs, i.e. to assure that the
following properties hold:

Definition 1 (Uniqueness of the Axis): The axis identifi-
cation problem has a unique solution if (ĵ1, ĵ2) and
(−ĵ1,−ĵ2) are the only coordinates that fulfill (8) and (9).

Definition 2 (Uniqueness of the Axis up to Sign Pairing):
The axis identification problem has a unique solution up to
sign pairing if (ĵ1, ĵ2), (−ĵ1, ĵ2), (ĵ1,−ĵ2), and (−ĵ1,−ĵ2)
are the only coordinates that fulfill (8) and (9).

IV. CONDITIONS ON ARBITRARY MOTIONS FOR JOINT
AXIS IDENTIFICATION

We first discuss two cases that clearly have insufficient
excitation to uniquely identify the joint axis.
• Both segments are stationary.

• The segments move jointly but do not move with respect
to each other.

Subsequently, we will discuss the case where the joint
only moves slowly and the angular velocities are negligible.
We analyze when the joint axis is identifiable from the
accelerometer constraint. Finally, we discuss the case where
both the gyroscope- and the accelerometer-based constraints
can be used. Again, we will discuss two special cases:
• Sequential motion: Motion that contains, for each seg-

ment, a (potentially very short) period of time during
which only that segment moves.

• Simultaneous planar motion: Motion during which, at
least for some time periods, both segments of the joint
rotate simultaneously but in the same fixed plane, i.e.
in the joint plane that is perpendicular to the joint axis.

A. Insufficient Excitation

1) Stationary: Let us first consider the trivial case of
a stationary hinge joint system that does not move at all.
In this case, the gyroscope-based constraint (5) is trivially
fulfilled for any j1 and j2. Furthermore, since the measured
accelerations a1,a2 are time-invariant, the accelerometer-
based constraint (7) yields the same linear equation for
each sample instant. The set of solutions is therefore the
intersection of the manifold defined by the constraints on
the norms of j1 and j2, (8), and the affine hyperplane
defined by the aforementioned single linear equation. These
are infinitely many points. For instance, any unit vector j1
orthogonal to a1 in combination with any unit vector j2
orthogonal to a2 fulfill these constraints.

2) Joint Movement: A much more general case is a hinge
joint system moving freely in three-dimensional space but
with fixed joint angle, i.e. without relative motion between
the segments. The relative orientation of both sensor frames
can then be expressed by a time-invariant rotation matrix R.
Consider any arbitrary vector j1 and let j2 = Rj1. Then,
with omission of time indices, we have

jᵀ2a2 = (Rj1)
ᵀ(Ra1) = j1R

ᵀRa1 = jᵀ1a1,

ω2 × j2 = (Rω1)× (Rj1) = R(ω1 × j1),

‖ω2 × j2‖2 = ‖R(ω1 × j1)‖2 = ‖ω1 × j1‖2 .

In other words, the kinematic constraints (9) are automati-
cally fulfilled.

Result 1 (Insufficient Excitation): If there is no relative
motion between both segments, there are infinitely many
solutions to the constraints (8) and (9), which implies that
the joint axis cannot be identified.

B. Motions with Negligible Angular Rates

Consider motions with slow rotations and at least short
periods of (almost) constant velocity. For this case, rotation
might be so slow that the measured angular rates are in
the same order of magnitude as the measurement errors
of the gyroscope. Hence, the value of the gyroscope-based
constraint will be limited. Whenever velocity changes are
small, the measured acceleration is clearly dominated by
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gravity, and the accelerometer-based constraint is fulfilled.
We therefore investigate uniqueness of the solution of

h2(tk) = 0 ∀ k ∈ {1, 2, ..., N}, jᵀ1 j1 = jᵀ2 j2 = 1. (12)

Considering h2(tk) for a set of N measurement samples
yields the linear systemh2(t1)...

h2(tN )

 =

a
ᵀ
1(t1) −aᵀ

2(t1)
...

...
aᵀ
1(tN ) −aᵀ

2(tN )


︸ ︷︷ ︸

A

[
j1
j2

]
= 0 . (13)

The solution space of the linear system (13) is the kernel
K := ker(A). For perfect accelerometer measurements of
a hinge joint system, the kernel cannot be empty, since the
true axis coordinates [ĵ1, ĵ2]ᵀ and their negative counterparts
[−ĵ1,−ĵ2]ᵀ must represent non-trivial solutions for (13). If
the dimension of the kernel is equal to one, the solutions
satisfying (13) will be given by a straight line passing
through the origin of R6. Note that any such line can only
contain two points that fulfill the norm constraints (8), since

jᵀ1 j1 = 1 ⇒ (γji)
ᵀ(γji) 6= 1 ∀ γ ∈ R \ {1,−1}.

We therefore, conclude that

dim(K) = 1 ⇔ rank(A) = 5 (14)

is a sufficient condition for uniqueness of the identified axis
according to Definition 1.

Result 2 (Rank Condition): The joint axis coordinates can
be uniquely determined from any motion that leads to five
linearly independent rows [aᵀ

1(tk),−a
ᵀ
2(tk)], where each tk

is a time instant with negligible change of velocities.

C. Motions with Non-Negligible Angular Rates

In this section we consider motions that contain at least
some periods of rotation that result in angular rates that
are large enough to neglect any measurement errors. Since
this class of motions is very large, we will focus on two
elementary motions that are often contained in more com-
plex motions: a sequential motion of both segments and a
simultaneous planar rotation of both segments. Note that it
is not necessary to detect these elementary motions in the
more complex motion. Instead, as suggested in [14], [16],
one can simply use a large number of sampled data sets,
minimize some vector norm of (9) for all time instants,
and include (8) as equality constraints of the optimization.
Samples that contain no additional information will then have
only marginal influence on the result via measurement errors.

1) Sequential motion: Consider the case in which one
segment remains fixed while the other segment rotates around
the one remaining degree of freedom. Without loss of gen-
erality, assume that the rotating segment is the first segment.
The gyroscope-based constraint then becomes

‖ω1(tk)× j1‖2 = 0 ∀ k ∈ {1, 2, ..., N}, (15)

where all angular rates ω1(tk) are collinear. Note that the
cross product of two vectors becomes zero only if the vectors

are collinear. Therefore, (15) can only have two unit-length
solutions. This implies that the considered unilateral motion
is sufficient for identification of j1 up to its sign.

Now consider a motion that contains, for each segment, a
(potentially very short) time period during which only that
segments moves. More precisely, ∃t1, t2 such that ω1(t1) 6=
0 = ω2(t1) and ω1(t2) = 0 6= ω2(t2). Note that the cross
product can be written as ωi(ti)× ji =: Giji. Hence,

‖ωi(ti)× ji‖2 = 0, i = 1, 2 ⇔ Giji = 0, i = 1, 2. (16)

Note that the equations for j1 and j2 are decoupled and
that rank(Gi) = 2. Hence, combining (16) with the norm
constraints (8) yields exactly four solutions: all four combi-
nations of signs of (±ĵ1,±ĵ2), which means only uniqueness
up to sign pairing is achieved (cf. Definition 2).

Including the accelerometer-based constraints for the same
time instants yields

G1 0
0 G2

aᵀ
1(t1) −aᵀ

2(t1)
aᵀ
1(t2) −aᵀ

2(t2)

[j1j2
]
= 0. (17)

This matrix must have rank five unless the last two rows are
perpendicular to all sign combinations of [±ĵ1,±ĵ2]ᵀ, which
can only be true if

ĵᵀ1a1(ti) = ĵᵀ2a2(ti) = 0 ∀ i ∈ {1, 2}. (18)

This represents the singular case in which the joint axis is
perfectly horizontal at t1 and at t2.

Result 3 (Sequential Motions): The joint axis coordinates
can be determined up to sign pairing if the motion contains
isolated rotations of both segments. If, moreover, the motion
contains at least one time instant at which the joint axis is
not perfectly horizontal, then the joint axis coordinates can
be determined uniquely in the sense of Definition 1.

2) Simultaneous Planar Motion: Consider a motion dur-
ing which, at least for some periods of time, both segments
of the joint rotate simultaneously but in the same plane, i.e.
in the joint plane that is perpendicular to the joint axis. The
motion of a human leg during walking is an example of this
type of motion if the thigh and shank move in the sagittal
plane during some periods of the gait cycle.

If such a planar motion is performed during a potentially
very short time interval [t1, t2], then there must exist two
scalars c1, c2 ∈ R \ {0} such that

ω1(t2) = c1ω1(t1), ω2(t2) = c2ω2(t1). (19)

We then conclude that the constraints at t1 and t2,

0 = ‖ω1(tj)× j1‖2 − ‖ω2(tj)× j2‖2 , ∀ j ∈ {1, 2}, (20)

can only be fulfilled by coordinates j1, j2 that fulfill

0 = |c1| ‖ω1(t1)× j1‖2 − |c2| ‖ω2(t1)× j2‖2 , (21)

0 =
(
1− | c1c2 |

)
‖ω1(t1)× j1‖2 . (22)

For the singular case in which ‖ω1(t1)‖2
‖ω2(t1)‖2

=
‖ω1(t2)‖2
‖ω2(t2)‖2

, there
exist infinitely many solutions to (22). Otherwise, we obtain
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horizontal
joint axis

motion in
vertical plane

IMU 2
bio

IMU 1
bio

IMU 2
exo

IMU 1
exo

upper limb exoskeleton
allowing flexion/extension

Fig. 2: Validation of joint axis identification in a perfect
hinge joint of an exoskeleton and an approximate hinge joint
of a human elbow. During the vertical-plane motion both
segments rotate simultaneously around the horizontal axis.
(Transparency indicates IMUs hidden behind the bar/cuff.)

two unit-length solutions for j1, and the signs of j1, j2 can
be matched just as for the sequential motion.

Result 4 (Simultaneous Planar Motions): The joint axis
can be determined up to sign pairing from data of a si-
multaneous planar motion unless the ratio ‖ω1(t)‖2

‖ω2(t)‖2
remains

constant. If, moreover, the motion contains at least one time
instant at which the joint axis is not perfectly horizontal, then
the joint axis coordinates can be determined uniquely in the
sense of Definition 1.

V. EXPERIMENTAL VALIDATION

The theoretical results from Section IV are validated in
experimental trials, cf. Figure 2, with two different joints:
• a mechanical joint: the perfect hinge joint of an upper

limb exoskeleton (Armeo Spring, Hocoma AG) with
one IMU attached to each end of the joint, and

• a biological joint: the approximate hinge joint of the
human elbow with one IMU attached to the distal pos-
terior portion of the upper arm and one IMU attached
to the distal portion of the forearm close to the wrist.

The following motions are performed by the biological
joint and the mechanical joint simultaneously:
• a motion with fixed joint: both segments are moved in

three-dimensional space but the relative orientation of
the segments remains constant, i.e. the rotational degree
of freedom of the joint is not excited,

• a simultaneous motion in a vertical plane: the joint
axis remains horizontal while both segments rotate
simultaneously, and

• a sequential motion in a horizontal plane: the joint axis
remains vertical while both segments rotate sequentially,
i.e. one of them remains fixed while the other rotates,
and then vice versa.

All motions are performed smoothly and at comfortable
speed, with angular rates below 2 rad

s and linear accelerations
below 2 m

s2 , which implies that accelerometer measurements
are at least to some extent dominated by gravity. During each
motion, the measured accelerations a1(t),a2(t) and angular
rates ω1(t),ω2(t) are recorded at 100Hz. Each motion is
conducted for about 40 s with an additional initial and final

2 [  rad]
0.0

0.5
1.0

2 [  rad]

0.25
0.75

1.75

e m
in

[-]
 

0.0

0.2

0.4

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Fig. 3: Reduced error function over spherical coordinates of
j2 for a motion with fixed joint of the biological joint. The
joint axis coordinates cannot be determined.

rest phase of approximately 10 s, which are used to estimate
and remove the gyroscope bias.

As illustrated in Figure 2, the IMUs are carefully attached
such that one of the local measurement axes approximately
coincides with the functional joint axis during each of the
motions. We can therefore determine an approximate ground
truth for the coordinates j1 and j2, with ĵ1 ≈ [0, 1, 0]ᵀ, ĵ2 ≈
[0, 1, 0]ᵀ for the motion in a vertical plane (cf. Figure 2), and
ĵ1 ≈ [0, 1, 0]ᵀ, ĵ2 ≈ [0, 0, 1]ᵀ for the motion in the horizontal
plane. While this precise attachment might be easy to realize
for the exoskeleton, which exhibits even and orthogonal
surfaces and edges, it can only be approximately achieved
for the human upper limb. Note furthermore that the human
elbow is not perfectly constrained to one rotational degree
of freedom and that the IMUs are not rigidly connected to
the bones, i.e. soft-tissue motion artifacts may occur.

For both joints and for each of the described motions
we investigate whether the proposed kinematic constraints
yield a unique pair of axis coordinates j1 and j2 near the
approximate ground truth. Every tenth sample of the data of
a motion is selected, i.e. tk+1 = tk +0.1 s. Then, we search
for joint axis coordinates that fulfill (8), (9) for each selected
sample tk, k = 1, ..., N .

To focus the analysis on (9), we assure (8) by expressing
j1, j2 in spherical coordinates (θ1, ϕ1), (θ2, ϕ2):

ji = r

 cos(θi)
sin(θi) sin(ϕi)
sin(θi) cos(ϕi)

 , i = 1, 2, (23)

θ1 ∈
[
0, π
)
, ϕ1 ∈

[
0, π
)
,

θ2 ∈
[
0, π
)
, ϕ2 ∈

[
0, 2π

)
,

(24)

where r = 1 to assure the norm constraint (8). Note that j1
is limited to a hemisphere whereas j2 covers a full sphere.
This assures that the N kinematic constraint equations have a
single unique solution in the defined ranges if and only if the
joint axis is uniquely identifiable in the sense of Definition 1.
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(b) motion performed by mechanical joint

Fig. 4: Reduced error function over spherical coordinates of
j2 for a simultaneous motion in a vertical plane. The true
joint axis (dashed) can be determined up to sign pairing.

We define the normalized error function e(j1, j2) with

e(j1, j2) :=
ẽ(j1, j2)

max
(j1,j2)

ẽ(j1, j2)
, (25)

ẽ(j1, j2) :=

N∑
k=1

(
|h1(tk, j1, j2)|
|h1,max(j1, j2)|

+
|h2(tk, j1, j2)|
|h2,max(j1, j2)|

)
hi,max(j1, j2) :=

N
max
k=1

hi(tk, j1, j2), i = 1, 2,

which is zero if and only if j1, j2 fulfill (8), (9) for
each selected sample tk, k = 1, ..., N . In the presence
of small inaccuracies, disturbances and noise, the function
e(j1(θ1, ϕ1), j2(θ2, ϕ2)) should have a global minimum near
the approximate ground truth coordinates if the proposed
identifiability conditions hold.

The spherical coordinate space is discretized in 10◦-steps,
and the error e(j1(θ1, ϕ1), j2(θ2, ϕ2)) is determined for each
point in this four-dimensional grid. To illustrate the shape of

2 [  rad]
0.0

0.5
1.0

2 [  rad]

0.25
0.75

1.75

e m
in

[-]
 

0.0

0.4

0.8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(a) motion performed by biological joint

2 [  rad]
0.0

0.5
1.0

2 [  rad]

0.25
0.75

1.75

e m
in

[-]
 

0.0

0.4

0.8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
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Fig. 5: Reduced error function over spherical coordinates of
j2 for a sequential motion in a horizontal plane. The true
joint axis (dashed) can be determined uniquely.

this function, we define the reduced error function

emin(θ2, ϕ2) := min
θ1,ϕ1

e(j1(θ1, ϕ1), j2(θ2, ϕ2)), (26)

which should exhibit a global minimum near the approxi-
mate ground truth coordinates if the proposed identifiability
conditions hold.

Figures 3, 4 and 5 illustrate emin(θ2, ϕ2) for the three per-
formed motions of the biological and the mechanical joint.
The approximated ground truth coordinates are indicated by
horizontal lines in Figures 4 and 5. To avoid global minima
lying exactly on the edge of the plotted surface, we plot ϕ2

over [− 1
4π,

7
4π) instead of [0, 2π).

Figure 3 shows results for the motion with fixed joint. As
expected, the reduced error remains small over all θ2, ϕ2

and varies only slightly due to measurement noise and
inaccuracies of the joints or the motion. This agrees well
with the theoretical Result 1 that the kinematic constraints
do not yield a unique joint axis for the considered motion.

Figure 4 presents results for the simultaneous motion in
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a vertical plane. For both the mechanical and the biolog-
ical joint, there are two distinct minima with very similar
error function values. One occurs near the true coordinates
(ĵ1, ĵ2), the other is shifted by π in the ϕ2-dimension, i.e.
it occurs near the axis coordinates (ĵ1,−ĵ2), which are only
correct up to non-matching signs. This is in accordance with
the theoretical Result 4 for the motion in a vertical plane.
Note that the minimum values for the mechanical joint are
almost zero, while the minima have slightly larger values for
the biological joint and occur at coordinates that are slightly
different from the approximate ground truth. This could
be due to imperfect sensor-to-segment alignment, imperfect
joint kinematics, and soft tissue motion.

Figure 5 shows results for a sequential motion in a
horizontal plane. The error function of the mechanical joint
exhibits a global minimum near the approximate ground
truth. In the light of Results 3 and 4, the direct comparison
of Figures 5b and 4b shows that the accelerometer-based
constraint helps to match the signs of j1 and j2 only if
the joint axis is not horizontal. For the biological joint,
this result is confirmed. However, as for the vertical-plane
motion, the minimum error function value is slightly larger,
and the approximate ground truth is less accurate.

For the sake of completeness, we also evaluated the error

emin(θ1, ϕ1) := min
θ2,ϕ2

e(j1(θ1, ϕ1), j2(θ2, ϕ2)) (27)

and found equally shaped global minima, which is not
surprising, since all constraints are symmetric in j1 and j2.

VI. CONCLUSIONS

In this work, we have considered joint axis identifica-
tion in (approximate) hinge joints. We have introduced a
novel acceleration-based kinematic constraint and combined
it with an existing gyroscope-based constraint. Furthermore,
we have derived a simple rank condition under which the
joint axis coordinates are uniquely identifiable. For two
common motion patterns, i.e. sequential and planar motions,
we have shown that identifiability is assured, with the minor
exception that the signs cannot be matched if the joint axis
remains perfectly horizontal during the entire motion. We
have validated these theoretical results in experiments using
both a biological and a mechanical joint.

Future research will focus on a more detailed analysis of
the contributions of the accelerometer- and the gyroscope-
based constraints and on strategies for optimal combination
of both [20]. Furthermore, we will analyze the accuracy of
the estimated joint axis coordinates and kinematic parameters
calculated from them. Finally, we would like to extend the
scope to kinematic constraints for two-dimensional joints and
to kinematic chains with more degrees of freedom [2], [18].
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