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Abstract

In 2018 the InSight mission was launched with the main objective of providing accurate 3D models of Mars’s in-
terior. This was done by placing a seismometer on the surface of Mars to measure seismic activity. In 2021 three
studies were published, one dedicated to the Martian core, one to the Martian mantle, and the last one focused
on the Martian crust. Based on this seismic data, Khan et al. [2021] obtained a lithospheric thickness between the
400 and 600 km. The average Martian crust was found to lie between 24 to 72 kilometers. A restrictive range of
crustal densities between 2700 to 3100 kg/m3 was used. The mantle extended up to 1560 km below the surface of
Mars. The core is molten and has a radius of 1830 km. Before seismic data was available, the method to learn more
about the interior of a planet was to study the topography and gravity data. This is still, on Mars, the only way to
get a global picture of the subsurface. Only one seismometer is currently available on Mars, making it difficult to
currently obtain full planet 3D maps from seismology alone.

The objective of this research is to study the lateral density variations within the Martian lithosphere. The litho-
sphere is the planet’s outermost shell, defined by its rigid mechanical properties. It is thought that the lithosphere
of Mars consists of the crust and the outer part of the mantle. In previous research, the density of the Martian
crust is most often taken as uniform. However, density variations exist at a small scale and potentially even at
the largest Martian scale [Beuthe et al., 2012]. The thesis project aims to study these density variations within the
Martian crust and upper mantle.

To study the lateral density variations in the crust and mantle, the MRO120D gravity data and MOLA topogra-
phy data are used as input. The crust-mantle boundary is created based on thin shell isostasy [Qin, 2021]. A lower
boundary of the lithosphere is chosen to be equal to 500 km. A mantle plume underneath Tharsis is added, based
on the findings from van der Tang [2021]. This plume reached from a depth of 800 km up to a depth of 900 km
and was centered around [110◦W 3◦N ] and had a density variation of 400 kg/m3 with respect to the surrounding
mantle. An inversion was performed from which the density of both the crust and the mantle was obtained. In
this calculation, two assumptions are made. First of all, it is assumed that the mass of each column is equal. The
second assumption is that the obtained gravity for the column can be split into 2 point mass sources, one corre-
sponding to the mass of the crust, located in the center of mass of the crust, and one corresponding to the mass
of the mantle, located in the center of mass of the mantle.

A reference planet with Te = 400 km, C = 105 km, ρc,r e f = 2700 kg/m3, and ρm,r e f = 3800 kg/m3, resulted in
the smallest density differences within the crust, as well as the smallest gravitational tensor residual. When these
input parameters were used for the inversion, a final density difference of approximately 1000 kg/m3 between the
crust and mantle was obtained after the inversion. A mean crustal density of approximately 2750 kg/m3 and a
mean mantle density of approximately 3750 kg/m3 were found. The density variations in the crust varied from
-424 up to 618 kg/m3 around the mean crustal density and -228 and 133 kg/m3 around the mean mantle density.
The optimal elastic thickness obtained through the inversion lies between the 450±50 km and the uniform crustal
thickness between 100±10 km.

For the large impact craters, high crustal densities were found compared to the mean crustal density of Mars.
Densities for Hellas and Utopia lay between the 3200 and 3345 kg/m3, and for Isidis Basin, a slightly smaller im-
pact crater, a crustal density of around 2870 kg/m3 was found. These large crustal densities, together with the
large elastic thickness and density difference between the crust and mantle, resulted in the conclusion that the
large impact craters may be compensated using a different isostasy method. For this study, the crust-mantle
boundary was obtained by applying the flexural response function to the crust-mantle boundary obtained using
Airy isostasy. A boundary based on Pratt isostasy, instead of the thin shell isostasy boundary used currently, might
be a better fit for the larger impact craters. The volcanoes outside the Tharsis region were found to be well com-
pensated using the thin shell method, and small densities were found compared to the volcanoes in the Tharsis
region, as well as what has been found in previous literature. The smaller densities for these stand-alone volca-
noes might have to do with the compensation of these volcanoes due to the curvature of the planet, which is taken
into account with the thin shell isostasy model. The literature analyzed in this study used different isostasy meth-
ods. By studying the possibility of different isostasy methods for different regions on Mars, the current model
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could be improved further.

This study showed that it is possible to use gravity inversion to gain insights into the lithosphere of a planet. With
these density differences, the Martian power spectrum could be fitted up to spherical harmonic degree 40. But,
due to the resolution of the current gravity model, it was only possible to calculate the Martian density difference
at a larger scale. To also be able to study the density differences at a smaller scale, higher resolution gravity data
needs to become available.

iv 0. Abstract iv



Preface

This MSc thesis marks the end of an amazing era as a student at Delft University of Technology. When I came
here nearly 7 years ago, I was still a small girl, excited for everything to come in my student time. Now this time
has ended, and I look back with great joy. During my time at Aerospace Engineering, I gained the belief that this
generation will go beyond all the amazing things already achieved and be the first to expand our Earth-based civ-
ilization to a multi-planetary civilization on Mars.

With this thesis, I strive to contribute to further expand the understanding of Mars. Bart Root was my daily su-
pervisor, who gave me endless amounts of guidance and enthusiasm for this work. Thank you so much for all
your support Bart, you really made the thesis process so much more enjoyable, and I couldn’t imagine a better
supervisor. Doing your master’s research in Covid times can be quite lonely, but Bart tried his hardest to connect
all his masters and Ph.D. students. He created the Planetary Interior and Gravity Modeling group for his students
with similar interests to be able to support each other in these times. Having this group of people who were going
through similar times made the thesis process much more enjoyable. Thank you all, and a special thank you to
Weilun and Youandi for reading my thesis and providing me with valuable feedback. I would also like to thank
Godert and Huygen for reading my thesis and providing me with feedback from an outsider’s perspective. Finally,
I would like to thank my graduation committee for their time and efforts.

Bodjie van Brummen
Rotterdam, June 2022

v





Contents

Abstract iii

Preface v

List of Figures xi

List of Tables xvii

Abbreviations xxi

1 Introduction 1
1.1 An Introduction to Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Lithosphere Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Geological History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 7
2.1 Isostasy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Airy–Heiskanen Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Pratt–Hayford Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Regional/Flexural Isostasy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Infinite Plate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Thin Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Martian Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Martian Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Gravity Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 MRO120D and GMM-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Gravity Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Forward Gravity Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Gravity Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Topography Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methodology 17
3.1 Creation of the Synthetic Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 The Matérn Covariance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Flexure modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Weighted Linear Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Inversion Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Inversion Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Two-Layer Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Density calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Mars Inversion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Crust-Mantle Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 Lower Boundary - Lithosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 Plume Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



viii Contents

4 Verification and Validation 31
4.1 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 One-Layer Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Height/Depth Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Effect of Adding Topography and a Lower Boundary . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Model 1 - Uniform Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Model 2 - Varying Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.5 Model 3 - Varying Topography and Lower Boundary . . . . . . . . . . . . . . . . . . . . . . 35

4.2.6 One-Layer Inversion: λ−σ Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Two-Layer Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Difference between Gravitational Potential, Vector, and Tensor . . . . . . . . . . . . . . . . 36

5 Power Spectrum and Two-Layer Results 39
5.1 Power Spectrum Analysis for Varying Input Variables . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Synthetic Planets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Crustal Thickness Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.3 Input Parameters Matèrn Covariance Function of the Topography. . . . . . . . . . . . . . . 41

5.1.4 Density Variations of the Mantle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.5 Mass Variations between columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.6 Input Parameters of the Flexural Response Function. . . . . . . . . . . . . . . . . . . . . . 44

5.2 Two-Layer Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Inclusion of Deeper Mantle Density Variations. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Variation in Reference Model Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Influence of Additional Crustal Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.4 Influence of Additional Mantle Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.5 Influence of Additional Mantle and Crustal Mass . . . . . . . . . . . . . . . . . . . . . . . 51

6 Mars Inversion Results & Discussion 53
6.1 Mars Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 First Phase - General Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.2 Second Phase - Crustal and Elastic Thickness Analysis . . . . . . . . . . . . . . . . . . . . . 55

6.1.3 Third Phase - Crustal and Mantle Density Variations. . . . . . . . . . . . . . . . . . . . . . 55

6.1.4 Discussion on Variations in Elastic Thickness . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.5 Discussion on Variations in Average Crustal Thickness. . . . . . . . . . . . . . . . . . . . . 57

6.1.6 Discussion on Variations in Crustal and Mantle Density . . . . . . . . . . . . . . . . . . . . 57

6.2 Optimal Inversion Results Mars, Smallest max(∆ρc,inv). . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Density and Crustal Thickness Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1 Hellas Basin, Utopia Basin, and other impact craters. . . . . . . . . . . . . . . . . . . . . . 60

6.3.2 Tharsis Region, Olympus Mons, and the other Large Volcanoes . . . . . . . . . . . . . . . . 61

6.3.3 Cross-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Gravity of the Inversion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.1 Gravity Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.2 Gravitational Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.3 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Evolution of Mars Based on the Obtained Densities. . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6.1 Hellas Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.2 Argyre Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.3 Utopia Basin, Isidis Basin, and Vastitas Borealis . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.4 Olympus Mons and the Tharsis region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.5 Arabia Terra down to the Noachis Terra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii CONTENTS viii



Contents ix

7 Conclusions and Recommendations 71

A Appendix 75
A.1 One layer inversion - models 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 λ−σ analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2.1 Variation in layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2.2 Variation in layer Centre of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2.3 Variation in both layer Centre of Mass and Thickness . . . . . . . . . . . . . . . . . . . . . 77
A.2.4 Variation in ∆ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.5 Variation in Seed Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2.6 Variation in κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.3 Two-Layer Inversion - Input Type Analyses 50 iterations . . . . . . . . . . . . . . . . . . . . . . . 80
A.4 Plots Variation Input Parameters Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4.1 Crustal Density Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.4.2 Mantle Density Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.4.3 Elsatic Thickness Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.4.4 Young’s Modulus Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.4.5 Average crustal Thickness Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5 Density and crust-mantle boundary results for minimum max(∆ρc,i nv ) . . . . . . . . . . . . . . . 88
A.6 Gravity Input Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.7 Heatmap Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.8 Geologic Map of Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95

ix CONTENTS ix





List of Figures

1.1 A global map of Martian topography, based on the MOLA data-set, with the major regions labeled. 2
1.2 Geological activity as a function of time on Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 General representation of Airy isostasy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 General representation of Pratt isostasy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 General representation of Vening Meinesz isostasy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 The flexural response function for the infinite plate model with varying values of the elastic thickness. 9
2.5 The flexural response function for the infinite plate model and thin shell model, with varying values

of the elastic thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 A global map of a Martian gravity anomaly based on the MRO120D gravity model. . . . . . . . . . . 12
2.7 A power spectrum comparison of the GMM-3 and MRO120Dgravity data sets. . . . . . . . . . . . . . 13
2.8 The gravitational tensor in the zz direction obtained from the MRO120D data set. The top plot shows

the result from spherical harmonic degree 1 to 90 and the bottom plot shows the same plot, but with
the spherical harmonic terms C00, C10, C11, S11, and C20 removed. . . . . . . . . . . . . . . . . . . . . 13

3.1 The chordal Matérn covariance function plotted for different values of ϵ. . . . . . . . . . . . . . . . . 18
3.2 The chordal Matérn covariance function plotted for different values of κ. . . . . . . . . . . . . . . . . 18
3.3 The left figure shows the crustal profile before application of the flexural response function. The

right figure shows the same crustal profile after application of the flexural response function be-
tween GSHA and GSHS for the infinite plate model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 The left figure shows the crustal profile before application of the flexural response function. The
right figure shows the same crustal profile after application of the flexural response function be-
tween GSHA and GSHS for the thin shell model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 The difference between the boundary profiles, after GSHA and GSHS, of the thin shell model and
the infinite plate model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 The generic L-curve for standard-form Tikhonov regularization with x0 = 0; the points marked by the
circles correspond to the regularization parameters = 105, 104, 103, 102, 101 and 1. Figure obtained
from [Hansen, 2005] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 This figure shows 3 different L-curve plots corresponding to 3 different one-layer inversion models.
In this figure the minimum RMS value between the obtained density variations of the inversion as
well as the original density profile is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.8 The sensitivity of the three different isotropic kernels for different angular distanced. A planetary
radius of 3396 km is used, equal to the radius of Mars. The kernels are computed at a height of 250
km and a depth of 150 km and based on the closed form equations given in Equation 3.17. . . . . . 22

3.9 A schematic representation of both the synthetic planet and the reference model in the two-layer
inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.10 This figure shows how taking a grid from a planet with a crust, mantle and topography translates to
the volumes of the crust and mantle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.11 A flowchart given a schematic representation of the two-layer iterative inversion process. . . . . . . 27
3.12 The power spectrum of the Martian gravity, the uncompensated topography, the crust mantle bound-

ary obtained with local compensation (Airy) as well as with the infinite plate model and thin shell
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.13 The mantle plume used in the reference model to fit the low Spherical Harmonic degrees in the
power spectrum. The plume is modeled from a depth of 800km up to a depth of 900km. This plume
was centerd around [110◦W 3◦N ] with a longitudinal radius of 32◦ and a latitudinal radius 30◦. . . . 29

4.1 The global topography of Mars, which is derived from the spherical harmonic shape model MarsTopo2600,
referenced to the geoid. This figure is in a Mollweide projection with a central meridian of 100◦ W
longitude and is overlain by a gradient image derived from the topography model. [Wieczorek, 2007] 31

4.2 The global topography map is computed for the elevation difference between the planetary radius
and the areoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



xii List of Figures

4.3 The power spectrum of the topography of Mars, which is derived from the spherical harmonic shape
model MarsTopo2600. [Wieczorek, 2007]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 The power spectrum of the topography of Mars for both the MOLA data set, used in this study, and
the MarsTopo2600 data set, used in [Wieczorek, 2007]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Variance spectra of signal and error for the Doppler-derived gravitational potential model MRO120d.
[Gorski et al., 2018]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 The power spectrum of the MRO120D data set plotted together with its uncertainty. . . . . . . . . . 32
4.7 A cross section for each of the 3 one-layer models to study the effect of adding varying topography

and lower boundary layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 The topographic boundary for the one-layer inversion model. This varying upper boundary is used

in the second and third model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 The Lower boundary for the one-layer inversion model. This varying lower boundary is used in the

third model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 Inversion results Model 1. This model is a 50 km layer with varying density, a constant upper bound-

ary of 0 km, and a constant lower boundary of -50 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.11 Inversion results Model 1 after multiple iterations. This model is a 50 km layer with varying density,

a constant upper boundary of 0 km, and a constant lower boundary of -50 km. The left top plot
shows the input density difference, the top right plot shows the output density difference, and the
bottom plot shows the difference between the two top plots. . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 Inversion results Model 2. This model is approximately a 50 km layer with varying density, a varying
upper boundary shown in Figure 4.8 and a constant lower boundary of -50 km. The left top plot
shows the input density difference, the right top plot shows the output density difference, and the
bottom plot shows the difference between the two top plots.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.13 Inversion results Model 2 after multiple iterations. This model is approximately a 50 km layer with
varying density, a varying upper boundary shown in Figure 4.8 and a constant lower boundary of -50
km. The left top plot shows the input density difference, the right top plot shows the output density
difference, and the bottom plot shows the difference between the two top plots. . . . . . . . . . . . . 35

4.14 Inversion results Model 3. This model is approximately a 50 km layer with varying density, a varying
upper boundary shown in Figure 4.8 and a varying lower boundary shown in Figure 4.9. The left top
plot shows the input density difference, the right top plot shows the output density difference, and
the bottom plot shows the difference between the two top plots. . . . . . . . . . . . . . . . . . . . . . 35

4.15 Inversion results Model 3 after multiple iterations. This model is approximately a 50 km layer with
varying density, a varying upper boundary shown in Figure 4.8 and a varying lower boundary shown
in Figure 4.9. The left top plot shows the input density difference, the right top plot shows the output
density difference, and the bottom plot shows the difference between the two top plots. . . . . . . . 35

4.16 The power spectrum of the inversion planet obtained using the reference planet with the densities
changed to the densities obtained from the inversion. Subplot (a) shows the results using the grav-
itational potential as input data for the inversion, (b) for the gravitational vector in the z direction,
and (c) for the gravitational tensor in the zz direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.17 For each subplot, the top plot shows the difference between the input crustal density, ρc input, and
the crustal density obtained using the inversion method, ρc inverse. The bottom plot shows the
same plot, but for the mantle density instead of the crustal density. Subplot (a) shows the results
using the gravitational potential as input data for the inversion, (b) for the gravitational vector in the
z direction, and (c) for the gravitational tensor in the zz direction. . . . . . . . . . . . . . . . . . . . . 38

5.1 Airy for lateral density variations within the crust and mantle, now referred to as Airy2. . . . . . . . 40
5.2 The power spectrum plotted for different values of average crustal thickness, c, for the synthetic

planet Airy1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 The power spectrum plotted for varying density differences between the crust and the mantle, ∆ρ,

for the synthetic planet Airy1. The crustal density was set to 2900 kg/m3. This resulted into density
variations between 400 and 800 kg/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 The power spectrum plotted for only the crust of the synthetic planet and for a planet with a crust
of 3380 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 The power spectrum plotted for different values of the decorrelation distance, ϵ, for the synthetic
planet Airy1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 The power spectrum plotted for different values of the square-root of the variance, σ, for the syn-
thetic planet Airy1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xii LIST OF FIGURES xii



List of Figures xiii

5.7 The power spectrum plotted for different values of the square-root of the variance,σ, and the for the
decorrelation distance, ϵ, for synthetic planet Airy1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.8 The power spectrum plotted for different values of the smoothness parameter, κ, for the synthetic
planet Airy1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9 The effect of changing the input parameter ϵ of the Matèrn covariance function on the crust-mantle
boundary. From the left to right, and top to bottom, these plots are obtained using ϵ= 1, ϵ= 5, ϵ= 10,
ϵ= 25, and ϵ= 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 The effect of changing the input parameter κ of the Matèrn covariance function on the crust-mantle
boundary. From the left to right, and top to bottom, these plots are obtained using κ= 0.3, κ= 0.6,
κ= 0.9, κ= 1.2, κ= 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.11 The power spectrum plotted for different values of the smoothness parameter for the density, κ, for
the synthetic planet Airy2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.12 The power spectrum plotted for varying density differences within the crust, by changing σ, for the
synthetic planet Airy2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.13 The power spectrum plotted for variations within both the crust and the mantle, with mass differ-
ences between the columns, plotted for the synthetic planet Airy3. . . . . . . . . . . . . . . . . . . . . 44

5.14 The power spectrum plotted for variations within both the crust and the mantle, with mass differ-
ences between the columns, plotted for the synthetic planet Airy3. . . . . . . . . . . . . . . . . . . . . 44

5.15 The power spectrum plotted for different values of the elastic thickness, Te , for the synthetic planet
TSM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.16 The power spectrum plotted for different values of the Poisson ratio, ν, for the synthetic planet TSM1. 44

5.17 The power spectrum plotted for different values of the elastic modulus, E , for the synthetic planet
TSM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.18 The density variations which were added to the two deep mantle layers from a depth of 500 km up
to the depth of 1800 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.19 For each subplot, the top plot shows the difference between the input crustal density, ρc input, and
the crustal density obtained using the inversion method, ρc inverse. The bottom plot shows the
same plot, but for the mantle density instead of the crustal density. Deep mantle density variations
were added to the input model reference planet. Subplot (a) shows the results using the gravitational
potential as input data for the inversion, (b) for the gravitational vector in the z direction, and (c) for
the gravitational tensor in the zz direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.20 The effect of changing multiple input parameters for the reference model, on the obtained crustal
and mantle density from the inversion. F0r subplot (a), the crustal density is varied, for (b), the
mantle density is varied, for (c) the elastic thickness is varied, for (d), the Young’s modulus is varied,
and for (e), the average crustal thickness is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.21 Effect of adding extra density variations to the crust of the synthetic planet. . . . . . . . . . . . . . . 49

5.22 A closer look at the effect of adding extra density variations to the crust of the synthetic planet, equal
to a maximum magnitude of 1.25% of the original density variations. The top left figure shows the
difference between the density of the crust for the synthetic planet and the inversion results. The
top right figure shows the same but for the mantle density variations. The bottom left figure shows
the added density to the crust, and the bottom right figure shows the residual gravitational tensor
(Tzz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.23 A closer look at the effect of adding extra density variations to the crust of the synthetic planet,
equal to a maximum magnitude of 20% of the original density variations. The top left figure shows
the difference between the density of the crust for the synthetic planet and the inversion results. The
top right figure shows the same but for the mantle density variations. The bottom left figure shows
the added density to the crust and the bottom right figure shows the residual gravitational tensor
(Tzz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.24 Effect of adding extra density variations to the mantle of the synthetic planet. . . . . . . . . . . . . . 50

5.25 A closer look at the effect of adding extra density variations to the mantle of the synthetic planet,
equal to a maximum magnitude of 1.25% of the original density variations. The top left figure shows
the difference between the density of the crust for the synthetic planet and the inversion results. The
top right figure shows the same but for the mantle density variations. The bottom left figure shows
the added density to the mantle, and the bottom right figure shows the residual gravitational tensor
(Tzz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii LIST OF FIGURES xiii



xiv List of Figures

5.26 A closer look at the effect of adding extra density variations to the mantle of the synthetic planet,
equal to a maximum magnitude of 20% of the original density variations. The top left figure shows
the difference between the density of the crust for the synthetic planet and the inversion results. The
top right figure shows the same but for the mantle density variations. The bottom left figure shows
the added density to the mantle and the bottom right figure shows the residual gravitational tensor
(Tzz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.27 Analysis of the effect of adding extra density variations to both the crust and the mantle. These
plots are plotted for variable mantle variations, and constant crustal density variations. The crustal
maximum added crustal density variations are for subplot (a) 1.25%, (b) 2.5%, (c) 5%, (d) 10%, and
(e) 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 The first analysis of the different combinations of input parameters for the initial reference planets.
The average crustal thickness is plotted against the density differences in the crustal density, for
variations in elastic thickness between the four subplots. From top left, to bottom right, these figures
show the results for elastic thicknesses of Te = 50 km, Te = 150 km, Te = 250 km, and Te = 400 km. . 54

6.2 Results for a set density difference between the crustal and mantle density of the reference model of
900 kg/m3, and variations in the average crustal thickness and elastic thickness. The elastic thick-
ness is plotted against the density differences in the crustal, left subplot, and mantle, right subplot,
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Results for a set average crustal thickness for the reference model of 105 km and variations in the
elastic thickness and density difference between the crust and mantle of the reference model. The
mantle reference density is plotted against the density differences in the crustal for different density
differences. From left to right, subplot 1 shows the results for an elastic thickness of 400 km, subplot
2 for 425 km, subplot 3 for 450 km, and subplot 4 for 475 km. . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Results for a set average crustal thickness for the reference model of 105 km and variations in the
elastic thickness and density difference between the crust and mantle of the reference model. The
crustal reference density is plotted against the density differences in the crustal for different density
differences. From left to right, subplot 1 shows the results for an elastic thickness of 400 km, subplot
2 for 425 km, subplot 3 for 450 km, and subplot 4 for 475 km. . . . . . . . . . . . . . . . . . . . . . . . 56

6.5 The crustal and mantle density and density variations obtained through the Martian inversion. For
the inversion, a multiplication factor of 30 and 25 iterations were used. These results were obtained
for a reference model with the topography and crust-mantle boundary shown in Figure 6.6, for the
same subplots, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 The topography and crust-mantle boundary used for the reference model for the Martian inversion.
This is obtained with C = 105 km, E = 100 GPa, ν= 0.25, ρc = 2700 kg/m3, ρm = 3800 kg/m3, and Te

= 400 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.7 A cross section of the reference model based on the densities given in Figure 6.5 and the boundaries

given in Figure 6.6. The subplot shows the longitude line of (a) -134 degrees, (b) -114 degrees, (c) -44
degrees, (d) 80 degrees, (e) 120 degrees, and (f) 148 degrees. . . . . . . . . . . . . . . . . . . . . . . . . 63

6.8 A more zoomed in cross section of the reference model based on the densities given in Figure 6.5
and the boundaries given in Figure 6.6. The subplot shows the cross-section for (a) Hellas Basin and
(b) Utopia Basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.9 The top left figure shows the anomaly for Mars, the top right for the reference model with the ob-
tained inversion densities, and the bottom figure shows the residual. . . . . . . . . . . . . . . . . . . 64

6.10 The top left figure shows the gravitational tensor in the zz direction for Mars, the top right for the
reference model with the obtained inversion densities, and the bottom figure shows the residual.
The two top plots are truncated for Tzz =± 15 Eotvos and the bottom figure is truncated for Tzz =±
1.5 Eotvos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.11 The power spectrum of the gravity of Mars, the reference model with uniform densities, ρc = 2700
kg/m3 and ρm = 3800 kg/m3, and the reference model with the density variations obtained through
the inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.12 The crustal density obtained for the Martian inversion result, with Te = 400 km, C = 105 km, ρc,ref =
2700 kg/m3 and ρm,ref = 3800 kg/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 The RMS between the input density minus the inversion density divided by the maximum input
density plotted against the standard deviation between the input tensor and inversion tensor for
120 different 1-layer inversion models, both for model 2 and model 3. . . . . . . . . . . . . . . . . . . 75

A.2 λ−σ analyses plot for variation in layer thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv LIST OF FIGURES xiv



List of Figures xv

A.3 L-curve for both variation in layer thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.4 λ−σ analyses plot for variation in CM depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.5 L-curve for both variation in CM depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.6 λ−σ analyses plot for variation in both layer thickness and variation in CM depth. . . . . . . . . . . 77
A.7 L-curve for both variation in layer thickness and CM depth. . . . . . . . . . . . . . . . . . . . . . . . . 77
A.8 λ−σ analyses plot for variation in the density differences within the 1-layer model. . . . . . . . . . 77
A.9 L-curve for variation in the maximum density variations of the inversion layer. . . . . . . . . . . . . 77
A.10 The density variations corresponding to the different seed numbers, used in the Matèrn covariance

function, to obtain the λ−σ plots shown in Figure A.11. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.11 λ−σ analyses plot for variation in seed numbers with which the density profile was obtained using

the Matèrn covariance function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.12 L-curve for variation in seed number for the Matèrn covariance function of the density variations,

which influence the density pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.13 The density variations corresponding to the different κ values, used in the Matèrn covariance func-

tion, to obtain the λ−σ plots shown in Figure A.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.14 λ−σ analyses plot for variation in kappa value, used to obtain the density difference for the Matèrn

covariance function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.15 L-curve for variation in κ for the Matèrn covariance function of the density variations, which influ-

ence the wavelength pattern of the density variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.16 The input crustal and mantle density variations. These density variations are used as input for the

analyses of the different input gravity data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.17 The power spectrum of the inversion planet obtained using the reference planet with the densities

changed to the densities obtained from the inversion. Subplot (a) shows the results using the grav-
itational potential as input data for the inversion, (b) for the gravitational vector in the z direction,
and (c) for the gravitational tensor in the zz direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.18 For each subplot, the top plot shows the difference between the input crustal density, ρc input, and
the crustal density obtained using the inversion method, ρc inverse. The bottom plot shows the
same plot, but for the mantle density instead of the crustal density. Subplot (a) shows the results
using the gravitational potential as input data for the inversion, (b) for the gravitational vector in the
z direction, and (c) for the gravitational tensor in the zz direction. . . . . . . . . . . . . . . . . . . . . 81

A.19 The left plots shows the input crustal and mantle density, and the left plots the obtained crustal and
mantle density from the inversion with the correct input parameters for the reference model. . . . 82

A.20 Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle
density from the inversion. Subplot (a) shows the results for ρc = 0.95ρc,i np , and (b) shows the
results for ρc = 1.05ρc,i np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.21 Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle
density from the inversion. Subplot (a) shows the results for ρm = 0.95 ·ρm,i np , and (b) shows the
results for ρm = 1.4 ·ρm,i np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.22 Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle
density from the inversion. Subplot (a) shows the results for Te = 0.1Te,i np , and (b) shows the results
for Te = 2Te,i np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.23 Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle
density from the inversion. Subplot (a) shows the results for E = 0.1Ei np , and (b) shows the results
for E = 2Ei np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.24 Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle
density from the inversion. Subplot (a) shows the results for C = 0.6Ci np , and (b) shows the results
for C = 1.1Ci np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.25 The crustal and mantle density and density variations obtained through the Martian inversion. For
the inversion a multiplication factor of 30 and 25 iterations were used. These results were obtained
for a reference model with the topography and crust-mantle boundary shown in Figure 6.6, for the
same subplots respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.26 The topography and crust-mantle boundary used for the reference model for the Martian inversion.
This is obtained with C = 105 km, E = 100 GPa, ν = 0.25, and varying elastic thickness for the sub-
plots. Subplot (a), (b) and (d) use r hoc = 2700 kg/m3, ρm = 3800 kg/m3, and subplot (c) uses r hoc =
2650 kg/m3, ρm = 3650. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.27 The top left figure shows the anomaly for Mars, the top right for the reference model with uniform
densities, and the bottom figure shows the residual, which is used as the input data for the inversion. 89

xv LIST OF FIGURES xv



xvi List of Figures

A.28 The top left figure shows the gravitational tensor in the zz direction for Mars, the top right for the
reference model with uniform densities, and the bottom figure shows the residual, which is used
as the input data for the inversion. The two top plots are truncated for Tz z = ± 15 Eotvos and the
bottom figure is truncated for Tz z =± 1.5 Eotvos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.29 The heatmaps for the first analyses of the different combinations of input parameters for the initial
reference planets. The average crustal thickness is plotted against the density differences in the
crustal density, for variations in elastic thickness between the four subplots. From top left, to bottom
right, these figures show the results for elastic thicknesses of Te = 50 km, Te = 150 km, Te = 250 km,
and Te = 400 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.30 The heatmaps showing the results for a set density difference between the crustal and mantle den-
sity of the reference model of 900 kg/m3, and variations in the average crustal thickness and elastic
thickness. The elastic thickness is plotted against the density differences in the crustal, left subplot,
and mantle, right subplot, density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.31 The heatmaps showing the results for a set average crustal thickness for the reference model of 105
km and variations in the elastic thickness and density difference between the crust and mantle of
the reference model. The mantle reference density is plotted against the density differences in the
crustal for different density differences. From left to right, subplot 1 shows the results for an elastic
thickness of 400 km, subplot 2 for 425 km, subplot 3 for 450 km, and subplot 4 for 475 km. . . . . . . 92

A.32 The heatmaps showing the results for a set average crustal thickness for the reference model of 105
km and variations in the elastic thickness and density difference between the crust and mantle of
the reference model. The crustal reference density is plotted against the density differences in the
crustal for different density differences. From left to right, subplot 1 shows the results for an elastic
thickness of 400 km, subplot 2 for 425 km, subplot 3 for 450 km, and subplot 4 for 475 km. . . . . . . 92

A.33 "This global geologic map of Mars, which records the distribution of geologic units and landforms
on the planet’s surface through time, is based on unprecedented variety, quality, and quantity of re-
motely sensed data acquired since the Viking Orbiters. These data have provided morphologic, to-
pographic, spectral, thermophysical, radar sounding, and other observations for integration, analy-
sis, and interpretation in support of geologic mapping. In particular, the precise topographic map-
ping now available has enabled consistent morphologic portrayal of the surface for global mapping.
Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze
and thus are reliable for analysis of surface morphology and texture at even higher resolution than
the topographic products." [Tanaka et al., 2014] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xvi LIST OF FIGURES xvi



List of Tables

2.1 The flexural response function for the different isostasy models. Both for local, Airy and Pratt, as well
as flexural, infinite plate model and thin shell model, isostasy models the flexural response function
is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 A summary of the used/obtained crustal and mantle densities and crustal and lithospheric/elastic
thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 The different input parameters used in the inversion, for the 3 different types of input data. . . . . . 37

6.1 The chosen range for each of the different input parameters for the thin shell model, which will be
used as input for the different reference models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Combinations of crustal and mantle density as input for the reference model used in the analysis of
Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 The second set of combinations of crustal and mantle density as input for the reference model used
in the analysis of Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 The combination of input parameters for the minimum max(∆ρc,inv) for each elastic thickness used
in subsection 6.1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 The mean crustal thickness, mean crustal density, and mean mantle density obtained for some of
the Martian surface features, specifically basins and low elevation areas, for the Martian inversion
result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 The mean crustal thickness, mean crustal density, and mean mantle density obtained for some of
the Martian surface features, specifically volcanoes and high elevation areas, for the Martian inver-
sion result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.7 A table relating the map units used in section A.8 by Tanaka et al. [2014], to the crustal densities
found for the Martian inversion result, as shown in Figure 6.12. . . . . . . . . . . . . . . . . . . . . . . 68

7.1 The mean crustal thickness, mean crustal density, and mean mantle density obtained for some of
the Martian surface features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xvii





Nomenclature

Greek Symbols

α Scale parameter −
Γ̄ Gravitational gradient Eotvos

ε̄ Error −
κ Smoothness parameter −
λ Ridge parameter −
ν Poisson’s ratio −
Φ Flexural response function −
φ Planetocentric longitude ◦
ρ Density kgm−3

ρc Crustal density kgm−3

ρm Mantle density kgm−3

σ Power spectrum (or degree variance) −
σ Variance −
θ Planetocentric co-latitude ◦
Physics constants

G Gravitational constant 6.67430×10−11 m3 kg−1 s−2

Roman symbols

P̄nm Legendre function after normalisation −
x̄ Parameter vector −
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1
Introduction

Mars, nicknamed the "Red Planet", is the second smallest planet in our solar system. The nickname originates
from its red color when observed from afar. The surface is composed of rocks overlain by highly oxidized weath-
ering products, which creates the relatively bright dust and soils. Due to the presence of iron-bearing minerals in
the oxidized surface layer, the Martian surface colors red [Zuber, 2001], where its nickname originates from. When
observed from the Sun, it is the fourth planet, with Earth being the third planet. Mars is currently a hot topic with,
among others, SpaceX, NASA, and the Indian Space Research Organisation planning manned missions to Mars.
Mars has an average distance to the Sun of 228.5 million km and an average radius of 3396.0 km. In the past, there
have been many missions to Mars. The first successful mission to Mars was launched in 1964, the Mariner 4 flyby
mission. In the past 56 years, a lot has been learned about Mars, but even more, is still unknown.

The lithosphere is the planet’s outermost shell, defined by its rigid mechanical properties. It is thought that the
lithosphere of Mars consists of the crust and the outer part of the mantle, just like Earth’s lithosphere, but is sub-
stantially thicker than the lithosphere of Earth and, therefore, capable of statically supporting larger surface loads.
This is based on different observations, such as the heights of the youngest shield volcanoes [Comer et al., 1985].
The lithosphere of Mars could potentially give more insight into tectonics and stresses [Banerdt et al., 1992], the
heat flow and internal dynamics [Solomon and Head, 1990] and the evolution of Mars.

In previous research, one or more of the following parameters have been set constant: the crustal thickness, up-
per mantle thickness, crustal density, or upper mantle density. Most often, the only non-uniform parameter was
taken to be the crustal thickness, resulting in setting the density of both the crust and mantle as uniform. Den-
sity variations exist at a small scale and potentially even at the largest Martian scale, the hemispheric dichotomy
[Beuthe et al., 2012]. The Martian dichotomy is the distinct topographic contrast between the Southern and the
Northern hemispheres. The thesis project aims to study density variations within the Martian crust and upper
mantle. These density variations, together with the obtained crust-mantle boundary, form the basis of the im-
proved lithosphere model, which will be related to the geological map of Mars, presented by Tanaka et al. [2014].
From now on, the upper mantle will be referred to as the mantle of both Mars as well as for the synthetic planet.
A synthetic planet is a fully modeled planet for which everything is known. In this case, this is the topography and
the density and thickness of each layer, from which the gravity can be obtained. This synthetic planet will be used
to test and understand the model, as well as to analyze the robustness of the model.

1



2 1. Introduction

Figure 1.1: A global map of Martian topography, based on the MOLA data-set, with the major regions labeled. The colorbar is truncated at a
topographic height and depth of 8 km. The MOLA data is obtained from https://pds-geosciences.wustl.edu/missions/mgs/megdr.
html

1.1. An Introduction to Mars
Based on the data from previous missions, a topography map and a gravity anomaly map of Mars were created.
The map of the topography of Mars is shown in Figure 1.1, and the gravity anomaly is given in Figure 2.6. The
Martian topography has a few distinguishable features, which separate it from the rest of the planets in our solar
system. The first feature is the Martian dichotomy. This dichotomy between the northern lowlands and the south-
ern highlands is the oldest geologic event on Mars and is either expressed as differences in elevations, differences
in crustal thickness, or differences in crater densities [Carr and Head III, 2010]. Another feature distinguishing
Mars from other planets, is the high elevation area in the west of Mars, called the Tharsis region. This is also the
region with the planet’s most prominent volcanoes. The largest volcano on Mars is Olympus Mons, with an al-
titude of more than 21 km [Davies, 1974], making it the largest volcano in our solar system. Next to the Tharsis
region, there is a smaller volcanic center to the west of Tharsis, Elysium, with different volcanoes with a maximum
altitude of up to 14 km [Mouginis-Mark et al., 1982]. In the southwest of Mars, there is a low elevation area called
the Hellas planitia. The Hellas planitia is an impact basin, therefore, also called the Hellas basin. The basin has a
relief of 9 km and a diameter of about 2000 km [Leonard and Tanaka, 2001]. Some other large basins are Utopia
basin, Isidis basin, and Argyre basin. The largest impact structure in the northern hemisphere is Utopia basin
[Thomson and Head III, 2001]. It shows a 1–3 km deep depression and has a diameter of approximately 3200 km.
Isidis basin and Argyre basin are slightly smaller impact craters, and both have a depression of approximately 3
km, as is shown in Figure 1.1.

Mars is known to have close to no atmosphere and an absence of oceans, vegetation, and complex life. Mars has a
mass of 6.4171 ·1023 kg, which is approximately 0.1 times the mass of Earth. This, together with its radius, results
in the Martian mean density being approximately 0.7 that of Earth, equal to 3933 kg/m3. The surface gravity of
Mars is 3.71 m/s2, approximately 0.4 times that of Earth. The atmospheric surface density is 0.020 kg/m3, which
can be neglected in calculations compared to the mean density of the planet. 1

1.1.1. Lithosphere Structure
Insights into the lithosphere of a planet can be obtained by using the topography data as well as gravitational data
and meteor analysis. Mars formed its crust, mantle, and core very quickly after its formation, within a few tens
of millions of years of the Solar System formation, which is remarkably quick [Borg et al., 2003]. The core, man-
tle, and crust have different compositions. The exact crustal thickness of Mars is unknown, but different crustal
models are available based on the topography and gravity data.

Zuber [2001] uses the most up-to-date topography and gravity fields from the Mars Global Surveyor mission. In

1https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html.
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these models, a crustal density of 2900 kg/m3 and a mantle density of 3500 kg/m3 are assumed. This is consistent
with plausible crustal compositions and with bulk composition models [Dreibus and Wanke, 1985]. Wieczorek
and Zuber [2004] related the geoid-to-topography ratios to an arbitrary model of crustal structure and compen-
sation to obtain a crustal thickness larger than 29 km for crustal densities between 2700–3100 kg/m3 and mantle
densities between 3400–3550 kg/m3. When more constrained densities between 2800–2900 kg/m3 and 3300–3400
kg/m3 for the crust and mantle respectively were used, a crustal thickness larger than 39 km was obtained. An-
other method used by Taylor et al. [2020] was to use Olympus Mons to study lithospheric flexure. In [Beuthe et al.,
2012] localized spectral analysis of two different gravity data-sets was used to obtain a crustal density between
3000-3400 kg/m3 for the large volcanoes. Belleguic et al. [2005] assumes that the surface and subsurface loads are
elastically supported by the lithosphere. A crustal density of 3270 ± 150 kg/m3 for the Elysium region was found,
with an elastic thickness of 56 ± 20 to 105 ± 105 km. The elastic thickness is a mathematical interpretation of
the lithosphere and is seen as the thickness of the outer layer of the planet, which can support loads in an elastic
manner.

Next to the crust, the Martian lithosphere is another internal part of Mars that has been analyzed often in lit-
erature. Sometimes the elastic thickness instead of the lithospheric thickness is used in scientific papers, such as
in [Zuber et al., 2000] and [Nimmo, 2002] because the elastic thickness is the calculated thickness that is needed
to support the loads. Different results have revealed a significant variation in elastic thickness among the main
crustal provinces. Zuber et al. [2000] found an elastic thickness in the southern highlands ranging from 0 to 20
km, the Alba Patera volcano displays an elastic thickness of 50 km, and Olympus Mons and the other volcanoes
in the Tharsis region were found to have an elastic thickness larger than 100 km. There is a general trend visible
between these different provinces: for the increasing age of the surface, the elastic thickness values generally de-
crease [Zuber, 2001].

Recently three papers were published about the Martian crust, mantle, and core, based on the new Insight seismic
data [Khan et al., 2021]. These studies found that the average Martian crust lies somewhere between 24 to 72 km,
with a lithosphere up to 500 km. A restrictive range of crustal densities between 2700 to 3100 kg/m3 was used. It
was found that the mantle extended up to 1560 km below the surface of Mars. The core was found to have a radius
of 1830 km but was also found to be a molten core.

1.1.2. Geological History

The obtained density variations in the martian lithosphere will be compared to the geological history of Mars.
Since 1996 different landers have touched down successfully on Mars. Also, a variety of different orbiters have
been placed successfully into orbit. With the data collected by these missions, there now is a more detailed un-
derstanding of what it is like on Mars and how it evolved into its present state. The Martian surface features,
based on the number of superimposed impact craters and the intersection relations, have been divided into three
epochs: the Noachian, Hesperian, and Amazonian [Carr and Head III, 2010]. The terrain of the Noachian period
dates from the heavy bombardment era and was named after the heavily cratered Noachis terra, see Figure 1.1,
and estimated to have ended around 3.7 Gyr ago [Carr and Head III, 2010]. The remaining history of Mars was
split into two periods: the Hesperian period, named after the Hesperia Planum, estimated to have ended around
2.9-3.3 Gyr ago, and the Amazonian period, named for the younger Amazonis Planitia [Carr and Head III, 2010].

Figure 1.2 shows the main geological activities as a function of time on Mars for the Noachian, Hesperian, and
Amazonian periods. The oldest geologic event is the global dichotomy between the northern lowlands and the
southern highlands, as visible in Figure 1.1. The Noachian period started around 4.1 Gyr ago. During the Noachian
period, there were high rates of cratering, erosion, and valley formation. Also, the accumulation of most of Tharsis
happened in this period, as well as widespread production of weathering products such as phyllosilicates, which
was enabled by the surface conditions [Carr and Head III, 2010]. The Hesperian period was created to distinguish
between the old post-Noachian plains and the younger plains and was later defined according to the number of
superimposed craters. Therefore, based on the crater density, this period lasted from around 3.7 Gyr ago, the end
of the Noachian period, to around 3 Gyr ago. During this period, the volcanism was forming extensive lava plains,
and there were also high rates of canyon creation but low rates of valley formation. Due to the major deposition
in the form of volcanism, lava plains, and erosion in the form of outflow channels and episodic seas, the northern
plains were drastically reshaped during the Hesperian period [Tanaka and Kolb, 2001]. In this period, the Dorsa
Argentea Formation (DAF) also occurred. The Dorsa Argentea are interpreted to be eskers in the south polar re-
gion of Mars which are formed due to discharge of melt-water from beneath either a moving or stagnant ice sheet
[Tanaka and Kolb, 2001]. Also, in the soil of all the currently visited landing sites, except for Phoenix, abundant

3 1. Introduction 3



4 1. Introduction

sulfates have been observed. The age of the sulfate-rich Meridiani deposits is believed to be of Noachian age
due to the number of craters. However, the sulfate-rich deposits in depressions are poorly constrained and could
be much younger in age [Carr and Head III, 2010]. These sulfate minerals could have been formed directly by
the weathering of basalts by acidic sulfate-rich fluids, but they could also have been formed by evaporation of
waters derived from the weathering. Due to the possibility that these sulfates have been repeatedly eroded and
deposited by the wind over tens to hundreds of millions of years, the present locations could have little relation
to the original sources.

Figure 1.2: Geological activity as a function of time on Mars. The figure shows the relative importance of different processes, such as impact
cratering and volcanism, the time and relative rates of formation of various features and units, such as valley networks and Dorsa Argentea
Formation, and different types and rates of weathering, as a function of time. Also, the approximate boundaries of the major time periods of
Mars’s history are shown. [Carr and Head III, 2010].

In the Amazonian period, the surface geomorphological changes due to impact cratering, tectonism, and volcan-
ism are modest compared with earlier periods. Much is also unknown about the evolution of Mars during this
period. It is known that the volcanism during the Amazonian period was mainly in and peripheral to Tharsis and
Elysium, and the eruption rates dropped significantly and were highly episodic [Carr and Head III, 2010]. The ice
on Mars has played a significant role in the evolution of the Martian landscape. Changes in the Martian climate
in the Amazonian period were followed by catastrophic flooding and/or glacial erosion [Chapman et al., 2010].
These could have resulted in the possibility that extensive ice deposits were left in low areas. The glacier’s lobate
debris aprons are adjacent to most steep slopes in the 30 to 55-degree bands in both the northern and southern
hemispheres, and they are clear indicators of the presence of ice [Carr and Head III, 2010].

1.2. Research Questions
The Martian lithosphere has been the subject of various studies, but almost all use the assumption that the den-
sity of either the crust or mantle is uniform or both, but this is not very likely [Yuan et al., 2001]. The goal of this
research is, therefore, to create a model which studies the lateral density variations. First, the crustal thickness
will be calculated with isostasy models assuming a uniform crustal and mantle density. Next, a synthetic planet
will be created to study the behavior of the model.
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The main research question for this thesis research is:

Can lithospheric density models, obtained by gravity inversion, be related to the Martian geological history?

The sub-questions that need to be answered to be able to answer this main research question are:

1. What types of lithosphere models are available?

• What types of isostasy models are used in literature?

• What is the difference between local isostasy models and regional isostasy models?

• How can these models be implemented in MATLAB, using the GSH package?

• What is the effect of changing the input parameters of these isostasy models?

2. How can synthetic planets be modeled realistically?

• What methods can be used to model synthetic planetary topographies and densities?

3. What is the available topography and gravity data of Mars?

4. How can the lateral density variations be computed using an inversion model?

• How can the inversion be implemented?

• How can the crustal and mantle density be obtained from a single inverted density?

• What is the effect of varying the different inversion parameters?

5. What is the effect of changing the parameters of the synthetic planet on the inversion?

• What is the effect of adding topography and/or a crust-mantle boundary?

• What is the effect of varying the input parameters of the reference model?
These input parameters are: Te , C , ρc , ρm , and E .

• What is the effect of adding deep mantle density variations?

6. What are the obtained density variations within the lithosphere of Mars?

• What are the effects of changing the parameters of the reference model?
These input parameters are: Te , C , ρc , ρm , and ∆ρ.

7. How does the obtained lithosphere model compare to the existing lithosphere models?

• What are the differences between the existing models and the obtained model?

• How do the obtained density values compare to geological mapping?

• How do the obtained density values compare to meteors believed to originate from Mars and Martian
rock analysis from landers?

• Which improvements can be made to the model?

In chapter 1 an introduction to Mars and its geological history was given. Also, the research questions were intro-
duced. The available data, as well as an introduction to the theory, will be given in chapter 2. The methodology
will be further explained in chapter 3. In chapter 4 the verification and validation of the data, as well as the model,
will be performed. The results of the power spectrum analyses and two-layer model will be given in chapter 5.
The results and discussion of the Martian inversion results will be given in chapter 6. In chapter 7 the obtained
results will be concluded, and recommendations for further research will be given.
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2
Theory

In this chapter, the theory behind this research will be introduced. The crust-mantle boundary will be calculated
using isostasy methods. Two types of isostasy methods are available, local and flexural isostasy. These methods
will be explained in section 2.1. The input for the isostasy will be the topography of the planet. The available
topographic data for Mars is given in section 2.2. The Martian gravity data is given in section 2.3, which is used as
the input for the inversion. Lastly, the power spectrum is explained in section 2.4.

2.1. Isostasy
In this research, an isostasy model will be used to create a crustal model for Mars. Different isostasy models
can be used to relate the observed topography on planets to the crust-mantle boundary. The idea of isostasy is
based on Archimedes’ principle and the principle of buoyancy, where it is believed that the rigid crust ’floats’
on the denser mantle. There are different kinds of isostasy models based on different assumptions. The oldest
models are the Airy and Pratt isostasy models, dating back to around 1855 [Airy, 1855]. These are the so-called
local compensation models, where it is assumed that when the topography of the planet is divided into different
columns, the columns can move separately from each other without any friction. When this is assumed, the
topographic features are compensated locally. Other models, where it is assumed that the different columns can
not move separately from each other, are the regional compensation or flexural models. Where it is assumed that
the lithosphere as a whole bends when a load is applied to it. Two of these models which will be explained are the
infinite plate model and the thin shell model.
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Figure 2.1: General representation of Airy isostasy.
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Figure 2.2: General representation of Pratt isostasy.
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2.1.1. The Airy–Heiskanen Model
In Figure 2.1 the basic model of Airy isostasy is given. Airy isostasy assumes that the differences in the height of
the topography are caused by differences in crustal thickness. A uniform crustal density and mantle density are
assumed with variations in crustal thickness. From this, together with Pascal’s law and the principle of buoyancy,
the following equation can be obtained:

t1ρ1 = t2ρ2 = ... = tnρn . (2.1)

In this equation t1, t2 and tn are the thicknesses of the respective columns up to the depth of compensation, with
corresponding densities ρ1, ρ2 and ρn . In Figure 2.1 h1 is the difference between the topography and the reference
ellipsoid, b1 is the thickness of the crustal roots, c is the zero-load crustal thickness, ρc is the density of the crust
and ρm is the density of the mantle. Therefore, where in Equation 2.1 cn is the crustal thickness for the whole
column, this can now be rewritten to: cn = h1 + c +b1 for the middle column in Figure 2.1. With this information
the following equation can be obtained:

(h1 + c +b1)ρc = cρc +b1ρm . (2.2)

Rewriting this gives:

b1(ρc −ρm) =−h1ρc −> b1 = h1ρc

ρm −ρc
. (2.3)

The same calculation can be done for a ravine, as shown in the right column of Figure 2.1. In this figure h2 is the
deepness of the ravine and b2 is the bulge caused by the rise of the mantle. It is assumed that the atmosphere can
be neglected, for ρatm << ρc . This leads the following equation:

cρc = b2ρm + (c −h2 −b2)ρc +h2. (2.4)

Rewriting this gives Equation 2.5, which is equal to Equation 2.3.

h2(ρc ) = b2
(
ρm −ρc

) −> b2 = h2ρc

ρm −ρc
. (2.5)

Airy isostasy is based on local compensation, and when loads are applied, there is no resistance to bending. Each
column in the Airy model can move without friction from the other columns. Watts [2001] introduces the flexural
response function to describe the effect of the flexural models. This function is the ratio between the deflection
of the lithosphere and the geological loads. Where the geological loads are the input and the deflection of the
lithosphere is the output. Therefore the flexural response function can vary between 0 and 1, where 0 means
no local compensation and 1 means fully local compensation. This results in the flexural response function, per
spherical harmonic (SH) degree n, for Airy given by:

Φ(n)Airy = (1)−1. (2.6)

2.1.2. Pratt–Hayford Model
In Figure 2.2 the basic model of Pratt isostasy is presented. Pratt isostasy assumes that the differences in the height
of the topography are caused by variations in the density of the crust. It, therefore, assumes a constant mantle
density, a constant crust-mantle boundary, and varying crustal density. From this, the following equation can be
obtained, again assuming that the density of the atmosphere can be neglected:

ρ1 = ρc
c

h1 + c
. (2.7)

In this equation ρ1 is the crustal density of segment 1, h1 is the altitude of the segment above the reference ellip-
soid, c is the crustal reference thickness, and ρc is the crustal density.

Each column in the Pratt model can also move without friction from each other, just as in the Airy model. This
results in the flexural response function, per spherical harmonic degree n, given by:

Φ(n)Pratt = (1)−1. (2.8)

8 2. Theory 8
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2.1.3. Regional/Flexural Isostasy
Regional or flexural models assume that the loads are compensated by regional instead of local displacement of
the lithosphere. The load is therefore compensated by a larger area than in the Airy model, resulting in a smaller
maximum crustal thickness. One parameter which is used in the flexural isostasy models is the effective elastic
thickness of the lithosphere, Te . This is a conceptual parameter that describes the strength of the lithosphere.
A higher value of Te corresponds to a stronger lithosphere. The elastic thickness can be related to the flexural
rigidity D with the following equation:

D = ET 3
e

12
(
1−ν2

) . (2.9)

In this equation, E is Young’s modulus, and ν is Poisson’s ratio. The flexural rigidity gives a measure of the "stiff-
ness" of the lithosphere. It relates a certain force to how much it would deflect a non-rigid structure, from which
the thickness of the lithosphere and the viscosity of the mantle can be derived.

Load

Basin
Peripheral 

bulge

Elastic
thickness

Crust mante boundary

Figure 2.3: General representation of Vening Meinesz isostasy.

2.1.4. Infinite Plate Model
The infinite plate model is a simple and commonly used flexural mode. In this model, the lithosphere is simulated
as an infinite plate, which is floating on a viscous mantle. The flexural response function per spherical harmonic
degree n, for the infinite plate model, is given by Watts [2001]:

ΦInf. plate (n) =
[

1+ D(
ρm −ρc

)
g

(
2n +1

2R

)4]−1

. (2.10)
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Figure 2.4: The flexural response function for the infinite plate model with varying values of the elastic thickness.

In Figure 2.4 the flexural response function for three different values of the elastic thickness is plotted. Visible is
that the flexural response function produces a similar curve for the different elastic thicknesses but has a shift to

9 2. Theory 9
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the left for increasing values of Te . This means that for larger values of Te the loads become less locally and more
regionally compensated. From this, as well as from Equation 2.10, it can be found that when Te reaches 0, the
flexural response function for the infinite plate model is equal to that of the local compensation models.

2.1.5. Thin Shell Model
The infinite plate model is a representation that is more often used on Earth and gives a reasonably good repre-
sentation for the shorter wavelength features. This is because the curvature of a planet does not have an influence
on these shorter wavelengths, but for larger wavelengths, the curvature does have an effect. The radius of Mars is
almost twice as small as that of Earth, and therefore Mars has a much larger curvature. The Gaussian curvature
of a sphere would be K = 1

r 2 . This would mean that the Gaussian curvature on Mars would be four times the

Gaussian curvature of Earth: KMars = 1
(0.5REarth)2 = 4 1

R2
Earth

= 4KEarth.

With the large features, such as the Tharsis region, and the small radius of Mars, this curvature is expected to
have a significant effect and therefore can not be neglected, as is the case for the infinite plate model. A model
where the curvature of a planet is taken into account is the thin shell model. The thin shell model was first derived
by Harry Kraus [Kraus, 1967]. The flexural response function for the thin shell model is given by Qin [2021]:

ΦThin shell (n) =
[

1+ D

(ρm −ρc )g

(
1

R4

[n(n +1)−2]2

1− 1−ν
n(n+1)

+ 12(1−ν2)

T 2
e R2

1− 2
n(n+1)

1− 1−ν
n(n+1)

)]−1

. (2.11)

The flexural response functions for the types of isostasy models are given in Table 2.1. A comparison of the two
flexural isostasy models is given in Figure 2.5. Visible is that for smaller values of Te , the two functions converge
towards each other. This is because both converge towards the flexural response function of local isostasy when Te

approaches 0. The main difference between these two flexural response functions is the immediate drop (for n >
1) for the thin shell model. This is due to the large wavelength features, which correspond to the small spherical
harmonic degrees, being compensated partially by the curvature of the planet. For larger spherical harmonic
degrees, the two flexural response functions converge again. This is because the smaller wavelength features, or
lack thereof, are compensated in a similar matter. This shows that the main difference between the two flexural
response functions has to do with taking the curvature of the planet into account.

Table 2.1: The flexural response function for the different isostasy models. Both for local, Airy and Pratt, as well as flexural, infinite plate model
and thin shell model, isostasy models the flexural response function is given.

Isostasy model Flexural Response Function
Local isostasy Airy and Pratt Φlocal(n) = (1)−1

Flexural isostasy Infinite plate model ΦInf. plate (n) =
[

1+ D
(ρm−ρc )g

( 2n+1
2R

)4
]−1

Flexural isostasy Thin shell model ΦThin shell (n) =
[

1+ D
(ρm−ρc )g

(
1

R4
[n(n+1)−2]2

1− 1−ν
n(n+1)

+ 12(1−ν2)
T 2

e R2

1− 2
n(n+1)

1− 1−ν
n(n+1)

)]−1

Looking at the equations in Table 2.1 for the flexural response function, it can be seen that they expand upon one
another. The flexural response function of both the infinite plate model and the thin shell model features an addi-
tional term with respect to the local isostasy model. This term represents the bending of the lithosphere. For the
flexural response function of the thin shell model, this extra term also represents the membrane stresses. In this
model, the curvature of the planet is taken into account. The difference in adding this curvature to the flexural
response function is visible in the lower spherical harmonic degrees in Figure 2.5. Visible is, next to the drop for
degree 0, for degree 1, all FRF models are equal to 1.

These flexural response functions can be used to obtain the crust-mantle boundary from the Airy crust-mantle
boundary. The flexural response function can be used as a filter to the spherical harmonic representation of the
crust-mantle boundary obtained by Airy isostasy. This filtering was described by Mussini [2019]:

Mlm = AlmΦ(n). (2.12)

In this equation Mlm is the spherical harmonic representation of the new crust-mantle boundary, Alm is the
spherical harmonic representation of the crustal thickness profile from the Airy model, and Φ(n) is the flexural
response function of either the infinite plate model or the thin shell model, given in Equation 2.10 and Equa-
tion 2.11.
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Figure 2.5: The flexural response function for the infinite plate model and thin shell model, with varying values of the elastic thickness.

2.2. Martian Topography
Current topographic models for Mars are mostly based on the Mars Orbital Laser Altimeter (MOLA). MOLA was
launched in 1997 in the frame of the Mars Global Surveyor (MGS) mission [Delacourt et al., 2011]. During a pe-
riod of four years (from 1997 to 2001), measurements were performed, which the current topography models use
as their main data source. The most accurate topography data-set is MarsTopo2600 and goes up to spherical
harmonic degree 2600 [Wieczorek, 2007]. The main limitation of this technique appears when a Digital Eleva-
tion Model (DEM) or a topographic map is required. To create such a map, an interpolation on individual MOLA
measurements on regular grids is required, which requires very intensive computation and large disk capacities
[Delacourt et al., 2011]. The MOLA instrument covered the surface of Mars with a dense network of precise mea-
surements of surface elevation [Kreslavsk and Head III, 2000]. Other data was obtained by the High-Resolution
Stereo Camera (HRSC) on board the European Space Agency’s Mars Express (MEX) spacecraft. This data was com-
bined to a resolution of 200 meters per pixel into the "Mars MGS MOLA - MEX HRSC Blended DEM Global 200m
v2" data set.

The MOLA instrument fired infrared laser pulses downward ten times per second and measured the time it took
for the reflected pulses to return from the surface. 600 million measurements were gathered by MOLA between
1999 and 2001. This originally had an average accuracy of 1̃00m for each point in the horizontal position, and the
uncertainty in elevation is at least 3 m. This uncertainty in elevation is due to the global error in the areoid and
regional uncertainties in its shape. MOLA produced a global topographic coverage with a spatial resolution at the
equator of 300 m by 1000 m, and the resolution is even better near the poles. The MOLA topography is shown in
Figure 1.1.

The MOLA topographic data used in this study was obtained from PDS Geoscience Node1. The used data type is
the MOLA Mission Experiment Gridded Data Records (MEGDRs), which are global topographic maps of Mars cre-
ated by binning altimetry values from the MOLA PEDR products acquired over the entirety of the MGS mission.
These MEGDR maps are available in 4, 16, 32, 64, and 128 pixels per degree. Next to the topographic maps, differ-
ent maps are available as well. These are elevation maps with respect to the areoid, a model for the equipotential
surface of Mars, which is analogous to the so-called "sea level" on Earth and the planetary radius as recorded by
the MOLA instrument. Next to this, also a map giving the counts, which is the number of observations used to
construct the above-mentioned maps per cell in the map, is available. The topography is plotted in Figure 1.1 for
16 pixels per degree.

2.3. Martian Gravity
The first high-resolution gravity models of Mars were determined by combing the Mariner 9 and Viking 1 and 2
Orbiters S-band Doppler tracking data. This data was obtained from 1969 to 1979 [Smith et al., 1993]. This model
was not uniform due to the high eccentricity of the missions [Konopliv et al., 2016]. The first global uniform gravity

1Last accessed 12-04-2022, https://pds-geosciences.wustl.edu/missions/mgs/megdr.html
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model was determined by the Mars Global Surveyor (MGS). The MGS orbiter had an almost circular polar frozen
orbit with a periapsis of approximately 380 km [Konopliv et al., 2016].

Figure 2.6: A global map of a Martian gravity anomaly based on the MRO120D gravity model. The gravity is corrected for the SH terms C00,
C10, C11, S11, and C20 and is plotted up to SH degree 90. The colorbar is truncated for a gravity anomaly of ± 800 mGal. The MRO120D data
is obtained from https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/.

2.3.1. Gravity Representation
The aforementioned gravity models represent the gravity in its spherical harmonic form. In spherical harmonics,
the gravity is represented in Stokes (Cnm) coefficients for varying degree (n) and order (m). The gravitational
potential in spherical harmonic representation can be described with the following equation [Wieczorek, 2007]:

U (r ) =−GM

r

∞∑
n=0

n∑
m=−n

(
R0

r

)n

CnmYnm(θ,φ), (2.13)

where G is the gravitational constant, M is the mass of the body, r is the radial distance from the center of mass
of the body at which the gravitational potential is measured, R0 is the reference radius, and θ and φ are the plane-
tocentric co-latitude and longitude respectively at position r . The stokes coefficients with negative order, Cn,−m ,
are also referred to as Snm . In the equation Ynm(θ,φ) is the spherical harmonic function for degree n and order m
described by:

Ynm(θ,φ) =
{

P̄nm(cos(θ))cos(m)φ, m ≤ 0

P̄n|m|(cos(θ))sin(|m|)φ, m < 0
(2.14)

where P̄ is the Legendre function after normalisation described by:

P̄nm(µ) =
√

(2−δ0m)(2n +1)
(n −m)!

(n +m)!
Pnm(µ). (2.15)

In the above equation Pnm(µ) are the de-normalized Legendre functions which are related to the Legendre poly-
nomials as follows:

Pnm(µ) = (1−µ2)
m
2

d m

d m Pn(µ), (2.16)

Pn(µ) = 1

2nn!

d n

dµn

(
µ2 −1

)n
. (2.17)

Equation 2.13 can be used to derive the gravitational vector in the radial direction (gr ). The gravitational vector is
related to the gravitational potential as follows: g =∇U . The first derivative with respect to r needs to be taken to
obtain:
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gr = GM

r 2

∞∑
n=0

n∑
m=−n

(
R0

r

)n

(n +1)CnmYnm(θ,φ). (2.18)

In this equation, gr is defined as positive downward. To obtain the gravitational tensor in the r r direction, the
derivative with respect to r from Equation 2.18 needs to be taken to obtain Equation 2.19. The gravitational
tensor is also defined as positive downward.

Tr r =−GM

r 3

∞∑
n=0

n∑
m=−n

(
R0

r

)n

(n +2)(n +1)CnmYnm(θ,φ). (2.19)

2.3.2. MRO120D and GMM-3
One of the highest resolution gravity models of Mars at this moment is the MRO120D. This is a gravity model with
a maximum spherical harmonic degree and order of 120, and the data from the Mars Reconnaissance Orbiter
was used as the primary data. Next to this, data from the Mars Odyssey mission and the Mars Global Surveyor is
included. Also, data from the Pathfinder, Viking Lander, and MER Opportunity are included. The MAVEN mission
is one of the newer missions, launched in 2013, which have not been added to the current data-set yet, as well as
data from the Mars InSight lander.

Another high-resolution gravity model is Goddard Mars Model-3 (GMM-3), available from Geosciences Node of
the Planetary Data System. This model determined the static and time-varying gravity field of Mars by analyz-
ing the radio tracking data of the three NASA orbiters: MGS, ODY, and MRO [Genova et al., 2016], just like the
MRO12D model. Both use three different types of interplanetary radio links. 1-way Doppler is the direct trans-
mission of the signal from the spacecraft to the Deep Space Network (DSN) station. With a 2-way Doppler, the
transmission of the signal is done by a DSN station and sent coherently back to the same station by a transponder
on the spacecraft. 3-way Doppler is similar to 2-way Doppler, with the only difference being that the transmitting
and receiving antennas are on Earth [Genova et al., 2016].

Figure 2.7: A power spectrum comparison of the GMM-3 and
MRO120Dgravity data sets.

Figure 2.8: The gravitational tensor in the zz direction obtained
from the MRO120D data set. The top plot shows the result from
spherical harmonic degree 1 to 90 and the bottom plot shows
the same plot, but with the spherical harmonic terms C00, C10,
C11, S11, and C20 removed.
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The resolution of the MRO120D data-set is up to a spherical harmonic degree 120, but the actual global resolu-
tion is close to degree 95 [Konopliv et al., 2016]. Around spherical harmonic degree 95, the standard deviation
becomes larger than the actual data. This is also the case for the GMM-3 data set.

The data in this study was obtained from PDS Geoscience Node2. Both the GMM-3 as well as the MRO120D
data set are available on PDS Geoscience Node. The power spectrum of both models are plotted in Figure 2.7.
Visible is that up to approximately spherical harmonic degree 110, the models very closely follow each other, with
differences approximately 5 orders lower than the actual signal. Because the models are only accurate up to de-
gree 95, the parts that do differ from each other are anyways not included in the rest of the report.

The data will be converted using the SH toolbox, explained in subsection 2.3.4 from the spherical harmonic do-
main to the spatial domain. In this study, the MRO120D gravity data set will be used. The gravitational tensor in
the zz direction, obtained after GSHS at the height of 150 km, is plotted in Figure 2.8. The spectrum is also plotted
for 0 ◦ E to 360 ◦ E instead of the usual -180 ◦ E to 180 ◦ E. From now on, both the topography and the gravity plots
will be plotted from -180 ◦ E to 180 ◦ E, which will be represented as 180 ◦ W to 180 ◦ E.

2.3.3. Gravity Anomaly
The gravitational field of a planet is directly related to its mass distribution. When a planet has relatively large
masses on the surface, as for instance is the case for Mars with its large volcanoes, this mass can increase the
gravity profile around these volcanoes. One way to get an insight into the planet is by performing gravity re-
ductions based on the topography of the planet. The different spherical harmonic coefficients are connected to
specific mass distributions of the planet. The spherical harmonic term with degree and order 0, C00, represents
the mass of the planet. The degree-1 terms, C10, C11, and S11, give insights into the offset of the center of mass
from the center of the planet. The degree-2 and order-0 term, C20, represents the flattening of the planet [Wiec-
zorek, 2007]. Therefore, when the crust and mantle are analyzed, often these mentioned coefficients are removed
from the gravity signal, resulting in a gravity anomaly (GA). This is the gravity correction that has been used for
the Martian gravity.

2.3.4. Forward Gravity Modelling
When the topography and density layers of a planet are known, a forward model can be used to derive the gravity
of this planet. This forward model calculation can be performed using the toolbox provided by Root and Ver-
meersen [2016]. Using this toolbox, both Global Spherical Harmonics Synthesis (GSHS) and Global Spherical
Harmonics Analysis (GSHA) can be conducted. With GSHS the data is converted from the spherical harmonic
into the spatial domain. The GSHS software can be used to construct the components of gravitational fields( po-
tential and vectors) and components of gravitational tensors from the data, together with several parameters of
the planet. With GSHA this conversion can be performed the other way around. The data can be converted from
the spatial into the spherical harmonic domain. Initially, the spherical harmonic toolbox was designed for Earth.
With some adaptation, this toolbox can also be applied to other bodies as well as making the transformation be-
tween the spatial and spherical harmonic domain for other spatial-distributed parameters such as the topography
or the crust-mantle boundary, as shown by De Backer. van der Tang [2021] also showed that this toolbox works
for adding density anomalies to the mantle of a planet.

2.4. Power Spectrum
One possibility to relate the gravity to the topography of a planet is the comparison of the power spectrum [Watts
and Moore, 2017]. The power spectrum is sometimes also referred to as the degree-variance and shows how much
energy is stored per spherical harmonic degree.

2.4.1. Gravity Power Spectrum
The power spectrum for the gravity field, at a given degree n, can be calculated by summing the square of all
coefficients as follows:

σGA(n) =
√∑

m
C 2

nm +S2
nm , (2.20)

where Cnm and Snm are the spherical harmonics coefficients of the gravity field model for degree n and order m.

2Last accessed 12-04-2022, https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/
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The coefficients in Equation 2.20 are not the Stokes coefficients but should be the spherical harmonic coeffi-
cients of certain mass anomalies. First, the correct coefficients need to be obtained. For the used gravity anomaly
of Mars, the C00, C10, C11, S11, and C20 terms need to be removed. When these terms are removed from the data,
the data then needs to be converted back to the Stokes coefficients using GSHS. Next, the radial component of the
gravitational vector needs to be converted from the spatial to the spherical domain using GSHA.

2.4.2. Topography Power Spectrum
Similar to the gravity power spectrum, the topography power spectrum for spherical harmonic degree n is given
by the following equation [Watts and Moore, 2017]:

σuncomp (n) =
[

4πGρc
n −1

2n +1

]
σtopo . (2.21)

Where σtopo is the power spectrum of topography given by:

σtopo(n) =
√∑

m
T 2

nm +Y 2
nm , (2.22)

where Tnm and Ynm are the spherical harmonics coefficients of the topography model for degree n and order m.

For Airy isostasy the power spectrum is given by:

σairy (n) = 4πGρc
n −1

2n +1

[
1−

(
R −Dc

R

)n+2]
σtopo . (2.23)

And for flexure, either infinite plate of thin shell, the power spectrum can be obtained using the following equa-
tion:

σflexure (n) = 4πGρc
n −1

2n +1

[
1−Φ(n)

(
R −Dc

R

)n+2]
σtopo . (2.24)

The power spectrum for Airy isostasy is equal to the above equation, but with the FRF for Airy, Φ(n)Airy = (1)−1,
filled in. To obtain the power spectrum for the different isostasy models, the FRF of the corresponding model
given in Table 2.1 needs to be filled in.
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3
Methodology

In this study, a gravity inversion will be performed to obtain the lateral density variations within the lithosphere.
The input for the inversion will be the gravity and topography data of a planet, as well as a reference planet for
which the crust-mantle boundary needs to be obtained, and a lower boundary needs to be chosen. The output of
the inversion will be the density of the crust and the mantle with lateral density variations. The goal is to perform
this gravity inversion for Mars and obtain new insights into the Martian lithosphere. Firstly, different synthetic
planets will be created, as will be explained in section 3.1. Synthetic planets consist of a modeled topography
and crustal density pattern. These will be created with the Matérn covariance function, which will be explained
in subsection 3.1.1. The topography will be used to calculate the crust-mantle boundary based on the isostasy
methods explained in the previous chapter. The inversion will be explained in section 3.2. The crust and mantle
density will be calculated from these inversion results, using the volumes of the crustal and mantle layer and a
reference mass for each column, as will be explained in section 3.3. Different types of synthetic planets will be
created to be able to determine for what type of planets this gravity inversion does or does not work. Lastly, the
inversion modeling for Mars will be explained, given in section 3.4.

3.1. Creation of the Synthetic Planets
This section will go into how the synthetic planets will be created. First, the Matérn covariance function will
be explained, which is used to obtain the topography and density variations for the synthetic planet. Next, the
flexural modeling is explained, which is used to obtain the crust-mantle boundary.

3.1.1. The Matérn Covariance Function
Crustal profiles and density profiles need to be created to make a realistic model synthetic planet. One way to
realistically model these profiles is through the Matérn isotropic class. In this study, this method will be used to
create realistic topography and density profiles. In [Gneiting et al., 2010] the covariance function is defined as
σ2M(|h|ν,α). In this σ2 > 0 is the marginal variance and

M(|h|ν,α) = σ221−κ

Γ(κ)
(α∥h∥)κKκ(α∥h∥) (3.1)

is the spatial correlation at distance |h∥. The spatial correlation equation is defined by the scale parameter α> 0,
the smoothness parameter κ> 0 and the gamma function of x, Γ(x). Kκ(x) is the modified Bessel function and is
given by the following equation

Kκ(x) = π (I−κ(x)−Iκ(x))

2sin(κπ)
. (3.2)

Iκ(x) is the Bessel function of the first kind and is given by

Iκ(x) =
∞∑

m=0

1

m!Γ(m +κ+1)

( x

2

)2m+κ
. (3.3)

As stated above, the above equations are given in the spatial domain. In [Gneiting, 2013], it has been shown that
the Matérn covariance function could be expressed on the sphere with the following equation

M(ψ) = σ221−κ

Γ(κ)
(αψ)κKκ(αψ). (3.4)
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In this equation ψ is the great circle distance, where ψ ∈ [0,π]. The constraints on the variance, scale parameter
and smoothness parameter are respectively σ2 > 0, α > 0 and 0 < κ ≤ 1

2 . Equation 3.4 can be rewritten, using an

alternate parametrization ϵ= 2
p
κ

α , to

M(ψ) = σ221−κ

Γ(κ)

(
2
p
κ

ϵ
ψ

)κ
Kκ

(
2
p
κ

ϵ
ψ

)
. (3.5)

This alternative parametrization is used because in Equation 3.4 there is mutual coupling because the behavior
of α is coupled to κ. In Equation 3.5 ϵ solves this coupling problem, and this results in an easier interpretation of
the parameters, which can be interpreted as follows: σ2 represents the value which is approached when ψ→ 0, κ
gives a measure of the smoothness around the origin, and ϵ, the decorrelation distance, represents the decay of
the covariance function with ψ.

The constraint on κ, for the spherical representation of the Matérn covariance function, is a limiting constraint
for many applications. This is due to the fields created with a low value of κ not being smooth. In [Guinness and
Fuentes, 2016] a few different workarounds for the problem of limited smoothness in the spherical case are pre-
sented. One of these workarounds is the chordal Matérn covariance function Mc (ψ). In this function, the great
circle distance ψ is replaced by the Euclidian distance 2sin( 1

2 ), resulting in the following equation:

Mc (ψ) =σ2
(
2αsin

ψ

2

)v
Kκ

(
2αsin

ψ

2

)
. (3.6)

Using again the alternate parametrization, ϵ= 2
p
κ

α , the following equation can be obtained:

Mc (ψ) = σ221−κ

Γ(κ)

(
4
p
κ

ϵ
sin

ψ

2

)κ
Kκ

(
4
p
κ

ϵ
sin

ψ

2

)
, (3.7)

with σ2 > 0, ϵ > 0 and κ > 0. In Figure 3.1 and Figure 3.2 the chordal Matérn covariance function is plotted for
variations in ϵ and κ, respectively.

This chordal Matérn covariance function is used as input to the MATLAB function MVNRND, which generated a
matrix of random vectors chosen from the multivariate normal distribution with mean a chosen average and the
chordal Matérn covariance matrix as input for the covariance matrix. For this function, a random number gen-
erator is used. This random number generator will be set to a specific seed to be able to regenerate the obtained
topography and densities. The output of this function is used to create the topography and density profiles for
the synthetic planet.

Figure 3.1: The chordal Matérn covariance function plotted for
different values of ϵ.

Figure 3.2: The chordal Matérn covariance function plotted for
different values of κ.

3.1.2. Flexure modeling
The flexural response function (FRF) of the thin shell model is given in subsection 2.1.5. Using the flexural re-
sponse function, a crustal model based on thin shell isostasy can be created. This will be done using the GSHA
and GSHS toolbox explained in subsection 2.3.4. The spherical harmonic coefficients will be multiplied by the
flexural response function corresponding to that specific degree. This step will be performed between GSHA and
GSHS. In Figure 3.3, the flexural response function of the infinite plate model is applied, and in Figure 3.4, the
flexural response function of the thin shell model is applied. The difference between the two plots, after the FRF
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was applied to the original profile, is plotted in Figure 3.5. The parameters used for the Matérn covariance func-
tion, to obtain the original profiles in Figure 3.3 and Figure 3.4 with, were: σ= 9 km, κ= 1.35, and ϵ= 1. The seed
for the Matérn covariance function was set to 2. The parameters used for flexural response function of the thin
shell model and infinite plate model, are: Te = 400 km, ν= 0.25, and E = 100 GPa.

Figure 3.3: The left figure shows the crustal profile before application of the flexural response function. The right figure shows the same crustal
profile after application of the flexural response function between GSHA and GSHS for the infinite plate model.

Figure 3.4: The left figure shows the crustal profile before application of the flexural response function. The right figure shows the same crustal
profile after application of the flexural response function between GSHA and GSHS for the thin shell model.

Figure 3.5: The difference between the boundary profiles, after GSHA and GSHS, of the thin shell model and the infinite plate model.

The difference plotted in Figure 3.5 shows some large wavelength patterns. These large patterns are expected
when looking at the difference in the FRF, as shown in Figure 2.5. It is visible that for Te = 200 km, the FRF starts to
converge around SH degree 13. For Te = 400 km, this conversion already happens around SH degree 8. Therefore,
the differences observed in Figure 3.5 are represented by these lower SH degree terms. The main visible terms are
the degree 3 and degree 4 terms, for which the difference in FRF is the largest.
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3.2. Inversion
In this research, an inversion method will be used to calculate the crustal and upper mantle densities from gravity
data. Inverse modeling is the reverse of forward modeling: y = F (x). In the case of forward modeling, the model
F is known, and the parameters x too, from which the observations, y , can be calculated in a forward manner.
In the inverse model, the observations y are known, as well as the model F , and the parameters x need to be
calculated. If the model is linear, a linear least-squares method can be used. In the next subsection, this method
will be explained. The information was obtained from Schrama [2019].

3.2.1. Weighted Linear Least-Squares
The least-squares (LSQ) was invented by the German mathematician Carl Friedrich Gauss. He used this method
to predict the position of Ceres in the asteroid belt [Gauss, 1887]. In this section, the linear least-squares method
with an observation covariance matrix Py y will be explained. A covariance matrix is a matrix with on the diagonal
the variance of the observations, and the other elements of the matrix represent the covariance between the ob-
servations. If there is no correlation between the observations, the covariance matrix will only contain values on
the diagonal. In the linear least-squares method, the observations are represented by the observation data vector
ȳ , the model is denoted as the design-matrix or the information-matrix A, and parameters are represented in the
parameter vector x̄. The general formulation of the least-squares problem is:

ȳ = Ax̄ + ε̄. (3.8)

With in this equation ε̄ the error between the model and the observations, which need to be minimized. This is
minimized with the cost function J = ε̄t P−1

y y ε̄. Equation 3.8 is rewritten into ε̄ = ȳ − Ax̄ and substituted into the
cost function, resulting into:

J = ȳ t P−1
y y

(
ȳ − Ax̄

)− x̄ t At P−1
y y

(
ȳ − Ax̄

)
. (3.9)

In order to minimize this cost function, a nonzero vector x̂ needs to be found that minimizes the second term.
This is because the first term on the right hand side cannot be minimized when Ax̂ approximates ȳ . This results
in:

x̂ t At P−1
y y

(
ȳ − Ax̂

)= 0. (3.10)

This equation can be rewritten into:

At P−1
y y Ax̂ = At P−1

y y ȳ −> x̂ =
(

At P−1
y y A

)−1
At P−1

y y ȳ . (3.11)

The above equation can be written as:

x̂ =
(

At P−1
y y A

)−1
At P−1

y y ȳ = B ȳ . (3.12)

Then the covariance matrix of the parameters, Pxx , can be written as: Pxx = BP−1
y y B t . Therefore, the parameter

covariance matrix becomes:

Pxx =
(

At P−1
y y A

)−1
At P−1

y y P−1
y y Py y A

(
At P−1

y y A
)−1 =

(
At P−1

y y A
)−1

. (3.13)

3.2.2. Tikhonov Regularization
Using the Least squares method, it can happen that the Moment matrix (At P−1

y y A) becomes near-singular. When
this happens, the errors in the inversion significantly increase. One way to solve this is by using the Tikhonov
regularization.

With Tikhonov regularization, a constant element is added to the diagonal of the Moment matrix. This results
in the condition number being decreased. The condition number gives a measure of how much the output is
changed for a small change in the input argument. The LSQ equation then becomes:

x̂ =
(

At P−1
y y A+λI

)−1
At P−1

y y ȳ . (3.14)

In this equation, the ridge parameter needs to be optimized. One way to optimize this parameter is using the
L-curve. An example of such an L-curve is shown in Figure 3.7. In the L-curve the solution norm, ||xλ||, is plotted
against the residual norm, ||Axλ−b|| for different values of the ridge parameter λ. The L-curve plots were first
introduced by Hansen [2005]. In this paper, he describes the L-curve as: "The L-curve is a log-log plot of the norm
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of a regularized solution versus the norm of the corresponding residual norm. It is a convenient graphical tool for
displaying the trade-off between the size of a regularized solution and its fit to the given data, as the regularization
parameter varies. The L-curve thus gives insight into the regularizing properties of the underlying regularization
method, and it is an aid in choosing an appropriate regularization parameter for the given data.". The L-curve
plot from Hansen [2005] is given in Figure 3.6. Visible is that for too large values of λ, the residual norm increases,
but the solution norm decreases. For values of λ between 0.01 and 1, the solution norm stays almost the same,
but the residual norm significantly increases. When λ becomes too small, λ < 0.01, the solution norm blows up.
The optimal result is at the point where the combination of the solution norm and residual norm is minimal, in
the horizontal turning point of the L, for λ = 0.01. When the result of the inversion is unknown, the L-curve is a
tool to determine the optimal λ value.

Figure 3.6: The generic L-curve for standard-form Tikhonov reg-
ularization with x0 = 0; the points marked by the circles corre-
spond to the regularization parameters = 105, 104, 103, 102, 101
and 1. Figure obtained from [Hansen, 2005]

Figure 3.7: This figure shows 3 different L-curve plots corre-
sponding to 3 different one-layer inversion models. In this fig-
ure the minimum RMS value between the obtained density vari-
ations of the inversion as well as the original density profile is
given.

3.2.3. Inversion Implementation
In "Mass-density Green’s functions for the gravitational gradient tensor at different heights" [Martinec, 2014],
different forms of the tensor Green’s function are derived for the gravitational potential, vector, and gradient ten-
sor. These are used as a theoretical basis for geophysical interpretations of the GOCE-based gravitational gra-
dients in terms of the Earth’s mass-density structure. The Green’s function for the gravitational gradient tensor,
G = grad grad 1

L , are derived in spherical coordinates (r,ϑ,ϕ). This Green’s function is expressed in terms of the
isotropic components. The function is:

gradgrad
1

L
= 1

r 3

[
Kr r (t , x)er r +2KrΩ(t , x)

(
cosαerϑ− sinαerϕ

)
+KΩΩ(t , x)

(
cos2α

(
eϑϑ−eϕϕ

)−2sin2αeϑϕ
) −1

2
Kr r (t , x)

(
eϑϑ+eϕϕ

)]
.

(3.15)

In this equation α is the azimuth, Ω represents the co-latitude ϑ and longitude ϕ of the computation point, Ω ≡
(ϑ,ϕ), and Kr r (t , x), KrΩ(t , x) and KΩΩ(t , x) are the three isotropic kernels. In these kernels t = r ′

r , with r and
r’ the magnitudes of vectors r⃗ and r⃗ ′. r⃗ and r⃗ ′ are the computation point and integration point, respectively,
and x = cos(ψ) with ψ the angular distance. The isotropic kernels are given by an infinite series of Legendre
polynomials P j m(x) of the azimuthal order m = 0, 1 and 2, respectively, and their first and second derivatives,
given in Equation 3.16.

Kr r (t , x) =∑∞
j=0( j +1)( j +2)t j P j (x),

KrΩ(t , x) =−
p

1−x2 ∑∞
j=0( j +2)t j dP j (x)

d x ,

KΩΩ(t , x) = 1
2

(
1−x2

)∑∞
j=0 t j d 2P j (x)

d x2 .

(3.16)
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These equations can be rewritten to the closed forms of the isotropic kernels of the mass-density Green’s function
for the gravitational gradient tensor. These equations are given in Equation 3.17.

Kr r (t , x) =− 1
g 3 + 3(1−t x)2

g 5 ,

KrΩ(t , x) =−
p

1−x2 3t (1−t x)
g 5 ,

KΩΩ(t , x) = 1
2

(
1−x2

) 3t 2

g 5 .

(3.17)

In these equations g ≡ g (t , x) =
p

1+ t 2 −2t x, −1 ≤ x ≤ 1, 0 < t ≤ 1. These isotropic Kernels are plotted in Fig-
ure 3.8 for a computation-point heights of 250 km. It is visible that Kr r has its maximum for ψ= 0 degrees.

The gravitational gradient tensor can be decomposed into three second-order tensors:

Γ=Γr r +ΓrΩ+ΓΩΩ. (3.18)

Γr r is the vertical-vertical gravitational gradient, ΓrΩ is the vertical-horizontal gravitational gradient and ΓΩΩ is
the horizontal-horizontal gravitational gradient. They are given by the following equations:

Γr r = Dr r

[
er r − 1

2

(
eϑϑ+eϕϕ

)]
, (3.19)

ΓrΩ = 2Drϑerϑ−2Drϕerϕ, (3.20)

ΓΩΩ = Dϑϑϕϕ

(
eϑϑ−eϕϕ

)−2Dϑϕeϑϕ. (3.21)

Which are expressed by five radially dependent functions:

Dr r (r ) = κ

r 3

∫
V
ϱ

(⃗
r ′)Kr r (t ,cosψ)dV , (3.22)

{
Drϑ(r )
Drϕ(r )

}
= κ

r 3

∫
V
ϱ

(⃗
r ′)KrΩ(t ,cosψ)

{
cosα
sinα

}
dV , (3.23)

{
Dϑϑϕϕ(r )

Dϑϕ(r )

}
= κ

r 3

∫
V
ϱ

(⃗
r ′)KΩΩ(t ,cosψ)

{
cos2α
sin2α

}
dV. (3.24)

In these equations ϱ
(⃗
r ′) is the mass density function. These radially dependent functions show the dependency

of Kr r (t ,cosψ), KrΩ(t ,cosψ) and KΩΩ(t ,cosψ) on, the depth of the mass element dm = ϱ
(⃗
r ′)dV , the spherical

distance ψ between the mass element dm and the computation point, and the azimuthal direction α of mass
element dm with respect to the computation point.
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Figure 3.8: The sensitivity of the three different isotropic kernels for different angular distanced. A planetary radius of 3396 km is used, equal
to the radius of Mars. The kernels are computed at a height of 250 km and a depth of 150 km and based on the closed form equations given in
Equation 3.17.
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As can be seen in Figure 3.8, only Kr r is sensitive for an angular distance of ψ = 0. The density underneath the
computation of the gravity field needs to be calculated. Therefore the isotropic kernel, and gravitational tensor
data, in the radial-radial direction will be used.

The design-matrix for the least-squares inversion can be related to the vertical-vertical gravitational gradient,
which is related to the radially dependent function Dr r . The planet is divided into different columns. For each
column, the density will be calculated. This will result in the density being obtained for each column, of which
the volume is known. Because the volume is known, the vertical-vertical gravitational gradient then becomes:

Tzz = G

r 3 ρKr r V. (3.25)

This equation then needs to be split into the least-squares equation: ȳ = Ax̄ + ε̄. This results into ȳ = Tzz ,
A = G

r 3 Kr r V , and the output x̄ = ρ. The input tensor is a matrix in which each value represents one column of
the planet. The volume and density will have the same matrix representation.

This finally results into the following input and design matrix:

y = Tzz,input, (3.26)

A = GV Kr r

(R +h)3 . (3.27)

In these equations R is the radius of the planet and h is the computation height of the gravitational tensor input.

3.2.4. Inversion Iterations
A single inversion does not always result in a fully converted result. Depending on the input model, multiple
iterations were sometimes needed to achieve a fully converted inversion. To solve this, the gravity of the inversion
results will be subtracted from the initial input gravitational tensor. This can be described as follows:

ȳ = Tzz,input −Tzz,inversion (3.28)

The same design-matrix was used for the inversion. The density output from the second iteration was then added
to the density profile obtained from the first iteration. This was performed until ȳ was smaller than a set threshold
or a maximum number of iterations were performed.

3.2.5. Two-Layer Inversion
Next, the one-layer inversion is changed to a two-layer inversion. The inversion is called the two-layer inversion
because the gravity of a planet with at least 2 layers is used as input.

Synthetic Model

Lower boundary:     
-500 km

Cross section        
2- layer model

Crust

Mantle

Lower boundary:     
-500 km

Defined average 
crustal thickness

Crust

Mantle

Reference Model
Varying  topography, 

known

Crust-mantle 
boundary -> thin 

shell model

Crust-mantle 
boundary

Varying 
density

Uniform 
density

Figure 3.9: A schematic representation of both the synthetic planet and the reference model in the two-layer inversion.

The single layer output density was next used to calculate the density of both the crust and mantle. How the two
densities, for the crust and mantle, are obtained from the single density output of the inversion is explained in
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section 3.3. As input for the inversion, the gravity of the (synthetic) planet will be used. This could either be the
gravitational potential, the gravitational vector in the z-direction, or the gravitational tensor in the zz direction.
From the gravity field of the planet, the gravity of a chosen reference model will be subtracted. This reference
model will be a two-layer model with uniform crustal and mantle density, as shown in Figure 3.9.

The topography of this reference model will be equal to the topography of the planet, and the crust-mantle bound-
ary will be obtained using thin shell isostasy. The lower boundary will be set to a uniform depth. This will result
in the following three observation data vectors:

ȳ =Vplanet −Vref, ȳ = gz,planet − gz,ref, or ȳ = Tzz,planet −Tzz,ref. (3.29)

This will result into three different design matrices respectively:

A = GV K

(R +h)
, A =− GV Kr

(R +h)2 , or A = GV Kr r

(R +h)3 . (3.30)

The effect of using the different types of gravitational data will be studied, as well as the influence of varying the
ridge parameter of the Tikhonov regularization, λ.

The output of this inversion method will be a single density. From this single density, the crust and mantle density
will be obtained using the method explained in section 3.3. These new densities are used to calculate the gravity
of the "new" reference model. This reference model is the same as the initial reference model, except that the uni-
form densities for both the crust and the mantle are changed to the densities obtained in the previous iteration.
The iterations are run until the observation data vector becomes smaller than a set threshold.

It was found that for the inversion of the two-layer model, the signal was largely dampened. Therefore, many
iterations were needed until the inversion converged. To speed up this process, the inversion result was multi-
plied by a multiplication factor. This new increased result was then used for the density calculations explained in
the next section.

3.3. Density calculations
As explained above, the single density of the inversion output needs to be split into two densities. The idea is to
split the single layer into two sections, the crust and the mantle, and place the mass of this volume in the center
of mass of this volume. Splitting the crust and the mantle results in 2 volumes: Vc for the crust and Vm for the
mantle. These volumes can be calculated with triple integrals in spherical coordinates:

V =
∫ ∫ ∫

dV −> V =
∫ ∫ ∫

r 2 sin(φ)dr dφdθ. (3.31)

Using these integrals the volume of the crust and mantle, shown in blue and orange respectively in Figure 3.10,
can be calculated. Integrating the above equation from θ1 to θ2, φ1 to φ2 and from r1 to r2, results into:

V =
∫ θ2

θ1

∫ φ2

φ1

∫ r2

r1

r 2 sin(φ)dr dφdθ −> V =
∫ θ2

θ1

dθ
∫ φ2

φ1

sin(φ)dφ
∫ r2

r1

r 2dr. (3.32)

V = (θ2 −θ1)(cos(φ1)−cos(φ2))
1

3

(
r 3

2 − r 3
1

)
. (3.33)

Looking at Figure 3.10, the equations for r1 and r2 for the crustal volume can be derived, which are equal to:
r1 = (RM − c) and r2 = (RM +h). Plugging these values into Equation 3.33 gives the following equation:

Vc = (θ2 −θ1)(cos(φ1)−cos(φ2))
1

3

(
(RM +h)3 − (RM − c)3) . (3.34)

The equations for r1 and r2 for the mantle can also be derived from Figure 3.10, and are equal to: r1 = (RM −dref)
and r2 = ((RM − c). This gave the volume for the mantle to be equal to:

Vm = (θ2 −θ1)(cos(φ1)−cos(φ2))
1

3
≤ (

(RM − c)3 − (RM −dref)
3) . (3.35)
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Figure 3.10: This figure shows how taking a grid from a planet with a crust, mantle and topography translates to the volumes of the crust and
mantle.

Now that the volumes are known, the center of mass (CM) of both the crust and the mantle need to be calculated.
Because the observed grid is symmetric, the CM will always be on the line from the center of the planet to the
middle of the grid, the line of symmetry. Therefore only the z position of the CM needs to be calculated. The
definition of the CM for a 3D sphere could be defined as:

zC M =
∫ ∫ ∫

z ′dV∫ ∫ ∫
dV

. (3.36)

In this equation z ′ = r , when the center of mass is in the radial direction of the planet. This gives the following
equation for the z position of the CM:

zC M =
∫ θ2
θ1

dθ
∫ φ2
φ1

sin(φ)dφ
∫ r2

r1
r 3dr∫ θ2

θ1
dθ

∫ φ2
φ1

sin(φ)dφ
∫ r2

r1
r 2dr

. (3.37)

zC M = 3

4

(
r 4

2 − r 4
1

)
(
(
r 3

2 − r 3
1

) . (3.38)

For the crust this gives a CM position of:

zC M = 3

4

(
(RM +h)4 − (RM − c)4

)(
(RM +h)3 − (RM − c)3

) , (3.39)

and for the mantle this gives a CM position of:

zC M = 3

4

(
(RM − c)4 − (RM −dref)

4
)(

(RM − c)3 − (RM −dref)3
) . (3.40)

Now there are two equations with two unknowns:

g = GMtot

D2
tot

= Gmc

r 2
cmc

+ Gmm

r 2
cmm

, (3.41)

Mtot = mc +mm . (3.42)

In these equations, rcmc , rcmm and Dtot can be obtained when an isostasy method, as well as a depth of com-
pensations, are set and the total mass Mtot can be obtained from gravity data. G is a constant which is known,
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which results therefore in two equations with two unknowns: mc and mm , the masses of the crust and mantle,
respectively. These masses can be rewritten in terms of density and volume: mc = ρcVc and mm = ρmVm . Using
these equations together with the one given above, the equations for the density of the crust and the mantle can
be obtained.

Using the following two equations,
Mtot

D2
tot

= ρcVc

r 2
cmc

+ ρmVm

r 2
cmm

, (3.43)

Mtot = ρcVc +ρmVm , (3.44)

the center of mass depth, Dtot, can be obtained. First Equation 3.43 can be rewritten to:

Mtot = D2
tot
ρcVc

r 2
cmc

+ ρmVm

r 2
cmm

. (3.45)

Next this equation for Mtot needs to be filled into Equation 3.44, resulting into:

ρcVc +ρmVm = D2
tot
ρcVc

r 2
cmc

+ ρmVm

r 2
cmm

. (3.46)

Rewriting this equation results into the following equation for Dtot:

Dtot =
√√√√ρcVc +ρmVm

ρc Vc

r 2
cmc

+ ρmVm

r 2
cmm

. (3.47)

The current inversion model returns only one density layer, which could be interpreted as the density difference
needed to achieve the obtained gravity field. This density difference could be rewritten into a displacement in the
overall center of mass. This can be done by rewriting

ρref.Vtot

D2
ref.

= ρinv.Vtot

D2
inv.

, (3.48)

into,

Dinv. = Dref.

√
ρinv.

ρref.
. (3.49)

Now using this Dinv. and rewriting Equation 3.43 and Equation 3.44, the density of both the crust and mantle can
be calculated. First Equation 3.44 is rewritten in terms of ρc to:

ρc = Mtot −ρmVm

Vc
(3.50)

Filling this back into Equation 3.43 results into a equation for ρm without any unknowns:

ρm =
(

Mtot

D2
inv.

− Mtot

r 2
cmc

)(
− Vm

r 2
cmc

+ Vm

r 2
cmm

)−1

(3.51)

This equation for ρm can than again be used to calculate ρc using Equation 3.50.

3.3.1. Flowchart
A flowchart showing the two-layer iterative inversion process is given in Figure 3.11. On the left, the synthetic
planet with its available data is given. The topographic data is used as input for the isostasy calculations for the
crust-mantle boundary. The topography of the synthetic planet is also used as the topography of the reference
model. The reference model also consists of the calculated crust-mantle boundary, a lower boundary of 500 km,
and two uniform densities for the crust and mantle. The difference in gravity between the synthetic planet and
the reference model is used as input for the inversion. From the output of the inversion, the density of the crust
and mantle are calculated. These new densities are then inserted back into the reference model, and the inversion
is performed again. This was done until a set number of iterations were performed.
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3.4. Mars Inversion Modeling
The last step, when the two-layer inversion has been optimized and analyzed, is to change the model to fit the
Martian inversion. The inputs for the inversion are the gravity data explained in section 2.3 and a reference model
for Mars.

The reference model will be iterated to fit the Martian gravitational tensor. For every iteration, the densities of
the reference model are changed to the obtained densities from the inversion. The gravity from this new refer-
ence model is then calculated, and the difference between the Martian gravity and the reference planet gravity
will be used as input. This is re-iterated until a set number of iterations are performed.

3.4.1. Topography
The topography data which will be used for the reference model is the Martian MOLA topography data explained
in section 2.2. The resolution of the topography will be changed to a 2 by 2-degree grid.

3.4.2. Crust-Mantle Boundary
The crust-mantle boundary for the reference model will be based on thin shell isostasy. Qin [2021] found that the
thin shell model is the best fit for the Martian topography spectrum when looking at the SH degrees 4 to 17.

In Figure 3.12 the power spectrum of the Martian FAA, the uncompensated topography, the crust-mantle bound-
ary obtained with local compensation (Airy), with the thin shell model, as well as the infinite plate model are
given. It can be seen that the local compensation spectrum largely overcompensated the topography, resulting in
a very low spectrum. For the larger spherical harmonic degrees, the infinite plate model also overcompensates the
topography, underestimating the power spectrum. The thin shell model is the best fitting model between spher-
ical harmonic degrees 4 and 17, and will therefore be used to create the crust-mantle boundary of the reference
model.

As explained in section 2.1, there are different input parameters that can be changed in the isostasy model. These
parameters are the: Poisson ration ν, the Young’s modulus, E , the average crustal thickness, C , the elastic thick-
ness, Te , and the crustal and mantle densities, ρc , and ρm respectively.

To obtain a range for these different parameters, literature has been reviewed to obtain which values for these
input parameters have been used previously in literature. Table 3.1 shows which studies used which input pa-
rameters. Based on this research, the parameter ranges given in the top row of Table 3.1 were chosen as the initial
search space for the Martian reference models.

Figure 3.12: The power spectrum of the Martian gravity, the uncompensated topography, the crust mantle boundary obtained with local
compensation (Airy) as well as with the infinite plate model and thin shell model.
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3.4.3. Lower Boundary - Lithosphere
Based on the new Insight data, Khan et al. [2021] found that the Martian lithosphere reached up to a depth be-
tween 400 and 600 km. This is the seismic lithospheric thickness based on the seismic data obtained by the
Insight mission. Based on these findings, the lower boundary for the lithosphere was set to a depth of 500 km, in
the middle of what was found for the seismic lithosphere.

3.4.4. Plume Modeling
When looking at the Martian gravity power spectrum, there is a large peak for the lower spherical harmonic de-
grees. This is expected to be due to the Tharsis region, which is responsible for the largest gravity and topography
features. Previous research suggests that the Tharsis region is mainly supported by the flexure of the lithosphere
as well as partially by a deep mantle plume [Breuer et al., 1996] [Zhong, 2002]. Based on this, van der Tang [2021]
modeled the Martian reference plume. In this study, a rectangular plume with a density variation of 400 kg/m3

was found to be the optimal fit for the Martian gravity anomaly. They reached from a depth of 800 km up to a
depth of 900 km. The plume was centered around [110◦W 3◦N ] and had a longitudinal radius in both directions
of 32◦ and a latitudinal radius in both directions of 30◦, as shown in Figure 3.13. This density anomaly is very
high and deemed too large for a mantle anomaly [van der Tang, 2021]. This yielded the best fitting result for a
sensitivity study performed to find the best possible relationship between the depth, density, thickness, and size
of the modeled anomaly. Because this yielded the best fitting results for the smaller SH degrees, this plume will
also be added as a layer to the reference model.

Figure 3.13: The mantle plume used in the reference model to fit the low Spherical Harmonic degrees in the power spectrum. The plume is
modeled from a depth of 800km up to a depth of 900km. This plume was centerd around [110◦W 3◦N ] with a longitudinal radius of 32◦ and a
latitudinal radius 30◦.
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Table 3.1: A summary of the used/obtained crustal and mantle densities and crustal and lithospheric/elastic thicknesses

Paper Crustal Density
[kg/m3]

Mantle Density
[kg/m3]

Crustal Thickness
[km]

Lithosphere /Elas-
tic Thickness [km]

Young’s modulus
[Gpa]

Poisson Ratio [-]

Initial analyzed ranges [2700 - 3100] [3400 - 3600] [50 - 125] [50 - 400] 100 0.25

[Goossens et al., 2017] 2582 ± 209 - 42 - - -
[Phillips et al., 1973] 3000

2670
3300
3270

50 50 - - -

[Wieczorek and Zuber, 2004] 2700–3100
2800–2900

3400–3550
3300–3400

>29
>39

- - -

[Zuber et al., 2000] 2900 - 50 0-100 - -
[Neumann et al., 2004] 2900 3500 45 - 100 0.25
[Nimmo and Stevenson, 2001] - - 30-115 - - -
[Nimmo, 2002] 2000-3000

2500
- 1-111

1-75
21-113
37-89

- -

[Turcotte et al., 2002] 2960±50 - 91.7 ±10 90 ± 10 - -
[Yuan et al., 2001] - - - 100 km - -
[McKenzie et al., 2002] 2350-2990 - - 12.4-70 144 0.268
[Kiefer et al., 1996] 2900 3930 25-100 - - -
[Belleguic et al., 2005] 3050 ± 350

3270 ± 150
(Elysium region)

3500 60 ± 30 56 ± 20 to 105± 105
km

100 0.25

[Beuthe et al., 2012] 2950 ± 450
3000-34000 (large
volcanoes)

3500 45 20-180 100 0.25

[Pauer and Breuer, 2008] 2400-3200 3500 - - - -
[Grott and Breuer, 2008] - - - 64±32 - -
[Taylor et al., 2020] 3000 ± 500 3450 ± 150 - 40-170, mean 83.3 17.8 0.3 ± 0.2
[McGovern et al., 2004] 2900 3500 50 0-200 100 0.25
[Steinberger et al., 2010] 2950 3338 50 102 65 0.25
[Knapmeyer-Endrun et al.,
2021]

2850
3100

3400 48 ± 24 - - -

[Khan et al., 2021] 2900 3500 65 400-600 - -
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4
Verification and Validation

In this chapter, the additional verification and validation steps will be explained. In the first section, the data will
be verified and validated, first the topography data, and after that, the gravity data. In section 4.2 the one-layer
model will be discussed, and in the last section, the two-layer model will be discussed.

4.1. Data
In this section, the topography (MOLA) and gravity (MRO120D) are validated by comparing the topography and
gravity, together with their power spectra, to that what has been obtained in literature.

4.1.1. Topography
As explained in section 2.2, the topography data used in this study is the MOLA topography data obtained from
PDS Geoscience Node1. The MOLA topography is plotted in Figure 1.1 but will also be validated based on the data
presented in [Wieczorek, 2007]. In this study, the global topography is derived from the spherical harmonic shape
model MarsTopo2600, referenced to the geoid. This MarsTopo2600 data is plotted in Figure 4.1. A similar plot is
given in Figure 4.2, where the data used in this study is plotted.

Figure 4.1: The global topography of Mars, which is derived
from the spherical harmonic shape model MarsTopo2600, ref-
erenced to the geoid. This figure is in a Mollweide projection
with a central meridian of 100◦ W longitude and is overlain by
a gradient image derived from the topography model. [Wiec-
zorek, 2007]

Figure 4.2: The global topography map is computed for the el-
evation difference between the planetary radius and the areoid.
The data is obtained from PDS Geoscience Node. This figure is
in a Mollweide projection with a central meridian of 100◦ W lon-
gitude.

There are small differences visible between the two plots in Figure 4.1 and Figure 4.2. This has to do with the fact
that Figure 4.1 that the color bar is different from the one used in Figure 4.2. In the first figure, the color bar jumps
from -8 to -6 km and from -6 to -4 km and then continues on linearly. For Figure 4.2 the color bar is linear from -9
km all the way up to 8 km. Next to these differences, the topography maps look nearly identical.

In [Wieczorek, 2007], next to the topography plot shown in Figure 4.1, also the power spectrum of the MarsTopo2600

1Last accessed 12-04-2022, https://pds-geosciences.wustl.edu/missions/mgs/megdr.html
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32 4. Verification and Validation

data set is given. This spectrum is plotted in Figure 4.3. The power spectrum of both the MOLA data, used in this
study, and the MarsTopo2600 data, used by Wieczorek [2007], are plotted in Figure 4.4. Visible is that both spectra
are nearly identical, except for degree 2. The C20 term in the second spherical harmonic degree represents the
flattening of the planet. The difference between these degrees in the power spectra might have to do with this
term. This has to do with the fact that the MarsTopo2600 is a shape model, which does contain the flattening of
the planet, while the MOLA data is a topography data set, which does not contain this flattening of the planet.
Therefore the degree 2 power spectrum is lower for the MOLA data. When comparing the MarsTopo2600 spec-
trum plotted in Figure 4.4 to the figure given by Wieczorek [2007] in Figure 4.3, similar results are obtained. From
the resemblance of the power spectra can be concluded that the data was processed correctly.

Figure 4.3: The power spectrum of the topography of Mars,
which is derived from the spherical harmonic shape model
MarsTopo2600. [Wieczorek, 2007].

Figure 4.4: The power spectrum of the topography of Mars
for both the MOLA data set, used in this study, and the
MarsTopo2600 data set, used in [Wieczorek, 2007]. The
MOLA data is obtained from PDS Geoscience Node and the
MarsTopo2600 data is obtained from Zenodo.

4.1.2. Gravity
As explained in section 2.3, the gravity data used in this study is the MRO120D data set obtained from PDS Geo-
science Node2. The power spectrum, together with the uncertainty, has been plotted in Figure 2.7. To validate
the spectrum, the obtained power spectrum is again plotted in Figure 4.6 only for the MRO120D data set, and
compared to the power spectrum given by [Gorski et al., 2018], shown in Figure 4.5. Visible is that these power
spectra are identical to each other. The gravity is converted from the spherical harmonic domain into the spatial
domain using the GSHS toolbox explained in subsection 2.3.4. This toolbox has already been validated and will
therefore not be validated any further.

Figure 4.5: Variance spectra of signal and error for the Doppler-
derived gravitational potential model MRO120d. [Gorski et al.,
2018].

Figure 4.6: The power spectrum of the MRO120D data set plot-
ted together with its uncertainty. The data is obtained from PDS
Geoscience Node.

4.2. One-Layer Inversion
In this section, the inversion model will be validated, and the robustness will be analyzed. First, the single-layer
inversion will be validated and understood, and its robustness will be analyzed. The inversion will be performed

2Last accessed 12-04-2022, https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/
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4.2. One-Layer Inversion 33

using a similar method as for the two-layer inversion. Therefore, the effect of the different inversion parameters,
as well as the effect of different densities and topographies will be studied thoroughly. It needs to be studied
whether the inversion works for a single layer without varying topography or lower boundary. Next, a varying
topography boundary and a varying lower boundary will be added. The effect on the inversion for these single
layers will be studied in the next subsection.

4.2.1. Height/Depth Analysis
As explained in subsection 3.2.3, an inversion height is used in the design-matrix. Next to this, a computation
height and depth need to be chosen at which the isotropic kernels are obtained.

The depth of the inversion is chosen in approximately the center of mass of the layer. For the single-layer in-
version, this was set to Dinversion = 0.5D layer.

A small analysis was performed on the variations in inversion height. The input data was also corrected for the
inversion height. If a height of 250 km was chosen for the inversion and isotropic kernels, the input gravity was
converted to the gravity which would be obtained at this inversion height. When the gravity is computed higher
from the ground, the signal is dampened, but when the inversion is computed very close to the ground, the in-
version is not sensitive enough to the data. Therefore, an optimal combination needed to be found. After a small
analysis, it was found that a height of 150 km, yielded good results. From now on, unless mentioned otherwise, a
computation height of 150 km will be used for both the one-layer and two-layer inversion.

4.2.2. Effect of Adding Topography and a Lower Boundary
Using the method described in subsection 3.2.4, three different one-layer models were used to analyze the influ-
ence of varying topography and lower boundary. A cross-section for each of these models is shown in Figure 4.7,
and these models can be described as follows:

1. A 50 km layer with uniform topography of 0 km and a uniform lower boundary at -50 km.

2. A layer of approximately 50 km with a varying topography and a uniform lower boundary at -50 km.

3. A layer of approximately 50 km with a varying topography and a varying lower boundary.

The first model will study whether the inversion works when the easiest possible input model is used. When this
works, the effect of varying topography and lower boundaries on the inversion are studied. For these inversion
results a ridge parameter of λ = 10−10 mGal was chosen and a weight of W = 1

σ2 = 1
(0.1∗10−9)2 = 1020 mGal. In

subsection 4.2.6 the effect of varying σ and λ will be studied. The topography for the second and third models is
given in Figure 4.8. The lower boundary used for the third model is given in Figure 4.9.

Model 1

Topography: 
0 km

Lower 
boundary: 
- 50 km

Model 2

Varying crustal 
density

Model 3

Varying crustal 
density

Varying 
topography

Varying Lower 
boundary

Varying crustal 
density

Lower 
boundary: 
- 50 km

Varying 
topography

Figure 4.7: A cross section for each of the 3 one-layer models to study the effect of adding varying topography and lower boundary layers.

For every model, a computation height of 250 km is used. The used computation depth can be described by the

following equation: Dcomputation = mean
(

t−d
2

)
. In this equation, t is the used topography of the layer, equal to 0

km for model 1, and the topography shown in Figure 4.8 for models 2 and 3 and d is the lower boundary, equal to
-50 km for models 1 and 2 and equal to the lower boundary given in Figure 4.9 for model 3.

When a single run was performed, there was still a residual between the two gravity fields. Due to this resid-
ual, an iterative inversion process explained in subsection 3.2.4 was performed. The inversion was iterated until
a maximum of 4 iterations or until the standard deviation of the difference between the two tensors in the zz
direction was smaller than 2 ·10−3 Eotvos for model 2, and 5 ·10−3 Eotvos for model 3.
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Figure 4.8: The topographic boundary for the one-layer inver-
sion model. This varying upper boundary is used in the second
and third model.

Figure 4.9: The Lower boundary for the one-layer inversion
model. This varying lower boundary is used in the third model.

4.2.3. Model 1 - Uniform Layer

Figure 4.10: inversion results Model 1. This model is a 50 km
layer with varying density, a constant upper boundary of 0 km,
and a constant lower boundary of -50 km. The left top plot
shows the input density difference, the top right plot shows the
output density difference, and the bottom plot shows the differ-
ence between the two top plots.

Figure 4.11: Inversion results Model 1 after multiple iterations.
This model is a 50 km layer with varying density, a constant up-
per boundary of 0 km, and a constant lower boundary of -50
km. The left top plot shows the input density difference, the top
right plot shows the output density difference, and the bottom
plot shows the difference between the two top plots.

The results for the first model are given in Figure 4.10. In the top left figure, the input density variations are shown,
and in the top right plot, the output density variations from the inversion are shown. In the bottom figure, the
difference between the input and output density differences is given. When iterations were performed, no density
pattern remained visible in the residual, as can be seen in Figure 4.11.

4.2.4. Model 2 - Varying Topography

The results for the second model are given in Figure 4.12. Visible is that larger errors occur when a varying to-
pography is added. Visible in the residual is there still remain density patterns within the residual. Therefore, the
iterative process, as explained in subsection 3.2.4, was introduced. The density result after iterations is shown in
Figure 4.13. The residual is largely reduced, and no clear density patterns are visible anymore.
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Figure 4.12: Inversion results Model 2. This model is approx-
imately a 50 km layer with varying density, a varying upper
boundary shown in Figure 4.8 and a constant lower boundary
of -50 km. The left top plot shows the input density difference,
the right top plot shows the output density difference, and the
bottom plot shows the difference between the two top plots.

Figure 4.13: Inversion results Model 2 after multiple iterations.
This model is approximately a 50 km layer with varying density,
a varying upper boundary shown in Figure 4.8 and a constant
lower boundary of -50 km. The left top plot shows the input
density difference, the right top plot shows the output density
difference, and the bottom plot shows the difference between
the two top plots.

An extra study was performed on the effect of changing the topography on the residuals in the fit. These results
are given in the Appendix. Ten different topography patterns were combined with twelve different density distri-
butions, generated by varying the seed number of the Matèrn covariance function. This resulted in 120 different
synthetic planets. Again, the iterative process was used. The standard deviation between the input tensor and
inversion tensor is plotted in Figure A.1 against the RMS between the input density minus the inversion output
density divided by the maximum input density. Visible on the y-axis is that after 3-4 iterations, a maximum per-
centile error of around 10% for model 2 was achieved. The percentile error of the RMS instead of the maximum
of the density difference was used because after some iterations, polar errors occurred.

4.2.5. Model 3 - Varying Topography and Lower Boundary

Figure 4.14: Inversion results Model 3. This model is approx-
imately a 50 km layer with varying density, a varying upper
boundary shown in Figure 4.8 and a varying lower boundary
shown in Figure 4.9. The left top plot shows the input density
difference, the right top plot shows the output density differ-
ence, and the bottom plot shows the difference between the two
top plots.

Figure 4.15: Inversion results Model 3 after multiple iterations.
This model is approximately a 50 km layer with varying density,
a varying upper boundary shown in Figure 4.8 and a varying
lower boundary shown in Figure 4.9. The left top plot shows
the input density difference, the right top plot shows the output
density difference, and the bottom plot shows the difference be-
tween the two top plots.

The results for the third model are given in Figure 4.14. Similar to what was observed for model 2, is that for
a single run of the inversion, there is still a large residual with clear density patterns. When multiple iterations
were performed, the density converted to the input density, as can be seen in Figure 4.15. The residual is largely
reduced, and no clear density patterns are visible anymore.

A similar analysis was performed for this model as for model 2, with 120 different synthetic one-layer planets,
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again given in the Appendix. In Figure A.1 next to model 2, also the results of model 3 are plotted. When looking
at the y-axis, it can be seen that after 3-4 iterations, a maximum percentile error of around 12% for model 3 was
achieved.

4.2.6. One-Layer Inversion: λ−σ Analyses
In this section, the optimal combinations of the ridge parameter, λ, and variance, σ2 are studied. The ridge pa-
rameter is used for the Tikhonov regularization, as explained in subsection 3.2.2. The weights are dependent on
σ as follows: W = 1/σ2. This behavior is studied so that an understanding can be obtained of how this optimal
combination behaves for different types of one-layer models. This understanding will help to choose an optimal
combination of λ−σ for the two-layer model later on.

As explained in subsection 3.2.2, the L-curve is one way to optimize the λ value when the results are unknown.
For the synthetic planet, the results are known, but it is studied how the optimal λ value based on the L-curve
corresponds to the optimal value based on the residuals. λ was varied from 10−1 to 10−8 and the σ value was set
to σ = 10−10. These results are given in the Appendix. When looking at the L-curve for varying the magnitude
of the density variations, shown in Figure A.9, λ varied between 10−3 up to 10−5 for small to a large magnitude
within the variations respectively. The seed number did not have an effect on the optimal λ value, with λ= 10−4

yielding the optimal results, as visible in Figure A.12. The thicker the layer, the smaller the λ value, from λ= 10−2

up to λ = 10−5 for a 20 km to a 200 km layer, respectively, as can be seen in Figure A.3. When both the center of
mass and the layer thickness were varied, as can be seen in the L-curve in Figure A.7, the optimal λ value of 10−4

was obtained. A more in-depth analysis is given in section A.2.

For the two-layer inversion, the layer will stretch from the topography up to a depth of 500 km. Therefore this
can be compared to the analyses of varying both the CM-depth and the layer thickness, for which a ridge param-
eter value of λ = 10−4 gave the optimal results. The ridge parameter is related to the value of σ, and therefore
the weights. The relationship between σ and λ can be expressed with the following equation: σ = λ0.5 ·10−x or
λ=σ2 ·102x , with x to be chosen to optimize the inversion. This has to do with the relation between the weights,
which is dependent onσ, and the ridge parameterλ. W = 1

σ2 , which can be rewritten intoσ2 = 1
W . The above rela-

tionship can therefore be can be rewritten to: 1
W =λ·10−2x which, when rewritten again, results into the following

relation: λW = 102x .The general relation can be explained when looking at the equations for the Tikhonov regular-

ization: x̂ =
(

At P−1
y y A+λI

)−1
At P−1

y y ȳ . In this equation P−1
y y =W I = 1

σ2 I , resulting into: x̂ = (
W At A+λI

)−1 W At ȳ .

Looking at the diagonal of the new moment matrix, it becomes clear that there is an optimal relation between λ

and W. A λ value of 10−4 will from now be used for the inversion, but will be scaled based on σ, using the above
equations.

4.3. Two-Layer Inversion
Next up, the robustness of the two-layer inversion is analyzed. As explained in subsection 3.2.5, there are three
different types of input data that can be used: the gravitational potential, V , the gravitational vector in the z-
direction, g⃗z , or the gravitational tensor in the zz direction, Tzz. The use of the different types of input types starts
to play an important role in the two-layer inversion because the different types are sensitive to radial density
variations in a different manner. For the two-layer models, there is a mass that is contributed to the mantle and
a mass that is contributed to the crust. Because of this, the analysis is performed to analyze which type of input
data is optimal for the two-layer inversion. The analyses of these different input types are performed in the next
subsection. For each of the inversions, a multiplication factor of 30 was used, and 25 iterations were performed.
This was found to be the optimal combination. If a larger multiplication factor was used, the inversion diverged
for multiple iterations. For a smaller multiplication factor, many more iterations were needed, increasing the run
time.

4.3.1. Difference between Gravitational Potential, Vector, and Tensor
In this subsection, the inversion is performed for the three different input types. For each input data, the same
input planet and reference model were used. The only differences between the inversions were the input data,
the σ value, and the ridge parameter (λ). These different parameters are given in Table 4.1.

The difference between the density for the crust and mantle, obtained using the inversion, and the input crustal
and mantle densities are shown in Figure 4.17 for V , g⃗z , and Tzz as input data for the inversion. Visible is that
using the gravitational potential as input data yields the largest differences and some small wavelength patterns
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which are still present. This is also visible in the power spectrum, shown in subplot (a) of Figure 4.16. In this plot,
the power spectrum of the inversion model only fits the input power spectrum up to approximately spherical
harmonic degree 15, which is only a few degrees more than the power spectrum of the reference model. The den-
sity differences are shown in subplot (b) of Figure 4.16, which are obtained using the gravitational vector in the
z-direction as input data for the inversion, show that there are still some small wavelength differences visible, but
the overall difference is much smaller. This is also visible in the power spectrum, subplot (c) of Figure 4.16, where
the spectrum of the inversion planet fits the input spectrum up to approximately spherical harmonic degree 30,
which is almost 20 degrees higher than the spectrum of the reference planet.

Table 4.1: The different input parameters used in the inversion, for the 3 different types of input data.

Gravitational potential V Gravitational vector g⃗z Gravitational tensorTzz

σ= 10 [J ] σ= 10−5 [m/s2] σ= 10−11 [E ]
λ= 100 λ= 100 λ= 1000
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Figure 4.16: The power spectrum of the inversion planet obtained using the reference planet with the densities changed to the densities ob-
tained from the inversion. Subplot (a) shows the results using the gravitational potential as input data for the inversion, (b) for the gravitational
vector in the z direction, and (c) for the gravitational tensor in the zz direction.

The best overall fit of the power spectrum was obtained using the gravitational tensor in the zz direction as input
data. The density differences for this input data are shown in subplot (c) of Figure 4.17 and the power spectrum
is shown in subplot (c) of Figure 4.16. The power spectrum plot shows that the spectrum of the inversion model
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fits the input power spectrum up to approximately spherical harmonic degree 50. This is also visible in subplot
(c) of Figure 4.17, where small density patterns are visible. In subplot (c) of Figure 4.17 there also remains a long
wavelength signal, which corresponds to the long wavelength signal of the input density pattern, as shown in
Figure A.16. This residual was reduced when more iterations were performed, as can be seen in Figure A.18.

(a) (b)

(c)

Figure 4.17: For each subplot, the top plot shows the difference between the input crustal density, ρc input, and the crustal density obtained
using the inversion method, ρc inverse. The bottom plot shows the same plot, but for the mantle density instead of the crustal density. Subplot
(a) shows the results using the gravitational potential as input data for the inversion, (b) for the gravitational vector in the z direction, and (c)
for the gravitational tensor in the zz direction.

For these results, 25 iterations were performed. It could be possible that the inversion converges faster or slower,
depending on the input type used. Therefore, the number of iterations was increased to 50 iterations to analyze
how the different input types converge. The results after 50 iterations are given in section A.3. Similar behaviors
for the three different input types were found. The power spectrum for all input types was fitted slightly better,
around 5 SH degrees, but the gravitational tensor in the zz direction still fitted the power spectrum up to the
highest SH degree.
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5
Power Spectrum and Two-Layer Results

In this chapter, the power spectrum and two-layer model will be analyzed. In the first section the effect of chang-
ing different parameters of the synthetic planet on the power spectrum will be given. In the next section the effect
of changing different parameters of the reference model, on the inversion density results are given.

5.1. Power Spectrum Analysis for Varying Input Variables
In this section, the influence of varying the density and topography of the synthetic planet on the power spectrum
is studied. When the inversion is performed for Mars, the power spectrum of both the input gravity, as well as the
power spectrum of the obtained reference planet, will be plotted. This analysis can be used later on when dif-
ferences between the reference power spectrum and input power spectrum are observed to analyze what might
cause the difference.

To be able to study the effect of changing a specific input parameter on the power spectrum, the remaining input
parameters were kept constant. The parameters used for the topography of these planets are set to the following
default values σ = 9 km, κ = 0.6, and ϵ = 10, when not analyzed. An average topographic altitude of 3.6 km was
used, with an average crustal thickness, c, of 125 km and a compensation depth of 500 km. The default values for
the parameters the Matèrn covariance matrix used for the lateral density variations of the crust are set to: σ= 100
kg/m3, κ= 0.6, and ϵ= 10, when their effect was not studied. A (mean) density for the crust of 2900 kg/m3 and a
(mean) density for the mantle of 3500 kg/m3 are used. A set seed is defined for the random number generator of
the Matèrn covariance function. The seed of the crustal density variations was set to 2, and for the mantle density
variations, the seed was set to 4.

5.1.1. Synthetic Planets
Different synthetic planets will be created, based on the Airy isostasy model, and the thin shell model. Three
different planets will be analyzed based on Airy isostasy, and one planet will be analyzed based on the thin shell
model. These models are:

• Airy1
A two-layer model based on Airy isostasy with two uniform density layers. The topography for this model
will be created using the Matèrn covariance function, explained in subsection 3.1.1.

• Airy2
A two-layer model based on Airy isostasy with lateral density variation in both the crust and the mantle. The
density variation will be correlated between the crust and the mantle, so that every column has an equal
mass. The density of the mantle layer can be calculated using Figure 5.1. Each column needs to have an
equal mass, from which the following equation can be obtained:

cρc,1 + (Dc − c)ρm,1 = (h + c +b)ρc2 + (Dc − c −b)ρm,2. (5.1)

Rewriting this equation gives the following equation, from which the mantle density of the second column
can be calculated.
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ρm,2 =
cρc,1 + (Dc − c)ρm,1 − (h + c +b)ρc2

Dc − c −b
(5.2)

The topography and the crustal density variations for this model will be created using the Matèrn covariance
function.

c

b

Dc Dc – c – b

h

Ρc,1
Ρc,2

Ρm,1 Ρm,2

Figure 5.1: Airy for lateral density variations within the crust and mantle, now referred to as Airy2.

• Airy3
This model will be similar to Airy2, also a two-layer model based on Airy isostasy with lateral density varia-
tion in both the crust and the mantle. But now, instead of a full correlation between the crustal and mantle
density, there is a slight variation. This results in slight mass differences between each column.

The topography, as well as the crustal density variations for this model, will be created using the Matèrn
covariance function. The density difference in the mantle is created by adding an extra density layer, also
created using the Matèrn covariance function.

• TSM1
A two-layer model based on the thin shell model with two uniform density layers. The topography for this
model will be created using the Matèrn covariance function.

5.1.2. Crustal Thickness Variations

Figure 5.2: The power spectrum plotted for different values of
average crustal thickness, c, for the synthetic planet Airy1.

Figure 5.3: The power spectrum plotted for varying density dif-
ferences between the crust and the mantle,∆ρ, for the synthetic
planet Airy1. The crustal density was set to 2900 kg/m3. This re-
sulted into density variations between 400 and 800 kg/m3.
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The crustal thickness can be changed using two input parameters: by changing the average crustal thickness, c,
or by changing the density difference between the crust and the mantle, ∆ρ. Changing c will result in an increase
or decrease of the whole crustal thickness while changing ∆ρ will enlarge the differences within the crustal thick-
ness. In Figure 5.2 different power spectra are plotted for varying crustal thickness. Visible is that the thicker the
crustal thickness, the higher the power spectrum. When the crustal thickness is increased, the topography be-
comes more dominant within the spectrum. This is because the compensation is lower within the crust. When
the crust is infinitely thick, there would be no compensation, and the spectrum would be represented by the to-
pography. If the crust were infinitely thin, the spectrum would be fully compensated. This effect is visualized in
Figure 5.4. In this plot, the power spectrum of only the topography and the spectrum for a synthetic planet with
a crust of 3380 km, which is almost equal to the planet’s radius, is shown. Visible is that the power spectra closely
approximate each other. In Figure 5.3 the different power spectra are plotted for varying density differences be-
tween the crust and mantle. This is done by changing the mantle density but keeping the crustal density constant.
Visible is that the larger the density difference, the higher the spectrum for specific spherical harmonic degrees.
When the density difference is increased, the differences in thickness within the crust decrease. Increasing the
mantle density, and, therefore, the density difference, result in smaller thickness differences within the crust. This
results in the topography being compensated closer to the average crustal thickness. This means that the nega-
tive topographic features will be compensated deeper in the mantle, while the positive topographic features will
be compensated less deep in the mantle. Some spherical harmonic degrees will therefore be better, or worse,
compensated, resulting in the shift for some spherical harmonic degrees.

Figure 5.4: The power spectrum plotted for only the crust of the synthetic planet and for a planet with a crust of 3380 km.

5.1.3. Input Parameters Matèrn Covariance Function of the Topography

Figure 5.5: The power spectrum plotted for different values of
the decorrelation distance, ϵ, for the synthetic planet Airy1.

Figure 5.6: The power spectrum plotted for different values of
the square-root of the variance,σ, for the synthetic planet Airy1.
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Figure 5.7: The power spectrum plotted for different values of
the square-root of the variance, σ, and the for the decorrelation
distance, ϵ, for synthetic planet Airy1.

Figure 5.8: The power spectrum plotted for different values of
the smoothness parameter, κ, for the synthetic planet Airy1.

The studied input parameters of the Matèrn covariance function of the topography are the decorrelation distance,
ϵ, the variance, σ2 and the smoothness parameter, κ, which can be seen as a measure of the smoothness around
the origin. In Figure 5.5 the effect of changing ϵon the power spectrum is visible. It can be seen that the larger ϵ, the
lower the overall power spectrum. Increasing ϵ decreases the minimum and maximum altitude of the topography.
Therefore smaller values of ϵwill result in larger differences within the crust-mantle boundary, which results in the
deepest compensation of the topography being compensated lower up in the planet. This is visible in Figure 5.9.
The power spectrum will therefore become smaller for larger values of ϵ. Another input parameter is the variance,
σ2. Increasing the variance means increasing the altitude differences within the topography, resulting in the
power spectrum shifting up for increasing variance, as is visible in Figure 5.6. σ and ϵ seem to have an opposite
effect on the power spectrum. To test this, both input parameters were varied, as is plotted in Figure 5.7.

Figure 5.9: The effect of changing the input parameter ϵ of
the Matèrn covariance function on the crust-mantle boundary.
From the left to right, and top to bottom, these plots are ob-
tained using ϵ= 1, ϵ= 5, ϵ= 10, ϵ= 25, and ϵ= 50.

Figure 5.10: The effect of changing the input parameter κ of
the Matèrn covariance function on the crust-mantle boundary.
From the left to right, and top to bottom, these plots are ob-
tained using κ= 0.3, κ= 0.6, κ= 0.9, κ= 1.2, κ= 1.5.

Visible is that when both are varied. Their effects are opposite, and therefore, almost canceled out when a correct
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relation is used. This is an almost linear relation of ϵ = 4σ− 10. A relation between σ and ϵ is expected, when
looking at the effect in Figure 5.9. Larger values for ϵ result in smaller boundary variations. When σ is increased,
these boundary variations are again increased.

The last analyzed input parameter is κ, with its behaviour shown in Figure 5.8. The larger κ, the larger the wave-
length pattern of the crust and the smaller the altitude differences in the topography. This effect is visible in
Figure 5.10. Therefore, the larger κ, the lower the power spectrum. Another phenomenon visible in Figure 5.8 is
that for larger values of κ, the power spectrum for the smaller SH degrees decreases much less compared to the
larger SH degrees. This is because when κ is increased, the wavelength pattern of both the topography and the
crust mantle is increased.

5.1.4. Density Variations of the Mantle
Varying the density within the mantle can be achieved by altering different parameters of the Matèrn covariance
function of the crustal density. First, κ is changed, which influences the wavelength pattern. The higher κ for the
crustal density, the longer the wavelength features of the density pattern within both the crust and mantle. The
effect of changing κ on the power spectrum is shown in Figure 5.11. When κ is increased, the power spectrum
moves down slightly, but for κ values larger than 0.6, the power spectrum stays almost the same. κ has a similar
effect on the density variations as on the crust-mantle boundary shown in Figure 5.10. Therefore, the larger κ, the
smaller the density variations, and the longer the wavelength patterns within these variations. The power spec-
trum, therefore, moves down for increasing values of κ. When the density variations are very large and show small
wavelength patters, these variations are not fully compensated, increasing the power spectrum especially for the
larger SH degrees. For values of κ larger than 0.6, these variations can be compensated and further changes have
no clear effect on the power spectrum.

Another way to vary the density within the mantle is by changing the variance of the Matèrn covariance func-
tion. This results in higher or lower density variations within the mantle. The effect of this on the power spectrum
is shown in Figure 5.12. Visible is that overall, the higher the density difference within the mantle, the higher the
spectrum, which means that the topography is compensated less.

Figure 5.11: The power spectrum plotted for different values of
the smoothness parameter for the density, κ, for the synthetic
planet Airy2.

Figure 5.12: The power spectrum plotted for varying density dif-
ferences within the crust, by changingσ, for the synthetic planet
Airy2.

5.1.5. Mass Variations between columns
In this section the result of not fully correlating the mantle density and crustal density is studied, such that there
is a mass variations between the different columns. Visible in Figure 5.13 is that for small increases in mass dif-
ferences between the columns, the spectrum is better compensated for the larger SH degrees. To vary the mass of
the different columns, extra density is added/subtracted to/from the mantle. The added/subtracted density has a
similar pattern to the mantle density. Therefore for small changes, because the compensation takes place deeper
inside the mantle, extra mantle density seems to compensate the crust better for the smaller wavelengths. When
the added density results in an increase of the column mass above 15%, this effect seems to disappear, as is visible
in Figure 5.14. This is to be expected because there is less compensation of the crust, resulting in an increase in
the power spectrum. This effect is also only the case for the larger SH degrees and not for the smaller SH degrees.
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Figure 5.13: The power spectrum plotted for variations within
both the crust and the mantle, with mass differences between
the columns, plotted for the synthetic planet Airy3.

Figure 5.14: The power spectrum plotted for variations within
both the crust and the mantle, with mass differences between
the columns, plotted for the synthetic planet Airy3.

5.1.6. Input Parameters of the Flexural Response Function
In this section, the effect of changing the input parameters of the flexural response function on the power spec-
trum is studied. These input parameters are the elastic thickness, Te , the Poisson ration, ν, and the Elastic modu-
lus, E .

Figure 5.15: The power spectrum plotted for different values of
the elastic thickness, Te , for the synthetic planet TSM1.

Figure 5.16: The power spectrum plotted for different values of
the Poisson ratio, ν, for the synthetic planet TSM1.

Figure 5.17: The power spectrum plotted for different values of
the elastic modulus, E , for the synthetic planet TSM1.
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The effect of changing Te on the power spectrum is shown in Figure 5.15. The smaller Te , the higher the power
spectrum. The flexural response function is plotted in Figure 2.5. In this figure it is visible that for small values
of Te , around 10 km, the flexural response function stays close to 1, up to around spherical harmonic degree
30. The larger the spherical harmonic degree, the earlier the flexural response function drops off for increasing
spherical harmonic degrees. Small wavelength features are represented by the large spherical harmonic degrees.
Therefore, the thicker the elastic thickness, the less the smaller wavelength features are compensated. As visible
in Figure 5.15, the power spectra start to deviate a lot for the smaller spherical harmonic degree and start to con-
verge towards each other again for the higher spherical harmonic degrees. This has to do with the fact that after a
certain spherical harmonic degree, the flexural response function has dropped to 0 for all values of Te , resulting in
no compensation of the topography. Therefore, for the larger spherical harmonic degrees, the topography signal
becomes dominant again. In Figure 5.17 the effect of changing the Elastic modulus, E , on the power spectrum
is plotted. Visible is that these results are very similar to those of the elastic thickness. This has to do with the
fact that both E and Te have a similar effect on the flexural response function of the thin shell model given in
Equation 2.11. In Figure 5.16 the effect of changing the Poisson ratio, ν, is visible. It can be seen that varying this
parameter has close to no influence on the power spectrum.

When looking at the equation for rigidity, D = ET 3
e

12(1−ν2)
, increasing D would result into an upward shift of the

power spectrum. Both the elastic thickness and Young’s modulus are in numerator, therefore increasing their ef-
fects. The Poisson ratio is in the denominator, but showed no effect on the power spectrum. Therefore, similar
effects will be seen for variations in the rigidity as for variations in both Te and E .

5.2. Two-Layer Inversion
In this section the synthetic planet results will be analyzed, while the Martian two-layer inversion results are given
in chapter 6. Also, the effect of adding deep mantle density variations is studied, as well as the effect of variations
in input parameters of the reference model is studied. Lastly, the effect of adding additional mass to the crust and
mantle is studied.

5.2.1. Inclusion of Deeper Mantle Density Variations
The used synthetic planets are two-layer planets, up to a depth of 500 km. It is assumed that beneath a depth of
500 km, the mantle has a uniform density. This assumption may not be realistic, so, therefore it is studied what
the effect is when density differences are added to the deeper mantle from a depth of 500-1800 km. Because the
different types of input data are affected differently by deep mantle density variations, the inversion is performed
again for the gravitational potential, gravitational vector in the z direction, and the gravitational tensor in the zz
direction.

Figure 5.18: The density variations which were added to the two deep mantle layers from a depth of 500 km up to the depth of 1800 km.

The deep mantle was split into two different layers with different mean densities. From a depth of 500 km up to
1100 km, a mean density of 3700 kg/m3 was used. From a depth of 1100 up to 1800 km, a mean density of 4000
kg/m3 was used. The same density variations were used for these two-layers, shown in Figure 5.18.

When the density variations shown in Figure 5.18 were used, the obtained densities for both the crust and man-
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tle diverged, yielding highly unrealistic results. Because of this, only 10% of the density variations in Figure 5.18
were used, to be able to study the effect of small density variations in the deep mantle. This resulted in similar
differences between the obtained densities through the inversion and those of the synthetic planet for the three
different input data types. These differences are shown in Figure 5.19. The magnitude of these differences is
similar between the different data types. There are some differences visible in the wavelength pattern of these dif-
ferences, with the gravitational potential yielding more short wavelength differences and the gravitational tensor
yielding almost only long wavelength patterns.

(a) (b)

(c)

Figure 5.19: For each subplot, the top plot shows the difference between the input crustal density, ρc input, and the crustal density obtained
using the inversion method, ρc inverse. The bottom plot shows the same plot, but for the mantle density instead of the crustal density. Deep
mantle density variations were added to the input model reference planet. Subplot (a) shows the results using the gravitational potential as
input data for the inversion, (b) for the gravitational vector in the z direction, and (c) for the gravitational tensor in the zz direction.

The main residual visible for all three input types, is the long wavelength pattern. This pattern corresponds the
the long wavelength signal of the density variations shown in Figure 5.18. The density variations which occur in
the mantle are of the order of approximately 4 times that of the input density variations in the deep mantle. The
obtained density variations of the crust are inversely correlated to those used as input in the deep mantle.
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The power spectra for the different data types, with the addition of deeper mantle density variations, yielded
similar results for the different input data types as shown in Figure 4.16. Because of this, the gravitational tensor
in the zz direction will now be used as data type for the input data for the remaining of this study. It as well shows
that Tzz is the best type of input data for the analysis of the density variations within Mars. This has to do with
the fact that it is not known whether the assumption that there are no lateral density variations within the deeper
mantle holds.

5.2.2. Variation in Reference Model Input Parameters

In this section, the effect of varying the different input parameters for the reference model is studied. These dif-
ferent input parameters are: the crustal density (ρc,ref), the mantle density(ρm,r e f ), the elastic thickness (Te ), the
Young’s modulus (E) and the crustal thickness (C ). In section A.4 the crustal en mantle densities are plotted, for
the limit case of each parameter.

In subplot (a) of Figure 5.20, the effect of varying the crustal density of the initial reference model is shown. Visible
is that when an initial crustal density is larger than 5% of the mean density of the synthetic planet, the inversion
diverges. For densities smaller than 95% of the mean density of the synthetic planet, the crust-mantle boundary
becomes dominant in the inversion results for the density of both the crust and mantle. For 0.95 ·mean(ρc,input) <
ρc,ref < 1.05 ·mean(ρc,input) the inversion results yield some converted results, from which the original density

profile could be obtained within a 50% error, with
max(∆ρinp−∆ρinv)

max(∆ρinp) < 50%. Both of these limit cases are plotted in

Figure A.20.

In subplot (b) of Figure 5.20, the effect of varying the mantle density of the initial reference model. A similar,
but opposite, behavior to the crustal density is visible, with too small initial mantle densities for the reference
model resulting into the inversion to diverge. But when a too large initial density for the mantle was used in the

reference model,
max(∆ρinp−∆ρinv)

max(∆ρinp) < 50% for ρm,r e f up to 1.4 ·mean(ρm,i nput ). The average mantle density of the

reference model can therefore vary from 0.95 ·mean(ρm,i nput ) < ρm,r e f < 1.4 ·mean(ρm,i nput ). The densities of
these two limit cases are plotted in Figure A.21.

In subplot (c) and (d) of Figure 5.20, the effect of variations in elastic thickness, Te , and Young’s modules, E , on the
inversion results are shown. Previously it was already shown that varying Te and E yielded similar effects on the
power spectrum of a planet. Visible in these figures is also that they yield almost the same results, with varying
Te only resulting into slightly larger differences. Varying Te and E has an effect of the crust-mantle boundary of
the reference model, varying from that of the synthetic planet. For 0.1 ·Te,i nput < Te,r e f < 2 ·Te,i nput as well as

0.1 ·Ei nput < Er e f < 2 ·Ei nput reasonable results were still obtained with
max(∆ρinp−∆ρinv)

max(∆ρinp) < 50%. When Te and E

were varied more, the variations in crust mantle boundary became dominant in the inversion. The densities of
the two limit cases for Te are plotted in Figure A.22, and for E in Figure A.23.

Lastly, varying the crustal thickness of the reference model was analyzed, shown in subplot (e) of Figure 5.20.
The density pattern could already be obtained from Cr e f > 0.6 ·Ci nput , but the magnitude of the density varia-

tions in the mantle and crust were quite larger, with
max(∆ρinp−∆ρinv)

max(∆ρinp) ≈ 50% for Cr e f = [0.6;0.7;0.8] ·Ci nput . When

the crustal thickness was increased above that of the synthetic planet, with Cr e f > 1.1 ·Ci nput , the inversion blew

up. Variations up to this increase yielded results with
max(∆ρinp−∆ρinv)

max(∆ρinp) < 50%, as can be seen for the densities plot-

ted in Figure A.24.

These analyses will be used to optimize the input parameters for the reference model of Mars. The effects which
are observed by varying the input parameters of the reference model of Mars, will be compared to the effects
found in this analysis. Based on the similarities, the reference model input parameters can be analyzed and dis-
cussed.
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(a) (b)

(c) (d)

(e)

Figure 5.20: The effect of changing multiple input parameters for the reference model, on the obtained crustal and mantle density from the
inversion. F0r subplot (a), the crustal density is varied, for (b), the mantle density is varied, for (c) the elastic thickness is varied, for (d), the
Young’s modulus is varied, and for (e), the average crustal thickness is varied.

48 5. Power Spectrum and Two-Layer Results 48



5.2. Two-Layer Inversion 49

5.2.3. Influence of Additional Crustal Mass
One of the assumptions that are made in this research is that each column has the same mass. This assumption
is one of the assumptions that is required to be able to calculate the crust-mantle boundary using isostasy and to
conclude that at a certain "depth of compensation", the pressure from each column is the same.

Figure 5.21: Effect of adding extra density variations to the crust of the synthetic planet.

In Figure 5.21 it can be seen that there is for both the crust and mantle a near-linear relation between the max-
imum added density variations to the crust and the maximum percentile error between the input density varia-

tions and the the density variations from the inversion results. This linear relation is approximately:
max(∆ρinp−∆ρinv)

max(∆ρinp) ≈
9 ·max(ρc,added).

Figure 5.22: A closer look at the effect of adding extra density
variations to the crust of the synthetic planet, equal to a maxi-
mum magnitude of 1.25% of the original density variations. The
top left figure shows the difference between the density of the
crust for the synthetic planet and the inversion results. The top
right figure shows the same but for the mantle density varia-
tions. The bottom left figure shows the added density to the
crust, and the bottom right figure shows the residual gravita-
tional tensor (Tzz).

Figure 5.23: A closer look at the effect of adding extra density
variations to the crust of the synthetic planet, equal to a maxi-
mum magnitude of 20% of the original density variations. The
top left figure shows the difference between the density of the
crust for the synthetic planet and the inversion results. The top
right figure shows the same but for the mantle density varia-
tions. The bottom left figure shows the added density to the
crust and the bottom right figure shows the residual gravita-
tional tensor (Tzz).

Figure 5.22 and Figure 5.23 show a more in-depth view of the inversion results for the case of max(ρc,added) equal
to 1.25% and 20% respectively. Visible is that the residuals for both the crust and mantle density, shown at the top
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of the two figures, correspond to the long wavelength pattern of the added crustal density, shown in the bottom
left. What also can be seen is that when the added density is positive, the density residual for the crust is negative:
if ρc,added > 0, then ∆(ρc,input −ρc,inverse) < 0, and vice versa. The exact opposite is the case for the mantle. Visible
in the bottom right of the two figures, is that the residual of the gravitational tensor (Tzz) is for both max(ρc,added)
equal to 1.25% and 20% similar in magnitude, when the polar regions are ignored, and contain almost only noise.

In the calculations, it is assumed that the mass of every column on the planet is equal. Because of this, the density
variations in the crust result in opposite density variations in the mantle. This can be seen as if these densities
"compensate" each other in the gravity field. When extra density variations are added to the crust, which are not
represented in the mantle, this compensation does not take place in the gravity field. Therefore this added density
to the crust will show up in large in the density results and also show up in the mantle when they are only added
to the crust. Very small additions will already result in very large differences. When only approximately 1.25% is
added, the density variations obtained through the inversion still closely resemble those of the input model, with
a maximum error of approximately 18%. This corresponds to approximately ±34 kg/m3 for the crust and approx-
imately ±10 kg/m3 for the mantle, as can be seen in the top two plots of Figure 5.22. When these added density
variations become larger than approximately 5% (≈ 15 kg/m3), they become dominant in the inversion and the
input density variations, yielding unusable results for both the crustal and mantle density.

5.2.4. Influence of Additional Mantle Mass
Similar results where obtained for adding extra density variations to the mantle as were obtained for adding extra
density variations to the crust.

Figure 5.24: Effect of adding extra density variations to the mantle of the synthetic planet.

Figure 5.24 shows that there is for both the crust and mantle a near-linear relation between the maximum added
density variations to the mantle and the maximum percentile error between the input density variations and

the the density variations from the inversion results. This linear relation is approximately:
max(∆ρinp−∆ρinv)

max(∆ρinp) ≈
8 ·max(ρm,added). Figure 5.25 and Figure 5.26 show a more in-depth view of the inversion results for the case of
max(ρm,added) equal to 1.25% and 20% respectively. Similar to adding extra density variations to the crust, when
the magnitude of the added density variations to the mantle exceed approximately 5% (≈ 4 kg/m3), they become
dominant yielding unusable results for both the crustal and mantle density.
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Figure 5.25: A closer look at the effect of adding extra density
variations to the mantle of the synthetic planet, equal to a maxi-
mum magnitude of 1.25% of the original density variations. The
top left figure shows the difference between the density of the
crust for the synthetic planet and the inversion results. The top
right figure shows the same but for the mantle density varia-
tions. The bottom left figure shows the added density to the
mantle, and the bottom right figure shows the residual gravi-
tational tensor (Tzz).

Figure 5.26: A closer look at the effect of adding extra density
variations to the mantle of the synthetic planet, equal to a max-
imum magnitude of 20% of the original density variations. The
top left figure shows the difference between the density of the
crust for the synthetic planet and the inversion results. The top
right figure shows the same but for the mantle density varia-
tions. The bottom left figure shows the added density to the
mantle and the bottom right figure shows the residual gravita-
tional tensor (Tzz).

5.2.5. Influence of Additional Mantle and Crustal Mass
In this section, the effect is studied of adding uncorrelated density variations to both the crust and the mantle.
The additional density for both the crust and the mantle has been varied from 1.25% of the original density vari-
ations, up to 20%. Visible in Figure 5.27 is that when uncorrelated density variations are added to both the crust
and mantle, the error diverges very fast, as is expected. This has to do with the fact that the method used to split
the single layer density result into two-layers. It is assumed that the crust and mantle density are fully correlated
to each other.

In this section it was analyzed how the crustal and mantle density outputs of the inversion change when the
input parameters of the reference model were changed from the true parameters of the synthetic planet. It was
found that when the crustal density of the reference model was set larger than that of the synthetic planet, the
inversion results started to diverge very fast. Looking at varying the mantle density, this behavior was observed
to be reversed. For too small mantle densities compared to that of the synthetic planet. Changing the elastic
thickness, Te , and the Young’s modulus, E , yielded similar results. While for the average crustal thickness of the
reference model, it was found that when it was set to a smaller average crustal thickness than that of the synthetic
planet, the results deviated much less than when it was increased to above the average crustal thickness of the
reference model.
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(a) (b)

(c) (d)

(e)

Figure 5.27: Analysis of the effect of adding extra density variations to both the crust and the mantle. These plots are plotted for variable
mantle variations, and constant crustal density variations. The crustal maximum added crustal density variations are for subplot (a) 1.25%,
(b) 2.5%, (c) 5%, (d) 10%, and (e) 20%.
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6
Mars Inversion Results & Discussion

In this chapter, the inversion results for Mars will be given. A reference model is created based on the Martian
topography, as given in section 2.2. The residual between this reference model and the Martian gravity, given in
section 2.3, is used as input for the inversion.

In the first section, the initial analysis was performed. In this analysis, the effect of varying multiple input pa-
rameters of the reference model on the inversion results is analyzed. This analysis is split into three phases. The
analysis is performed for 100 different reference models in the first phase. From this analysis, a more narrowed
search space was obtained. In the second phase, the effect of varying the crustal thickness and elastic thickness
on the inversion was studied for a set density difference between the crust and the mantle of the initial reference
model. In the last phase, the effect of changing the density of the crust and mantle, as well as the density difference
between the crust and the mantle, on the inversion, for varying elastic thicknesses was studied. In chapter 5 it was
analyzed how the density outputs changed when the input parameters of the reference model were changed from
the true parameters of the synthetic planet. These results will be compared to the Martian results.

In the next section, the optimal inversion results for Mars are given. After that, the obtained densities and crustal
thickness are analyzed and compared to what has previously been found in literature. In section 6.4, the gravity
of the inversion model will be compared to the gravity of Mars, and in section 6.5, the model assumptions will be
discussed. Lastly, in section 6.6 the obtained crustal density variations will be compared to the geological map
given by Tanaka et al. [2014].

6.1. Mars Parameter Analysis
In this section, the input parameters for the Martian reference model are analyzed. Based on the robustness
analyses performed in chapter 5, the input parameters for the inversion are changed to fit the Martian gravity in
three phases. A reference model will be used, as explained in section 3.4. In Table 3.1 the ranges for the different
input parameters used for the initial Martian reference model are given. The next section will show the results of
the initial analysis based on these parameter variations.

6.1.1. First Phase - General Analyses
As mentioned above, the variation of the different parameters is given in Table 3.1. The different combinations of
these parameters used for this initial analysis are as follows:

Table 6.1: The chosen range for each of the different input parameters for the thin shell model, which will be used as input for the different
reference models.

Crustal & Mantle Crustal Thickness Elastic Thickness Young’s modulus Poisson Ratio
Density [kg/m3] [km] [km] [Gpa] [-]
2700 & 3600 50 50 100 0.25
2800 & 3500 75 150 - -
2900 & 3500 100 250 - -
3000 & 3400 125 400 - -
3100 & 3400 150 - - -
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Each range in Table 6.1 is combined in every possible combination, which results into 5 · 5 · 4 · 1 · 1 = 100 differ-
ent combinations. For each of the inversions with the different reference models, a multiplication factor of 30
was used, and 25 iterations were performed. This combination yielded converged results for the synthetic planet
analysis. The resulting density for the crust was next analyzed and is plotted in Figure 6.1. Large density varia-
tions within the crust gave an indication of a non-optimal combination of input parameters, as was obtained by
the analyses of the synthetic planets. Because of this, the maximum density variation in the crust, ∆ρc , is plotted
against the average crustal thickness for different combinations of ρc and ρm of the reference model. From the
synthetic planet analysis, it was found that the smaller the obtained density variations, the closer the obtained
density results to the input density, as long as the inversion tensors converged to the Martian tensor. In subsec-
tion 5.2.2, it was found that when the wrong input parameters were chosen, the density variations significantly
increased. When the input parameter differed significantly from the parameter of the reference model, between
± 10% for ρc and ρm , +25% for C , and +250% for Te , the differences between the inversion and input density in-
creased up to 100% of the input density differences. Therefore, based on these synthetic planet results, it can be
concluded that when the wrong input parameters are used, the inversion results either diverge or are significantly
overestimated.

In Figure 6.1, the average crustal thickness is plotted against the maximum crustal density variations for varying
density differences between the crustal and mantle density for the 100 different combinations for the reference
model. Four subplots were made for the different elastic thicknesses. When analyzing these first results, it can be
seen that the density variation of ∆ρ = 900 kg/m3 yields the best results for all four variations of the elastic thick-
ness, the dark blue line, with the smallest max(∆ρc,inversion). Figure 6.1 has been presented in a similar manner
to the synthetic planet results given in Figure 5.20. Next to the results given in Figure 6.1, a heatmap of the same
results is also created. This heatmap is given in Figure A.29. Visible in both Figure 6.1 and Figure A.29 is that the
larger the elastic thickness, the larger the optimal average crustal thickness. For both Te = 50 km and Te = 150 km,
the optimal crustal thickness lays somewhere around the 75 km for the different density variations. For Te = 250
km as well as Te = 400 km, this shifts to an optimal average crustal thickness of around a 100 km. As explained
above, an important result is the density variations of the obtained crustal density. For Te = 50 km, the optimal
combination of parameters results into density variations in the crust of around 1060 kg/m3. For Te = 150 km
this is around ∆ρc,inversion = 850 kg/m3 and for Te = 250 km this is around ∆ρc,inversion = 750 kg/m3. Lastly, for
Te = 400 km, this is ∆ρc,inversion = 670 kg/m3. Therefore, it is more likely that the elastic thickness will be on the
thicker side, somewhere around the 250 km up to above the 400 km thickness.

Figure 6.1: The first analysis of the different combinations of input parameters for the initial reference planets. The average crustal thickness
is plotted against the density differences in the crustal density, for variations in elastic thickness between the four subplots. From top left, to
bottom right, these figures show the results for elastic thicknesses of Te = 50 km, Te = 150 km, Te = 250 km, and Te = 400 km.
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6.1.2. Second Phase - Crustal and Elastic Thickness Analysis

For the next analysis, the crustal thickness variation between the input density of the crust and mantle of the ref-
erence model will be set∆ρ = 900 kg/m3. Next, the average crustal thickness of the reference model will be varied
around 100 km, from 90 up to 115 km, with steps of 5 km. Also, Te , is varied, from 150 km up to 550 km. These
results are plotted in Figure 6.2. Also, for these results, a heatmap is created, given in Figure A.30.

The shift of the increasing optimal Te when the average crustal thickness is increased is also visible when looking
at Figure 6.2 and Figure A.30. The optimal combination of input parameters for this analysis is a crustal thickness
of 105 km, with an elastic thickness of 425 km. When the crustal thickness increases beyond the optimal point,
the results start to diverge. This is similar behavior to what was observed in subplot (e) of Figure 5.20, where the
crustal thickness of the reference model was varied from the synthetic planet analyses.

Figure 6.2: Results for a set density difference between the crustal and mantle density of the reference model of 900 kg/m3, and variations in
the average crustal thickness and elastic thickness. The elastic thickness is plotted against the density differences in the crustal, left subplot,
and mantle, right subplot, density.

6.1.3. Third Phase - Crustal and Mantle Density Variations

Next, the density variations were studied for this optimal combination of C and Te . The average crustal thick-
ness was set to 105 km, with the elastic thickness varied from 400 km to 475 km in steps of 25 km. The density
difference between the crust and mantle of the reference model was varied from 700 kg/m3 to 1100 kg/m3 with
steps of 100 kg/m3. Also, the mantle and crustal density combination was varied for constant density difference
between them. Only the density difference has an influence on the crust-mantle boundary calculation, but the
set density for the crust and mantle does have an influence on the inversion. Both the crustal density and density
difference have an influence on the root of the Airy crust-mantle boundary. Therefore, the crustal and mantle
density combinations given in Table 6.2 were used as input for the initial densities of the reference model for the
next test. The combinations given in Table 6.2 were the initially used combinations. It was found that for those
results, a density difference of 900 kg/m3 was optimal. Therefore, density differences of 1000 and 1100 kg/m3 were
added too, as well as increasing the range up to 3800 kg/m3 for the density difference of 800-1100 kg/m3. Lastly,
for a density difference of 900 and 1000 kg/m3, the mantle density of 3550 and 3650 kg/m3, and 3650 and 3750
kg/m3 respectively, were added to narrow the search field around these optimal values of 3600 and 3700 kg/m3

respectively. These results are shown in Figure 6.3 with the mantle density plotted on the horizontal axis and in
Figure 6.4 with the crustal density plotted on the horizontal axis. For both the reference mantle density and the
crustal reference density, heatmaps are created as well, shown in Figure A.31 and Figure A.32 respectively.
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Table 6.2: Combinations of crustal and mantle density as input for the reference model used in the analysis of Figure 6.3.

∆ρ = 700 kg/m3 ∆ρ = 800 kg/m3 ∆ρ = 900 kg/m3

ρc [kg/m3] 2700 2800 2900 2600 2700 2800 2500 2600 2700
ρm [kg/m3] 3400 3500 3600 3400 3500 3600 3400 3500 3600

Table 6.3: The second set of combinations of crustal and mantle density as input for the reference model used in the analysis of Figure 6.3.

∆ρ = 800 kg/m3 ∆ρ = 900 kg/m3 ∆ρ = 1000 kg/m3 ∆ρ = 1100 kg/m3

ρc [kg/m3] 2900 3000 2800 2900 2400 2500 2600 2700 2700 2400 2500 2600 2700
ρm [kg/m3] 3700 3800 3700 3800 3400 3500 3600 3700 3700 3500 3600 3700 3800

Figure 6.3: Results for a set average crustal thickness for the reference model of 105 km and variations in the elastic thickness and density
difference between the crust and mantle of the reference model. The mantle reference density is plotted against the density differences in the
crustal for different density differences. From left to right, subplot 1 shows the results for an elastic thickness of 400 km, subplot 2 for 425 km,
subplot 3 for 450 km, and subplot 4 for 475 km.

Figure 6.4: Results for a set average crustal thickness for the reference model of 105 km and variations in the elastic thickness and density
difference between the crust and mantle of the reference model. The crustal reference density is plotted against the density differences in the
crustal for different density differences. From left to right, subplot 1 shows the results for an elastic thickness of 400 km, subplot 2 for 425 km,
subplot 3 for 450 km, and subplot 4 for 475 km.

56 6. Mars Inversion Results & Discussion 56



6.1. Mars Parameter Analysis 57

Looking at the results in Figure 6.3 and Figure A.31, it can be concluded that, for the used ranges, larger ∆ρref will
result into smaller max(∆ρc,inversion) values. The only exception is for Te : the results of ∆ρref = 1000 kg/m3 gives a
slightly better result than∆ρref = 1100 kg/m3, but this probably has to do with the used ranges. The optimal value
for ∆ρref = 1100 kg/m3 most likely lays somewhere between 3700 and 3800 kg/m3. The optimal value for Te = 450
km, is for ∆ρref = 1100 kg/m3, but with ρm,ref is somewhere between the 3700 and 3800 kg/m3. Another trend
that is visible, is that, for the minima in max(∆ρc,inv), smaller Te resulted in larger mantle density for the reference
model. No large differences in the minimum value for the max(∆ρc,inv) are visible, for the different values of Te .
Also it is visible that the higher the ∆ρref, the higher the reference mantle density for the minimum max(∆ρc,inv).

6.1.4. Discussion on Variations in Elastic Thickness
First, the effect of varying the elastic thickness, Te , will be discussed. The trend visible in Figure 6.2 is the "V"
like shape for each average crustal thickness when Te is varied. In subsection 5.2.2 a similar "V" like shape was
found for variations around the synthetic planet value. What was also found was that for large deviations, from
approximately 0.1, up to 2 times the input elastic thickness of the synthetic planet, the error in the obtained
density stayed below 60%. This still yielded results from which the original pattern of the density variations could
be obtained. This was also visible in the Martian results, where from Te = 150 km, up to Te = 475 km, similar
density patterns were obtained, but with varying magnitudes. For Te = 50 km, the inversion did not converge, as
can be seen in the top left plot of Figure 6.1. It is therefore assumed that the elastic thickness of 50 km is too small,
yielding unrealistic results.

6.1.5. Discussion on Variations in Average Crustal Thickness
The effect of varying the average crustal thickness for the synthetic planet analyses, given in subsection 5.2.2,
showed that when the crustal thickness was chosen too small, up to Cref = 0.6Cinput, the error in the obtained
density stayed below 50%. When a too large average crustal thickness was chosen, the inversion diverged very
fast, only yielding somewhat usable results up to Cref = 1.1Cinput. This trend was already visible in the first analysis
results for Mars, shown in Figure 6.1, which showed that for C > 100 km, the inversion results diverged. In the
second analysis, it was found that for C < 110 km, there were still combinations of input parameters possible for
which converged results, with reasonably small max(∆ρc,inversion), were obtained. When the crustal thickness was
increased up to 115 km, this was not the case anymore, and the inversion started to diverge. The optimal crustal
thickness was found to be in the range of 100 to 105 km. For a value of C = 115 km, the inversion diverged. From
the synthetic planet analyses, it was found that for Cref > 1.1Cinput, the inversion started to diverge. From this can
be concluded that C = 115 km is at least 10% larger than the average crustal thickness of Mars. This would mean
that CMars is somewhere between 100 and 105 km, equal to for which the smallest maximum density variations
were found.

6.1.6. Discussion on Variations in Crustal and Mantle Density
Ranges from 300 kg/m3 up to 900 kg/m3 were initially studied and later increased up to 1100 kg/m3. For all these
ranges, different combinations of input parameters could be obtained for which the inversion converged. In the
third analysis, shown in Figure 6.3, both variations in crustal density, mantle density, as well as the density varia-
tion were studied. It was found that the larger Te , the smaller the mantle density for the smallest max(∆ρc,inversion).
In subplot (b) of Figure 5.20, the variations of the mantle density for the synthetic planet have been analyzed. Visi-
ble is that when the mantle density was chosen too small, the inversion results diverged. When the mantle density
was set to a value above a certain threshold, above ∆ρm,ref = 1.4∆ρm,i nput , the inversion only diverged from the
true density variations in a slow manner. In the Martian results, a similar trend was observed. When ρm,ref was
chosen too small, large max(∆ρc,inversion) values were found.

In Figure 6.1 it is visible that the density variation of ∆ρ = 900 kg/m3 yields the best results for all four varia-
tions of the elastic thickness. This is the largest density difference used in this analysis. In Figure 6.3, it is also
visible that the largest density difference between the crust and mantle of the reference model, in that specific
analysis equal to 1100 kg/m3, showed the best results for all except Te = 450 km. This has probably to do more
with the chosen interval, where the optimal value is located somewhere between ρm = 3700-3800 kg/m3, but the
spacing of the data points was too large. From this can be concluded that large density differences yielded the best
results. The density difference has a clear influence on the obtained crust-mantle boundary, which was obtained
using the following Airy equation,

b = hρc

ρm −ρc
, (6.1)
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where b is the depth/height of the root with respect to the average crustal thickness, h is the height/depth of
the topography, ρm is the mantle density, and ρc is the crustal density. If the topography is positive, the root is
positive down with respect to the crust-mantle boundary, and if the topography is negative, the root is negative
up with respect to the crust-mantle boundary. Therefore, the larger the density difference between the crust and
mantle, the smaller the roots. This, together with the large value for Te that has been obtained, is the basis for
the conclusion that the small wavelength topographic features are compensated through density differences, and
only the large wavelength features are compensated isostatically.

6.2. Optimal Inversion Results Mars, Smallest max(∆ρc,inv)
The different density profiles for the smallest max(∆ρc,inv) for the different Te values performed very similar be-
havior. In section A.5 the results are given for all four values of the elastic thickness. The combinations of the
input parameters for each of these elastic thickness values, are given in Table 6.4. In this section only the results
for Te = 400 km is given.

Table 6.4: The combination of input parameters for the minimum max(∆ρc,inv) for each elastic thickness used in subsection 6.1.3.

Te [km] C [km] ∆ρref [kg/m3] ρm,ref [kg/m3] ρc,r e f [kg/m3]
400 105 1100 3800 2700
425 105 1100 3800 2700
450 105 1000 3650 2650
475 105 1100 3700 2600

Figure 6.5: The crustal and mantle density and density variations obtained through the Martian inversion. For the inversion, a multiplication
factor of 30 and 25 iterations were used. These results were obtained for a reference model with the topography and crust-mantle boundary
shown in Figure 6.6, for the same subplots, respectively.

In the obtained densities, shown in Figure 6.5, some topographic features are clearly visible. These features are
Hellas Basin, Utopia Basin, Vastitas Borealis, and the Tharsis Region. Also, the slightly smaller topographic fea-
tures of Isidis Basin and Argyre Basin are visible, as well as Valles Marineris. The volcanoes Alba Mons and Elysium
Mons are two topographic features that are not clearly visible in the obtained densities. In the density differences,
for both the crust and mantle, no large differences are visible between the different elastic thickness results. The
topography and the obtained crust-mantle boundary are plotted for each Te , as well as the obtained crustal and
mantle densities and density variations in the next sections. In the crust-mantle boundary, shown in the right
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plots of Figure 6.6, the Martian dichotomy is clearly visible. Next to the Martian dichotomy, the thin crust un-
derneath Hellas Basin is visible. The crust is the thickest underneath the Tharsis region, and the thin crustal
regions are underneath Utopia Basin and goes up to Vastitas Borealis and then down to Chryse Planitia. No large
differences are visible between the different crust-mantle boundaries.

Figure 6.6: The topography and crust-mantle boundary used for the reference model for the Martian inversion. This is obtained with C = 105
km, E = 100 GPa, ν= 0.25, ρc = 2700 kg/m3, ρm = 3800 kg/m3, and Te = 400 km.

6.3. Density and Crustal Thickness Analyses
For each Te the results with the minimum density variations in the crust were plotted in section A.5. The obtained
variations between the results for the different Te values were very similar, only deviating slightly in magnitude. It
was found that, overall, a density difference for the reference model of 1100 kg/m3 between the crust and mantle
density yielded the smallest max(∆ρc,inversion). This large density difference between the crust and the mantle has
an influence on the crust-mantle boundary. The crust-mantle boundary was obtained by applying the flexural re-
sponse function, as given in Equation 2.11, to the crust-mantle boundary obtained with Airy isostasy, given by
Equation 2.3. As can be seen in this equation, the larger the density difference between the crust and mantle, the
smaller the root. From the combination of the large obtained elastic thickness, and the large density difference
between the crust and mantle, it can be concluded that for the inversion, large differences within the crust-mantle
boundary were deemed unrealistic.

In previous research, most often, a crust-mantle boundary based on Airy isostasy was used. Qin [2021] already
looked at the different isostasy methods and the effect of the power spectrum of Mars. In this research, it was also
found that the thin shell method yielded the best fit for the Martian power spectrum. One of the main assump-
tions of Airy is that the density for both the crust and the mantle is uniform. When an impact crater is created,
the material is crushed together, resulting in a higher density in the crust. Airy assumes that the lower topography
would affect the crust-mantle boundary instead of assuming that impact craters are more isostatically compen-
sated using Pratt. This would result in a lower topography, with a denser crust, underneath the impact crater,
but the crust-mantle boundary would not be affected. Because the FRF is applied to a crust-mantle boundary
obtained with Airy, it makes it very difficult to correctly model the crust-mantle boundary around impact craters.
This may be the reason for the very large crustal density values observed near the impact craters. This is because
the topography near impact craters is lower, resulting in a thinner crust than would be the case for Pratt isostasy.
Because of the thinning of the crust underneath impact craters, more mass is located in a smaller volume, result-
ing in higher densities. This may also be the reason that large values for the elastic thickness, and the large density
differences, yielded the best results. Large Te and ∆ρref yield small deflections in the crust-mantle boundary and,
therefore also, less thinning of the crust underneath the impact craters. From this, it can be concluded that the
large impact craters on Mars, such as Hellas, Utopia, Isidis, and Argyre basin, are more likely to be compensated
by applying the thin shell FRF to a crust-mantle boundary which is obtained with Pratt isostasy.

Based on the reference model with Te = 400 km, C = 105 km, ρc,r e f = 2700 kg/m3 and ρm,ref = 3800 kg/m3, which re-
sulted into the result with the smallest max(∆ρc,inversion), now referred to as the Martian inversion result, a density
difference for the final inversion results of approximately 1000 kg/m3 between the crust and mantle was obtained.
A mean crustal density of approximately 2750 kg/m3 and the mean mantle density of approximately 3750 kg/m3

were found. The elastic thickness, if chosen uniformly, most likely lays somewhere between the 450±50 km and
the uniform crustal thickness somewhere between 100±10 km.
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Based on the results of the Martian inversion result, a mean crustal thickness of 103.5 km was found, with crustal
thickness values ranging from approximately 90 km, underneath Utopia Basin and Vastitas Borealis, up to approx-
imately 125 km, underneath Olympus Mons. In the next subsections, a more in-depth analysis and comparison
of the crustal thickness beneath specific topographic features will be given. An optimal lithospheric thickness
of 450± 50 km was obtained in this research. Up until the recent findings, based on the Insight data, previous
research found a lithospheric thickness somewhere between the 50-150 km [Zuber et al., 2000] [Nimmo, 2002]
[Turcotte et al., 2002] [Belleguic et al., 2005] [Beuthe et al., 2012] [Taylor et al., 2020] [McGovern et al., 2004] [Stein-
berger et al., 2010]. In the most recent study [Khan et al., 2021], based on the seismic data obtained through the
Insight mission, a lithospheric thickness between the 400 and 600 km was found. The elastic thickness for this
study is fully based on the Te value as used in Equation 2.11, the flexural response function for the thin shell
model. In this model, there is a correlation between the elastic thickness and the Young’s modulus. These two
parameters give a measure of how easy the lithosphere ’bends’. The Young’s modulus has been taken as constant
in this study, 100 GPa, and only the elastic thickness value is varied. One way to solve this is by looking at the
flexural rigidity parameter, D , as explained in section 2.1, which relates the elastic thickness to both the Young’s
modulus as well as the Poisson ratio.

In [Nimmo and Stevenson, 2001] it is demonstrated that the crustal thickness of the southern highlands is un-
likely to be larger than 125 km and is more probably smaller than 100 km. When it is assumed that the topographic
features in the southern highlands, such as Hellas, are supported by Airy isostasy, it is found that the crustal thick-
ness can not be less than approximately 40 km. These bounds translate into a mean planetary crustal thickness of
approximately 30-115 km, resulting in a crustal thickness range that encloses the findings obtained in this thesis
project. In [Nimmo, 2002], the upper layer of the crust was taken as variable. This resulted in the mean crust lying
in the range of 1–111 km. The obtained average crustal thickness range for this thesis research lies within this
range. In [Turcotte et al., 2002], a mean crustal density of 2960 kg/m3 and a crustal reference thickness of 91.7 km
were assumed. Based on the scatter in the data, this would result in an error of ±50 kg/m3 in the crustal density
and ±10 km error in crustal thickness. It was also found that even though the Hellas area is locally compensated,
much of the topography on Mars is not. The average crustal thickness of 2960 ±50 kg/m3 is 8% larger than the
obtained crustal density of 2750 kg/m3. The crust of 91.7 ±10 km is 11% lower than the obtained average crustal
thickness of 103.5 km. The lower crustal density found by Nimmo [2002] might be the reason for the larger average
crustal density.

The densities of the meteorites, which are believed to originate from Mars, were found to have densities between
the 3100 and 3700 kg/m3 Coulson et al. [2007]. Based on igneous rocks at Gusev crater, located 14.5 degrees south
and 175.4 degrees east, the crustal density was calculated to lie somewhere between the 3100 and 3600 kg/m3

[Baratoux et al., 2014]. Most of the found densities for the impact crater lie within these ranges. It is believed that
the meteorites originate from the Martian impact craters, being ejected due to the impact. [Baratoux et al., 2014]
also found that these higher densities are compatible with the measured mass of Mars and the moment of inertia
factor for average crustal thickness values approaching 100 km, similar to what was found in this study.

Based on the shergottites, nakhlites, and chassignites (SNC) meteorites, Sohl and Spohn [1997] found that Mars
is overlain by a 100 up to 250 km thick basaltic crust. The present thermal lithosphere was estimated to be about
500 km thick, similar to the seismic lithosphere found by Khan et al. [2021]. The lithosphere is subdivided into a
300 km thick outer lithosphere [Sohl and Spohn, 1997].

In Figure 6.5, some topographic features are clearly visible. Especially the impact craters are clearly visible: Hellas
Basin, Utopia Basin, Isidis Basin, and Argyre Basin. Next to the craters, the Tharsis region is also visible. When
looking at the densities, it becomes clear that the impact crater features are more clearly represented in the ob-
tained densities than the large volcanoes on Mars. Volcanoes such as Alba Mons and Elysium Mons are not clearly
distinguishable in the obtained densities. This has likely to do with the fact that it is difficult to correctly model im-
pact craters, as explained above. Volcanoes were not formed by impact but through internal mechanisms. There-
fore, the density was not externally pressured together, and the crust-mantle boundary-based in Airy isostasy,
together with the applied FRF, might be a more realistic compensation for volcanoes than for large impact craters.

6.3.1. Hellas Basin, Utopia Basin, and other impact craters

In this subsection, the obtained densities and crustal thickness are analyzed, as well as compared to what has
already been found in literature for the different topographic features. For this analysis the cross-sections shown
in subsection 6.3.3 are used. The cross-sections were made for only the Martian inversion result. In Table 6.5 the
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crustal thickness, crustal density, and mantle density obtained for the Martian inversion result are given.

In the model used by Zuber [2001], a crustal density of 2900 kg/m3 and a mantle density of 3500 kg/m3 is as-
sumed. This is consistent with plausible crustal compositions and with bulk composition models [Dreibus and
Wanke, 1985]. A mean crustal thickness of approximately 50 km is obtained. This model assumes an average
crustal and mantle density, with a constant density difference of 600 kg/m3. This is a much smaller density differ-
ence than was obtained for the Martian inversion result.

Table 6.5: The mean crustal thickness, mean crustal density, and mean mantle density obtained for some of the Martian surface features,
specifically basins and low elevation areas, for the Martian inversion result.

Topographic feature Crustal thickness [km] Crustal Density [kg/m3] Mantle Density [kg/m3]
Hellas Basin 93 3345 3630
Utopia Basin 90 3300 3640
Isidis Basin 97 3200 3650

Argyre Basin 105 2870 3740

In [Zuber, 2001], a much thinner crustal thickness is obtained than for the Martian inversion model, approxi-
mately 5-10 km versus 90 km, respectively. When the crustal thickness is small, the mean density of the column
would be almost equal to the mantle density. The crustal thickness in [Zuber, 2001] is based on Airy isostasy,
which would result in a very thin crust. Because this assumes uniform crustal and mantle thickness, this can
also be translated to different crustal thickness variations, with variations in both crustal and mantle density. In
[Zuber, 2001] the mass of a column can be seen as follows:

cρc + (x − c −h)ρm = 5 ·2.9+ (x −5−8) ·3.5,

= 14.5+ (x −13) ·3.5,

= 3.5x −31,

with c the crustal thickness, ρc the crustal density, x the depth of compensation, h the topographic height/depth
and ρm the mantle density. For the Martian inversion model the mass beneath Hellas basin for one column is:

cρc + (x − c −h)ρm = 93 ·3.345+ (500−93−8) ·3.63,

= 311+ (500−101) ·3.63,

= 311+1448 = 1759.

This would mean a depth of compensation for the model of Zuber [2001] for 3.5x−31 = 1759 −> x = 494 km. The
crustal thickness underneath the Hellas basin would need to be equal to 30 km to result in a depth of compensa-
tion of 500 km. When the columns can not move without friction from each other, as is the case for the thin shell
model, the crustal thickness would increase underneath Hellas basin. Combining this all, it can be concluded
that even though these results seem quite different, they can be interpreted in a similar manner.

If Hellas basin was compensated through Pratt isostasy instead of thin shell isostasy, there would be no crustal
thinning underneath Hellas basin. Therefore, the crust would be between 6 and 7 km thicker. This would increase
the crust from 93 km up to approximately 100 km. If this were the case, the density underneath Hellas basin would
be of the order 93·3345

100 = 3110 kg/m3. This is more than 200 kg/m3 less than the current crustal density found un-
derneath Hellas basin.

Another effect might be that there is a mantle plume underneath Utopia basin. When looking at the Martian
topography, as shown in Figure 1.1, Hellas Basin is clearly visible, but for Utopia Basin not as much. There is
no clear rim or significant lowering of the topography near Utopia basin compared to the surrounding Northern
Lowlands. Therefore, there is also no clear crustal thinning visible underneath Utopia basin, as visible in sub-
plot (e) of Figure 6.7. The crustal thinning is clearly visible underneath Hellas Basin, as is visible in subplot (d) of
subsection 6.3.3. Therefore, this large gravity signal for Utopia Basin might be due to a mantle plume.

6.3.2. Tharsis Region, Olympus Mons, and the other Large Volcanoes
In Table 6.6 the crustal thickness, crustal density, and mantle density obtained for the Martian inversion result
are given. In [Zuber et al., 2000] it was found that Olympus Mons and the other volcanoes on Mars in the Tharsis
region have an elastic thickness larger than 100 km. In [McKenzie et al., 2002] a crustal density of 2970±40 kg/m3
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was found for the Tharsis region, which is substantially greater than the terrestrial value of 2670 kg/m3 and is
about 10% less than the density of the meteorites believed to come from the Martian crust. If the rock density
of Mars is 3320 kg/m3, equal to that of the meteorites believed to come from the Martian crust [McKenzie et al.,
2002], these meteorites could originate from the high elevation, volcanic areas of Mars. These meteorite densities
fall within the crustal density range for the Tharsis region.

In [Pauer and Breuer, 2008] a mantle density of 3500 kg/m3 is used and a range for the crustal density between
2400 and 3200 kg/m3 is used. To satisfy the constraint that the minimum crustal thickness should be smaller
or equal to the mean crustal thickness, a maximum crustal density of 3020 ± 70 kg/m3 was obtained. For the
volcanoes such as Olympus, Elysium, Arsia, Pavonis, and Ascraeus Mons, a load density of 3200 ± 100 kg/m3 was
found, which was studied with gravity/topography and was much higher than the maximum density obtained
for the southern crust. The higher crustal densities in this thesis study were mainly found near the large impact
basins (Hellas, Utopia, Isidis, and Argyre), the Tharsis region and Olympus Mons, and the northern highlands.
The other large volcanoes, Alba Mons and Elysium Mons, were found to be very well isostatically compensated
using the thin shell method.

Table 6.6: The mean crustal thickness, mean crustal density, and mean mantle density obtained for some of the Martian surface features,
specifically volcanoes and high elevation areas, for the Martian inversion result.

Topographic feature Crustal thickness [km] Crustal Density [kg/m3] Mantle Density [kg/m3]
Tharsis Region 120-130 2770-3370 3750-3560
Olympus Mons 127 3370 3560

Alba Mons 112 2660 3810
Elysium Mons 100 2770 3780

Belleguic et al. [2005] found that the densities of the Martian volcanoes are generally well constrained with values
of 3200 ± 100 kg/m3. This is similar to the densities found for the volcanoes in the Tharsis region. The other
large volcanoes, such as Alba Mons and Elysium Mons were found to be well compensated by thin shell isostasy,
and crustal densities of 2660 and 2770 kg/m3 were found, respectively, which is much lower than was found by
Belleguic et al. [2005]. The density was only constrained for the Elysium rise to 3270 ± 150 kg/m3, which is almost
20% higher than was found in this study. This smaller crustal density for the volcanoes outside the Tharsis rise
might have to do with the fact that this thesis study uses the thin shell model, in which the curvature of the planet
compensates part of the loads. The volcanoes outside of the Tharsis region are more stand-alone volcanoes,
which are easier compensated by the curvature than the large volcanic region, which is the Tharsis region.

6.3.3. Cross-Sections
Different cross-sections of the reference model with the densities obtained through the inversion were made to
better see the correlation and anti-correlation between the found density differences, the topography, and crust-
mantle boundary. The cross-sections are made with the density results and input boundaries for the elastic thick-
ness of 400 km. For Te = 400 km, the result with the smallest max(∆ρc,inv) was found. In the previous sections,
it was shown that varying the elastic thickness did not have a significant influence on the obtained densities
for the smallest max(∆ρc,inv). Therefore, the cross-sections are only given for one reference model. Six of these
cross-sections have been made and are shown in Figure 6.7. These cross-sections are obtained with the density
variations given in Figure 6.5 and the topography and crust-mantle boundary shown in Figure 6.6.

In subplot (a) of Figure 6.7, the cross-section is made for the longitude line of -134 degrees, which shows the
Southern Highlands, Olympus Mons, and the Northern Highlands. In subplot (b), the cross-section is made for
the longitude line of -114 degrees, where the Southern Highlands as well as the Tharsis Montes, Alba Mons, and
the Northern Highlands can be seen. In the next cross-section, subplot (c), the Argyre Basin, Valles Marineris,
and the Northern Lowlands can be seen at the longitude line of -44 degrees. On the longitude line of 80 degrees,
shown in subplot (d), Hellas Basin, Hesperia Planum, Isidis Basin, and the Northern Lowlands can be seen. The
next cross-section shows the cross-section of the 120-degree longitude line, subplot (e), and shows the Southern
Highlands as well as Utopia Basin. The last cross-section is for longitude line 148 degrees, shown in subplot (f)
and shows the southern Highlands, Elysium Mons, and the Northern Lowlands.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: A cross section of the reference model based on the densities given in Figure 6.5 and the boundaries given in Figure 6.6. The subplot
shows the longitude line of (a) -134 degrees, (b) -114 degrees, (c) -44 degrees, (d) 80 degrees, (e) 120 degrees, and (f) 148 degrees.

(a) (b)

Figure 6.8: A more zoomed in cross section of the reference model based on the densities given in Figure 6.5 and the boundaries given in
Figure 6.6. The subplot shows the cross-section for (a) Hellas Basin and (b) Utopia Basin.

6.4. Gravity of the Inversion Model
The gravity for the reference model with uniform densities, the reference model with the densities obtained
through the inversion, and of Mars are given in the next subsections. First, the gravity anomaly will be given,
after which the gravitational tensor will be given.

6.4.1. Gravity Anomaly
In Figure 6.9 the gravity anomaly of the reference planet with the density of the crust and mantle obtained from
the inversion is potted. In the top right, the gravity anomaly of Mars is plotted, and in the bottom plot, the residual
between the two is plotted. The residual has a maximum of ± 3% of the input signal, with most of the residual
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around the ± 1.5% of the input signal. The largest residuals are near the Tharsis region and Valles Marineris. There
is also a degree 1 signal visible in the residual. This degree 1 signal corresponds to the long wavelength signal of
the Martian dichotomy. The northern part of the gravity from the reference model with the obtained densities of
the inversion has a smaller gravitational signal than the gravity of Mars. The gravity of the reference model has a
higher gravity for the southern hemisphere.

The gravity anomaly of the reference model with uniform densities is plotted in the top right figure of Figure A.27.
The residual between the reference model with uniform densities, and the gravity anomaly of Mars, is plotted in
the bottom figure of Figure A.27. The gravity of the reference model is highly correlated to the martian topography
due to the uniform densities. Therefore, the only variations in the reference model are due to the varying topog-
raphy and crust-mantle boundary. The residual, shown in the bottom figure of Figure A.27, is highly correlated to
the obtained density variations, as shown in Figure 6.5. This is expected because this residual is the input data for
the inversion.

Figure 6.9: The top left figure shows the anomaly for Mars, the top right for the reference model with the obtained inversion densities, and the
bottom figure shows the residual.

6.4.2. Gravitational Tensor

In Figure 6.10 the gravitational tensor of the reference planet with the density of the crust and mantle obtained
from the inversion is plotted. In the top right, the input tensor of the Martian gravity is plotted, and in the bot-
tom plot, the residual between the two is plotted. The residual has a maximum of ± 7% of the input signal, with
most of the residual less than ± 1% of the input signal. The largest residuals are near the Tharsis region and Valles
Marineris. The gravitational tensor in the zz direction of the reference model with uniform densities is plotted in
the top right figure of Figure A.28. The residual between the reference model with uniform densities and Mars is
plotted in the bottom figure of Figure A.28. This residual is used as input for the first iteration of the inversion.
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Figure 6.10: The top left figure shows the gravitational tensor in the zz direction for Mars, the top right for the reference model with the
obtained inversion densities, and the bottom figure shows the residual. The two top plots are truncated for Tzz =± 15 Eotvos and the bottom
figure is truncated for Tzz =± 1.5 Eotvos.

6.4.3. Power Spectrum
The power spectrum of the Martian gravity, the gravity of the reference model with uniform densities, and the ref-
erence model with the inversion densities are shown in subplot (a) of Figure 6.5. Visible in Figure 6.11 is that the
power spectrum for degrees 1 and 2 is fitted very poorly. This has to do with the fact that these degrees are not fully
taken into account in the inversion. The spherical harmonic terms C00, C10, C11, S11, and C20 are all set to 0, as
explained in section 2.3. The reference model is a complete sphere, resulting in C20 already being very off. There-
fore, the degrees need to be analyzed only for spherical harmonic degrees greater than 2. Visible is that the power
spectrum for the reference model with uniform densities overestimated the Martian power spectrum for spherical
harmonic degrees 3-15. These larger spherical harmonic degrees represent the large wavelength features of the
planet. The large elastic thickness results in isostatic under-compensation of the large surface features. There-
fore, the power spectrum of the reference model with uniform densities lies above the power spectrum of Mars
for these spherical harmonic degrees. For these degrees, the reference model with the inversion densities very
closely approximated the Martian power spectrum. The density variations can be seen as partially compensating
for the large topographic features such as Hellas Basin, Utopia Basin, and Vastitas Borealis. The power spectrum
of the inversion model closely follows the Martian power spectrum up to spherical harmonic degree 40, as can be
seen in the zoomed-in plot in Figure 6.11. For larger spherical harmonic degrees, the power spectrum starts to
wobble around the Martian power spectrum. From spherical harmonic degree 55, the inversion model, as well as
the reference model with uniform densities, overestimates the Martian power spectrum. This might have to do
with local compensation of small topographic features. The resolution of the model is too small to compensate for
the small impact craters through the obtained densities. Therefore, the small wavelength features corresponding
to the high SH degrees are overestimated for the reference model. Overestimation of the power spectrum means
that there is more signal and, therefore, less compensation for these small wavelength features.

Looking at the power spectrum analysis for the synthetic planet, shown in subplot (c) of Figure 4.16, it is also
visible that for the synthetic planet, the power spectrum is well fitted up to SH degree 45. For larger SH degrees,
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the inversion power spectrum underestimates the synthetic planet power spectrum. For the Martian inversion,
the opposite is the case. The power spectrum of the inversion model underestimates the Martian power spectrum
for SH degrees > 55. This difference most likely has to do with the presence of small wavelength density variation
within the crust and mantle of the synthetic planet and a lack of these small wavelength variations in the density
of the crust and mantle of Mars. To further fit the power spectrum, a higher resolution than 2 by 2 degrees will be
needed.
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Figure 6.11: The power spectrum of the gravity of Mars, the reference model with uniform densities, ρc = 2700 kg/m3 and ρm = 3800 kg/m3,
and the reference model with the density variations obtained through the inversion.

When looking at the power spectrum analyses performed in section 5.1, the effect of changing different param-
eters is shown. The power spectrum is well fitted up to SH degree 45, and the higher SH degrees are less well
fitted. The effect of varying the elastic thickness on the power spectrum can be seen in Figure 5.15 and mainly
has an effect on the smaller SH degrees. Based on this, varying the elastic thickness would most likely not yield
a better fit for the larger SH degrees. Changing the wavelength pattern of the topography, or density, are the two
parameters that have an effect on the larger SH degrees of the power spectrum. The topography is known and
can, therefore, not be changed. Because of this, the misfit in the larger SH degrees most likely originates from
small density variations. The resolution of the available gravity data is currently too low to be able to calculate
these small wavelength density variations.

6.5. Model Assumptions
The Martian inversion model is based on many assumptions. For the two-layer model, a single obtained density
from the inversion needs to be converted to two densities. This is explained in section 3.3. This conversion from
one to two densities is based on multiple assumptions. The first assumption is that the mass of every column is
equal. In subsection 5.2.3, subsection 5.2.4, and subsection 5.2.5, the effect of adding extra mass to the crust, the
mantle, and both the crust and mantle has been studied. In this analysis, it was found that when extra mass was
added to the crust and/or the mantle, the inversion started to diverge fast. The error was around 10 times the
extra density variations when the density variations were added to only the crust or mantle and increased even
more, when density variations to both the crust and mantle were added. Therefore, based on this analysis, it can
be concluded that there are no large mass differences between the columns, but small density differences might
be the case. The density differences of the crust were ± 650 kg/m3 and for the mantle ± 230 kg/m3. This would
mean that a maximum density difference of 10% would be around ± 65 kg/m3 for the crust and ± 23 kg/m3 for
the mantle. Also, looking at the power spectrum analysis shown in Figure 5.13, the power spectrum of the small
SH degrees (up to ≈ 20) increases for small mass variations between the different columns. This increase in power
spectrum up to SH degree 20 is not observed for the power spectrum of Mars.

Next to the calculations for the density, the model assumes a set crust-mantle boundary for the reference model.
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The calculated crust-mantle density is based on a multitude of assumptions: 1) There is a uniform elastic thick-
ness. 2) All topographic features are isostatically compensated using thin shell isostasy. 3) FRF applied to Airy
isostasy crust-mantle boundary obtained with uniform densities.

In this study, a uniform elastic thickness was used to obtain the crust-mantle boundary. This elastic thickness
was used in the flexural response function, given in Equation 2.11. This results in the elastic thickness used in
this study being different from the elastic thickness used in most literature, which most often use Airy isostasy.
This makes it difficult to compare the obtained elastic thickness in this thesis research to the ones obtained in
literature. Using the flexural rigidity parameter, D , as explained in section 2.1, which relates the elastic thickness
to both the Young’s modulus as well as the Poisson ratio, instead of taking both ν and E constant and only varying
the elastic thickness, might be a better option for future research.

The next assumption is that the topographic features are all isostatically compensated using thin shell isostasy. It
was found by Qin [2021] that, when looking at the power spectrum of Mars as a whole, the thin shell model is the
best approximation. This does not mean that the whole of Mars is compensated using the same isostatic model.
Different regions might have different values for the elastic thickness or some regions might be isostatically com-
pensated through Airy or Pratt isostasy. The thin shell FRF is applied to the crust-mantle boundary obtained with
Airy isostasy. Based on the high densities for the large impact craters, Pratt isostasy might be the better option for
these regions. Looking into a combination of isostasy methods could be a valuable addition to the model.

Lastly, the crust-mantle boundary is obtained using uniform densities for the crust and mantle. It was found that
there are large density differences within the obtained crustal and mantle density. Therefore, a uniform density
as input is not realistic for the crust-mantle boundary compared to the obtained results. Looking into changing
the crust-mantle boundary for each iteration, based on the obtained density results, might be interesting to study
for further research.

6.6. Evolution of Mars Based on the Obtained Densities
In this section, the obtained crustal density variations are compared to the geological map given by Tanaka et al.
[2014], plotted in section A.8. This map has divided the Martian topography into different units and related them
to the three historical periods of Mars, the Amazonian, Hesperian, and Noachian periods. In the obtained density,
the large impact craters are clearly visible. In this section, specific topographic features are discussed. A separate
plot of the obtained crustal density is given in Figure 6.12.

Figure 6.12: The crustal density obtained for the Martian inversion result, with Te = 400 km, C = 105 km, ρc,ref = 2700 kg/m3 and ρm,ref = 3800

kg/m3.

Some of the map units used by Tanaka et al. [2014], as shown in section A.8, could be related to densities found in
this study. The corresponding densities to these units are given in Table 6.7.
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Table 6.7: A table relating the map units used in section A.8 by Tanaka et al. [2014], to the crustal densities found for the Martian inversion
result, as shown in Figure 6.12.

Map Unit Name Corresponding Crustal
Density Range [kg/m3]

Late Hesperian basin unit 3300-3350
Early Hesperian basin unit 3000-3100
Hesperian and Noachian basin unit 2850-2950
Noachian volcanic unit 2800-2900
Early Amazonian basin unit 3220-3350
Late Hesperian lowland unit 2950-3200
Amazonian volcanic edifice 3350-2900
Amazonian and Hesperian volcanic unit 2900-2950
Middle Noachian highland unit 2500-2700
Late Noachian highland unit 2500-2700
Early Noachian highland unit 2500-2700
Amazonian and Hesperian impact unit 2500-2700

6.6.1. Hellas Basin
According to [Tanaka et al., 2014], Hellas Basin is believed to originate from the late Hesperian period. The in-
ner center is made out of the late Hesperian basin unit, which consists of Plains-forming deposits on the basin
floor, finely layered in places and hundreds of meters thick. The eastern margins of Hellas are covered by the early
Hesperian basin unit, and the western margins are formed by the Hesperian and Noachian basin unit, which are
low-lying, plains-forming deposits, which have relatively low daytime IR brightness and have a thickness of at
least hundreds of meters. In the obtained crustal density, as shown in Figure 6.12, it is visible that the center of
Hellas Basin has the highest crustal density, around 3300-3350 kg/m3. The eastern margins have a slightly lower
density, around 3000-3100 kg/m3, and the western margins have a density of around 2900-2950 kg/m3. These
different obtained crustal densities correlate to different periods in the Martian History.

To the southwest of the Hellas Basin, there is a slightly higher crustal density region, with densities between 2800
and 2900 kg/m3. In the geological map, this region, marked the Malea Planum, consists of a Late Noachian vol-
canic unit, which is planar deposits tens of meters thick and tens to hundreds of kilometers across. The higher
densities found in this region could correlate to the volcanic unit from a specific time period.

6.6.2. Argyre Basin
For the center of the Argyre Basin, a density between 2850 and 2900 kg/m3 was found. According to Tanaka et al.
[2014], it is believed that this region consists of the Hesperian and Noachian basin unit, similar to the western
margins of Hellas Basin. For the Hellas basin regions, believed to consist of similar Basin units, slightly higher
densities were found, around 50 kg/m3, but in a similar range.

6.6.3. Utopia Basin, Isidis Basin, and Vastitas Borealis
Utopia Basin and Vastitas Borealis were found to have high density values in Figure 6.12, from 3220-3350 kg/m3

for Utopia, to 2950-3100 kg/m3 for Vastitas Borealis. For Isidis basin, crustal densities between 2950 and 3200
kg/m3 were found. The impact crater part of Utopia Basin is believed to be made out of the early Amazonian
basin unit [Tanaka et al., 2014], similar to a very small region on the western side of Hellas Basin. Near this region,
densities of 3180 kg/m3 were found for the crustal density of the Martian inversion result. This is slightly lower
than what has been found near Utopia Basin but deviates only slightly, between the 2% up to 5%. Tanaka et al.
[2014] believes that the vast majority of the Northern plains are made out of Late Hesperian lowland unit with
smaller regions distributed within Vastitas Borealis made up of the Middle Amazonian lowland unit. Isidis Basin
is also believed to be made out of the Late Hesperian lowland unit, and showed in Figure 6.12 similar densities to
that of the northern plains and Vastitas Borealis.

6.6.4. Olympus Mons and the Tharsis region
The large volcanoes in the Tharsis region and Olympus Mons are believed to consist of the Amazonian volcanic
edifice, which are shield-like edifices hundreds of kilometers across; made up of lobate flows. Towards the north-
west of the large volcanoes, the late Amazonian apron unit was found, which are concentrically ribbed, knobby
lobes extending as much as 500 km from shield-like edifices [Tanaka et al., 2014]. In Figure 6.12 high densities
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were found for the large volcanoes in this region, but also lower densities were found to the north-west of these
volcanoes, corresponding to the late Amazonian apron unit. The bulk of the Tharsis region is made out of Amazo-
nian and Hesperian volcanic unit, which are stacked, gently sloping lobate flows. The higher density region, with
densities between 2900 and 2950 kg/m3, towards the north of the Tharsis region, can be related to these regions.
Tanaka et al. [2014] also found the Deadalia Planum to be made out of the Amazonian and Hesperian volcanic
unit, but the findings could not be related to what was found for the crustal densities of the Martian inversion
result.

6.6.5. Arabia Terra down to the Noachis Terra
Lastly, the large region from the Arabia Terra down to the Noachis Terra was analyzed. This region does not contain
any large volcanoes or impact craters but is heavily cratered with small impact craters, as can be seen in Figure 1.1.
Densities between 2500 kg/m3 and 2700 kg/m3 were found. The topography of the Arabia Terra is around 4 km
lower than that of the Noachis Terra, but no significant differences in the obtained crustal density were found
between these regions. This region is believed to consist mainly of the Middle Noachian highland unit, as well as
the Late Noachian highland unit and Early Noachian highland unit, and the Amazonian and Hesperian impact
unit [Tanaka et al., 2014]. The impact units are all believed to be made out of the Amazonian and Hesperian impact
unit. The impact craters in this region are relatively small impact craters when compared to Hellas, Argyre, and
Isidis. The resolution of the used gravity is too low to observe density differences on such a small scale. It is,
therefore, not possible to distinguish between the units found in [Tanaka et al., 2014].
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7
Conclusions and Recommendations

This thesis study was performed to study the lateral density variations in the lithosphere of Mars. In previous
studies, either the crustal density, mantle density, or both have been taken as uniform. This assumption is not
likely to hold [Yuan et al., 2001], and therefore the density variations in both the crust and mantle are studied in
this thesis research. The main research question was:

Can lithospheric density models, obtained by gravity inversion, be related to the Martian geological history?

By comparing the obtained densities to the geological map presented by Tanaka et al. [2014], a relation between
specific map units, materials originating from a specific period of the Martian history, is made. Due to the lack
of resolution in the Martian gravity data, it was not possible to relate densities to smaller regions. Only the large
areas corresponding to specific map units could be related to the obtained density variations.

Different lithosphere models were studied. These models were all based on the thin shell isostasy model. It was
found by Qin [2021], as well as by this research, that when looking at the power spectrum, the thin shell model
is the best fitting isostasy model between SH degrees 4 and 17. Different parameters could be varied for these
lithosphere models. The isostasy model could be implemented by applying the flexural response function to the
Airy obtained crust-mantle boundary. This was done using the GSH package provided by Root and Vermeersen
[2016]. Using this package, the boundaries could be converted from the spatial domain to the spherical domain
and vice versa. The FRF is dependent on a few parameters: the elastic thickness, Te , the Young’s modulus, E , the
Poisson ration, ν, and the density difference between the crust and mantle, ∆ρ. Based on previous research, the
Young’s modulus was set constant to 100 GPa, and the Poisson ratio was set constant to 0.25. A larger value of the
elastic thickness resulted in more global and less local compensation of the topographic features. For the Martian
analyses, Te was varied to study its behavior and the optimal value. To obtain the crust-mantle boundary with Airy
isostasy, an average crustal thickness, C , a crustal density ρc , and mantle density ρm needed to be defined. If the
difference between the crust and mantle density was increased, the roots of the crust-mantle boundary decreased.

The data used for this research were the gravity MRO120D data and the MOLA topography data. The gravity
data has a resolution up to SH degree 120 but is only accurate up to SH degree 95. This is because the uncertainty
in the data becomes larger than the actual data above SH degree 95. This low resolution of the gravity was the
limiting factor of this research. A 2 by 2-degree grid was used, which corresponds to SH degree 89.

Different synthetic planets were created to analyze and better understand the inversion model. The topogra-
phy and density variations of this synthetic planet were created using the Matérn covariance function. This is a
method to calculate the covariance between two great circle points.

The gravity inversion was performed using a linear-least squares inversion. This resulted in a single density vari-
ation as output. This single density variation needed to be split into two density variations. This was done using
two assumptions. Firstly, it is assumed that the mass of each column is equal. Second, it is assumed that the
gravity of each column can be split into two point masses. One point mass is located in the center of mass of the
crust, and the other is located in the center of mass of the mantle.
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Varying the different input parameters of the synthetic planet on the inversion were studied. This was done to
gain a better understanding of the final Martian inversion results and how to optimize the reference model. It
was found that when ρc of the reference model was set larger than ρc of the synthetic planet, the output density
started to diverge largely from the input density. For smaller values of ρc , the output results diverged much slower
from the input. This was the opposite of what was observed for ρm , where too small values resulted in the output
to diverge fast from the input density. Too large values of ρm for the reference model resulted in the output den-
sity to diverge much slower from the input. For variations in Te , the output diverged slowly, both for smaller and
larger values of Te than the Te of the synthetic planet. It was found that when the average crustal thickness was
chosen too large, compared to C of the synthetic planet, the output diverged very fast. For too small values of C ,
the output diverged much slower. These insights were used for the optimization of the Martian reference model.

The optimal result for Mars, with the smallest density variations and gravitational tensor residual, was obtained
for a reference planet with Te = 400 km, C = 105 km, ρc,r e f = 2700 kg/m3 and ρm,r e f = 3800 kg/m3. When these
input parameters were used for the inversion of Mars’ gravity field, a final density difference of approximately
1000 kg/m3 between the crust and mantle was obtained. A mean crustal density of approximately 2750 kg/m3

and mean mantle density of approximately 3750 kg/m3, were found. The density variations in the crust varied
from -424 up to 618 kg/m3 around the mean crustal density, and -228 and 133 kg/m3 around the mean mantle
density. The elastic thickness obtained through the inversion was found to lay somewhere between the 450±50
km and the uniform crustal thickness between 100± 10 km. The crustal thickness is on the larger side of the
crustal thickness used in previous research, between the 30 and 115 km. The elastic thickness is much larger than
what was previously used in literature, most often around 70-100 km. This study uses a different isostasy model
compared to previous literature, the thin shell model. The large lithospheric thickness and the large difference
between the crustal and mantle density both resulted in small differences within the crust-mantle boundary. This
also meant a thicker crust underneath the impact basins, compared to smaller density differences are a thinner
elastic thickness. This, together with the large crustal densities obtained underneath the impact craters, was the
basis for the conclusion that this method may not be correct in modeling the densities underneath impact craters.
For the synthetic planet analyses, no impact craters were added. Therefore, it was not possible to study if these
methods correctly work for modeling impact craters.

A summary of the crustal thickness and crustal and mantle densities of some topographic features are given in
Table 7.1. Large crustal densities were found for the impact craters, which, together with the large obtained elastic
thickness and density difference between the crust and mantle, led to the conclusion that the large impact craters
may be compensated using a different isostasy method. The volcanoes outside the Tharsis region were found to
be well compensated using the thin shell method, and small densities were found compared to the volcanoes in
the Tharsis region, as well as what has been found in previous literature. The smaller densities for these stand-
alone volcanoes might have to do with the compensation of these volcanoes due to the curvature of the planet,
which is taken into account with the thin shell isostasy model. This has not been used previously in the literature
studies analyzed in this thesis study.

Table 7.1: The mean crustal thickness, mean crustal density, and mean mantle density obtained for some of the Martian surface features.

Topographic feature Crustal thickness [km] Crustal Density [kg/m3] Mantle Density [kg/m3]
Hellas Basin 93 3345 3630
Utopia Basin 90 3300 3640
Isidis Basin 97 3200 3650

Argyre Basin 105 2870 3740
Tharsis Region 120-130 2770-3370 3750-3560
Olympus Mons 127 3370 3560

Alba Mons 112 2660 3810
Elysium Mons 100 2770 3780

It was found that the Martian power spectrum could be fitted up to SH degree 40. In the analyses for the synthetic
planet, it was also found that the inversion power spectrum could only fit the synthetic planet power spectrum
up to SH degree 45. To fit the larger SH degrees, a higher resolution gravity field would be needed.
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Recommendations

As explained in chapter 6, multiple assumptions have been made for the reference model. To further improve
the model, a better reference model will need to be created. One of the options is to use a combination of dif-
ferent isostasy methods. For instance, a study could be performed into the possibilities of Pratt isostasy for the
impact craters, as well as different elastic thickness values. It is also recommended to use the flexural rigidity pa-
rameter, D , as explained in section 2.1, which relates the elastic thickness to both the Young’s modulus as well as
the Poisson ratio, instead of taking both ν and E constant and only varying the elastic thickness.

It would also be interesting to look into changing the reference model in-between iterations. For this study, the
densities of the reference model were changed, but the boundaries were not changed between iterations. Large
density variations within the crust were found, while the obtained crust-mantle boundary assumed uniform den-
sities for the crust and mantle and, therefore, also uniform density differences. Including the obtained densities
from the previous iteration in the calculation of a new crust-mantle boundary could therefore improve the model.

For the so-called two-layer inversion, actually, only one layer was inverted. One density for the whole layer was
obtained, from which a variation in the center of mass was obtained. This resulted in part of the signal being lost,
and many iterations, as well as a multiplication factor, were needed. To make the inversion more realistic, a new
study could be performed which could rewrite the density inversion to obtain a center of mass shift. This center
of mass could then immediately be used instead of obtaining it from the single-layer density.

Another option would be to rewrite the inversion to an actual two-layer inversion. This would result in no sig-
nal being lost in the inversion process. This is a difficult task, but when improved, it could improve the number of
iterations needed and possibly disregard the use of the multiplication factor.
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A.1. One layer inversion - models 2 and 3
An extra study was performed on the effect of changing the topography and density variations, on the residuals
in the fit. In this 10 different topographies (10 different seed numbers for the Matèrn covariance function) and
12 different density distributions (also for varying seed numbers) were combined, resulting into 120 different
synthetic planets. Initially, the residual was slightly correlated with the variations within the topography and/or
density, when only 1 iteration was used. When the number of iterations was increased, this correlation vanished
and the results converted. A maximum of 4 iterations were performed or until the difference between the input
tensor and inversion tensor was smaller than smaller than 2e-3 Eotvos for model 2, and 5e-3 Eotvos for model
3. The standard deviation between the input tensor and inversion tensor is plotted in Figure A.1 against the RMS
between the input density minus the inversion density divided by the maximum input density. Visible on the y axis
is that after 3-4 iterations, a maximum percentile error of around 10% for model 2 was achieved. The percentile
error of the RMS of the density difference was used, because after some iterations, polar errors occurred. When
a varying lower boundary was added, for model 3, the maximum percentile error increased slightly up to around
12%.

Figure A.1: The RMS between the input density minus the inversion density divided by the maximum input density plotted against the stan-
dard deviation between the input tensor and inversion tensor for 120 different 1-layer inversion models, both for model 2 and model 3.
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A.2. λ−σ analyses
A.2.1. Variation in layer thickness
First the influence of varying the thickness of the layer, while keeping the Centre of Mass at a constant depth, is
analyzed. All models had a constant Centre of Mass at -50 km depth. First a layer ranging from -40 to -60 km was
used, second a layer ranging from -25 to -75 km was used, and lastly a layer ranging from 0 to -100 km was used.
The λ−σ plots are shown in Figure A.2.

Figure A.2: λ−σ analyses plot for variation in layer thickness.
Figure A.3: L-curve for both variation in layer thickness.

In this figure it is visible, that for the 20 km and 50 km layers, there is only 1 optimal line with combinations
for λ−σ. For the thickets layer, of 100 km, there are 7 times as many combinations possible, which still yield
good results. The optimal relation between λ and σ for the 20 km and 50 km layer is: σ = λ0.5 ·10−8 or rewritten
this becomes: λ = σ2 · 1016. For the 100 km layer, there is a wider range, and slightly shifts to the right: σ =
λ0.5 · [10−7 10−2] or rewritten this becomes: λ=σ2 · [1014 104].

A.2.2. Variation in layer Centre of Mass
For variations in the CM, a reversed result is visible to the variation in layer depth. Three different CM depths were
analyzed, all with a 50 km layer. For the CM depth of 25 km, a layer from 0 to -50 km was used. For the CM depth
of 50 km, a layer from -25 to -75 km was used. And lastly, for a CM depth of 75 km, a layer from -50 to -100 km was
used.

In Figure A.4 is visible that for CM = -50 km and CM = -75 km, there is only 1 optimal relation line. For a more
shallow depth of CM = -25 km, there is a wider range of optimal relations between λ and σ.

The optimal relation between λ and σ for a CM depth of 50 km and 75 km is: σ = λ0.5 · 10−8 or rewritten this
becomes: λ = σ2 · 1016. For the CM depth of 25 km, there is a wider range, and slightly shifted to the right:
σ=λ0.5 · [10−7 10−5] or rewritten this becomes: λ=σ2 · [1014 1010].

Figure A.4: λ−σ analyses plot for variation in CM depth.
Figure A.5: L-curve for both variation in CM depth.
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A.2.3. Variation in both layer Centre of Mass and Thickness
After this both the depth of the CM and the layer thickness were varied. This was done to observe the dominant
behavior, or to study how the two behaviors influence each other.

The optimal relation between λ and σ for the 0 to -25 km layer is: σ = λ0.5 · 10−6 or rewritten this becomes:
λ = σ2 ·1012. For the 0 to -50 km layer, there is a wider range: σ = λ0.5 · [10−7 10−5] or rewritten this becomes:
λ=σ2 · [1014 1010]. For the 0 to -100 km layer, the range is the widest, with the optimal given bu the following 2
equations: σ=λ0.5 · [10−7 10−2] or rewritten this becomes: λ=σ2 · [1014 104].

Figure A.6: λ−σ analyses plot for variation in both layer thick-
ness and variation in CM depth. Figure A.7: L-curve for both variation in layer thickness and CM

depth.

A.2.4. Variation in∆ρ
Next up the changes in density variations, ∆ρ, are analyzed. Small ∆ρ variations have maximum density varia-
tions of ± 5 kg/m3, medium ∆ρ variations have maximum density variations of ± 50 kg/m3, and large ∆ρ varia-
tions have maximum density variations of ± 500 kg/m3.

Looking at the overall profiles, shown in Figure A.8, they are not largely influenced by the different density vari-
ations. The smaller the density variations (∆ρ), the larger the optimal range for λ and σ. The optimal rela-
tion for small density variations is:σ = λ0.5 · [10−7 10−2] or rewritten this becomes: λ = σ2 · [1014 104]. For
medium density variations, this range becomes slightly smaller: σ=λ0.5 · [10−7 10−5] or rewritten this becomes:
λ = σ2 · [1014 1010]. And for larger density variations, this range stays the same, but a more optimal line of
σ=λ0.5 ·10−6 or rewritten this becomes: λ=σ2 ·1012 becomes visible.

Figure A.8: λ−σ analyses plot for variation in the density differ-
ences within the 1-layer model. Figure A.9: L-curve for variation in the maximum density varia-

tions of the inversion layer.

A.2.5. Variation in Seed Number
Now the effect of changing the density pattern is analyzed. This density pattern can be changed by varying the
seed numbers of the Matèrn covariance function. The different obtained profiles are shown in Figure A.10.
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The overall pattern is not largely influenced by the 3 different seed numbers, as is visible in Figure A.11. The
overall optimal range is between: σ=λ0.5 · [10−7 10−2] or rewritten this becomes: λ=σ2 · [1014 104].

Figure A.10: The density variations corresponding to the different seed numbers, used in the Matèrn covariance function, to obtain the λ−σ
plots shown in Figure A.11.

Figure A.11: λ−σ analyses plot for variation in seed numbers
with which the density profile was obtained using the Matèrn
covariance function.

Figure A.12: L-curve for variation in seed number for the Matèrn
covariance function of the density variations, which influence
the density pattern.

A.2.6. Variation in κ
Lastly, varying the wavelength patterns of the density profiles, are analyzed. This can be done by changing the
smoothness parameter of the Matèrn covariance matrix. The different density profiles are given in Figure A.13.

Similar to changing the seed number, the overall pattern in the λ−σ plots is not largely influenced by chang-
ing the smoothness parameter, κ, as is visible in Figure A.14. The overall optimal relation is between: σ = λ0.5 ·
[10−7 10−2] or rewritten this becomes: λ= σ2 · [1014 104]. For smaller wavelength patterns in the density pro-
file, κ = 0.3, the optimal relation is: σ = λ0.5 · 10−6 or rewritten this becomes: λ = σ2 · 1012. For medium wave-
length patterns in the density profile, κ = 0.9, the optimal relation is: σ = λ0.5 · [10−6 10−5] or rewritten this
becomes: λ=σ2 · [1012 1010]. For large wavelength patters in the density profile, κ= 1.5, the optimal relation is:
σ=λ0.5 · [10−6 10−3] or rewritten this becomes: λ=σ2 · [1012 106].
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Figure A.13: The density variations corresponding to the different κ values, used in the Matèrn covariance function, to obtain the λ−σ plots
shown in Figure A.14.

Figure A.14: λ−σ analyses plot for variation in kappa value, used
to obtain the density difference for the Matèrn covariance func-
tion.

Figure A.15: L-curve for variation in κ for the Matèrn covariance
function of the density variations, which influence the wave-
length pattern of the density variations.
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A.3. Two-Layer Inversion - Input Type Analyses 50 iterations

Figure A.16: The input crustal and mantle density variations. These density variations are used as input for the analyses of the different input
gravity data types.
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Figure A.17: The power spectrum of the inversion planet obtained using the reference planet with the densities changed to the densities ob-
tained from the inversion. Subplot (a) shows the results using the gravitational potential as input data for the inversion, (b) for the gravitational
vector in the z direction, and (c) for the gravitational tensor in the zz direction.
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(a) (b)

(c)

Figure A.18: For each subplot, the top plot shows the difference between the input crustal density, ρc input, and the crustal density obtained
using the inversion method, ρc inverse. The bottom plot shows the same plot, but for the mantle density instead of the crustal density. Subplot
(a) shows the results using the gravitational potential as input data for the inversion, (b) for the gravitational vector in the z direction, and (c)
for the gravitational tensor in the zz direction.
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A.4. Plots Variation Input Parameters Reference Model

For each input parameter analyses, two plots are made for which max(∆ρi np −∆ρi nv )/max(∆ρi np ≈ 50%. One of these plots is for the minimum multiplication factor,
for which the maximum difference is approximately 50%, and the other is for the maximum multiplication factor for which this is still the case. In Figure A.19 the crustal
and mantle input density, as well as inversion density, when all input parameters were chosen equal to the input parameters of the synthetic planet.

Figure A.19: The left plots shows the input crustal and mantle density, and the left plots the obtained crustal and mantle density from the inversion with the correct input parameters for the reference model.
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A.4.1. Crustal Density Variation

(a) (b)

Figure A.20: Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle density from the inversion. Subplot (a) shows the results for ρc = 0.95ρc,i np , and (b) shows the
results for ρc = 1.05ρc,i np .
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A.4.2. Mantle Density Variation

(a) (b)

Figure A.21: Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle density from the inversion. Subplot (a) shows the results for ρm = 0.95 ·ρm,i np , and (b) shows the
results for ρm = 1.4 ·ρm,i np .
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A.4.3. Elsatic Thickness Variation

(a) (b)

Figure A.22: Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle density from the inversion. Subplot (a) shows the results for Te = 0.1Te,i np , and (b) shows the
results for Te = 2Te,i np .
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A.4.4. Young’s Modulus Variation

(a) (b)

Figure A.23: Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle density from the inversion. Subplot (a) shows the results for E = 0.1Ei np , and (b) shows the results
for E = 2Ei np .
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A.4.5. Average crustal Thickness Variation

(a) (b)

Figure A.24: Each subplot shows the input crustal and mantle density, as well as the obtained crustal and mantle density from the inversion. Subplot (a) shows the results for C = 0.6Ci np , and (b) shows the results
for C = 1.1Ci np .

87
A

.A
p

p
en

d
ix

87



88 A. Appendix

A.5. Density and crust-mantle boundary results for minimum max(∆ρc,i nv )

(a) (b)

(c) (d)

Figure A.25: The crustal and mantle density and density variations obtained through the Martian inversion. For the inversion a multiplication
factor of 30 and 25 iterations were used. These results were obtained for a reference model with the topography and crust-mantle boundary
shown in Figure 6.6, for the same subplots respectively.
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(a) (b)

(c) (d)

Figure A.26: The topography and crust-mantle boundary used for the reference model for the Martian inversion. This is obtained with C = 105
km, E = 100 GPa, ν = 0.25, and varying elastic thickness for the subplots. Subplot (a), (b) and (d) use r hoc = 2700 kg/m3, ρm = 3800 kg/m3,
and subplot (c) uses r hoc = 2650 kg/m3, ρm = 3650.

A.6. Gravity Input Inversion

Figure A.27: The top left figure shows the anomaly for Mars, the top right for the reference model with uniform densities, and the bottom
figure shows the residual, which is used as the input data for the inversion.
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Figure A.28: The top left figure shows the gravitational tensor in the zz direction for Mars, the top right for the reference model with uniform
densities, and the bottom figure shows the residual, which is used as the input data for the inversion. The two top plots are truncated for
Tz z =± 15 Eotvos and the bottom figure is truncated for Tz z =± 1.5 Eotvos.
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A.7. Heatmap Results
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Figure A.29: The heatmaps for the first analyses of the different combinations of input parameters for the initial reference planets. The average
crustal thickness is plotted against the density differences in the crustal density, for variations in elastic thickness between the four subplots.
From top left, to bottom right, these figures show the results for elastic thicknesses of Te = 50 km, Te = 150 km, Te = 250 km, and Te = 400 km.
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Figure A.30: The heatmaps showing the results for a set density difference between the crustal and mantle density of the reference model of
900 kg/m3, and variations in the average crustal thickness and elastic thickness. The elastic thickness is plotted against the density differences
in the crustal, left subplot, and mantle, right subplot, density.
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Figure A.31: The heatmaps showing the results for a set average crustal thickness for the reference model of 105 km and variations in the
elastic thickness and density difference between the crust and mantle of the reference model. The mantle reference density is plotted against
the density differences in the crustal for different density differences. From left to right, subplot 1 shows the results for an elastic thickness of
400 km, subplot 2 for 425 km, subplot 3 for 450 km, and subplot 4 for 475 km.
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Figure A.32: The heatmaps showing the results for a set average crustal thickness for the reference model of 105 km and variations in the
elastic thickness and density difference between the crust and mantle of the reference model. The crustal reference density is plotted against
the density differences in the crustal for different density differences. From left to right, subplot 1 shows the results for an elastic thickness of
400 km, subplot 2 for 425 km, subplot 3 for 450 km, and subplot 4 for 475 km.
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A.8. Geologic Map of Mars
The geological map of Mars from [Tanaka et al., 2014].
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Figure A.33: "This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet’s surface through time, is based on unprecedented variety, quality, and quantity
of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis,
and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping. Also, thermal
infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products."
[Tanaka et al., 2014]
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