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Abstract
Low-field Magnetic Resonance Imaging (LF MRI) is a cheap and safe technique to visualise the internal
structure of the human body. Unlike other imaging techniques, Magnetic Resonance Imaging does not
use ionising radiation to generate the images. Instead, it uses magnetic fields and radio waves which
are nonthreatening to the health. The LF MRI scanners are constructed out of inexpensive materials
and their maintenance is affordable. Therefore, these scanners are a promising alternative for devel-
oping countries that present economic limitations. Nonetheless, since Magnetic Resonance scanners
use a weak magnetic field, the process of image reconstruction requires complex algorithms that need
time. This thesis will examine the way in which the computational time of the image reconstruction from
a low-field Magnetic Resonance Imaging can be reduced, using an algorithm based on the fast Fourier
transform.

Keywords— Low-Field Magnetic Resonance Imaging, nonuniform fast Fourier transform, nonlinear gradients,
inhomogeneous background field
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1
Introduction

Medical imaging is a powerful tool to diagnose. It helps the experts to identify the disease or to detect it earlier, thus
avoiding complications. Several medical imaging techniques exist and Magnetic Resonance Imaging (MRI) stands
out among the others due to its safety. However, it is an expensive technique and it is out of the range of developing
countries. This thesis is focused on the low-field MRI, a cheap alternative to conventional Magnetic Resonance
Imaging, to detect a particular disease, namely hydrocephalus, which highly affects developing countries.
This first introductory chapter begins in section 1.1 defining what hydrocephalus is, its treatment, mortality and
morbidity, and its effect in Sub-Saharan Africa. Subsequently, in section 1.2, the low-field Magnetic Resonance
Imaging is presented along with a brief mention of the state of the art. Section 1.3 presents the purpose of this
thesis and section 1.4 its structure.

1.1. Hydrocephalus
Cerebrospinal fluid (CSF) is a transparent liquid present in the brain and spinal cord [11]. Figure 1.1 shows the
nervous system in the human brain and it will be helpful for the reader to locate the different parts of the brain that
will be mentioned along this introduction.
The cerebrospinal fluid flows through the subarachnoid space, the ventricular system and the central canal of the
spinal cord. The CSF has three crucial functions: (1) protection of the brain acting as a shock absorber inside
the skull, (2) it transports neurologic substances and nutrients, and (3) it compensates the blood volume changes
inside the cranium, keeping constant pressure.
Most of the cerebrospinal fluid is generated in the choroid plexus inside the ventricular system and its volume
depends on the age. On average, an adult has around 150 ml and it is renewed every 3 to 4 hours. After it is
produced, the CSF travels through the encephalon and spinal cord and eventually, it is reabsorbed in the blood-
stream.
Any disorder in the CSF flow (production, travelling or absorption) leads to hydrocephalus. This term comes from
the Greek, where hydor means water and kefalémeans head. Hydrocephalus is a neurologic disorder in which the
brain accumulates an excess of cerebrospinal fluid. Some of the symptoms of this disorder are memory problems,
headaches, motor difficulties or urinary incontinence.
Hydrocephalus can be diagnosed by physical examination, lumbar puncture, Computed Tomography (CT) or Mag-
netic Resonance Imaging (MRI). Along this thesis, a specific type of MRI will be studied to diagnose hydrocephalus.
Hydrocephalus can be classified into several types depending on different concepts:

• Communicating or noncommunicating. Communicating hydrocephalus occurs when the CSF is blocked
after leaving the ventricular system. It can appear after radiation or chemotherapy treatment on the brain,
infection or head trauma. Noncommunicating hydrocephalus, also known as obstructive hydrocephalus,
happens when the CSF is blocked among the connections of the ventricular system.

• Congenital or acquired. Patients that are born with hydrocephalus correspond to congenital, while acquired
hydrocephalus can affect a patient of any age.

• Other classification such as causes of the disorder, age of the patient, neurologic outcomes, etc.
• A classification proposed by [29] is based on different spots of obstruction. They proposed a model of the
dynamics of the cerebrospinal fluid based on electrical circuits of Ohm’s Law where they show the potential
points of obstruction. In most of the cases, tracers are necessary in order to determine which is the place
of obstruction.
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Figure 1.1: Nervous system of the brain where the cerebrospinal fluid is represented with blue colour. Adapted from [3]

1.1.1. Treatment
One of the most ancient methods used to treat hydrocephalus consisted in bandaging the head of the patient in
order to reduce the size of the skull [2]. It was not effective and therefore it was dropped out. Other conservative
treatments are diet, drugs or radiation. Commonly, conservative treatments are not used due to its inefficiency. An
exception is acetazolamide, which reduces the productions of cerebrospinal fluid. It was discovered by Elvidge in
1957 and it has been used since then. Another way to reduce the production of CSF is by irradiating the choroid
plexus. Nevertheless, the mentioned treatment has negative collateral effects on the central nervous system due
to radiation.
Ventricular puncture was discovered in the forties and it was used as an emergency treatment. The ancestor of
ventricular puncture is trephination. This treatment dates from the neolithic times and it consisted in removing a
piece of bone from the skull with surgical tools. In many cases it was associated with magical reasons, in order to
eliminate evil spirits from the head, but it had also medical background and it was applied to treat hydrocephalus.
Ventricular puncture was substituted by external ventricular drainage (EVD) in the seventies since it derived in
severe complications such as infections. In EVD, a catheter is inserted into the ventricles of the brain in order to
reduce CSF (see figure 1.2). Besides allowing continuous drainage of CSF, EVD possesses more functions such
as measuring intracranial pressure or administrating medication.
Subcutaneous reservoir (see figure 1.3) is useful for both drain cerebrospinal fluid and introduce drugs into the
brain. A reservoir is placed in the ventricle and it is connected to a dome located over the parietal bones, which
are located in the cranial roof and sides of the skull [12].
Shunt (see figure 1.4) was created by Erwin Payr of Greifswald at the beginning of the twentieth century. A shunt
is a drainage system that allows CSF to properly flow from the brain to another part of the body where it can be
absorb. A drawback is that shunts may require replacement during the lifetime of the patient.
Endoscopic third ventriculostomy (ETV) consists in creating a hole in the third ventricle allowing the CSF to flow
out of the brain without any external device (see figure 1.5). It can work as an alternative to shunting. Although it
avoids many complications that the shunt procedure presents, such as infections, need for replacement or costs,
it can be noneffective for some children. Endoscopic third ventriculostomy might require more than one surgery,
and thus increasing the risk of having complications [20].
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Figure 1.2: External ventricular drainage.
Reprinted from [10]

Figure 1.3: Subcutaneous reservoir. Reprinted
from [24]

Figure 1.4: Shunt placement. Reprinted from [28] Figure 1.5: Endoscopic third ventriculostomy
Reprinted from [16]
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1.1.2. Mortality and Morbidity
Hydrocephalus needs to be treated otherwise it can be potentially mortal. An investigation was carried out at the
Great Ormond Street Hospital in the United Kingdom [22]. During a period of twenty years, starting in 1938, 239
children that suffered hydrocephalus were followed. A group of 182 patients was not operated and the mortality
rate among them was 49%. Many of the not operated survivors showed brain damage.
Moreover, mortality can also be related to complications of treatment. Any surgical intervention supposes a risk,
e.g. shunt failure [37]. Shunt problems can be obstruction, over- or under-drainage or infection. The mortality
rates before 1960 due to shunt placement were high, from 50% to 80%, and infection was the main cause of
death. In the nineties, this mortality was reduced to 4.6% and the causes were infection (16.7%) and mechanical
shunt failure (66.7%) [15]. The mortality rates from several studies are collected in [37]: (1) the overall mortality,
14.6%, (2) nontumoral mortality, 8.6%, 13.7%, and (3) the mortality related to shunt, 2.9%, 3.65%.
Morbidity refers to any limitation of the normal life of a patient. Although treated, hydrocephalus can lead to some
negative effects on the patient. These include motor complications, brain damage, hearing or vision problems,
endocrine dysfunction, epilepsy, depression and pain. Morbidity can be reduced by detecting the disorder at an
early stage and by providing the required treatment. One way to detect this disorder is brain imaging with MRI
which is what this project is focused on.
Some morbidity rates can be seen in [37] in a table. The highlights of this table related to morbidity problems are
depression (43.2%), headache (44%), motor handicap (60%) and visual problems (83%). All of the rates are the
worst cases.

1.1.3. Hydrocephalus in Sub-Saharan Africa: Uganda
Hydrocephalus is very usual in developing countries and the main cause is infection. Developing countries have
economic limitations and this signifies a constraint in the medicine scope. In some cases, the required instruments
or medication to treat the diseases are not available. And even though this equipment is present, many patients
cannot afford it.
As mentioned in sections 1.1.1 and 1.1.2, a risk of infection or malfunction exists with shunts. A shunt failure can
occur at any time during the lifetime of a patient and it requires immediate surgical intervention. Besides, shunts
need after-surgery maintenance. The patients that go through a shunt surgery have to return to the hospital for
inspection and transportation is an issue. These complications increase the costs of treatment and therefore, de-
veloping countries have to take into account alternative options such as endoscopic third ventriculostomy (ETV).
A study was carried out by [40] at CURE Children’s Hospital of Uganda about hydrocephalus, its causes and the
performance of ETV treatment, from 2001 to 2003 of 300 children. Seventy percent had a successful ETV surgery
and they avoided a shunt placement. Nevertheless, ETV was discarded in 55 patients and ETV treatment had to
be replaced by shunt. Distorted anatomy (post-infectious hydrocephaly), turbid CSF and congenital anomaly were
the main conditions why ETV was abandoned for those 55 patients. The mortality rate of ETV treatment, including
all surgeries (some patients had to undergo several ETV surgeries), was 1.9%.
The incidence of hydrocephalus is 3-5/1000 live births. Although this rate is accurate in first world countries, it
is significantly outnumbered in developing countries. The reason is that 60% hydrocephalus cases are due to
infection. In 2005, there were 30 million births in sub-Saharan Africa, but since the 60% of hydrocephalus cases
are post-infectious, the clinical article [41] estimated that from 225,000 to 375,000 infants had hydrocephalus in
that year.
The costs and benefits of the surgeries carried out in one year at CURE Children’s Hospital of Uganda in 2005
were calculated in [41]. The results showed that the treatment of hydrocephalus is profitable and sustainable in
developing countries: it was concluded that the benefit-cost ratio when treating all patients was 7:1 in the most
conservative estimation and 50:1 in the highest. This means that leaving untreated patients in sub-Saharan coun-
tries supposes a negative effect on their economy. Whereas preventing and curing hydrocephalus signifies long
term benefits. Facilitating medical technology in order to detect hydrocephalus as soon as possible in developing
countries would be convenient for their economy.

1.2. Low-Field MRI
Magnetic Resonance Imaging is a technique for image acquisition. It is based in the nuclear magnetic resonance
(NMR) phenomenon, where different tissues of a body can be differentiated. Unlike other imaging technologies,
such as Computed Tomography (CT) or Positron-emission tomography (PET), MRI does not use ionising radiation
and therefore, it is not harmful to the health of the patient being scanned. Moreover, MRI offers high-quality
anatomical images. Nonetheless, it is expensive and needs costly maintenance.
Developing countries use CT for brain imaging instead of MRI due to cost reasons. Computed Tomography uses
X-rays which are hazardous for humans, in particular for the children. Low-field MRI is a cheap, safe alternative
for developing countries instead of the high-field MRI or CT. Low-field MRI uses a weak magnetic field, and thus
has low power conditions and minimally or not shielded protection. Although low-field MRI presents low image
resolution by comparison with the high-field or CT, it is not an issue in the diagnose of hydrocephalus since only
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cerebrospinal fluid has to be differentiated from brain tissue. It is not necessary to distinguish among other brain
tissues therefore, not much resolution is needed. Likewise, quality in the image is not necessary to make treatment
decisions. Another advantage of LF MRI is that the design of the scanner does not have to be cumbersome since
the patients are infants [26]. This thesis is focused on the low-field MRI scanner in Leiden University Medical
Center described in [27].

1.2.1. Other Applications of Low-Field MRI Scanner
The characteristics of a low-field MRI make it useful for certain applications of the biomedical field and also for
other environments. Some examples are given by [35] using a Laser Polarised Noble Gas Low-field MRI. It can
be used as a portable system for diagnostic lung imaging in humans. Moreover, it allows patients with implants
(e.g. pacemakers) in. Another application is a low-cost tabletop MRI instrument for research in animals. This MRI
system could be on board a space station since it is compatible with operation in restricted environments.
Another interesting application is mention in [7]. It is an ultra-low-field MRI scan that can be used in the baggage
checks of the airports in order to detect liquid explosives. This scan was used for two weeks at the Albuquerque
International Airport. Although any dangerous items were not found, the ones exceeding the liquid limit were
detected.
Low-field MRI can be applied as image guidance during surgery. Low-field MRI was used in [25] for intraoperative
neurosurgery. It was tested on 310 patients and none of them had negative effects related to the intraoperative
MRI. With this technique, the probability of complete tumour removal is increased. Moreover, the brain shifts
caused by movement are avoided by updating the image data.

1.3. Thesis Objective
The procedures employed to retrieve an image from a conventional Magnetic Resonance Imaging are no longer
useful for a low-field MRI. The image processing for an LF MRI is more complex and therefore, requires more
computational time. In this thesis, an algorithm based on the fast Fourier transform (FFT), the nonuniform fast
Fourier transform (NUFFT), will be tested and will be used to try to obtain an image from an LF MRI. This algorithm
uses few FFT operations and therefore, it speeds the image processing and saves computational time.

1.4. Structure of the Thesis
This thesis has been divided into three parts, namely

• Literature Review. The first part deals with the background knowledge needed to understand the results.
First, the signal model of an LF-MRI is derived and then the theory of the nonuniform fast Fourier transform
algorithm is explained.

• Methodology. The second part clarifies the procedure that will be followed for the results in the third part
and how the problem of this thesis will be tackled. Moreover, the algorithms employed will be detailed.

• Results and Discussion. The third part exposes and discusses the results of the research, and finalises
with the conclusions and future work.
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2
Signal Detection

In this chapter, the general MRI detection formula will be derived in section 2.2. The generalised MRI signal equa-
tion will be modified to match two specific cases, (1) when the main background field presents inhomogeneities,
in section 2.3, and (2) when the gradient fields are nonlinear, in section 2.4. In section 2.5, the signal equation will
be given when both nonidealities are present.

2.1. Introduction
Signal detection is based on the Nuclear Magnetic Resonance (NMR) phenomenon. The object to be imaged
is compounded by different tissues that are made of nuclei. Nuclei with odd atomic numbers and/or odd atomic
weight present an angular momentum, also called spin. This is represented in figure 2.1 Another property of nuclei
is that they present a magnetic moment when placed in an external magnetic field. Examples of the most important
nuclei used in MRI are hydrogen and carbon-13.

Figure 2.1: Nuclei with spin. Reprinted from [6] Figure 2.2: Nuclei with spin aligned with the external mag-
netic field. Adapted from [6]

In the presence of an external magnetic field, nuclei can absorb and emit electromagnetic radiation and have a
resonance frequency. Moreover, the external magnetic field aligns the nuclei. This is represented in figure 2.2.
When a radio-frequency (RF) pulse is applied to the aligned nuclei, they are tilted. Afterwards, nuclei precess
around the magnetic field, emitting an RF signal while going back to the aligned position.
The time that it takes for this RF signal to disappear is different for each type of tissue and it is used to distinguish
the different tissues. It is called T2 relaxation. Likewise, the time that a nuclei takes to realign with the external
magnetic field is different for each type of tissue and therefore, it is also used to distinguish between tissues. This
time is known as T1 relaxation.

9
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2.2. Detection Principles
The next step is to convert the NMR phenomenon into an electrical signal. This procedure will be based on section
3.4 of [23].
The sum of the magnetic properties of the spins form a net magnetisation M(r, 𝑡). Like the individual spins, the
net magnetisation is flipped when an RF pulse is applied. Then, it starts to precess at the Larmor frequency
around the main magnetic field producing a time-changing magnetic field that can be measured using Faraday’s
law. Faraday’s law of induction states that an electromotive force will be induced in a conductor that is exposed to
a time-varying magnetic field. The magnetic flux is defined by

Φ(𝑡) = ∫
ᑊ
B(r, 𝑡) ⋅ 𝑑S, (2.1)

where B(r, 𝑡) represents the magnetic field that a coil sees, S is the surface of the coil, 𝑑S corresponds to the
infinitesimal vector element of the surface 𝑆.
The aim is to set equation (2.1) as a function of the net magnetisationM(r, 𝑡), which is roughly a slice of the desired
object. In order to continue with equation (2.1), first some terms must be defined [19].

• Equivalent current distribution of the magnetisation [14]

JM(r, 𝑡) = ∇∇∇ ×M(r, 𝑡). (2.2)

• Magnetic vector potential, according to [17] and [19]

A(r, 𝑡) = 𝜇Ꮂ
4𝜋 ∫ᑠᑓᑛᑖᑔᑥ

JM(rᖤ, 𝑡)
|r− rᖤ| 𝑑r

ᖤ. (2.3)

• Magnetic field
B(r, 𝑡) = ∇∇∇ × A(r, 𝑡) (2.4)

Using Stokes’ theorem [18], equation (2.1) leads to

Φ(𝑡) = ∫
ᑊ
B(r, 𝑡) ⋅ 𝑑S = ∮

ᒉᑊ
A(r, 𝑡) ⋅ 𝑑r. (2.5)

Where 𝑆 is the coil surface bounded by the closed contour 𝛿𝑆, B(r, 𝑡) corresponds to the magnetic field and A(r, 𝑡)
to the magnetic vector potential. Continuing with the right-hand side of equation (2.5) and equations (2.2), (2.3)
and (2.4)

Φ(𝑡) = 𝜇Ꮂ
4𝜋 ∮ᒉᑊ

∫
ᑠᑓᑛᑖᑔᑥ

JM(rᖤ, 𝑡)
|r− rᖤ| 𝑑r

ᖤ ⋅ 𝑑r = 𝜇Ꮂ
4𝜋 ∫ᑠᑓᑛᑖᑔᑥ

∮
ᒉᑊ

∇ᑣᖤ∇ᑣᖤ∇ᑣᖤ ×M(rᖤ, 𝑡)
|r− rᖤ| ⋅ 𝑑r𝑑rᖤ (2.6)

Using the following chain rule

∇∇∇ × (aM) = (∇∇∇a) ×M+ (a∇∇∇) ×M,
(a∇∇∇) ×M = ∇∇∇ × (aM) − (∇∇∇a) ×M, (2.7)

where
(a∇∇∇) ×M = ∇ᑣᖤ

∇ᑣᖤ∇ᑣᖤ ×M(rᖤ, 𝑡)
|r− rᖤ| , (2.8)

gives

Φ(𝑡) = 𝜇Ꮂ
4𝜋 ∫ᑠᑓᑛᑖᑔᑥ

∮
ᒉᑊ
(∇ᑣᖤ∇ᑣᖤ∇ᑣᖤ ×

M(rᖤ, 𝑡)
|r− rᖤ| − (∇∇∇ᑣᖤ

1
|r− rᖤ| ) ×M(rᖤ, 𝑡)) ⋅ 𝑑r𝑑rᖤ. (2.9)

Since the object is finite, the term ∇ᑣᖤ∇ᑣᖤ∇ᑣᖤ ×
M(rᖤ ,ᑥ)
|rᎽrᖤ| disappears.

Φ(𝑡) = 𝜇Ꮂ
4𝜋 ∫ᑠᑓᑛᑖᑔᑥ

∮
ᒉᑊ
((−∇∇∇ᑣᖤ

1
|r− rᖤ| ) ×M(rᖤ, 𝑡) ⋅ 𝑑r)𝑑rᖤ

= 𝜇Ꮂ
4𝜋 ∫ᑠᑓᑛᑖᑔᑥ

∮
ᒉᑊ
(( r− rᖤ

|r− rᖤ|Ꮅ ) ×M(rᖤ, 𝑡) ⋅ 𝑑r)𝑑rᖤ.
(2.10)

Using the triple product rule
b ×M ⋅ 𝑑r = −M ⋅ b × 𝑑r (2.11)

results in

Φ(𝑡) = − 𝜇Ꮂ4𝜋 ∫ᑠᑓᑛᑖᑔᑥ
∮
ᒉᑊ
(M(rᖤ, 𝑡) ⋅ r− rᖤ

|r− rᖤ|Ꮅ × 𝑑r)𝑑r
ᖤ

= ∫
ᑠᑓᑛᑖᑔᑥ

Br(rᖤ) ⋅M(rᖤ, 𝑡)𝑑rᖤ.
(2.12)
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WhereM(rᖤ, 𝑡) is one slice of the desired object and

Br(rᖤ) =
𝜇Ꮂ
4𝜋 ∮ᒉᑊ

𝑑r × (r− rᖤ)
|r− rᖤ|Ꮅ (2.13)

corresponds to the receiver coil sensitivity, i.e. the magnetic field that would be created at point rᖤ by an unit steady
current in the receiver coil.
Now that the magnetic fluxΦ(𝑡) depends on the net magnetisationM(rᖤ, 𝑡), the aim is to measured the voltage. As
said before, Faraday’s law of induction states that an electromotive force will be induced in a coil that is exposed
to a time-varying magnetic field. Therefore, the voltage is obtained as

𝑉(𝑡) = −𝜕Φ(𝑡)𝜕𝑡 . (2.14)

Substituting equation (2.12) in (2.14) and replacing rᖤ with r to simplify the notation leads to

𝑉(𝑡) = − 𝜕𝜕𝑡 ∫ᑠᑓᑛᑖᑔᑥ
Br(r) ⋅M(r, 𝑡)𝑑r. (2.15)

Equation (2.15) is the fundamental formula of MR signal detection. Reformulating it in scalar form with the decom-
position Br = 𝐵ᑣ,ᑩi+ 𝐵ᑣ,ᑪj+ 𝐵ᑣ,ᑫk, we get

𝑉(𝑡) = − 𝜕𝜕𝑡 ∫ᑠᑓᑛᑖᑔᑥ
[𝐵ᑣ,ᑩ(r)𝑀ᑩ(r, 𝑡) + 𝐵ᑣ,ᑪ(r)𝑀ᑪ(r, 𝑡) + 𝐵ᑣ,ᑫ(r)𝑀ᑫ(r, 𝑡)] 𝑑r. (2.16)

The 𝑧 component in (2.16) can be discarded since the longitudinal relaxation T1 is slow varying compared with the
transverse relaxation T2. In a 3 Tesla MRI scanner, T1 values are around 1000 ms, while T2 values are around
100 ms in the brain tissues [39].

𝑉(𝑡) = −∫
ᑠᑓᑛᑖᑔᑥ

[𝐵ᑣ,ᑩ(r)
𝜕𝑀ᑩ(r, 𝑡)
𝜕𝑡 + 𝐵ᑣ,ᑪ(r)

𝜕𝑀ᑪ(r, 𝑡)
𝜕𝑡 ] 𝑑r. (2.17)

We continue working on the equation (2.17). The magnetic field can be expressed as

𝐵ᑣ,ᑩ(r) = |𝐵ᑣ,ᑩᑪ(r)| cos𝜙ᑣ(r), (2.18a)
𝐵ᑣ,ᑪ(r) = |𝐵ᑣ,ᑩᑪ(r)| sin𝜙ᑣ(r). (2.18b)

In which 𝜙ᑣ is the reception phase angle and 𝜙ᑣ ∈ [0, 2𝜋]. To calculate the time-derivative terms of equation (2.17),
the free precession equations are taken from chapter 3 in [23]

𝑀ᑩ(r, 𝑡) = |𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos[−𝜔(r)𝑡 + 𝜙ᑖ(r)], (2.19a)
𝑀ᑪ(r, 𝑡) = |𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin[−𝜔(r)𝑡 + 𝜙ᑖ(r)]. (2.19b)

Where 𝜙ᑖ is the initial phase shift introduced by the RF pulse and 𝜙ᑖ ∈ [0, 2𝜋]. The transverse relaxation is
represented by 𝑇Ꮄ. The negative sign preceding 𝜔(r) indicates that the spins precess clockwise.
Proceeding with the time derivation, the following equations are obtained

𝜕𝑀ᑩ(r, 𝑡)
𝜕𝑡 = 𝜔(r)|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin[−𝜔(r)𝑡 + 𝜙ᑖ(r)]

− 1
𝑇Ꮄ(r)

|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos[−𝜔(r)𝑡 + 𝜙ᑖ(r)], (2.20a)

𝜕𝑀ᑪ(r, 𝑡)
𝜕𝑡 = −𝜔(r)|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos[−𝜔(r)𝑡 + 𝜙ᑖ(r)]

− 1
𝑇Ꮄ(r)

|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin[−𝜔(r)𝑡 + 𝜙ᑖ(r)]. (2.20b)

𝑇Ꮄ relaxation is much slower (order of hundred milliseconds) than the free precession rate or Larmor frequency
𝜔(r) (order of megahertz)

𝜔(r) >> 1
𝑇Ꮄ(r)

. (2.21)

Therefore, the last term from both (2.20) equations is omitted, getting

𝜕𝑀ᑩ(r, 𝑡)
𝜕𝑡 = 𝜔(r)|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin[−𝜔(r)𝑡 + 𝜙ᑖ(r)], (2.22a)

𝜕𝑀ᑪ(r, 𝑡)
𝜕𝑡 = −𝜔(r)|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos[−𝜔(r)𝑡 + 𝜙ᑖ(r)]. (2.22b)
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Now equations (2.18) and (2.22) are substituted into (2.17) giving

𝑉(𝑡) = −∫
ᑠᑓᑛᑖᑔᑥ

(|𝐵ᑣ,ᑩᑪ(r)| cos𝜙ᑣ(r)𝜔(r)|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin[−𝜔(r)𝑡 + 𝜙ᑖ(r)]

−|𝐵ᑣ,ᑩᑪ(r)| sin𝜙ᑣ(r)𝜔(r)|𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos[−𝜔(r)𝑡 + 𝜙ᑖ(r)])𝑑r. (2.23)

Making use of two trigonometric function

sin (𝛼 − 𝛽) = cos𝛽 sin𝛼 − sin𝛽 cos𝛼, (2.24)

in the equation (2.23) gives

𝑉(𝑡) = −∫
ᑠᑓᑛᑖᑔᑥ

𝜔(r)|𝐵ᑣ,ᑩᑪ(r)||𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin[−𝜔(r)𝑡 + 𝜙ᑖ(r) − 𝜙ᑣ(r)]𝑑r. (2.25)

Since the transverse magnetisation𝑀ᑩᑪ(r, 0) precesses at the Larmor frequency, the corresponding voltage signal
𝑉(𝑡) is at high frequency as well. Therefore, this signal is demodulated with the phase-sensitive detection (PSD)
method in order to move it to lower frequencies and simplify the signal processing. This method is done by
multiplying the voltage signal by a sinusoidal signal and eliminating the high frequency components by low-pass
filtering it.
It is necessary to use a quadrature detection to have information about the direction of rotation of 𝜔. This is
achieved by using two PSD system orthogonal to each other. Therefore, two reference signals are multiplied on
equation (2.25), 2 cos𝜔Ꮂ𝑡 and 2 sin𝜔Ꮂ𝑡, and they are represented by 𝑆ᑉ(𝑡) and 𝑆ᑀ(𝑡) respectively.

𝑆ᑉ(𝑡) = ∫
ᑠᑓᑛᑖᑔᑥ

𝜔(r)|𝐵ᑣ,ᑩᑪ(r)||𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos [−𝜔(r)𝑡 + 𝜔Ꮂ𝑡 + 𝜙ᑖ(r) − 𝜙ᑣ(r) +
𝜋
2 ] 𝑑r, (2.26)

𝑆ᑀ(𝑡) = ∫
ᑠᑓᑛᑖᑔᑥ

𝜔(r)|𝐵ᑣ,ᑩᑪ(r)||𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin [−𝜔(r)𝑡 + 𝜔Ꮂ𝑡 + 𝜙ᑖ(r) − 𝜙ᑣ(r) +
𝜋
2 ] 𝑑r. (2.27)

Furthermore, 𝜔(r) can be reformulated taking into account the spatial dependency of the resonance frequency as

𝜔(r) = 𝜔Ꮂ + Δ𝜔(r). (2.28)

Where 𝜔Ꮂ refers to the frequency associated to the main magnetic field 𝐵Ꮂ, i.e. 𝜔Ꮂ = 𝛾𝐵Ꮂ, where 𝛾 is the gyromag-
netic ratio. Equations (2.26) and (2.27) are simplified using equation (2.28) to

𝑆ᑉ(𝑡) = 𝜔Ꮂ∫
ᑠᑓᑛᑖᑔᑥ

|𝐵ᑣ,ᑩᑪ(r)||𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) cos [−Δ𝜔(r)𝑡 + 𝜙ᑖ(r) − 𝜙ᑣ(r) +
𝜋
2 ] 𝑑r, (2.29)

𝑆ᑀ(𝑡) = 𝜔Ꮂ∫
ᑠᑓᑛᑖᑔᑥ

|𝐵ᑣ,ᑩᑪ(r)||𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r) sin [−Δ𝜔(r)𝑡 + 𝜙ᑖ(r) − 𝜙ᑣ(r) +
𝜋
2 ] 𝑑r. (2.30)

The two components 𝑆ᑉ(𝑡) and 𝑆ᑀ(𝑡) are used to express the signal in complex form using Euler’s formula eᑚᑩ =
cos 𝑥 + 𝑖 sin 𝑥

𝑆(𝑡) = 𝜔Ꮂ∫
ᑠᑓᑛᑖᑔᑥ

|𝐵ᑣ,ᑩᑪ(r)||𝑀ᑩᑪ(r, 0)|eᎽᑥ/ᑋᎴ(r)eᎽᑚ[ᏺᒞ(r)ᑥᎽᒣᑖ(r)Ꮌᒣᑣ(r)Ꮍ
ᒕ
Ꮄ ]𝑑r. (2.31)

Expressing the terms |𝐵ᑣ,ᑩᑪ(r)| and |𝑀ᑩᑪ(r, 0)| in complex form we get

|𝐵ᑣ,ᑩᑪ(r)|eᎽᑚᒣᑣ(r) = 𝐵∗ᑣ,ᑩᑪ(r), (2.32a)
|𝑀ᑩᑪ(r, 0)|eᑚᒣᑖ(r) = 𝑀ᑩᑪ(r, 0). (2.32b)

Where 𝐵∗ᑣ,ᑩᑪ(r) indicates the conjugate of 𝐵ᑣ,ᑩᑪ(r). Applying both equations into equation (2.31) and omitting the
constant 𝜔Ꮂeᑚ

ᒕ
Ꮄ and the T2 relaxation for simplification

𝑆(𝑡) = ∫
ᑠᑓᑛᑖᑔᑥ

𝐵∗ᑣ,ᑩᑪ(r)𝑀ᑩᑪ(r, 0)eᎽᑚᏺᒞ(r)ᑥ𝑑r. (2.33)

Assuming a uniform distributed sensitivity in the receiver coil and discarding off-resonance effects we get

𝑆(𝑡) = ∫
ᑠᑓᑛᑖᑔᑥ

𝑀ᑩᑪ(r, 0)eᎽᑚᒞᑥ𝑑r. (2.34)

The preceding formula is the final signal expression for a homogeneous field in the region of interest, where 𝑀ᑩᑪ
denotes the transverse magnetisation at position 𝕣 and 𝜔 corresponds to the precessional frequency. In this case,
𝑀ᑩᑪ can be retrieved using a Fourier transform. However, in low-field MRI, inhomogeneities and nonlinear effects
are present in the field and a conventional Fourier transform causes artefacts in the image.
In the following sections 2.3 and 2.4, the nonideal effects will be modeled.



2.3. Background Field Inhomogeneities 13

2.3. Background Field Inhomogeneities
While HF-MRI have strong main magnetic field, around several Tesla, LF-MRI is weak (order of mT). This causes
inhomogeneities in the background field, both magnitude and direction.
The magnetic field distribution is no longer constant and it is rewritten as follows

𝐵(r) = 𝐵Ꮂ + Δ𝐵(r), (2.35)

then
Δ𝜔(r) = 𝛾Δ𝐵(r). (2.36)

Substituting (2.36) in (2.34)
𝑆(𝑡) = ∫

ᑠᑓᑛᑖᑔᑥ
𝑀ᑩᑪ(r, 0)eᎽᑚᒈᏺᐹ(r)ᑥ𝑑r. (2.37)

Equation (2.37) is the signal expression for an inhomogeneous static field, Δ𝐵(r) depends on the location [8][32].
It can be rewritten in one dimension and with discrete notation [4]

𝑆(𝑘ᑩ) =
ᑅᎽᎳ

∑
ᑡᎾᎲ

𝑀ᑩ(𝑥ᑡ)eᎽᑚᒈᏺᐹ(ᑩᑡ)ᑜᑩΔ𝑥, 0 ≤ 𝑘ᑩ ≤ 𝑁 − 1. (2.38)

In which 𝑘ᑩ correspond to k-space components, frequency domain, and 𝑥ᑡ is the position at the 𝑝th sample in
the space domain. Note that the size of the pixel must be taken into account and this is represented by Δ𝑥. The
number of samples is 𝑁.
The two-dimensional signal equation is expressed in discrete form likewise

𝑆(𝑘ᑩ, 𝑘ᑪ) =
ᑞᎽᎳ

∑
ᑡᎾᎲ

ᑟᎽᎳ

∑
ᑢᎾᎲ

𝑀ᑩ(𝑥ᑡ, 𝑦ᑢ)eᎽᑚᒈ(ᏺᐹ(ᑩᑡ ,ᑪᑢ)ᑜᑩᎼᏺᐹ(ᑩᑡ ,ᑪᑢ)ᑜᑪ)Δ𝑥Δ𝑦, 0 ≤ 𝑘ᑩ ≤ 𝑚 − 1,

0 ≤ 𝑘ᑪ ≤ 𝑛 − 1.

(2.39)

In which the total number of samples is 𝑁 = 𝑚𝑛.

2.4. Nonlinear Gradient Fields
Linear gradient magnetic fields are used to spatially encode the signal received. For instance, a gradient along
the z-direction would be applied in order to select one transverse slice of the object. In figure 2.3, a linear gradient
field is present and it gives a different Larmor frequency of the nuclei along the z-axis. When applying an RF
pulse with the frequency associated to the desired slice, i.e. 𝜔 = 𝛾𝐵, the magnetisation of the nuclei flips into
the transverse plane, giving a signal. On the other hand, figure 2.4 represents the gradient field that a low-field
MRI would generate. As the previous case in figure 2.3, we desired an image of the brain and therefore, the
pertinent RF pulse is applied. However, this frequencies are not unique for the head, and nuclei from the neck
of the patient are tilted as well, introducing noise to the image. In other words, several space locations have the
same frequencies and this is known as nonbijective encoding.
The linearity of these fields depends on the geometry of the coils. A less complex coil system, such as in low-field
MRI, causes nonlinearities [9].
Expressing equation (2.34) in one dimension and supposing a homogeneous main field and nonlinear gradients
we get

𝑆(𝑡) = ∫
ᐽᑆᑍᑩ

𝑀ᑩ(𝑥)eᎽᑚᒈ(ᐹᎲᑥᎼᐹ(ᑩ) ∫
ᑥ
Ꮂ ᑗᑩ(ᒙ)ᑕᒙ)𝑑𝑥. (2.40)

Where 𝐹𝑂𝑉ᑩ is the Field of View in the x direction, 𝐵ᑩ(𝑥) represents the gradient field depending on the x direction
and 𝑓ᑩ is its temporal dependence. Assuming that the gradient magnetic field has the form [21][42]

𝐵ᑩ(𝑥) = 𝑥𝐺ᑩ + 𝐻ᑩ(𝑥), (2.41)

where 𝐺ᑩ is a constant and 𝐻ᑩ(𝑥) represents the nonlinearities [34], and demodulating the signal, the preceding
equation leads to

𝑆(𝑡) = ∫
ᐽᑆᑍᑩ

𝑀ᑩ(𝑥)eᎽᑚᒈ(ᑩᐾᑩᎼᐿᑩ(ᑩ))ᑥ𝑑𝑥. (2.42)

Writing this in discrete form

𝑆(𝑘ᑩ) =
ᑅᎽᎳ

∑
ᑡᎾᎲ

𝑀ᑩ(𝑥ᑡ)eᎽᑚᒈ(ᑩᑡᐾᑩᎼᐿᑩ(ᑩᑡ))ᑜᑩΔ𝑥, 0 ≤ 𝑘ᑩ ≤ 𝑁 − 1, (2.43)
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Figure 2.3: Linear gradient field, represented with an orange line, to select a slice. Adapted from [1]

and in the same way, in two dimensions the gradient magnetic fields are

𝐵ᑩ(𝑥, 𝑦) = 𝑥𝐺ᑩ + 𝐻ᑩ(𝑥, 𝑦),
𝐵ᑪ(𝑥, 𝑦) = 𝑦𝐺ᑪ + 𝐻ᑪ(𝑥, 𝑦).

(2.44)

The corresponding two-dimensional discrete signal equation for an homogeneous background field and nonlinear
gradients is

𝑆(𝑘ᑩ, 𝑘ᑪ) =
ᑞᎽᎳ

∑
ᑡᎾᎲ

ᑟᎽᎳ

∑
ᑢᎾᎲ

𝑀ᑩᑪ(𝑥ᑡ, 𝑦ᑢ)eᎽᑚᒈ((ᑩᑡᐾᑩᎼᐿᑩ(ᑩᑡ ,ᑪᑢ))ᑜᑩᎼ(ᑪᑢᐾᑪᎼᐿᑪ(ᑩᑡ ,ᑪᑢ))ᑜᑪ)Δ𝑥Δ𝑦, 0 ≤ 𝑘ᑩ ≤ 𝑚 − 1,

0 ≤ 𝑘ᑪ ≤ 𝑛 − 1.

(2.45)

In the absence of nonlinearities, the terms 𝐻ᑩ and 𝐻ᑪ disappear and what is left is the linear gradients applied in
order to encode the k-space.
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Figure 2.4: Gradient field of a low-field MRI, represented with an orange line, to select a slice. Adapted from [1]

2.5. Inhomogeneous Background Field and Nonlinear Gradients
Now it is assumed that the main field presents inhomogeneities and the gradients are nonlinear. In order to simplify
the notation, both nonidealities will be grouped in one space-dependent term, i.e. Δ𝐵ᑩ and Δ𝐵ᑪ. These include
the inhomogeneous main field and both nonlinear gradients, along x- and y-direction respectively. This way, we
obtain the following nomenclature in both one and two dimensions that will be used along this thesis.

𝑆(𝑘ᑩ) =
ᑅᎽᎳ

∑
ᑡᎾᎲ

𝑀ᑩ(𝑥ᑡ)eᎽᑚᒈᏺᐹᑩ(ᑩᑡ)ᑜᑩΔ𝑥, 0 ≤ 𝑘ᑩ ≤ 𝑁 − 1 (2.46)

𝑆(𝑘ᑩ, 𝑘ᑪ) =
ᑞᎽᎳ

∑
ᑡᎾᎲ

ᑟᎽᎳ

∑
ᑢᎾᎲ

𝑀ᑩᑪ(𝑥ᑡ, 𝑦ᑢ)eᎽᑚᒈ((ᏺᐹᑩ(ᑩᑡ ,ᑪᑢ))ᑜᑩᎼ(ᏺᐹᑪ(ᑩᑡ ,ᑪᑢ))ᑜᑪ)Δ𝑥Δ𝑦, 0 ≤ 𝑘ᑩ ≤ 𝑚 − 1,

0 ≤ 𝑘ᑪ ≤ 𝑛 − 1.

(2.47)





3
Nonuniform Fourier Transform

The article [30] proposes an algorithm for the nonuniform discrete Fourier transform (NUDFT) based on the fast
Fourier transform (FFT) algorithm using a low rank matrix approximation. The advantage of using this method is
that it takes few FFT operations, saving computational time. This thesis will be based on the MATLAB software
[5] provided by the mentioned article.
This chapter is focused on describing the nonuniform Fourier transform and the algorithm employed by [30]. In
the first section 3.1, the nonuniform Fourier transform will be defined. Section 3.2 shows the connection between
the nonuniform Fourier transform and the signal model described in the previous chapter 2. In section 3.3, the
algorithm for type one nonuniform Fourier transform will be described. The type one nonuniform Fourier transform
for the two-dimensional case will be seen in section 3.4. In section 3.5, a brief explanation will be given for the
nonuniform Fourier transform of type two. Last section 3.6 corresponds to the two-dimensional nonuniform Fourier
transform of type two.

3.1. Introduction
The uniform discrete Fourier transform (DFT) is computed as

𝑓ᑛ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚᑛᑜ/ᑅ, 0 ≤ 𝑗 ≤ 𝑁 − 1. (3.1)

Where c = (𝑐Ꮂ, … , 𝑐ᑅᎽᎳ)ᑋ is the 𝑁 × 1 vector with complex numbers in the space domain and the computed
values for the frequency domain are f ∈ ℂᑅ×Ꮃ. The samples 𝑗/𝑁 are equally spaced in the interval [0, 1] and the
frequencies 𝑘 are integers in the interval [0, 𝑁 − 1]. Note that we assume the number of samples in frequency
to be equal to the number of samples in the temporal domain, that is N. This is not a necessary condition, but it
simplifies the notation.
Three specific cases are described below taking the DFT (equation (3.1)) as the reference.

• When the samples are equally spaced but the frequencies are not integers is known as a type one nonuni-
form discrete Fourier transform or NUDFT-I. The 𝑁 × 1 vector 𝜔𝜔𝜔 = (𝜔Ꮂ, … , 𝜔ᑜ, … , 𝜔ᑅᎽᎳ)ᑋ, 𝜔ᑜ ∈ [0, 𝑁] repre-
sents the noninteger frequencies.

𝑓ᑛ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚ
ᑛ
ᑅᒞᑜ , 0 ≤ 𝑗 ≤ 𝑁 − 1. (3.2)

• When the samples are not equally spaced and the frequencies are integers is known as a type two nonuni-
form discrete Fourier transform or NUDFT-II. The𝑁×1 vector x = (𝑥Ꮂ, … , 𝑥ᑛ, … , 𝑥ᑅᎽᎳ)ᑋ, 𝑥ᑛ ∈ [0, 1] represents
the nonequispaced samples.

𝑓ᑛ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚᑩᑛᑜ, 0 ≤ 𝑗 ≤ 𝑁 − 1. (3.3)

• When the samples are not equally spaced and the frequencies are not integers is known as a type three
nonuniform discrete Fourier transform or NUDFT-III. The 𝑁 × 1 vector x = (𝑥Ꮂ, … , 𝑥ᑛ, … , 𝑥ᑅᎽᎳ)ᑋ, 𝑥ᑛ ∈ [0, 1]

17
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represents the nonequispaced samples and the 𝑁 × 1 vector 𝜔𝜔𝜔 = (𝜔Ꮂ, … , 𝜔ᑜ, … , 𝜔ᑅᎽᎳ)ᑋ, 𝜔ᑜ ∈ [0, 𝑁] repre-
sents the noninteger frequencies.

𝑓ᑛ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚᑩᑛᒞᑜ , 0 ≤ 𝑗 ≤ 𝑁 − 1. (3.4)

3.2. Nonuniform Fourier Transform and the Signal Model
The format of the NUDFT-I matches our signal model described in chapter 2 with an inhomogeneous background
field and nonlinear gradients, equation (2.46).
In a type one NUDFT, equation (3.2), the samples are equally spaced and the frequencies are not integers, and
this is the case of our signal model.

𝑆(𝑘ᑩ) =
ᑅᎽᎳ

∑
ᑡᎾᎲ

𝑀ᑩ(𝑥ᑡ)eᎽᑚᒈᏺᐹᑩ(ᑩᑡ)ᑜᑩΔ𝑥 ⟺ 𝑓ᑛ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚ
ᑛ
ᑅᒞᑜ . (3.5)

In the signal equation, Δ𝐵ᑩ(x) is the nonlinear magnetic field, which corresponds to the noninteger frequencies 𝜔𝜔𝜔
in the NUDFT. The object𝑀ᑩ(x) corresponds to the c coefficients. The linear k-space samples and the MRI signal
𝑆(kx) correspond to the equispaced samples 𝑗/𝑁 and the frequencies f, respectively.
In the following chapters, the algorithm for the type one nonuniform Fourier transform will be described for the one
and two dimensional cases. To simplify the notation, we will continue with the nomenclature of the NUDFT.

3.3. Type One NUDFT
In a type one NUDFT the samples are equally spaced and the frequencies are not integers. The NUDFT-I, equation
(3.2), can be expressed in matrix notation as

f = �̃�Ꮃc (�̃�Ꮃ)ᑛᑜ = eᎽᎴᒕᑚ
ᑛ
ᑅᒞᑜ , 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1. (3.6)

Where the computed values for the frequency domain are f ∈ ℂᑅ×Ꮃ and c ∈ ℂᑅ×Ꮃ is the vector with the space
domain values. The 𝑁 × 1 vector 𝜔𝜔𝜔 = (𝜔Ꮂ, … , 𝜔ᑜ, … , 𝜔ᑅᎽᎳ)ᑋ, 𝜔ᑜ ∈ [0, 𝑁] represents the noninteger frequencies
and 𝑗/𝑁 are the equispaced samples.
The matrix notation for the uniform DFT is

𝐹ᑛᑜ = eᎽᎴᒕᑚᑛᑜ/ᑅ. (3.7)

The Hadamard division1 of �̃�Ꮃ • 𝐹 can be approximated by a low rank matrix if the frequencies are near-integers.
This means that for a small integer 𝐾, there are vectors such that

�̃�Ꮃ • 𝐹 ≈ vᎲuᑋᎲ +⋯+ vᑂᎽᎳuᑋᑂᎽᎳ, vᎲ, … ,vᑂᎽᎳ,uᎲ, … ,uᑂᎽᎳ ∈ ℂᑅ×Ꮃ (3.8)

Where the vectors vᎲ, … ,vᑂᎽᎳ and uᎲ, … ,uᑂᎽᎳ are computed with Chebyshev polynomials using a three-term
recurrence relation. Using (3.8) in (3.6)

�̃�Ꮃc ≈ ((vᎲuᑋᎲ +⋯+ vᑂᎽᎳuᑋᑂᎽᎳ) ∘ 𝐹)c =
ᑂᎽᎳ

∑
ᑣᎾᎲ

𝐷vᑣ𝐹𝐷uᑣc, (3.9)

where 𝐷vᑣ is the diagonal matrix with the entries of v and 𝐷uᑣ is the diagonal matrix with the entries of u. The
computational cost of this operation is 𝐾 FFTs, i.e. 𝒪(𝐾𝑁 log𝑁).
In the article [30], there are two approaches to compute the algorithm for the NUDFT-II: (1) supposing that the
samples are nearly equispaced, where Taylor or Chebyshev expansions are used to calculate the low rank matrix.
(2) Assuming arbitrary distributed samples.
This thesis will be based on the second approach, where arbitrarily distributed samples are considered. In the fol-
lowing sections, the explanation given in the mentioned article will be adapted to the nonuniform Fourier transform
of type one. For this, equation (3.6) is reformulated as follows

f = �̃�Ꮃc (�̃�Ꮃ)ᑛᑜ = eᎽᎴᒕᑚᑛᒞᑜ , 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1. (3.10)

Now the vector of frequencies 𝜔𝜔𝜔 = (𝜔Ꮂ, … , 𝜔ᑜ, … , 𝜔ᑅᎽᎳ)ᑋ, 𝜔ᑜ ∈ [0, 1] represents the nonequispaced frequencies
and 𝑗 are the integer samples in the interval [0, 𝑁 − 1].
1The Hadamard division or elementwise division is represented by • and the Hadamard product or elementwise product by ∘.
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3.3.1. Type One NUDFT Assuming Arbitrarily Distributed Frequencies
Since the frequencies are not nearly equispaced, the approximation of equation (3.8) does not hold. In this sub-
section, the NUDFT-I (equation (3.2)) will be modeled so that this approximation can be applied.
The sequence 𝑠Ꮂ, … , 𝑠ᑅᎽᎳ, that takes the values 0,… ,𝑁, forms an equispaced grid in which 𝑠ᑜ/𝑁 is the closest to
𝜔ᑜ.
How the nonequispaced frequencies are assigned can be visualised in figures 3.1 and 3.2. The left figure 3.1
shows equally spaced samples. Therefore, the s/𝑁 sequence to which these samples are assigned is the same
as the samples. Nonetheless, figure 3.2 represents nonequispaced samples. These samples are assigned to their
closes equispaced point.

Figure 3.1: Equispaced frequency samples Figure 3.2: Nonequispaced frequency samples assigned to their
closest point in the equispaced grid

Each 𝜔ᑜ is distanced from the equispaced node 1/(2𝑁) at most, then

|𝜔ᑜ −
𝑠ᑜ
𝑁 | ≤

1
2𝑁 , 0 ≤ 𝑘 ≤ 𝑁 − 1. (3.11)

A new sequence 𝑡Ꮂ, … , 𝑡ᑅᎽᎳ must be defined because the uniform DFT does not have a sample at 𝑠ᑜ/𝑁 = 1. Since
the complex exponential presents periodicity, i.e. eᎽᎴᒕᑚᑅᑜ/ᑅ = eᎽᎴᒕᑚᎲᑜ/ᑅ = 1, 𝜔ᑜ is reassigned to the equispaced
node at 0. The new sequence is given by

𝑡ᑜ = {
𝑠ᑜ, 0 ≤ 𝑠ᑜ ≤ 𝑁 − 1,
0, 𝑠ᑜ = 𝑁.

(3.12)

Looking again at figure 3.2, the last frequency sample 𝜔Ꮉ is assigned to 𝑠Ꮉ/𝑁 = 8/8 and therefore, its value in the
𝑡 sequence is 𝑡Ꮉ = 0.
The nonuniform Fourier matrix (equation (3.10)) can be rewritten as

(�̃�Ꮃ)ᑛᑜ = eᎽᎴᒕᑚᑛᒞᑜ = eᎽᎴᒕᑚᑛ(ᒞᑜᎽᑤᑜ/ᑅ)eᎽᎴᒕᑚ
ᑛ
ᑅ ᑤᑜ = eᎽᎴᒕᑚᑛ(ᒞᑜᎽᑤᑜ/ᑅ)eᎽᎴᒕᑚ

ᑛ
ᑅ ᑥᑜ , 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1. (3.13)

The previous equation can be simplified as a Hadamard product of eᎽᎴᒕᑚᑛ(ᒞᑜᎽᑤᑜ/ᑅ) and the (𝑗, 𝑡ᑜ) entry of the uniform
Fourier matrix (equation (3.7)). Continuing with equation (3.13)

(�̃�Ꮃ)ᑛᑜ = 𝐴 ∘ 𝐹(∶, t), (𝐹(∶, t))ᑛᑜ = eᎽᎴᒕᑚ
ᑛ
ᑅ ᑥᑜ ,

𝐴ᑛᑜ = eᎽᎴᒕᑚᑛ(ᒞᑜᎽᑤᑜ/ᑅ),
(3.14)

for 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1 and where t = (𝑡Ꮂ, … , 𝑡ᑅᎽᎳ)ᑋ. Taking the columns indexed by (𝑡Ꮂ, … , 𝑡ᑅᎽᎳ) from the DFT
matrix gives 𝐹(∶, t). An example of how this matrix is constructed can be seen in figure 3.3, when the sequence
t = [1, 0, 0, 3] and the number of samples is 𝑁 = 4.
Another example is represented in figures 3.4 and 3.5. These figures are related to the examples of figures 3.1
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Figure 3.3: Example of the discrete Fourier transform matrix with the columns indexed by the sequence t  [ኻ, ኺ, ኺ, ኽ] when the
number of samples is ፍ  ኾ

and 3.2.
The first figure 3.4 shows the discrete Fourier transform matrix created from the s sequence from 3.1. Since this
sequence is ordered, the corresponding 𝐹(∶, t) matrix corresponds to the conventional DFT matrix. Each colour
represents a different frequency, the real part is represented by a solid line, and the imaginary part by a dashed
line.
Regarding figure 3.5, it represents the DFT matrix with its columns permuted according to the t sequence taken
from the s/𝑁 sequence of figure 3.2. Note that this 𝐹(∶, t) matrix has to be multiplied elementwise by the 𝐴 matrix,
equation 3.14, in order to properly perform the nonuniform Fourier transform. As the previous figure 3.4, each
colour represents a different frequency, the real part is represented by a solid line, and the imaginary part by a
dashed line.

Since 𝑁(𝜔ᑜ − 𝑠ᑜ/𝑁) ∈ [−1/2, 1/2] and 𝑗/𝑁 ∈ [0, 1], the matrix A can be approximated by a low rank matrix,
i.e. 𝐴 ≈ 𝐴ᑂ, and (𝐴 ∘ 𝐹(∶, t))c can be obtained using equation (3.9), i.e.

�̃�Ꮃc = (𝐴 ∘ 𝐹(∶, t))c ≈ (𝐴ᑂ ∘ 𝐹(∶, t))c =
ᑂᎽᎳ

∑
ᑣᎾᎲ

𝐷vᑣ𝐹(∶, t)𝐷uᑣc, (3.15)

The next step is to compute the low rank matrix approximation, which is done via bivariate Chebyshev expansions
of the function eᎽᑚᑩᑪ. The integer 𝐾 can be selected using Table 1 from [30] or also using the following equation

𝐾 = max {3, ⌈5𝛿eᑎ(log(ᎳᎶᎲ/ᒠ)/(Ꮇᒉ))⌉} , (3.16)

in which 𝑊(𝑥) is the Lambert-W function, 𝜖 represents the working precision, such that ||𝐴 − 𝐴ᑂ||max ≤ 𝜖. The
bigger 𝐾 is, the more similar the approximation matrix to 𝐴 is, and therefore, the working precision is smaller. The
perturbation parameter is represented by 𝛿, i.e. the maximum distance between the nonuniform frequencies 𝜔ᑜ
and the equispaced grid 𝑠ᑜ which is at most 1/2

𝛿 = max {|𝑁𝜔ᑜ − 𝑠ᑜ|} ≤ 1/2, 0 ≤ 𝑘 ≤ 𝑁 − 1. (3.17)

Taking the asymptotic approximation in equation (3.16) of𝑊(𝑥) as 𝑥 −→ ∞, gives the following equation

𝐾 = 𝒪 ( log(1/𝜖)
log log(1/𝜖)) , (3.18)

when 𝜖 −→ 0 and therefore, equation (3.15) can be computed in 𝒪(𝑁 log𝑁 log (1/𝜖)/ log log (1/𝜖)) operations. The
integer 𝐾 is at most 16 with double precision (𝜖 = 2.22e−16).
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Figure 3.4: Discrete Fourier transform matrix created from s/ፍ sequence of figure 3.1. Adapted from [36]

Figure 3.5: Discrete Fourier transform matrix with permuted columns created from s/ፍ sequence of figure 3.2. Note that this
matrix ፅ(∶, t) is multiplied elementwise by the ፀ matrix. Adapted from [36]
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3.4. Two-dimensional Type One NUDFT
The two-dimensional uniform discrete Fourier transform is computed as

𝑓ᑛᎳᑛᎴ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚ(
ᑛᎳ
ᑞ Ꮌ ᑛᎴᑟ )ᑜ, 0 ≤ 𝑗Ꮃ ≤ 𝑚 − 1,

0 ≤ 𝑗Ꮄ ≤ 𝑛 − 1.

(3.19)

In which the total number of samples is 𝑁 = 𝑚𝑛, the frequency values are 𝑓 ∈ ℂᑞ×ᑟ and the Fourier coefficients
in the space domain are c ∈ ℂᑞᑟ×Ꮃ. The uniform 2D FFT costs 𝒪(𝑚𝑛(log𝑚 + log𝑛)) operations.
Based on the article [30], the two-dimensional nonuniform Fourier transform of type one is defined as

𝑓ᑛᎳᑛᎴ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜeᎽᎴᒕᑚ(ᑛᎳᒞᑜᎼᑛᎴᒣᑜ), 0 ≤ 𝑗Ꮃ ≤ 𝑚 − 1,

0 ≤ 𝑗Ꮄ ≤ 𝑛 − 1.

(3.20)

The vector c ∈ ℂᑞᑟ×Ꮃ contains the Fourier coefficients in the space domain, the matrix 𝑓 ∈ ℂᑞ×ᑟ are the fre-
quency values and 𝜔𝜔𝜔, 𝜙𝜙𝜙 are the nonequispaced frequencies where 𝜔𝜔𝜔 = (𝜔Ꮂ, … , 𝜔ᑜ, … , 𝜔ᑅᎽᎳ)ᑋ, 𝜔ᑜ ∈ [0, 1] and
𝜙𝜙𝜙 = (𝜙Ꮂ, … , 𝜙ᑜ, … , 𝜙ᑅᎽᎳ)ᑋ, 𝜙ᑜ ∈ [0, 1]. The samples 𝑗Ꮃ and 𝑗Ꮄ are integers.
Although the previous equation takes 𝒪(𝑁𝑚𝑛) operations, this number can be reduced using the ideas of the
approximation algorithm that the article [30] proposes.
Assigning the nonequispaced frequencies to the closest uniform spaced frequencies, similar to the procedure of
subsection 3.3.1, equation (3.20) can be simplified to2

𝑓ᑛᎳᑛᎴ =
ᑅᎽᎳ

∑
ᑜᎾᎲ

𝑐ᑜ𝐴ᒞᑛᎳᑜ𝐴
ᒣ
ᑛᎴᑜe

ᎽᎴᒕᑚ(ᑛᎳᑥᒞᑜ /ᑞᎼᑛᎴᑥ
ᒣ
ᑜ /ᑟ), 𝐴ᒞᑛᎳᑜ = eᎽᎴᒕᑚᑛᎳ(ᒞᑜᎽᑤᒞᑜ /ᑞ),

𝐴ᒣᑛᎴᑜ = eᎽᎴᒕᑚᑛᎴ(ᒣᑜᎽᑤ
ᒣ
ᑜ /ᑟ).

(3.21)

Note that eᎽᎴᒕᑚ(ᑛᎳᑥᒞᑜ /ᑞᎼᑛᎴᑥ
ᒣ
ᑜ /ᑟ) is related to the two-dimesional uniform Fourier transform. Expressing the previous

equation (3.21) in matrix form gives
𝑓 = (𝐴ᒞ ∘ 𝐹)diag(c)(𝐴ᒣ ∘ 𝐹)ᑋ (3.22)

Where ∘ represent the Hadamard product or elementwise product, diag(𝑐) creates a diagonal matrix out of the
column vector 𝑐 and 𝐹 represents the Fourier matrix.
Since 𝑚|𝜔ᑜ − 𝑠ᒞᑜ /𝑚| ≤ 1/2, 𝑛|𝜙ᑜ − 𝑠ᒣᑜ /𝑛| ≤ 1/2, 𝑗Ꮃ/𝑚 ∈ [0, 1] and 𝑗Ꮄ/𝑛 ∈ [0, 1], both 𝐴ᒞ ∈ ℂᑞ×ᑅ and 𝐴ᒣ ∈ ℂᑟ×ᑅ
matrices can be approximated by a low rank matrix as

𝐴ᒞ ≈ vᒞᎲ (uᒞᎲ )ᑋ +⋯+ vᒞᑂᎳᎽᎳ(u
ᒞ
ᑂᎳᎽᎳ)

ᑋ

𝐴ᒣ ≈ vᒣᎲ (u
ᒣ
Ꮂ )ᑋ +⋯+ vᒣᑂᎴᎽᎳ(u

ᒣ
ᑂᎴᎽᎳ)

ᑋ (3.23)

Substituting equation (3.23) into (3.21) and using

𝐴 ∘ 𝐹 ≈ 𝐴ᑂ ∘ 𝐹 = (vuᑋ) ∘ 𝐹 = 𝐷v𝐹𝐷u, (3.24)

gives

𝑓ᑛᎳᑛᎴ =
ᑂᎳᎽᎳ

∑
ᑣᎳᎾᎲ

ᑂᎴᎽᎳ

∑
ᑣᎴᎾᎲ

𝐷vᒞᑣᎳ𝐹ᑞ𝐼(∶, 𝑡
ᒞ
ᑜ )𝐷uᒞᑣᎳdiag(c)𝐷uᒣᑣᎴ 𝐼(𝑡

ᒣ
ᑜ , ∶)𝐹ᑋᑟ 𝐷vᒣᑣᎴ . (3.25)

There are 𝐾Ꮃ𝐾Ꮄ terms in the previous equation (3.25). Each requires an 𝑚 × 𝑛 two-dimensional fast Fourier
transform. Besides, each term adds𝑚×𝑛matrices. Therefore, the total number of operations is𝒪(𝐾Ꮃ𝐾Ꮄ𝑚𝑛(log𝑚+
log𝑛) + 𝑚𝑛).

3.5. Type Two NUDFT
The type two nonuniform Fourier transform is explained in this section because it will be used in the Conjugate
Gradient to retrieved the object in chapter 7.
In a NUDFT-II, equation (3.3), the samples are nonequispaced and the frequencies are integers. Equation 3.3 can
be expressed in matrix form in a similar way as equation (3.6) as follows

f = �̃�Ꮄc (�̃�Ꮄ)ᑛᑜ = eᎽᎴᒕᑚᑩᑛᑜ, 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1. (3.26)

2See section 4 of [30] for more details
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Where the computed values for the frequency domain are f ∈ ℂᑅ×Ꮃ and c ∈ ℂᑅ×Ꮃ is the vector with the values in
the space domain. The 𝑁 × 1 vector x = (𝑥Ꮂ, … , 𝑥ᑛ, … , 𝑥ᑅᎽᎳ)ᑋ, 𝑥ᑛ ∈ [0, 1] represents the nonequispaced samples
and 𝑘 ∈ [0, 𝑁] are the integer frequencies.
The nonuniform type two matrix can be expressed as the nonuniform type one matrix

(�̃�Ꮃ)ᑛᑜ = eᎽᎴᒕᑚ
ᑛ
ᑅᒞᑜ = eᎽᎴᒕᑚ

ᒞᑜ
ᑅ ᑛ = (�̃�Ꮄ)ᑜᑛ, 0 ≤ 𝑗, 𝑘 ≤ 𝑁 − 1. (3.27)

Therefore, �̃�Ꮄ = �̃�ᑋᎳ . The method explained in subsection 3.3.1 works similarly for a nonuniform Fourier transform
of type two and the computational costs for NUFFT-II are 𝐾𝑁 log𝑁.

3.6. Two-dimensional Type Two NUDFT
The type two nonuniform Fourier transform is explained in this section because it will be used in the Conjugate
Gradient to retrieved the object in chapter 9.
The nonuniform 2D Fourier transform of type two presents nonequispaced samples and it is computed as

𝑓 = diag ((𝐴ᑪ ∘ 𝐹)𝑐(𝐴ᑩ ∘ 𝐹)ᑋ) . (3.28)

Where ∘ represent the Hadamard product or elementwise product, diag(𝑥) takes the vector in the diagonal of the
𝑥 matrix and 𝐹 represents the Fourier matrix. The matrices 𝐴ᑩ and 𝐴ᑪ are computed in a similar way as equation
(3.21).
A low rank approximation matrix can be applied to equation (3.28) giving

𝑓ᑛ =
ᑂᎳᎽᎳ

∑
ᑣᎳᎾᎲ

ᑂᎴᎽᎳ

∑
ᑣᎴᎾᎲ

𝐷uᑪᑣᎳ 𝐼(𝑡
ᑪ
ᑛ , ∶)𝐹ᑞ𝐷vᑪᑣᎳ 𝑐 𝐷vᑩᑣᎴ𝐹

ᑋ
ᑟ 𝐼(∶, 𝑡ᑩᑛ )𝐷uᑩᑣᎴ . (3.29)

This operations is similar to the one presented for the type one case in equation (3.25). Recall that a nonuniform
Fourier transform of type one is equivalent to transpose a type two (see equation (3.27)). Therefore, the compu-
tational cost of the previous equation (3.29) is 𝒪(𝐾Ꮃ𝐾Ꮄ𝑚𝑛(log𝑚 + log𝑛) + 𝑚𝑛). The reader is referred to [30] for
further explanations.
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4
Procedure

In this chapter, the methodology used in the chapters 6, 7 and 8 for the one and two dimensional case respectively
will be described. Moreover, the algorithms that will be used to obtain these results will be explained.
The chapter begins in section 4.1 with an introduction and a description of the problem, and in section 4.2, the
forward and inverse problem will be explained.

4.1. Introduction
In this section, the signal model for one and two dimensions described in chapter 2 will be represented with the
nonuniform nomenclature of chapter 3.

One dimension Recall that the signal model of the low-field MRI described in chapter 2 is expressed as

𝑆(𝑘ᑩ) =
ᑅᎽᎳ

∑
ᑡᎾᎲ

𝑀ᑩ(𝑥ᑡ)eᎽᑚᒈᏺᐹᑩ(ᑩᑡ)ᑜᑩΔ𝑥, 0 ≤ 𝑘ᑩ ≤ 𝑁 − 1 (4.1)

For notational convenience, Δ𝐵ᑩ represents both background field inhomogeneities and nonlinear gradients grouped,
as explained in section 2.5.
Expressing the object in matrix form as in equation (3.10)

S = �̃�ᎳMᑩ (�̃�Ꮃ)ᑜᑩᑡ = eᎽᑚᒈᑜᑩᏺᐹᑩ(ᑩᑡ), 0 ≤ 𝑝, 𝑘ᑩ ≤ 𝑁 − 1. (4.2)

Where S ∈ ℂᑅ×Ꮃ is the MRI signal,Mᑩ ∈ ℚᑅ×Ꮃ is the transverse magnetisation or the desired object, the nonuniform
magnetic field Δ𝐵ᑩ(𝑥ᑡ) ∈ [0, 1] and the integer k-space samples 𝑘ᑩ ∈ [0, 𝑁 − 1]. The gyromagnetic ratio is
represented by 𝛾.
Since the main background magnetic field is not homogeneous and also other nonlinear effects in the gradients
exist, the total field Δ𝐵ᑩ(x) is not uniform. Therefore, the samples in the k-space are distorted and the object
cannot be retrieved using the inverse operation. In order to retrieve the object, an iterative solver must be applied.

Two dimensions In a similar way as in one dimension, the two-dimensional discrete signal equation of a
low-field MRI is expressed as follows

𝑆(𝑘ᑩ, 𝑘ᑪ) =
ᑞᎽᎳ

∑
ᑡᎾᎲ

ᑟᎽᎳ

∑
ᑢᎾᎲ

𝑀ᑩᑪ(𝑥ᑡ, 𝑦ᑢ)eᎽᑚᒈ(ᏺᐹᑩ(ᑩᑡ ,ᑪᑢ)ᑜᑩᎼᏺᐹᑪ(ᑩᑡ ,ᑪᑢ)ᑜᑪ)Δ𝑥Δ𝑦, 0 ≤ 𝑘ᑩ ≤ 𝑚 − 1,

0 ≤ 𝑘ᑪ ≤ 𝑛 − 1.

(4.3)

Note that the previous equation represents both the background field inhomogeneities and the nonlinear gradients
along x- and y-direction grouped in Δ𝐵ᑩ and Δ𝐵ᑪ respectively.
Matching equation (4.3) to the nonuniform formula in equation (3.20) gives

𝑆(𝑘ᑩ, 𝑘ᑪ) =
ᑅᎽᎳ

∑
ᑡᎾᎲ

𝑀ᑩᑪ(𝑟ᑡ)𝐴ᑩᑜᑩᑡ𝐴
ᑪ
ᑜᑪᑡe

Ꮍᑚᒈ(ᑜᑩᑥᑩᑡ/ᑟᎼᑜᑪᑥᑪᑡ/ᑞ)Δ𝑥Δ𝑦,

𝐴ᑩᑜᑩᑡ = eᎽᑚᒈᑜᑩ(ᏺᐹᑩ(ᑣᑡ)Ꮍᑤᑩᑡ/ᑟ), 𝐴ᑜᑪᑡ = eᎽᑚᒈᑜᑪ(ᏺᐹᑪ(ᑣᑡ)Ꮍᑤ
ᑪ
ᑡ/ᑞ).

(4.4)
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Where 0 ≤ 𝑝 ≤ 𝑁−1 and 𝑁 = 𝑚𝑛, (𝑠ᑩᑡ , 𝑠ᑪᑡ ) is the closest point from an𝑚×𝑛 equispaced grid to (Δ𝐵ᑩ(𝑟ᑡ), Δ𝐵ᑪ(𝑟ᑡ)).
The sequence (𝑡ᑩᎲ , 𝑡ᑪᎲ ), … , (𝑡ᑩᑟᎽᎳ, 𝑡ᑪᑞᎽᎳ) is equal to the sequence (𝑠ᑩᎲ , 𝑠ᑪᎲ ), … , (𝑠ᑩᑟᎽᎳ, 𝑠ᑪᑞᎽᎳ) but assigning 𝑡ᑩᑡ = 0 or
𝑡ᑪᑡ = 0 when 𝑠ᑩᑡ = 𝑛 or 𝑠ᑪᑡ = 𝑚 respectively (see section 3.4 in chapter 3 for more details). The transverse
magnetisation of the desired object at the 𝑟ᑡ position is 𝑀ᑩᑪ(𝑟ᑡ) and 𝑆(𝑘ᑩ, 𝑘ᑪ) is the received signal in a low-field
MRI at the (𝑘ᑩ, 𝑘ᑪ) k-space point. The size of the pixel is Δ𝑥Δ𝑦 and 𝛾 is the gyromagnetic ratio.
Note that in this chapter, the sequences 𝑠 and 𝑡, the fields Δ𝐵ᑩ(𝑥, 𝑦) and Δ𝐵ᑪ(𝑥, 𝑦) and the object 𝑀ᑩᑪ(𝑥, 𝑦) are
𝑁 × 1 vectors, where 𝑁 = 𝑚𝑛. Whereas the received MRI signal 𝑆(𝑘ᑩ, 𝑘ᑪ) and the k-space samples are 𝑚 × 𝑛
matrices.
The two-dimensional object cannot be retrieved using the inverse operation since the frequency samples are
nonlinear. Instead, an iterative solver can be used to solve the problem.

4.2. Problem Statement
In summarised form, the whole process consists in placing an object in a magnetic field to create an MRI signal
and then try to retrieve the object from this signal. In other words, first a forward problem is performed to obtain
the MRI signal. Then, using this signal, the solution to the inverse problem is found. This solution is the object
retrieved and it will be compared to the original object in the results of chapters 6, 7, 8 and 9.
How the forward and inverse problems are implemented is explained in subsections 4.2.1 and 4.2.2 respectively.

4.2.1. Forward Problem
The object and the nonuniform magnetic field are created to generate the MRI signal. Several experiments with
different fields and objects were carried out in order to analyse a variety of results in one and two dimensions.
Some of them will be shown in the following chapters.

One dimension For the one dimensional case, the full nonuniform Fourier matrix �̃�Ꮃ is generated using the
aforementioned field. This is done by multiplying the column vector of k-space samples 𝑘ᑩ by the row vector with
the values of the magnetic field Δ𝐵ᑩ at the 𝑥 positions. Then, this matrix is multiplied by the −𝑖𝛾 constant and the
exponential of the result is taken. The MRI signal is generated by multiplying the full nonuniform Fourier matrix by
the object sampled at the 𝑥 positions, i.e. �̃�Ꮃ𝑀ᑩ(x). The forward problem is summarised in the block diagram of
figure 4.1 for one dimension.

Δ𝐵፱(x) �̃�ኻ

𝑀፱(x)

𝑆(kx)
S = �̃�ኻM፱

Figure 4.1: Scheme of the forward problem in 1D, i.e. the procedure to generate the MRI signal ፒ(kx) from the gradient field
along x-direction ጂፁᑩ(x) and the object ፌᑩ(x)

Two dimensions Regarding the two-dimensional case, the 2D nonuniform Fourier transform is applied multi-
plying the object by two nonuniform Fourier matrices as
Fy = exp(-i*gamma*(0:m-1)’*By(:)’);
Fx = exp(-i*gamma*(0:n-1)’*Bx(:)’);
S = Fy*diag(M_xy(:))*Fx.’;

Where the matrices Bx and By correspond to the magnetic fields applied to the object, Δ𝐵ᑩ and Δ𝐵ᑪ respectively.
The matrix S is the received signal and the matrix M_xy is the transverse magnetisation of the object. The variable
gamma is the gyromagnetic ratio. The forward problem is represented in the figure 4.2 for two dimensions.
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Δ𝐵፱(𝑥, 𝑦)

Δ𝐵፲(𝑥, 𝑦)

𝑀፱፲(𝑥, 𝑦)

𝑆(𝑘፱ , 𝑘፲)
K-space filling

Figure 4.2: Scheme of the forward problem in 2D, i.e. the procedure to generate the two-dimensional MRI signal ፒ(፤ᑩ , ፤ᑪ) from
the gradient field along x-direction ጂፁᑩ(፱, ፲), the gradient field along y-direction ጂፁᑪ(፱, ፲) and the object ፌᑩᑪ(፱, ፲)

4.2.2. Inverse Problem
Once the MRI signal is generated, the aim is to retrieve the object using an iterative solver and the nufft() algorithm
from Chebfun [5].

One dimension The original problem is stated as follows

𝑆 = �̃�Ꮃ𝑀ᑩ (4.5)

Where we want to find the solution for𝑀ᑩ. In order to save computational time, the approximation of the nonuniform
Fourier algorithm nufft() described in chapter 3 is applied

𝑆 = (𝐴ᑂ ∘ 𝐹(∶, t))𝑀ᑩ (4.6)

In each iteration of the solver, 𝐾 FFTs would be performed. Therefore, the total time of the algorithm would be
roughly 𝒪(𝑅𝐾𝑁 log𝑁). Where 𝑅 is the number of iterations, 𝐾 is the rank of the approximation matrix, and 𝑁 is
the number of samples.
The article [30] uses the Conjugate Gradient (CG) method to solve equation (4.6). To apply the CG method, the
system of equations must be linear and �̃�Ꮃ must be a positive definite matrix (symmetric with positive eigenvalues).
This is not the case and therefore, equation (4.5) is modified in order to obtain a positive definite matrix. This can
be done by multiplying equation (4.5) from the left by �̃�∗Ꮃ and obtaining the matrix �̃�∗Ꮃ �̃�Ꮃ which is definite positive.
Nonetheless, the article [30] takes advantage that the matrix �̃�Ꮃ�̃�∗Ꮃ is Toeplitz and it can be computed using a fast
Toeplitz multiply saving computational time. How to obtain �̃�Ꮃ�̃�∗Ꮃ is explained below.
The nonuniform Fourier matrix �̃�Ꮃ presents linearly independent rows and therefore, its pseudo-inverse is defined
as

�̃�ᎽᎳᎳ = �̃�∗Ꮃ (�̃�Ꮃ�̃�∗Ꮃ )ᎽᎳ. (4.7)
Where �̃�Ꮃ�̃�∗Ꮃ is a matrix with constant diagonal entries, i.e. a Toeplitz matrix, and it can be computed using a fast
Toeplitz multiply. The fast Toeplitz multiply costs one direct FFT and one inverse FFT of size 2𝑁. Constructing the
Toeplitz matrix costs one nonuniform FFT of type one. This will be detailed in section 5.1.
Inserting the inverse nonuniform Fourier matrix in the signal equation

𝑆 = �̃�Ꮃ𝑀ᑩ,
�̃�ᎽᎳᎳ 𝑆 = 𝑀ᑩ,

(4.8)

and applying the pseudo-inverse (equation (4.7)) to the previous equation (4.8) gives

�̃�∗Ꮃ (�̃�Ꮃ�̃�∗Ꮃ )ᎽᎳ𝑆 = 𝑀ᑩ,
(�̃�Ꮃ�̃�∗Ꮃ )ᎽᎳ𝑆 = (�̃�∗Ꮃ )ᎽᎳ𝑀ᑩ.

(4.9)
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Simplifying the notation with 𝑀ᖤ
ᑩ = (�̃�∗Ꮃ )ᎽᎳ𝑀ᑩ

(�̃�Ꮃ�̃�∗Ꮃ )ᎽᎳ𝑆 = 𝑀ᖤ
ᑩ, (4.10)

and writing the equation with the format of the CG gives

𝑆 = (�̃�Ꮃ�̃�∗Ꮃ )𝑀ᖤ
ᑩ. (4.11)

The Conjugate Gradient method can be used in the equation (4.11) since it is a linear system with a positive definite
matrix. In order to retrieve the object after solving 𝑀ᖤ

ᑩ, the conjugate of a nonuniform Fourier transform is applied,
i.e. 𝑀ᑩ = �̃�∗Ꮃ𝑀ᖤ

ᑩ, which can be done by applying a NUFFT-II. This will be detailed in section 5.1.
Regarding the total number of operations that this process takes is summarised in the following bullet points.

• One NUFFT-I to create the Toeplitz matrix �̃�Ꮃ�̃�∗Ꮃ , i.e. 𝒪(𝐾𝑁 log𝑁).
• Two FFTs of size 2𝑁 per iteration of the CG to solve 𝑆 = (�̃�Ꮃ�̃�∗Ꮃ )𝑀ᖤ

ᑩ using the fast Toeplitz product, i.e.
𝒪(2𝑅(2𝑁) log (2𝑁)).

• One NUFFT-II to retrieve the object from 𝑀ᖤ
ᑩ, i.e. 𝒪(𝐾𝑁 log𝑁).

The inverse problem is represented in the figure 4.3.

Δ𝐵፱(x) �̃�ኻ �̃�ኻ�̃�∗ኻ

Solve Mᖣ
፱ for

S = (�̃�ኻ�̃�∗ኻ )Mᖣ
፱

𝑆(kx)

𝑀፱(x)

NUFFT-I

NUFFT-II

Figure 4.3: Scheme of the inverse problem in 1D, i.e. the procedure to retrieve the object ፌᑩ(x)

Two dimensions The procedure of the inverse problem for two dimensions is very similar to the one dimension.
The problem is stated below

𝑆 = �̃�ᑪᎳ diag(Mᑩᑪ)�̃�ᑩᑋᎳ . (4.12)
Where 𝑆 is an 𝑚 × 𝑛 matrix which represents the signal received, diag(Mᑩᑪ) is an 𝑚𝑛 × 𝑚𝑛 diagonal matrix with
the object as a column vector in the diagonal. The matrices �̃�ᑩᎳ and �̃�ᑪᎳ multiplying from the right and left sides of
the object are analogous to perform the 2D nonuniform Fourier Transform. The aim is to find a solution for the
desired object 𝑀ᑩᑪ.
The previous equation (4.12) can be also expressed as

S = (�̃�ᑩᎳ ⊗ �̃�ᑪᎳ )Mᑩᑪ. (4.13)

Now both the signal and the object are column vectors of size 𝑚𝑛 × 1. The symbol ⊗ represents the Kronecker
product. This system cannot be solved using the Conjugate Gradient method since the matrix (�̃�ᑩᎳ ⊗ �̃�ᑪᎳ ) is not
positive definite. Therefore, equation (4.12) is modified below.

𝑆 = �̃�ᑪᎳ diag(Mᑩᑪ)�̃�ᑩᑋᎳ ,
(�̃�ᑪᎳ )ᎽᎳ𝑆(�̃�ᑩᑋᎳ )ᎽᎳ = diag(Mᑩᑪ).

(4.14)

Using equation (4.7) gives
�̃�ᑪ∗Ꮃ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ )ᎽᎳ𝑆(�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᎽᎳ�̃�ᑩ∗Ꮃ = diag(Mᑩᑪ),
(�̃�ᑪᎳ �̃�ᑪ∗Ꮃ )ᎽᎳ𝑆(�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᎽᎳ = (�̃�ᑪ∗Ꮃ )ᎽᎳdiag(Mᑩᑪ)(�̃�ᑩ∗Ꮃ )ᎽᎳ.

(4.15)

And to simplify the notation, 𝑀ᖤ
ᑩᑪ = (�̃�ᑪ∗Ꮃ )ᎽᎳdiag(Mᑩᑪ)(�̃�ᑩ∗Ꮃ )ᎽᎳ.

(�̃�ᑪᎳ �̃�ᑪ∗Ꮃ )ᎽᎳ𝑆(�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᎽᎳ = 𝑀ᖤ
ᑩᑪ,

𝑆 = (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ )𝑀ᖤ
ᑩᑪ(�̃�ᑩ∗Ꮃ �̃�ᑩᎳ ).

(4.16)
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And converting the matrices to vectors leads to

S = ((�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᑋ⊗ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ))Mᖤ
ᑩᑪ. (4.17)

In which the matrix (�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᑋ ⊗ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ) is symmetric with positive eigenvalues. Therefore, Mᖤ
ᑩᑪ can be solved

using the Conjugate Gradient method. However, this matrix is not Toeplitz and it cannot be computed using a fast
Toeplitz multiply, as it was done in the one-dimensional case.
The object can be finally retrieved using a 2D NUFFT-II on the solution Mᖤ

ᑩᑪ. This will be detailed in section 5.1.
The number of operations is summarised in the the following bullet points.

• One 2D NUFFT-I to obtain the column and row of the Toeplitz matrices (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ) and (�̃�ᑩ∗Ꮃ �̃�ᑩᎳ ), respectively.
This costs 𝒪(𝐾ᑩ𝐾ᑪ𝑚𝑛(log𝑚 + log𝑛) + 𝑚𝑛).

• Construct the two Toeplitz matrices and perform the Kronecker product.
• A Matrix-vector product per iteration of the CG to solve 𝑀ᖤ

ᑩᑪ.
• One 2D NUFFT-II to retrieve the object from 𝑀ᖤ

ᑩᑪ, i.e. 𝒪(𝐾ᑩ𝐾ᑪ𝑚𝑛(log𝑚 + log𝑛) + 𝑚𝑛).
The inverse problem is represented in the figure 4.4.

Δ𝐵፱(𝑥, 𝑦) �̃�፱ኻ

Δ𝐵፲(𝑥, 𝑦) �̃�፲ኻ

((�̃�፱ ∗ኻ �̃�፱ኻ )ፓ⊗ (�̃�፲ኻ �̃�፲ ∗ኻ ))

Solve Mᖣ
፱፲

using CG

𝑆(𝑘፱ , 𝑘፲)

𝑀፱፲(𝑥, 𝑦)

NUFFT-I

NUFFT-II

Figure 4.4: Scheme of the inverse problem in 2D, i.e. the procedure to retrieve the object ፌᑩᑪ(x,y)





5
Algorithms

The algorithms used to obtain the results from chapter 6, 7, 8 and 9 are detailed in this chapter.
First, the Conjugate Gradient (CG) is presented in section 5.1 and second, the nonuniform fast Fourier transform
(NUFFT) is presented in section 5.2.

5.1. Conjugate Gradient Method
The Conjugate Gradient (CG) method [31] solves sparse linear systems of the form

Ax = b. (5.1)

Where A is a symmetric matrix with positive eigenvalues. This guarantees a unique solution x∗. The CG finds the
optimal point by minimising the quadratic function

minimise
x

𝑓(x) = xᑋAx− bᑋx+ 𝑐 (5.2)

in which the solution isAx = b. The algorithm looks for theminimum by taking steps in the direction using conjugate
gradients and minimising each step with a line search. Each new search direction is A-orthogonal to the previous
directions, i.e.

𝑑ᑋᑚ A𝑑ᑛ = 0, for 𝑖 ≠ 𝑗. (5.3)

The Conjugate Gradient method can be seen in algorithm 1.

Algorithm 1 Conjugate Gradient
Starting point 𝑥ኺ
Initialised 𝑑ኺ = 𝑟ኺ = 𝑏 − 𝐴𝑥ኺ
for 𝑖 = 0, 1, … do

Find step size 𝛼። =
፫ᑋᑚ ፫ᑚ
፝ᑋᑚ ፀ፝ᑚ

Update the solution 𝑥።ዄኻ = 𝑥። + 𝛼።𝑑።
Update the residual 𝑟።ዄኻ = 𝑟። − 𝛼።𝐴𝑑።
𝛽።ዄኻ =

፫ᑋᑚᎼᎳ፫ᑚᎼᎳ
፫ᑋᑚᎼᎳ፫ᑚᎼᎳ

Update search direction 𝑑።ዄኻ = 𝑟።ዄኻ + 𝛽።ዄኻ𝑑።
end for

The search directions dᑚ are built by conjugation of the residual. The algorithm initialises by setting the search
direction and the residual to dᎲ = rᎲ = b − Axᑚ. This is the direction on which the function decreases most
quickly. The size of the step is determined by 𝛼ᑚ. The size 𝛼ᑚ is selected such that it minimises the quadratic
function 𝑓(xᑚ+𝛼ᑚdᑚ). The new point and the residual are updated and the coefficient 𝛽 is chosen such that dᑚᎼᎳ is
conjugated to the previous dᑚ. The algorithm stops when the norm of the residual is less than a selected tolerance
or it reaches the maximum number of iterations.
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One dimension For our problem, recall equation (4.11), the matrix A is 𝐹Ꮃ𝐹∗Ꮃ , the vector x is 𝑀ᖤ
ᑩ(x) and b is

the MRI signal, 𝑆(kx).
Ax = b ⟶ (𝐹Ꮃ𝐹∗Ꮃ )𝑀ᖤ

ᑩ(x) = 𝑆(kx). (5.4)

To compute the matrix �̃�Ꮃ�̃�∗Ꮃ , only the first column of this matrix is needed since it is a Toeplitz and Hermitian matrix.
The first column is obtained multiplying by the first canonical vector eᎳ, i.e.

(�̃�Ꮃ�̃�∗Ꮃ )eᎳ = (�̃�Ꮃ�̃�∗Ꮃ )
⎡
⎢
⎢
⎣

1
0
⋮
0

⎤
⎥
⎥
⎦
. (5.5)

Moreover, �̃�∗Ꮃ eᎳ = 111, where 111 is a vector of ones. Therefore, only �̃�Ꮃ111 is computed, using a nonuniform Fourier
transform of type one.
Afterwards, the Conjugate Gradient method is applied to solve𝑀ᖤ

ᑩ, where𝑀ᖤ
ᑩ = (�̃�∗Ꮃ )ᎽᎳ𝑀ᑩ. Therefore, to obtain the

desired object 𝑀ᑩ, the conjugate of the nonuniform Fourier matrix must be applied. This is done by applying the
nonuniform Fourier transform of type two to the conjugate of 𝑀ᖤ

ᑩ and then taking the conjugate of the result.

𝑀ᑩ = �̃�∗Ꮃ𝑀ᖤ
ᑩ = ((�̃�∗Ꮃ𝑀ᖤ

ᑩ)∗)
∗ = (𝑀ᖤ∗

ᑩ �̃�Ꮃ)∗ = conj(�̃�ᑋᎳ conj(𝑀ᖤ
ᑩ)) = conj(�̃�Ꮄconj(𝑀ᖤ

ᑩ)). (5.6)

Two dimensions For the two dimensional problem, equation (4.17) has to be solved using CG.

Ax = b ⟶ ((�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᑋ⊗ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ))Mᖤ
ᑩᑪ = S. (5.7)

Where A corresponds to the resulting matrix when applying the Kronecker product, the aim is to solve x, which is
Mᖤ
ᑩᑪ, and b corresponds to the MRI signal S.

Regarding the matrices (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ) and (�̃�ᑩ∗Ꮃ �̃�ᑩᎳ ), they are Hermitian and Toeplitz and therefore only a column or a
row needs to be known to construct them. This is achieved multiplying by the canonical matrix EᎳ.

(�̃�ᑪᎳ �̃�ᑪ∗Ꮃ )EᎳ(�̃�ᑩ∗Ꮃ �̃�ᑩᎳ ) = (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ )
⎡
⎢
⎢
⎣

1 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎤
⎥
⎥
⎦
(�̃�ᑩ∗Ꮃ �̃�ᑩᎳ ). (5.8)

Very similar to the 1D case, �̃�ᑪ∗Ꮃ EᎳ�̃�ᑩ∗Ꮃ gives a 𝑚𝑛 × 𝑚𝑛 matrix of ones. Therefore, to obtain the first column of
(�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ) and the first row of (�̃�ᑩ∗Ꮃ �̃�ᑩᎳ ), a 2D NUFFT-I has to be applied to a matrix of ones.
Subsequently, the Kronecker product is perform to obtain (�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᑋ⊗ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ).
The Conjugate Gradient solvesMᖤ

ᑩᑪ. To retrieve the object, the solution vector is reshaped to an 𝑚×𝑛 matrix and
conjugated. A 2D NUFFT-II is performed and the conjugate of the result is taken to obtain 𝑀ᑩᑪ, i.e.

𝑀ᑩᑪ = conj (�̃�ᑪᎴ )conj (𝑀ᖤ
ᑩᑪ) �̃�ᑩᎴ ) . (5.9)

5.2. Nonuniform Fast Fourier Transform
The steps taken in the algorithm for the nonuniform fast Fourier transform will be explained in the following sub-
sections. In 5.2.1 for one dimension and in 5.2.2 for two dimensions.

5.2.1. One-dimensional NUFFT
In section 3.3.1, the theoretical base of the one dimensional nonuniform Fourier transform of type one was ex-
plained. Regarding how the algorithm is implemented in MATLAB, a brief explanation will follow.
The function takes the time domain vector c and the nonequispaced frequencies 𝜔𝜔𝜔 (equation (3.10)) as input
arguments and returns the computed values for the frequency domain f. The corresponding input for the noneq-
uispaced frequencies 𝜔𝜔𝜔 is the magnetic field Δ𝐵ᑩ(x). Another optional input is the working precision 𝜖, which is
double by default. Then the parameters for the algorithm and the matrices 𝐷v and 𝐷u are computed.

1. The sequence swith the closest equispaced frequencies is created, rounding𝑁Δ𝐵ᑩ(x) to the closest integer.
Where 𝑁 is the number of samples.

2. From s, the new sequence t is generated. Assigning the values 𝑡ᑡ = 𝑁 to 𝑡ᑡ = 0, for 0 ≤ 𝑝 ≤ 𝑁 − 1. The t
sequence is used to index the columns of the uniform Fourier matrix 𝐹.

3. The perturbation parameter 𝛿 ((3.17)) is computed taking the maximum distance between s and 𝑁Δ𝐵ᑩ(x),
i.e. 𝛿 = |𝑁Δ𝐵ᑩ(x) − s|ᐴ.

4. The integer 𝐾 is computed following the equation (3.16).
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5. With all the previous parameters, the matrices 𝐷u and 𝐷v from equation (3.15) are evaluated using Cheby-
shev expansions. The columns of these matrices correspond to the vectors uᎲ, … ,uᑂᎽᎳ and vᎲ, … ,vᑂᎽᎳ.

The last part of the algorithm consists in performing the nonuniform Fourier transform in two steps. These two
steps present some difference for the type one and type two. In other words, the first five steps are the same
for the NUDFT-I and NUDFT-II. Nevertheless, the sixth and seventh steps differ depending on the type of the
nonuniform algorithm and therefore, these steps will be explained separately below.
First the steps for the type one are described:

6. Generate the inverse of the DFTmatrix (or the conjugate) with the columns given by the sequence t, multiply
each column of the matrix 𝐷u by the time domain vector, and conjugate the result.

𝑋 = conj (𝐹∗𝐼(∶, t)conj ([𝐷uᎲc| … |𝐷uᑂᎽᎳc])) . (5.10)

7. Multiply each column of the result of the equation (5.10) by each column of the matrix 𝐷v and performing
the sum.

�̃�Ꮃc = [𝐷vᎲ𝑋Ꮂ| … |𝐷vᑂᎽᎳ𝑋ᑂᎽᎳ] [
1
⋮
1
] . (5.11)

The last two steps for the type two NUFFT are described in the following lines.
6. Generate the DFT matrix with the rows given by the sequence t and multiply each column of the matrix 𝐷v

by the time domain vector.

𝑋 = 𝐼(t, ∶)𝐹 [𝐷vᎲc| … |𝐷vᑂᎽᎳc] . (5.12)

7. Multiply each column of the result of the equation (5.12) by each column of the matrix 𝐷u and performing
the sum.

�̃�Ꮄc = [𝐷uᎲ𝑋Ꮂ| … |𝐷uᑂᎽᎳ𝑋ᑂᎽᎳ] [
1
⋮
1
] . (5.13)

The first five steps, where the necessary data to perform the NUDFT is computed, are known as the planning stage,
while the last two steps are known as the online stage. The algorithm for the nonuniform fast Fourier transform is
represented in the diagram block of figure 5.1.
Only the online stage is taken into account when measuring the time that it takes to perform the approximation of
the nonuniform Fourier transform, i.e. 𝐾 FFT operations. When the NUDFT needs to be performed on more than
one vector, the planning stage is carried out only once whereas the online stage is done for each vector.
With respect to the algorithm for the NUFFT-II, it is analogous to the NUFFT-I. Thematrix for the nonuniform Fourier
transform of type two, is achieved by transposing the matrix of type one. The reader is referred to [30] for more
details.
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Planning stage Online stage

Figure 5.1: Scheme of the nonuniform fast Fourier transform algorithm for one dimension

5.2.2. Two-dimensional NUFFT
The theoretical base of the 2D nonuniform fast Fourier transform algorithm can be found in section 3.4. The first
steps of the two-dimensional algorithm are similar to the one dimensional case described in subsection 5.2.1, but
repeating the process for the second dimension:

1. The matrices of the magnetic fields Δ𝐵ᑩ and Δ𝐵ᑪ are reshaped as column vectors. Therefore, now Δ𝐵ᑩ(r) ∈
ℚᑞᑟ×Ꮃ and Δ𝐵ᑪ(r) ∈ ℚᑞᑟ×Ꮃ, where 𝑟Ꮂ, … , 𝑟ᑞᑟᎽᎳ ∈ [0,𝑚𝑛 − 1].

2. The sequences sx and sy are created, rounding the values of the magnetic fields Δ𝐵ᑩ(r) and Δ𝐵ᑪ(r) respec-
tively to the closest point in an equispaced grid.

3. The respective t sequences are built from sx and sy, assigning zero to the values that are 𝑡ᑩᑡ = 𝑛 or 𝑡ᑪᑢ = 𝑚.
4. Two perturbation parameters are computed using equation (3.17). The first, 𝛿ᑩ, as the maximum distance

between sx and 𝑛Δ𝐵ᑩ(r) and the second, 𝛿ᑪ, as the maximum distance between sy and 𝑚Δ𝐵ᑪ(r). The
maximum distance is calculated taking the infinite norm of the difference.

5. Each rank of the matrix, 𝐾ᑩ and 𝐾ᑪ, is obtained using the equation (3.16).
6. The matrices 𝐷ᑩu , 𝐷ᑪu and 𝐷ᑩv , 𝐷ᑪv from equation (3.25) are calculated with their respective parameters. The

columns of these matrices are the vectors uᑩᎲ , … ,uᑩᑂᎽᎳ for 𝐷ᑩu , uᑪᎲ , … ,u
ᑪ
ᑂᎽᎳ for 𝐷ᑪu and vᑩᎲ , … ,vᑩᑂᎽᎳ for 𝐷ᑩv ,

vᑪᎲ , … ,v
ᑪ
ᑂᎽᎳ for 𝐷

ᑪ
v .

The previous steps belong to the planning stage mentioned in section 4.2. Now the 2D Fourier transform has to
be performed on the object, this is done by multiplying the left and right side of the matrix of the object by the 1D
Fourier transform (see equations (3.22) and (3.25)). Four steps are needed for this which are known as the online
stage. Two nested for loops, with variables 𝑟 and 𝑠, are required to go through all the columns of the matrices of
step 6. Therefore, 0 ≤ 𝑟 ≤ 𝐾ᑩ − 1 and 0 ≤ 𝑠 ≤ 𝐾ᑪ − 1.
Like the 1D case, the online stage for the type one and type two NUFFT are different and therefore, these steps
will be explained separately. First the ones for the 2D NUFFT-I are described below. These steps are equivalent
to perform equation (3.25).

7. Multiply the object by the 𝐷u matrices.

𝐷𝑐𝐷 = 𝐷uᑪᑤ ⋅ diag(c) ⋅ 𝐷uᑩᑣ (5.14)
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Recall that 𝐷ᑩuᑣ and 𝐷
ᑪ
uᑤ are diagonal matrices with the elements of the vectors uᑩᑣ and u

ᑪ
ᑤ as entries, respec-

tively.
8. Left and right multiply by the identity matrices indexed by the t sequences1.

𝐷𝑐𝐷𝑡 = 𝐼(∶, ty) ⋅ 𝐷𝑐𝐷 ⋅ 𝐼(∶, tx)ᑋ (5.15)

9. The FFT is applied from the left and then multiply by 𝐷ᑪuᑤ
𝐷𝐹𝑡 = 𝐷vᑪᑤ ⋅ 𝐹 ⋅ 𝐷𝑐𝐷𝑡 (5.16)

Where 𝐷ᑪvᑤ is a diagonal matrix with the elements of the vector vᑪᑤ as entries.
10. The last step consists in performing the FFT from the right, multiplying the result by the diagonal matrix 𝐷ᑩvᑣ

(which has the elements of the vector vᑩᑣ as entries) and summing.

𝑓 = 𝑓 + 𝐷𝐹𝑡 ⋅ 𝐹 ⋅ 𝐷ᑩvᑣ (5.17)

The last four steps are summarised in the algorithm 2 and a graphic visualisation of the nine steps can be seen
in figure 5.1.
Now we proceed to explain the online stage steps for the type two NUFFT, which corresponds of performing
equation (3.29).

7. Multiply the time domain matrix 𝑐 by the 𝐷ᑩv matrix and perform FFT from the right.

𝐴𝑟 = 𝑐 ⋅ 𝐷vᑩᑣ ⋅ 𝐹. (5.18)

8. Repeat the process with the 𝐷ᑪv matrix and multiplying from the left.

𝐴𝑠 = 𝐹 ⋅ 𝐷vᑪᑤ ⋅ 𝐴𝑟. (5.19)

9. Index with the tᑩ and tᑪ sequences2.

𝑓𝑡 = 𝐼(tᑪ, ∶) ⋅ 𝐴𝑠 ⋅ 𝐼(tᑩ, ∶)ᑋ. (5.20)

10. The last step consists in multiplying by the 𝐷u and summing.

𝑓 = 𝑓 + 𝐷uᑪᑤ ⋅ 𝑓𝑡 ⋅ 𝐷uᑩᑣ . (5.21)

These four steps can be seen in the algorithm 3.

Algorithm 2 Online Stage for the 2D NUFFT-I
Initialise 𝑓
for 𝑟 = 0, 1, … , 𝐾፱ − 1 do

Multiplication by 𝐷፮ matrix 𝐷𝑐 = 𝐷፱uᑣ . ∗ 𝑐(∶)
for 𝑠 = 0, 1, … , 𝐾፲ − 1 do

Multiplication by 𝐷፮ matrix 𝐷𝑐𝐷 = 𝐷𝑐. ∗ 𝐷፲uᑤ
Index with t sequences 𝐷𝑐𝐷𝑡 = 𝐼(∶, ty) ⋅ 𝐷𝑐𝐷 ⋅ 𝐼(∶, tx)ፓ
FFTs and multiply by 𝐷፯ matrices and sum 𝑓 = 𝑓 + 𝐷፲vᑤ ⋅ fft (𝐷፱vᑣ ⋅ fft(𝐷𝑐𝐷𝑡ፓ))

ፓ

end for
end for

1This can be done using accumarray() function in MATLAB.
2This can be done taking the፦፭ᑩᑛ ዄ ፭

ᑪ
ᑛ element of the ፀ፬ matrix.
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Algorithm 3 Online Stage for the 2D NUFFT-II
Initialise 𝑓
for 𝑟 = 0, 1, … , 𝐾፱ − 1 do

Multiplication by 𝐷፯ matrix and FFT 𝐴𝑟 = fft(𝐷፱vᑣ ⋅ 𝑐ፓ)ፓ
for 𝑠 = 0, 1, … , 𝐾፲ − 1 do

Multiplication by 𝐷፯ matrix and FFT 𝐴𝑠 = fft(𝐷፲vᑤ ⋅ 𝐴𝑟)
Index with t sequences 𝑓𝑡 = 𝐼(ty, ∶) ⋅ 𝐴𝑠 ⋅ 𝐼(tx, ∶)ፓ
Multiply by 𝐷፮ matrices and sum 𝑓 = 𝑓 + 𝐷፲uᑤ ⋅ 𝑓𝑡 ⋅ 𝐷፱uᑣ

end for
end for



III
Results and Discussion
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6
NUFFT in One Dimension

In this chapter, we will investigate whether the NUFFT algorithm described in the previous chapter 3 and in sub-
section 5.2.1 can be used to recover the scanned object from the one-dimensional MRI received signal using the
functions from Chebfun [5] in MATLAB.
The chapter has been organised in the following way. In the first place, an introduction in section 6.1 to explain the
purpose of this chapter is given. The results are showed in section 6.2. The last part of this chapter is concerned
with the performance of the NUFFT algorithm and the computational time that it costs, these are sections 6.3 and
6.4 respectively.
Regarding section 6.2, where the results of the research are presented, the outline is summarised below.

• A brief explanation of how the nonuniform fast Fourier transform algorithm works for a certain object and
magnetic field is given. In other words, how the s and t sequences are generated (steps 1 and 2 of subsection
5.2.1). The value of the parameters 𝛿 and 𝐾, equations (3.17) and (3.18), which corresponds to steps 3 and
4 of subsection 5.2.1. And last, the construction of the matrices 𝐷u and 𝐷v (step 5 of subsection 5.2.1).

• The MRI signal received is compared to the ideal MRI signal, i.e. the signal that an MRI with an ideal
magnetic field would give.

• The object retrieved using the conventional fast Fourier transform algorithm fft() and the object retrieved
using the nonuniform fast Fourier transform algorithm nufft() are compared.

• Finally, a priori information is used to improve the results.

6.1. Introduction
The results that will be shown along this chapter will be focused on the nonuniform Fast Fourier transform algorithm.
In order to explain with an example how the nufft() from [5] works and the time that it costs.
In this chapter, one iteration of the Conjugate Gradient will be performed. One iteration of the CG results in applying
the nonuniform Fourier transform to the signal received.
Looking at the algorithm 1, the first step is to initialised the vector xᎲ. It is initialised with zeros by default. Therefore,
the search direction and the residual are

dᎲ = rᎲ = b− AxᎲ = b− A0 = b. (6.1)

For our particular case, b = 𝑆(kx), A = (�̃�Ꮃ�̃�∗Ꮃ ) and x = 𝑀ᖤ
ᑩ(x) (see figure 4.3). The third step of the CG algorithm

is to compute the size of the step 𝛼Ꮂ, which is a scalar, and then update the solution as follows

𝑀ᖤ
ᑩ(x)Ꮃ = 𝑀ᖤ

ᑩ(x)Ꮂ + 𝛼ᎲdᎲ = 0+ 𝛼Ꮂ𝑆(kx) = 𝛼Ꮂ𝑆(kx). (6.2)

The solution that the CG gives with just one iteration is 𝑀ᖤ
ᑩ(x)Ꮃ = 𝛼Ꮂ𝑆(kx). To retrieve the object, the conjugate

of the nonuniform Fourier transform of type one is applied to the solution of the CG. As explained in section 5.1,
�̃�∗Ꮃ𝑀ᖤ

ᑩ is done by applying the nonuniform Fourier transform of type two to the conjugate of 𝑀ᖤ
ᑩ and then taking the

conjugate of the result, i.e.

𝑀ᑩ(x) = �̃�∗Ꮃ𝑀ᖤ
ᑩ = �̃�∗Ꮃ 𝛼Ꮂ𝑆(kx) ≈ conj (�̃�Ꮄconj(𝑆(kx))) . (6.3)

In order to simplify the notation, the scalar 𝛼Ꮂ is omitted. The algorithm of the nonuniform Fourier transform of type
two, described in section 3.5, is analogous to the type one explained in section 5.2, but working with rows instead
of columns.

41
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6.2. Retrieving the Object
An object with a square shape will be retrieved using four different magnetic fields, applying the uniform and
nonuniform fast Fourier transform algorithm. The results of both algorithms will be compared. The number of
samples used for the following examples is 𝑁 = 2Ꮈ = 64. The working precision is double, 𝜖 = 2.22e−16. The
object used can be seen in figure 6.1 and the magnetic fields in figure 6.2.

Figure 6.1: Square shaped object used in the experiments

In this section, only the results obtained from the low magnetic fields (the two at the bottom of figure 6.2) will
be shown. In order to see the results from the other two magnetic fields, the reader is referred to the appendix A.
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Figure 6.2: Four normalised magnetic fields used. From left to right and top to bottom: linear, quadratic, low gradient field along
the x-direction and low magnetic field along the y-direction. The nonlinear fields are compared to the linear case represented
with a blue line
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6.2.1. Low Magnetic Field
The last two examples are the low magnetic fields, the third and fourth images in figure 6.2. The shapes of these
fields were taken from one slice of the gradient maps of the low-field MRI scanner in Leiden University Medical
Center [27].
The first field was taken from the gradient field along the x-direction. It presents nonidealities at the edges as two
bumps, one going downwards and the second upwards, whereas in the middle part is approximately an ideal linear
field. The second was taken from the gradient field along the y-direction. It is very close to the linear field except
for the discontinuity at the middle and two peaks at the edges.
The sequences s/𝑁 and t/𝑁 generated are in figure 6.3. The left image corresponds to the low-field along x-
direction. Several nonuniform samples are assigned to the same uniform nodes at the beginning and at the end
of the field, where the two bumps appear. This also happens at the middle of the field but to a lesser extent.
Therefore, this is similar to oversampling. At the right bump, the magnetic field achieves the values Δ𝐵ᑩ(𝑥) = 1,
and therefore, the t sequence adjusts this values to zero.
Regarding the field along the y-direction, many uniform nodes adopt the same values at the peaks in the edges.
Its t sequence assigns one value to zero in the last sample. At the middle part (𝑥 ∈ [0.4, 0.6]), where the object
is placed, a significant discontinuity arises that will lead to nonidealities in the MRI signal and the object retrieved.
The perturbation parameters (equation (3.17)) of the field along x- and y-direction are 𝛿ᑩ = 0.4871 and 𝛿ᑪ = 0.4896

Figure 6.3: Low magnetic fields (second and third images in figure 6.2) and their respective sequences s/ፍ and t/ፍ

respectively, and the integers 𝐾ᑩ = 15 and 𝐾ᑪ = 16. Nonetheless, for both cases the rank of the matrix 𝐷u is less
than the required 𝐾 (see section 6.3 for more details).
Now we will focus in the result of the gradient field along the x-direction. The MRI signal is in figure 6.4. It can be
seen that the signal is similar to the ideal but oversampled. This explains the narrow width of the object retrieved
using the uniform FFT, left image in figure 6.6.

Another way to understand why the conventional Fourier transform does not calculate the width of the square
pulse correctly can be seen looking at the shape of the field in the square, which is not completely linear. The small
bump going upwards produces a negative delay while the bump going downwards produces a positive delay, both
resulting in a narrowed object. This can be seen in figure 6.5, where the negative and the positive delay are
indicated with arrows and a pink and purple dots respectively.

The nonuniform algorithm, right side of figure 6.6, presents the width of the square correctly but has more
nonidealities in the flat areas than the ideal case. This can be improved by eliminating half of the highest k-space
samples.

Moving to the results of the gradient field along the y-direction, last image of figure 6.2, we start looking at the
MRI signal received in figure 6.7. The difference between this signal and the ideal is greater than the one for the
previous case, with the field along x-direction. The reason of the degraded quality of the signal is because of the
discontinuity in the middle part of the field, that coincides with the object. This can be seen in figure 6.8.
Since many of the samples in this interval are associated to the same value of the magnetic field, the signal is
ambiguously encoded and leads to accentuated peaks in the object reconstruction. With a nonbijective encoding,
any frequency value may be associated to multiple locations in the image domain and thus the exact ideal object
cannot be retrieved.
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Figure 6.4: Received MRI signals from a square object in a low magnetic field along x-direction (third image in figure 6.2)
compared to the ideal MRI signal, i.e. the signal received when applying the uniform fft()

The left image of figure 6.9 shows the object retrieved using the uniform FFT. The shape of the square is
completely lost. As explained before, this is due to the significant nonideal shape of the field over the object.

Like the previous case with the quadratic field, the MRI signal presents conjugate symmetry. Therefore, elim-
inating half of the k-space samples and applying a Hamming window to the MRI signal gives the results seen in
figure 6.10. The left image correspond to the gradient field along x-direction, and the right image corresponds to
the gradient field along y-direction.
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Figure 6.5: Both delays that the low magnetic field (third image in figure 6.2) produces when retrieving the object using the fft()

Figure 6.6: To the left, recovered square pulse from a low magnetic field, third image in figure 6.2, using the Fourier transform
algorithm, fft(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft(). Both cases are
compared to the ideal object
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Figure 6.7: Received MRI signals from a square object in a low magnetic field along y-direction (fourth image in figure 6.2)
compared to the ideal MRI signal, i.e. the signal received when applying the uniform fft()

Figure 6.8: Low magnetic field along y-direction (fourth image in figure 6.2) and the ideal square object
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Figure 6.9: To the left, recovered square pulse from a low magnetic field, fourth image in figure 6.2, using the Fourier transform
algorithm, fft(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft(). Both cases are
compared to the ideal object

Figure 6.10: To the left, recovered square pulse from a low gradient field along x-direction (third image in figure 6.2) using the
nufft(), half of the k-space samples and a Hamming window. To the right, same object recovered from a low magnetic field along
y-direction, using the nufft(), half of the k-space samples and a Hamming window. Both cases are compared to the ideal object
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6.3. NUFFT Performance with Different Values of K
In order to improve the quality of the object retrieved, one can think that lowering the working precision would help.
Looking at equation (3.18), it can be seen that the smaller 𝜖 is, the higher 𝐾 is and the more FFT operations are
done in the nonuniform algorithm, i.e. 𝐾𝑁 log𝑁, and therefore, more accurate results. On the other hand, if this
number is reduced, the number of operations decreases and therefore, the performance would worsen.
Nevertheless, it was seen in section 6.2 that the rank of the matrix 𝐷u was less than the required 𝐾 computed.
This means that some of the columns of this matrix are linear combinations of each other and then these could be
eliminated. Note that the columns of 𝐷u correspond to the vectors uᎲ, … ,uᑂᎽᎳ.
Moreover, the corresponding columns of the matrix 𝐷v can be removed as well. In this section, the integer 𝐾 will
be fixed to study whether the number of columns of the matrices 𝐷v and 𝐷u can be reduced and therefore, save
computational time.
The Singular Value Decomposition (SVD) [38] is used to determine the rank of the matrix 𝐷u. The number of
nonzero singular values equals the rank of the matrix. The SVD consists in factorising the complex matrix 𝐷u as

𝐷u = 𝕌Σ𝕍∗ (6.4)

Where the diagonal matrix Σ contains the singular values 𝜎Ꮃ, … , 𝜎ᑚ, … , 𝜎ᑂ, where 𝜎Ꮃ is the biggest. These entries
are real and non-negative. The singular values that are 𝜎ᑚ < 0.02𝜎Ꮃ are set to zero. The criteria to determine which
singular values are close to zero and which singular values are nonzero was chosen empirically.
Figure 6.11 shows the singular values of the matrix 𝐷u corresponding to the low-field along the x-direction. The
singular values from the 5th to the 15th are close to zero and this is were the threshold for the criteria is set. The
singular values corresponding to the quadratic field and the low-field along the y-direction are analogous to the
low-field along the x-direction and their figures will no be shown.

Figure 6.11: Singular values of the matrix ፃu corresponding to the low gradient field along x-direction (third image in figure 6.2)

Following this explanation, the rank of the matrix 𝐷u of the the quadratic field and the two low magnetic fields
of previous section 6.2 is 𝐾 = 4 for all the cases. In order to prove that the algorithm works similarly with a 𝐾 = 4,
some figures will be shown below. The technique of removing half of the k-space samples and windowing the
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signal 𝑆(kx) that was applied in the previous section 6.2 to improve the object retrieved is avoid in the following
experiments, so that the effect of varying 𝐾 can be better visualised.
First we focus on the example of the square in the low gradient field along x-direction (third image of 6.2). In figure
6.12, the object retrieved using the nonuniform Fourier transform algorithm with 𝐾 = 1, 𝐾 = 2 and 𝐾 = 4 is shown.
When the approximation matrix 𝐴ᑂ has rank one, 𝐾 = 1, the object differs from the one when 𝐾 = 15. The object
retrieved starts to look alike when the nonuniform Fourier matrix is approximated with a two-rank matrix (𝐾 = 2).
When 𝐾 = 4, the nufft() reaches the same quality as in the 𝐾 = 15 case (left image of figure 6.14) and thus the
number of operations can be reduced by almost four times.

Figure 6.12: From left to right, square object in a low gradient field along x-direction (third image in figure 6.2) retrieved using
nufft() with ፊ  ኻ, ፊ  ኼ and ፊ  ኾ

The second example is the square object in the low gradient field along y-direction (fourth image of 6.2). Figure
6.13 shows the cases with 𝐾 = 1, 𝐾 = 2 and 𝐾 = 4. The results are the same as the previous case and with just
a four rank matrix we achieved the same performance as with 𝐾 = 16 (right image of figure 6.14).
In order to see another example with the quadratic magnetic field, the reader is referred to subsection A.2.1.

It was empirically checked that using the criteria 𝜎ᑚ ≥ 0.02𝜎Ꮃ to truncate the matrices 𝐷u and 𝐷v to the number
of nonzero singular values was appropriate. Moreover, note that the parameter 𝐾 is computed in the step 3 in
section 5.2.1, which is part of the planning stage. Therefore, it is computed only once and it does not depend on
the object that is being scanned. Just the magnetic field is required in order to obtain the optimal value of 𝐾. Since
we already know that 𝐾 = 4 for the quadratic and low-fields is enough, this value can be fixed for the following
experiments.
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Figure 6.13: From left to right, square object in a low gradient field along y-direction (fourth image in figure 6.2) retrieved using
nufft() with ፊ  ኻ, ፊ  ኼ and ፊ  ኾ

Figure 6.14: From left to right, square object retrieved from a low gradient field along x-direction (third image in figure 6.2), and
from a low gradient field along y-direction (fourth image in figure 6.2), using nufft() with ፊ  ኻ and ፊ  ኻዀ respectively
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6.4. Time Costs
The following experiments are focused on the time spent on the nonuniform algorithm with respect to the uniform
case. The measurements were carried out in a laptop with the following characteristics: Operative system is
Windows 10, 64 bits, version 1903. The CPU is Intel® CoreTM i7-4510U at 2GHz. The RAM memory is DDR3,
16GB.
The dependence on some parameters such as the number of samples or the working precision will be shown in
subsection 6.4.1. Then the time to implement the approximation of the nonuniform algorithm will be measured in
subsection 6.4.2.

6.4.1. Parameter Dependence
The computational time of the nonuniform algorithm changes when modifying some parameters such as the num-
ber of samples 𝑁 and the working precision 𝜖, on which the integer 𝐾 to select the rank of the approximation matrix
depends (equation (3.16)).
The time values in tables 6.1 and 6.2 are computed with the average of ten thousand iterations. The time mea-
sured for the nufft() includes the whole algorithm process, these are from step 1 to 7, described in section 5.2.1.
Table 6.1 shows the time spent computing the conventional fft(). Each column corresponds to a different number
of samples, from left to right: 64, 1024 and 16384 respectively. The more samples used, the more time spent
computing the FFT.
The time costs are higher when the samples are not equally spaced. This is when the object is placed in a low
magnetic field. The time costs grow as the 𝐾 parameter increases (i.e. working precision decreases). This is
represented in table 6.2.
Table 6.3 shows the ratio time spent on nufft()

time spent on fft()
. It goes from 45 times when 𝑁 = 2ᎳᎶ and 𝐾 = 7 to 235 times when 𝑁 = 2Ꮈ

and 𝐾 = 16. Note that the time costs from this table do not correspond to the computational cost 𝒪(𝐾𝑁 log𝑁),
because, as said before, the whole process of the nonuniform algorithm is measured.

Table 6.1: Time [ms] spent on fft() algorithm, depending on the number of samples ፍ

𝑁 = 2ዀ 𝑁 = 2ኻኺ 𝑁 = 2ኻኾ

Time [ms] 0.0071 0.024 0.3021

Table 6.2: Time [ms] spent on nufft() algorithm, depending on the number of samples ፍ and the working precision Ꭸ in a low
magnetic field

Working precision 𝑁 = 2ዀ 𝑁 = 2ኻኺ 𝑁 = 2ኻኾ

𝜖 = 9.8e−4, 𝐾 = 7 0.65 1.43 13.51

𝜖 = 1.2e−7, 𝐾 = 10 0.74 1.70 20.5

𝜖 = 2.22e−16, 𝐾 = 16 0.90 2.13 28.57

Table 6.3: Time ratio spent on nufft() algorithm in a low-field with respect to time spent on fft(), depending on the number of
samples ፍ and the working precision Ꭸ

Working precision 𝑁 = 2ዀ 𝑁 = 2ኻኺ 𝑁 = 2ኻኾ

𝜖 = 9.8e−4, 𝐾 = 7 169 62.5 44.72

𝜖 = 1.2e−7, 𝐾 = 10 193 70.83 67.86

𝜖 = 2.22e−16, 𝐾 = 16 235.2 88.75 94.57

6.4.2. NUDFT Algorithm Implementation
This section focuses on the time that the operation �̃�Ꮄc (equation (3.15)) takes. In other words, measuring the time
of the online stage, which are steps six and seven of section 5.2.1.
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The sequences s, t and the parameters 𝛿, 𝐾 are assumed to be known, and the matrices 𝐷v and 𝐷u are already
computed. The magnetic field is the gradient field along x-direction, third image in figure 6.2, and the object is the
square in figure 6.1.
The time that the operation �̃�Ꮄc = (𝐴 ∘ 𝐹)c ≈ (𝐴ᑂ ∘ 𝐹)c takes for different values of 𝐾 can be visualised in figure
6.15. The integer 𝐾 = 1 refers to the uniform Fourier transform, i.e. just one FFT is done. The other three values,
𝐾 = 7,𝐾 = 10 and 𝐾 = 16, are calculated with equation (3.16) and they correspond to half, single and double
precision respectively. Recall that this operation costs 𝐾 FFTs, i.e. 𝒪 = 𝐾𝑁 log𝑁. For a low number of samples,
around 𝑁 = 2Ꮈ, the curves for the different 𝐾 values are very close. When the number of samples increases, the
curves start to separate.

Figure 6.15: Time [ms] spent on the uniform FFT (ፊ  ኻ) and on the NUFFT for ፊ  , ፊ  ኻኺ and ፊ  ኻዀ, with different
number of samples ፍ

Figure 6.16 shows the time spent when𝐾 = 16 and when𝐾 = 𝑁, where𝑁 is the number of samples. Mentioned
figure represents how much time is saved when matrix 𝐴 in equation (3.15) is approximated to a low rank matrix.
It can be seen in this figure that the higher the number of samples, the more computational time is saved. For
instance, when the number of samples is 2Ꮊ, using the approximation matrix takes around sixteen times less than
computing the whole matrix. The results are identical because the rank of the two approximation matrices is the
same, as explained in section 6.3.
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Figure 6.16: Time [ms] spent on the NUFFT for ፊ  ኻዀ and ፊ  ፍ and different number of samples ፍ



7
CG and NUFFT in one dimension

In this chapter, an iterative solver, the Conjugate Gradient method, will be employed in order to retrieve the object
from the low-field MRI in one dimension.
The structure will be the following. In section 7.1, a brief introduction is given. In section 7.2, the results of this
iterative algorithm are shown. In the next section 7.3, the performance of the Conjugate Gradient throughout the
iterations and its convergence will be analysed.

7.1. Introduction
The results that will be seen in the following sections of this chapter are focused on the performance of the Con-
jugate Gradient method on our particular problem of retrieving an object from a nonlinear field.
The aim is to retrieve the object 𝑀ᑩ from the one dimensional MRI signal, i.e. 𝑆(kx) = �̃�Ꮃ𝑀ᑩ(x). Since the field is
not linear, an inverse Fourier transform cannot be applied and the CG method is used.
The Conjugate Gradient method is explained in sections 4.2.2 and 5.1. The CG solves for 𝑀ᖤ

ᑩ in

(𝐹Ꮃ𝐹∗Ꮃ )𝑀ᖤ
ᑩ(x) = 𝑆(kx) (7.1)

Where the object is obtained by applying an NUFFT-II to the solution of the CG, i.e.

𝑀ᑩ = conj(�̃�Ꮄconj(𝑀ᖤ
ᑩ)) (7.2)

.

7.2. Retrieving the Object
The results in this section are obtained using the Conjugate Gradient and the nonuniform Fourier transform al-
gorithms explained in chapter 5 in an MRI signal from a square object, figure 6.1, in the last two fields of figure
6.2. These are the fields from one slice of the gradient maps of the low-field MRI scanner in Leiden University
Medical Center, described in [27]. The number of samples used is 𝑁 = 64 and the working precision is double,
i.e. 𝜖 = 2.22e−16, 𝐾 ≈ 16. The number of iterations of the Conjugate Gradient is fixed to 𝑅 = 50.
Subsection 7.2.1 shows the results from the field that the gradients along the x-direction create in the low-field
scanner, third image in figure 6.2, and subsection 7.2.2 shows the results from the field created from the gradients
along the y-direction, last image in figure 6.2. The reader is referred to subsection A.2.2 to see the results from
the quadratic field, second image in figure 6.2.

7.2.1. Low Magnetic Field along x-direction
Figure 7.1 shows the results of applying the CG in the signal from the field created by the gradients along x-direction
in the low-field MRI. The square is properly recovered.
In the left image of figure 7.2, the object recovered from a signal with half of the k-space samples can be visualised.
With just one iteration of the Conjugate Gradient, the result with half of the k-space improved (left image of figure
6.10). Nevertheless, when there are more iterations, the performance of the CG is better with the full k-space.
Why the performance is worse when the upper half of the k-space is eliminated is understood looking at equation
(4.11). The CG solves for 𝑀ᖤ

ᑩ and then the nonuniform Fourier transform has to be applied in order to retrieve the
object, i.e.

𝑀ᑩ = conj(�̃�Ꮄconj(𝑀ᖤ
ᑩ)) (7.3)

55



56 7. CG and NUFFT in one dimension

The nonuniform matrix �̃�Ꮄ is a tall matrix of size 𝑁 × 𝑁/2, where 𝑁 is the number of samples, since the right
half of the columns are removed in order to eliminate half of the k-space (recall that �̃�Ꮃ = �̃�ᑋᎴ ). This leads to an
overdetermined system of equations, with more equations than unknowns. Moreover, eliminating the upper half of
the k-space samples is equivalent to low-pass filtering the signal. The high frequencies which contain the details
are eliminated and only the low frequencies are kept. The signal is dominated by low-frequencies that give the
overall shape of the object [13]. Therefore, although the number of iterations of the CG can be increased, this will
not give a better solution.
Regarding the right image of figure 7.2, it shows the result when the approximation matrix 𝐴ᑂ of the nonuniform
Fourier transform is lowered1 from rank 𝐾 = 15 to the rank 𝐾 = 4. Taking the four highest singular values
corresponds to low-pass filtering the signal. As said before, the details were in the high frequencies and therefore,
increasing the number of iterations of the CG will not improve the solution of the right image of figure A.12.

Figure 7.1: Object recovered ፌᑩ(፱) from a low-field along x-direction (third image of figure 6.2) using 50 iterations of the CG
and the NUFFT

1See section 6.3 for more details.
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Figure 7.2: Object recovered ፌᑩ(፱) from a low-field along x-direction (third image of figure 6.2) using 50 iterations of the CG
and the NUFFT. To the left, half of the k-space samples were used. To the right, the nufft() with ፊ  ኾ was used

7.2.2. Low Magnetic Field along y-direction
Figure 7.1 shows the results of applying the CG in the signal from the low-field along y-direction. The square is
properly recovered.
In the left image of figures 7.4, the result of using half of the k-space is visualised. Like the previous case in
subsection 7.2.1, the object recovered differs from the ideal, due to the same reason. Similar results are obtained
when the rank of the approximation matrix is reduced to 𝐾 = 4. This can be seen in the right image of figure 7.4.
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Figure 7.3: Object recovered ፌᑩ(፱) from a low-field along y-direction (fourth image of figure 6.2) using 50 iterations of the CG
and the NUFFT

Figure 7.4: Object recovered ፌᑩ(፱) from a low-field along y-direction (fourth image of figure 6.2) using 50 iterations of the CG
and the NUFFT. To the left, half of the k-space samples were used. To the right, the nufft() with ፊ  ኾ was used
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7.3. Performance through Iterations
In the previous section 7.2, the number of iterations of the Conjugate Gradient method was fixed to 𝑅 = 50.
Computational time can be saved if this number is reduced. Nevertheless, decreasing the number of iteration 𝑅
results in a worse performance of the algorithm and in a less accurate solution. Therefore, in this section, the
trade-off between computational time and accuracy will be studied, focusing on the low-fields.
First two terms are defined, these are residual and error. The residual determines how far we are from the correct
value of the signal 𝑆(kx). It is divided by the L2-norm of the signal to obtain the relative residual, i.e.

𝑟rel =
‖S− (�̃�Ꮃ�̃�∗Ꮃ )Mᖤ

ᑩ‖Ꮄ
‖S‖Ꮄ

. (7.4)

The error represents how much the solution of the algorithm differs from the ideal object. It is divided by the
L2-norm of the ideal object to compute the relative error as

𝑒rel =
‖Mideal

ᑩ −Mretrieved
ᑩ ‖Ꮄ

‖Mideal
ᑩ ‖Ꮄ

. (7.5)

In the following subsections 7.3.1 and 7.3.2 the convergence of the residual and the error will be seen.

7.3.1. Convergence of the Residual
This subsection is focused on the convergence of the Conjugate Gradient looking at the residual. Moreover, the
convergence of the full k-space case will be compared to the one for half of the k-space and when using a lower
𝐾 rank matrix. These cases were explained in the previous section 7.2.

Figure 7.5 shows the relative residual, equation (7.4), when performing 25 iterations to 60. The left image
corresponds to the low magnetic field that the gradients along the x-direction generate, this is the third image of
figure 6.2, and 𝐾 = 15. The right image corresponds to the low magnetic field along the y-direction, which is the
last image of figure 6.2, and 𝐾 = 16. The indicated points show the residuals when doing 30, 40 and 50 iterations
of the CG. The difference of the residuals from 30 to 40 iterations is bigger than the difference between 40 and 50.
From 50 iterations on, the residual stabilises.

Figure 7.5: Relative residual computed from 25 to 60 iterations of the Conjugate Gradient method. The left image corresponds
to the low-field along x-direction and the right image to the low-field along y-direction

The reconstructions corresponding to 30, 40 and 50 CG iterations can be seen in the images of the next figures,
from left to right respectively. Figure 7.6 is for the low-field along x-direction and figure 7.7 is the low-field along
the y-direction.
By visual inspection, the difference between the three cases with different number of iterations is not very notable.
The greater differences are at the beginning and at the end, around 𝑥ᑚ ∈ [0, 0.2] and 𝑥ᑚ ∈ [0.8, 1], where some
peaks can be seen in the background. Moreover, the object retrieved from the field along the x-direction (figure
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7.6) presents noise in the flat area of the square, at 𝑥ᑚ ∈ [0.4, 0.6]. The peaks in the background and the noise in
the square are attenuated when the number of iterations increases. Nevertheless, the number of iterations can be
reduced to 𝑅 = 30 without a great loss of accuracy.

Figure 7.6: Object recovered ፌᑩ(x) from a low-field along x-direction (third image of figure 6.2) using a different number of
iterations ፑ of the CG and ፊ  ኻ. From left to right, ኽኺ, ኾኺ and ኺ iterations

Figure 7.7: Object recovered ፌᑩ(x) from a low-field along y-direction (last image of figure 6.2) using a different number of
iterations ፑ of the CG and ፊ  ኻዀ. From left to right, ኽኺ, ኾኺ and ኺ iterations

Figure 7.8 shows the residual, from one iteration to one hundred. In addition, the residual calculated for the half
k-space case and when 𝐾 = 4 in the nufft() can be visualised in this figure. The left image shows the residual for
the low field along x-direction and the right image the field along y-direction. In each image there are three curves:
(1) blue corresponds to full k-space and 𝐾 = 15 for field along x-direction or 𝐾 = 16 for field along y-direction, (2)
red corresponds to half k-space and 𝐾 = 15 for field along x-direction or 𝐾 = 16 for field along y-direction, and (3)
yellow represents full k-space and small rank 𝐾 = 4 for both fields.
For both fields, the half k-space case converges faster than the other two. Nevertheless, recall that the CG gives
the solution to 𝑀ᖤ

ᑩ. To recover the object 𝑀ᑩ, a NUFFT-II has to be applied and it was seen in the previous section
7.2 that the results worsen. Therefore, although the half k-space converges faster, it does not give a better solution
than the full k-space.
Regarding the nonuniform Fourier transform algorithm with the integer 𝐾 fixed to 4, the residual does not converge
to zero in either of the fields. The residual stabilises after 12 iterations in the field along x-direction and in 20 in the
field along y-direction. Moreover, the case of 𝐾 = 4 is very similar to the full k-space when the number of iterations
is smaller than 8 in both cases. Therefore, if the number of iterations of the CG is below 8, it is convenient to use
𝐾 = 4 instead of 𝐾 = 15 or 𝐾 = 16 to save operations since the performance is the same.
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Figure 7.8: Relative residual computed from 1 to 100 iterations of the Conjugate Gradient method. The left image corresponds
to the low-field along x-direction and the right image to the low-field along y-direction

7.3.2. Convergence of the Error
This subsection is focused on the convergence of the error, i.e. how much the object retrieved differs from the
ideal object (equation (7.5)). Like the previous subsection 7.3.1, the convergence of the error of the full k-space
case will be compared to the one for half of the k-space and when using a lower 𝐾 rank matrix.

The value of the error for the low-field along the x-direction, third image of figure 6.2, through the iterations is
visualised in the left image of figure 7.9. The convergence of the error for the low-field in the y-direction, fourth
image of figure 6.2, is represented in the right image of figure 7.9. In each image there are three curves: (1) blue
corresponds to full k-space and 𝐾 = 15 for field along x-direction or 𝐾 = 16 for field along y-direction, (2) red
corresponds to half k-space and 𝐾 = 15 for field along x-direction or 𝐾 = 16 for field along y-direction, and (3)
yellow represents full k-space and small rank 𝐾 = 4 for both fields.
The error of the full k-space case converges to zero after fifty iterations in both fields. The error when fixing the
integer 𝐾 to a small number is similar to the full k-space if the number of iterations is small. Nevertheless, after
8 iterations in the field along the x-direction and after 17 in the field along the y-direction, the error stabilises and
does not converge to zero. Therefore, if the number of iterations is small, reducing the integer 𝐾 = 15 or 𝐾 = 16
to 𝐾 = 4 would save computational time giving the same results.
Figure 7.10 shows the object retrieved when the number of iterations is at the limit when the full k-space case and
the reduced 𝐾 case start to differ. In other words, when the maximum number of iterations is set to 𝑅 = 8 in the
low-field along x (left image of the figure 7.10), and when the maximum number of iterations is set to 𝑅 = 17 in the
low-field along y-direction (right image of the figure 7.10).
As explained in the previous sections 7.2 and 7.3.1, the worst performance is given by the half k-space case. The
error does not converge to zero and it stabilises after 𝑅 ≈ 5 iterations in both fields.

To summarised this section 7.3, in order to obtain the best performance when employing CG is to use the
full k-space. If the number of iterations is small, the rank can be lowered to 𝐾 = 4. Otherwise, if the number of
iterations increases, the rank must be higher such as 𝐾 = 16.
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Figure 7.9: Relative error computed from 1 to 100 iterations. The left image corresponds to the low-field along x-direction and
the right image to the low-field along y-direction

Figure 7.10: To the left, recovered objectፌᑩ(x) from a low-field along x-direction using ፑ  ዂ iterations of the Conjugate Gradient
and the rank of the nonuniform Fourier matrix is ፊ  ኾ. To the right, recovered object ፌᑩ(x) from a low-field along y-direction
using ፑ  ኻ iterations of the Conjugate Gradient and the rank of the nonuniform Fourier matrix is ፊ  ኾ



8
NUFFT in Two Dimensions

This chapter focuses on one iteration of the Conjugate Gradient method, which is equivalent to directly apply the
nonuniform fast Fourier transform algorithm described in chapter 3 to the two-dimensional received signal. Thus,
it is expected to obtain poor quality results, as it was seen in chapter 6 for one dimension. The main objective in
this chapter is to measure the time costs of the mentioned algorithm.
The chapter has been organised in the following way. It starts with an introduction in section 8.1. In section 8.2, the
results of using the 2D NUFFT are presented and discussed. Section 8.3 shows the performance of the algorithm
varying the working precision. The fourth section 8.4 is concerned with the time costs of the 2D nonuniform fast
Fourier transform.
Regarding section 8.2, where the results of the research are presented, the outline is summarised below.

• A brief explanation of how the nonuniform fast Fourier transform algorithm works for a square object and a
low magnetic field is given. In other words, how the s and t sequences are generated (steps 1, 2 and 3 of
subsection 5.2.2). The value of the parameters 𝛿 and 𝐾, equations (3.17) and (3.18), which corresponds to
steps 4 and 5 of subsection 5.2.2. And last, the construction of the matrices 𝐷u and 𝐷v (step 6 of subsection
5.2.2).

• The object retrieved using the conventional 2D fast Fourier transform algorithm fft2() and the object retrieved
using the nonuniform fast Fourier transform algorithm nufft2() are compared.

• Finally, a priori information is used to improve the results.

8.1. Introduction
The results that will be shown along this chapter will be focused on the two-dimensional nonuniform Fast Fourier
transform algorithm. It will be explained how the 2D NUFFT algorithm based on [5] works and the time that it costs
will be measured.
In this chapter, one iteration of the Conjugate Gradient will be performed. One iteration of the CG is equivalent
to apply the 2D NUFFT-II to the conjugate of the received signal and then take the conjugate of the result, see
section 7.1 for more details. In other words, this is

𝑀ᑩᑪ = conj (�̃�ᑪᎴ conj (𝑆(𝑘ᑩ, 𝑘ᑪ)) �̃�ᑩᎴ ) . (8.1)

The algorithm of the 2D nonuniform Fourier transform of type two was described in sections 3.6 and 5.2.2.

8.2. Retrieving the Object
Figure 8.1 show the low magnetic fields generated from the gradients along the x- and y-direction from the low-field
scanner of LUMC. They are used on the object of figure 8.2. The number of samples is 𝑚 × 𝑛 = 64 × 64 and the
working precision is double, 𝜖 = 2.22e−16.

Since the object scanned is real, its Fourier transform presents conjugate symmetry and half of the k-space
could be estimated. In order to try to improve the quality of the object retrieved, we will check whether eliminating
some samples of the k-space gives better results, as it was done in section 6.2 with one dimension. Figure 8.3
represents the samples that will be remove with the pink colour.

The reader is referred to the appendix B to see more 2D examples with different fields.
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Figure 8.1: Gradient fields from LF-MRI LUMC scanner in both x- and y-directions

Figure 8.2: Square shaped object that is used in different magnetic fields
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𝑘፱

𝑘፲

𝑘፱

𝑘፲

𝑘፱

𝑘፲

Figure 8.3: Removing k-space samples. The pink part represents the samples eliminated, from left to right, (1) upper half of
፤ᑩ-space, (2) upper half of ፤ᑪ-space and (3) both upper halves of ፤ᑩ- and ፤ᑪ-space, i.e. only a quarter of the k-space samples
remains
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8.2.1. Low Magnetic Field
The gradient fields Δ𝐵ᑩ or Δ𝐵ᑪ shown in figure 8.1 are not constant in any direction. These are the only fields that
present this characteristic among all the example fields that are presented in the appendix B.
Figure 8.4 shows the x and y t sequences. Their respective s sequences are equal except for a node in the gradient
field along the y-direction, at (𝑥 = 0, 𝑦 = 1). The perturbation parameters are 𝛿ᑩ = 0.4999 and 𝛿ᑪ = 0.4998, and
both give 𝐾 = 14. We will see in section 8.3 whether this integer can be reduced.

Figure 8.4: Sequences ፭ᑩ/፧ and ፭ᑪ/፦ generated from the low gradient fields of figure 8.1

Figure 8.5: To the left, recovered square object from the magnetic fields of the LF-MRI of LUMC (figure 8.1) using the Fourier
transform algorithm, fft2(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft2()

The two images of figure 8.5 represent the object retrieved from the low magnetic fields using the fft() and
nufft(), respectively.
Focusing on the left image of figure 8.5, the conventional Fourier transform displaces the object to the left in the
x-direction and shrinks the square in both x- and y-directions. The object is moved to the left, to the interval
𝑥 ∈ [0.8, 0.25], because the highest value of the magnetic field Δ𝐵ᑩ is Δ𝐵ᑩ(𝑟ᑚ) ≈ 0.35. This means that the field is
under the linear plane and it introduces a spatial delay.
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Regarding the reduction of the size of the square in the y-direction, it is due to the shape of the Δ𝐵ᑪ field right
on the square (figure 8.6). The amplitude of the field in this part is in the interval Δ𝐵ᑪ(𝑟ᑚ) ∈ [0.4, 0.6] and this is
where the retrieved object is placed using the uniform FFT. The same happens with the width of the square along
x-direction.

Figure 8.6: Low gradient field along y-direction (right image of figure 8.1) and the ideal object

Respecting the nonuniform Fourier transform, right image of figure 8.5, the results show the square rounded.
Note that there are no horizontal lines because the y-field on the object is more linear than the case with the y-field
approximation in section B.3. On the other hand, now four small circles appear in the background at the four
corners of the object retrieved. These circles are due to the arc shape of the fields. In the x-field the arc can be
seen in the line 𝑥 = 0 and in the line 𝑥 = 1, while in the y-field these arcs can be seen in the line 𝑦 = 0 and the
line 𝑦 = 1.
The next figure 8.7 shows the object retrieved eliminating the higher frequencies in the k-space. Nevertheless,
this technique does not improve the results.

Figure 8.7: Recovered square object from a low magnetic field (figure 8.1) using the nufft2() and eliminating the high frequencies
in the k-space as explained in figure 8.3

8.3. NUFFT Performance with Different Values of K
This section will follow the same process as section 6.3 with one dimension. For more details the reader is referred
to that section.
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The rank of the matrix 𝐷u is found performing the singular value decomposition and following the same criteria of
setting the singular values that 𝜎ᑚ < 0.02𝜎Ꮃ to zero, where 𝜎Ꮃ is the biggest singular value and 0 ≤ 𝑖 ≤ 𝐾 − 1.
The full k-space was used in order to observe that in fact, with a small integer 𝐾, the object retrieved is very similar
to the one using a higher 𝐾.
The computed rank for the matrices 𝐷ᑩu and 𝐷ᑪu is 𝐾ᑩ = 𝐾ᑪ = 4. The results can be seen in figure 8.8. The
central image and right image correspond to the ranks 𝐾ᑩ = 𝐾ᑪ = 4 and 𝐾ᑩ = 𝐾ᑪ = 14, respectively, and there
is no difference noticeable. Whereas the difference between these two images and the left one are significant.
Therefore, the rank of the matrix could be reduced from 𝐾ᑩ = 𝐾ᑪ = 16 to 𝐾ᑩ = 𝐾ᑪ = 4. Note that for the image on
the left, where 𝐾ᑩ = 𝐾ᑪ = 1, the colourbar does not correspond to the colourbars of the central and right images
(𝐾ᑩ = 𝐾ᑪ = 4 and 𝐾ᑩ = 𝐾ᑪ = 14).

Figure 8.8: From left to right, square object retrieved in a low-field using nufft()withፊᑩ  ፊᑪ  ኻ,ፊᑩ  ፊᑪ  ኾ andፊᑩ  ፊᑪ  ኻኾ

8.4. Time Costs
In this section, the time spent on the two-dimensional nonuniform Fourier algorithmwill bemeasured and compared
to the uniform case. The analysis is carried out in the same machine as in the one dimensional case, in section
6.4.
First, the parameter dependence will be shown in section 8.4.1 and second, the online stage of the 2D NUFFT in
section 8.4.2.

8.4.1. Parameter Dependence
In this section, the number of samples 𝑚×𝑛 and the working precision 𝜖, which is related to the rank 𝐾 (equation
3.16) of the approximation matrices, will be modified in order to measure the computational time dependence.
The time values in tables 8.1 and 8.2 are computed with the average of ten thousand iterations. The timemeasured
for the nonuniform fast Fourier transform algorithm nufft2() includes the whole algorithm process, these are steps
1 to 10, described in section 5.2.2.
Table 8.1 shows the time spent computing the conventional fast Fourier transform in two dimensions, i.e. fft2().
Each column corresponds to a different number of samples, from left to right: 16 × 16, 32 × 32 and 64 × 64
respectively. The more samples used, the more time spent computing the FFT.
The time costs are higher when the samples are not equally spaced. This is when the object is placed in the low
magnetic field of figure 8.1. The time costs grow as the 𝐾 parameter increases (i.e. working precision decreases).
This is represented in table 8.2.
Table 8.3 shows the ratio time spent on nufft2()

time spent on fft2()
which goes from 170 times, when 𝑚 × 𝑛 = 16 × 16 and 𝐾ᑩ = 𝐾ᑪ = 7, to

795 times, when 𝑚×𝑛 = 64×64 and 𝐾ᑩ = 𝐾ᑪ = 16. Note that the time costs from this table do not correspond to
the computational cost 𝒪(𝐾ᑩ𝐾ᑪ𝑚𝑛(log𝑚+ log𝑛) +𝑚𝑛), because the whole process of the nonuniform algorithm
is measured and not just the online stage.

Table 8.1: Time [ms] spent on fft2() algorithm, depending on the number of samples ፦× ፧

𝑚 × 𝑛 = 16 × 16 𝑚 × 𝑛 = 32 × 32 𝑚 × 𝑛 = 64 × 64

Time [ms] 0.0163 0.0268 0.0622
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Table 8.2: Time [ms] spent on nufft2() algorithm, depending on the number of samples ፦ × ፧ and the working precision Ꭸ in a
low magnetic field

Working precision 𝑚 × 𝑛 = 16 × 16 𝑚 × 𝑛 = 32 × 32 𝑚 × 𝑛 = 64 × 64

𝜖 = 9.8e−4, 𝐾፱ = 𝐾፲ = 7 2.7745 5.3068 11.3512

𝜖 = 1.2e−7, 𝐾፱ = 𝐾፲ = 10 5.8124 8.8249 21.0430

𝜖 = 2.22e−16, 𝐾፱ = 𝐾፲ = 16 11.0895 18.2427 49.4273

Table 8.3: Time ratio spent on nufft2() algorithm in a low-field with respect to time spent on fft2(), depending on the number of
samples፦× ፧ and the working precision Ꭸ

Working precision 𝑚 × 𝑛 = 16 × 16 𝑚 × 𝑛 = 32 × 32 𝑚 × 𝑛 = 64 × 64

𝜖 = 9.8e−4, 𝐾፱ = 𝐾፲ = 7 170 198 182

𝜖 = 1.2e−7, 𝐾፱ = 𝐾፲ = 10 357 329 338

𝜖 = 2.22e−16, 𝐾፱ = 𝐾፲ = 16 675 681 795

8.4.2. NUDFT Algorithm Implementation
The time that the online stage for the 2D case takes is analysed in this subsection. The online stage corresponds
to the steps 7, 8 9 and 10 of section 5.2.2. Therefore, the sequences s and t, the parameters 𝛿 and 𝐾, and the
matrices 𝐷u and 𝐷v, are already computed for both x- and y-directions.
We focus on the time that applying the two-dimensional approximation matrix takes, i.e. equation (3.25). This
corresponds to 𝒪(𝑚𝑛(log𝑚+ log𝑛) +𝑚𝑛) operations as seen in section 3.4. Where 𝑛 is the number of samples
in the x-direction and 𝑚 is the number of samples in the y-direction.
Figure 8.9 shows the time in milliseconds spent performing the online stage, for different 𝐾 (equation (3.18)) and
different number of samples. Note that the x-axis shows the total number of samples, i.e. 𝑚𝑛 and 𝑚 = 𝑛. The
𝐾 values 𝐾ᑩ = 𝐾ᑪ = 7, 𝐾ᑩ = 𝐾ᑪ = 10 and 𝐾ᑩ = 𝐾ᑪ = 16 are chosen so that they match half, single and double
precision respectively. The case when 𝐾ᑩ = 𝐾ᑪ = 1 is equivalent to performing the uniform FFT. It is difficult to see
howmuch time the nonuniform takes over the uniform FFT, therefore we will zoom in the interval of [2Ꮆ×2Ꮆ, 2Ꮇ×2Ꮇ]
samples.

The left image of figure 8.10 shows the time spent in the nonuniform FFT when 𝐾 = 7, i.e. half precision, with
respect to the uniform FFT. For instance, when there are 16 × 16 samples, the time ratio nonuniform/uniform is
19.6. Whereas when there are 32 × 32 samples, it is 20.6. Therefore, the nonuniform case takes around twenty
times the uniform with [2Ꮆ × 2Ꮆ, 2Ꮇ × 2Ꮇ] samples.
The right image of figure represents the time spent in the nonuniform FFT when 𝐾ᑩ = 𝐾ᑪ = 16 and when 𝐾ᑩ = 𝑛,
𝐾ᑪ = 𝑚. This correspond to the time saved when applying an approximation of the nonuniform matrix. For
instance, when the number of samples is 32×32, the approximation algorithm takes around 2.7 less computational
time.
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Figure 8.9: Time [ms] spent on the uniform 2D FFT (ፊᑩ  ፊᑪ  ኻ) and on the 2D NUFFT for ፊᑩ  ፊᑪ  , ፊᑩ  ፊᑪ  ኻኺ and
ፊᑩ  ፊᑪ  ኻዀ, with different number of samples፦፱፧

Figure 8.10: To the left, time [ms] spent on the linear 2D FFT versus the 2D NUFFT for ፊᑩ  ፊᑪ  . To the right, time spent on
the nonlinear FFT with ፊᑩ  ፊᑪ  ኻዀ versus ፊᑩ  ፧, ፊᑪ  ፦
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CG and NUFFT in Two Dimensions

In this chapter, we will investigate whether the Conjugate Gradient method along with the two-dimensional nonuni-
form fast Fourier transform algorithm can be used to recover the scanned object from the two-dimensional MRI
received signal.
The chapter begins with an introduction in section 9.1. In section 9.2, the results of this iterative algorithm are
shown and discussed. The last section 9.3 will examine the performance of the Conjugate Gradient for our partic-
ular problem throughout the iterations and its convergence will be analysed.

9.1. Introduction
The results that will be seen in the following sections of this chapter are focused on the performance of the Con-
jugate Gradient method.
The aim is to retrieve the object 𝑀ᑩᑪ from the two dimensional MRI signal, i.e. solve 𝑀ᑩᑪ in

𝑆(𝑘ᑩ, 𝑘ᑪ) = �̃�ᑪᎳ 𝑀ᑩᑪ(𝑥, 𝑦)�̃�ᑩᑋᎳ . (9.1)

Since the field is not linear, an inverse Fourier transform cannot be applied to the signal to obtain the object.
However, the CG method is used to retrieve the desired object.
The Conjugate Gradient method is explained in sections 4.2.2 and 5.1. The CG solves for 𝑀ᖤ

ᑩᑪ in

S = ((�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᑋ⊗ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ))Mᖤ
ᑩᑪ. (9.2)

And the object is obtained by applying an NUFFT-II to the solution of the CG conjugated and taking the conjugate
of the result, i.e.

𝑀ᑩᑪ = conj(�̃�ᑪᎴ conj(𝑀ᖤ
ᑩᑪ)�̃�ᑩᑋᎴ ). (9.3)

9.2. Retrieving the Object
The results in this section are obtained using the Conjugate Gradient and the nonuniform Fourier transform algo-
rithms explained in chapter 5 in an MRI signal from a square object, figure 8.2, in the low magnetic fields of figure
8.1. These are the fields from the low-field MRI scanner in Leiden University Medical Center [27].
The number of samples used is 𝑚 × 𝑛 = 64 × 64 and the working precision is double, i.e. 𝜖 = 2.22e−16, 𝐾 ≈ 16.
The number of iterations of the Conjugate Gradient is fixed to 𝑅 = 500.

9.2.1. Low Magnetic Fields
Figure 9.1 shows the ideal object and the object retrieved using 500 iterations of the Conjugate Gradient method.
Note that the colours of the ideal object have been changed so that they match the colourbar of the object retrieved
and both images can be easily compared.
The object retrieved differs from the ideal. The shape of the square is rounded and the background presents some
noise. Nevertheless, the result of using several iterations of the CG improves the object retrieved. Comparing
the right image of figure 9.1 with the right image of figure 8.5, where just one iteration of the CG was used, many
differences are noticeable. The circles in the background of the 𝑅 = 1 case disappear, and the shape of the square
looks more similar to the ideal in the 𝑅 = 500 case.

71



72 9. CG and NUFFT in Two Dimensions

Figure 9.1: To the left, ideal object. To the right, retrieved object using the NUFFT and ፑ  ኺኺ iterations of the CG from the
gradient fields from LF-MRI LUMC scanner, figure 8.1

9.3. Performance through Iterations
In the previous section 9.2, the number of iterations of the Conjugate Gradient method was fixed to 𝑅 = 500.
Computational time is proportional to this number, since increasing the number of iterations will take more time
and decreasing the number will save it. Nevertheless, in exchange for time, the accuracy of the retrieved object is
affected. It has previously been observed in section 7.3 that both the residual and the error stabilise after a certain
number of iterations. Therefore, in this section we will try to find when the Conjugate Gradient can be considered
stable, focusing on the low-fields of figure 8.1.
The residual and the error are rewritten for the nomenclature of the 2D case in the following lines. The relative
residual is defined as

𝑟rel =
‖S− ((�̃�ᑩ∗Ꮃ �̃�ᑩᎳ )ᑋ⊗ (�̃�ᑪᎳ �̃�ᑪ∗Ꮃ ))Mᖤ

ᑩᑪ‖Ꮄ
‖S‖Ꮄ

, (9.4)

and the relative error is computed as

𝑒rel =
‖Mideal

ᑩᑪ −Mretrieved
ᑩᑪ ‖Ꮄ

‖Mideal
ᑩᑪ ‖Ꮄ

. (9.5)

In the following subsections 9.3.1 and 9.3.2 the convergence of the residual and the error will be seen respectively.

9.3.1. Convergence of the Residual
The residual (equation (9.4)) represents how far the Conjugate Gradient is from the correct value of the signal
𝑆(𝑘ᑩ, 𝑘ᑪ).
In figure 9.2 the residual of the CG can be seen from one to one thousand iterations, when retrieving the square
object from the low-fields. It can be seen that in the first hundred iterations the residual drops drastically and
afterwards the rate of convergence decreases. The right image of figure 9.2 zooms in the 𝑅 ∈ [0, 100] interval of
iterations where the rate of convergence is the fastest.
In the previous section 9.2, the number of iterations was 𝑅 = 500 and this corresponds to a 𝑟ᑣᑖᑝ ≈ 0.006. Performing
a thousand iterations gives a residual of 𝑟ᑣᑖᑝ ≈ 0.0045. This means that in the last 500 iterations the residual
decreases 25%, whereas in the first 500 it decreases 99.4%.
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Figure 9.2: To the left, relative residual computed from 1 to 1000 iterations of the Conjugate Gradient method retrieving the
square from a low-field. To the right, zoom in the interval [ኻ, ኻኺኺ] iterations

9.3.2. Convergence of the Error
The error (equation (9.5)) measures the difference between the ideal object and the object retrieved.
The curve of the convergence of the error when retrieving the square object from a low-field can be seen in figure
9.3, from one to one thousand iterations of the CG. In a similar way as in the residual, the error decreases fast at
the beginning and it stabilises when the number of iterations increases.
The number of iterations of the example of the previous section 9.2 was 𝑅 = 500, which means a relative error
of 𝑒ᑣᑖᑝ ≈ 0.41. In the interval from seven hundred to a thousand iterations, the error stagnates to a value of
𝑒ᑣᑖᑝ = 0.4026. Therefore, is not worth to perform more than seven hundred iterations.
Figure 9.4 shows the object retrieved 𝑀ᑩᑪ(𝑥, 𝑦) when the number of iterations is 𝑅 = 100, 𝑅 = 500 and 𝑅 = 1000.
It can be seen that the difference between the objects is greater between the 𝑅 = 100 and 𝑅 = 500 cases than the
𝑅 = 500 and 𝑅 = 1000 cases. The differences can be appreciated in the uniformity of the background and interior
of the object.
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Figure 9.3: Relative error computed from 1 to 1000 iterations of the Conjugate Gradient method retrieving the square from a
low-field

Figure 9.4: Object recovered ፌᑩᑪ from a low-field using different number of iterations ፑ of the CG. From left to right, ፑ  ኻኺኺ,
ፑ  ኺኺ and ፑ  ኻኺኺኺ iterations



10
Conclusions and Future Work

10.1. Conclusions
The purpose of this thesis was to implement a fast algorithm to retrieve the objects scanned in a low-field magnetic
resonance imaging (LF MRI) machine. The motivation of this research was settled in the introduction. A low-field
MRI is a safe and cheap alternative to other detection devices such as Computed Tomography or High-Field MRI.
Cheap, because the low-field machine is constructed out of economical materials and it does not require costly
maintenance. Safe, because it does not use ionising radiation, which is hazardous for humans and in particular
for the children. The disadvantage of the low-field MRI is that it produces images of relatively poor quality and as
a result, the processing of these images becomes complicated and time-consuming. The solution to this problem
is to speed up the image processing with little loss of quality, using a nonuniform fast Fourier transform.
In the first part of the report, the basic knowledge was consolidated. First, the form of the signal that the low-field
machine generates and second, the explanation of the mathematical principles that the nonuniform fast Fourier
transform algorithm is based on.
The second part gives an overview of the procedure followed in the research, stating the problems that are solved.
In addition, the algorithms used in the experiments are detailed for both one and two dimensions. These two
algorithms employed are the nonuniform fast Fourier transform (NUFFT) and the Conjugate Gradient (CG).
In the last part of the report, the results are presented, first in one dimension and then in two dimensions, and just
applying the nonuniform fast Fourier transform algorithm and then adding the Conjugate Gradient.
It was showed that using just one iteration of the Conjugate Gradient is equivalent to directly apply the nonuniform
Fourier transform algorithm to the signal received from the LF MRI. It was seen how this algorithm worked for the
particular case of the low-field gradients from the Leiden University Medical Center and in addition, its performance
was compared to the conventional fast Fourier transform algorithm. The time costs of the nonuniform algorithm
were measured for different cases and compared to the uniform fast Fourier transform.
We have tried to improve the quality of the object retrieved using a priori information: eliminating half of the k-
space samples gave better results. Besides trying to enhance the quality of the image, we have attempted to
further speed up the nonuniform algorithm by increasing the working precision without loss of quality. The results
of eliminating half of the k-space and increasing the working precision were promising with just one iteration of the
CG. Nevertheless, when the number of CG iterations is high, these two approaches worsen the results. It was
concluded that the best option was to use the full k-space and if the number of iterations of the CG is low, it is
convenient to use a higher working precision in order to save computational time. However, when the number of
iterations is larger, above ten iterations approximately, the quality of the object retrieved worsens significantly and
therefore, a smaller working precision must be used.
Regarding the results obtained when employing the Conjugate Gradient along with the nonuniform Fourier trans-
form algorithm, a noticeable improvement was observed. The convergence of the residual and the error was
studied and analysed in order to find an optimum value of iterations.

10.2. Future Work
Below, a list of suggestions to further develop the experiments of this thesis will be given.

• A priori info was used in order to improve the results. We know that the objects scanned are real and
therefore, they present conjugate symmetry in the Fourier domain. This means that we only need half of
the k-space since the other half can be estimated. Other aspects could be useful such as knowing the
exact place of the object that is being scanned. For example, if the object is a brain, we know that it will be
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placed in the middle and that it will present approximately a round shape. Therefore, the background can
be estimated using this information and noise could be eliminated.

• The performance of the nonuniform Fourier transform was checked on basic objects, such as the square.
It was mentioned at the beginning of this report that the aim was to detect hydrocephalus in children. Now
the next step is to test the NUFFT in real experiments.

• There is existing software for one dimension for all the types of NUFFT, direct and inverse, provided by
[5]. Regarding the two-dimensions, only the direct type two NUFFT was available in [5]. In this thesis, the
missing NUFFTs were developed. Unfortunately, for the three-dimensional case, the software is still lacking.

• It was seen that the shape of the low-fields (e.g. the two bumps at the edges of the gradient field along
x-direction) caused problems retrieving the image. An interesting experiment could consist in removing
these nonideal areas and estimate the missing samples with an interpolation. Moreover, it was seen that
the nonidealities were accentuated when the object was placed on them, so moving the object in order to
avoid these nonideal areas of the gradient fields could be tested as well.



A
One Dimension

The following figures are more examples from section 6.2. The square object (figure A.1) is retrieved from a linear
magnetic field and from a quadratic magnetic field, left and right images of figure A.2 respectively.

Figure A.1: Square shaped object used in the experiments
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Figure A.2: To the left, linear magnetic field. To the right, quadratic magnetic field. The quadratic field is compared to the linear
case represented with a blue line

A.1. Linear Magnetic Field
The field used in this section is linear (left image of figure A.2), i.e. the samples Δ𝐵ᑩ(x) are equispaced. Looking
at the first two steps of section 5.2.1, the sequences s and t are equal to Δ𝐵ᑩ(x) and therefore, any adjustment
is done. At step three, the computed perturbation parameter is zero. The value of this parameter is set to a
number very close to zero in order to avoid a division by 0 in equation (3.16). In consequence, the integer results
in 𝐾 = max(3, 0) = 3 and the matrices 𝐷v and 𝐷u present three columns. In particular, matrix 𝐷u is of the form

𝐷u =
⎡
⎢
⎢
⎢
⎣

1 0 0
⋮ ⋮ ⋮
1 0 0

⎤
⎥
⎥
⎥
⎦

(A.1)

Since only the first column of this matrix has nonzero elements and 𝐼(t, ∶) is the identity matrix, equations (5.10)
and (5.11) can be simplified to just applying the uniform Fourier transform to the MRI signal.
Therefore, �̃�Ꮄ in this case is the uniform Fourier matrix and no approximation is required, i.e.

𝑀ᑩ(x) = (�̃�Ꮄ𝑆(kx)∗)
∗ = (𝐼𝐹𝑆(kx)∗)

∗ = 𝐹∗𝑆(kx). (A.2)

This means that both uniform Fourier transform and nonuniform Fourier transform algorithms give the same results.
In addition, the conjugate of the uniform Fourier matrix is in fact the inverse matrix and the object is retrieved
perfectly. This can be seen in the left and right images of figure A.3.
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Figure A.3: To the left, recovered square pulse from a linear magnetic field, first image in figure A.2, using the Fourier transform
algorithm, fft(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft(). Both cases are
compared to the ideal object

A.2. Quadratic Magnetic Field
A quadratic magnetic field (second image in figure A.2) is applied to the square object. The magnetic field, Δ𝐵ᑩ(x),
and the sequence s/𝑁 differ as seen in figure A.4. In the interval 𝑥 ∈ [0, 0.4], several close nonequispaced samples
are assigned to the same uniform node. This resembles spatial oversampling. Whereas in the interval 𝑥 ∈ [0.6, 1],
the nonuniform samples are assigned to uniform nodes that are not adjacent, i.e. there are gaps. This is equivalent
to spatial aliasing or undersampling.
Regarding the t sequence, it is equal to the s sequence since there are no values Δ𝐵ᑩ(𝑥ᑛ) = 1 for 0 ≤ 𝑗 ≤ 𝑁 − 1.
Note that the t/𝑁 sequence is represented with crosses instead of a continuous line so that it does not cover the
s/𝑁 sequence.

The value for the perturbation parameter is 𝛿 = 0.4844 (recall that 𝛿 = |𝑁Δ𝐵ᑩ(x) − s|ᐴ) and the condition of
equation (3.17) holds. The corresponding integer for double precision is 𝐾 = 15 and therefore, matrices 𝐷v and 𝐷u
have fifteen columns. Although for this case the rank of 𝐷u is less than 15 and therefore, the approximation could
be achieved with a smaller integer 𝐾, the value of 𝐾 will not be modified. The value of the integer 𝐾 is modified
and discussed in section 6.3. The results of lowering 𝐾 for the quadratic magnetic field are shown in the following
subsection A.2.1.
The MRI signal received is shown in figure A.5, compared to the ideal MRI signal that is obtained when applying
the uniform DFT to the ideal object of figure A.1.
At high frequencies, there are distortions in the signal, due to the values of the quadratic field in the interval 𝑥 ∈
[0.6, 1]. These values are too separated, as explained before, resembles undersampling. When undersampling,
harmonics appear at high frequencies. This adds noise to the MRI signal at high k-space samples and thus
degrading the quality of the retrieved object.
Focusing on figure A.6, this time the fft() function places the object to the left. This result can be understood by
taking a look at the Fourier transform properties, where a multiplication in frequency corresponds to a shift in the
time domain, i.e.

𝑦(𝑛 − 𝑛Ꮂ) ⟷ 𝑌(𝑘)eᎽᑚᑟᎲᑜ. (A.3)

The corresponding equation (A.3) to our signals in the x-space image domain and the k-space frequency domain
results in

𝑀ᑩ(𝑥 − 𝑄(𝑥)) ⟷ 𝑆(𝑘ᑩ)eᎽᑚᑈ(ᑩ)ᑜᑩ . (A.4)

In this case, the displacement is not a constant value but a quadratic function, namely

𝑄(𝑥) = Δ𝐵ᑩ(𝑥)quadratic − Δ𝐵ᑩ(𝑥)linear, (A.5)

which is represented in the second image of figure A.7.
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Figure A.4: Quadratic magnetic field (second image in figure A.2) and its sequences s/ፍ and t/ፍ

Figure A.6: To the left, recovered square pulse from a quadratic magnetic field (second image in figure A.2), using the Fourier
transform algorithm, fft(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft(). Both
cases are compared to the ideal object

The first image of figure A.7 shows the quadratic magnetic field with respect to the linear field. The arrows
show the spatial delay that the quadratic magnetic field represents with respect to the linear field at the central
value 𝑥 = 0.5, which is

𝑄(0.5) = Δ𝐵ᑩ(0.5)quadratic − Δ𝐵ᑩ(0.5)linear = 0.25 − 0.5 = −0.25. (A.6)

This means that the recovered square object presents a displacement of 0.25 to the left using the fft(), first image
of figure A.6. On the other hand, the nufft() locates the square correctly but, like the fft(), presents amplitude
distortion in the flat areas of the object.
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Figure A.5: Received MRI signal from a square object in a quadratic magnetic field (second image in A.2) compared to the ideal
MRI signal, i.e. the signal received when applying the uniform fft()

To eliminate the amplitude distortions, we look again at the MRI signal of figure A.5. Since the Fourier transform
is performed on a real object, the resulting signal presents conjugate symmetry. Therefore, half of the k-space can
be estimated. The MRI signal received is similar to the ideal at low frequencies. Nonetheless, they start to differ
when 𝑘ᑩ > 𝑁/2 = 32. Removing the upper half of the k-space samples leads to figure A.8, which shows a better
performance in both linear and nonlinear cases.
Nonetheless, eliminating half of the k-space samples leads to distortions at the edges of the square due to the
Gibbs ringing artefact. The Gibbs phenomenon can be attenuated applying a window to the MRI signal. The
objects that present a smooth shape are less affected with the Gibbs phenomenon and therefore, better results in
the recovered objects are obtained. Figure A.9 shows the result of the nufft() when a Hamming window is applied
to the MRI signal of the square object in a quadratic magnetic field.
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Figure A.7: To the left, quadratic magnetic field (black) and linear magnetic field (blue). The arrows point at the central value
ጂፁᑩ(፱)  ኺ. and they show the displacement of the quadratic field w.r.t. the linear. To the right, value of the space delay of the
quadratic field ፐ(፱) at every x-location

Figure A.8: To the left, recovered square pulse from a quadratic magnetic field (second image in figure A.2) using the fft() and
half of the k-space samples. To the right, same object recovered using the nufft() and half of the k-space samples. Both cases
are compared to the ideal object
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Figure A.9: Recovered square pulse from a quadratic magnetic field (second image in figure A.2) using the nufft(), half of the
k-space samples and applying a Hamming window to the MRI signal. It is compared to the ideal object
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A.2.1. NUFFT Performance with Different Values of K
As mentioned before, the value of the rank of the approximated matrix 𝐴ᑂ was 𝐾 = 15 for double precision. The
result can be seen in the right image of figure A.6. Figure A.10 represents the recovered object using the nufft()
with 𝐾 = 1, 𝐾 = 2 and 𝐾 = 4 respectively.
With just one u vector (𝐾 = 1) the object differs from the one for 𝐾 = 15. The object retrieved starts to look alike
when the nonuniform Fourier matrix is approximated with two u vectors (𝐾 = 2). Looking at the third image, it
can be seen that with a four rank approximation matrix (𝐾 = 4) the object is the same as to the one retrieved with
𝐾 = 15 (right image of figure A.6). Therefore, the number of operations could be reduced by almost four times
when using a quadratic magnetic field.

Figure A.10: From left to right, square object in a quadratic field (second image in figure A.2) retrieved using nufft() with ፊ  ኻ,
ፊ  ኼ and ፊ  ኾ

A.2.2. Results Using CG and NUFFT
The result of the MRI signal from the quadratic field after applying 50 iterations of the conjugate gradient can be
seen in figure A.11. The shape of the square is recovered but there is noise in the left background of the square.
As the number of iterations is increased, the noise in the background disappears.
In the left image of figure A.12, the object recovered from a signal with half of the k-space can be visualised. The
result is worse than the one with full of the k-space. The explanation of this loss of quality in the result can be
found in 7.2.1.
The right image of figure A.12 shows the result when the approximation matrix 𝐴ᑂ of the nonuniform Fourier
transform is fixed to the rank 𝐾 = 4. See subsection 7.2.1 for more details.
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Figure A.11: Object recovered ፌᑩ(፱) from a quadratic field (second image of figure A.2) using 50 iterations of the CG and the
NUFFT

Figure A.12: Object recovered ፌᑩ(፱) from a quadratic field (second image of figure A.2) using 50 iterations of the CG and the
NUFFT. To the left, half of the k-space samples were used. To the right, the nufft() with ፊ  ኾ was used





B
Two Dimensions

The following results are more examples from section 8.2. The square object (figure 6.1) is retrieved from different
magnetic fields. Figures B.2 to B.4 represent these magnetic fields.
The fields of figure B.2 are linear and they are used in section B.1. In figure B.3, the fields are quadratic and they
are used in section B.2. In the last figure B.4, the fields are a low-field approximation and they are used in section
B.3. The number of samples is 64 × 64 and the working precision is double, 𝜖 = 2.22e−16.

Figure B.1: Square shaped object that is used in different magnetic fields

In the same way as in section 8.2, some k-space samples will be eliminated in the following experiments in
order to try to improve the quality of the object retrieved. See sections 6.2 and 8.2 for more details.
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Figure B.2: Linear magnetic fields in both x- and y-directions

Figure B.3: Quadratic magnetic fields in both x- and y-directions
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Figure B.4: Approximation of the gradient fields of the LF-MRI LUMC scanner in both x- and y-directions
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B.1. Linear Magnetic Field

Figure B.5 corresponds to linear magnetic fields along the x- and y-directions from figure B.2. Both fft2() and
nufft2() work likewise, the object is retrieved perfectly.
Since the two pair of sequences s and t are equal to their respective magnetic fields times the number of samples,
i.e. 𝑛Δ𝐵ᑩ and𝑚Δ𝐵ᑪ, the perturbation parameter are 𝛿ᑩ = 0 and 𝛿ᑪ = 0. Both parameters are set to a number very
close to zero in order to avoid a division by zero in equation (3.17).
The integers 𝐾ᑩ and 𝐾ᑪ for the nonuniform case equal 3. Nevertheless, looking at the matrices 𝐷ᑩu and 𝐷ᑪu , whose
columns have the uᎲ, … ,uᎴ vectors, only the first column has nonzero elements. This means that the rank of the
matrix is one and that the 𝐾 value can be reduced to one for both cases.
When 𝐾 = 1 is equivalent to the uniform case and that is why the object is retrieved perfectly.

Figure B.5: To the left, recovered square object from linear magnetic fields (figure B.2) using the Fourier transform algorithm,
fft2(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft2()

B.2. Quadratic Magnetic Field

The square is placed in the quadratic fields from figure B.3. This time, the field is approximated to the closest
equispaced grid, creating the sequences sx and sy. Their respective t sequences are equal since any point in the
magnetic fields is Δ𝐵ᑩ(𝑟ᑚ) = 1 or Δ𝐵ᑪ(𝑟ᑚ) = 1. These sequences can be seen in figure B.6, reshaped to a 𝑚 × 𝑛
matrix. The shape of these sequences is equal to the quadratic magnetic field but discretised to the equispaced
points.
The maximum distances between the s sequence and the nonequispaced samples from the x and y fields are
𝛿 = 0.47 in both cases and 𝐾 = 14.
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Figure B.6: Sequences ፭ᑩ/፧ and ፭ᑪ/፦ generated from the quadratic fields of figure B.3

Figure B.7 shows the performance of the uniform and nonuniform algorithms from a top view. The fft2() places
the square incorrectly, and both linear and nonlinear cases have distortions in the amplitude. The explanation of
this can be found in A.2.

Figure B.7: To the left, recovered square object from quadratic magnetic fields (figure B.3) using the Fourier transform algorithm,
fft2(). To the right, same object recovered using the nonuniform Fourier transform algorithm, nufft2()

Figure B.8 shows the front and side views which resemble the ones obtained in the 1D case, the right image
of figure A.6. Therefore, in order to eliminate the amplitude distortions, the upper half of the k-space samples will
be eliminated.

In a same way as for the one dimensional case, some k-space samples are eliminated. First the highest fre-
quencies in the 𝑘ᑩ-space, then the highest of the 𝑘ᑪ-space and last both upper halves of 𝑘ᑩ and 𝑘ᑪ simultaneously,
leading to just using a quarter of the k-space. The results are shown in figure B.9. The left image shows a smoother
shape in the x-direction, because half of the 𝑘ᑩ-space was removed, whereas in the y-direction keeps presenting
the amplitude distortions seen in the right image of figure B.8. The central image presents the same shape as the
previous image but with the x and y axis swapped. Because the the 𝑘ᑩ-was kept intact while the upper half of the
𝑘ᑪ-space was removed. The last image of figure B.8 shows a smooth shape in both directions because only the
lower quarter of the k-space was used. Therefore, the front and side views have the same aspect as figure A.9.
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Figure B.8: Recovered square object from quadratic magnetic fields (figure B.3) using the nonuniform Fourier transform algo-
rithm. The left image corresponds to the front view and the right image to the lateral view

Figure B.9: Recovered square object from a quadratic magnetic field (figure B.3) using the nufft2() and eliminating the high
frequencies in the k-space as explained in figure 8.3

B.2.1. Results Using CG and NUFFT
Figure B.10 shows the ideal object in the left image and the object retrieved using 500 iterations of the Conjugate
Gradient method in the right image. Note that the colours of the ideal object have been slightly changed so that
they match the colourbar of the object retrieved and both images can be compared.
The shape of the square can be differentiated. Nevertheless, at the bottom left part of the object retrieved some
nonidealities can bee seen. Whereas the upper right part of this object is perfectly retrieved.
Looking at the right image of figure B.7, where one iteration of the CG is used, the shape of the object can be
as well differentiated but the interior of the square presents many irregularities in the amplitude. This noise is
eliminated when the number of iterations is increase as it can be seen in the right image of figure B.10.
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Figure B.10: To the left, ideal object. To the right, retrieved object using the NUFFT and ፑ  ኺኺ iterations of the CG from the
quadratic magnetic fields, figure B.3

B.3. Low Magnetic Field Approximation

The fields of figure B.4 are approximations of the gradient fields of the MRI scanner of LUMC. The shape of these
fields is chosen in order to have amagnetic field along the x-direction, Δ𝐵ᑩ(𝑥, 𝑦), with nonequispaced samples in the
x-direction but constant in the y-direction, and a magnetic field along the y-direction, Δ𝐵ᑪ(𝑥, 𝑦), with nonequispaced
samples in the y-direction but constant in the x-direction. This way, both look more like to the one dimensional
case in section 6.2.1 and comparisons can be better understood.
The t sequences for the x- and y-gradients of figure B.4 are in figure B.11, reshaped to the 𝑚×𝑛 grid. Regarding
the tᑩ sequence, it is equal to sᑩ since the highest value is Δ𝐵ᑩ(𝑟ᑚ) ≈ 0.35. The equispaced nodes are noticeable
and the x-gradient can be seen clearly discretised in the s or t sequence. In the gradient along y-direction, s and
t differ at 𝑦 = 1, and the latter can be seen in the right image of figure B.11. This sequence is very similar to the
linear field, except for the middle part and the peaks at the edges.
The perturbation parameters are 𝛿ᑩ = 0.4837 and 𝛿ᑪ = 0.4896, which holds equation (3.17), and gives 𝐾 = 14
in equation (3.16). Nonetheless, the rank of the matrices 𝐷u is less than fourteen and therefore, the nonuniform
Fourier matrices from the fields Δ𝐵ᑩ and Δ𝐵ᑪ can be represented with less than fourteen vectors (equation (3.8)).
This can be seen in section 8.3.
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Figure B.11: Sequences ፭ᑩ/፧ and ፭ᑪ/፦ generated from the low approximation fields of figure B.4

The next figure B.12, shows the retrieved object using these approximated fields. Looking at the fft2(), left
image of figure B.12, it can be seen that the object is placed to the left. This is because Δ𝐵ᑩ introduces a positive
space delay since it is below the linear plane. Moreover, due to the oversampling, the square is shrunk. Note that
in the 1D case, the displacement to the left did not exist because the low field of the x-gradient was in the [0, 1]
interval (see third image of figure 6.2). Now the values of the x-gradient field are in [0, 0.35] (see left image of
figure B.4).
Both fft2() and nufft2() present horizontal stripes in the middle of the square, due to the shape of the magnetic field
in the y-direction at 𝑦 ≈ 0.5.

Figure B.12: To the left, recovered square object from the magnetic field approximations of the LF-MRI of LUMC (figure B.4) using
the Fourier transform algorithm, fft2(). To the right, same object recovered using the nonuniform Fourier transform algorithm,
nufft2()

Figure B.13 shows the front and side view of the right image of figure B.12. These two images are very similar
to the right images of figures 6.6 and 6.9 respectively. The origin of the horizontal lines in the central part of the
square in B.12 can be seen in the right image of B.13. This is due to the pronounced peaks in the object generated
because of the nonbijective field in the central part of the y-gradient.
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Figure B.13: Recovered square object from an approximation of a low magnetic fields (figure B.4) using the nonuniform Fourier
transform algorithm. The left image corresponds to the front view and the right image to the lateral view

To smooth the shape of the object retrieved, the k-space samples are eliminated in figure B.14. Nevertheless,
the horizontal stripes are not erased because of the nonidealities in the y-field are right on the object (see figure
6.8).

Figure B.14: Recovered square object from an approximation of the low magnetic field (figure B.4) using the nufft2() and elimi-
nating the high frequencies in the k-space as explained in figure 8.3

B.3.1. Results Using CG and NUFFT
Figure B.15 shows the ideal object in the left image and the object retrieved using 500 iterations of the Conjugate
Gradient method in the right image. Note that the colours of the ideal object have been slightly changed so that
they match the colourbar of the object retrieved and both images can be compared.
Vertical lines can be seen at the left and right sides of the object retrieved due to the two bumps of the Δ𝐵ᑩ field
at the edges. Whereas in the y-direction, the Δ𝐵ᑪ field looks more linear and the object does not present a noisy
background in that direction.
Comparing this object retrieved to the on when using just one iteration of the Conjugate Gradient, figure B.12, it can
be seen that the result is better when using 500 iterations. The horizontal lines are attenuated and the background
is more uniform.
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Figure B.15: To the left, ideal object. To the right, retrieved object using the NUFFT and ፑ  ኺኺ iterations of the CG from the
approximation of the gradient fields from LF-MRI LUMC scanner, figure B.4
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