<]
TUDelft

Delft University of Technology

Concatenated Constrained Coding

A New Approach to Efficient Constant-Weight Codes
Immink, K.S.; Weber, J.H.; Nguyen, T. T. ; Cai, Kui
DOI

10.3390/e28010078

Licence
cCcBY

Publication date
2026

Document Version
Final published version

Published in

Entropy: international and interdisciplinary journal of entropy and information studies

Citation (APA)

Immink, K. S., Weber, J. H., Nguyen, T. T., & Cai, K. (2026). Concatenated Constrained Coding: A New
Approach to Efficient Constant-Weight Codes. Entropy: international and interdisciplinary journal of entropy
and information studies, 28(1), Article 78. https://doi.org/10.3390/e28010078

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.

We will remove access to the work immediately and investigate your claim.

https://doi.org/10.3390/e28010078
https://doi.org/10.3390/e28010078

‘ entropy

Article

Concatenated Constrained Coding: A New Approach to Efficient
Constant-Weight Codes

Kees Schouhamer Immink »*

W) Check for updates

Academic Editors: T. Aaron Gulliver
and Chi Wan Sung

Received: 15 December 2025
Revised: 31 December 2025
Accepted: 7 January 2026

Published: 9 January 2026
Copyright: © 2026 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license.

, Jos H. Weber 2(%, Tuan Thanh Nguyen 30 and Kui Cai 3

1 Turing Machines Inc., Willemskade 15, 3016 DK Rotterdam, The Netherlands

2 Department of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands;
j-h.weber@tudelft.nl

Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD),
8 Somapah Rd, Singapore 487372, Singapore; tuanthanh_nguyen@sutd.edu.sg (T.T.N.);
cai_kui@sutd.edu.sg (K.C.)

* Correspondence: immink@turing-machines.com

Abstract

The design of low-complexity and efficient constrained codes has been a major research item
for many years. This paper reports on a versatile method named concatenated constrained
codes for designing efficient fixed-length constrained codes with small complexity. A
concatenated constrained code comprises two (or more) cooperating constrained codes of
low complexity enabling long constrained codes that are not practically feasible with prior
art methods. We apply the concatenated coding approach to two case studies, namely the
design of constant-weight and low-weight codes. In a binary constant-weight code, each
codeword has the same number, w, of 1’s, where w is called the weight of a codeword. We
specifically focus on the trading between coder complexity and redundancy.

Keywords: balanced code; concatenated constrained code; constant-weight code; constrained
code; Knuth’s algorithm; low-weight code; m-out-of-n code

1. Introduction

A constrained channel is not capable to transmit all possible signals, and only certain
sequences may be allowed [1]. A constrained code implements these constraints by con-
verting arbitrary source data into permitted signals [2—-4]. Designing an invertible mapping
from arbitrary, unconstrained source sequences into coded, constrained binary sequences
is a fundamental challenge. In a conventional block code, the source data are segmented
into small, manageable data blocks, which are then translated into sequences of permitted
symbols. The resulting codewords satisfy the given constraints, allowing them to be freely
cascaded without violating channel constraints. Naturally, larger block sizes enable more
efficient encoding into permitted sequences. Numerous implementation strategies have
been explored in the literature.

Implementations fall in three main categories: table look-up, replacement techniques,
and arithmetic-based implementations. Table look-up is straightforward, but the size of
the data blocks is limited by the maximum size of the tables used [5,6]. The replacement
technique successively or iteratively removes forbidden subsequences in the source data
to obtain a constrained sequence. Enumeration techniques [4,7-12] use integer arithmetic
operations to translate source data into constrained codewords and vice versa . However,
the required silicon area of the look-up table of integer coefficients does not scale linearly
with the block size [13], and it may become unacceptably large with mounting word length,

Entropy 2026, 28, 78

https://doi.org/10.3390/e28010078

https://crossmark.crossref.org/dialog?doi=10.3390/e28010078&domain=pdf&date_stamp=2026-01-09
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6747-9261
https://orcid.org/0000-0002-8333-1301
https://orcid.org/0000-0002-3179-9471
https://orcid.org/0000-0003-2059-0071
https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

20f17

precluding their use in practical transmission or storage systems [5]. A second important
consideration in enumerative encoding is error propagation, as a single bit error in the
received codeword may corrupt an entire decoded word [14]. This necessitates the use of
strong error correction codes, which in turn require additional redundancy.

Concatenated error correction codes [15] are widely used in data transmission and
storage systems. Formed by combining two or more codes, typically referred to as the inner
and outer codes, these constructions provide enhanced error performance while maintaining
low decoder complexity. Inspired by this principle, we propose a concatenated constrained
coding approach, in which two or more low-complexity constrained codes are combined to
construct long constrained codes that are infeasible using conventional methods.

In the encoding device, the source data blocks are divided into two segments: a first
segment and a second segment. The first segment of the source data is further partitioned
into a plurality of small data subwords that are translated into an allowed codeword
using several look-up tables whose sets of constrained output words are mutually disjoint.
The second segment of source data is encoded using a second constrained code, which
determines which look-up tables are applied during the first encoding stage. The final
codeword, found by cascading the output words of the look-up tables, is transmitted. A
decoder can uniquely restore the source data encoded by the first and second codes by
observing the received codeword. We demonstrate that the concatenated constrained code
enables the design of longer codewords with less redundancy than conventional methods,
while avoiding the need for impractically large look-up tables.

We demonstrate the versatility of the concatenated constrained coding scheme through
two case studies: designing long constant-weight and low-weight codes.

Paper structure: We introduce the fundamentals of concatenated constrained codes
in Section 2. Section 3 reviews prior work on the properties of constant-weight codes,
which sets a baseline for the new constructions. Section 4 presents new constructions of
constant-weight codes using concatenated constrained codes. The construction of very
long constant-weight codes is explored in Section 5, where we analyze the application of
one concatenated constrained code layered on top of another. Applications to low-weight
codes are covered in Section 6. Finally, Section 7 concludes the paper.

2. Concatenated Constrained Code, Basics

We describe an encoder that translates binary source data into n-bit binary codewords,
denoted by y, which satisfy a given constraint .A. Let S 4 denote the set of n-bit codewords
y that meet constraint A. Since n is typically too large to permit direct generation of
codewords via a single look-up table, the codeword y is divided into k equal-sized m-bit
constrained subwords y, € {0,1}" and y = (yq,Y,,...,¥y;) and n = km. The parameter m
is chosen to be small enough to allow the use of look-up tables for mapping source data to
the subwords y,.

2.1. Major Components Overview

We construct K, K < k, distinct sets of m-bit subwords, denoted by S; C {0,1}",
0 < i < K—1, each satisfying a specific constraint A;, 0 < i < K — 1. In practice, only
K < k distinct look-up tables are required as they can be re-used via multiplexing. Each set
S; enables a bijective mapping f; : {0,1}¥ — S; of v; < m source bits into valid subwords,
ensuring compatibility with A4;.

To construct an n-bit codeword y, we concatenate k m-bit subwords y,, where each y,
is selected from the corresponding subword set S,. The selection is guided by a control
code ¢ = (cq,...,c¢), with¢; € {0,...,K—1}. The goal is to ensure that the full codeword
y = (yq,...,y,) satisfies the overall constraint A.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

30f17

2.2. Basic Properties
The concatenated constrained coding scheme adheres to the following conditions:
* Thesets S;, 0 <i < K— 1, must be pairwise disjoint.
* Each codeword y must encode a fixed number of source bits.
e Every codeword y must satisfy the global constraint .A.

We define two segments of source data:

° u:(al,...,ag),ate{o,l}.
e a=(ay,...,a,) 4 €{0,1}.

The total number of encoded source bits, ¢ + ¢, is referred to as the throughput of
the code.

The encoder generates the control word ¢ = (cy,...,¢), ¢t € {0,...,K—1}, by
applying a bijective mapping g : {0,1}% — C, where C is a constrained code. The (-bit
source data, a, are partitioned into k segments a; of v, bits, 1 <t < k. Clearly, we demand
(aq,az,...,a;) = a and thus 2?:1 ve; = L. The set of allowed vectors ¢ is

C={ce{0,..., K—1}F:

k
(fer(a1), fe (a2), -, fo(ar)) € San Y ve =L} ©)

i=1

This allows up to ¢ = |log, |C|] additional source bits to be encoded into the control
vector ¢ via the mapping g(-). Consequently, the total number of source bits that can
be represented in the n-bit codeword y is ¢ + £.. Each of the k segments of the original
source data, denoted a;, is mapped to an m-bit constrained subword y, using the mapping
Yy, = fer (a¢) for 1 < t < k. These subwords are then concatenated to form the complete
codeword y, which is subsequently transmitted or stored. Importantly, the control vector ¢
is not transmitted to the receiver. However, since the subword sets S; are pairwise disjoint,
the decoder can uniquely identify which mapping was used for each y,. This ensures that
both parts of the source data, a and 4, can be fully and uniquely reconstructed from the
received codeword y.
Figures 1 and 2 depict a block diagram of the encoder and decoder, respectively.

a —— 1, -partitioning

a— g(a) ~ c=(c1,c2,...,¢c)

fer(@1) | | fez(@2) e fer(ar)
] } J
y= (Y Y2 IR Yo)
m m m

Figure 1. Basic block diagram of a concatenated constrained code. The source data are partitioned
into two parts, denoted by @ and a. The portion & is mapped to a constrained codeword ¢ by the
mapping ¢ = g(a). The remaining source data a are partitioned, under the control of ¢, into k
segments a; of length v.,, t = 1,2,...,k, and are subsequently translated into the final codeword
y = (yy,.-.,Y;) using functions y, = f;,(a;) fort =1,2,...,k. The composite codeword y is sent to
the receiver while the auxiliary word c is discarded. Although the block diagram shows k separate
look-up tables for conceptual clarity, in practice only K < k distinct look-up tables are required, as
they can be reused via multiplexing.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

40f17

Yy ——— m-partitioning -+ (Y, Yy R Y)

)| | fa (we) Ity g7 (e)

a= (a a; e ap) a

Figure 2. Block diagram of a decoder for a concatenated constrained code. The received vector y,
of length n = km, is first partitioned into k subwords y;, each of length m. Using the appropriate
inverse look-up tables, the decoder recovers the control vector ¢ and the data segments a; via the
relation a; = fc; 1 (y,) for t = 1,..., k. Subsequently, the remaining source data @ are reconstructed
by applying the inverse mapping & = ¢~ (c).

2.3. Complexity Issues

The encoder begins by mapping a segment of ¢, source bits into a control codeword
c using the bijective function ¢ = g(@). It then proceeds to convert each of the k source
subwords a;, each of length v,, for t = 1,2,...,k, into corresponding m-bit constrained
subwords y, via the mapping y, = f, (a:).

Assuming the k conversions y, = fc,(a;) can be implemented in a multiplexed fashion,
the primary hardware requirements for encoding and decoding a concatenated constrained
code are limited to the following:

e The K look-up tables for the sets S;, where 0 <i < K —1.
e Alook-up table for the mapping function g(-) that generates c.

Unlike traditional approaches that rely on a single large n-bit look-up table, the
maximum codeword length n achievable with the proposed concatenated constrained
coding scheme is governed by the product of the practical maximum sizes of the K look-up
tables S; and the control codebook C. This significantly relaxes the constraints on memory
size and look-up complexity.

A compelling example of this technique is the design of a binary constant-weight
code, where each n = 128-bit codeword contains exactly 32 ones. This design is efficiently
realizable using just three modest-sized look-up tables, highlighting the practicality of the
concatenated constrained coding approach.

Example 1. We design an encoder that converts arbitrary source data into binary codewords, y,
yi € {0,1}, of length n = 128, where each codeword has 32 1's and 96 0’s. The maximum number
of source bits that can be accommodated is |log, (13228)J = 100, where |- | denotes the truncation or
floor function. Therefore, any code constructed for this setting must have a redundancy of at least
28 bits. Since n = 128 is too large to be handled by a single look-up table, we partition the codeword
into k = 16 subwords, each of length m = 8 bits. While other values for k and m are possible, the
chosen values simplify manual calculations. In the prior art block code design of multiply constant-
weight codes [16] or constant subblock-composition code [17], each subword contains exactly two
1’s, and the k = 16 subwords can be freely cascaded with each other to form a codeword. Clearly,
there are (g) = 28 possible 8-bit subwords. Twelve excess subwords are deleted, so that each subword
can convey four source bits, and hence, the 128-bit codewords can carry 16 x 4 = 64 source bits,
resulting in 64 bits of redundancy.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

50f17

Using the concatenated constrained code construction, we define K = 2 types of subword sets,
namely the set of 8-bit words with a single 1, that is

So = {xe {0,1}8: ixi _1}
i=1

and the set of 8-bit words with three 1’s, namely

S = {x € {0,1}8: ixi _3}.
i=1

We easily find that |Sg| = (?) =8and |S1]| = (g) = 56, where | X| denotes the cardinality of the
set X. We delete 56 — 32 = 24 excess subwords from Sy (keeping 32 subwords). Consequently, we
have vy = 3 and v = 5. Define the bijective mappings fo : {0,1}3 — Sgand f1 : {0,1}°> — S;.
Each 128-bit codeword contains 32 ones by selecting eight subwords from Sy and eight from S;.
The k = 16 subwords together convey { = 8 x (34 5) = 64 source bits, matching the number
of source bits in the prior art; so nothing is gained or lost so far. The k(=16)-bit word, ¢, whose
elements determine whether to apply fo or f1, has equal numbers of 1’s and 0’s. The word, ¢, can
therefore convey € = |log, ()] = 13 source bits. As a result, the total, combined, throughput is
L+l =64+4+13 =77

Alternatively, we may choose m = 16 and k = 8, which requires larger look-up table for Sy
and Sq. In this case, the traditional approach yields a throughput of 8 x 10 = 80 bits. In contrast,
the concatenated constrained code construction achieves a throughput of 4(9 4+ 12) + 6 = 90 bits,
that is, 90% of the maximum possible.

The above example shows that the new scheme leverages both subword composition
and control-word combinatorics to improve data throughput beyond traditional designs.

In the next sections, we exploit the concatenated constrained code for the construction
of efficient constant-weight and low-weight codes. We start with a review of the state of
the art.

3. Constant-Weight Codes, Preliminaries, Redundancy, Prior Art
3.1. Introduction

In a binary constant-weight code, each codeword has the same number of 1’s. These
codes, also known as ‘m-out-of-n’ [7], codes, have found applications across a wide range
of devices and systems including data storage [2], code-division multiple-access (CDMA)
systems for optical fibers [18], test pattern generation for circuit testing [19], identification
coding [20], and VLSI design [21,22]. Traditionally, constant-weight codes have been
employed in data transmission and data storage systems that suffer from low-frequency
noise or are subject to low-frequency bandwidth constraints [2,23,24]. More recently,
they have been proposed for use in DNA-based storage systems. Knuth’'s celebrated
implementation [25,26] generates ‘balanced’ codewords i.e., codewords of weight w = 7,
n even, with a computational complexity that scales with n, and a redundancy that is
approximately twice the theoretical minimum for large 7.

A simple and efficient algorithm for producing a codeword with a prescribed im-
balance is not available, and the development of such an algorithm remains an open
research problem [22,27]. Designing low-complexity encoder/decoder architectures for
very high-rate constant-weight codes is of significant practical and economic value. There
is a clear demand for efficient constant-weight codes that avoid the need of exorbitantly
large look-up tables while maintaining high performance.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

60f17

3.2. Redundancy

Letx = (x1,...,%,), x; € {0,1}, be a binary word of length n. The Hamming weight
of x, denoted by w(x), is defined by w(x) = Y1 ; x;. A constant-weight code, denoted by
S(w,n), defined by

S(w,n) ={x € {0,1}" : w(x) = w}, 2)

comprises all binary words of length n and weight w, 0 < w < n. The size of S(w, n),
denoted by |S(w, n)|, equals

mn

1S (w,m)| = () @)

where v = %, 0<y < %, denotes the relative weight. In case we have a code with codewords
with equal numbers of 1’s and 0’s, i.e., 2w = n, n even, the code is said to be balanced. Note
that without loss of generality we study the case v < 1/2 as the case ¢y > 1/2 is simply
found by inverting (flipping) the binary symbols of a codeword.

The capacity and maxentropic redundancy of constant-weight codes, denoted by C(w, n)
and p(w, n), are defined by

Clo,n) = logy S(a,)] = logs () @

and
o(w,n) =n—C(w,n). (5)

Using [28], we find the useful approximation
1 1 s
plw,n) =~ 5 log,n+ (1 —H(y))n+ 5 log, o> 1, (6)
where Shannon'’s entropy function, H(x), is defined by

H(x) = —xlogy(x) — (1 — x) log,(1 - x).)

The maxentropic redundancy, p(w, n), is applied as a yardstick to evaluate the performance
of implemented codes.

3.3. Traditional Code Design Approach

In the prior art, see [29] and the references therein, a codeword, y, of length n is
divided into k constrained subwords, y;, 1 < i < k, of equal length m, where n = km. The
weight of each subword, y;, is prescribed and denoted by w; = w(y;), w; € {0,...,m},
where Z{le w; = w. The weight distribution vector is denoted by w = (wy, ..., wy). The
redundancy, denoted by p; (w, 1), equals, see (5),

k

pr(w,n) =) p(w;,m). ®)

i=1

Note that p1 (w, n) describes a lower bound to the redundancy of implemented codes as in
practice the (sub)code sizes (") are truncated to the nearest power of two, see Example 1
for an illustration. We have optled not to truncate the code sizes in our computations, except
in the worked design examples, in order to maintain analytical tractability. The efficiency of

this construction, denoted by 11, is defined as [29]

p(w,n) ©)

= o n)

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

7 of 17

It is shown in the Appendix A that a uniform, or flat, weight distribution minimizes
the redundancy.

Numerical results for the efficiency of the prior art construction, 7, are presented
in Table 1. Additional efficiency parameters, #, and #3, for the new constructions are
introduced and discussed in Sections 4.2 and 4.3, respectively.

Table 1. Code efficiency, #1, 172, and 13 versus codeword length 1, weight w, and number of subwords
k, where m = n/k, v = w/k, and vy = w/n. The parameter 5 refers to the efficiency of the prior art
code, see (9), while the parameters #, and 73 refer to the code efficiency of the new constructions, see
(24) and (33).

n w k m v 0% 1 72 3
900 240 60 15 4 02667 0.5528 0.6560 0.7792
900 240 30 30 8 0.2667 0.6742 0.7533 0.8195
900 240 12 75 20 0.2667 0.8165 0.8593 0.8864
900 240 6 150 40 02667 0.8966 09192 0.9317
600 240 120 5 2 0.4000 0.1109 0.1539 0.3828
600 240 60 10 4 0.4000 0.1629 0.2309 0.3778
600 240 30 20 8 0.4000 0.2436 0.3248 0.4277
600 240 24 25 10 0.4000 0.2771 0.3601 0.4528
600 240 12 50 20 0.4000 0.4066 0.4879 0.5540
600 240 6 100 40 0.4000 0.5705 0.6380 0.6814
300 60 30 10 2 0.2000 0.6473 0.7334 0.8714
300 60 12 25 5 02000 0.7842 0.8435 0.8943
300 60 6 50 10 0.2000 0.8715 0.9058 0.9283

In the next section, we apply the concatenated constrained code to the design of
constant-weight codes.

4. Concatenated Constant-Weight Code
4.1. Concatenated Constrained Code

As in Section 3.3, the n-bit codeword y is partitioned into k subwords, y;, 1 <i < k, of
equal length m. We have w(y,) = w;, w; € {0,...,m} and Y¥_, w; = w. In the prior art, the
subword weights, w; = w(y;), are assumed to be fixed for the whole transmission. In this
section, however, the weights of the subwords are controlled, ‘modulated” in engineering
terms, by a constrained codeword w = (wj, ..., wy), which is taken from the predefined
set (). Note that w and () play the same role as ¢ and C in Section 2.

The coding of y is carried out in two distinct steps. First, source data are mapped
bijectively to the weight distribution vector w € () via a look-up table. In the second step,
the encoder uses the look-up tables corresponding to the constant-weight codes S(w;, m),
1 < i <k, to convert the source data into the subwords y;. Since the mapping w; to
S(w;,m),1 < i <k, is bijective, the decoder can uniquely determine the vector w, and
thereby recover the original source data from the received y.

Define the vector u = (ug, U1, ..., Un), uj € {0,...,k}, where u; represents the number
of occurrences of the symbol j in w. The vector u is commonly referred to as the histogram
of w. An allowed vector # must satisfy

m
u; = kand Z iu; = w. (10)
0 i=0

™=

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

8of 17

The set Q) is the set of k-vectors, w, of fixed composition (i, Uy, ..., ty), that is, the number
of 0’s, I’s, ..., m’s in w is given by ug, uy, ..., U, respectively. The size of the constant

composition code () is
k!

uplug!. .. uy!”

O] =

The number of source words that can be accommodated, denoted by Mg, equals

K me S\
Mo = ————T] (";) . (12)

uplug!. o um! 55

(11)

Below we illustrate and analyze a design of two simple cases, where u# contains K = 2 or
K = 3 non-zero elements, which are denoted here by the binary and ternary case. We start
with a description of the binary case, K = 2.

4.2. Binary Case, K = 2
Let w; € {vg,v1}, so that u,, # 0 and u,, # 0, and otherwise u; = 0. We obtain from
(10) that
Uy, + Uy, = k and voUy, + V1Uy, = w. (13)

There are manifold solutions to the above system of (positive) integer equations. An
enticing option for kevenisvg =v—1land vy =v+1,sothat u, | = Uy = %, and

k
O ={we{o-Lo+1}}: Y w;=w} (14)
i=1
denotes the set of allowed vectors w.
The relationship between w and c is a straightforward renumbering of their elements by

Ci:(wi_v+1)/21 i=1,...,k (15)

so that ¢; € {0,1}, and renaming Sop = S(v —1,m) and S; = S(v + 1, m). The coding
circuitry comprises two look-up tables, Sy and S1, of width m, plus a (binary) look-up table
for the balanced code, C, of width k. Note that Knuth’s algorithm can be used for mounting
k, when the look-up table for c is uneconomically expensive.

We obtain from (14) that
k
] = (k) 16)

2
so that, see (12),

Ma, = 18(0—1,m)|¥|S(0 +1,m)|4 (’;) 17)

N

Hence the redundancy, denoted by pa(w,), is

()= —kl m m] k
p2(w,n) =n 2og2 v—1) 011 08, %

m v m
(U—l)zm—v—i-l(v) (18)
m m—v(m
(v—i—l) T o+l (v)' (19

Since

and

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78 90f17
we obtain ,
m mo\ v(m — o) m
(v—l)<v+1>_(v—i—l)(m—v—i—l)(v) ! (20)
so that
1 k
p2(w,n) = k(P(Ufm) + B(v,m) — %1082 <72c>)
= p1(v,m)+kB(v,m) —log, <I,§), (21)
2
where . ()
B(v,m) = —3 log, © _'_71})7(7:”__00 1y (22)

Figure 3 shows the coefficient f(v, m) versus v, 1 < v < m/2, for m = 16,24, and 32.

The coefficient B(v, m) is an important parameter as it quantifies the additional re-
dundancy per subword required for the concatenated coding system. Note in (21) that,
with respect to the redundancy of the traditional code, p1 (w, 1), we have two additional
terms in pp(w,). On one hand we add redundancy, namely (v, m) bit per subword, by
deviating from the flat weight distribution, as discussed in Appendix A. On the other hand,
we reduce redundancy, namely

1 k 1
x log, (lzc) ~1- 2k log, (k) (23)

bits per subword by encoding data in the second (binary) code C. Figure 3 shows that the
loss, [S(v, m), is around 0.1-0.2 bits per subword over a wide range of the parameters v
and m.

0.55
05
0.45
04
035}
03

B(v,m

0.25

0.151
0.1

005 1 1 1 1 1 1 1

Figure 3. Coefficient B(v, m) versus v for m = 16,24, and 32.

The efficiency of codes based on the binary concatenated constrained code is defined by

_ plwn) (24)

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

10 of 17

Table 1 presents numerical results for the code’s efficiency, #7,. We observe a notable
improvement in efficiency compared to that of the traditional scheme, 71, especially for
larger values of k.

4.3. Ternary Case, K = 3

For the ternary case, we define the values of u; by

k—a

Up_1 = Upp] = anduy, =a,a=2,4,...,k—2 (25)

and otherwise 1; = 0. Note that for 2 = 0 we have the binary case, K = 2, as detailed in the
previous subsection. Let (23 denote the constant composition code based on u. Then

O8] = 26)

and the number of source words that can be accommodated, denoted by Maq,, equals

Mo, = [S(= 1,m)|'2"[S(0,m)|"|S (v +1,m)| 2" |0]. (27)

3
The overall redundancy, denoted by p3(w,), is
p3(w,n) = ko(v,m) + (k —a)B(v,m)) —log, [Qs]. (28)

For the special case a = %, k mod 3 = 0, we have

k!
|03| = kN3 (29)
(31)
and) k'
p3(w,n) = k(p(v,m) + = p(v,m)) —log, W (30)
3 .
For k > 1, we obtain the Stirling approximation [30]
Koo 3k
TIE iy k>1, (31)
so that)
s w,m) = k(p(o,m) + 5 B(0,m) — log, (3)) (32)
Define the efficiency of this construction by
w,n
s = £ (33)

~ ps(w,n)’

Table 1 shows numerical results for the code’s efficiency, #3. As in the binary case, we
find ¢ by renumbering the elements of w according toc; = w; —v+1,i =1,...,k so
that ¢; € {0,1,2}. We then rename the sets as So = S(v—1,m), S = S(v,m) and
Sy = S(v+1,m). Itis assumed that a look-up table is used to map the source data a into c.
For larger values of k, where using a look-up table becomes impractical, we may resort to
enumeration algorithms for multiset permutations [31] or Knuth-like algorithms [30,32],
which can be employed instead. The next example elaborates Example 1 for K = 3.

Example 2. We choose, as in Example 1, n = 128, w = 32, v = 2, and m = 8. For the
ternary case, K = 3, we obtain the following results from Example 1: |log,(|S(1,8)])] = 3,

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

11 of 17

llog,(|S5(2,8)])] = 4, and [log,(|S(3,8)|)] = 5. From this, we can easily determine
that the maximum throughput £ + £, = 84 is attained for u = (0,6,4,6,0,0,0,0,0) or
u=(0,5,6,5,0,0,0,0,0).

4.4. Error Propagation Effects

Single bit errors in the received codeword can lead to an avalanche of errors during
decoding. This phenomenon, called error propagation, is especially pronounced in long codes
based on enumerative methods [14]. In this subsection, we examine the error propagation
behavior of constant-weight codes constructed using concatenated constrained codes.

Let the received codeword be denoted by §# = (#;,...,#;), which differs from the
transmitted codeword, y = (y;, ..., ¥,), in a single (unknown) position. Since y belongs to
a constant-weight code, such an error is detectable.

For a constant-weight code constructed with parameter K = 2 (binary case), as
illustrated in Example 1, each subword y; belongs to the set S(v —1,m) US(v +1,m),
1 <i <k and v = w/k. Since the minimum Hamming distance between elements of
this set is two, it is possible to identify the specific subword y; that was received in error.
Assume that the subword gj with index j is in error, i.e., yj # y;- By definition, we have

YK ¢i = k/2, so the control vector ¢ can be fully decoded by, see (15),

(w(¥,)—0+1) . .
cl:{WyZ’ 1<i<ki#]j (34)

2 Ei:l,i;&j Ci, 1=].

Thus, in the binary case, K = 2, all data can be recovered except for the unknown m-bit
subword §;, which must be marked as an erasure. In the ternary case (K = 3), each y;
belongs to the set S(v —1,m) US(v,m) US(v+1,m), 1 < i < k. Since the minimum
Hamming distance between its elements is one, it is not always possible to identify the
erroneous subword. As a result, the entire n-bit codeword must be flagged as an erasure.
Note that for the ternary case we may choose the sets S(v — 2,m), S(v,m) and S(v + 2, m),
so that it is also possible to identify the specific subword y; that was received in error.

5. Very Long Codes

In the previous sections, we demonstrate that concatenated constrained coding can
efficiently produce longer constant-weight codewords compared to conventional state-of-
the-art methods. However, the scalability of such codes is limited: the codeword length
n = km is, in practice, constrained by the maximum feasible size of the look-up tables,
either the subword tables S; of width m, or the control code table C of width k.

To overcome these practical limitations, several strategies can be adopted:

* Use enumerative coding techniques to generate the subword sets S; and/or the control

codebook C.

* Apply a second layer of concatenated constrained coding to generate entries within S;
and/or C, effectively building a hierarchy of constrained encodings.

The next example illustrates the effectiveness of this method through numerical results
for a constant-weight code of length n = 2048.

Example 3. Consider the case where n = 2048 and w = 512 (v = 1/4). The theoretical minimum

redundancy for this constant-weight code is p(512,2048) = 392.12 bits. Due to the large value of

n, enumerative coding becomes impractical for this low-weight scenario, so we explore alternative

coding strategies:

e We can cascade sixteen codewords of length n’ = 128 and w' = 32, see Example 2, with a
total throughput of 16 x 84 = 1344 bit.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

12 of 17

e We can, as illustrated in Example 1, select a concatenated constrained code with m = 8
and k = 256. Since k = 256 is too large for directly using a look-up table to generate the
control word ¢, we alternatively consider applying enumerative coding for generating the
balanced codeword c. Then, the redundancy is five bit, so that the scheme’s throughput is
256 — 5+ k x 4 = 1275 bit. We may apply Knuth'’s algorithm to generate codeword c of length
k = 256 with an 8-bit redundancy, so that the throughput is 256 — 8 + k x 4 = 1272 bit.

o We may construct a long code by using multiple smaller concatenated constrained codes as
building blocks. For example, an (n = 2048, w = 512) code is constructed by first constructing
two concatenated constrained codes with parameters n’ = 128 of weights w' = 31 and w” =
33, respectively, by using u' = (0,6,5,5,0,0,0,0,0) and u” = (0,5,5,6,0,0,0,0,0) instead
ofu=(0,6,4,6,0,0,0,0,0) of the n’ = 128, w' = 32 code detailed in Example 2. Both codes
have a throughput of 84 bit. On top of these codes, we define a concatenated constrained code
with k = 16 and n' = 128, the combined throughput equals 16 x 84 4+ 20 = 1364 bit. The
code’s implementation requires six small look-up tables.

While numerous other design options exist beyond those discussed above, the examples provided
offer a representative insight into the key trade-offs involved.

6. Low-Weight Codes

Low-weight, or sometimes referred to as light-weight or bounded-weight, codes have
found applications in efficiently synthesizing deoxyribonucleic acid (DNA) for massive
data storage, where multiple DNA strands are synthesized in parallel [33]. Applications
can also be found in memristor crossbar arrays for reducing the number of sneak-paths [34],
and simultaneous energy and data transfer [17,35].

A low-weight code of length 1 and weight at most t, 0 < t < 1, denoted by S(t,n), is
defined by the union of the sets of words of weight w < ¢,

t
S(t,n) = U S(w,n). (35)
w=0
The redundancy, denoted by p(t,n), equals
R 5 Lo (n
p(t,n) =n—log, |S(t,n)| =n—log, } (w> (36)
w=0

For asymptotically large n we obtain [28]
1, ty t 1

Figure 4 shows the normalized redundancy, §(t, 1) /n, versus relative maximum weight,
t/nforn = 12,24, and oo.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

13 of 17

= n=24

0.3 n=c0 1

Rk

0 0.1 0.2 0.3 0.4 0.5

Figure 4. Lower bound normalized redundancy, (¢, 1n)/n, of low-weight codes versus t/n for
n = 12,24, and oo.

6.1. Code Design

The conventional construction of a low-weight block code follows a similar approach
to that of constant-weight codes. The source data and codewords are partitioned into
k manageable subwords, with look-up tables used to map the source data into these
subwords. As assumed above let n = km be the length of the low-weight codeword, where
m is the length of each subword, and t = kv. The redundancy of a conventional code,
denoted by p;(t, n), is

pr(t,n) = kp(o,m). 39)

In the next subsection, we describe a simple low-weight code based on the concatenated
constrained code format.

Binary Case, K = 2

The source data are divided into two segments, namely & and a. The first segment, 4,
is translated into a binary constrained codeword, ¢ = (cy,...,¢x) = g(a), where ¢; € {0,1},
of length k. The second segment, a, is translated into a series of k weight-constrained m-bit
words, each taken from either the set Sy(v, m) or S1(v, m). For a concatenated constrained
coding construction, the sets So(v, m) and S (v, m) must be disjoint. A convenient choice
for these sets is

So(v,m) =S(v+1,m)JS(v,m) (39)
and
v—1
S1(v,m) = U S(w,m). (40)
w=0
Letc = (cy,...,cx) be abalanced word, k even, then the n-bit codeword found by cascading

k m-bit subwords from S, (v,m), 1 < i < k, has a weight less than or equal to . The
redundancy of the code, denoted by p,(t, n), equals

R k k
palt,n) = 1 — - logy [So(o,m)] |81 (2, m)| — log, (k) (41)
2

https:/ /doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78 14 of 17
Pefine 1 [So(o,m)||S1(0,m)]

) ; | olo, fn 1(0,m , 42

ﬁ('U m) 2 ng ’S(U,TH)P ()
then L

pat,m) = k(3 (0, m) + B0, m)) — log, (k) @3)
2

Figure 5 shows the coefficient B(v, m) versus v, 1 < v < m/2, for m = 16,24, and 32.

0.8

0.7 1

0.6
= 051
E.\

=
T 0.4}

0.2

01 I I I I I I I

Figure 5. Coefficient A(v, m) versus v for m = 16,24, and 32.

Define the efficiency parameters as 1 = p(t,n)/p1(t,n) and 7 = p(t,n)/pa(t, n).
Numerical results are presented in Table 2. It can be observed that the concatenated codes
reduce the redundancy compared to the baseline by 6.5 percentage points for k = 128.

Table 2. Code efficiency, 7} and #j, versus number of subwords per codeword, k, for codeword length
n = 1024, and maximum weight f = 128.

k m = nlk v =wlk 1 f2
128 8 1 0.7633 0.8294
64 16 2 0.8283 0.8880
32 32 4 0.8851 0.9246
16 64 8 0.9291 0.9513
8 128 16 0.9600 0.9711

7. Conclusions

We have introduced a new class of constrained codes, referred to as concatenated
constrained codes, which enable the construction of very long constrained codewords
with significantly reduced complexity. Similar to traditional methods, the source data are
divided into smaller blocks. In the first step, one segment of the source data is encoded
using a set of small look-up tables, each corresponding to a disjoint set of valid output
sequences. In the second step, another segment of the source data is encoded into a control
codeword that determines which look-up table is used for each portion of the first segment.

This layered encoding structure enables the generation of longer codewords with
lower redundancy compared to conventional approaches, while eliminating the need for
massive look-up tables.

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78

15 of 17

We demonstrated the effectiveness of this approach through two case studies focused
on constructing binary constant-weight and light-weight codewords of length 7, each
containing exactly w ones, or not more than w ones, where w < n/2. The concatenated
constrained codes in these examples achieve lower redundancy than leading state-of-the-art
solutions, while requiring only three or four compact look-up tables, highlighting both
their efficiency and practicality.

We have shown that extremely long codewords can be constructed by applying a sec-
ond layer of concatenated constrained coding on top of an initial concatenated constrained
scheme, effectively generating elements within the sets §; and/or the codebook C.

Author Contributions: Conceptualization, Kees Schouhamer Immink, JH-W.,, TT.N. and K.C,;
Writing—original draft, K.S.I., JH.W.,, TT.N. and K.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Singapore Ministry of Education Academic Research Fund
Tier 2 T2EP50221-0036 and SUTD Kickstarter Initiative (SKI) Grant 2021_04_05.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: Author Kees Schouhamer Immink was employed by the company Turing
Machines Inc. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

We investigate minimizing the redundancy of the basic design approach, see Section 3.3.

Theorem A1l. The number of words

w-11(0)

i=1

is maximized by choosing a flat distribution for w, where the subword weights, w;, are as close to
w/k as possible. Specifically, this means that the difference between any pair of weights is at most 1.

Proof. Let iy and ip, i1 # ip, be arbitrarily chosen indices such that 1 < 71,7 < n. Then the

m m k m
M= (wi1> (wiz) izl,li;[il,iz (wi) ' (Al)

Suppose w;, > w;, + 1. To increase M; replace w;, by w; — 1 and w;, by w;, +1 (noting

number of n-sequences is

that the sum 22‘:1 w; = w remains constant). Then

k
m m H m
wi, — 1) \w;, + 1 =1t iy wj

. .k
_ wj, m wzzn(’"). (A2)

m—wi +1 w;,+1 1 \Wi

Since w;, > w;j, + 1, it follows that

Wi, m — wi,
m—w; +1w;,+1

> 1. (A3)

https://doi.org/10.3390/e28010078

https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78 16 of 17

Because i1 and i, were arbitrary, this argument applies to any pair of indices. Therefore, the
number of words M is maximized when the weights w; are balanced as evenly as possible,
i.e., when the difference between any two w; is at most 1. [J

References

1.

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.

Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech.]. 1948, 27, 379-423. [CrossRef]

Immink, K.A.S. Innovation in Constrained Codes. IEEE Commun. Mag. 2022, 60, 20-24. [CrossRef]

Marcus, B.H.; Siegel, P.H.; Wolf,].K. Finite-state Modulation Codes for Data Storage. IEEE]. Sel. Areas Commun. 1992, 10, 5-37.
[CrossRef]

Ryabko, B. A General Method for the Development of Constrained Codes. IEEE Trans. Inf. Theory 2025, 71, 3510-3515. [CrossRef]
Modha, D.S.; Marcus, B.H. Art of Constructing Low-complexity Encoders/decoders for Constrained Block Codes. IEEE]. Sel.
Areas Commun. 2001, 19, 589-601. [CrossRef]

Stockmeyer, L.; Modha, D.S. Links Between Complexity Theory and Constrained Block Coding. IEEE Trans. Inf. Theory 2002, 48,
59-88. [CrossRef]

Ramabadran, T.V. A Coding Scheme for m-out-of-n Codes. IEEE Trans. Commun. 1990, 38, 1156-1163. [CrossRef]

Schulte, P.; Bocherer, G. Constant Composition Distribution Matching. IEEE Trans. Inf. Theory 2016, 62, 430-434. [CrossRef]
Cover, T.M. Enumerative Source Coding. IEEE Trans. Inf. Theory 1973, 19, 73-77. [CrossRef]

Schalkwijk, J.PM. An Algorithm for Source Coding. IEEE Trans. Inf. Theory 1972, 18, 395-399. [CrossRef]

Hareedy, A.; Calderbank, R. LOCO Codes: Lexicographically-Ordered Constrained Codes. IEEE Trans. Inf. Theory 2020, 66,
3572-3589. [CrossRef]

Kurmaev, O. Constant-Weight and Constant-Charge Binary Run-Length Limited Codes. IEEE Trans. Inf. Theory 2011, 57, 4497-4515.
[CrossRef]

Butler,].T; Sasao, T. Fast constant weight codeword to index converter. In Proceedings of the 2011 IEEE 54th International Midwest
Symposium on Circuits and Systems (MWSCAS), Seoul, Republic of Korea, 7-10 August 2011; pp. 1-4. [CrossRef]

Immink, K.A.S.; Janssen, A.J.E.M. Error propagation assessment of enumerative coding schemes. IEEE Trans. Inf. Theory 1999, 45,
2591-2594. [CrossRef]

Forney, G.D., Jr. Concatenated Codes; MIT Press: Cambridge, MA, USA, 1966.

Chee, Y.M,; Kiah, H.M.; Zhang, H.; Zhang, X. Constructions of Optimal and Near-Optimal Multiply Constant-Weight Codes. IEEE
Trans. Inf. Theory 2017, 63, 3621-3629. [CrossRef]

Tandon, A.; Motani, M.; Varshney, L.R. Subblock-Constrained Codes for Real-Time Simultaneous Energy and Information Transfer.
IEEE Trans. Inf. Theory 2016, 62, 4212-4227. [CrossRef]

Chung, FR.K.; Salehi, J.A.; Wei, V.K. Optical orthogonal codes: Design, analysis and applications. IEEE Trans. Inf. Theory 1989,
35, 595-604. [CrossRef]

Tang, D.T.; Woo, L.S. Exhaustive Test Pattern Generation with Constant Weight Vectors. IEEE Trans. Comput. 1983, 32, 1145-1150.
[CrossRef]

Gunlu, O.; Kliewer, J.; Schaefer, R.F.; Sidorenko, V. Code Constructions and Bounds for Identification via Channels. IEEE Trans.
Commun. 2022, 70, 1486-1496. [CrossRef]

Tallini, L.G.; Bose, B. Design of balanced and constant weight codes for VLSI systems. IEEE Trans. Comput. 1998, 47, 556-572.
[CrossRef]

Skachek, V.,; Immink, K.A.S. Constant Weight Codes: An Approach Based on Knuth’s Balancing Method. IEEE]. Sel. Areas
Commun. 2014, 32, 908-918. [CrossRef]

Cattermole, K.W. Principles of Pulse Code Modulation; Iliffe Books Ltd.: London, UK, 1969.

Marcovich, S.; Etzion, T.; Yaakobi, E. On Hierarchies of Balanced Sequences. IEEE Trans. Inf. Theory 2023, 69, 2923-2939. [CrossRef]
Knuth, D.E. Efficient Balanced Codes. IEEE Trans. Inf. Theory 1986, 32, 51-53. [CrossRef]

Tallini, L.G.; Bose, B. Balanced codes with parallel encoding and decoding. IEEE Trans. Comput. 1999, 48, 794-814. [CrossRef]
Dao, D.T.; Kiah, H.M.; Nguyen, T.T. Efficient Encoding of Binary Constant-Weight Codes: Variable-Length Balancing Schemes a la
Knuth. IEEE Trans. Inf. Theory 2024, 70, 4731-4746. [CrossRef]

Stanica, P. Good Lower and Upper Bounds on Binomial Coefficients. J. Inequalities Pure Appl. Math. 2001, 2, 30.

Tian, C.; Vaishampayan, V.A.; Sloane, N. A Coding Algorithm for Constant Weight Vectors: A Geometric Approach Based on
Dissections. IEEE Trans. Inf. Theory 2009, 55, 1051-1060. [CrossRef]

Weber, J.H.; Immink, K.A.S.; Siegel, PH.; Swart, T.G. Perspectives on Balanced Sequences. arXiv 2013, arXiv:1301.6484. [CrossRef]
Milenkovic, O.; Vasic, B. Permutation (d, k) codes: Efficient enumerative coding and phrase length distribution shaping. IEEE
Trans. Inf. Theory 2000, 46, 2671-2675. [CrossRef]

https://doi.org/10.3390/e28010078

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/MCOM.002.2200249
http://dx.doi.org/10.1109/49.124467
http://dx.doi.org/10.1109/TIT.2025.3552660
http://dx.doi.org/10.1109/49.920168
http://dx.doi.org/10.1109/18.971739
http://dx.doi.org/10.1109/26.58748
http://dx.doi.org/10.1109/TIT.2015.2499181
http://dx.doi.org/10.1109/TIT.1973.1054929
http://dx.doi.org/10.1109/TIT.1972.1054832
http://dx.doi.org/10.1109/TIT.2019.2943244
http://dx.doi.org/10.1109/TIT.2011.2145490
http://dx.doi.org/10.1109/MWSCAS.2011.6026312
http://dx.doi.org/10.1109/18.796411
http://dx.doi.org/10.1109/TIT.2017.2690450
http://dx.doi.org/10.1109/TIT.2016.2559504
http://dx.doi.org/10.1109/18.30982
http://dx.doi.org/10.1109/TC.1983.1676175
http://dx.doi.org/10.1109/TCOMM.2021.3136864
http://dx.doi.org/10.1109/12.677239
http://dx.doi.org/10.1109/JSAC.2014.140511
http://dx.doi.org/10.1109/TIT.2022.3227467
http://dx.doi.org/10.1109/TIT.1986.1057136
http://dx.doi.org/10.1109/12.795122
http://dx.doi.org/10.1109/TIT.2024.3351991
http://dx.doi.org/10.1109/TIT.2008.2011441
http://dx.doi.org/10.48550/arXiv.1301.6484
http://dx.doi.org/10.1109/18.887880
https://doi.org/10.3390/e28010078

Entropy 2026, 28, 78 17 of 17

32. Mascella, R.; Tallini, L.G. Efficient m-ary Balanced Codes which Are Invariant under Symbol Permutation. IEEE Trans. Comput.
2006, 55,929-946. [CrossRef]

33. Immink, K.A.S,; Cai, K.; Nguyen, T.T.; Weber,].H. Constructions and Properties of Efficient DNA Synthesis Codes. IEEE Trans.
Mol. Biol. Multi-Scale Commun. 2024, 10, 289-296. [CrossRef]

34. Cassuto, Y.; Kvatinsky, S.; Yaakobi, E. Information-Theoretic Sneak-Path Mitigation in Memristor Crossbar Arrays. IEEE Trans. Inf.
Theory 2016, 62, 4801-4813. [CrossRef]

35. Tandon, A.; Kiah, H.M.; Motani, M. Bounds on the Size and Asymptotic Rate of Subblock-Constrained Codes. IEEE Trans. Inf.
Theory 2018, 64, 6604—-6619. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https:/ /doi.org/10.3390/e28010078

http://dx.doi.org/10.1109/TC.2006.124
http://dx.doi.org/10.1109/TMBMC.2024.3401583
http://dx.doi.org/10.1109/TIT.2016.2594798
http://dx.doi.org/10.1109/TIT.2018.2864137
https://doi.org/10.3390/e28010078

	Introduction
	Concatenated Constrained Code, Basics
	Major Components Overview
	Basic Properties
	Complexity Issues

	Constant-Weight Codes, Preliminaries, Redundancy, Prior Art
	Introduction
	Redundancy
	Traditional Code Design Approach

	Concatenated Constant-Weight Code
	Concatenated Constrained Code
	Binary Case, K=2
	Ternary Case, K=3
	Error Propagation Effects

	Very Long Codes
	Low-Weight Codes
	Code Design

	Conclusions
	Appendix A
	References

