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Computation of ultrasound propagation in a population
of nonlinearly oscillating microbubbles including multiple
scattering

A. Matalliotakisa) and M. D. Verweijb)

Section of Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft,
The Netherlands

ABSTRACT:
In contrast-enhanced echography, the simulation of nonlinear propagation of ultrasound through a population of

oscillating microbubbles imposes a computational challenge. Also, the numerical complexity increases because each

scatterer has individual properties. To address these problems, the Iterative Nonlinear Contrast Source (INCS)

method has been extended to include a large population of nonlinearly responding microbubbles. The original INCS

method solves the Westervelt equation in a four-dimensional spatiotemporal domain by generating increasingly

accurate field corrections to iteratively update the acoustic pressure. The field corrections are computed by the con-

volution of a nonlinear contrast source with the Green’s function of the linear background medium. Because the con-

volution integral allows a coarse discretization, INCS can efficiently deal with large-scale problems. To include a

population of microbubbles, these are considered as individual contrast point sources with their own nonlinear

response. The field corrections are computed as before, but now, in each iteration, the temporal signature of each

contrast point source is computed by solving the bubble’s Marmottant equation. Physically, each iteration adds an

order of multiple scattering. Here, the performance of the extended INCS method and the significance of multiple

scattering is demonstrated through various results from different configurations.
VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0017770

(Received 15 November 2022; revised 17 March 2023; accepted 17 March 2023; published online 11 April 2023)

[Editor: Charles C. Church] Pages: 2209–2222

I. INTRODUCTION

For several decades, encapsulated microbubbles con-

taining gas have been widely used in medical echography as

the primary ultrasound contrast agents (UCA).1 These spher-

ical bubbles are injected intravenously and have a size com-

parable to a red blood cell, which allows them to travel even

in the smallest blood vessels. To avoid dissolution in the

blood, they are usually coated with a shell made from phos-

pholipid, denatured human serum albumin, or polymer. An

important property is that they resonate in the same fre-

quency range as used for ultrasound imaging. Moreover,

due to their large difference in acoustic impedance with the

surroundings and their highly nonlinear oscillatory behav-

ior,2 microbubbles scatter sound efficiently in their funda-

mental and harmonic modes. Through multiple studies, the

dynamics of a single bubble are well understood. However,

understanding the behavior of a bubble cloud is much more

challenging and is partly still unknown, especially when

multiple scattering must be considered.

Because of the significance in various marine settings,

multiple studies were focused on the acoustic propagation of

sound in bubbly liquids.3 Justified by the small gas volume

fraction, an effective medium theory4–7 was established.

This implies that the contribution of the interactions

between the scatterers was considered unimportant. Initially,

a set of averaged equations was constructed in a heuristic

way,8 which later was established by a more mathematically

systematic approach.9 Improvements were made for linear

scatterers in small concentrations, retaining the hypothesis

of effective medium.10–12

A study focusing on smaller bubbles in the regime of

ultrasound frequencies,13 however, showed that experimen-

tal results did not agree with effective medium theory.

Therefore, the acoustic response of populations with a high

concentration of nonlinear scatterers were investigated ana-

lytically.14,15 When second-order multiple scattering is

taken into account, attenuation at the resonance frequency is

increased.16 The significance of the latter was reinforced

computationally by introducing nonlinear monodisperse17

and polydisperse18,19 microbubbles in a finite difference

scheme. These studies assumed a collective behavior of the

bubbles, which prohibits them to have an independent

response due to having individual properties. Finally, a

plethora of groups directed their attention to simplified

simulations of multiple bubble interactions inside a one-

dimensional or two-dimensional domain.20,21 One of the stud-

ies was able to successfully model the nonlinear propagation
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of ultrasound through a uniform distribution of microbub-

bles, but was limited to two dimensions due to computational

cost.22

In this article, we will employ the Iterative Nonlinear

Contrast Source (INCS) method23,24 to tackle the challenge

of numerically simulating the nonlinear response of a

three-dimensional (3D) bubble population with significant

multiple scattering, as outlined in Fig. 1. This method was

originally invented to accurately calculate the cumulative

nonlinear effects suffered by an acoustic pressure wave

propagating in a fluid with nonlinear medium behavior.

The pressure wave originated from a source aperture with a

pulsed excitation in a 3D spatial domain. A significant

advantage of this algorithm is the coarse discretization of

two points per shortest desired wavelength. This is achieved

by applying the Filtered Convolution (FC) approach,25

which implies that during the computations, the spatial and

temporal spectra are consistently cut off at the predeter-

mined Nyquist limit of the highest desired frequency. This

also makes that INCS can reliably deal with stronger nonli-

nearities causing relatively strong harmonic components.

The directional independence of the nonlinear operation is

another benefit that is not common to many other nonlinear

computational codes. Furthermore, INCS can be easily

expanded to include attenuation and inhomogeneous

medium parameters of all kinds, provided these can be cast

in the form of a so-called contrast source.26–30 This also

offers an opportunity for incorporating bubble inclusions.

Added to its ability to address large-scale problems, INCS

seems a good basis to simulate the acoustic response of

microbubble populations with high accuracy and relatively

low computational cost.

This article will describe the extension of the INCS

method to deal with a population of scatterers. The perfor-

mance of the developed method will also be demonstrated

by showing the acoustic response of a population of micro-

bubbles that oscillate in a nonlinear way, as described by the

Marmottant model.31 The method computes the scattered

pressure from the cloud in an iterative way. Numerically,

each iteration brings the answer closer to the exact result.

Physically, each iteration accounts for an extra order of mul-

tiple scattering. To focus on the influence and behavior of

the microbubble cloud, it will be assumed that the embed-

ding fluid is linear.

First, in Sec. II, the fundamental theory behind the

INCS method will be described. In Sec. III, the INCS

method will be extended by the introduction of point con-

trast sources representing point scatterers. The representa-

tion of a linearly scattering sphere by a point scatterer is

discussed, followed by the representation of a nonlinear

microbubble, and last the representation of an entire popula-

tion of microbubbles. In Sec. IV, the details of the numerical

implementation of the method are described. Next, in Sec.

V, the results from the numerical simulations for a monodis-

perse microbubble population are presented and explained.

Concluding remarks are given in Sec. VI.

II. FUNDAMENTALS OF INCS

A. Linear field

In a lossless, linear, isotropic, and homogeneous acous-

tic background medium, the pressure field generated by an

external or primary source can be described by the wave

equation

c�2
0

@2pðx; tÞ
@t2

�r2pðx; tÞ ¼ Sprðx; tÞ; (1)

where x [m] is the position vector of a point in 3D Cartesian

space, t [s] is the time, and pðx; tÞ [Pa] is the acoustic pres-

sure. The medium is characterized by the small signal speed

of sound c0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
q0j0
p

[m/s], the mass density q0 [kg=m3],

and the compressibility j0 [Pa�1]. The symbol r2 indicates

the Laplace operator. The right hand side of Eq. (1) is the

primary source term

Sprðx; tÞ ¼ q0

@qðx; tÞ
@t

�r � f ðx; tÞ; (2)

where qðx; tÞ [s�1] is the volume injection rate density and

f ðx; tÞ [N=m3] is the volume force density of the external

source. Sources with a plane aperture, such as a phased array

transducer, can be represented either by a velocity or a pres-

sure jump condition in the transducer plane z ¼ 0.

In INCS, and throughout this paper, the explicit solution

for the pressure field due to any source Sðx; tÞ in the
FIG. 1. Schematic diagram for the INCS method with extension to deal

with microbubbles.
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background medium is denoted as pðx; tÞ ¼ G½S�. The sym-

bol G indicates the linear operation defined by

G S½ � ¼ Sðx; tÞ�x;tGðx; tÞ

¼
ð
T

ð
X

Sðx0; t0ÞGðx� x0; t� t0Þ dx0dt0: (3)

The symbol �x;t denotes a convolution in the spatiotemporal

domain, where the integration takes place over the spatial

domain X and over the temporal domain T of the source S.

The three-dimensional Green’s function of the lossless, lin-

ear, homogeneous, and isotropic background medium is

denoted as Gðx; tÞ and is given by

Gðx; tÞ ¼ dðt� jjxjj=c0Þ
4pjjxjj : (4)

In the numerator, d is the Dirac delta distribution and jjxjj is
the length of x. In physical terms, the Green’s function is

the acoustic pressure at field point x and time t, emitted

from a point source of unit impulse located at ðx; y; zÞ
¼ ð0; 0; 0Þ, acting at t ¼ 0.32

The linear acoustic pressure distribution due to the pri-

mary source, e.g., an emitting transducer, in the background

medium is indicated as pð0Þ. With the notation presented

above, it is given by

pð0Þ ¼ G Sð0Þ½ �; (5)

where Sð0Þ ¼ Spr. The field pð0Þ is the initial field for the

Neumann iterative scheme that is used to compute the non-

linear field contribution.

B. Nonlinear field

In medical diagnostics, the propagation of the pressure

wave is dependent on the nonlinear behaviour of the

medium. If the so-called local nonlinearities are neglected,

the remaining global nonlinearities can be accounted for by

extending Eq. (1) to the Westervelt equation.33 In INCS, the

lossless form of the Westervelt equation is written as

c�2
0

@2p

@t2
�r2p ¼ Spr þ Snl; (6)

where the nonlinear term is given by

SnlðpÞ ¼
b

q0c4
0

@2p2

@t2
; (7)

in which b is the coefficient of nonlinearity. The term in Eq.

(7) is considered to describe a nonlinear contrast source act-

ing in the linear background medium. As such, it provides

the nonlinear contribution to the acoustic pressure field,

which can be expressed as dp ¼ G½SnlðpÞ� with G being the

same linear operator as in Eq. (3) but with integrations run-

ning over the entire spatiotemporal support Xnl � T nl of Snl.

Often, this is the entire computational domain. However,

combining Eqs. (6) and (7) yields an implicit solution

because the total field p is not yet known. To obtain an

explicit solution, an iterative approach is employed in which

a nonlinear correction dpðjÞ is obtained from the previous

approximation pðj�1Þ of the total field, according to

S
ðjÞ
nl ¼ Snlðpðj�1ÞÞ; (8)

dpðjÞ ¼ G S
ðjÞ
nl

h i
¼
ð
T nl

ð
Xnl

S
ðjÞ
nl ðx0; tÞGðx� x0; t� t0Þ dx0dt; (9)

pðjÞ ¼ pð0Þ þ dpðjÞ: (10)

To get a first estimate of the nonlinear correction, the ini-

tially computed linear pressure field pð0Þ is used in the con-

trast source term. The resulting Neumann iterative scheme

can thus be expressed as

pð0Þ ¼ G Spr½ �; (11)

pðjÞ ¼ pð0Þ þ G Snlðpðj�1ÞÞ
h i

if j � 1: (12)

Using the same methodology, INCS has been extended

by the inclusion of other contrast sources, e.g., representing

attenuation and inhomogeneous medium properties.26–30

III. INCLUSION OF MICROBUBBLES

A. Contrast source term representing a point scatterer

In this section, we will extend INCS to deal with a

medium containing a large population of microbubbles.

Because a microbubble is much smaller than the spatial grid

step, we will represent each bubble by a point scatterer. A

point scatterer is an object with an infinitely small volume,

which is used to approximate the behavior of a scatterer that

is much smaller than the wavelength of the excitation field.

The analytical description of a contrast source representing

a point scatterer located at point xsc and with a time signa-

ture Aðxsc; tÞ is

Sscðx; tÞ ¼ Aðxsc; tÞdðx� xscÞ: (13)

As explained in a previous publication,25 the INCS

method applies spatial filtering with an ideal low pass filter

in all dimensions to avoid aliasing during numerical compu-

tation. The spatially filtered version of the Dirac function is

dKðx; xscÞ ¼
Y3

n¼1

K

p
sinc Kðxn � xn;scÞ

� �
; (14)

where K ¼ p=Dx is the angular spatial cutoff frequency that

depends on the spatial step size Dx, and ðx1; x2; x3Þ ¼ ðx; y; zÞ
are the spatial coordinates.

A point scatterer can represent either a nonoscillating

object that reflects the incoming wave because of its con-

trasting medium properties, or a noncontrasting object that

radiates an outward wave because of its radial oscillation
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induced by the incoming wave.32 A microbubble shows con-

trast with its surroundings but also vibrates, so the question

might arise whether both effects should be accounted for

separately. To resolve this issue, in Sec. III B we will first

compare the off resonance scattering from a linearly

responding microbubble without a shell, as obtained from

both representations. Next, we will explain how to describe

a nonlinear microbubble and a distribution of microbubbles.

B. Nonoscillating contrasting sphere

As a possible model for a spherical microbubble, first,

we will consider the background medium with a spherical

inclusion with a fixed radius R0, a speed of sound c1, and a

density of mass q1. This sphere is insonified by a pressure

wave with angular frequency x. We assume that the radius

of the sphere is much smaller than the wavelength of this

wave, i.e., R0 � 2pc0=x, so it is allowed to consider a plane

incident wave. Let us suppose that in the absence of the

sphere, this wave would have a pressure amplitude pðxsc;xÞ
at the location of the center of the sphere. The scattered

pressure psc is most easily obtained in terms of spherical

harmonics. To find the dominant behavior of psc for small

spheres and below resonance, we expand this result into a

power series of R0, and keep only the three terms that are of

lowest order in R0. These are

pmono
sc ¼ x2pðxsc;xÞV0

4pr

q0

q1c2
1

� 1

c2
0

� �
exp ð�ik0rÞ; (15)

pdip;if
sc ¼�ixpðxsc;xÞV0

4pr2

3ðq1�q0Þ
c0ðq0þ2q1Þ

cosðhÞexpð�ik0rÞ; (16)

pdip;ff
sc ¼x2pðxsc;xÞV0

4pr

3ðq1�q0Þ
c2

0ðq0þ2q1Þ
cosðhÞexpð�ik0rÞ; (17)

where V0 ¼ 4
3
pR3

0 is the volume of the sphere,

r ¼ jjx� xscjj, h is the angle of observation relative to the

direction of the incident wave, and k0 ¼ x=c0 is the wave-

number in the background medium. Because the term in Eq.

(15) decays with r�1 and is omnidirectional, it describes the

field of a physical monopole. The other two terms depend

on cos ðhÞ and describe the field of a physical dipole, where

Eq. (16) represents the intermediate field that decays with

r�2, and Eq. (17) represents the far field that decays with

r�1.34 In the context of ultrasound contrast agents, it is

opportune to consider an incident wave of 1 MHz propagat-

ing in a background consisting of water and impinging on a

gas-filled sphere with a radius of 1 lm. It turns out that even

on the surface of the sphere, the intermediate and far field

dipole terms are 2 and 4 orders of magnitude smaller,

respectively, than the monopole term. We conclude that in

this paper, we may consider a spherical microbubble to act

solely as a monopole. In that case, the point scatterer that

for r > R0 will cause the same pressure as in Eq. (15) is

Sscðx;xÞ ¼ x2pðxÞV0q0

1

q1c2
1

� 1

q0c2
0

� �
dðx� xscÞ: (18)

The time domain equivalent of this equation is

Sscðx; tÞ ¼�V0q0

1

q1c2
1

� 1

q0c2
0

� �
@2pðxsc; tÞ

@t2
dðx� xscÞ: (19)

For a fluid background medium with a gas filled sphere, it

turns out that q0c2
0 	 q1c2

1 and Eq. (19) may be approxi-

mated by

Sscðx; tÞ ¼ �V0

q0

q1c2
1

@2pðxsc; tÞ
@t2

dðx� xscÞ: (20)

C. Oscillating noncontrasting sphere

As a second model for a spherical microbubble, we will

consider the background medium with a noncontrasting,

oscillating sphere with rest radius R0. The oscillations are

induced by an incident pressure wave. Again, we assume

that the radius of the sphere is much smaller than the wave-

lengths present in the incident wave, so the external pressure

experienced by the sphere is approximately homogeneous

and may be taken equal to the incident pressure pðxsc; tÞ at

the center of the sphere. As a consequence, we may assume

that the sphere will only show radial oscillations, i.e., its

instantaneous shape will be fully described by a dynamic

radius R(t). The oscillating sphere therefore acts as a mono-

pole source of volume injection, which is consistent with the

conclusion in Sec. III B. The volume injection rate of the

monopole source is Q ¼ dV=dt, in which V ¼ 4
3
pR3ðtÞ.

Integration of Eq. (2) over the rest volume V0 of the sphere

results in a contrast source strength Ssc ¼ q0dQ=dt
¼ q0d2V=dt2. The point scatterer that for r > R will cause

the same pressure as the oscillating sphere is

Sscðx; tÞ ¼ q0

d2V

dt2
dðx� xscÞ: (21)

To find the relation between Eqs. (19) and (21) for line-

arly responding bubbles below resonance, we consider the

linearized equations of motion and continuity. Inside the

bubble, these may be written as

rpþ q0

@v

@t
¼ ðq0 � q1Þ

@v

@t
þ f ; (22)

r � vþ j0

@p

@t
¼ ðj0 � j1Þ

@p

@t
þ q: (23)

The terms at the right-hand sides of these equations describe

the sources of the scattered field. When these are point sour-

ces, or may be considered as such, the right-hand sides of

Eqs. (22) and (23) represent the dipole behavior and the

monopole behavior of the sphere, respectively.34 For a non-

oscillating contrasting sphere, the density of volume force f

and the density of volume injection rate q are zero, and for

an oscillating noncontrasting sphere, the mass density con-

trast q0 � q1 and the compressibility contrast j0 � j1 are

zero. To obtain the same monopole scattering from a

2212 J. Acoust. Soc. Am. 153 (4), April 2023 A. Matalliotakis and M. D. Verweij
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nonoscillating contrasting sphere and an oscillating noncon-

trasting sphere, we must, therefore, have

ðj0 � j1Þ
@p

@t
¼ q ¼ 1

V0

dV

dt
; (24)

where p is the pressure inside the sphere, which in lowest

order is equal to the incident pressure pðxsc; tÞ. Multiplication

by V0q0, differentiation with respect to time, and applying

the relation j ¼ 1=ðqc2Þ for linear acoustics, yields

�V0 q0

1

q1c2
1

� 1

q0c2
0

� �
@2p

@t2
¼ q0

d2Vsc

dt2
: (25)

The left-hand side and right-hand side of this equation are

exactly the magnitude of the scattering sources in Eqs. (19)

and (21), respectively. From this, we conclude that in the

linear case, the oscillating noncontrasting sphere represents

the physics of the bubble equally as well as the nonoscillat-

ing contrasting sphere. In the following parts of this paper,

we extrapolate this to the nonlinear case by assuming that

the volume oscillations of a nonlinear bubble fully represent

the intricate physics of the interior and shell of that bubble.

D. Microbubble as a point scatterer

For practical ultrasound contrast bubbles, the models in

Secs. III B and III C are not accurate enough because the

presence of a shell and the effect of surface tension is miss-

ing. Moreover, in medical applications, bubbles are often

used near resonance, and in the nonlinear regime. To accu-

rately represent a microbubble by a point scatterer, the

applied model should be based on the following assump-

tions: the surrounding liquid is infinite and behaves in a

Newtonian way, there is no mass or heat transfer between

the medium and the gas inside the bubble, the buoyancy and

gravity effects can be neglected, the wavelength of the excit-

ing pressure field is much larger than the radius (so that the

pressure has a uniform distribution over the bubble shell),

and the bubble shape remains spherical through time.1 This

implies that the bubble acts as an oscillating noncontrasting

monopole source. Usually, the time-dependent bubble radius

is obtained by solving some variant of the Rayleigh–Plesset

equation. Therefore, it is most logical to represent a micro-

bubble by a contrast point source

Sscðx; tÞ ¼ q0

d2Vsc

dt2
dðx� xscÞ: (26)

The scatterer’s volume depends on the bubble radius as a

function of time, which, in our case, we will calculate by

solving the Marmottant Eq. (31). This model is most appli-

cable to describe the oscillatory behavior of lipid-

encapsulated microbubbles. We emphasize that our method

is not restricted to this specific model, which can be replaced

by any other model that suits another type of bubbles.

The Marmottant model relates the radius of a nonli-

nearly oscillating microbubble to the acoustic pressure

according to

q0
€RRþ 3

2
_R

2

� �
¼ P0 þ

2rðR0Þ
R0

� �
R0

R

� �3c

1� 3c _R

c0

 !

�P0 � pðxsc; tÞ � 4l
_R

R
� 2rðRÞ

R

� 4js

_R

R2
; (27)

where the quantity P0 [Pa] is the ambient pressure, c is the

polytropic exponent of the gas encapsulated in the bubble,

pðxsc; tÞ [Pa] is the excitation pressure in the surrounding

liquid of the scatterer, l [Pa � s] is the gas core viscosity, js

[kg/s] is the shell viscosity, and rðRÞ [N/m] is the effective

surface tension. Based on the shell-buckling model of

Marmottant, the latter variable is expressed as

rðRÞ ¼

0 if R 
 Rb;

v
R2

R2
b

� 1

 !
if Rb < R < Rr;

rw if R � Rr;

8>>>><
>>>>:

(28)

where v [N/m] is the shell elasticity, rw [N/m] is the surface

tension of the gas–water interface, Rb ¼ R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðR0Þ=vþ 1

p
is the buckling radius, and Rr ¼ Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rw=vþ 1

p
is the rupture

radius.

The solution of the Marmottant equation is the bubble

radius as a function of time. Equation (27) was solved using

the Livermore Solver for Ordinary Differential Equations

(LSODE) from the ODEPACK library35 implemented in

Fortran. To enhance performance and efficiency, the

Marmottant model is normalized by .� ¼ ðR� R0Þ=R0 and

s� ¼ tf0, where f0 is the center frequency of the incident

pressure field. This results in _R ¼ R0 f0 d.�= ds� and €R ¼ R0

f 2
0 d2.�=ds2

�. Based on this normalization and to achieve

good convergence, the absolute and relative tolerance of the

solver is set at 10�15.

E. Microbubble population as distribution of point
scatterers

For a population of N microbubbles, all corresponding

point sources should be added, resulting in the nonlinear

contrast source term

Scsðx; tÞ ¼ q0

XN

i¼1

d2VðiÞðxðiÞsc ; tÞ
dt2

dðx� xðiÞsc Þ: (29)

When the microbubbles are located in an otherwise linear,

homogeneous, and lossless fluid medium, the nonlinear

wave equation for the acoustic pressure becomes

c�2
0

@2p

@t2
�r2p ¼ Spr þ Scs: (30)
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The solution of Eq. (30) can be obtained by the scheme in

Eq. (12), provided we replace the nonlinear contrast source

Snl by Scs in Eq. (29).

The physical interpretation of the iterative process is

explained in Fig. 2. For j ¼ 0, the solution of INCS in an

arbitrary point x is the incident field pð0Þ. This is the field

that would be generated by the primary source Spr in the

background medium in the absence of microbubbles [Fig.

2(a)]. For j ¼ 1, the scattering of pð0Þ by all microbubbles is

computed and summed, resulting in the first-order field cor-

rection dpð1Þ. This correction is added to pð0Þ to form the

first-order field estimate pð1Þ, which thus consists of the inci-

dent field plus the first-order scattering of all microbubbles

[Fig. 2(b)]. For j ¼ 2, the scattering of pð1Þ by all microbub-

bles is computed and summed, resulting in the second-order

field correction dpð2Þ. This correction contains both the scat-

tering of pð0Þ and dpð1Þ, i.e., the first- and second-order scat-

tering of all microbubbles. It is added to pð0Þ to form the

second-order field estimate pð2Þ, which consists of the inci-

dent field plus the scattering of all microbubbles up until

order two [Fig. 2(c)]. Continuing the iterative scheme, each

iteration accounts for a next order of multiple scattering

[Fig. 2(d)].

After each iteration, we compare the field pðjÞ with the

field pðj�1Þ, using a Relative Root Mean Square Error

(RRMSE). When this error has become negligible after sev-

eral iterations, we conclude that the highest order of scatter-

ing has become insignificant and will no longer influence

the final result. At this point, we assume that INCS has suffi-

ciently converged and we terminate the iterative process.

IV. NUMERICAL IMPLEMENTATION

A. Generation of the random bubble population

Our next step is to generate the positions x
ðiÞ
sc in a 3D

population of randomly located bubbles. We have imple-

mented two approaches for the positioning of N point scat-

terers in a rectangular bubble domain. In both cases, a

minimum distance between every two point scatterers is

assumed to avoid the overlap of the physical bubbles.

The first approach is used to create a discrete uniform

distribution of point scatterers over the rectangular bubble

domain. This is achieved by dividing the bubble domain in

N identical, smaller cubes with a prescribed minimum

mutual distance, and randomly positioning one scatterer in

each one of these smaller cubes.

The second approach is applied to obtain a fully random

positioning of the point scatterers, with the minimum mutual

distance between scatterers as the only restriction. To

accomplish this, point scatterers are randomly positioned in

the domain of interest. The separation of each scatterer and

its closest neighbors is then determined. Those points who

do not fulfill the distancing restriction, are removed from the

cloud.

Realizations obtained by these two approaches are pre-

sented in Fig. 3. The location of the point scatterers in the

generated clouds is independent of the location of the com-

putational grid points. In this way, INCS can retain a coarse

grid size without “discretizing” the cloud of particles. This

is particularly important for large concentrations of

particles.

B. Off-grid point scatterers

Due to the coarse discretization allowed by the INCS

method, some scatterers will unavoidably be placed between

the grid points. This causes no problem because each point

scatterer is represented by its filtered version and by using

Eq. (14), proper weights are assigned to all grid points.

Based on previous research,36 this methodology will provide

an accurate solution.

For large bubble concentrations, this process may not

be efficient. To improve the computational efficiency and

reduce the memory load for large concentrations, during

intermediate iterations, only a limited number of neighbor-

ing grid points is used for the filtered version of each point

scatterer. In this way, the scattered pressure is accurately

computed in the region where it is strongest, i.e., around

each scatterer. In the final iteration, the filtered spatial Dirac

function is again using all the grid points. This corrects the

errors made in the intermediate iterations. The described

approach significantly reduces the computation time, at a

FIG. 2. (Color online) Physical interpretation of the iterative procedure for a number of scatterers (circles) and an observer x (triangle), after (a) 0, (b) 1, (c)

2, (d) j iterations. The black arrows represent the incident field hitting the scattterers. The colored arrows show the field corrections due to multiple scattering

orders.
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cost of a small intermediate error. This reduction is most

significant for higher concentrations. For example, we have

considered a spatiotemporal computational domain with

Nt � Nx � Ny � Nz ¼ 1299� 200� 96� 600 grid points,

with a population of 106 point scatterers that are randomly

positioned in a volume of 1 ml. The computational job is

distributed over 100 central processing units (CPUs). The

time required per iteration for computing the contrast source

term in all grid points and only for a limited number of grid

points around each scatterer is 91 and 10 min, respectively.

The RRMSE between these cases is only 0.1%.

C. Trilinear interpolation and avoiding self-scattering

To calculate the pressure field at the off-grid location of

a point scatterer, a trilinear interpolation using the eight

neighboring grid points is implemented. A particular point of

attention is to avoid that the pressure experienced by a point

scatterer in iteration j contains the pressure that is generated

by the same scatterer in iteration j – 1. To prevent this “self-

scattering”, in iteration j – 1, the computed strength of each

contrast source is saved in a file. In iteration j, the point sour-

ces, represented by the filtered Dirac function, are convoluted

with the Green’s function to obtain the pressure generated in

iteration j – 1 by each point source at its eight neighboring

grid points. These pressure values are subtracted from the

total computed pressure before computing the new pressure

value at the location of the point source. This correction is

particularly significant for strong individual scatterers that do

not have strong neighbors nearby.

V. NUMERICAL RESULTS

For the numerical examples in Secs. V A and V B, a

computational domain of X � Y � Z ¼ 20 mm� 20 mm

� 20 mm is used. The incident pressure field is a plane wave

being generated at z ¼ 0 and propagating in the positive

z-direction. A plane wave is used to let all the scatterers

experience the same incident pressure.

In all our numerical results, the temporal signature of

the incident pressure is

sðtÞ ¼ exp � t� Td

Tw=2

� �2
" #

sin 2pf0ðt� TdÞ½ �; (31)

where Tw ¼ 3=f0 is the width and Td ¼ 6=f0 is the delay

of a Gaussian envelope with a duration of 12=f0, where

f0 ¼ 1 MHz is the center frequency. The scatterers will be

embedded in water with a density of q ¼ 1060 kg=m3 and a

speed of sound of c0 ¼ 1482 m=s. In the considered situa-

tions, water has negligible losses and nonlinear effects will

be hardly noticeable. Therefore, we assume that the embed-

ding medium is lossless and linear. A sampling frequency of

18 MHz was used as the basis for the discretization of the

spatiotemporal domain.

A. Single versus multiple scattering: Linear scatterers

In this subsection, we will present the difference between

single and multiple scattering in case of linear scatterers. The

difference will be more visible for higher concentrations. For

this reason, a population of 1:6� 106 linearly scattering

spheres of 1 lm radius is placed in a subdomain �7:50 mm


 x 
 7:50 mm;�7:50 mm 
 y 
 7:50 mm; 3:00 mm 
 z

 7:44 mm as indicated in Fig. 3(b). This yields a concentra-

tion of scatterers of 1:6� 106 ml�1. It is assumed that the gas

inside these scatterers is C4F10, with a density q1 ¼ 10 kg=m3

and a speed of sound c1 ¼ 100 m=s. These spheres have a

sharp resonance frequency of 2.68 MHz. The maximum of

the incident pressure is P0 ¼ 200 kPa. For first-order scatter-

ing, application of Eq. (A4) with r ¼ R then yields a maxi-

mum reflected pressure of 32:4 kPa on each individual

scatterer’s surface.

In Fig. 4(a), the total pressure field after j ¼ 1 iterations,

i.e., after accounting for one order of scattering, is pre-

sented. An increased pressure, compared to the incident

wave, is visible in and behind the population of scatterers.

This is due to the constructive interference of the scattering

in the direction of the propagation of the plane wave, which

is a consequence of Huygens’s principle. In Fig. 4(b), the

total pressure field for after j ¼ 2 iterations, i.e., including

two orders of scattering, is presented. Compared to the first

iteration, the total pressure field in and behind is the popula-

tion reduced and a lower pressure region starts to form

FIG. 3. (a) Uniform (a) and (b) random distribution of scatterers, shown in

3D view (left) and in the x-direction (inset, right). The populations consist

of 2� 105 scatterers concentrated in volume of 1 ml, with a minimum

mutual distance of 50 lm. This distance is taken exceedingly large here to

show the difference between (a) and (b).
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behind the population. Virtually, no numerical changes occur

after j¼ 8 iterations and this result is presented in Fig. 4(c). The

difference between the three pressure maps is clearly visible.

It can be seen that the contribution of the population is strongest

in the first iteration. When more orders of multiple scattering are

included, there is a correction in the total pressure field.

Furthermore, it can be seen that lower pressure regions form on

the sides and behind the population and become more distinct

with increasing multiple scattering orders.

A comparison of the time signatures of the total pres-

sure at a point receiver located in (0, 0, 10.3 mm) is pre-

sented in Fig. 4(d). Subtraction of pð0Þ from the other signals

would result in the scattered pressure for the respective iter-

ations. In addition to a correction of the maximum pressure,

a change in phase can be seen. It seems like there is a

decrease in the effective speed of sound due to the increas-

ing scattering in the population. This figure reinforces the

significance of multiple scattering and the need to consider

multiple orders to have a more accurate result.

To validate our method, we can also compare the results

of the above time signatures with predictions based on effec-

tive medium theory. In the current case, the conditions justify

the application of the original theory of Foldy.4 According to

this theory, the effect of a monodisperse population of scat-

terers is represented by replacing the wave number k0 in the

scattering domain by a corrected wave number that satisfies

k2 ¼ k2
0 þ 4png; (32)

where n is the concentration of the scatterers and g is their indi-

vidual scattering strength. The shift in wavenumber corresponds

to a shift in wave speed, and as a consequence, in a time shift

of the wave that has traversed the scattering domain. In the case

considered in this subsection, we have n ¼ 1:6� 1012 m�3

and g ¼ 1:6218� 10�7 m. This yields a wavespeed of

1363:5 m=s in the scattering domain, while the speed in the

medium without scatterers is 1482 m=s. Since the scattering

domain has a length of 4:4444 mm, the additional time delay

caused by the scattering domain, as predicted by the theory of

Foldy, is DtFoldy ¼ 0:2606 ls. We have also determined the

time delay between the incident wave pð0Þ and the wave with

all significant orders of scattering pð8Þ in Fig. 4(d), by looking

at the shift in the zero crossings around 13 ls. This is found to

be DtINCS ¼ 0:2595 ls. Thus, the difference in time delay as

predicted by the theory of Foldy and our method is only 0.42%.

Moreover, because in our case, the wavenumber obtained from

Eq. (32) does not contain an imaginary part, the theory of

Foldy predicts that the wave that traverses the scattering

domain does not attenuate. Figure 4(d) shows that our scheme

corrects the larger amplitude of the earlier iterations, and that

iteration pð8Þ indeed has the same amplitude as the incident

field pð0Þ. From the results just mentioned, we conclude that for

the time delay and the amplitude of the wave traveling through

a scattering domain, there is good agreement between our

method and the effective medium theory of Foldy.

B. Single versus multiple scattering: Nonlinear
microbubbles

Here, the same configuration as in Sec. V A is used, but

now we employ the Marmottant model from Sec. III D to

FIG. 4. (Color online) Maximum of the total pressure field in the plane y ¼ 0 mm

in case of 1.6� 106 linear scatterers with 1 lm radius, when considering (a) 1, (b)

2, (c) 8 orders of scattering. The population of scatterers is inside the dotted white

square. Comparison between the time signatures (d) of the total pressure pulse that

is received by a point receiver located at the red cross, for a number of iterations.

2216 J. Acoust. Soc. Am. 153 (4), April 2023 A. Matalliotakis and M. D. Verweij

https://doi.org/10.1121/10.0017770

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/153/4/2209/16822279/2209_1_10.0017770.pdf

https://doi.org/10.1121/10.0017770


demonstrate the difference between populations of linear

and nonlinear scatterers. The concentration of the population

is 2� 105 ml�1 and the radius of the microbubbles is 2 lm.

The parameters for the Marmottant model are given in

Table I. These microbubbles also have a resonance fre-

quency of 2:68 MHz.

In Fig. 5, the difference between j ¼ 1 iteration (one

order of scattering) and j ¼ 14 iterations (14 orders of scat-

tering) is shown. Compared to the population of linear scat-

terers, the difference between the pressure maps for

subsequent iterations is more significant for the population

of microbubbles. This is because the microbubbles are stron-

ger scatterers than the linear scatterers. Virtually, no numeri-

cal changes now occur after j ¼ 14 iterations. This shows

that for the stronger nonlinear scatterers, more iterations

should be considered. As in Sec. V A, lower pressure

regions also exist in the microbubble case. Compared to the

linear case, these regions are also wider, i.e., relatively more

scattering energy is concentrated in the regions behind the

horizontal edges of the population.

A comparison between the time signatures at the point

receiver is presented in Fig. 5(c). A strong negative pressure

dip can be seen when only the first order scattering is

included. In addition to a correction of the maximum pres-

sure, a change in phase is visible in the early part of the

pulses. For later times, the signals from subsequent itera-

tions become incoherent due to the nonlinear multiple scat-

tering contributions. The frequency spectrum of the pulses

is presented in Fig. 5(d). As expected, higher harmonics

caused by the nonlinear behavior of the microbubbles are

visible. A significant observation is that for j ¼ 1, there is a

dip in the fundamental and the higher harmonics are rela-

tively strong, whereas for j ¼ 14 orders, the fundamental is

partly restored and the higher harmonics have decreased.

These results demonstrate that multiple scattering inside a

population of nonlinear scatterers plays an important role.

C. Harmonic imaging

In the previous subsection, we have shown the differ-

ence between a population of linear and nonlinear scatterers

when excited by a plane wave. In this subsection, we will

focus on a medical application and will demonstrate the

generation of higher harmonics when a population of bub-

bles is hit by an ultrasound beam. Here, a computational

domain of X � Y � Z ¼ 22 mm� 10 mm� 60 mm is used.

The incident beam is generated by a phased array transducer

of 40 elements with Hel �Wel ¼ 10 mm� 0:45 mm, and a

kerf with zero width. This corresponds to an aperture with a

width of Warr ¼ 18 mm. The origin of the coordinate system

is at the center of the transducer aperture. The array has an

azimuthal focus at ðxf ; zf Þ ¼ ð0 mm; 35 mmÞ and an elevation

focus at zel ¼ zf . In Fig. 6(a), a sketch of the geometry of the

phased array is presented. The pressure pulse sent from each

element of the transducer is again given by Eq. (31).

TABLE I. Parameters of the Marmottant model of the applied

microbubbles.

js ½kg=s� rw ½N=m� rR ½N=m� c v ½N=m� l ½Pa � s�

3� 10�8 0.072 0.036 1.07 0.4 2� 10�3

FIG. 5. (Color online) Maximum of the total pressure field in the plane

y ¼ 0 mm in case of 2� 105 nonlinear microbubbles with 2 lm radius, when

considering (a) 1, (b) 14, and orders of scattering. The microbubble population is

inside the dotted white rectangle. Comparison between the (c) time signatures

and the (d) frequency spectrum of the total pressure pulse that is received by a

point receiver located at the red cross, for a number of iterations.

J. Acoust. Soc. Am. 153 (4), April 2023 A. Matalliotakis and M. D. Verweij 2217

https://doi.org/10.1121/10.0017770

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/153/4/2209/16822279/2209_1_10.0017770.pdf

https://doi.org/10.1121/10.0017770


The maximum of the emitted pressure is P0 ¼ 50 kPa at the

surface, and the pressure is the highest and equal to 191 kPa

at the focus. In Figs. 6(b) and 6(c), the incident beam is pre-

sented at the elevation plane x ¼ 0 mm and the azimuthal

plane y ¼ 0 mm.

A population of 105 monodisperse microbubbles of

2 lm radius are randomly placed in a subdomain �5:30 mm


 x 
 5:20 mm;�2:55 mm 
 y 
 2:46 mm; 25:5 mm 
 z

 44:5 mm, as indicated in Fig. 3. This means that the con-

centration of the microbubbles is about 105 ml�1. The param-

eters for the Marmottant equation are the same as in Table I.

The results are depicted in Figs. 7(a)–7(c). The plots are

made for j ¼ 25 iterations, after which virtually no changes

occur. The beam profiles of the harmonics are separated by

using a 4th order Butterworth filter with cutoff frequencies

indicated in the title of the plots. Because the embedding

medium is linear, the higher harmonics are just caused by

the microbubble population. In Figs. 7(a)–7(c), it is clearly

visible that the 2H and 3H beams both come into existence

at the point where the incident beam hits the bubble popula-

tion. In the areas where the incident pressure is high, e.g., in

the focal area of the incident beam, the microbubbles oscil-

late in a more nonlinear way, resulting in higher harmonic

FIG. 6. (Color online) (a) Sketch of the geometry of the phased array used

to generate the incident field. Maximum pressure of the incident beam gen-

erated by a phased array. (b) In the elevation plane x ¼ 0 mm, and (c) in the

azimuthal plane y ¼ 0 mm. FIG. 7. (Color online) Spectral profiles at y ¼ 0 mm for the beam generated

by the phased array. (a) Fundamental), (b) second harmonic 2H, (c) third

harmonic 3H for j ¼ 25 iterations. The microbubble population is inside the

dotted white rectangle. (d) Axial profiles of the harmonic beams. The dotted

gray lines depict the location of the microbubble population.
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pressures. There is 15 dB difference between the maximum

pressure in the fundamental and 2H, whereas the difference

between 2H and 3H is only about 5 dB. The latter can be

explained by the fact that each microbubble simultaneously

generates a number of higher harmonics. Since the micro-

bubbles have a resonance frequency close to 3 MHz, both

2H and 3H will have about the same strength. These obser-

vations demonstrate that the mechanism of generating

higher harmonics is quite different from the gradual growth

of subsequent harmonics in case of medium nonlinearity.

The difference between medium nonlinearity and nonlinear-

ity caused by microbubbles also becomes manifest in the

way the harmonics are generated by the iterative scheme.

Loosely speaking, in case of medium nonlinearity, each iter-

ation adds a new harmonic to the previous result,24 and the

full spectrum is only obtained after a number of iterations.

In case of nonlinear microbubbles, even the first iteration

yields the full scattering spectrum of the bubbles, and each

iteration corrects the previous result by adding a new order

of scattering. As shown in Fig. 5(d), the successive iterations

do not cause large changes in the shape of the spectrum, but

rather correct the overall amplitude.

Moreover, Fig. 7(d) depicts the axial profiles of the har-

monic beams. Also, a comparison with the incident pressure

field is presented. The pressure of the harmonics amplitude

is lower than the pressure of the fundamental, as expected.

In the area where the harmonic beams exist, the fundamental

beam is lower than the incident beam, i.e., without micro-

bubbles. This can be explained by the conversion of energy

of the fundamental into energy of the higher harmonics.

In Figs. 8(a) and 8(b), a comparison between the fields

of the first four orders of scattering are shown for two popu-

lations with concentrations of 105 ml�1 and 104 ml�1,

respectively. For the higher concentration, the first three

orders are of comparable amplitude. The peak amplitude of

the fourth order is about 10 dB lower. On the other hand, for

the lower concentration, the amplitude of the second scatter-

ing order is about 30 dB lower than the first. The third and

FIG. 8. (Color online) Beam profiles in the azimuthal plane y ¼ 0 mm as generated by the phased array in a microbubble concentration of (a) 105 ml�1 and

(b) 104 ml�1. The first, second, third, and fourth scattering orders are depicted from top to bottom, respectively. The microbubble population is inside the

dotted white rectangle.
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fourth scattering orders are at least 40 dB lower than the first

order. Thus, these scattering orders do not significantly

affect the final result. Finally, it is visible that the field of

each scattering order is shifted to the left compared to the

result of the previous order. This reinforces the fact that

multiple scattering should be considered, especially for high

concentrations.

D. Convergence

As illustrated in Fig. 2, each iteration adds an order of

multiple scattering to the computed pressure field. This fact

can be used to determine the dependence between the high-

est significant order of multiple scattering and the concentra-

tion of the microbubble population.

To determine the significance of an order of multiple

scattering, we compare the results from the current iteration

(j) and the previous iteration (j-1). The difference between

these results over the spatial X cd and temporal T cd computa-

tional domain can be expressed by the RRMSE, which is

defined as

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
X cd

ð
T cd

pðjÞðx; tÞ � pðj-1Þðx; tÞ
� �2

dt dxð
X cd

ð
T cd

pð0Þðx; tÞ
� �2

dt dx

vuuuuut : (33)

After a number of iterations, the error will stabilize at a

negligibly small level. In that case, we conclude that the

addition of more scattering orders will not further improve

the solution and we have reached the insignificant scattering

orders. When this point has been reached, we say that the

iterative process has converged.

In Fig. 9, the RRMSE as a function of the number of

iterations j is depicted for several concentrations of the

microbubble population. We observe that for higher concen-

trations, the initial iterations have a higher RRMSE. This

indicates that the variations between the initial iterations

increase with concentration. Moreover, we see that for

higher concentrations, more iterations are needed to reach

convergence. This can be explained by the fact that more

close-range interactions occur in higher concentrations,

making higher scattering orders more important.

VI. CONCLUSIONS

A novel method of simulating the multiple scattering of

a pulsed ultrasound wave by a large 3D population of nonli-

nearly responding microbubbles was presented. The

approach is based on the INCS method, which was extended

to include a large number of nonlinear contrast point sour-

ces. Each of these act as a virtual volume injection source

that generates the nonlinear scattering caused by an individ-

ual microbubble. The volume of each microbubble follows

from its radius, which depends in a nonlinear way on the

surrounding time dependent pressure, as described by the

Marmottant model. Starting with the incident pressure from

the primary transducer, the pressure in the four-dimensional

(4D) spatiotemporal computational domain is successively

updated by using a Neumann iterative scheme.

Physically, each iteration adds an extra order of multi-

ple scattering between the microbubbles. Numerically, it

takes several iterations before the difference between suc-

cessive iterations stabilizes at a small number. From this, it

was deduced that the inclusion of several orders of multiple

scattering is necessary to accurately capture the behavior of

a population of microbubbles. It was also observed that

higher orders of multiple scattering become more important

for increasing concentrations.

The developed method accounts for an accurate repre-

sentation of the individual nonlinear behavior of each micro-

bubble, as well as their higher order nonlinear interactions,

and may therefore be used for detailed investigations into

the behavior of realistic microbubble populations.
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APPENDIX: SCATTERING BY A SMALL SPHERE

Here, we will show the steps that lead to Eqs. (15)–(17)

in the main text. First, we shortly derive the exact scattering

of a plane acoustical wave by a penetrable sphere of arbi-

trary size; extensive derivations may be found in the litera-

ture.32 The plane wave has an angular frequency x and is

traveling in the z-direction through a medium with density

of mass q0 and speed of sound c0. The sphere has a radius R,

a mass density q1, and a speed of sound c1. For simplicity,

the origin of the coordinate system is positioned at the center

of the sphere. Using Cartesian coordinates with x ¼ ðx; y; zÞ,
the plane incident wave is

pincðx;xÞ ¼ p0 exp ð�ik0zÞ; (A1)

where p0 is the amplitude of the wave, and k0 ¼ x=c0 is the

wavenumber in the surrounding medium. To use the sym-

metry of the problem, we will turn to spherical coordinates
FIG. 9. RRMSE as a function of iterations for various populations of micro-

bubbles concentrated in a volume of 1 ml.
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with r ¼ ðr; h;/Þ, where r (radius) is the distance to the ori-

gin, h (elevation) is the angle between the positive z-axis

and the position vector, and / (azimuth) is the angle

between the positive x axis and the projection of the position

vector on the xy-plane. In spherical coordinates, the incident

wave becomes

pincðr;xÞ ¼ p0

X1
n¼0

an jnðk0rÞ; (A2)

in which

an ¼ ð2nþ 1Þð�iÞn Pn cos ðhÞ½ �: (A3)

In Eqs. (A2) and (A3), Pn is the n-th order Legendre polyno-

mial and jn is the spherical Bessel function of the first kind

and order n. In analogy with Eq. (A2), the wave psc that is

scattered by the sphere and the wave ptr that is transmitted

into the sphere can be written as

pscðr;xÞ ¼ p0

X1
n¼0

bn hð2Þn ðk0rÞ; (A4)

ptr r;xð Þ ¼ p0

X1
n¼0

cnjn k1rð Þ: (A5)

Here, hð2Þn is the spherical Bessel function of the third kind

and order n. The reflection coefficients bn and the transmis-

sion coefficients cn follow from the continuity of the pres-

sure and the radial particle velocity at the boundary of the

sphere, i.e., by requiring for each n that pðr;xÞ and

q�1@pðr;xÞ=@r are continuous at r ¼ R. This yields

bn ¼ an
q0c0 jnðk0RÞ j0nðk1RÞ�q1c1 jnðk1RÞ j0nðk0RÞ

q1c1 jnðk1RÞhð2Þ0n ðk0RÞ�q0c0 h
ð2Þ
n ðk0RÞ j0nðk1RÞ

; (A6)

cn ¼ an
q1c1 jnðk0RÞhð2Þ0n ðk0RÞ�q1c1 hð2Þn ðk0RÞ j0nðk0RÞ
q1c1 jnðk1RÞhð2Þ0n ðk0RÞ�q0c0 h

ð2Þ
n ðk0RÞ j0nðk1RÞ

; (A7)

where the prime indicates the derivative of a function.

Combination of Eqs. (A3), (A4), and (A6) yields the exact

pressure that is scattered by the sphere.

Next, we consider the scattering by a sphere that is

much smaller than the wavelength of the incident wave. In

that case, it makes sense to represent the scattered pressure

by its Taylor series around R ¼ 0. If the frequency of the

incident wave is much lower than the first resonance fre-

quency of the sphere, it is sufficient to approximate the scat-

tered pressure by the lowest order terms of the Taylor series.

These are the terms of order R3 that are given in Eqs.

(15)–(17), where p0 ¼ pðxsc;xÞ is the incident pressure at

the location of the sphere. The term in Eq. (16) decays with

r�2 and is negligible in the far field, which is dominated by

the terms in Eqs. (15) and (17) with decay r�1. The sum of

these terms yields, after normalizing by p0 exp ð�ik0rÞ=4pr,

the well-known expression for the angle-distribution func-

tion of a nonrigid sphere in the long wavelength limit32

UðhÞ ¼ k2R3

3

j1 � j0

j0

þ 3ðq1 � q0Þ
2q1 þ q0

cos ðhÞ
� �

: (A8)
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