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Towards Analyzing and Predicting the
Experience of Live Performances with

Wearable Sensing

Ekin Gedik, Laura Cabrera-Quiros,
Claudio Martella, Gwenn Englebienne

and Hayley Hung

Abstract—We present an approach to interpret the response of au-
diences to live performances by processing mobile sensor data. We
apply our method on three different datasets obtained from three live
performances, where each audience member wore a single tri-axial
accelerometer and proximity sensor embedded inside a smart sensor
pack. Using these sensor data, we developed a novel approach to predict
audience members’ self-reported experience of the performances in
terms of enjoyment, immersion, willingness to recommend the event to
others and change in mood. The proposed method uses an unsupervised
method to identify informative intervals of the event, using the linkage
of the audience members’ bodily movements, and uses data from these
intervals only to estimate the audience members’ experience. We also
analyze how the relative location of members of the audience can affect
their experience and present an automatic way of recovering neighbor-
hood information based on proximity sensors. We further show that the
linkage of the audience members’ bodily movements is informative of
memorable moments which were later reported by the audience.

Index Terms—Human behaviour, wearable sensors, proximity sensing,
accelerometers, audience response, arts, dance

F
1 INTRODUCTION

Institutions that organise live performances increasingly require
being able to quantify the response to the service they provide. Such
quantification enables institutions to design more targeted events,
make better monetary decisions and offer enhanced experiences
to their public. Quantitative data about audience response should
eventually allow us to demonstrate the contribution of artistic
performances to the individual audience members’ well-being.
While art and cultural events may appear to be a luxury to have in a
society, numerous studies have shown their benefits for stimulating
the social life of public spaces [1], health and mental well-being
[2], [3], [4], [5] and perceived quality of life [6]. In this paper, we
investigate ways to automatically measure the audience members’
response to a live performance, in real-time, as a means to enhance
it, both for consumers and practitioners.

According to the appraisal theory, one’s evaluation of a situation
causes related affective responses [7]. In other words, a person’s
appraisal of an event will be reflected in the emotional responses
they exhibit throughout the event itself. In this study, we present a
method that uses this connection to detect an audience’s appraisal
of a live performance, based on the assumption that audience
members’ individual and joint body movements capture some form
of affective response. We will be using a language similar to the
one used in implicit tagging literature [8] to distinguish between
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self-reported evaluations of the event and immediate responses
obtained through sensing. Questionnaire answers provide explicit
responses by the participants and are indicative of their reappraisal
of the event. We use the term reappraisal since questionnaires are
filled in after the event finishes. Sensors, on the other hand, capture
immediate responses and act as implicit cues for the appraisal of
the event. We use the term implicit for evaluations obtained through
sensing since it exploits the non-verbal reactions of the participant
instead of direct responses. Thus, we aim to automatically predict
the participants’ explicit reappraisal of the event, from sensor
recordings that capture their non-verbal reactions during the event.
We do not explicitly detect any affective tags or emotional states
but we try to connect immediate body movements to explicit
evaluations of the event.

The automatic detection of people’s affective state is a widely
studied topic in affective computing, with a majority of the literature
focusing on facial expressions [9] and/or speech [10]. However,
these studies are typically conducted in controlled environments
and have limitations when compared to real-life performances,
both in terms of the data acquisition (high-quality video and audio
collection) and of the generation (posed facial expressions, carefully
designed stimuli). The practical characteristics of real-world
performances are different from the pre-designed lab experiments
and introduce important restrictions on the use of aforementioned
modalities. For example, robustly detecting audience members’
facial expressions in a dark concert hall from video input is a
challenging task. Previous studies have shown, however, that body
movements also convey affective expressions which might be
exploited for the detection of emotional states [11], [12]. Even
though most of the existing studies investigating affective body
expressions use either video [13], [14], motion capture [15] or
pressure sensors [16], we show that it is possible to capture enough
of these body movements through the commonly available wearable
accelerometers that are suitable for audiences in real-world settings.

Interestingly, in live performances, multiple people are simul-
taneously exposed to the same stimuli. This makes it possible
to analyse and exploit the collective spontaneous response to the
stimuli. It has been shown that the link between multiple people’s
responses can be exploited to detect salient moments of movies
using physiological sensing [17] and, building on these findings,
we propose a novel method to measure the audience’s collective
response to live performances. In contrast to prior work that
exploits fairly reliable but less pervasive biosignals or physiological
sensing [18], [19], we show that individual and collective body
movement patterns of audience members, as measured through the
accelerometers, can also be used to measure affective responses to
a performance. The proposed method exploits the linkage between
audience members’ body movement to detect distinctive time
intervals in the performance. Individual movement patterns of
participants in these distinctive parts are then used to classify the
general evaluation of the performance.

By working closely for the last 2 years with Holland Dance
(HD), an organization whose role is to promote dance in The
Netherlands, we have identified two key challenges to measuring an
audience’s response to live performances: the limits of surveys and
the difficulty to obtain detailed responses on a large scale. Survey
responses must be obtained after the performance, at a time when
audience members are not necessarily eager to fill in questionnaires,
and they do not capture the audience’s spontaneous response to
specific moments of the performance. Even when survey responses
are available, a typical Likert scale cannot provide detailed insights



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2875987, IEEE
Transactions on Affective Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

into what aspects of a performance could have triggered someone
to like or dislike it. One way to circumvent this problem involves
using free text answers, which can provide richer information about
someone’s experience, but these need to be manually processed,
they are harder to aggregate statistically, and they are subject to
interpretation. Interviews are another possibility and provide a very
rich medium for those few audience members who are willing to
spend more time. They are, therefore, at best limited to an even
smaller subset of an entire audience and do not provide an unbiased
sample of the audience.

We address these challenges by making the following novel
contributions in this study: we show, using two real-life events that
(i) when people are watching a live performance, their spontaneous
reactions can be captured with a standard accelerometer, (ii) some
moments of collective reaction correspond to memorable events of
high affective output in the performance as can be verified by survey
responses, (iii) audience members’ reactions can be used to predict
their enjoyment of the performance, whether they felt immersed
in the experience, would recommend it to others, or thought the
performance changed their mood positively. In addition, we could
not rule out that (iv) the physical distance between audience
members and whether they joined the event as acquaintances might
have an effect on the similarity of their evaluation of the event,
but (v) found that we that we can approximately identify the side
neighbours of audience members with an acceptable performance
using proximity sensing to take this into account.
2 RELATED WORK

To view the measurement of responses from the perspective of
appraisal theory, where affective responses are considered to be
linked to the final evaluation [7], it is important to first consider
basic automatic affect recognition. A large number of studies have
been published on this topic in the last decades [10]. Most of the
early work focused on video and/or audio inputs [9], used datasets
of single input modalities [20], included a limited set of deliberate
affective displays [21], and were recorded under highly constrained
and artificially generated conditions. [22]. More recent studies,
on the other hand, generally aim to detect spontaneous affective
displays [23], prefer to use multimodal information [24] and focus
on detection of non-basic affective states [14].

New cues have started to gain importance in affect recognition;
bodily expressions being one. The use of bodily expressions for
affect recognition is supported by existing work in social psycho-
logy that shows the strong connection between body movements
and affective expressions [25], [26]. The increasing availability of
whole-body sensing technologies made it feasible to investigate
the recognition of bodily expressions for affect perception and
detection. This is reflected in the increasing number of studies that
are discussed in recent surveys [11], [12] which rely on various
approaches for capturing bodily expression such as computer vision
[13], [14], motion capture [15] and pressure sensors [16], and
generally aim to automatically map bodily expressions into well-
known affective states. These affective states might be categorical
[27] or continuous [28]). Most datasets used in such studies include
acted bodily expressions [27], [28], however, focus is being shifted
to real life data [29]. The methodology tends to be similar, where
features are extracted from sensor data, followed by the training of
statistical models for automatic affect detection. One key distinction
between these and our approach is that we do not try to discriminate
between types of bodily movements or map them to affective states.

Existing literature on the evaluation of events traditionally
investigates the response of an audience to a live performance

using self-reports, such as surveys and interviews [30], [31].
Digital technologies can overcome some limitations of surveys
and interviews and give more direct and fine-grained insights into
the response of an audience. For example, mobile computing and
the explosion in popularity of social media such as Twitter have
broadened the reach of a live performance, as fans comment and
post information and opinions live to the online community [32].
Practitioners are interested in measuring the activity of their
audience in social media, both to understand their response and
to leverage their activities as marketing tools for their performan-
ces [33], [34]. For example, some theatres, including Broadway,
have experimented with “tweet-seats” reserved for customers who
promised to tweet about the performance live [35].

Rather less pervasive sensor technologies have also been
used to overcome the granularity issues of surveys. For example,
work in neuroaesthetics uses fMRI scanning to relate viewer
responses to the aesthetics of the performance [36], [37], [38].
Other work used the tracking of eye gaze from video to distinguish
novice from expert observers of dance [39]. Some work used
physiological sensing such as galvanic skin response (GSR) sensors
to measure the arousal of individuals watching a video of a dance
performance and investigated its relationship with the individuals’
self-reports [40], while others have used GSRs to measure the
response to other types of live performance, such as comedy [41]
and movies in a cinema [19]. One specific example we would like
to point out is the work of Chenes et. al., which used GSRs to detect
highlights in movie scenes [17], and focused on exploiting the inter-
user physiological linkage calculated with simple correlation in
sliding windows over pairs of participants’ GSR readings. This
study shows that when people are exposed to the same stimuli (even
at different times), they tend to give synchronous physiological
responses which can be used to detect salient parts of those stimuli.
We build our study on a similar base where we show that such
linkage can also computed with body movements, yielding a similar
result.

These attempts show an increasing interest in quantifying the
experience of live performances, but their approaches would be hard
to apply in real settings. Unlike these approaches, we advocate the
use of pervasive sensors which are readily available in smart phones.
As such, they enable less obtrusive measurements, on a massive
scale, compared to those obtained via physiological sensing. This
makes them much more readily deployable and vastly increases
their practical use.

In this work, we rely on acceleration and proximity sensors
to measure people’s reactions to live performances. These sensors
have thus far been limited to measuring very different phenomena
such as the recognition of outdoor [42] or household activities [43],
and the detection of medically relevant events [44], [45]. These all
focus resolutely on physical activities where the behaviour can be
represented directly by quite specific body movements.

The above-mentioned work measures behaviour in environ-
ments that are far less challenging than a theatre, where the audience
sits in silence and where the link between activity and behaviour
is not as direct. The most similar work to our own was presented
by Englebienne and Hung [46] who found that they were able to
identify professors and non-professors from their behaviour in an
inaugural lecture. Although they were sitting, the small movements
made in reaction to the parts of the lecture demonstrated implicit
responses of interest to particular moments during the lecture.
Other closely related work was presented by Bao et al. [47] who
investigated how to sense the implicit responses of users watching
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movies on a tablet. Using a multimodal approach, they were able
to predict the user’s ratings of the movies they watched. However,
in this case, the user was alone and was not inhibited by the social
norms usually adhered to in a public space.

Previous work using proximity sensors to study the interactions
between individuals used approaches similar to complex network
analysis. These sensors have been used for the analysis of
social interactions in crowded settings [48], detecting different
communities in an ICT conference [49] and discovering spatio-
temporal relationships in the context of crowd dynamics [50]. While
these studies show that social relationships between individuals
can be captured by means of spatio-temporal information, they
rely on heterogeneous and dynamic inter-personal distances and
orientations. None focus on the spatio-temporal relationship infor-
mation in the context of live performances, which is paradoxically
made very complicated by to the rigid grid structure of the seating
arrangement.

3 DATA COLLECTION

3.1 Dataset 1: Dance Performance

The sensor set-up: This study took place during a live dance
performance that lasted almost an hour and a half. It consisted of
mainly dancing, interspersed with monologues by the performers.
The music was based on live cello arrangements and pre-recorded
songs. We instrumented 41 participants watching the performance
with triaxial accelerometers. The accelerometers were located in a
custom-made device hung around each participant’s neck, which
recorded acceleration at 20Hz and were kept synchronised to a
global time through wireless network communication. The wireless
radio module additionally broadcasted the device’s unique identifier
(ID), every second, with a range of 2-3 meters. The reception of
such a broadcast by a nearby device is considered a proximity
detection. Due to various hardware malfunctions, however, only 32
devices recorded acceleration data.

In addition, the performance was recorded using a GoPro Hero
+3 to manually analyse salient moments (i.e. favourite moments
that were reported by the participants). We used ∼79 minutes of
sensor data in our experiments, starting just before the first piece,
when all participants are seated, and ending when the final piece of
the performance finishes.
Survey responses: All 41 participants filled in a questionnaire after
the performance. These questionnaires consisted of 12 questions
on four topics (three questions per topic), measuring “enjoyment”,
“recommendation (to a friend)”, “immersion” and “mood changes”.
All questions used a ten-point Likert scale, where one means “I
completely disagree” and ten means “I completely agree”. For
measuring “enjoyment”, we adapted and selected questions presen-
ted in [51]; for “immersion”, we selected involvement questions
from the Igroup Presence Questionnaire [52]; for “recommendation”
we used items from O’Brien’s questionnaire [53]. Each of these
questions were carefully chosen to measure each task and slightly
adapted to match our scenario. We formed the questions regarding
mood by ourselves. The complete set of questions asked in this
questionnaire in English are listed in the Appendix.

In the rest of this paper, we refer to the participants “experience”
of the performance to indicate the participants’ sentiment about the
performance, as measured by the questionnaires.

Of the 32 participants with valid accelerometer data, 25 reported
a favourite moment of the performance. Two moments were
particularly memorable: the motorcycle sequence and the bolero
finale, declared as favourites by 32% and 52% of the participants,

respectively. Note that some participants declared more than one
favourite moment.
3.2 Dataset 2: A day of Wonder
The sensor set-up: As a follow up, we organised a second study
in the ‘A day of Wonder’ festival that took place at the Delft
University of Technology. This one-day festival is a combination
of events regarding technology, music, food and art. We focused
on one specific event that comprises two adjacent sets; namely
‘Tales for the Curious Mind’ and ‘Enhancing Classical Music’. The
first set included three presentations from various researchers and
designers. The first presenter talked about a minimally-invasive
surgical instrument, the second one described a smart wedding
dress and the final speaker introduced a micro drone (delfly).
The second set was an innovative classical concert experience
which started with a solo piano performance, followed by the talk
of the performer and concluded with the classical music piece
Zigeunerreisen, performed by a duo of violin and piano. The whole
festival was free to attend and was open to the public. Participation
in the data collection was voluntary and participants were allowed
to leave whenever they wanted. Some of the participants were
seated while others were standing.

Participants wore our custom-made sensor pack hung around
their necks, recording tri-axial acceleration and proximity infor-
mation with the same setup (20 Hz and synchronised globally)
as Dataset 1. A GoPro Hero +3 camera recorded the stage for
further verification. We have treated the two sets as two separate
events. In total, 56 accelerometers are used in the experiments.
After filtering out invalid data (technical problems, participants
leaving early, missing or incomplete questionnaires) we had valid
data for 23 people in the first set and 21 in the second set. For our
experiments, we used ∼ 42 minutes from set I and ∼ 22 minutes
from set II.
Survey responses: When a participant left the event, we asked
them to fill in a questionnaire with the same six questions used
for ‘enjoyment’ and ‘immersion’ at the ‘Dance Performed’ event.
Questionnaires were taken separately for the two sets. Thus, a
participant joining only one of these events filled in the relevant
questionnaire only. For the first set, 48% of the participants stated
they really enjoyed the drone presentation (delfly) while 62%
of them chose the ‘real’ presentation of the surgical device as
the top moment. For the second set, only 6 participants noted a
favourite moment. These all consistently preferred Zigeunerreisen,
the musical performance at the end of the presentation.

4 DATA ANALYSIS

In this section, we analyse the datasets in terms of shared
experience and movement. Our assumption was that both the
participants’ subtle and more expansive movements are related
to the experience of the event. In section 5, we evaluate predicting
individual questionnaire responses from measured movement.

We used the variance of the magnitude of the accelerometer
readings, which are shown to act as the best proxy for the physical
activity level of the participants in [46], using a sliding window
of 2 seconds (40 samples) with 1 second shift (20 samples) to
capture the subtle variations in motion while preserving a fine
time scale. This window size is empirically found to perform best
whereas larger window sizes suppresses subtle movements we
are interested in. Before calculating the variance, the z-score of
the magnitude is computed to remove interpersonal differences.
Then, for each dataset, we computed the Mutual Information (MI)
of this variance for every possible pair of participants, creating a
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Fig. 1. Mean co-occurrence measurement distance over time for all
participants using Mutual Information (MI) for Dataset 1. Moments that
were reported as salient are highlighted in red, together with number of
times they were reported.

Fig. 2. Mean co-occurrence measurement distance over time for all
participants using Mutual Information (MI) for Dataset 2. The 2 main
sets of the event are highlighted in red and the talks in green.

pairwise co-occurrence measurement of the physical activity over
time. These signals were computed over a sliding window with
a size of 60 samples and shifted by one sample, resulting in a
vector reflecting co-occurrence of motion, over time, between two
participants.

4.1 Binary labels for evaluation

For our analysis, we convert the questionnaire responses for each
experience category (“enjoyment”, “immersion”, “recommendation”
and “mood improvement”) to a binary label. We set up the
questionnaires to contain three redundant questions per category
and averaged the answers to obtain a single numerical value for
each category. This was converted to a “positive” or “negative”
experience: participants whose averaged answer was below 5 for a
category were placed in the negative class for that category. This
way, we obtain four different labels for each participant in Dataset
1, and two different labels in Dataset 2. The class distributions of
all categorues for each event obtained with this setup are given
below.
Dataset 1: For “enjoyment” and “recommendation”, the majority
of participants (26 out of 32) gave positive answers. 22 participants
thought “the performance affected their mood positively”. The
distribution for the “immersion” task is relatively more balanced
with 17 participants in the positive class.
Dataset 2: 21 out of 23 participants and 18 out of 20 participants
gave positive responses to the “enjoyment” questions for the first
and second sets. For “immersion”, 16 out of 23 and 9 out of
20 participants responded positively for the first and second sets,
respectively.

4.2 Dataset 1

We investigated three things: 1) Do moments when people move
in synchrony correspond to salient moments of the performance?
2) Is the proximity between people in the audience a factor that
also triggers synchronous motion and does it affect the reported
experience? 3) Will it be possible to automatically identify sitting
neighbours through proximity sensors?

4.2.1 Synchrony and salient moments
We hypothesised that salient moments should correspond to a high
MI among all participants. We used an Otsu threshold [54] on the
the mean pairwise MI of all possible pairs (computed as explained
in Section 4) to select parts where co-occurrence of the physical
activity is relatively high. Traditionally, Otsu thresholding is used
for converting grayscale images (continuous pixel values from 0
to 1) to black and white (binary). Since our MI values also lay
between 0 and 1, we employed this method to detect moments of

high co-occurrence of physical activity. Figure 1 shows a timeline
depicting timesteps for which the average MI for all pairs is more
than the threshold, in blue, as well as all reported favourite moments
together with their reporting frequency, in red. Notice that all of
the reported favourite moments show up in the MI, including the
two moments declared as favourites for the majority of participants
(motorcycle and bolero finale), and that most moments of high
MI correspond to reported moments. This shows that memorable
moments for people during these events can be captured by their
coordinated movements, as they share the experience.

Fig. 3. Mean MI between participants sitting together during the Dataset
1. Green dots indicate subjects who did enjoy the performance, red dots
indicate subjects who did not, and black dots indicate empty seats (or
people for which no data is available). The width of the blue bars indicate
the average MI value throughout the performance, while dashed lines
are non relevant MI relations.
4.2.2 Impact of proximity
In this section, we analyse the impact of proximity in the enjoy-
ment of the event. The participants were seated throughout the
performance, making people’s relative location static. We identified
where each participant was sitting during the performance and used
this ground truth information for the analysis. Figure 3 shows the
mean MI (calculated over the whole event) between neighbouring
participants (side, front and back neighbours). In addition, red
subjects represents those who did not enjoy the event while the
green ones did.

Figure 3 has 41 connections between neighbouring participants.
Similar to the former analysis, MI between two people is considered
low if the value is less than the Otsu threshold computed on all
connected pairs. When all four neighbours are considered, there are
15 and 12 connections of high and low average MI between people
who enjoyed the event, respectively. The values are 7 and 6 if only
side neighbours are considered. Higher number of connections
with high MI shows that proximity might have an effect on the
evaluation but the low difference between numbers of high and low
MI connections makes it harder to come up with hard conclusions.

We must also account for the people that came together to the
event. The groups of participants that are known to come together to
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the event are shown in Figure 3 as dashed black lines. Although the
pairwise MI and enjoyment of the event is comparatively high for
some of the participants that came together, this does not generalise
for all groups of acquaintances. Also, there are five cases where
two participants shared a high MI but their enjoyment of the event
differed. We surmise that such high co-occurrence values are due
to shared comments or other shared actions that had no relation
with the performance, but we cannot directly prove this since we
do not have video recordings of the audience.
4.2.3 Identifying sitting neighbours
In this section, we investigate whether we can leverage the
proximity data to identify who is sitting close to whom. Basically,
we are trying to see if it is possible to construct a connectivity graph
similar to Figure 3 automatically, using the proximity detections
of our sensors. The proximity sensing is omnidirectional, however
how the shielding effect of the body influences the detection
of individuals sitting sideways, front or behind is unclear. Even
assuming neighbours can be detected, it is unclear how far they can
be sensed and how this relationship can be characterised since no
signal-strength is recorded by the sensors.

One would assume that the closer two individuals sit together,
within the detection range of the sensor of 2-3 meters, the more
frequently their nodes will detect each other. With this assumption,
we investigate which neighbours are frequently detected through
sensing by the following methodology:
1) For every node ui,j (participant sitting at row i and columnj),

count how often each ID was detected over the duration of the
event,

2) Keep top K IDs as the candidate neighbours,
3) Check if these K candidate neighbours correspond to:

a) 1-Hop side neighbours(ui,j−1,ui,j+1 )
b) Front and back neighbours (ui−1,j ,ui+1,j)
c) 1 and 2-Hop side neighbours (ui,j−1,ui,j+1,ui,j−2, ui,j+2)
d) Diagonal neighbours (ui−1,j−1, ui−1,j+1, ui+1,j+1

,ui+1,j−1)
For evaluating cases a) and b), we set K = 2. For cases c) and

d), K = 4. Frontal and diagonal neighbours yield low recalls of
0.37 and 0.24 respectively, while 1-hop neighbours yield precision
of 0.62 and recall of 0.86. When we also add 2-hop neighbours,
we obtain a precision of 0.59 and a recall of 0.84. These suggest
that some of the neighbours detected for the 1-hop neighbours
(with K = 2) are 2-hop neighbours (lowering the precision), but
2-hop neighbours are not consistently detected such that precision
and recall are still similar with K = 4. The other source of
error in precision in both cases are the rare detections of frontal
and diagonal neighbours, which are not detected consistently but
sometimes appear in the top-K list for some individuals.

To conclude, it is not possible to satisfactorily detect diagonal,
front and back neighbours through proximity sensing. However,
the precision and recall values obtained when classifying 1-hop
and 2-hop neighbours show that it is possible to detect who is
sitting at the sides of an individual with some sampling of frontal
and diagonal neighbours. This information is valuable in analysing
events where people are seated but the seating arrangement is
unknown.
4.3 Dataset 2
The same analysis of Section 4.2.1 was carried out for Dataset 2.
Figure 2 shows the mean MI among all participants along with
the separations between the sections of the event (parts and talks).
One key difference between the two datasets is their structure.

Dataset 1 is collected in a continuously flowing event, whereas the
Day of Wonder has clearly delimited talks. This structure can be
clearly seen in 2, where after each talk a high MI value is observed,
corresponding to the rounds of applause and possible relocations
between talks. This behaviour was not present in the Dataset 1
as that event only had a single round of applause at the end of
the performance. We also see the highest peaks between the two
talks and after the second talk ends. People were allowed to leave
at these points, corresponding to global high co-occurrences of
physical activity.

In contrast to Dataset 1, we don’t see many peaks during the
talks. Different factors can explain this. First of all, the crowd in this
event was a mix of seated and standing people. This might cause an
overall drop of the global pairwise MI, since the measured reactions
of seated and standing people are expected to be different. Secondly
and more importantly, there are many parts where everyone in the
audience reacts, such as the ending of the talks. Such parts are
shown to be have high global MI, and they might suppress co-
occurring subtle responses to the event by increasing the threshold.
So, if the aim is to find salient moments in an event like this,
moments like applause or people leaving should be excluded from
the analysis.
5 AUTOMATIC PREDICTION OF THE EVALUATIONS

We investigate, on both datasets, whether it is possible to predict
questionnaire responses about the performance from accelerometer
data. In the following sections, we perform classification expe-
riments, where we present our methodology for automatically
predicting a participant’s evaluation of the events.

5.1 Classifying Experience
5.1.1 Methodology
To emphasise the connection between the information contained in
the motion data and the participants’ experience of the event, in our
classification experiments we focus on a simple set of features and a
well-understood classifier. Our features are the acceleration variance
along each axis and the overall acceleration magnitude variance.
Our classifier is a Linear Support Vector Machine (SVM, [55]).
Since the number of samples is limited, we opted for a model with
few parameters. We evaluated the performance of our method with
leave-one-participant-out cross validation. The hyperparameters of
the SVM are selected using nested cross validation on the training
set. The variance values of each window are treated as independent
features, resulting in high dimensional feature vectors, but since
we do not expect all intervals to be equally informative, we applied
filtering to select the features from informative intervals. The steps
of feature extraction, feature (interval) selection and classification
are presented below:
Feature Extraction
1) For each participant, compute the variance of the acceleration

X, Y, Z, and magnitude, using a 2s sliding window with 1s shift,
resulting in 4 features for each 2s time window.

2) Concatenate the feature vectors from each window to obtain a
single feature vector of the whole event, per participant.

Feature (Interval) Selection
1) Compute Dynamic Time Warping (DTW) values over the

previously computed features for each pair of participants. The
DTW window size is the number of feature extraction windows
it contains, so that a 5-sample DTW window contains 20 features
(4 features for each of the five 2s window).

2) Obtain an OTSU threshold using all computed DTW values.
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3) Select the windows whose DTW scores exceed the threshold.
4) For each participant, keep the features of the selected windows.

So, if 3 non-overlapping windows are selected with 5-sample
DTW windows, each participant’s resulting feature vector has
60 dimensions.

Classification
1) For further dimensionality reduction, apply Principal Compo-

nent Analysis (PCA) to the feature vectors and keep the principal
components which preserve 99% of the variance.

2) For each participant p:
a) Train a Linear SVM on the feature vectors of all participants,

excluding p.
b) Classify the feature vector of p.

Our assumption is that the intervals with high average pairwise
DTW distance are more discriminative than the rest. In an ideal sce-
nario, intra-class distances should stay relatively stable throughout
the event, so that intervals where the average DTW distance is high
are those where the inter-class distances are maximised. We expect
average DTW to provide better discrimination between classes than
mutual information, as windows with high MI would correspond to
moments where the classes would be almost indistinguishable
and all participants’ movements are synchronised. Empirical
results using MI supported this claim, with performance scores
significantly lower than the proposed method for the majority of
the tasks.

Features (variance values) are computed over 4705, 2503 and
1293 windows for the Dataset 1 and Dataset 2 Parts 1 and 2,
respectively. Each window corresponds to an interval of 2 seconds
and 4 features. The number of remaining intervals after feature
selection depends on the window size for the computation of the
DTW values, where we experimented with window sizes ranging
from 1 sample to 80 samples, each with a 1 sample shift. For Dataset
1, the number of selected intervals ranged from 44 to 1065. For
the first and second parts of Dataset 2, number of selected intervals
ranged from 166 to 802 and 55 to 935. After the PCA, dimensions
of the feature vectors used in the classification experiments of
Dataset 1 ranged between 18 and 28, whereas the range for Dataset
2 was 15 to 22.

5.1.2 Results and Discussion
Table 1 reports the performance results for both datasets for
different window sizes, both with and without pre-filtering salient
intervals using thresholded DTW distance. We selected balanced
accuracy [56] as our performance metric to account for the class
imbalance. The results that are significantly better than using the
whole event are indicated with an asterisk. Significance was compu-
ted using an asymptotic McNemar’s test with misclassification
costs that are inversely proportional to the class distributions.
While training the Linear SVM, the samples are weighted inversely
proportional to the class frequencies to combat imbalance.
Dataset 1: Without interval selection, the results (final row of
Table 1) are generally unsatisfactory. Any task other than predicting
“recommendation” has a balanced accuracy score at, or below,
chance level. We should note that we did apply PCA to the feature
vectors for the non-filtered method. Without interval selection,
PCA requires many more components to keep the same amount
of variance in order to model the many non-informative intervals,
supporting our claim of interval selection is necessary.

We were able to get perfect classification results for “Enjoyment”
when performing interval selection, with window sizes ranging from
1 to 20 samples. In addition, all other window sizes still yielded

Method \ BAcc (%) Enjoyment Recomm. Immersion Mood
D1 D2-1 D2-2 D1 D1 D2-1 D2-2 D1

DTW IS(1 Sample) 100∗∗ 48 50 92∗ 58 58 100∗∗ 46
DTW IS(5 Sample) 100∗∗ 50 50 100∗∗ 65∗ 65 100∗∗ 47
DTW IS(10 Sample) 100∗∗ 48 50 100∗∗ 59 68 90∗ 53
DTW IS(20 Sample) 100∗∗ 63 50 92∗ 65∗ 58 90∗ 56
DTW IS(40 Sample) 92∗∗ 53 47 90∗ 52 71 94∗∗ 47
DTW IS(80 Sample) 81∗∗ 48 44 73 52 68 84∗ 49
Whole Event 48 48 44 65 46 68 52 51

(*→ p<0.1) (**→ p<0.05)
TABLE 1

Prediction performances for both datasets. Scores for Dataset 2 parts 1
and 2 are shown in bold and italic, respectively as second and third

values at cells of “Enjoyment” and “Immersion”.

significantly better performance (p<0.05) than using the whole
event or chance prediction. The performance tends to drop with
increasing window size, suggesting a small window size might
be more suitable for detecting enjoyment. Further supporting this
claim, using data from the whole event fails to give results better
than random. Even though computing DTW over single-sample
windows might sound counter-intuitive, the filtering approach is
still able to find informative intervals. This works probably because
even a single sample has temporal information, since its value is
extracted from a 2 second window.

Results for “Recommendation” show similar characteristics to
“Enjoyment”: perfect classification, significantly better than using
the whole event (p<0.05), is achieved with window sizes of 5
and 10 and the performance tends to drop with the increasing
window size. Using features from the whole event still provides
performance better than random with a balanced accuracy of 65%.
This might simply mean that “recommendation” can be inferred
from the whole event with an acceptable performance but some
parts of the event might be still more indicative, providing finer
results.

The performance for “Immersion” and “Mood” is relatively
poor compared to the others. These experiences are less im-
mediately about the performance itself, and may be harder to
report objectively, bolstering the case for immediate sensing over
reappraisal. For “Immersion”, the highest performance is 65 percent,
obtained with 5 and 20 sample windows which is still significantly
better than using the whole event (p<0.1). The performance for
this task does not seem to be changing too much between 1 to 20
samples, and fluctuates between 58 and 65. However, using larger
windows result in poor performance. For “Mood”, the highest
obtained performance is 56% with a window size selection of 20
samples. Most of the other window sizes resulted in performances
worse than random.

The optimal window size tends to differ for each experience,
suggesting that some experiences are reflected in shorter time scales
than others. Also, most tasks performed best when small to medium
sized windows were used, indicating that large window sizes fail
to capture the connection between participants’ movements.

We experimented with computing DTW distances on the raw
accelerometer magnitude signal instead of the variance over a
window. This experiment resulted in performance scores that were
worse than random for “immersion” and “mood”. Highest balanced
accuracy scores for tasks of “enjoyment” and “recommendation”
were 58 and 68 percent, respectively. For all tasks, using the
variance rather than raw signal in DTW distance computation
resulted in relatively better performance. We can conclude that
variance in acceleration is a useful feature, both as a feature for
prediction and for the interval selection using the thresholded DTW
distance. This is probably because the variance of acceleration
reflects the amount of movement rather than the precise movement
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and its direction, leading to more robust recognition.
Dataset 2: As shown in Table 1, for the first part of the event,
we were able to obtain better-than-random performance for both
tasks, but the very limited number of negative examples make it
impossible to make hard conclusions. The highest performance
for “Enjoyment” was 63%, obtained with a window size of 20
samples. Compared to the balanced accuracy of 48% obtained with
the whole event setup, this result supports pre-filtering with DTW.
However, all other window sizes failed to capture any meaningful
information, providing either slightly higher or lower performances
than a random baseline. Compared to the results on Dataset 1, this
suggests that the optimal window size for a task might also change
with the characteristics of the event. For “Immersion”, the optimal
window size seems to be quite arbitrary. The highest performance,
71%, is obtained with 40 samples. However, using features from
the whole event also results in a balanced accuracy of 68% which
is not significantly different than the best score. Thus, for the first
part of this event, “Immersion” can be detected with an acceptable
performance without requiring filtering.

Results are quite different for the second part of the event.
For “Enjoyment”, most of the window sizes resulted in a balanced
accuracy of 50%, showing that the classifier fails to learn anything
from the data. Multiple factors might have caused this. Firstly, we
only had 2 negative samples. We believe the negative samples for
the first part were more informative than the second one, making it
possible to obtain better performance. Secondly, the length of the
second part is the shortest of our all datasets. In order to capture
a complex concept such as enjoyment, temporally more extended
data might be required. Finally, this part was the closing act. Even
though the majority of people reported this part as one of their
favourites, 1) there may be a memory effect in play, where people
report the event that’s most fresh in their mind as the favourite, and
2) movement patterns of people might tend to change when nearing
the end of events.

We were able to get perfect classification for “Immersion” with
windows of 1 and 5 samples. Contrary to the first part, using the
features from the whole event results in a balanced accuracy of 52%
and the results with filtering are significantly better. This supports
our claim that the optimal window size depends not only on the
task, but also on external factors to the task.

These follow-up experiments with an event of differing charac-
teristics show that whether people are standing or sitting does not
really affect our capacity to analyse people’s response to the event.
Our proposed methodology still provides competitive results, even
in the quite unruly, noisy, real-world situation of these festival-style
events.
6 CONCLUSIONS

In our study, we have investigated how an audience’s perception
of a performance can be recognised and measured from their body
movements with an accelerometer such as typically present in smart
phones. We have presented our results on two datasets collected
during live performances. These have different characteristics, both
in terms of the performance itself and the audience demographics.
Building on findings from appraisal theory and affective studies,
that show how a stimulus creates an affective response which
can be connected to experience, we analysed whether subtle and
complex concepts would be reflected in the body motion as
measured by a simple accelerometer hung around the neck. These
concepts included “enjoyment”, “immersion”, an improvement in
mood as a result of the performance, and whether participants
would “recommend” dance in general. Using the variance of the

acceleration, we were able to predict the audience’s self-reported
experience in both events, in terms of the aforementioned complex
concepts.

Importantly, joint coordination in the acceleration variance,
which reflects how the body movements of participants are related,
helps to distinguish salient from non-salient moments of the
performance. Restricting the analysis to these leads to significant
improvements over using each individual person’s body movements
from the entire performance period. We analysed how the spatial
layout of a seated audience might affect its members’ experience
of the performance and presented a proximity-based method that
can automatically detect neighbouring participants with satisfying
performance. Our experiments shows huge promise in enabling
us to measure the implicit responses of people while watching
a live performance without the need for more traditional — and
less practical — sensing approaches using physiological or brain
signals. However, and perhaps more importantly, our experiments
demonstrate the potential of quantifying the experience of ‘a
cultural night out’, highlighting the relevance of the social context
in moderating an individual’s enjoyment of an event.
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