
Grip on
Energy
with Blockchain Technology
Robbert Koning
Suleiman Kulane
Erwin van Thiel
Jordy de Wit

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Grip on Energy
with Blockchain Technology

by

Robbert Koning
Suleiman Kulane
Erwin van Thiel
Jordy de Wit

Bachelor’s Thesis
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Project duration: November 11, 2019 – February 16, 2020
Thesis committee: Dr. S. Roos, TU Delft, supervisor

Ir. O.W. Visser, TU Delft, coordinator
Ir. S. Hijgenaar, CGI Nederland, Senior Business Consultant
Ir. H. Heine, CGI Nederland, Director Consulting Services

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report portrays what we, the authors, have accomplished and learned during our bachelor’s thesis
and we would like to present it to you proudly. We would like to thank and acknowledge Stefanie
Roos for her guidance and consultation, Otto Visser for helping us with legal concerns, Henry Heine for
being our contact at CGI and answering all our questions with respect to contractual matters, and finally
Sjors Hijgenaar for his consultation, for his encouragement, for his enthusiasm despite the setbacks
we experienced, and for giving us the opportunity to do this project in collaboration with CGI Nederland
in the first place.

Robbert Koning
Suleiman Kulane
Erwin van Thiel

Jordy de Wit
Delft, February 2020

i

Summary
Switching energy suppliers can be a time consuming process and the manner in which permissions
regarding consumer data are stored lacks transparency. To overcome these issues, a solution was
proposed in the form of a mandate register. Said register keeps track of which consumer gave what
permission, regarding energy data, to whom. In this project a prototype of such a register was built.

The register is required to be designed in such a way that it is expandable and secure. From
these characteristics, the conclusion was drawn that a permissioned blockchain network was the most
suitable option for storing mandates in a decentralised and immutable fashion.

The most fitting consensus algorithm for the blockchain network was determined to be the Raft algo-
rithm. For implementation of the blockchain network, a widely-documented and advanced framework
called Hyperledger Fabric was used, which was be configured to use Raft. A network in Hyperledger
Fabric is a set of organisations of which subsets can form channels together. Each organisation con-
sists of multiple peer nodes, each with a corresponding ledger, database and smart contracts. The
mandate register network consists of two channels, the first containing seven organisations, with two
peer nodes per organisation. Apart from these seven organisations, the network contains seven order-
ers, which work in the second channel and which are responsible for managing transactions made by
an application.

On top of the network, an application was built that connects to the network and functions as a
simple web server. The web server allows consumers to submit their mandates as input to the network
and query mandates from the network.

Performance evaluation of the network shows that it requires much optimisation before being ready
for deployment in the real world.

Apart from optimisation, there are various tasks related to security, authentication, deployment, and
the GDPR which have to be completed before the register can be used in production.

ii

Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Outline . 2

2 Conceptualisation 3
2.1 Design Goals . 3

2.1.1 Expandability . 3
2.1.2 Security and Privacy . 3

2.2 Blockchain . 4
2.3 Requirements. 5
2.4 Success Criteria . 6

3 Design 7
3.1 Consensus Algorithms . 7
3.2 Frameworks. 9
3.3 Hyperledger Fabric Framework . 10

3.3.1 Network Concepts . 10
3.3.2 Network Rules . 12
3.3.3 Transaction Endorsement Process . 12

3.4 Mandate Register Model . 13
3.4.1 Components . 13
3.4.2 Policies . 13

3.5 Network Binaries . 14
3.6 Container Communication . 15

4 Implementation 16
4.1 Fabric Background . 16
4.2 Mandate Register Logic . 16

4.2.1 Chaincode . 16
4.2.2 Mandate Register Application . 18

4.3 Code Testing . 18
4.3.1 Chaincode Unit Tests. 18
4.3.2 Node.js Testing . 19

5 Evaluation 20
5.1 Performance Metrics . 20
5.2 Procedures . 20
5.3 Evaluation Setup . 20
5.4 Results and Discussion . 21

6 Discussion & Future Work 24
6.1 Project Evaluation . 24

6.1.1 Solving the Defined Problems . 24
6.1.2 Meeting the Design Goals . 24
6.1.3 Completing the MoSCoW . 25

6.2 Ethical Implications . 26
6.2.1 Authentication . 26
6.2.2 GDPR . 27

6.3 Process . 27
6.4 Future Work & Recommendations. 29

iii

Contents iv

7 Conclusion 31

A Info Sheet 32

B Usage Manual 34
B.1 Scripts. 34

B.1.1 docker-swarm-cleanup.sh . 34
B.1.2 generate-artifacts.sh . 34
B.1.3 network_init.sh . 34
B.1.4 start.sh . 34
B.1.5 addOrg.sh. 35

B.2 Running the network . 36
B.2.1 Prerequisites . 36
B.2.2 Single Host Machine Network . 36
B.2.3 Multi Host Machine Network . 36
B.2.4 Application . 36
B.2.5 Testing . 37
B.2.6 Evaluation. 37

C Original Project Description 38

D Research 40
D.1 Introduction . 40
D.2 Problem Analysis . 40

D.2.1 Current Situation . 40
D.2.2 Problem Definition . 41
D.2.3 Proposed Solution . 41

D.3 Design Goals . 41
D.3.1 Expandability . 41
D.3.2 Security and Privacy . 42
D.3.3 Success Criteria . 42

D.4 Design Choices . 42
D.4.1 Data Storage . 43
D.4.2 Blockchain . 43

D.5 Blockchain Frameworks . 45

Bibliography 47

1
Introduction

For consumers, switching from energy supplier within the Dutch energymarket is quite a straightforward
process; a consumer contacts their preferred new energy supplier and waits a few weeks. During these
weeks, the new supplier checks the Contract Einde Register (CER) to verify the consumer is allowed
to switch according to their current contract and their cancellation period. If the consumer is allowed to
switch, the new supplier contacts a distribution grid operator (DGO) with the switch request.

There are seven distribution grid operators in the Netherlands which deal with the electricity network.
These DGOs each have their own territory, meaning all estates in a certain area are managed by
a certain DGO. Therefore, consumers cannot choose their DGO like they can choose their energy
supplier; the location of their home determines which DGO is responsible for them. Among other
tasks, DGOs handle supplier switching and maintain the energy grid.

One step of supplier switching is communicating a consumer’s energy measurement data between
energy suppliers. This data is collected using the smart meter installed at a consumer’s estate, which
is numbered by a unique EAN code. The collected data is used to determine at what usage value a
certain contract ends and a new one is started. For the new supplier to be allowed to collect this data,
they need permission from the consumer to read their smart meter. Permission is given implicitly when
a consumer initiates a switch request.

1.1. Problem Definition
From the context defined above, a few main problems become apparent:

1. Lack of transparency: In the current system, consumers have no clear overview of the parties that
are or have been able to see and use their data, because currently no record of these permissions
is being kept.

2. Time consumption: The process of switching suppliers can be time consuming for consumers.
It can take up to six weeks for the switch to go into effect [21]. When switching, there is much
communication between parties, for instance for verifying each others’ data. Verification can be
even more time consuming when there is conflict between parties. Moreover, the new supplier
has to wait on permission to read the client’s smart meter data.

The project’s aim is to solve these problems by building a mandate register that stores the con-
sumer’s permission (or mandate) for the data to be used. Such a register would allow consumers to
digitally specify which energy suppliers are allowed to use their data. This means that consumers be-
come able to change which energy suppliers are able to use their data with a simple update in the
register.

A register accessible to both consumers and suppliers could overcome data transparency issues
from the perspective of consumers while keeping consumer energy data usable from the perspective
of suppliers. The register can be used to implement an interface in which consumers can see a proper
overview of the parties that are or were allowed to use their data, and when.

1

1.2. Outline 2

Moreover, the register could speed up the process of switching from suppliers, because it could
perform the necessary checks itself so that suppliers do not have to trust each other.

Lastly, many other use cases become possible with an efficiently functioning mandate register.
This is because consumers can make specific data available for use by any type of party, such as an
academic institution. Though the main focus of this project is switching to another energy supplier, a
large emphasis is placed on keeping the door open for other use cases.

1.2. Outline
First, a conceptualisation of the solution is given, by specifying design goals, supporting the choice
to use blockchain technology, and specifying a list of requirements. The conceptualisation ends with
a set of success criteria. Then, a mandate register is designed by choosing a suitable consensus
algorithm, choosing a framework, and analysing its workflow and concepts. Then, the implementation
of software regarding logic of the network and the application that connects to it are explained. Then, the
performance of the register is evaluated by means of specifying the metrics, procedures and topology of
an evaluation network. The evaluation is concluded by listing the results in suitable tables and figures.
Finally, the resulting implementation and evaluation are reflected upon. This is done by discussing
the evaluation results, the success criteria, the ethical implications, the process and issues that were
involved, and lastly the work that has yet to be done.

2
Conceptualisation

In this chapter the project’s design goals are specified, the design choices with respect to data storage
are elaborated upon, and the requirements that were set in consultation with the client and supervisor
are listed. The chapter is concluded by stating the success criteria.

2.1. Design Goals
2.1.1. Expandability
Expandability is crucial to the success of the project. All major design choices were made with the idea
that the system should support many different use cases and many users.

Support for various Use Cases
It is critical that the system can be extended to support many different use cases. While the project’s
specific use case is allowing consumers to switch between energy providers, the challenge is to facili-
tate as many other use cases for mandates as possible. In order to facilitate other use cases, mandates
should adhere to a generic format, intuitively formatted as: ‘Party 𝑋 grants/revokes permission for party
𝑌 to access 𝑋’s data concerning 𝑍, for the purpose of𝑊.’ 𝑍 in this project would be energy and𝑊 could
for instance be ‘contract’, ‘research’, etc. Therefore, instead of implementing a single use case, a sys-
tem is implemented, which is then proven to work by implementing a use case on top of it.

Scalability
Another important aspect of expandability is that the system should be able to handle thousands of
consumers simultaneously granting and revoking mandates and hundreds of parties simultaneously
querying this data.

2.1.2. Security and Privacy
Another design goal is ‘security and privacy’. This means that data read from the system is accurate,
that data written to the system is verified, that parties with access to the system are authenticated, that
the system does not have a central authority, and that the system handles sensitive data with care.
These statements are elaborated upon below.

Verified Data Reading
Data queried from the system must be accurate and untampered with. Parties must be assured that
they can retrieve all mandates that belong to them from the system, and that these mandates are
untampered with and complete. Therefore, all mandates that are accepted by the system, should be
immutable once stored.

3

2.2. Blockchain 4

Verified Data Writing
All data that is written to the system should be verified to adhere to the mandate format defined in
Section 2.1.1, before it is written to the system.

Authentication
In order to guarantee that mandates cannot be granted, revoked or read by unauthorized parties, all
parties with access to the system should have to authenticate themselves before being able to read or
write mandates.

No Central Authority
In order to prevent improperly functioning parties from modifying consumers’ mandates, there should
not be a central, corruptible authority for adding data to the system.

GDPR Compliance
The system is credible if it handles consumers’ data with care. Therefore, it should follow the guidelines
laid out by the General Data Protection Regulation (GDPR) [7]. The concept of a mandate register is
in line with the GDPR’s core principles, for it gives consumers more control over their own data.

However, mandates themselves are personal data because they can be traced back to individuals.
Storing these mandates raises GDPR concerns and these concerns should be taken care of. However,
it is important to realise that solving all problems might not be possible within the scope and duration
of the project.

2.2. Blockchain
Distributed database systems were considered for the storage of mandates. After discussion with
the client, it became apparent that they had a preference for using blockchain, so blockchain was
considered an option. Another option would be any other type of distributed database. Both systems
can have similar properties such as decentralisation and immutability. Decentralisation is important
because the authority to change data in the network should not be centralised. Decentralisation is only
possible in distributed systems. Immutability guarantees that the data cannot be altered after addition.
These properties are required when considering the design goals of expandability and credibility.

Blockchain in general was found to have a large collection of available documentation and tutorials.
Also, nodes in a blockchain network can all be mutually mistrusting entities that do not want to have to
rely on a trusted third party for exchanging data [22]. Taking into account these properties of blockchain,
it is apparent that blockchain does not have any considerable disadvantages compared to any other
distributed databases for this project. Therefore, after thorough research and discussion, it was agreed
upon to use blockchain for the project.

Having decided upon using blockchain, two types of blockchain can be considered. Namely
permission-less and permissioned blockchains. A permission-less blockchain is a blockchain that ev-
erybody is free to join at any time. There is no central authority that can decide to ban or disallow any
peer. This means that everybody can host a node in the network [22]. A permissioned blockchain,
however, does work with an authority which decides who can or cannot be part of the network and
which participant gets what rights. An example could be the right to validate blocks [22]. Note that the
central authority in a permissioned blockchain cannot hinder data transactions between nodes.

In this project, there was need for a third party to decide who is allowed to host a server, because not
everybody should be able to do so. Consequently, a permissioned blockchain with a central authority
determining its participants was determined to be the option best suited for this project. The blockchain
would also be private rather than public because not everybody should be able to access the stored
data. The parties participating in the blockchain network are the seven DGO’s. They do not have a
financial stake in the switching of energy suppliers, but are however part of the process.

2.3. Requirements 5

2.3. Requirements
After discussing with the client, the original project description, as found in Appendix C, was altered
to create a MoSCoW requirements document. The enumeration below specifies what exactly was
changed.

• Not all use cases listed in the original project description document were to be be implemented.
Instead, the focus was put on switching energy suppliers.

• The original project description stated that multiple data sources should be interconnected. A
consequence of shifting the focus to only the aforementioned use case was that only one data
type would be considered, namely energy consumption data.

• DigiD was meant to be used for authentication, and the client had tried to get a development
environment for this. However, the client could not get this done before the project started thus
authentication would be implemented in another way.

MoSCoW
Must Haves

• Mandates must be stored on a blockchain

• The blockchain must be permissioned, such that validators will only be added on a permissioned
basis.

• A consumer must be able to see an overview of their mandate(s).

• A consumer must be able to grant mandates for specific parties to access specific data.

• A consumer must be able to revoke mandates for specific parties to access specific data

• A consumer must be able to switch between energy providers.

• A producer, meaning a party that produces energy, must be able to query the network to verify if
a consumer gave them a mandate to access specific data.

• Validator nodes must be able to validate users’ requests to append data. A request is considered
valid if:

– The user making the request is authorized and authenticated.
– The request is properly formatted according to the protocol that is specified.

• Validator nodes must be able to append valid requests to the blockchain using a consensus
algorithm.

Should Haves

• The protocol should allow granting/revoking access to different types of data.

• A user should be able to authenticate using DigiD or another authentication method.

• A user should have a graphical user interface to give and revoke mandates.

• A user should have a graphical user interface to show a history of their mandates.

• A user should be able to automatically revoke mandates for a previous energy provider when
switching to a new one.

• The network should be able to add and remove validators.

Could Haves

• A user could be asked for confirmation when they initiate a mandate modification.

2.4. Success Criteria 6

• The consumers’ mandates are categorized under their EAN-code.

Won’t Haves

• The blockchain will not support prosumers (consumers that produce energy as well).

• The blockchain will not support any other type of asset beside energy meters.

Non-Functional Requirements

• The system will be properly tested. Tested means that the written code will be:

– Software tested and measured using code and branch coverage.
– System tested for a small mocked network.

• The blockchain will be set up using frameworks.

• The system will be developed using version control Git.

• The code will be sent to the Software Improvement Group (SIG) for evaluation.

2.4. Success Criteria
Based on the problem definition of Section 1.1 and the design goals and requirements of this chapter,
it is possible to state the criteria that must be met in order to consider the project a success. These
success criteria form a useful guide during the implementation phase of the project and will give a rough
indication of the project’s progress. The criteria are rather intuitive:

1. The system must be more transparent and less time consuming than in the current situation.

2. The design goals stated in this section must be met.

3. From the MoSCoW at least the must haves need to be implemented.

3
Design

This chapter highlights the choices made for the design of the product. Several consensus algorithms
are discussed and compared. This comparison is then used to make a choice for the framework to
be used. Hyperledger Fabric and its way of modelling a network is discussed. This is followed by the
design choices made for the mandate register network. Finally, the way Fabric puts such a model into
practice is explained.

3.1. Consensus Algorithms
When choosing an algorithm that is going to determine in what fashion the blocks are added to the
ledger, several characteristics have to be taken into consideration. To elaborate, these specific char-
acteristics are speed, scalability and fault tolerance:

• The network should be fast enough to let people switch providers or query their mandate infor-
mation within a matter of seconds.

• The network should be relatively robust to scaling, meaning that it should maintain reasonable
performance with respect to the number of network participants as this number grows. Scalability
is only a factor up to a certain degree because the network is not expected to become very large
nor grow multiple orders of magnitude.

• Fault tolerance is also an important attribute because network nodes can always fail. If this
happens, the network should maintain a consistent and correct state, when it comes to stored
data.

In the field in which the network will be deployed, no concern is needed for malicious nodes since it
is a permissioned system. Therefore, resistance against maliciousness is not taken into consideration.

Proof of Work
In a Proof of Work algorithm (PoW), as used in for example Bitcoin, each node in the network competes
for adding a new block by solving a complex mathematical puzzle. When a node finds the desired,
easily verifiable solution, it broadcasts the block to all other nodes. The other nodes must validate the
block and if it is correct, they all append it to their own copy of the chain. The essence of this algorithm
is that a node has to do a tremendous amount of work before being able to append a new block, to
prove that a node is not likely to be malicious [23]. All this work costs a lot of energy and resources,
therefore this approach does not seem appropriate for an application in the energy market. Besides
being very energy consuming, a PoW protocol also has a poor transaction rate [3], and speed is a
factor that should be taken into account.

Proof of Stake
Unlike Proof of Work, a Proof of Stake algorithm (PoS) does not need an enormous amount of energy
to append a new block. The node which appends a block to the chain will be pseudo-randomly chosen

7

3.1. Consensus Algorithms 8

out of the stakeholders [18]. A ’stakeholder’ refers to a party with a monetary incentive in the network.
In the network that is being built, the entities participating in the network do not have such an incentive.
Therefore, Proof of Stake is unsuitable for application in the energy sector.

Practical Byzantine Fault Tolerance
Practical Byzantine Fault Tolerance (pBFT) is an algorithm in which all of the parties are known, but
they may be faulty or malicious. The network will reach consensus by means of voting [5]. Voting can
be done fast, but there will be overhead in order to reach consensus after voting. The overhead is not
a problem within a small network, but once the network becomes larger, it will become a bottleneck [3].
This type of consensus algorithm works well in a permissioned system.

Proof of Elapsed Time
Proof of Elapsed Time (PoET) is a consensus algorithm that elects a random leader to append a block
to the chain. All nodes in the network are assigned a random waiting time, and the first node to wake
up finishes the block and broadcasts it to the other nodes. To avoid manipulation by malicious nodes,
all nodes need to run in a Trusted Execution Environment (TEE), for example Intel’s Software Guard
Extensions. This TEE guarantees that the random waiting timer cannot be tampered with by malicious
software [3]. PoET overcomes the drawbacks of PoW and PoS but requires the nodes to run on specific
hardware.

Raft
The Raft consensus algorithm is built up to solve three problems, namely leader election (Figure 3.1),
log replication and safety.

Leader election is the process of network participants choosing a ‘leader’ which determines what
data to add to the chain. A leader uses an AppendEntry Remote Procedure Call (RPC) for
this. All requests to add data must go through the leader. In the case of Raft, all nodes start a self-
specified pseudo-random timeout, and the nodewhose timer ends first becomes a candidate node. This
candidate starts an election and asks all other nodes to vote for him, by means of a RequestVote
Remote Procedure Call. Nodes will vote for the first candidate which contacts them, except if they
are a candidate themselves. If a majority of the nodes vote for a candidate, it becomes the leader. After
an arbitrary, self-specified amount of time or when the leader fails to send a heartbeat, a new election
is started.

Log replication is the process of ensuring that all network participants share the leader’s log. In
Raft, the leader sends the new entries from its own log to all its followers. If a majority approves this
entry and adds it to their logs, the entry is committed. Raft ensures that all previously committed entries
are also agreed upon in the network.

The last problem which Raft attempts to tackle is safety. For instance, Raft imposes restrictions on
becoming a leader, such as demanding that all leaders have an up-to-date log. However, these safety
measures do not guarantee that malicious leaders cannot take over the network. For this project it is not
a problem, because malicious nodes are not taken into account because the network is permissioned
system.

Figure 3.1: The states of the nodes can be represented by this state machine [17]

The Raft algorithm seems well-suited for a permissioned blockchain in which all parties are treated
equally. Every node has an equal probability of becoming leader. This is also the case for the PoET

3.2. Frameworks 9

algorithm, but Raft does not depend on specific hardware. The algorithm is also robust to failing nodes
due to the heartbeat mechanism; it can tolerate up to 49% of nodes failing - which is called Crash Fault
Tolerance - and is much faster than PoW or PoS algorithms. A drawback of Raft is however that the
network is limited in scalability due to its architecture and cannot handle malicious nodes.

The information in the Raft section was based on [17] and [15].

Conclusion
After evaluating the above consensus algorithms, Raft seems to be most appropriate for this project.
The two drawbacks, being lack of scalability and incapability of handling malicious nodes are lesser
problems than hardware dependencies, lack of speed and lack of fault tolerance. This is because in
this project the possibility of nodes being malicious is not taken into account and the number of network
nodes will not be very large. An overview of the comparison of the previously discussed algorithms can
be found in Table 3.1.

PoW PoS PoET BFT and variants Raft

Blockchain type permission-less both both permissioned permissioned

Transaction rate low high medium high high

Scalability high high high low limited

Adversary tolerance <=25% algorithm dependent unknown <=33% none

Table 3.1: Consensus comparative analysis based on [3], the raft properties are based on [15]

3.2. Frameworks
For the development of the blockchain network, multiple frameworks were considered. The require-
ments and design choices discussed in earlier sections will be used to evaluate the applicability of the
frameworks. Other important factors to consider are how well the frameworks are documented and
how well they are maintained.

Hyperledger Fabric
Hyperledger Fabric is an open-source platform designed for the development of permissioned blockchain
networks. It has substantial documentation which contains theoretical explanation and code tutorials.
Fabric implements a consensus algorithm based on Raft [2], which means it is resistant against a
considerable percentage of node failure and can achieve high transaction rates. Fabric also supports
querying data through CouchDB instead of querying the blockchain directly. The information in this
paragraph was gathered from [10].

+ Widely used, well-documented and maintained;

+ Raft-based consensus algorithm has most of the desired characteristics: it is fast, relatively scal-
able and Crash Fault Tolerant.

+ Querying capabilities powered by CouchDB.

Hyperledger Sawtooth
Hyperledger Sawtooth is an open-source platform designed for the development of blockchain networks
[13]. Sawtooth provides an elaborate documentation and is also widely used. It is also built in such a
way that most application logic can be written in a variety of common programming languages, such
as Python, JavaScript, Go, C++ and Java. Finally, Sawtooth allows plugging in different consensus
algorithms, but by default it only offers a form of Practical Byzantine Fault Tolerance or Proof of Elapsed
Time. This is Sawtooth’s main drawback with regards to the project; neither consensus algorithm is
suitable, and implementing another one is not feasible considering the project’s limited duration.

+ Widely used, well-documented and maintained;

3.3. Hyperledger Fabric Framework 10

+ Application logic can be written in a wide variety of languages;

- Consensus algorithms are not suitable due to specific hardware dependencies or scalability lim-
itations.

Tendermint
Tendermint is an open-source platform for blockchain application development. Although Tendermint
provides various well-documented examples, general documentation is limited. A benefit of Tendermint
is that it satisfies the Byzantine Fault Tolerance (BFT) property. This provides various safety guaran-
tees. For example, up to 1/3 of the nodes in the network can be explicitly malicious without the network
being compromised [20]. However, BFT is achieved through Tendermint Core - Tendermint’s consen-
sus algorithm - which cannot scale enough to suit this project. The information in this paragraph was
gathered from [20].

+ Satisfies Byzantine Fault Tolerance;

+/- Development documentation is available with examples but general documentation is limited;

- Consensus algorithm is not suitable due to scalability limitations.

BigchainDB
BigchainDB is an open-source platform that offers tools for building both public and private networks
with the characteristics of a (MongoDB) database and a blockchain together. It is properly documented.
It provides decentralisation, Byzantine Fault Tolerance and immutability like a blockchain, but it also
provides high transaction rates and querying functionality like a database [4]. However, BigchainDB
achieves BFT by using a Tendermint consensus algorithm that cannot scale enough [4].

+ Widely used, well-documented and maintained;

+ Querying capabilities powered by MongoDB;

- Consensus algorithm is not suitable due to scalability limitations.

Conclusion
After considering the frameworks above, it appears that Hyperledger Fabric is the most suitable frame-
work for this project.

Although Hyperledger Sawtooth seems to be a valid option as well, its built-in consensus algorithms
are not suitable for the project. Implementing another consensus algorithm might be a possibility but
seems unreasonable given the duration and other objectives of the project.

3.3. Hyperledger Fabric Framework
The following section will explain various technical terms necessary to understand a Hyperledger Fabric
network (version 1.4). For a more in-depth and detailed explanation, please look at the Hyperledger
Fabric documentation1.

3.3.1. Network Concepts
Channels
All communication within a Hyperledger Fabric network is done through channels. Parties join a channel
to communicate with other parties in the same channel. It is possible to have a network that contains
multiple channels with different purposes alongside each other but every channel does have its own
ledger. Every channel’s ledger contains at least one configuration block with information about the
channel; for example, the organisations participating in it. Consequently, when a new party joins a
channel, a new and updated configuration block needs to be appended to the ledger of the channel.
1”https://hyperledger-fabric.readthedocs.io/en/release-1.4/

3.3. Hyperledger Fabric Framework 11

Organisations
The term ‘organisation’ in a Fabric network is used to define a real-world organisation that participates
in the network. Every organisation has its own set of peer nodes, and multiple organisations together
can belong to a consortium, which simply is a group of organisations.

Peer Nodes
One of the key concepts in Hyperledger Fabric is a peer. A peer, or peer node, is a participant in the
network that hosts its own copy of the ledger, world state (see below), and chaincode (see Section 4.1).
A peer can be part of multiple channels simultaneously, and as such can also havemultiple ledgers. Ac-
cess to the chaincode and the ledger(s) can be obtained through peer nodes. This interaction happens
through an API that is accessed via a peer.

Peer nodes have many responsibilities that are crucial for operating on the blockchain. An example
of this is proposal endorsement. A transaction proposal, which can be a request to append data to the
ledger, should be endorsed by peers. The importance of endorsements will be explained in more detail
in Section 3.3.3.

Anchor Peer Nodes
In Hyperledger Fabric, there is a special type of peer called ‘anchor peer’. Anchor peers are the only
peers that can communicate with peers from other organisations. They communicate with other anchor
peers to exchange information about all peers they know about. The anchor peers then relate this
information back to the peers in their own organisation, which assures that also those peers know about
all the other peers active in the channel. As such, all peers contact their respective organisation’s
anchor peers to learn about the other peers in the network. Communication is done by means of a
gossip protocol, described in Section 3.6.

Orderer Nodes
Orderers are responsible for ordering transactions and putting them into a block, which can then be
added to the ledger. The specific moment when orderers play a role in the network is explained in
Section 3.3.3.

There are several methods of managing transaction ordering. Though the results may be identi-
cal, the underlying methods of reaching consensus vary. Hyperledger Fabric supports three different
implementations for reaching consensus in the ordering service (Figure 3.2), namely Solo, Raft and
Kafka. Solo is mostly used during development, however due to its single orderer point of failure, it is
in production replaced by Raft or Kafka. Apart from ordering transactions, orderers also maintain a list
of all organisations, and enforce read, write, and configuration access to channels.

Figure 3.2: An orderer receives the proposal from a peer. A block is sent back from the ordering service to the peers in the
channel.

3.3. Hyperledger Fabric Framework 12

The World State
The world state is a database which stores the current state of all transactions. Note that this is different
from the ledger, which stores the entire history of all transactions. Like ledgers, a copy of the world state
is stored on every peer contributing to the channel. By using the world state for querying transactions,
it is not necessary to traverse the entire ledger.

3.3.2. Network Rules
Membership Service Provider
AMembership Service Provider (MSP) is a component that manages user authentication and certificate
validation. The MSP allows organisations to specify different identity classes. These classes are client,
admin, peer, and orderer. Users that submit transactions on the network are classified as clients, and
users that manage administrative tasks, such as letting peers join a channel or configuring channel
updates, are classified as admins [8].

Policies
Policies determine what kind of classification an identity needs to perform a certain action. The MSP
uses the policy as a function to determine whether a certain identity has the right certificate for per-
forming a certain operation. Fabric implements two types of policies:

• SignaturePolicy allows for specification of rights, using AND, OR, and NOutOf constructs. For
example:

Writers:
Type: Signature
Rule: ”OR(’DGO0MSP.admin’, ’DGO0MSP.peer’, ’DGO0MSP.client’)”

• Implicit Meta Policy allows for specification of rights, deeper in the configuration hierarchy. This
means that it is constructed implicitly based on the current configuration, which is defined by the
SignaturePolicy. For example:

Writers:
Type: ImplicitMeta
Rule: ”ANY Writers”

Policies make distinctions between three types of operations, namely reading-, writing- and admin
operations.

3.3.3. Transaction Endorsement Process
Hyperledger Fabric has designed and implemented a process which must be gone through when a
transaction is submitted. First, a new transaction is created by a user, for instance by filling out a form
on a web page. This form is processed by an application, which is connected to the network using
Fabric’s SDK. The application decides which peers to send the processed form data to, in the form of
a transaction. This is explained in detail in Section 4.1.

The peers that are configured to be endorsing peers, will receive the proposal and process it by
executing chaincode. If the chaincode executes successfully, the peer endorses the proposal. If the
‘endorsement policy’ is satisfied, meaning a specific combination of peers endorses a proposal, the pro-
posal becomes a transaction. If not, the proposal is rejected. This process is displayed schematically
in Figure 3.3.

After fulfilling the endorsement policy, the transaction is sent to an orderer; together with the other
orderers, they form the ordering service. The ordering service orders transactions into blocks per
channel. Once a block is finalised by the service, it is sent to all peers in the respective channel. Peers
receiving a new block validate its contents and add it to their copy of the ledger. Once this is done, a
confirmation message will be returned to the application that proposed the transaction.

3.4. Mandate Register Model 13

Figure 3.3: Transaction proposal of peers: This figure displays the process through which application A1 submits a transaction
proposal to endorsing peers P1 and P2 and these peers return a transaction response i.e. endorsement or rejection [10].

3.4. Mandate Register Model
3.4.1. Components
The mandate’s components are displayed schematically in Figure 3.4, and elaborated upon below.

Channels
The mandate register network consists of two channels. One of the channels, syschannel, is only
for the orderers. The other channel is used for interaction of the network members, which are the
distribution grid operators. Hence, this channel is named dgochannel.

Organisations
In themandate register network there are seven participating peer organisations. The organisations are
named DGO0 up to DGO6 during the development. In production they could be renamed to respective
distribution grid operator names such as Liander or Stedin. Each organisation has two peers defined.
In each organisation, one of the two peers is designated as the anchorpeer.

Orderers
The orderers belong to their own orderer organisation and this organisation runs on the separate
syschannel. The mandate register network has a total of seven orderers defined. The reason for
seven orderers is to allow each of the seven distribution grid operators to host an orderer.

Databases
Hyperledger Fabric supports LevelDB and CouchDB for an organisation’s peers’ databases [10]. For
the register’s world state, CouchDB was chosen because it supports richer queries on data than Lev-
elDB does, since it allows for modelling the data as JSON objects instead of key-value pairs. CouchDB
also supports indexing, which means querying on attributes other than the key can be done quickly.

To view a peer’s world state in a web browser, CouchDB’s Fauxton Interface can be used. The
interface shows all databases and records stored on the peer and allows for editing them as well. For
usage, see Appendix B.

3.4.2. Policies
The mandate register network has three types of policies defined in the configuration. These are the
organisation policy, application policy and orderer policy.

Organisation Policy
This policy allows for boolean operations such as AND or OR. There are policies defined for readers,
writers and admins. For all DGOs, admin operations can only be performed if the identity carries an
admin certificate. Currently, the rule is an OR, therefore the signature of one admin from DGO0 is
enough.

3.5. Network Binaries 14

Figure 3.4: This image shows the topology of the mandate register model. Left is the GUI and the server, which connect to the
network using the SDK. The network consists of seven organisations. An extra organisation is greyed out, signifying that it can

be added later.

Application Policy
This policy has the type ImplicitMeta. The policy for reader, writer, or admin are satisfied if ANY
reader, writer or admin signs it. The readers, writers, and admins rely on the signature policy since the
reader, writer and admin are defined there.

Endorsement Policy
As mentioned earlier in Section 3.3.3 every transaction to the network, using the chaincode functions,
has to fulfil the endorsement policy. The endorsement policy describes which of the organisation’s peers
has to endorse it. Furthermore the policy also defines the set of endorsers needed for the specified
chaincode. This set can be specified using ANY, OR or NOutOf operators and consists of peers part of
the organisations.

Orderer Policy
In the configuration of the network, one of the policies for orderers includes BlockValidation, which
is required before sending blocks to the peers. The BlockValidation has to be signed by ANY
reader from the orderer organisation. The readers for the orderer organisation are defined under the
organisation policy.

3.5. Network Binaries
Running a network means running nodes in Docker containers, which is done via Docker Compose2.
The containers have to be specified in the Docker Compose configuration files. Docker uses these
configuration files to launch the containers, which will be executing the Docker images that are provided
by the framework.

Before a network can be started, it is necessary to generate both cryptographic material and ‘chan-
nel artifacts’. Channel artifacts are binary files that configure the channel. The model described in
Section 3.4.1 is written down in the configuration files crypto-config.yaml and configtx.yaml.
In configtx.yaml the profile section describes the mandate register model.
2Docker Compose is a tool for defining and running multi-container Docker applications [6]

3.6. Container Communication 15

Fabric provides a binary executable called cryptogen that uses crypto-config.yaml to create
cryptographic keys for all identities in the organisations. Note that cryptogen should not be used
during production; see Section 6.4. Fabric also provides a binary executable called configtxgen,
which uses configtx.yaml to create channel artifacts. These include the following files:

• genesis.block: The genesis block for the orderer channel syschannel.

• channel.tx: A transaction that configures the channel.

3.6. Container Communication
As mentioned before in Section 3.5, HyperledgeFabric uses Docker containers to run each network
component. Every orderer, peer, peer database, and chaincode runs in separate containers. Therefore,
every peer in the register requires at least three containers; the peer itself, a database container, and
a chaincode container. Within the network there are also certificate authority (CA) containers. A single
CA container is created for every organisation. Furthermore there is the command line interface (CLI)
container. This CLI can be used to execute commands from other peers’ containers. Communication
between containers is done using Transport Layer Security (TLS), which Hyperledger Fabric supports
natively. For a detailed explanation on setting up TLS communication in Fabric, refer to [9].

The containers running Fabric can run on physically separated host machines as well. This is
necessary because the purpose of the framework is to maintain a blockchain network, which should
be able to be distributed. Although this can be achieved in different ways, the chosen approach for this
project was Docker Swarm. A swarm is first created on a single machine, which other machines can
then connect to using a generated token. This way, each machine runs a part of the network.

Communication between peers is done using Fabric’s gossip protocol [11]. Note that messages
sent with the gossip protocol are also encrypted with TLS. The gossip protocol allows for discovery
of online peers and detecting when a peer becomes unreachable. Also, if a peer has an outdated
ledger, for instance upon joining a channel or after going offline, other peers use the protocol to send
the updated ledger. The gossip protocol ensures peers are in sync, and maintain the same ledger and
world state. The concept of the ‘world state’ was explained in Section 3.3.1.

4
Implementation

In this chapter, the implementation of the code written for the product is elaborated upon. This includes
the functionality of the chaincode and the application. Furthermore, testing of the code is discussed.

4.1. Fabric Background
Chaincode
Chaincode is the code that describes the business logic of the network. It is Fabric’s way to refer to
what in common blockchain terms is called a ‘smart contract’. Chaincode can be invoked from a client
application external to the blockchain [10]. It accesses world state data or ledger data by means of a
query or modifies it by means of an invoke.

Before chaincode can be executed on a network, it needs to be instantiated. To instantiate chain-
code, it needs to be installed on at least one peer per organisation that wants to use said chaincode.
After installation, the chaincode can be instantiated on the channel along with a specified endorsement
policy. This policy describes how many and which endorsers are needed for the chaincode. After
instantiation, the chaincode can be executed by any peer that has it installed.

Fabric Application Model
Applications can submit proposals to the ledger or query data by interacting with the network. Hyper-
ledger Fabric provides SDKs for connecting with the network in Java, Go and Node.js. For all SDKs,
the workflow is as follows:

1. The SDK registers a user for an organisation. The CA creates the certificates for the designated
user and stores them in the file system. These certificates are JSON objects containing crypto-
graphic material.

2. The SDK creates a client object for the registered user. It does so by parsing the network profile.
In this configuration file, the network components that the SDK needs to be aware of are listed.
These components are channels, organisations, orderers, peers, and CAs. The client object is
then used to submit transactions to the blockchain.

4.2. Mandate Register Logic
4.2.1. Chaincode
Writing chaincode in Go
The register’s chaincode is written in Go. By default, Hyperledger Fabric offers chaincode support
for Go, Node.js and Java. Initially, all three were tried, though the most progress was made with Go.
This was due to the fact that Fabric is written in Go, has supported Go since its early stages, and its
documentation contains elaborate examples written in Go. Both Node.js and Java were supported later
and were featured less in the Fabric samples repository1.
1Fabric samples repository is a collection of example Fabric projects [14].

16

4.2. Mandate Register Logic 17

Mandate Structure
The mandates in the register are formatted according to the specifications in the chaincode. The man-
date object is still quite primitive due to the fact that it is only a prototype. Enhancing the object by
adding more attributes is possible.

A mandate is formatted as a Go ‘struct’ containing the following fields:

1. ObjectType: For every mandate, this is equal to ”mandate”. In the future, this text could be used
to indicate other types of mandates, such as for example ”finance” for financial data.

2. ClientID: The ID of the consumer who grants or revokes the mandate. In the current implemen-
tation, this can be any valid integer. See Section 6.4 for a better alternative using EAN codes.

3. PartyID: The ID of the party to whom the mandate is addressed. In the current implementation,
this can be any valid integer.

4. MandateType: The purpose for which this mandate was given. The intention was to have stan-
dardised types relating to, for example, energy contracts or research. Currently, any string is
accepted.

5. Permission: A boolean indicating whether the consumer grants or revokes permission. Currently,
”true” and ”false” are accepted respectively.

6. Time: The time this mandate was created, formatted as ”DD Mon YYYY HO ZON”. For example,
”02 Jan 2006 15 MST”. The date within the field gets created upon creation of a mandate.

Mandate Register Chaincode Functionality
The mandate register makes use of various chaincode functions in order to add or retrieve mandates.
The following functions are implemented:

• createMandate: Add a mandate to the register.

• init: Initialise the chaincode.

• queryMandateByClient: Query all mandates granted by a certain client.

• queryMandateByParty: Query all mandates granted to a certain party.

• queryMandateByClientAndParty: Query all mandates granted by a certain client to a certain party.

• getHistory: Query all (previous) values of a mandate corresponding to a certain key. The con-
struction of a key is explained in the next paragraph.

• getClientHistory: Query all (previous) mandates corresponding to a certain client.

• switchProviders: Add a mandate granting permission from a client to a party, and if present,
revoke the client’s previous mandate (see Figure 4.1).

These functions were implemented using the Fabric Shim interface. Shim was used to create a
‘chaincode stub’ which is used to interact with the state of the ledger. It is also used to format the
functions’ return values. These return values are either of the type shim.Error in case of an error -
such as not passing enough arguments to a function call - or of the type shim.Success if a function
executed without any errors.

Key Generation
Mandates are stored in a key-value store in which the key is a unique identifier and the value is a
mandate object. Unique keys are generated based on the mandate itself, by converting ClientID,
PartyID, and MandateType to Base64. When a new mandate with an existing key is added to the
key-value store, for instance when revoking permission that was previously granted, the value of the
old mandate is overwritten with the new value.

Permission and Time are not used to generate a key. If they were, mandates revoking access that
was previously granted would have a different key and would therefore show up as different mandates in
the world state. That would be problematic, as it would break the history functions described previously.

4.3. Code Testing 18

Figure 4.1: Flow diagram of the switch operation.

4.2.2. Mandate Register Application
Server and GUI
To allow consumers to easily submit and query mandates, the application needs a GUI. To provide
such an interface, a basic Node.js server was set up. The server displays a web page with various
HTML forms. These forms execute HTTP POST requests that are handled by the server’s starting
point, using Node.js’ ‘Express’ library.

Network Interaction
After the HTML forms sent by the GUI are handled by Express, the Node.js server makes calls to one
of Fabric’s SDKs functions directly, except when adding mandates. For adding mandates, the server
calls another function which invokes the chaincode but also attempts to contact different orderers when
one becomes unavailable. This function is elaborated upon below.

Managing Orderer Failure
When an orderer becomes unreachable (Figure 3.2), the application needs to connect to another or-
derer tomaintain network interaction. To realise this, a function was implemented with a variable orderer
endpoint included in its parameters. This function attempts to invoke the chaincode and, if it fails, is
executed again with another orderer endpoint. If this is successful, the function will keep using the last
successful orderer. If it is not, the function will keep attempting to invoke the chaincode until every
orderer in the channel is tried.

4.3. Code Testing
4.3.1. Chaincode Unit Tests
The mandate_contract chaincode, written in Go, is unit tested for 78.1% statement coverage. In
order to test the chaincode, Testify Toolkit and Fabric Shimtest were used. Testify Toolkit provides the
option to use detailed assertions within the test code and also provides a mocking tool. Fabric Shimtest
provides a ‘mockstub’ used to mock the functions that would normally communicate with the chain or
CouchDB. These unit tests are not run using continuous integration. Whether continuous integration
can be used for these tests is unsure as currently an import in the code needs to switched in order to
run the tests, see Section 6.3.

4.3. Code Testing 19

4.3.2. Node.js Testing
The Node.js server and its back-end have been thoroughly end-to-end tested. These tests were done
during the verification of every merge request regarding the GUI. During these merge requests the
code was also extensively reviewed by the developers. The back-end has not been unit tested as most
of the functionalities within in the back-end rely on the Fabric Client API.

5
Evaluation

In this chapter, the performance of the network is evaluated. First the metrics to be evaluated are
listed and the metric computation methods are explained. Then the topology of the physical network is
specified. Finally, the results are displayed in the included tables and figures and they are discussed
afterwards.

5.1. Performance Metrics
It is important to assess latency and throughput to measure the performance of a blockchain network.
Latency is important because it clarifies how fast the network handles a single operation. Throughput
is important because it clarifies how fast the network handles operations if they come in a consistent
stream. In the implemented prototype, three types of operations can be distinguished: read, query and
invoke. Read operations concern reading the blockchain, not querying external CouchDB databases.
Consequently, query operations concern CouchDB and are evaluated as well. Finally, invoke opera-
tions concern adding data to the blockchain. These three types of operations are evaluated on both
their latency and throughput.

To calculate latency and throughput, the following equations are used [12]:

Throughput = number of operations / total time in seconds
Latency = confirmation time - submit time

5.2. Procedures
For determining the throughput, a Node.js script is utilised. The script invokes the chaincode in a batch
of 50 asynchronous transactions and calculates the throughput in transactions per second. This number
was chosen because a larger batch of asynchronous transactions caused the orderer to overload.

For determining the latency, the calculated time difference is determined over 50 runs. For trans-
actions, the createMandate chaincode is invoked; for queries queryByClient; for reads
getHistory.

The difference between the queryByClient and getHistory functions is that queryByClient
queries the world state of a peer (stored with CouchDB), whereas getHistory traverses the ledger
of a peer. For getHistory this is necessary because the mandate history is not stored in the world
state but in the ledger.

5.3. Evaluation Setup
The evaluation network consists of seven organisations distributed over three machines, as can be
seen in Figure 5.1. Each organisation consists of two peers with their CouchDB instances and a CA
server. To simulate the intended usage scenario, every machine hosts as many orderers as it hosts
organisations. The three machines are all connected to the TU Delft Eduroam WIFI network.

20

5.4. Results and Discussion 21

The Fabric blockchain makes use of batches. This means that transactions are committed to the
ledger by means of a buffer called a batch. Hence, the Raft-based ordering service requires configu-
ration of batchSize and batchTimeout. The batchsize determines how many transactions are
buffered before the orderer commits. The batchTimeout determines how long the orderer waits for
new transactions before it commits a batch, regardless of its size.

The aforementioned parameters, namely batchSize and batchTimeout, remain untweaked and
thus correspond to the configuration of the Fabric samples repository 1. More elaboration on improving
performance can be found in Section 6.4.

Figure 5.1: The mandate register network with seven DGOs is distributed over three machines. This setup was used for testing
the network.

5.4. Results and Discussion
This section contains the results of the evaluation. The variance (𝜎2), mean (𝜇) and 95% confidence
intervals (𝐶𝐼95) of the results are displayed in tables 5.1 and 5.2. All result sets consist of 50 samples.
The histograms of the latency and throughput are displayed as well, in figures 5.2, 5.3, and 5.4.

𝜎2 𝜇 𝐶𝐼95
Invoke 596 474 [467;480]

Read 121 396 [392;399]

Query 228 400 [396;404]

Table 5.1: Latency statistics in milliseconds

𝜎2 𝜇 𝐶𝐼95
Invoke 0.55 16.86 [16.66;17.07]

Read 5.73 55.32 [54.66;55.99]

Query 3.81 48.44 [47.90;48.98]

Table 5.2: Throughput statistics in operations per second

1https://github.com/hyperledger/fabric-samples

5.4. Results and Discussion 22

Figure 5.2: Histograms for invoke performance data

Figure 5.3: Histograms for read performance data

Figure 5.4: Histograms for query performance data

Discussion
From the fact that the 95% confidence intervals are narrow, and the look of the histograms, the con-

5.4. Results and Discussion 23

clusion can be drawn that the results are all relatively stable. Besides this, the means in tables 5.1
and 5.2 respectively also tell us that latency is relatively high and throughput is relatively low. The
mean throughput value of an invoke tells us that the network processes 16.86 invokes per second on
average, where Hyperledger Fabric networks are claimed to be able to reach a transaction throughput
of 3000 per second [1]. The read and query operations reach a higher throughput because these do
not alter the world state nor append data to the ledger, but they are still not as fast as they could be.
The reason for this lack of performance has yet to be determined, however some presuppositions can
be endowed.

To find out whether the Node.js script, which was utilised to obtain the results, caused a bottleneck,
a script was run that consisted of Linux bash commands in order to avoid making use of SDK logic. This
batch script gave very comparable results, thus the conclusion was drawn that the Node.js script does
not cause a bottleneck and the performance obstructing factor must be somewhere in the network.

The BatchSize and BatchTimeout are parameters that concern the transaction ordering.
BatchSize corresponds to an amount of transactions before a transactionblock is submitted.
BatchTimeout is specified as the time the orderer waits before submitting the block. A larger
BatchSize and BatchTimeout would allow for ordering more transactions per batch, since a batch
then fits more transactions. This would increase throughput in a consistent stream of transactions
due to less communication per transaction. On a single transaction, a higher batchtimeout does
however cause a higher latency as well. A lower BatchTime and BatchSize would provoke the
orderer to send the block to the peers earlier. The consequences of this are a lower latency but also a
lower throughput due to the communication overhead. Finding an optimum between these parameters
should increase performance significantly, but is dependent on the network demand.

The topology of the network used in evaluation could also be the bottleneck. The 14 peers and 7
orderers are distributed over only 3 machines. Using more machines to parallelise the workload could
also improve performance.

6
Discussion & Future Work

In this chapter the success criteria are reviewed and ethical implications are considered. Then the
process of development along with the experienced issues is laid out. The chapter is concluded with a
section containing future work and according recommendations.

6.1. Project Evaluation
In order to evaluate the project, the success criteria defined in Section 2.4 are looked at. Three main
success criteria were established; solving the problems defined in Section 1.1, meeting the design
goals defined in Section 2.1 and completing the MoSCoW defined in Section 2.3.

6.1.1. Solving the Defined Problems
The first criterion has been met by implementing the mandate register and chaincode functions to
retrieve a client’s history and switch from provider.

Lack of transparency has been resolved through the implementation of the mandate register in
combination with the functionality to retrieve one’s mandates. This functionality can give a user an
overview of all their granted mandates over time.

Besides having more transparency, the system also provides a quicker way to switch from energy
provider. Parties involved in the switch will need less communication due to the fact the mandates are
stored on the blockchain. Instead of having to verify each other’s data they can consult the blockchain.
The system also provides a function to have consumer’s mandates switched from their last provider to
a selected new provider.

6.1.2. Meeting the Design Goals
The second criterion can be split up in individual design goals; expandability, security and privacy, and
GDPR Compliance.

In order to accomplish expandability, the register should support various use cases and should be
scalable. Through the channel functionality of Hyperledger Fabric, multiple channels can be created,
each with a different purpose. Different use cases can be executed on the same network, yet entirely
separated through channels. Also, a mandate object - as described in Section 4.2.1 - offers flexibility
in its formatting and can be extended easily. As for scalability, performance measurements were done
and described in Chapter 5. Apart from this, invoking and querying the register can be done with every
peer in the network, meaning that for example multiple instances of a Node.js application can function
simultaneously.

The second design goal is security and privacy. Security and privacy were split up in four parts;
‘verified data reading’, ‘verified data writing’, ‘authentication’ and ‘no central authority’, as specified in
Section 2.1. In order to guarantee that mandates should be immutable, the register was set up as a
blockchain. A majority of the endorsing peers verify all mandates before they are added to the ledger.
All parties in the network communicate securely through TLS, meaning no mandates can be read or

24

6.1. Project Evaluation 25

written by unauthenticated parties. Unfortunately no authentication of parties has been implemented,
thus it can not be verified whether a party is retrieving data belonging to itself. Lastly, mandates are
added on a majority basis, meaning there is no central authority that can be corrupted.

The third design goal is GDPR Compliance. This goal was not fully met. It is still possible for grid
operators to read mandates from other operators, and ‘deleting’ mandates is still not possible. Although
the entire ledger is encrypted and inaccessible to unauthorised parties, and the effect of a mandate can
be undone by revoking it, the current implementation is strictly speaking not GDPR compliant. A further
elaboration will be provided in Section 6.4.

6.1.3. Completing the MoSCoW
MoSCoW

Must Haves

• Mandates must be stored on a blockchain

• The blockchain must be permissioned, such that validators will only be added on a permissioned
basis.

• A consumer must be able to see an overview of their mandate(s).

• A consumer must be able to grant mandates for specific parties to access specific data.

• A consumer must be able to revoke mandates for specific parties to access specific data

• A consumer must be able to switch between energy providers.

• A producer, meaning a party that produces energy, must be able to query the network to verify if
a consumer gave them a mandate to access specific data.

• Validator nodes must be able to validate users’ requests to append data. A request is considered
valid if:

• The user making the request is authorized and authenticated.
• The request is properly formatted according to the protocol that we specify.

• Validator nodes must be able to append valid requests to the blockchain using a consensus
algorithm.

Should Haves

• The protocol should allow granting/revoking access to different types of data.

• A user should be able to authenticate using DigiD or another authentication method.

• A user should have a graphical user interface to give and revoke mandates.

• A user should have a graphical user interface to show a history of their mandates.

• A user should be able to automatically revoke mandates for a previous energy provider when
switching to a new one.

• The network should be able to add and remove validators.

Could Haves

• A user could be asked for confirmation when they initiate a mandate modification.

• The consumers’ mandates are categorized under their EAN-code.

Won’t Haves

• The blockchain will not support prosumers (consumers that produce energy as well).

6.2. Ethical Implications 26

• The blockchain will not support any other type of asset beside energy meters.

Non-Functional Requirements

• The system will be properly tested. Tested means that our own code will be:

• Software tested and measured using code and branch coverage.
• System tested for a small mocked network.

• The blockchain will be set up using frameworks.

• The system will be developed using version control Git.

• The code will be sent to the Software Improvement Group (SIG) for evaluation.

Explanation of accomplished requirements
Mandates are stored on a permissioned blockchain through implementation of Hyperledger Fabric.
An overview of the consumers’ mandates is visible through the application UI, which allows for grant-
ing, revoking and switching as well. Parties can also see all of their mandates through the UI. The
MoSCoW states that validator nodes must validate a request by means of checking request format
(and authentication, see paragraph below). In the current prototype, endorsing peers enforce correct
request formatting through chaincode endorsement. Validator nodes must append requests by means
of a consensus algorithm. This is implemented in the prototype through the ordering service which
functions with a Raft consensus protocol.

Different data types are supported through a mandate type variable. As mentioned before, the UI
in the application allows for granting and revoking mandates and it also allows for viewing mandate
history. Switching energy suppliers through the UI automatically revokes mandates for a previous
provider. Through a batch script, which is discussed in Appendix B, organisations, and thus validator
nodes can be added to the network dynamically. Removing organisations and thus validators is made
possible through Fabric binaries included in the repository, this is however not automated.

The network was setup using a framework called Hyperledger Fabric as mentioned before. The
code was developed using Git via Gitlab. The code was sent to SIG indeed.

Explanation of missed requirements
After discussing with the client and the supervisor of the project, the conclusion was drawn that imple-
menting authentication was not achievable within the project duration. Consequently, authentication is
not featured in the prototype. Besides authentication, confirmation before a mandate is submitted is not
implemented in the project and neither is consumer categorisation by means of EAN code. The latter
requirements were also missed due to time constraints. For an elaboration on these topics, please
examine Section 6.4. The requirements in the ‘won’t have’ section are not implemented for obvious
reasons. In the non-functional requirements it is stated that the code will be tested using branch cov-
erage. Unfortunately, Go’s testing library does not support this, thus statement coverage was used
for.

6.2. Ethical Implications
6.2.1. Authentication
As may have become clear, no secure authentication was developed during the project period. This
leads to obvious security flaws within the prototype. Anyone with access to the system could abuse
the obtained authority to change or even add new mandates. For example a new contract could be
added which gives a party 𝑋 access to all the data of consumer 𝑌. The only restraint right now, is
that this newly added transaction is visible to all of the parties participating in the network. This is not
much of a constraint for a system that can have financial consequences. Not to mention the usage
data of consumer 𝑌 being accessed without their consent. However, after the implementation of an
authentication method this should be no longer an issue, as every transaction on the network will have
to be signed by both party 𝑋 and consumer 𝑌 in order to accept the transaction.

6.3. Process 27

6.2.2. GDPR
With correct usage of the prototype consumers can control those who have access to their private data.
Since the implemented system is blockchain based, consumers can see all previous mutations related
to their mandates. Unfortunately it also means that the mandates are immutable, thus no deletion of
their mandate is possible. This is required under the right to erasure which is article 17 of the GDPR
[7]. Not abiding by the regulation is illegal and should therefore be resolved before using the prototype.

6.3. Process
Fabric Configuration
After the research phase of the project, the development of the network started. The first few days
were spent installing the requirements needed for running the Hyperledger Fabric framework. Installing
the requirements on Windows was slightly more difficult than expected. Once this was done, sample
projects were used to get familiar with the framework. The goal was to start with building a simple
network within the same week, but it soon became clear that this would not be feasible. To build a
network using the framework, several files need to be configured. These configurations are complex
because they are interconnected and depend on each other. While trying to run the network, during
the first few tries, many errors were encountered. Most of the errors were similar in the sense that
they related to the configuration files. The true difficulty lied in that the same error was detected, yet
the errors related to different configurations in different configuration files. Therefore, in order to build
the network more in-depth knowledge of the framework was needed. While this took more time than
expected, it turned out to be very useful. Later in the process, several other errors relating to the
network were solved quicker due to the understanding gained of the configuration files in the starting
phase of the process.

Chaincode
Once the network was configured, the logic of the network - the chaincode - was to be implemented. Hy-
perledger Fabric supports three languages for the implementation of chaincode, namely Java, JavaScript,
and Go. In the process of understanding Fabric’s chaincode, all three languages were tried, and even-
tually the decision was made to use Go. The process of setting up a sample chaincode proved to be
quite difficult and took a couple of days. After said chaincode could be executed successfully, devel-
opment of the mandate register’s chaincode was done throughout the rest of the project’s duration.

Networking
After the initial network was able to function on a single machine, it needed to be possible to distribute
the containers to other machines. It was decided to attempt creating a network over two machines,
for simplicity. In order to implement this, the documentation of Hyperledger Fabric was consulted.
Surprisingly, there was no mention of using the framework on an external network, meaning on multiple
machines. This implied that, in order to finish this crucial part of the implementation, other unofficial
sources were to be consulted. While some sources pointed to using paid services, eventually a few
were found which pointed to Docker Swarm (see Section 3.6).

Unfortunately, the configuration files which were used to run a network on a single machine did
not work with Docker Swarm. The solution was to change the network configuration in the docker-
compose files. The network had to be specified as an external network. This network had to be
created before the containers were launched. This was tested to run on a single device. After this,
the network needed to be distributed over a network of multiple devices. For Linux, this was rather
straightforward, apart from the minor problem that Docker does not yet support the latest version of
Linux at the time of writing. However, networking on Windows was non-trivial. On Windows, Docker
uses Windows Subsystem for Linux (WSL). Therefore, Docker did not run directly on Windows which
seemed to cause a problem with ports. Docker Swarm needed certain ports to be open in order to
communicate. However, opening Windows’s ports lead to nothing, and eventually, it was decided to
drop Windows networking support. By the time the decision was made, Linux networking functioned
fully, and the pressure of implementing additional features increased. This was not a problem since it
was not a requirement to have networking enabled on Windows. This did mean that some machines
used during the development needed to switch to Linux.

6.3. Process 28

In hindsight, configuring Fabric to work on a distributed network does not seem like a particularly
difficult task. However, the lack of documentation and decent tutorials made it a challenge and a source
of frustration. Most explanations were useful to some extent, although none solved the problem entirely.
The solution was based upon information which was scattered over a range of different articles and
technologies. Therefore, implementing networking took a long time, considering the duration of the
project.

Application
It was decided that interacting with the network from the outside was unfeasible through the command
line. Therefore, the application was created. Initially, the application used the fabric-network 1 API
to communicate. However, this API was found to be too limited in its options, in particular because it
did not allow specification of the orderer that would be contacted for proposals. Therefore, a switch
was made to the fabric-client API, which provided more fine-grained control and did allow orderer
specification. Eventually, the application was connected to a Node.js server so that the register could
be accessed through a web interface.

Testing
Besides implementing features and configuring the network, the written code had to be tested.

Initially the chaincode’s code was tested and this seemed to come with no troubles beyond the
fact that there was no experience yet with testing Go code. However, once started with testing it was
discovered that the imports used for Shim and Peer, github.com/hyperledger/fabric/core
/chaincode/shim and github.com/hyperledger/fabric/protos/peer, no longer exist in
Fabric’s Github repository. This meant that the Go code could not be tested, for these imports need
to be present in the GOPATH of the system. After searching for the imports, new locations of both de-
pendencies were found, namely github.com/hyperledger/fabric-chaincode-go/shim and
github.com/hyperledger/fabric-protos-go/peer. Replacing the old, unavailable imports
with the new ones fixed the problem of testing.

Sadly, using the new imports caused the network to throw an error indicating that the new imports
could not be found when installing chaincode on the peers. Attempts to get either the tests working
using the old imports or the network using the new imports did not succeed. Thus, a question about the
matter was posted on Hyperledger’s Rocket Chat. The replies indicated that the new Shim import paths
were not supported by Fabric yet. Upon discovery, it was decided that both old and new imports were
to be included in the respective Go files, keeping the appropriate imports enabled and commenting the
others, depending on the task.

During the testing of the chaincode it was also discovered that the mock implementation of a stub
provided by Fabric was incomplete. The two following functions were necessary to test the code and
were not implemented: getQueryResult and getHistoryForKey. These functions were used par-
ticularly often in the chaincode. The lack of implementation meant that querying and history functions
could not be tested fully, for mock functions were needed to do so.

In an attempt to make unit tests work, a workaround for getQueryResult was found. In a non-
approved merge request, FAB-50152, an implementation of a getQueryResult mock was found.
FAB-5015 was refused by the Fabric development team because it recreated CouchDB functionality
within Go, which to them seemed like a ‘slippery-slope’.

However, by recommendation of the project’s supervisor, FAB-5015’s implementation was added
to mockstub.go located in \$GOPATH/src/github.com/hyperledger/fabric-chaincode-
go/shimtest. Adding this dependency made it possible to test querying functionality fully.

For getHistoryForKey, no mock implementation could be found.
Once the application was created, it had to be figured out how to test its code. The conclusion

was drawn that much of the code relied on the Fabric Client API which would have to be mocked out.
Figuring out how to mock these functionalities would take quite some time, which was not available
because the GUI was implemented last. As it is untested, there could be bugs present in the code. In
the case a bug is present in the code it would result in not being able to use the application layer on
top of the network. The network itself will still function correctly and can be used through the command
1https://hyperledger.github.io/fabric-sdk-node/release-1.4/module-fabric-network.html
2https://jira.hyperledger.org/browse/FAB-5015

6.4. Future Work & Recommendations 29

line interface. Thus it was decided to not test this code as it had already been end-to-end tested during
the merge requests of the code to verify it behaves the way it should.

6.4. Future Work & Recommendations
Performance
Performance evaluation of the network (Chapter 5) shows that throughput and latency must be im-
proved greatly to be able to support a large number of users and organisations. Having more organi-
sations - and therefore more peers - results in a higher latency.

The cause of these low transaction rates and high latencies has yet to be determined. Comparisons
between invoking through the application and the CLI indicate that the application is not the bottleneck,
since both methods have an approximately equal performance. A first step in improving performance
could be optimising batch parameters such as batchSize and batchTimeout. Another measure
that could be tried to improve performance is hosting every node on a separate machine. As seen in
the evaluation topology in Chapter 5, the evaluation was done on 3 machines instead of 21; 7 times 2
peers plus 7 orderers.

Replacing Binaries
All cryptographic material is currently generated using a binary executable provided by Hyperledger
Fabric. The Hyperledger documentation3 indicates that this binary, among others, should only be used
during development. Therefore, it is suggested to generate cryptographic material in a different manner
as well as replacing other binaries. Fabric supports generating certificates using its Certificate Authority
(CA), which it recommends to use in a production environment, instead of binaries.

EAN Code Support
Currently, consumers in the register are identified by a random integer. In the current market, a client
is identified by the EAN code of their smart meter. To reflect the market, it would be preferable to
identify consumers by an EAN code instead of a random integer. This feature can be added once
authentication has been added; after a consumers has been authenticated, their EAN code can be
fetched from a database available to DGOs.

Use Milliseconds for Mandates
Currently, the time stored in a mandate object is specified in hours. This was done because executing
chaincode on different machines resulted in slightly different results when using milliseconds. However,
this is undesirable because it should be possible to updatemandates in a shorter time frame. Therefore,
the underlying problem of using time within chaincode should be fixed such that mandates can be
ordered by milliseconds instead of hours. A possible solution would be to pass the time along with the
proposal, and have peers verify that this time is within reasonable bounds.

Adding an Orderer Dynamically
The network supports adding an organisation while it is running. Unfortunately, orderers cannot be
added during runtime. As the orderers have been divided over the seven DGOs, it would be best that
adding an orderer is supported along with adding an organisation. When implementing this, the Raft
protocol configuration needs to be updated as well. A starting point for implementing this functionality
would be to find out how to modify the syschannel during runtime, as this is essential to update the
ordering service.

GUI
The application’s GUI currently has a basic design that could be improved upon significantly. Enhanc-
ing the server, such that it hosts multiple web pages instead of one, would make the interface more
intuitive. Moreover, the server’s responses to submitting data are formatted in plain JSON; they should
be displayed in a more readable fashion.
3https://hyperledger-fabric.readthedocs.io/en/release-1.4/

6.4. Future Work & Recommendations 30

Authentication
In order to deploy the mandate register in production, consumers need to be authenticated. Without
authentication, it cannot be verified that a mandate was submitted by the consumer it refers to. In
the initial project description, authentication was projected to be done using DigiD. In the first week of
research, it was decided that IRMA4 would be used instead. A few weeks later, it was determined that
implementing authentication was beyond the scope of the project due to time constraints.

During the project, IRMA was considered to be used for authentication. However, ideally DigiD
would be used for authentication.

Platform Independent Networking
Networking currently works on Linux systems only. Trying to connect with a network on a Windows
system does not work yet (see Section 6.3). Networking has not been tested on MacOS. The network
should be more platform independent to be a more complete product. The development team suspects
that networking on Windows does not work due to Docker Swarm failing to connect.

Hyperledger Fabric Version
The register was developed using Hyperledger Fabric 1.4.4. During development, version 2.0 of Fabric
entered its Beta phase. Version 2.0 adds potentially useful functionality. Examples of such features are
a new chaincode lifecycle and private data enhancements. Not upgrading could also lead to features
losing support, such as imports that are moved. Thus looking into version 2.0 of Hyperledger Fabric
could be quite fruitful. The Fabric 2.0 documentation5 provides explanation on how to upgrade to a
newer version.

GDPR
It was established early that mandates are personal data and therefore fall under the GDPR. Research
was done onmaking a blockchain implementation GDPR compliant. This meant it should be possible to
remove mandates upon request. Different solutions to this problem were theorised, though none were
deemed feasible for implementation within the project’s duration. One of these solutions would be to
use Fabric’s private data implementation to send private keys off chain. If a client would then issue a
deletion request, parties involved would delete said private key. Once a new mandate would be added
by that client, a new key for encryption could be created and distributed. After various consultations,
it was decided to minimise the risk of comprising the GDPR. However, complete GDPR compliance
should still be implemented.

4https://privacybydesign.foundation/irma-en/
5https://hyperledger-fabric.readthedocs.io/en/release-2.0/

7
Conclusion

A mandate register was built using the Hyperledger Fabric blockchain framework. It allows individuals
to grant or revoke third parties’ permission to inspect specific data of the individual. The register was
designed in such a way that it solves the lack of transparency regarding data access, and makes
switching energy suppliers quicker for consumers.

While developing the mandate register, three design goals were kept in mind; expandability, security
and privacy, and GDPR compliance. Although the register can be used for different use cases, and
is scalable in that sense, its lack of performance hinders deployment. As for security and privacy,
the immutability property of blockchain and endorsement policies of Fabric ensure that data can be
read and written reliably. However, authentication of consumers was not implemented due to time
constraints. Finally, combining GDPR compliance with blockchain technology appeared to warrant its
own project and was not completed due to time constraints either.

To conclude, the current mandate register fulfills a majority of its design goals and requirements
but requires additional development in order to be deployed. A fully developed mandate register will,
without doubt, grant a better grip on energy.

31

A
Info Sheet

32

Grip on Energy
Presentation date: 6 February 2020

Project Description

Challenge:
The challenge of this project was to create a blockchain register which holds consumers’ mandates. Mandates
are authorisations, signed by individuals, that give third parties permission to inspect their data. The main goal
was to make switching between energy providers possible through the register.
The project was commissioned by CGI, a globally active IT consultancy company.
Research:
During the research phase our focus was on blockchain, different consensus protocols, blockchain frameworks
and the way the energy market is setup.
Process:
We tried using agile but unfortunately the setup proved quite hard. The troubles setting up the framework made
it so agile did not work, thus during set up we worked together on fixing the bugs. After setup we started using
agile again.
Product:
In the end we created a mandate register with the use of blockchain. The blockchain code has been unit tested.
On top of the blockchain an application was built. This was end-to-end tested thoroughly.
Outlook:
The product is not finished. Features like authentication still need to be implemented and the overall performance
needs to be increased.

Team Members

Robbert Koning:
Node.js, Application

Suleiman Kulane:
Networking, Automatisation, Smart Contract

Erwin van Thiel:
Application, Networking, Smart Contract, Evaluation

Jordy de Wit:
Automatisation, Testing, Smart Contract

Allmembers contributed towriting the report and to the network
configuration

Client & Coach

Client:
S. Hijgenaar
Senior Business Consultant, CGI Nederland

H. Heine
Director Consulting Services, CGI Nederland

Coach:
S. Roos
Assistant Professor Distributed Systems, TU Delft

Contact Information

Robbert Koning:
robbert.m.koning@gmail.com

Suleiman Kulane:
suleimankulane@gmail.com

Erwin van Thiel:
vanthiel.erwin@gmail.com

Jordy de Wit:
jordy1998@live.nl

The final report for this project can be found at: http://repository.tudelft.nl

B
Usage Manual

In this section, an explanation is given on how to use the register. This is done by explaining the function
of the project’s script files, and providing an overview on how to start the register and GUI.

B.1. Scripts
In order to automate tasks needed for development, various scripts were created. An explanation of
these scripts is given below. However, it is advised to study the scripts’ contents before execution, as
to prevent any unwanted side effects.

B.1.1. docker-swarm-cleanup.sh
The docker-swarm-cleanup.sh script removes the machine executing the script from the Docker
swarm the machine is connected to, and removes Docker containers and networks.

Note that the script removes all Docker containers, networks, and volumes; also ones that do not
necessarily have to do with Fabric.

B.1.2. generate-artifacts.sh
The generate-artifacts.sh script removes and re-generates files that are necessary for develop-
ment on a single machine. It does not start any containers or servers. First, it removes and regenerates
cryptographic material necessary for the MSP (Membership Service Providers) to function. Then it cre-
ates a genesis block, a channel configuration, and anchor peers. Lastly, it updates the private keys in
application/gateway/network-config.yaml so that the Node.js server can send transactions,
if need be. Starting the Node.js server is explained in Appendix B.2.4.

B.1.3. network_init.sh
In the CLI, the script makes all peers join the dgochannel and install the chaincode on them. Finally,
anchor peers are updated and the mandate_contract chaincode is instantiated and initialized.

B.1.4. start.sh
The start.sh script removes and restarts all Docker containers necessary for development on a
single machine. Next, it initializes a docker swarm and creates a network called net_bep. After
that, it uses Docker Compose to start containers specified in docker-compose-cli.yaml, docker
-compose-ca.yaml and docker-compose-couch.yaml. Finally, it executes network_init.sh.
When the script has executed, there is a network online that is ready to handle chaincode invocations
and queries.

Note that the script removes all Docker containers, networks, and volumes; also ones that do not
necessarily have to do with Fabric.

34

B.1. Scripts 35

B.1.5. addOrg.sh
The addOrg.sh script adds an additional organisation to a running Fabric network. First, it fetches
the newest configuration block from the channel using a peer that is already in the channel. Second,
the configuration of the new organisation is added to the configuration block and a new block is com-
mitted to the ledger. Afterwards, from within the newly created CLI dedicated to the peers of the new
organisation, the peers are added to the channel and the chaincode is installed on them. Finally, a new
anchor peer is added to the channel. The process is similar to joining the channel, the configuration
block is updated to include the new anchor peer. This is then updated once again, so that the entire
channel knows who and where the new anchor peer is; this allows for cross-organisation gossip with
the new organisation. As parameters, AddOrg.sh takes:

1. CHANNEL_NAME: The name of the channel the organisation should be added to.

2. ORG_NAME: The name of the organisation that needs to be added to the network.

3. CONTRACT: The name of the chaincode that needs to be installed on the peers of the new organ-
isation.

4. VERSION: The version of the chaincode that needs to be installed. This version will usually be
one newer than the currently installed version on the channel. Specifying the version is neces-
sary because peers from the new organisation likely will have to participate in the endorsement
process. To do so, the endorsement policy of the chaincode needs to be updated to include peers
from the new organisation and thus a new version is specified.

5. PORT: The port used for the first peer of the new organisation.

For example, adding organisation ‘dgo7’ to the dgochannel, with version 2.0 of the chaincode, can
be done as follows:

./addOrg.sh dgochannel dgo7 mandate_contract 2.0 21051.
In order to add a new organisation to a running network, various configuration files in specific direc-

tories have to be created. The following directories have to be created:

• \$[ORG_NAME]Artifacts, e.g. dgo7Artifacts

• docker-compose-files/dynamic-orgs/\$[ORG_NAME], e.g. docker-compose-files
/dynamic-orgs/dgo7

The following files have to be created:

• \$[ORG_NAME]Artifacts/configtx.yaml, e.g. dgo7Artifacts/configtx.yaml. In
this file the organisation’s configuration is specified.

• \$[ORG_NAME]Artifacts/\$[ORG_NAME]-crypto.yaml, e.g. dgo7Artifacts/dgo7-
crypto.yaml. In this file the configuration needed to generate the crypto files for the new
organisation are specified.

• docker-compose-files/dynamic-orgs/\$[ORG_NAME]/docker-compose-ca-\$[ORG_NAME
].yaml, e.g. docker-compose-files/dynamic-orgs/dgo7/docker-compose-ca-dgo7
.yaml. This is the docker compose file needed to create the ca container for the new organisa-
tion.

• docker-compose-files/dynamic-orgs/\$ [ORG_NAME]/docker-compose-couch-\$
[ORG_NAME].yaml, e.g. docker-compose-files/dynamic-orgs/dgo7/docker-compose
-couch-dgo7.yaml. This is the docker compose file needed to create the couchdb container
for the new organisation.

• docker-compose-files/dynamic-orgs/\$[ORG_NAME]/docker-compose-\$[ORG_NAME
].yaml, e.g. docker-compose-files/dynamic-orgs/dgo7/docker-compose-dgo7.
yaml. This is the docker compose file needed to create the peer containers and a dedicated
cli container for the new organisation.

B.2. Running the network 36

B.2. Running the network
In this section, concrete steps are given on how to run the network on a single host and how to run it
on multiple hosts.

B.2.1. Prerequisites
To run the network, the used machine must have the prerequisites, as defined in the Fabric Documen-
tation [10], installed.

B.2.2. Single Host Machine Network
To launch a network on a machine locally, run the following command:

./start.sh

B.2.3. Multi Host Machine Network
Firstly, ensure that every machine which joins the network has the same generated cryptographic ma-
terial in its file system. Secondly, kill and prune the containers that are still active with the following
command:

./docker-swarm-cleanup.sh

To launch a multi-machine network, a Docker swarm and swarm network are needed. The following
commands provide these, respectively:

docker swarm init
docker network create --driver overlay --attachable net_bep
docker swarm join-token manager

The last command returns a text with a manager token, for example:

docker swarm join --token SWMTKN-1-4
f2q8ewzgsw7qy486f4kzqj1rzd1rwslyzpl93yqq46ij90q4o-0
pcsziwvl9yat8fh5wd5wp6yk 145.94.198.150:2377

To join the swarm network on another machine, simply append the following to the command above:

--advertise-addr <ip address of joining machine>

Execute this
Next, run the containers for the desired organisation on the machine with the corresponding script.

Running organisation dgo0 for example ought be done in the following fashion:

./dgo0.sh

Finally, run the following command for adding the organisations to the channel and installing and in-
stantiating the chaincode on it.

./network_init.sh

B.2.4. Application
In order for the Fabric Node SDK to know what parts of the network to address, the connection profile
should be adapted to the network setup. On a single machine network the URL of all peers and orderers
must be configured to localhost. On a multi machine setup however, the URLs should contain the ip of
the machine hosting the container. Moreover, the adminPrivateKeys must correspond to the ones in
the crypto-config folder. The update-admin-keys.py script, which is also called in generate-artifacts.sh,
takes care of this but it can also be done manually ofcourse. To get the application up and running,
navigate to the application folder and run the following consecutive commands:

B.2. Running the network 37

node register-user.js
node app.js

This registers the user and runs the server on localhost:3000, where the GUI will speak for itself.
localhost:5984 hosts the fauxton interface which displays the peer’s world state.

B.2.5. Testing
To run the unit tests, the following steps need to be taken:

• Change the import path of Shim in mandate_contract.go. See Section 6.3 for the reason
behind this.

• Run the setupGoTest.sh script located in /chaincode. This script will get all dependencies,
like Testify Toolkit and Shimtest, needed to run the tests.

• Copy mockStub.go from chaincode/testDependency to the Shimtest dependency located
at GOPATH/src/github/hyperledger/fabric-chaincode-go/shimtest. Again, see Sec-
tion 6.3 for the reason behind this.

• Navigate to /chaincode and execute go test. This command will return either ‘PASS’ or ‘FAIL’
depending on the outcome of the test. Execute go test -cover to see the statement coverage
besides ‘PASS’ and ‘FAIL’. In order to generate an HTML file showing which statements and
lines are covered, run go test -cover -coverprofile cp.out, then go tool cover
-html cp.out -o coverage.html. Note that cp.out can be renamed to <name>.out, but
must be the same in both commands. Also, coverage.html can be renamed at will.

B.2.6. Evaluation
For evaluating throughput and latency, simply run the following commands respectively.

node test_throughput.js
node test_latency.js

C
Original Project Description

Een toestemmingenregister voor de Nederlandse energiemarkt Met de toenemende druk op energi-
etransitie als gevolg van klimaatverandering, zien we dat het beheer van onze energienetten een steeds
complexer proces wordt. Door grootschalige intrede van duurzame opwek, zoals uit zon en wind, en
de elektrificatie van onze samenleving, denk aan mobiliteit en verwarming/verkoeling, neemt de dy-
namiek toe en de voorspelbaarheid af. Slimme serviceproviders kunnen hier alleen op inspelen met
veel, accurate data. Echter, (nieuwe) privacywetgeving bemoeilijkt de toegang tot die data.

Koppelen van verschillende bronnen
De afgelopen decennia worden gekenmerkt door de digitalisering van onze energiesystemen. Op grote
schaal wordt data verzameld en gebruikt voor facilitatie op macroniveau. Echter, die data wordt nog on-
voldoende aan elkaar wordt gekoppeld en gebruikt voor het managen van het systeem op microniveau.
Denk hierbij aan slimmere netten, accurate voorspellingen en het vermijden van netwerkproblemen.
Vaak is privacygevoeligheid een show-stopper, omdat veel data in deze systemen aan een persoon
gebonden zijn. Het gebruik van die data voor een specifiek doel zou dus op basis van toestemming
van de eigenaar moeten gebeuren.

Toestemmingen in de energiemarkt
Toestemmingen (soms: attestaties of mandaten) voor datatoegang komen al overal voor in de en-
ergiemarkt. Wie een contract afsluit met een energieleverancier geeft, eigenlijk impliciet, toestemming
om consumptiedata te ontsluiten en te gebruiken voor bijvoorbeeld factureren. Bij een verhuizing krijgt
de netbeheerder toegang tot je slimme meter die vervolgens gedeeld wordt met een hele keten aan
marktpartijen. Helaas zijn de meeste van deze processen niet inzichtelijk voor alle betrokken partijen
en berusten ze vaak op veel handmatig werk, wat ze foutgevoelig en tijdrovendmaakt. Dat kan slimmer.

Een slim toestemmingenregister
Het toekomstbeeld is een register waarin consumenten en prosumenten op een overzichtelijke manier
slimme afspraken met marktpartijen kunnen maken. Blockchaintechnologie kan hier een rol in spelen
door het onveranderlijk bijhouden van alle autorisaties die men uitdeelt op hun persoonlijke data. Zo
kan met een toestemming voor het koppelen van jouw BRP-registratie en je slimme meter een verhuiz-
ing voortaan automatisch verlopen en in gang gezet worden door een simpel belletje met de gemeente.

De opdracht
Bouw een decentraal toestemmingenregister waarin het mogelijk is om op basis van identificatie en
authenticatie met DigiD verschillende datatoegangsrechten te verlenen. De focus ligt op het koppe-
len van verschillende (bestaande) databronnen, die in verschillende combinaties andere use cases
mogelijk maken:

• Switchen van energieleverancier;

• Diensten afnemen van aggregators of MSPs

38

39

• Verhuizen;

• Energie verkopen aan je buurman;

• Gebruik van je data door kennisinstellingen;

• Etc.

Essentieel is het bedenken van een veilige manier voor het opslaan van de authenticatie en het slim
uitwisselen van de toestemmingen tussen een veelheid van partijen met behulp van blockchaintech-
nologie.

D
Research

D.1. Introduction
In this chapter, research that was conducted during the project is reported.

First, an analysis of the problem is presented in Section D.2 by evaluating how the current situation
causes problems, after which a proposal for a solution is given. Then, the design goals of the project and
its success criteria are determined in Section D.3. After this, various critical decisions that were taken
with respect to system design are elaborated upon in Section D.4. This elaboration consists of design
choices concerning the manner in which data is stored and design choices specific to the preferred
technology used to solve the problems at hand. Finally, the frameworks available for implementing this
technology are discussed in Section D.5.

D.2. Problem Analysis
The first step of the research process is an analysis of the problem. The current situation in the energy
market is discussed in Section D.2.1, issues to be resolved are then stated in Section D.2.2 and finally
a possible solution to these issues is proposed in Section D.2.3.

D.2.1. Current Situation
Currently, many processes in the energy market are convoluted and tedious. One such example is
the process of consumers switching their energy supplier. Whenever a consumer wants to switch
from their supplier, they go to a new supplier’s website or a switching service and issue a request to
switch to the new supplier. When the new supplier receives this request, it checks the Contract Einde
Register (CER) to verify the consumer is allowed to switch according to their current contract and their
cancellation period. If the consumer is allowed to switch, the new supplier contacts the Distribution
Grid Operator (DGO) with the switch request. After the DGO receives the request they will undergo
the following steps [16]:

1. The DGO processes the request and does seven checks to see whether the request is valid or
not.

2. In case one of the seven checks fails, a rejection is sent to the new supplier and the new supplier
processes that rejection.

3. The new supplier receives and processes a ‘GAIN’ message.

4. The old supplier receives and processes a ‘LOSS’ message. It also checks the meter value.

5. The old Program Responsible Party (PRP) - the party responsible for the purchase of electricity
- receives and processes a ‘LOSS’ message and the new PRP receives and processes a ‘GAIN’
message.

6. The DGO plans the mutation into the ‘Aansluitingsregister’.

40

D.3. Design Goals 41

Besides the actual switch request, the measurement data of the consumer also need to be commu-
nicated between these parties, but the consumer is not involved in this process. This data is collected
via the uniquely numbered EAN code of the consumer’s smart meter. The collected data is used to
determine at what usage value a certain contract ends and a new one is started. For the new supplier
to be allowed to collect the data, they need permission from the client to read their smart meter.

D.2.2. Problem Definition
Looking at the current situation, a few main problems become apparent:

1. Lack of transparency: in the current system, consumers have no clear overview of the parties that
are or have been able to see and use their data, because currently no record of the permissions
is being kept.

2. Time consuming process: the process of switching suppliers can be time consuming for con-
sumers. It can take up to six weeks for the switch to go into effect[21]. When switching, there
is much communication between parties, for instance for verifying each others’ data. Verification
can be even more time consuming when there is conflict between parties. The new supplier also
has to wait on the permission to read the client’s smart meter data.

D.2.3. Proposed Solution
To solve the problems stated in Section D.2.2, a register could be built that stores the consumer’s
permission (or mandate) for the data to be used. Such a register would allow consumers to digitally
specify which energy suppliers are allowed to use their data. This means that consumers become able
to change which energy suppliers are able to use their data with a simple update in the register.

A register accessible to both consumers and suppliers could overcome data insight issues from
the perspective of consumers while keeping consumer energy data usable from the perspective of
suppliers. This register can be used to implement an interface in which consumers can see a proper
overview of the parties that are or were allowed to use their data, and when.

Moreover, the register could speed up the process of switching from suppliers, because it could
perform the necessary checks itself so that suppliers do not have to trust each other.

Lastly, many other use cases become possible with an efficiently functioning mandate register.
This is because consumers can make specific data available for use by any type of party, such as an
academic institution.

Though the main focus of this project is switching to another energy supplier, a large emphasis is
placed on keeping the door open for other use cases.

D.3. Design Goals
In this section, the most design goals of the project are elaborated upon. These goals are considered
whenmaking influential decisions. The essential design goals for this project are expandability, security
and privacy, and GDPR Compliance. The section ends with criteria that should be met in order to
consider the project a success.

D.3.1. Expandability
Expandability is crucial to the success of the project. All major design choices were made with the idea
that the system should support many different use cases and many users.

Support for various Use Cases
It is critical that the system can be extended to support many different use cases. While the project’s
specific use case is allowing consumers to switch between energy providers, the challenge is to facili-
tate as many other use cases for mandates as possible. In order to facilitate other use cases, mandates
should be as generic as possible, formatted intuitively as: ‘Party 𝑋 grants/revokes permission for party
𝑌 to access 𝑋’s data concerning 𝑍, for the purpose of 𝑊.’ 𝑍 in this project would be energy and 𝑊
could be ‘a contract’, ‘science’, etc. Therefore, instead of implementing a single use case, a system is
implemented, which is then proven to work by implementing a use case on top of it.

D.4. Design Choices 42

Scalability
Another important aspect of expandability is that the system should be able to handle thousands of
consumers simultaneously granting and revoking mandates and hundreds of parties simultaneously
querying this data.

D.3.2. Security and Privacy
The second design goal is ‘security and privacy’. This means that data read from the system is accurate,
that data written to the system is verified, that parties with access to the system are authenticated, that
the system does not have a central authority, and that the system handles sensitive data with care.
These statements are elaborated upon below.

Verified Data Reading
Data queried from the system must be accurate and untampered with. Parties must be assured that
they can retrieve all mandates that belong to them from the system, and that these mandates are
untampered with and complete. Therefore, all mandates that are accepted by the system, should be
immutable once stored.

Verified Data Writing
All data that is written to the system should be verified to adhere to the protocol, before it is written to
the system.

Authentication
In order to guarantee that mandates cannot be granted, revoked or read by unauthorized parties, all
parties with access to the system should have to authenticate themselves before being able to read or
write mandates.

No Central Authority
In order to prevent improperly functioning parties from modifying consumers’ mandates, there should
not be a central, corruptible authority for adding data to the system.

GDPR Compliance
The system is credible if it handles consumers’ data with care. Therefore, it should follow the guidelines
laid out by the General Data Protection Regulation (GDPR)[7]. The concept of a mandate register is in
line with the GDPR’s core principles, for it gives consumers more control over their own data.

However, mandates themselves are personal data because they can be traced back to individuals.
Storing these mandates raises GDPR concerns. These concerns should be taken care of. However, it
is important to realise that solving all problems might not be possible within the scope and duration of
the project.

D.3.3. Success Criteria
Based on the proposal of Section D.2.3 and the design goals of this section, it is possible to state the
criteria that must be met in order to consider the project a success. These success criteria form a useful
guide during the implementation phase of the project and will give a rough indication of the project’s
progress. The criteria are rather intuitive:

1. The system must be more transparent and less time consuming than in the current situation.

2. The design goals stated in this section must be met.

D.4. Design Choices
In this section, the design choice that was made with respect to the type of data storage is elaborated
upon, together with design choices specifically for that type of storage.

D.4. Design Choices 43

D.4.1. Data Storage
For the storage of mandates, two main options are considered. One of the options is blockchain. The
other option is a distributed database. Both systems can have similar properties such as decentralisa-
tion and immutability. These properties are required when considering expandabilty and credibility.

Blockchain in general was found to have a larger collection of available documentation and tutorials.
Also, nodes in a blockchain network can all be mutually mistrusting entities that do not want to have to
rely on a trusted third party for exchanging data [22]. Taking into account the aforementioned properties
of blockchain, it is apparent that blockchain does not have any considerable disadvantages compared to
distributed databases. After discussion with the client, it became apparent that they have a preference
for using blockchain. Therefore, after thorough research and discussion, it was agreed upon to use
blockchain for the project.

D.4.2. Blockchain
Having decided on using blockchain technology, this section will contain an elaboration of design
choices that follow accordingly. First, a distinction will bemade between a permissioned and permission-
less blockchain. Finally, the concept of a consensus protocol is introduced and several different con-
sensus protocols are considered, along with their applicability for this project.

Permissioned vs. Permission-less
A permission-less blockchain is a blockchain that everybody is free to join at any time. There is no
central authority that can decide to ban or disallow any peer. This means that everybody can host a
node in the network [22].

A permissioned blockchain, however, does work with an authority that decides who can or cannot
be part of the network and which participant gets which rights. An example could be the right to validate
blocks [22]. Note that the central authority in a permissioned blockchain cannot hinder data transactions
between nodes.

In this project, there is need for a third party to decide who is allowed to host a server, because not
everybody should be able to do so. Consequently, a permissioned blockchain with a central authority
determining its participants will be the option best suited for this project. The blockchain will also be
private rather than public because not everybody should be able to access the stored data.

Consensus
In this section, the concept of a consensus protocol is brought to light and different known consen-
sus protocols will be discussed. First, the desired characteristics of a consensus protocol suitable for
this project will be determined. Consensus protocols help a distributed or decentralized network to
unanimously take a decision whenever needed[19].

Desired Characteristics
When choosing a protocol that is going to determine in what fashion the blockchain’s ledgers are ex-
panded, several characteristics have to be taken into consideration. To elaborate, these specific char-
acteristics are speed, fault tolerance and scalability.

• The network should be fast enough to let people switch providers or query their mandate infor-
mation within a matter of seconds.

• The network should be relatively robust to scaling, meaning that it should maintain reasonable
performance with respect to the number of network participants as this number grows. Scalability
is only a factor up to a certain degree because the network is not expected to become very large
nor grow multiple orders of magnitude.

• Fault tolerance is also an important attribute because network nodes can always fail. When this
happens, the network should maintain a consistent and correct state when it comes to stored
data.

• In the field in which the network will be deployed, no concern is needed for malicious nodes.
Therefore, resistance against maliciousness is not taken into consideration.

D.4. Design Choices 44

PoW PoS PoET BFT and variants
Blockchain type permissionless Both Both permissioned
Transaction rate low high medium high

Scalability of peer network high high high low
Adversary tolerance <=25% Depends on specific algorithm Unknown <=33%

Table D.1: consensus comparative analysis[3]

Proof of Work
In a Proof of Work protocol (PoW), as used in for example Bitcoin, each node in the network competes
for adding a new block by solving a complex mathematical puzzle. When a node finds the desired,
easily verifiable solution, it broadcasts the block to all other nodes. The other nodes must validate the
block and if it is correct, they all append it to their own copy of the chain. The essence of this algorithm
is that a node has to do a tremendous amount of work before being able to append a new block, to
prove that a node is not likely to be malicious [23]. All this work costs a lot of energy and resources,
therefore this approach does not seem appropriate for an application in the energy market. Besides
being very energy consuming, a PoW protocol also has a poor transaction rate[3], and speed is a factor
that should be taken into account.

Proof of Stake
Unlike Proof of Work, Proof of Stake does not need an enormous amount of energy to append a new
block. The node which appends a block to the chain will be pseudo-randomly chosen out of the stake-
holders [18]. A ’stakeholder’ refers to a party with a monetary incentive in the network. To be clear, the
use case described earlier does not concern monetary transactions; defining a ’stake’ is not appropriate
for this use case. Therefore, Proof of Stake is unsuitable for application in the energy sector.

Practical Byzantine Fault Tolerance
Practical Byzantine Fault Tolerance (pBFT) is an algorithm in which all of the parties are known, but
they may be faulty or malicious. The network will reach consensus by means of voting [5]. Voting can
be done fast, but there will be overhead in order to reach consensus after voting. The overhead is not
a problem within a small network, but once the network becomes larger, it will become a bottleneck [3].
This type of consensus algorithm works well in a permissioned system.

Proof of Elapsed Time
Proof of Elapsed Time is a consensus algorithm used mainly by the Hyperledger Sawtooth framework.
In this section, only the algorithm is explained; the framework is elaborated upon in Section D.5.

In short, PoET elects a random leader to append a block to the chain. All nodes in the network
are assigned a random waiting time, and the first node to wake up finishes the block and broadcasts
it to the other nodes. To avoid manipulation by malicious nodes, all nodes need to run in a Trusted
Execution Environment (TEE), for example Intel’s Software Guard Extensions. This TEE guarantees
that the random waiting timer cannot be tampered with by malicious software [3]. PoET overcomes the
drawbacks of PoW and PoS but requires the nodes to run on specific hardware.

Raft
Raft is a consensus algorithm that is used by for instance the Hyperledger Fabric framework. In this
section, only the algorithm is explained; the framework is elaborated upon in Section D.5.

The Raft consensus protocol is built up to solve three problems, namely leader election, log repli-
cation and safety.

Leader election is the process of network participants choosing a ’leader’ which determines what
data to add to the chain. A leader uses an ‘AppendEntry Remote Procedure Call’ (RPC) for this. All
requests to add data must go through the leader. In the case of Raft, all nodes start a self-specified
pseudo-random timeout, and the node whose timer ends first becomes a candidate node. This candi-
date starts an election and asks all other nodes to vote for him, by means of a ‘RequestVote Remote
Procedure Call’. Nodes will vote for the first candidate which contacts them, except if they are a can-
didate themselves. If a majority of the nodes vote for a candidate, it becomes the leader. After an

D.5. Blockchain Frameworks 45

arbitrary, self-specified amount of time or when the leader fails to send a heartbeat, a new election is
started.

Log replication is the process of ensuring that all network participants share the leader’s log. In
Raft, the leader sends the new entries from its own log to all its followers. If a majority approves this
entry and adds it to their logs, the entry is committed. Raft ensures that all previously committed entries
are also agreed upon in the network.

The last problem which Raft attempts to tackle is safety. For instance, Raft imposes restrictions on
becoming a leader, such as demanding that all leaders have an up-to-date log. However, these safety
measures do not guarantee that malicious leaders cannot take over the network. For this project it is
not a problem, because malicious nodes are not taken into account.

The Raft protocol seems well-suited for a permissioned blockchain in which all parties are treated
equally. Every node has an equal probability of becoming leader. This is also the case for the PoET
protocol, but Raft does not depend on specific hardware. The protocol is also robust to failing nodes
due to the heartbeat mechanism; it can tolerate up to 49% of nodes failing - which is called Crash Fault
Tolerance - and is much faster than PoW or PoS protocols. A drawback of Raft is however that the
network is limited in scalability due to its architecture and cannot handle malicious nodes.

The information in the Raft section was based on [17] and [15].

Figure D.1: The states of the nodes can be represented by this state machine [17]

Conclusion
After evaluating the above consensus protocols, Raft seems to be most appropriate for this project.
The two drawbacks, being lack of scalability and incapability of handling malicious nodes are lesser
problems than hardware dependencies, lack of speed and fault tolerance. This is because in this project
the possibility of nodes being malicious is not taken into account and the number of network nodes will
not be very large.

D.5. Blockchain Frameworks
For the development of the blockchain network, multiple frameworks were considered. The require-
ments and design choices discussed in earlier sections will be used to evaluate the applicability of the
frameworks. Other important factors to consider are how well the frameworks are documented and
how well they are maintained.

Hyperledger Fabric
Hyperledger Fabric is an open-source platform designed for the development of permissioned blockchain
networks. It has substantial documentation which contains theoretical explanation and code tutorials.
Fabric implements a consensus protocol based on Raft [2], which means it is resistant against a con-
siderable percentage of node failure and can achieve high transaction rates. Fabric also supports
querying data through CouchDB instead of querying the blockchain directly. The information in this
paragraph was gathered from [10].

• +Widely used, well-documented and maintained;

• + Raft-based consensus protocol has most of the desired characteristics: it is fast, relatively
scalable and Crash Fault Tolerant.

D.5. Blockchain Frameworks 46

• + Querying capabilities powered by CouchDB.

Hyperledger Sawtooth
Hyperledger Sawtooth is an open-source platform designed for the development of blockchain networks
[13]. Sawtooth provides an elaborate documentation and is also widely used. It is also built in such a
way that most application logic can be written in a variety of common programming languages, such
as Python, JavaScript, Go, C++ and Java. Finally, Sawtooth allows plugging in different consensus
protocols, but by default it only offers a form of Practical Byzantine Fault Tolerance or Proof of Elapsed
Time. This is Sawtooth’s main drawback with regards to the project; neither consensus algorithm is
suitable, and implementing another one is not feasible considering the project’s limited duration.

• +Widely used, well-documented and maintained;

• + Application logic can be written in a wide variety of languages;

• − Consensus algorithms are not suitable due to specific hardware dependencies or scalability
limitations.

Tendermint
Tendermint is an open-source platform for blockchain application development. Although Tendermint
provides various well-documented examples, general documentation is limited. A benefit of Tendermint
is that it satisfies the Byzantine Fault Tolerance (BFT) property. This provides various safety guaran-
tees. For example, up to 1/3 of the nodes in the network can be explicitly malicious without the network
being compromised [20]. However, BFT is achieved through Tendermint Core - Tendermint’s consen-
sus algorithm - which cannot scale enough to suit this project. The information in this paragraph was
gathered from [20].

• + Satisfies Byzantine Fault Tolerance;

• +/− Development documentation is available with examples but general documentation is lim-
ited;

• − Consensus protocol is not suitable due to scalability limitations.

BigchainDB
BigchainDB is an open-source platform that offers tools for building both public and private networks
with the characteristics of a (MongoDB) database and a blockchain together. It is properly documented.
It provides decentralisation, Byzantine Fault Tolerance and immutability like a blockchain, but it also
provides high transaction rates and querying functionality like a database [4]. However, BigchainDB
achieves BFT by using a Tendermint consensus algorithm that cannot scale enough [4].

• +Widely used, well-documented and maintained;

• + Querying capabilities powered by MongoDB;

• − Consensus protocol is not suitable due to scalability limitations.

Conclusion
After considering the frameworks above, it appears that Hyperledger Fabric is the most suitable frame-
work for this project.

Although Hyperledger Sawtooth seems to be a valid option as well, its built-in consensus algorithms
are not suitable for the project. Implementing another consensus algorithm might be a possibility but
seems unreasonable given the duration and other objectives of the project.

Bibliography
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, An-

gelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srini-
vasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yel-
lick. Hyperledger fabric: A distributed operating system for permissioned blockchains. CoRR,
abs/1801.10228, 2018. URL http://arxiv.org/abs/1801.10228.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo
De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al. Hyper-
ledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the
Thirteenth EuroSys Conference, page 30. ACM, 2018.

[3] Arati Baliga. Understanding blockchain consensus models. In Persistent. 2017.

[4] BigchainDB. Bigchaindb whitepaper. URL https://www.bigchaindb.com/whitepaper/.

[5] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

[6] Docker. Docker documentation. URL https://docs.docker.com/.

[7] EU. Gdpr. URL https://gdpr-info.eu/.

[8] Hyperledger. Hyperledger fabric msp, . URL https://hyperledger-fabric.
readthedocs.io/en/release-1.4/msp.html.

[9] Hyperledger. Hyperledger fabric documentation ; securing communication with transport layer
security, . URL https://hyperledger-fabric.readthedocs.io/en/release-1.4/
enable_tls.html.

[10] Hyperledger. Hyperledger fabric documentation, . URL https://hyperledger-fabric.
readthedocs.io/en/release-1.4/.

[11] Hyperledger. Hyperledger fabric gossip protocol, . URL https://hyperledger-fabric.
readthedocs.io/en/release-1.4/gossip.html.

[12] Hyperledger. Hyperledger blockchain performance metrics, . URL https://www.
hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_
V1.01.pdf.

[13] Hyperledger. Hyperledger sawtooth documentation, . URL https://sawtooth.
hyperledger.org/docs/.

[14] Hyperledger. Fabric samples. https://github.com/hyperledger/fabric-samples,
2019.

[15] Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun. A review on consensus
algorithm of blockchain. In 2017 IEEE International Conference on Systems, Man, and Cybernet-
ics (SMC), pages 2567–2572. IEEE, 2017.

[16] Vereniging Nederlandse Energie-Data Uitwisseling (NEDU). Detailprocesmodellen mutatie-
meetprocessen kleinverbruik. Technical report, mar 2018.

[17] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 Annual Technical Conference (14), pages 305–319, 2014.

47

http://arxiv.org/abs/1801.10228
https://www.bigchaindb.com/whitepaper/
https://docs.docker.com/
https://gdpr-info.eu/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/enable_tls.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/enable_tls.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html
https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
https://sawtooth.hyperledger.org/docs/
https://sawtooth.hyperledger.org/docs/
https://github.com/hyperledger/fabric-samples

Bibliography 48

[18] Fahad Saleh. Blockchain without waste: Proof-of-stake. Available at SSRN 3183935, 2019.

[19] Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. Survey of consensus protocols on
blockchain applications. In 2017 4th International Conference on Advanced Computing and Com-
munication Systems (ICACCS), pages 1–5. IEEE, 2017.

[20] Tendermint. Tendermint documentation. URL https://docs.tendermint.com/master/.

[21] Peter van der Wilt. Overstappen naar een andere energieleverancier. URL https://www.
consumentenbond.nl/energie-vergelijken/overstappen-energieleverancier.

[22] Karl Wüst and Arthur Gervais. Do you need a blockchain? In 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT), pages 45–54. IEEE, 2018.

[23] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An overview of
blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE International
Congress on Big Data (BigData Congress), pages 557–564. IEEE, 2017.

https://docs.tendermint.com/master/
https://www.consumentenbond.nl/energie-vergelijken/overstappen-energieleverancier
https://www.consumentenbond.nl/energie-vergelijken/overstappen-energieleverancier

	Introduction
	Problem Definition
	Outline

	Conceptualisation
	Design Goals
	Expandability
	Security and Privacy

	Blockchain
	Requirements
	Success Criteria

	Design
	Consensus Algorithms
	Frameworks
	Hyperledger Fabric Framework
	Network Concepts
	Network Rules
	Transaction Endorsement Process

	Mandate Register Model
	Components
	Policies

	Network Binaries
	Container Communication

	Implementation
	Fabric Background
	Mandate Register Logic
	Chaincode
	Mandate Register Application

	Code Testing
	Chaincode Unit Tests
	Node.js Testing

	Evaluation
	Performance Metrics
	Procedures
	Evaluation Setup
	Results and Discussion

	Discussion & Future Work
	Project Evaluation
	Solving the Defined Problems
	Meeting the Design Goals
	Completing the MoSCoW

	Ethical Implications
	Authentication
	GDPR

	Process
	Future Work & Recommendations

	Conclusion
	Info Sheet
	Usage Manual
	Scripts
	docker-swarm-cleanup.sh
	generate-artifacts.sh
	network_init.sh
	start.sh
	addOrg.sh

	Running the network
	Prerequisites
	Single Host Machine Network
	Multi Host Machine Network
	Application
	Testing
	Evaluation

	Original Project Description
	Research
	Introduction
	Problem Analysis
	Current Situation
	Problem Definition
	Proposed Solution

	Design Goals
	Expandability
	Security and Privacy
	Success Criteria

	Design Choices
	Data Storage
	Blockchain

	Blockchain Frameworks

	Bibliography

