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Laymen’s Summary

Imagine cutting a three-dimensional object in two parts. This reveals a two-dimensional image of its true
three-dimensional internal structure. This structure contains important information about the properties
of the object. For example, the internal structure of steel provides information about its hardness. How-
ever, the observed two-dimensional image does not correspond to the true three-dimensional internal
structure. This image can, however, be used to estimate the true three-dimensional internal structure.
Methods to obtain this estimate exist, although are never completely accurate. This thesis takes one
such existing method, which uses size-related information found in the observed two-dimensional im-
age, and aims to improve its accuracy by also including shape-related information found in the image.
By establishing and implementing both of these estimation methods, their performances can be com-
pared. This is done through simulations as well as application to a real two-dimensional image of the
true three-dimensional internal structure of steel. This thesis concludes that the new method is, in the-
ory, more accurate. However, this improvement only holds when the information found in the image is
observed accurately, which is less likely in practice.






Summary

The sizes of three-dimensional particles at a microscopic level reveal properties at a macroscopic level
for many applications in materials science, but can be difficult to measure. This thesis builds on existing
methods that estimate the size distribution of such particles of the same three-dimensional shape,
using information obtained from their profiles in two-dimensional cross-sections. This is a well-known
stereological problem. An existing method is explained, which yields a maximum likelihood estimator
based on the two-dimensional sizes of observed profiles. This method is expanded, resulting in a
new maximum likelihood estimator, which is based on the paired two-dimensional sizes and shapes
of the observed profiles. The performance of both the existing and the new estimators is analysed in
simulations, as well as in an application to real data obtained from a steel microstructure. By comparing
the performances of both estimators, this thesis aims to answer whether or not the additional shape-
related information improves the resulting estimator. Its conclusions are that the new estimator performs
better on average than the existing estimator, but not in general. Moreover, the new estimator only
performs better in applications when the observed information is accurate, which is not always the
case.
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Introduction

One hundred years ago, there was a need among anatomists to investigate tissue of the spleen, an
organ in the human body which plays an important role in the immune system. Responsible for this
role are clusters of cells of different sizes spread around the organ. It was the size distribution of these
so-called follicles that was of interest to anatomical research. However, these could not be directly
observed. At the time, the only available observations came from post-mortem studies, where section
cuts were taken of the organ, which contained profiles of intersected follicles. Thus, the problem at
hand was to estimate the size distribution of follicles in an organ using their observed section profiles.
This is a problem in the field of stereology, which focuses on estimating higher-dimensional information
from samples of lower-dimensional observations.

Wicksell (1925) introduced a mathematical approach to solve this problem. Since a follicle is ap-
proximately of a spherical shape, its profile is approximately circular and thus the sizes of both shapes
can be described by their radii. Assuming such a setting with spherical particles, he established an
integral equation relating the distribution of the three-dimensional spherical radii to that of the observed
two-dimensional circular radii, and used this relation to find an estimate for the distribution of three-
dimensional spherical radii, i.e., an estimate for the particle size distribution.

Fast forward a hundred years, and modern-day scanning technology is capable of thoroughly investi-
gating any organ - even inside a living human being - without making a single cut. This has replaced
Wicksell’s solution in its original application. However, the methods Wicksell used can be applied to
various other problems, in particular when considering particles of other shapes than just spheres.
A generalisation of the problem is considered in Van der Jagt et al. (2024), where the particles are
general, similarly-shaped convex bodies.

This problem generalisation is formally described as follows: consider a three-dimensional opaque
medium, which contains randomly positioned and orientated particles. The particles are convex bodies,
being compact and convex sets with a non-empty interior, all of the same shape, but of varying sizes.
A planar section of the space is taken, yielding an observation containing profiles of all intersected
particles. The problem is now to estimate the three-dimensional particle size distribution using the
two-dimensional observed section profiles.

Applications of this generalisation are for example found in materials science, where it may be used
to estimate the volume distribution of grains in the microstructure of steel, based on two-dimensional
observations of this microstructure at surface-level. This grain volume distribution is used to reveal the
hardness of steel, without needing to stress-test and inevitably break the bar. However, in order for an
estimate of the particle size distribution to be useful in, for example, determining the hardness of steel,
it should of course be accurate.

In Van der Jagt et al. (2024) a solution of the generalised problem is presented. A result similar to
that of Wicksell is obtained, which estimates the particle volume distribution by using the observed
distribution of section profile areas. Accuracy of the resulting estimate varies depending on the particle
and true size distribution to estimate, as well as on the sample size of observations. Since this proce-
dure only uses the areas of section profiles to determine its estimate of the particle size distribution,
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2 1. Introduction

one might wonder whether incorporating more information from section profiles would improve the ac-
curacy of the estimate. In particular, considering that the area describes the size of a section profile,
we would like to include information on the shape of a section profile in the estimation procedure.

Hence, in the setting described above, this thesis aims to answer the following question: Can the
joint distribution of area and number of vertices in an observed section profile be used to more accu-
rately estimate the true size distribution of particles, when compared to using the distribution of only
the section profile areas?

To answer this question, a description of a general section profile and its parameters is first given
in Chapter 2, along with the introduction of relevant terminology. This section profile information is
used as observed samples in Chapter 3, which first describes the aforementioned existing estimation
procedure from Van der Jagt et al. (2024), based on the section profile areas as observations. A new
estimation procedure is defined next, which is based on paired observations of the area and the number
of vertices in a section profile. Then, both the existing and new estimation procedure are implemented
in a simulation study, as described in Chapter 4. The accuracy of each procedure is measured and
comparisons between both procedures are made. Finally, both procedures are applied to a real data
sample in Chapter 5, where the microstructure of steel is observed, and comparisons between perfor-
mances are made.



Describing the Section Profile of a
Particle

When a three-dimensional object is cut in two, a two-dimensional cross-section of its interior is revealed.
The size and shape of this cross-section depend on the size and shape of the original object, and vary
depending on the location and orientation of the cut. In the context of the problem as described in
Chapter 1, the observed profiles are such cross-sections of particles. This chapter first mathematically
describes the section profile of a particle, along with the introduction of some relevant terminology.
Then, several parameters are described that can be obtained from such a section profile. These pa-
rameters are used in Chapter 3 for observed section profiles to estimate the particle size distribution
with.

2.1. General Section Profile

Consider a space Q c R? containing a finite amount of particles K3, ..., Ky, as in the problem description
in Chapter 1. Since all particles are bodies of the same shape, define K to be the body of that shape
which is of volume 1. This body of reference K will be referred to as the reference particle. A body
of the same shape with any volume could be used, but taking the body of unit volume as definition of
the reference particle, is a choice that will simplify calculations later. For the purposes of this thesis,
possible shapes of K will be restricted to polyhedra.

Note that, for any i € {1, ..., N}, particle K; can now be written as K; = A;M;K + x; = {A;M;k + x; :
k € K}, where A; > 0 is some scalar, M; is some rotation in three dimensions and x; is a displacement
for its position in the space Q. Since K has unit volume by above definition, K;, which is scaled by A;
in three dimensions with respect to K, must now be of volume A?. A; will be referred to as the size of
particle K;. It is the distribution of these sizes that is of interest to this thesis.

Next, let T be a random two-dimensional plane cutting through space Q. Following the definition
in Van der Jagt et al. (2024), T is defined as an Isotropic Uniformly Random (IUR) plane hitting Q.
Intuitively, this definition ensures that any such IUR plane hitting Q has an equal probability of occurring.
The intersection T n Q is called the planar section resulting from T hitting Q.

For any particle K in Q, the intersection T n K is the section profile of that particle, given that this
intersection is non-empty. Otherwise, the particle has no profile in T. The condition that T n K + @,
i.e., the intersection is non-empty, will be referred to as T hitting K. Since T is randomly positioned
and orientated, the probability that T hits K precisely along a vertex or an edge of K is 0. Therefore,
conditionally on T hitting K, the section profile T n K of K exists, has a positive area and is a two-
dimensional subset of Q. This allows the section profile to be projected to R?, preserving distances
between points. In order to better differentiate between the settings of three-dimensional particles and
two-dimensional section profiles, the aforementioned projection to R? is done by default throughout
this thesis.

Moreover, any section profile T N K is a convex two-dimensional polygon. This holds since the orig-
inal three-dimensional particle K is a polyhedron, i.e., a convex hull of finitely many three-dimensional
vertices.
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2.2. Parameters of a Section Profile

Now that the idea of a general section profile is established, several parameters are introduced to
describe a profile with. One parameter is considered to describe the size of a section profile and
another is considered to describe its shape. It is from here on assumed that the particle K is hit by a
plane T.

The first parameter considered is the area A of a section profile. Simply defined as A := area(TNK),
the area describes the size of a section profile. Note that A only attains positive values. In order to
simplify calculations later in Chapter 3, it turns out that transforming the section profile area A is helpful.
Hence, S := VA is defined as the square root transformed area of the section profile of K. This is its
default size parameter. Note that S also attains positive values only.

The number of vertices in a section profile is the second parameter considered, which describes
the section profile shape. Let V be the set containing all vertices in the convex polygonal shape of a
section profile T N K. Then, the number of vertices V in the section profile of K is simply defined as
V := |V|, the size of the set V. Since a section profile is a polygon with positive area, as is stated in
Paragraph 2.1, its number of vertices V must be some integer in {3,4, ..., V{***} for some maximum
VZ*@*, which depends on the shape of K.



Estimating the Particle Size Distribution

In order to be able to estimate the three-dimensional particle size distribution, this chapter describes
two methods to find a maximum likelihood estimator for this distribution. Each method is based on
different amounts of information that can be obtained from a section profile, as described in Chapter 2.

First, an overview of the existing method is given, using only the section profile area as parameter,
one describing the two-dimensional size of the section profile. This procedure yields the first type of
estimator for the three-dimensional particle size distribution. This method is adapted next, incorporating
the number of vertices, an additional parameter describing section profile shape, alongside its area.
This yields a second type of estimator for the particle size distribution, which is based on both a two-
dimensional size and a shape parameter. The performance of estimators resulting from each of the
two methods is then studied in Chapter 4.

3.1. Particle Size Distribution

Consider the setting of space Q < R3 containing particles K, ..., Ky and reference particle K as in
Paragraph 2.1. Fori € {1,...,N}, let A; > 0 be the size of particle K;. These three-dimensional parti-
cle sizes are distributed according to some unknown distribution, described by cumulative distribution
function (CDF) H and corresponding probability density function (PDF) h. These are functions of size
as input, which will be denoted by 2. When cutting @ with an IUR plane T as described in Paragraph
2.1, however, larger particles are more likely to be hit by T than smaller particles are. Therefore, sizes
of particles hit by T follow a different, so-called, length-biased distribution. The CDF and PDF of this
three-dimensional length-biased particle size distribution are denoted by H? and h?, respectively. See
Arratia et al. (2019) for further reading about length- and size-biased distributions.

In Van der Jagt et al. (2024), the following relations between the original and length-biased size
distribution functions H and H" are stated:

A1
5 TdH"(2)

Jy SdH ()’

f; xdH (x)

HP(Q) = =,
@ J, xdH(x)

and HQ) = A=0.  (3.1)

Thus, any result in terms of H? can be related back to H and vice versa, using Equation 3.1. Keeping
the above in mind, the methods in Paragraphs 3.2 and 3.3 can focus on estimating H? instead of H.

3.2. Estimation Using Section Profile Area

Suppose T is an IUR plane hitting reference particle K. The resulting random section profile of K has
an area, denoted by Z, which is distributed according to distribution and density functions Gz and g%,
respectively. For known reference particles, g4 can be approximated arbitrarily closely as described
in Van der Jagt et al. (2023), by taking a very large sample of areas observed in simulated section
profiles T N K. g# is then obtained based on this sample by computing the kernel density estimator.
An approximation resulting from this method is shown in the left of Figure 3.1 for a cube particle K, for
example.
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Figure 3.1: Approximations of g# (left) and g3 (right) for the cube particle K. Made using a sample of 107 simulated section
profiles.

Next, let T be an IUR plane hitting space Q. Under the assumption that particle K; is hit by T for
some i € {1, ..., N}, let 4; be the resulting section profile area. The distribution of such a random section
profile area 4;, observed in the planar section T N Q, is described by distribution function F4 and density
function f4. In applications, F4 is the empirical CDF of observed section profile areas in the planar
section of Q. In simulations, such as in Chapter 4, observations sampled from F4 are generated using
the following result, collected from Van der Jagt et al. (2024):

Lemma 3.1 Consider a distribution function H with length-biased version HP. Suppose Z ~ G# and
A ~ HY with Z and A? independent. Set A = ZA%. Then, A ~ F4, and F4, G and HY are related via:

FA(a) = fow G (%)de(/l). (3.2)

As a consequence, independently drawing random sizes from a known length-biased particle size
distribution H?, and taking areas from simulated IUR planes hitting the reference particle K, yields a
sample from F4 following Lemma 3.1.

Having collected the result in Equation 3.2, which relates F4, G# and H?, applying a square root
transformation to the areas in the equation results in a form that is easier to interpret. For the section
profile of particle K;, the square root transformed area S = VA is distributed according to distribution
function FS, with corresponding density function 5. Meanwhile, for the section profile of reference
particle K, the square root transformed area V'Z has a distribution described by distribution and density
functions G and g3, respectively. Note that g3 can be approximated similarly to g# for known reference
particles, as is done in the right of Figure 3.1 for a cube particle K, for example.

The resulting transformed version of Equation 3.2 is given by (Van der Jagt et al., 2024):

[ee]

FS(s) = fo Gs (%)dH”(A). (3.3)

The form of Equation 3.3 is recognised as that of a distribution function corresponding to the product of
two independent random variables, which is precisely what is stated in Lemma 3.1. Alternatively, the
equivalent relation in terms of density functions is given by:

o= o (3) . (34)

Equation 3.4 can be used to find a maximum likelihood (ML) estimator for H?. However, a set of
possible functions estimating H? to maximise over is still missing. Thus, following Van der Jagt et al.
(2024), consider observed areas ay, ..., a, that are realisations of the i.i.d. sample 44, ..., 4, ~ f4, and
corresponding square root transformed areas s, ..., s, being realisations of i.i.d. sample Sy, ..., S, ~ f5.
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Set s(1) < s(2y <+ < 5( @s the order statistics of sy, ..., s, and set 0 < sy < s¢;). Now, let F* be the
set containing all distribution functions with domain (0, ). Then, define:

Fi:={F € F*: F(s) = 0 and F is constant on [s—1),S@)), i = 1,..,n}. (3.5)

In Equation 3.5, the set F; is defined as the subset of F* containing all distribution functions with jump
locations precisely at the observations s; and constant elsewhere.
Using Equation 3.4, the log-likelihood function L is defined for H? € F; as:

L(HYs51,50) = log | [ [F560) | = D og (75 (s0)
i=1 i=1

=Z1og<fo gK( ) de(z)>

Based on the observed sample of size n, finding a ML estimator A A € F;t that maximises L as
in Equation 3.6 is done by taking the argument function H? that solves the following maximisation
problem:

(3.6)

b b.
Ak, = argggl% L(H?;sq, ..., 5,)

) (3.7)
= arg max log Zg,( (—) —_— (H sy — HY (s¢j- 1)))

HberS N
o \s0)

The final step in Equation 3.7 simplifies the expression of L as in Equation 3.6 by discretising the integral
with respect to the ordered observations s, s(1), .-, S(n). Solving Equation 3.7 is done by solving an
optimisation problem, the details of which are found in Van der Jagt et al. (2024 ) and are also described
in Chapter 4 for performed simulations.

Using random samples of n = 1000 observed section profile areas, the ML estimates of H? resulting
from Equation 3.7 are visualised in Figure 3.2 for several chosen reference particles K and true size
distributions H. Choices of H are made such that the corresponding true H?, following from Equation
3.1, is another well-known distribution. As is also stated in Chapter 4: if H ~ Exp(1), then H? ~
Gamma(2,1); if H ~ Log-normal(2, 0.5%), then H? ~ Log-normal(2+0.5%,0.5%). Based on this individual
random sample, ML estimator FI,’{_A appears to approximate the true H? well, a statement that is further
verified in Van der Jagt et al. (2024).

3.3. Estimation Using Section Profile Area and Number of Vertices

When the number of vertices is observed in addition to the area of a section profile, this new parameter
can be incorporated into the estimation procedure. The observations are now realisations of the paired
random variables: (4;,V;), where 4; is the section profile area and V; is the number of vertices, for all
observations i € {1, ...,n}. Note that A; and V; are not independent, but pairs (4;,V;) and (4;,V;) are,
for i # j. Then, the i-th observation (al,vl) is a realisation of (4;,V;). Note that, as is established in
Paragraph 2.2, V attains values in {3, 4, ..., V7***}, for some V;7*** that depends on K, so V is a discrete
random variable.

In Figure 3.3 empirical approximations of the density function g for square root transformed ar-
eas are visualised, for several known shapes of K. Here, each colour represents the contribution in
probability density originating from different observed numbers of vertices v. As is clearly shown in this
figure, observations with different values of v contribute to the probability density at different values of
areas, which is an important observation that motivates the need to incorporate V into the estimation
procedure.
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Figure 3.2: Maximum likelihood estimates I-AI,’{,A of the length-biased size distribution H?. Made using n = 1000 sampled section
profile areas, following the simulation procedure described in Chapter 4.
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Figure 3.3: Approximations of the probability density function g;% of square root transformed section profile areas, split into
different colours representing the contributions of different observed numbers of vertices. As reference particle K, a cube (left)
and a dodecahedron (right) of unit volume have been used. Made using n = 107 sampled section profiles of K.
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Similarly to the procedure from Paragraph 3.2, the distribution of profiles in the planar section, and
the distribution of the section profiles through the reference particle K, are relevant in finding the particle
size distribution H. However, these functions should now be seen as joint distribution functions of both
the square root transformed area S as well as the number of vertices V of the same section profile.

In order to incorporate the new variable V, the distribution functions F$ and Gj are adapted to
the aforementioned joint distribution functions, which are denoted by F5V and G,‘E’V, respectively. The
distribution function G¢" and corresponding density function gz can be derived from G5 and g3, re-
spectively, using the rules of conditional probability:

GV (s,v) = GE(s|V < v)P(V <v) and g’ (s,v) = gu(s|V = v)P(V = v). (3.8)

The form of G in Equation 3.8 ensures that limg_,,, G’ (s, V;%*) = 1 is satisfied, as well as the
following relation with the density function g :

v s
G5V (s, v) = Z g5V (£, w)dt.
w=3 t=0

Note that the density function gz of the square root transformed area and number of vertices in a
section profile can be approximated for known reference particles K, similarly to the approximation of
gy, by simulating many IUR planes hitting a particle of shape K. This same method may also be used
to approximate the quantity P(V < v) for any v, which is the probability that a section profile of a particle
K has a number of vertices less than or equal to v.

As Figure 3.3 already hinted at, the distribution of section profile areas can vary greatly among
different numbers of vertices. For several known shapes of K and values of v, Figure 3.4 shows
approximations of different joint density function g,s('V, resulting from a simulated sample of 107 IUR
planes through K. This figure highlights the variation in values of the density function g,s{'v that exists
between different values of v and between shapes K.

0.0 0.2 04 06 08 10 0.0 0.2 04 06 08 10 To0 0.2 04 06 08 10
Square root of area Square root of area Square root of area

(a) Cube particle K, v = 4. (b) Cube particle K, v = 5. (c) Cube particle K, v = 6.

05 0.7 5

0.4

0.0 0.2 04 06 08 10 0.0 02 0.4 06 08 0.0 02 0.4 06 08 10
Square root of area Square root of area Square root of area

(d) Cube particle K, v = 4. (e) Dodecahedron particle K, v = 5. (f) Dodecahedron particle K, v = 6.

Figure 3.4: Approximations of the joint probability density function g;cgv for various numbers of vertices v. Made using n = 107
samples, and either a cube (a, b, c) or a dodecahedron (d, e, f) as reference particle K.

Note that the distribution of V obtained by hitting any particle AK with an IUR plane depends only
on the shape of K, and is independent of the size A. Thus, the joint distribution function FSV of the
observed area and number of vertices in a section profile, may be related to G,‘E’V and H? similarly to
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Equation 3.3 in the following way:
FSY (s,v) = f il (%v) dHP (1) = P(V < v)f GS (%|V < v) dHP (1) (3.9)
0 0

The density function 5" corresponding to F5" follows again from the rules of conditional probability:

fV(s,v) = f3(sIV = )PV =)

=Pl =) fow g (%|V = v) %de(/l) = fow v (%v) %de(A). (3.10)

3.3.1. Maximum Likelihood Estimator

Having established distributions FSV and G5, as well as their corresponding densities f$¥ and g",
a maximum likelihood estimator I-AIY’{_A'V for the particle size distribution H? can be obtained similarly to
the process in Paragraph 3.2. Using these joint distribution and density functions, it is based on both
the area and the number of vertices in a section profile.

Consider observed realisations (s;, v;) of the n pairs of random variables (S;,V;) ~ f5V, independent
from other pairs, for i = 1,...,n. Set s(1y < s(5) < =+ < s,y as the order statistics of s;, ..., s, and set
0 < s(0) < s(1)- Based on these order statistics, define 7, as in Equation 3.5, where F* is again the
set containing all distribution functions with domain (0, «). Then, the log-likelihood function L takes the
following form:

n

L(H?: (51, 00), o, (s v)) = log | | [ 15V (s | = ) tog (£ (51,00)
i=1

i=1

n
_ z log (J g (S’—l,ui) —de(/l)) .
2,8\, 1Y) 7

Based on the observed sample, the distribution function I-AI,’;’A,V that maximises L as in Equation 3.11 is
a ML estimator for H? based on both the area and the number of vertices in a section profile. AL ,, is
found by solving the following maximisation problem:

(3.11)

H}:,A,V = arg Ifg}eajf}i L (Hbl (Slﬁ 1]l)i ey (Sn' Un))

(3.12)

= arg max Zlog Zg (— vl) — (H(sy) — HP (sj-1y)) |-

SH)

Similarly to Equation 3.7, the last step in Equation 3.12 simplifies the integral from L as in Equation
3.11 by discretisation with respect to the ordered sy, S(1), -, Scny- The solution to Equation 3.12 is found
by solving an optimisation problem, as is described in Chapter 4.



Simulating Methods of Estimation

In order to illustrate the results of both the method from Chapter 3, one based on the section profile
area only, and the other based on both the section profile area and the number of vertices, and to be
able to compare the performance of both methods, a simulation study is performed. This section first
describes the procedure followed in the simulations. Several simulation results are given next, which
are then used to draw conclusions comparing the estimates resulting from each method.

4.1. Simulation Procedure

The following procedure to perform simulations by, is similar to what is done in Van der Jagt et al.
(2024). Several distributions H are chosen such that their corresponding length-biased distributions
H?, according to the relation in Equation 3.1, are well-known, making comparisons of estimates to the
true distributions straightforward. The following distributions are chosen:

« If H is the standard exponential distribution, then the corresponding H? is a known gamma distri-
bution:

HA) =1-e*~Exp(l), and H’()=1-@A+1e*~Gamma(2,1), forl=0.

« If H is a log-normal distribution with parameters u and ¢ > 0, then the corresponding H? is also
a log-normal distribution, with parameters u + ¢2 and o:

log(1) —
HA) = (%) ~ Lognormal(y, o), and

H' () = ~ Lognormal(u + 62, 0), for 2> 0.

log() —p—o?
o
Here, @ is the standard normal distribution function. In simulations, the parameters u = 2 and
o= % are set.

Several convex regular polyhedra are chosen as shapes of the reference particle K: a tetrahedron,
a cube and a dodecahedron. Using such a K of unit volume, distribution functions g3 and gz" are
approximated by simulating 107 IUR planes hitting K and storing the paired observations of square
root transformed areas and numbers of vertices from resulting section profiles. Then, simulating an
observed section profile from distribution F5V can be done using Lemma 3.1. A size A ~ H” and a
section profile through reference particle K, so (VZ,V) ~ G,‘?V, where Z is the area and V is the number
of vertices of a section profile, are sampled independently. By Lemma 3.1, it now follows that 4 := ZA?
is distributed as an area sampled from F4Y, without square root transformation. After applying the
transformation S := VA = VZA to the area, it now follows that (S,V) is a paired sample from F5V.
This holds since (vZ,V) was an initial paired sample, and applying a scaling by A and a square root
transformation to the area of a section profile do not change its number of vertices.

11
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Thus, independent samples (Zy, V1), ..., (/Zn, V) ~ G¢¥ and Ay, ..., A, ~ HP are generated to
make a sample (51, V1), ..., (Sp, V) ~ FSV of n observed section profiles, with S; = \/Z-Ai fori € {1,...,n}.
This sampling process is repeated 100 times for several values of n and for each distribution H? and
reference particle K mentioned before.

4.1.1. Algorithm

Given a simulated sample of n observed section profiles, a ML estimate A2 , , of length-biased distri-
bution H? is computed. This is done following the method from Paragraph 3.3, solving Equation 3.12,
using the sampled pairs (S;,14), ..., (S, Vi) of square root transformed areas and numbers of vertices.
Similarly, a ML estimate I—AI,’{,A is computed following the method from Paragraph 3.2, solving Equation
3.7, using only the square root transformed areas S, ..., S,, from the same sample.

In each case, the maximisation problem can be adapted to the following form. The likelihood equa-
tions to be maximised in both Equation 3.7 and Equation 3.12 are of the following form:

n

n
1By = ) log| > aij (B~ Bia) | BER™, (4.1)
i=1 j=1
with By = 0, B; = HP (s(;)) for j € {1, ...,n}, as well as a; ; = gi (;—’)) % when estimating A, (as in
J J
Equation 3.7)and a; ; = g,sgV (SS—‘UL> Si when estimating A2 , , (as in Equation 3.12). The set C* of
0) 0) -

possible vectors S, equivalent to the set F; (as in Equation 3.5) of possible distribution functions H? to
maximise over, is given by:

ct:={BER™:0=4,<p <~ <B, <1}.

Note that the set C* is closed and bounded, and thus compact, so I has a maximum on €. The max-
imisation problem is now given by f := argmaxgee+ L(B). Moreover, since the function [ is concave,
this maximisation problem is computationally tractable.

The coefficients «; ; in Equation 4.1 are computed for all i,j € {1,...,n}, using a Monte Carlo ap-
proximation of the corresponding density function, either g5 or gf;'V, as described in Van der Jagt et
al. (2023). This approximation is made using kernel density estimation with a boundary correction
method described in Schuster (1985). The kernel density estimation uses a band-width determined by
the Sheather-dJones method (Sheather and Jones, 1991), and 1000 bins. Figure 4.1 shows examples
of such resulting approximations of gf{‘v when K is a cube or a dodecahedron. The corresponding
examples of such approximations of gz are shown in Figure 3.1.

Number of vertices Number of vertices
— 3
4
— 5
3.0 — 6

05 —-—

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0
Square root of area Square root of area

Figure 4.1: Monte Carlo approximations of g for the cube (left) and dodecahedron (right) particles K.

This form of the maximisation problem is then solved by the hybrid ICM-EM algorithm, as proposed
in Wellner and Zhan (1997). This hybrid algorithm is a combination of the Expectation Maximisation
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(EM) and lterative Convex Minorant (ICM) algorithms. The idea is to perform one iteration of ICM,
followed by one iteration of EM, as one iteration of the hybrid algorithm. Each of these individual
algorithms may also be used to obtain similar results, however, simulations in Wellner and Zhan (1997)
and in Van der Jagt et al. (2024) showed that the hybrid algorithm is faster. It appears that EM converges
quickly when far from the optimum and slower when closer to the optimum. Conversely, ICM appears
to converge slowly when far from the optimum and quicker when closer to the optimum. The hybrid
algorithm, instead, seems to inherit the strength of both algorithms and converges relatively fast at
any point. Therefore, the maximisation problem is solved by hybrid ICM-EM in all simulations. It is
implemented according to the following description:

1. Initial estimate of £.
L© the initial estimate of B, is set to equal B := (% % Z = 1) € C*. lteration 1 of the
algorithm begins next, at step 2.

2. One iteration of the ICM algorithm.
The version of the ICM algorithm used here originates from Jongbloed (1998). This algorithm
solves the minimisation problem f := argmingcc+ ¢(f), where the function ¢ is given by:

n

1 1%
$B) = b = ~1(B) = ~Bn— - > Tog| > i (8~ 1) |, (4.2)
i=1

=

with [ as in Equation 4.1. The term —p,, is added to ensure that ,, = 1. For any g € C* with
pn < 1, adhering the condition g, = 1 instead will increase the value of [(8), since all a;; = 0
and is therefore more optimal.

In iteration k of the hybrid algorithm, given previous estimate =1, the ICM step uses the fol-
lowing expression ¢y to locally approximate ¢:

buoy(B) = (B -V +w (ﬁ("-l))_l Vo (5(k—1)))T w (B%D)

. (4.3)
. ([; — BE=D 4w (KDY vg (B("‘l))),

where V¢ is the gradient of ¢, and W (8*~1) is a diagonal matrix with the same diagonal entries
as the Hessian matrix of ¢:

62
(w (3(k_1)))j,j = W¢ (pk=1), forj € {1, ...,n}.
]

The function ¢, as in Equation 4.3 is then minimised over C*, the details of which are found in
Jongbloed (1998), yielding candidate estimate f := argmingec+ Py for &, If $(B), the value
of ¢ evaluated at candidate f, is sufficiently decreasing when compared to ¢ (8*~1), with ¢ as
in Equation 4.2, then the k-th estimate 8 is set to be ) := B. Here, satisfying the following
condition is considered to be a sufficient decrease:

$(B) < ¢ (BED) + (1 — )V (B*)" (g — p&-D), (4.4)

for some € € (0, %) In simulations, € = 0.25 is set. If the condition from Equation 4.4 is not met,

then B is obtained according to the line-search process described in Jongbloed (1998), as a
convex combination of § and g1,

3. One iteration of the EM algorithm.
The description of the EM algorithm from Wellner and Zhan (1997) is followed. For notational
convenience, a probability vector p is introduced, corresponding to an estimate g, with coeffi-
cients:

pj =B —Bj-120, (4.5)
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forj € {1, ...,n}. Furthermore, p satisfies Z}l:l p; = 1. Thus, the set of probability vectors 7, that
the EM algorithm maximises over is given by:

n
P =31, -rPn) ER™: Zpi =landp; =0, fori € {1,..,n};.

i=1

In iteration k, probability vector p*~1) € P, corresponding to the given estimate 3 resulting
from step 2 is constructed from g following Equation 4.5. As described in Van der Jagt et al.
(2024), the update rule is now given by:

n

1 a;
W _ i (k-1)
Pj =5 E S =11 A (4.6)
i=1 Zq:l Qiq Pq

forj € {1, ...,n}. Then, estimate p® resulting from Equation 4.6 is converted back to the definitive
estimate ¥ of iteration k as follows:

J
fk) = Zpi(k), forje{l,..,n} and ék) = 0.
i=1

4. Checking the stopping criterion.
After step 3 in iteration k, the following stopping criterion is evaluated:

() _ pk-1)
e |6 i <& (4.7)

In simulations, ¢ = 10~* is taken. The ?Igorithm is terminated if the condition in Equation 4.7 is
satisfied for 10 successive iterations. f is then given by the final estimate ). Otherwise, the
algorithm performs iteration k + 1 from step 2.

4.1.2. De-biasing and Regularisation
When de-biasing an estimate of the length-biased particle size distribution to an estimate of the true size
distribution, it was proposed in Van der Jagt et al. (2024) to apply a regularisation first. This is motivated
by the observation that, in order to obtain estimate I-Aln,A, directly plugging a close approximation I-AI};‘A
of biased size distribution H? into Equation 3.1 fails to approximate the true particle size distribution H
in simulations. This deviation is a result of the behaviour of I-AI}{’A near zero. Therefore, both I-Aln,A and
I-AIn,A,V are regularised here in a similar way.

For truncation parameter t,, > 0, consider estimate A2, either I-AI,’;,A or ﬁf{,A,V, truncated at ¢,, as

follows:
AR ()-AB(tw)

A - if A >ty
At (At =4 1-Bhen = (4.8)
0 otherwise.
Now, plugging truncated estimate A% from Equation 4.8 into Equation 3.1 yields:
2144 I LdAR )
—dAP(x; t tn x Y
Hy(Asty) = f‘;’;—’;(") Pl At (4.9)
Jo zdHRCet) (g fo<A<t,

The resulting estimate H,, corresponds to I:In‘A or I:In,A_V, respectively, truncated at t,,. These estimate
the true particle size distribution H. In simulations, resulting estimates of H will correspond to this
truncated estimate of the true size distribution H, given by Equation 4.9, instead of the direct plug-in
estimate.

As is established in Van der Jagt et al. (2024), I-AIn‘A asin Equation 4.9 is indeed a close approximation
of H given a close approximation I-AI,’{'A, and for an appropriate choice of truncation parameter ¢t,,. When
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a sequence of estimates I-AI,‘Z,A converging to H? is given, convergence of resulting truncated estimates
A, 4 to the true H is even proven. It is remarked that t,, = /||I-AI,’§‘A — HP||_ theoretically may be taken

as an appropriate choice. In practice, however, H? is unknown and therefore this quantity is not known
either. The following procedure to obtain a sufficiently accurate t,, is proposed by Van der Jagt et al.
(2024) instead. This is used for the computation of estimates FI,LA, based on square root transformed
section profile areas. For s € R, consider:
. « S\ A
BS(si0) = fo 63 (3) a0,
. L& (4.10)
Fo(s) = EZﬂ{si < s}
i=1

Note that, for some truncation t > 0, the function £ as in Equation 4.10 is the distribution of observed
square root transformed areas following from Equation 3.3, if the truncated H,’{’A is the true length-biased

—S
size distribution. Meanwhile, F,, is the empirical distribution of observed square root transformed areas
in the sample. The proposed choice £, 4 for t, is now motivated by minimising the distance between
these two functions in the L*-norm, and is given by:

-S
—Fo(s)|ds, @.11)

(o0}
tna i= argmlnte{slmsn}j0 ‘n

with £$ and fi as in Equation 4.10. Note that minimising the integral in Equation 4.11 over the sampled
{s1, .-, sp} is done in order to reduce computations. Simulations performed in Van der Jagt et al. (2024)
have shown that this choice of ,, , results in an accurate estimate ﬂn_A.

When computing estimates I-AIn, 4y based on both the square root transformed area and number of
vertices of a section profile, a convergence result similar to that of in the previous setting is not proven.
It is still attempted to adapt above procedure to this setting first, using the following functions for s € R
and v € N:

BV (s,v50) f GV dHnAV(/l t),

4.12)
ffly(s' U) = 1 z ﬂ{Si < S} ﬂ{Ui < U}.
n i=1

Note that now F3" as in Equation 4.12 is the joint distribution of observed square root transformed
area and number of vertices in a section profile, if the truncated FI,’{,A,V is the true length-biased size

=SV
distribution. Similarly, F,, is now the empirical joint distribution of square root transformed areas and
numbers of vertices observed in the sample. Then, the corresponding choice £, 4 for t, in this case
is given by:

Vl?mx
thay = argmin,g o, Z f

~ —SV
with £3¥ and F,, as in Equation 4.12.
However, taking £, 4 as in Equation 4.13 appears to structurally choose lower values than desired

BV (s,v;t) — F (s v)|ds (4.13)

in simulations, when compared to the theoretical ¢, = “| b 4 — HP||_, which is known in simulations.
Truncating at a lower value than desired may resultin an unwanted, relatively large, jump in the estimate
at low values. Consider computing I-Aln‘A,V with such a &, , following from Equation 4.9. Say &, 4y is
equal to a point S(@) forsomei € {1, ...,n}. Hy 4y is computed at a point s;), for some j € {i, ..., n} such
that S > Sy = tnAV’ by

k ls(k)( nAV(S(k)) ﬁg,A,v(S(k_l)))

Thei % (AR 4w (siey) — HE 4y (Se=1)))

Hpav(sgy) = (4.14)
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If the estimate I-AI,‘Z,A'V has non-zero probability mass in the point s, for some small k > i, which is
given by Ifl,’f‘A,V(s(k)) — Hﬁ,A,V(S(k-n), then the numerators in the sum terms of Equation 4.14, equal
to this probability mass of FI,’{_A,V at s, will be greater than zero. A problem arises at values of the
denominator s, that are close to zero, if it is of an order close to, or even smaller than that of the
numerator. In such cases, this term will inflate the total of both sums, and thereby raising the function
values of estimate IfIn,Ay, which results from Equation 4.14, to be relatively close to 1 starting from
values close to zero.

On the left side of Figure 4.2 a simulation is shown where this phenomenon is present, but clearly
not desired. Several estimates are inflated to function values greater than 0.6, starting from very small
values of 1, while the true distribution H still has function values close to zero at this A.

In simulations, this phenomenon occurred mostly in estimates I-AIn,A,V when using the cube or tetra-
hedron K, for different values of n and different true distributions H. The only times it occurred in
estimates I:In,A was when using the tetrahedron K and mostly for the exponentially distributed true H,
but to less extreme extents than estimates ,, 4, in the same simulations. Moreover, the phenomenon
appears to diminish for higher values of n in estimates Hn_A using the tetrahedron K and exponentially
distributed H, whereas it appears to remain equally present in estimates I-Aln,A,V of the same simulations
for any value of n.

Simulations have thus shown that the phenomenon described above is mostly a problem for esti-
mates H, ,, based on both the area and number of vertices of a section profile, and not for estimates
Hn_A, based on the section profile area only. A possible explanation for this is the lack of a convergence
result of estimates A, 4, as mentioned before, even when these are de-biased from estimates I-AI,’;,A_V
that converge to H?.

Another explanation is that the algorithm assigns slightly higher, or more concentrated probability
mass to values of sy which are close to zero, when computing At , ., than it does when computing
HY ,. This results in higher values of A2 , , (sy) —H5 4. (Se-1y), the numerators of the sums in Equation
4.14, which in turn inflates the resulting de-biased estimates I:In,A,V.

In order to resolve this issue, a possible adjustment could be to more evenly spread the probability
mass in estimates I-AI,’{,A‘V, or at least to use such an adjusted version of I-AI,’;,A,V in the de-biasing step
of Equation 4.9. This is left as a suggestion for future research. For now, a small adjustment is made
to the choice of £, 4, as in Equation 4.13, which attempts to catch and avoid the most problematically
large values in the sum terms of Equation 4.14. The idea is to bound these sum terms by an upper
bound which depends on the existing spread of probability mass in estimates I-AI,’;‘A_V. This is done by
checking the following condition for k € {1, ..., n}:

HY av(s0) — H 4 v (Se-1)) . .
Sto >M zé{‘}f‘..’,%} (HTI;,A,V(S(I)) - Hrt:,A,V(S(l—l)))- (4.15)

This condition has been tested in several simulations and the factor M on the right-hand side is chosen
to be M = 3. When testing the condition in simulations, this value of M ensured that the condition was
only satisfied in select estimates I:I,Q_AVV, at values s close to zero with relatively high probability mass
AE 4y (sae) —HE 4 v (Sk—1y), Without being satisfied in estimates A2 , , where the de-biasing process did
not need to be adjusted any further. Hence, the condition in Equation 4.15 is a way to detect exactly
the values of s, with the potential to cause inflated estimates I:In,A_V. To prevent their respective terms
from being in the sum of Equation 4.14 altogether, the truncation parameter £, 4 is simply chosen to
be greater than any s, that satisfy the condition.

Let 31, ..., S(m) be the ordered statistics of sy, ..., s, limited to values strictly greater than any that
satisfy Equation 4.15. Note that m < n, with equality possible only if none of the values satisfy the
above condition. Then, the adjusted choice £, 4 for ¢, is given by:

ASV =5V
7 (s,v;t) — F, (s,v)|ds, (4.16)

© (o8]
bnay = argming g = s 3 Z J;
v=1

. _SV

with £5" and F,, as in Equation 4.12. The right side of Figure 4.2 shows how this choice of the trun-
cation parameter ¢,, o as in Equation 4.16 improves several estimates in simulations, when compared
the same estimates in the left of the figure, which use the previous choice of ¢, ,, as in Equation 4.13.
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Similar, partially improved results have been observed in simulations using other particles K, sample
sizes n and true distributions H.

1.0 A 1.0 A
0.8 1 0.8 4
0.6 0.6
L w
[a) [a)
(@ (@]
0.4 1 0.4
024 estimate . 024 estimate .
—— mean estimate —— mean estimate
—== truth === truth
0.0 ru 0.0 ru
0 5 10 15 20 25 0 5 10 15 20 25
A A

Figure 4.2: Per panel, 100 truncated estimates I-AIn,A_V (blue) and their point-wise mean (black), each resulting from the same
100 length-biased estimates PITI{_A‘V. Based on a sample of size n = 1000, using the cube particle K and true H (red) is a log-
normal distribution. Left: inflated estimates Ifln_A,V with truncation parameter given by Equation 4.13, truncated too early. Right:
estimates with proposed truncation parameter given by Equation 4.16.

It should be noted that this adjustment in choosing the truncation parameter is not a general solution
to the problem of poorly performing estimates of the true particle size distribution H, and only serves as
a way to show results that estimate H well most of the time. Moreover, the choice of factor M, although
motivated by results in simulations, is subjective and questionable. A more robust technique to de-bias
estimates of H? to estimates of H is desired, but is beyond the scope of this thesis.

4.2. Simulation Results

Following the procedure from Paragraph 4.1, repeated 100 times for each chosen combination of
n, H and K, simulations first result in 100 ML estimates of the length-biased particle size distribu-
tion H? for each method, determined by the hybrid ICM-EM algorithm. The corresponding ML es-
timate of the true size particle distribution H is also computed for each method, following Equation
4.9, using the respective estimate of H” truncated at t,, either as in Equation 4.11 or as in Equation
4.16. All simulations are performed using the code found at https://github.com/JeroenFaas/
adapted-pysizeunfolder. Note that much of this code is adapted or directly reused from https:
//github.com/thomasvdy/pysizeunfolder, which is used in Van der Jagt et al. (2024) to sim-
ulate the estimation method based only on section profile areas.

Figure 4.3 visualises such simulation results for both methods using the cube particle K, different
true size distributions H and sample size n = 1000. Each blue line corresponds to one of the 100
estimates of either H or H?, the black line is their point-wise mean and the red line is the corresponding
true distribution H or H?. The figure shows that the different length-biased size distributions H? are
estimated well using either method, with estimates I-AIf{, 4y performing slightly better than estimates I-AI,I{, 4
Meanwhile, corresponding estimates of the true size distributions H appear to approximate the true
distributions less closely. Estimates ,, , seem to perform slightly better than estimates H,, ,, when the
true H is exponentially distributed, but the opposite appears to hold when H is log-normally distributed,
with the exception of one outlying estimate I-AIn,A,V. Note that, in each panel, the mean of estimates
follows the true distribution closely.

Similarly, Figures A.1 and A.2 in the Appendix show simulation results for both methods using the
dodecahedron and tetrahedron particle K, respectively, different true size distributions H and sample
size n = 1000. The estimates for both H? and H behave similarly to those for the cube particle,
as described above. Using the dodecahedron particle, however, resulting deviations from the true
distributions appear overall less extreme, with respect to those using the cube, while such deviations
appear more extreme and more frequently using the tetrahedron particle.


https://github.com/JeroenFaas/adapted-pysizeunfolder
https://github.com/JeroenFaas/adapted-pysizeunfolder
https://github.com/thomasvdj/pysizeunfolder
https://github.com/thomasvdj/pysizeunfolder
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(a) Estimates A% , (blue), true H (red) is a gamma distribution. (b) Estimates A% ,, (blue), true H? (red) is a gamma distribution.
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(c) Estimates ﬁn,A (blue), true H (red) is an exponential distribution. (d) Estimates FanA,V (blue), true H (red) is an exponential distribution.
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(e) Estimates A% , (blue), true H? (red) is a log-normal distribution. (f) Estimates A2 ,, (blue), true H (red) is a log-normal distribution.
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(9) Estimates A, 4 (blue), true H (red) is a log-normal distribution. (h) Estimates ﬁn,,q,v (blue), true H (red) is a log-normal distribution.

Figure 4.3: 100 ML estimates of distribution H? and corresponding estimates of distribution H based on a sample size n = 1000
and the cube particle K. a-d: estimates computed by both methods and compared side by side for each row, from the same
sample with an exponentially distributed true H. e-h: similar, from the same sample with a log-normally distributed true H.
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In particular, simulations using the tetrahedron K and log-normally distributed H still tend to result in
several inflated estimates Hn,A,V. In this case, however, there are enough good estimates for the mean
of estimates H,, 4, to remain close to the true distribution H, more so than the mean of estimates H,, .

Overall, estimates of H? seem to perform well, computed by either method. Estimates I:I,’i, Ay doap-
pear slightly better than H}{,A in all simulations. Corresponding de-biased estimates of H have differing
performances, since either method seems to have simulations where its resulting estimates outperform
estimates of the other method.

4.3. Comparing Methods of Estimation

4.3.1. Overall Comparison of Estimates

To quantify the performance of each individual estimate, the error of the ML estimate of H? is chosen to
be defined as the supremum of the point-wise distance between the true H? and the estimate AZ. The
error of the ML estimate of H is defined in a similar way. This definition of the estimate error corresponds
to || A5 — H?||_ and similarly ||A,, — H||_, the infinity (or supremum) norm of the difference between the
estimated and true distribution functions.

Given the errors of all 100 estimates of H? and H computed by the same method for any chosen
combination of n, H and K, the mean error of all estimates is computed, as well as the 2.5%- and 97.5%-
quantiles of the errors. For all performed simulations, resulting errors for each method and combination
of n and true size distribution H are shown in Table 4.1 for the dodecahedron, in Table 4.2 for the cube
and in Table 4.3 for the tetrahedron as particle K.

The tables are split in two parts, the top part contains estimate errors of the length-biased size
distribution H? and the bottom part contains the corresponding estimate errors of the size distribution
H. The combinations of n and H are mentioned in the left column, and the row of each combination
contains the mean errors and quantiles of the errors resulting from the corresponding simulations of
each method. In the middle column, results are from estimates I:I,’;‘A and I-AIn,A, which are based only on
the section profile areas, while results in the right column are from estimates I-AI,’{,A_V and A, ,,, based
on the pairs of section profile area and the number of vertices. Note that, for each row, the different
estimates resulting from the two methods are based on the same 100 samples of observed section
profiles. This allows for performance comparisons of the different estimation methods, by comparing
between the errors in the middle and right columns.

Estimates of H? A5, —H|| A5 4y — H||
n H mean error  (2.5%,97.5%) | meanerror  (2.5%,97.5%)

1000  Exponential 0.0593 (0.0393,0.0924) 0.0466 (0.0309,0.0671)
1000  Log-normal 0.0683 (0.0453,0.0940) 0.0540 (0.0355,0.0752)
2000  Exponential 0.0448 (0.0324,0.0621) 0.0352 (0.0243,0.0501)
2000  Log-normal 0.0530 (0.0379,0.0739) 0.0402 (0.0279,0.0604)
5000 Exponential 0.0314 (0.0246,0.0422) 0.0240 (0.0180,0.0339)
5000 Log-normal 0.0384 (0.0290,0.0499) 0.0283 (0.0198,0.0371)
10000 Exponential 0.0247 (0.0189,0.0346) 0.0187 (0.0133,0.0261)
10000 Log-normal 0.0299 (0.0235,0.0410) 0.0214 (0.0162,0.0286)

Estimates of H |Hna—H||, | Hnav — H||,
n H mean error  (2.5%,97.5%) mean error  (2.5%,97.5%)

1000 Exponential | 01196  (0.0685,0.2076) | 0.1286  (0.0439,0.2509)
1000 Log-normal | 0.0908  (0.0541,0.1581) | 0.0706  (0.0428,0.1396)
2000 Exponential | 0.0962  (0.0566,0.1634) | 0.0871  (0.0346,0.1911)
2000 Log-normal | 0.0762  (0.0441,0.1272) | 0.0518  (0.0294,0.0918)
5000 Exponential | 0.0712  (0.0408,0.1136) | 0.0726  (0.0231,0.1362)
5000 Log-normal | 0.0516  (0.0339,0.0821) | 0.0390  (0.0237,0.0586)
10000 Exponential | 0.0578  (0.0315,0.0976) | 0.0530  (0.0188,0.0882)
10000 Log-normal | 0.0404  (0.0285,0.0602) | 0.0259  (0.0174,0.0354)

Table 4.1: Estimate errors resulting from simulations using the dodecahedron particle K.
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Estimates of H? A5, — H®|| A5 4y — H||

n H mean error  (2.5%,97.5%) | meanerror  (2.5%,97.5%)
1000  Exponential 0.0683 (0.0500,0.1027) 0.0549 (0.0373,0.0774)
1000 Log-normal 0.0763 (0.0511,0.1024) 0.0606 (0.0409, 0.0868)
2000  Exponential 0.0516 (0.0384,0.0762) 0.0412 (0.0299,0.0578)
2000 Log-normal 0.0625 (0.0469,0.0842) 0.0481 (0.0346,0.0641)
5000 Exponential 0.0369 (0.0285,0.0472) 0.0290 (0.0215, 0.0405)
5000 Log-normal 0.0455 (0.0352,0.0584) 0.0333 (0.0236,0.0440)
10000 Exponential 0.0310 (0.0238,0.0392) 0.0228 (0.0167,0.0309)
10000 Log-normal 0.0364 (0.0270,0.0491) 0.0265 (0.0196,0.0367)

Estimates of H |Ana—H||, | Anav — HI|,

n H mean error  (2.5%,97.5%) | meanerror  (2.5%,97.5%)
1000  Exponential 0.1244 (0.0660,0.2085) 0.1349 (0.0560,0.2632)
1000  Log-normal 0.1088 (0.0651,0.1832) 0.0870 (0.0453,0.1690)
2000  Exponential 0.1048 (0.0551,0.1780) 0.1070 (0.0414,0.2210)
2000 Log-normal 0.0896 (0.0538,0.1493) 0.0696 (0.0417,0.1382)
5000 Exponential 0.0782 (0.0423,0.1245) 0.0829 (0.0301, 0.1446)
5000 Log-normal 0.0605 (0.0411,0.0877) 0.0471 (0.0270,0.0700)

10000 Exponential 0.0663 (0.0377,0.1058) 0.0527 (0.0218,0.1196)
10000 Log-normal 0.0478 (0.0315,0.0707) 0.0342 (0.0219,0.0424)

Table 4.2: Estimate errors resulting from simulations using the cube particle K.

When comparing the estimate errors resulting from both methods, it is clear that estimates I-AI,’{, av Of
the length-biased size distribution H? perform better than estimates I-AI,’{,A in the same simulation. This
is the case for all simulations performed, and can be seen by reduced mean errors, as well as reduced
2.5%- and 97.5%-quantiles in all rows of the top parts of Tables 4.1, 4.2 and 4.3. The improvement
varies among combinations of n, H and K, but a reduction is typically between 0.01 and 0.02 in terms
of their mean error for simulations with n = 1000, and the magnitude of this reduction decreases as n
increases. Similar reductions in terms of both quantiles can be observed, although these reductions
vary more than those in terms of the mean error.

Similarly to what is noted in Paragraph 4.2, estimates I-AIn,A,V of the true size distribution H do not
always improve over estimates I-AIn‘A in the same simulation. In terms of mean errors, estimates I-Aln‘A
appear to perform better than estimates FI,LA,V in simulations using the dodecahedron or cube K, and the
exponentially distributed true H. For larger sample sizes n, estimates I?n_A‘V improve in performance
and by n = 10000 perform better than estimates I-Aln,A. Estimates I-AIn_A‘V perform better in all other
cases, except for simulations using the tetrahedron K, the log-normally distributed H and n = 2000.
These particular simulations all appear to have several outlying estimates I-Aln,A_V, as can be seen by
the 97.5%-quantiles of their errors.

The 2.5%-quantile is lower overall for estimates H,, ,, in all simulations. However, in terms of the
97.5%-quantile, each method has different simulations where its resulting estimates perform better
than estimates of the other method. In simulations using the dodecahedron or cube K, this quantile lies
higher for estimates ,, o, when the true H is exponentially distributed, but lower for these estimates
when the true H is log-normally distributed, compared to estimates H,,. Conversely, when using
the tetrahedron K instead, estimates PI,LA have a lower 97.5%-quantile with the exponential H than
estimates I-AIn_A,V, which in turn have a lower 97.5%-quantile with the log-normal H.
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Estimates of H” A5 4 —H®|| A5 4y — H||

n H mean error  (2.5%,97.5%) | meanerror  (2.5%,97.5%)
1000  Exponential 0.0942 (0.0680,0.1336) 0.0808 (0.0611,0.1097)
1000 Log-normal 0.1138 (0.0840,0.1610) 0.0984 (0.0744,0.1374)
2000  Exponential 0.0759 (0.0553,0.1016) 0.0653 (0.0472,0.0896)
2000 Log-normal 0.0956 (0.0709,0.1303) 0.0811 (0.0607,0.1079)
5000 Exponential 0.0614 (0.0483,0.0782) 0.0511 (0.0395,0.0650)
5000 Log-normal 0.0760 (0.0583,0.0998) 0.0653 (0.0499,0.0821)
10000 Exponential 0.0518 (0.0402,0.0678) 0.0431 (0.0333,0.0588)
10000 Log-normal 0.0619 (0.0474,0.0806) 0.0515 (0.0418,0.0643)

Estimates of H |Ana— H||, | A av — HI|,

n H mean error  (2.5%,97.5%) | meanerror  (2.5%,97.5%)
1000  Exponential 0.1981 (0.0849,0.4200) 0.1504 (0.0623,0.2897)
1000  Log-normal 0.1734 (0.1008,0.3325) 0.1500 (0.0763,0.4628)
2000  Exponential 0.1622 (0.0770,0.3217) 0.1279 (0.0569,0.2898)
2000 Log-normal 0.1420 (0.0860,0.2832) 0.1463 (0.0735,0.5737)
5000 Exponential 0.1335 (0.0621, 0.2825) 0.0978 (0.0454,0.2261)
5000 Log-normal 0.1069 (0.0725,0.1705) 0.1098 (0.0574,0.4025)

10000 Exponential 0.1110 (0.0543,0.2458) 0.0725 (0.0361,0.1645)
10000 Log-normal 0.0854  (0.0562,0.1417) 0.0987 (0.0464,0.5685)

Table 4.3: Estimate errors resulting from simulations using the tetrahedron particle K.

4.3.2. Pair-wise Comparison of Estimates
Alternatively to the overall estimate error analysis above, it is useful to directly compare the performance
of the two estimation methods in simulations using the same sample. Therefore, the pair-wise error
is considered for the pair of ML estimates FI,’{,A and I-AI,E{,A,V resulting from the same sample. This pair-
wise error is defined as the difference between their individual estimate errors and is quantified by the
following difference:

1474y = H"|l,, =

|2 o — H|| (4.17)

Note that the result of Equation 4.17 is negative if A% ,, has a smaller estimate error than A% ,, and
positive otherwise. A similar expression ||l 4y — H|| , — ||Hna — H||_,. the pair-wise error for the pair
of estimates H,, 4, and f,, ,, of H, is also considered.

The pair-wise errors of all 100 pairs of estimates of H? are computed, as well as those of the
corresponding pairs of estimates of H, with every pair consisting of a ML estimate resulting from each
method, using the same sample. This is done for any chosen combination of n, H and K and the
resulting pair-wise errors are collected. For each combination, the mean, 2.5%- and 97.5%-quantiles
of the 100 pair-wise errors are listed in Table 4.4 for the dodecahedron, in Table 4.5 for the cube and
in Table 4.6 for the tetrahedron as particle K.

The lay-out of these tables is comparable to the ones in the previous section. However, data about
the pair-wise errors for pairs of estimates of the length-biased particle size distribution H? is found in the
middle column, while the right column contains the same data for corresponding pairs of estimates of
the true particle size distribution H. Combinations of n and H used in each simulation are listed in the left
column, and the row of each combination contains its corresponding mean, 2.5%- and 97.5%-quantile
data per column.
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Pair-wise errors | (|42, — H?ll, = A% = K[l | Anay = HIl, = [Ana = HI.,
n H mean error (2.5%,97.5%) mean error (2.5%,97.5%)
1000 Exponential | —0.0127  (—0.0318,0.0100) 0.0090 (—0.1284,0.1329)
1000 Log-normal —0.0143 (—0.0418,0.0184) —0.0202  (—0.0873,0.0348)
2000 Exponential | —0.0096  (—0.0228,0.0064) —0.0091  (—0.0853,0.0889)
2000 Log-normal —0.0128  (—0.0319,0.0068) —0.0245  (—0.0823,0.0189)
5000 Exponential | —0.0074  (—0.0173,0.0016) 0.0014 (—0.0612,0.0699)
5000 Log-normal —0.0101 (—0.0249,0.0022) —0.0126  (—0.0479,0.0135)
10000 Exponential | —0.0061 (—0.0142,0.0024) —0.0047  (—0.0404,0.0399)
10000 Log-normal —0.0085  (—0.0198,0.0025) —0.0146  (—0.0323,0.0004)

Table 4.4: Pair-wise errors of estimates resulting from simulations using the dodecahedron particle K.

Pair-wise errors

I:IT?,A,V - Hb“oo -

|Ana—H||,,

Hnay —H||,, — |

Hna = H|,

n H mean error (2.5%,97.5%) mean error (2.5%,97.5%)
1000  Exponential —0.0134 (—=0.0370,0.0045) 0.0105 (—=0.1002,0.1527)
1000 Log-normal —-0.0157 (—0.0458,0.0128) —0.0218 (—0.1042,0.0684)
2000  Exponential —0.0104 (—0.0301,0.0079) 0.0022 (—=0.0963,0.1300)
2000 Log-normal | —0.0144 (—0.0340,0.0093) —0.0200  (—0.0849,0.0459)
5000 Exponential | —0.0079 (—0.0181,0.0030) 0.0047 (—0.0819, 0.0830)
5000 Log-normal —0.0123 (—=0.0270,—-0.0008) —0.0134 (—0.0473,0.0136)
10000 Exponential —0.0081 (—=0.0165,-0.0002) —0.0136 (—=0.0731,0.0483)
10000 Log-normal —0.0099 (—0.0211, 0.0000) —0.0136 (—=0.0375,0.0018)

Table 4.5: Pair-wise errors of estimates resulting from simulations using the cube particle K.

Pair-wise errors | (|42, — H?ll, = A% = Kl | Anay = HIl, = [Ana = HI.,
n H mean error (2.5%, 97.5%) mean error (2.5%,97.5%)
1000 Exponential | —0.0134  (—0.0416,0.0109) —0.0477  (—0.2921,0.1029)
1000 Log-normal —0.0154  (—0.0571,0.0246) —0.0234  (—0.2183,0.3005)
2000 Exponential | —0.0106  (—0.0330,0.0087) —0.0343  (—0.2108,0.1315)
2000 Log-normal —0.0145  (—0.0466,0.0106) 0.0043 (—0.1276,0.4354)
5000 Exponential | —0.0102 (—0.0268,0.0041) —0.0358  (—0.2240,0.0893)
5000 Log-normal —0.0107  (—0.0344,0.0083) 0.0029 (—0.0796,0.2964)
10000 Exponential | —0.0087  (—0.0227,0.0055) —0.0385  (—0.1479,0.0516)
10000 Log-normal —0.0104  (—0.0294,0.0057) 0.0133 (—0.0743,0.4274)

Table 4.6: Pair-wise errors of estimates resulting from simulations using the tetrahedron particle K.
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Based on what is shown in the middle columns of Tables 4.4, 4.5 and 4.6, it is clear that estimates
H,’{,A‘V of H? generally perform better than corresponding estimates I-AI,’ilA. The mean of pair-wise errors
is negative with a magnitude of around 0.01 in all combinations of n, H and K. There is variation in
this magnitude, and in general it decreases as n increases. The 2.5%-quantile of each combination
is negative, however, the 97.5%-quantile is always positive, with the exception of two combinations
using the cube particle K and either n = 5000 and H is log-normally distributed, or n = 10000 and
H is exponentially distributed. These exceptions are the only cases where nearly all estimates 131,11’, AV
perform better than corresponding estimates I-AI}{,A, since even the 97.5%-quantile is negative. In all
other combinations, the positive 97.5%-quantile implies that there are several estimates FI,’{,A,V that
perform worse than the corresponding estimates I-Al,l{‘A based on the same sample. In such cases, the
pair-wise error is mostly small, and decreases in magnitude for larger sample sizes n.

Finally, when looking at estimates of H again, it is clear that estimates I-AIn,AIV do not all improve over
estimates I-AIn,A, as can be seen in the right columns of Tables 4.4, 4.5 and 4.6. In terms of the pair-
wise errors, most of the combinations of n, H and K result in negative means. However, a substantial
amount of simulations does not yield a negative pair-wise error, and in some combinations the mean is
even positive as well. A positive mean of pair-wise errors corresponds to the same combinations where
the mean in individual errors is higher for estimates I-AIn,A_V than it is for estimates I:In,A, as mentioned
in the previous paragraph. This concerns most combinations using the cube or dodecahedron K, and
the exponentially distributed H, or using the tetrahedron K and the log-normally distributed H. In terms
of quantiles of pair-wise errors, all combinations have a negative 2.5%-quantile and a positive 97.5%-
quantile, even in cases where the 97.5%-quantile in the middle column is negative. This once again
underlines varying performances of each method when estimating H, even within the same combination
ofn, H and K.

4.4. Conclusions

The established methods from Chapter 3 of estimating the length-biased particle size distribution H?
and the true particle size distribution H have been tested in different simulations based on several
chosen combinations of sample size n, true distribution H and shape of reference particle K, according
to the procedure described in Paragraph 4.1. Based on the simulation results in Paragraphs 4.2 and
4.3, estimates fI2 ., of H?, based on the area as well as the number of vertices in section profiles,
generally improve over estimates FI,’i_A, based on section profile areas only. The improvement is a
notable, structural reduction in the average of estimate errors across all combinations, which appears
to slightly decrease in magnitude as the sample size increases. These results imply that including
the number of vertices in the procedure of estimating the length-biased size distribution, improves the
resulting estimate on average.

When looking at the pair-wise error between estimates of H? resulting from the different methods,
based on the same sample, it is revealed that the reduction in estimate errors is not present in general.
For almost all combinations of n, H and K, there are samples that yield a better performing estimate
A%, than an estimate A% , .

Contrarily to this result in the estimation of length-biased distribution H?, results from estimating the
true distribution H imply that there is an average improvement when including the number of vertices
in the estimation procedure only in some cases. In other cases it leads to worse estimates on average.
However, the de-biasing procedure appears to be blamed for this, since estimates ﬁ,’{,A,V do improve
over H,ﬁ"A overall, but the estimates H,, , , that follow from those same I-AI,’{,A,V do not seem to improve
over estimates I-AIn,A that follow from the respective estimates I-AI,’{, 4- Questions are raised regarding the
procedure to de-bias and regularise estimates of H? to estimates of H, as described in Paragraph 4.1.
In particular, the described phenomenon, which results in outlying estimates I?n,A_V of H, persists in
simulations, despite the implementation of the suggested adjustment. A general solution to improve
the de-biasing procedure is missing.






Application to Steel Microstructure

Two procedures for estimating the particle size distribution are established in Chapter 3, and imple-
mented in Chapter 4. In this chapter, both methods are applied to real data. The dataset is described
first. A method is established next, which is needed to be able to apply the procedures to the dataset.
Then, the dataset is used in both procedures and their performances are compared.

5.1. Observing the Steel Microstructure

This dataset is based on real observations of the microstructure of steel grains. It can be found at
https://github.com/JeroenFaas/adapted-pysizeunfolder, in the files
‘sample data 2d.txt’and‘sample data 3d.txt’ofthe ‘examples’folder. The two files consist
of two kinds of observations. The first is a two-dimensional planar section of the steel, revealing the
steel microstructure over an area of 500 um x 500 um. Section profiles of the intersected grains are
observed. This observation is shown on the left in Figure 5.1.

The observation is processed to a form that can be better analysed. As shown on the right in Figure
5.1, an approximate polygonal recreation of this same planar section is made, without losing relevant
information. The colours of the profiles in the figure are not relevant for the purposes of this analysis.

Figure 5.1: Left: Image of the true observed section profiles (source: Van der Jagt et al., 2025). Right: Polygonal recreation of
the true observations (provided by T. van der Jagt).

Each polygonal recreation has the same area as the original section profile, and its center of mass
is located at the same position as that of the original profile. Each recreation of a section profile has
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26 5. Application to Steel Microstructure

a number of vertices, which is equal to the number of neighbours in the recreation. Note that this is
not necessarily the same as the number of neighbours of the original section profile. The data of this
polygonal recreation is stored in the first file. Some grain profiles along the boundary of the observed
area are only partially visible, making their observed data incomplete. Therefore, data from these
profiles is discarded in the rest of this chapter.

Aside from this observation, the same steel microstructure has also been scanned in three dimen-
sions in order to obtain the true volume distribution of the grains. The grain volumes are found in the
second file, and are visualised in Figure 5.2(b), measured in cubic micrometers. In the context of the
methods developed in Chapters 3 and 4, the grain volumes are also transformed to grain sizes. Grain
sizes are defined as a scaling by 2 > 0 in three dimensions with respect to the reference particle K,
which has a volume of 1 um3. Thus, sizes are obtained by applying a cubic root transformation to the
grain volumes. The resulting grain sizes are visualised in Figure 5.2(a), measured in micrometers.
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(a) True sizes of the steel dataset, measured in micrometers. (b) True volumes of the steel dataset, measured in cubic micrometers.

Figure 5.2: Histograms of the known true sizes (a) and volumes (b) of grains in the steel dataset.

5.2. Fitting Observations to Known Shapes

In order to be able to apply the methods from Chapters 3 and 4, a shape for reference particle K should
be known. However, in this and other applications, that is not a given. It is therefore proposed to take
several known candidate reference particles K and choose the best fit for the observed section profiles
in the estimation procedures. Candidates are chosen of the tetrahedron, cube and dodecahedron
shape. Choosing the best fit shape is done using the distributions of shape-dependent parameter V,
the number of vertices in a section profile. We would like to fit the observed distribution of IV to that in
section profiles of each candidate for K.
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Figure 5.3: Numbers of vertices in the polygonal recreation of the observed grain section profiles.
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For the recreation of the grain section profiles, Figure 5.3 shows the observed numbers of vertices.
It is clear from this figure that a problem arises when trying to fit the data of observed V to any of the
candidate reference particles. Remark that the recreations of section profiles have up to 17 vertices,
while none of the candidates allow for such profiles to occur. One way to resolve this problem is
to choose other candidate shapes that do allow up to 17 vertices in a section profile. Another is to
interpret the observed V in a way that works for the chosen candidates, which is done instead. This
still raises the questions what to do with the profiles containing more than vertices than the maximum
V¢*** each candidate allows, and whether profiles with less than or equal to V,;7*** vertices should even
be interpreted as such.

Two solutions are proposed, which interpret the observed V in different ways. These different in-
terpretations of the observed data are justified by the fact that the observed numbers of vertices are
based on a polygonal recreation of the true section profiles. These polygonal approximations of section
profiles have numbers of vertices that do not necessarily describe the shape of the true section profiles,
and are therefore prone to having noise in their values of VV. Thus, for each candidate K:

« the first interpretation is to treat any observed section profile (a, v) with v greater than V{*%* as
a section profile with v = VZ***, and does not change observations otherwise. The resulting
distribution of numbers of vertices are shown in Figure 5.4, for all candidate reference particles
K;

+ the second interpretation is to translate the distribution of observed V, denoted by FY, to fit the
distribution of V in section profiles of K, denoted by G}. For each v € {3, ..., 17}, the idea is to find
the w, € {3, ..., Vg***} that minimises the absolute distance between the observed distribution of
V at v and that in section profiles of K. Formally, for each v € {3, ..., 17}, this w,, is defined as:

w, = arg mil’lwe{&my&naX} [F¥(v) = Gg(w).

Then, each observed section profile with v vertices is treated as having w,, vertices instead. This
process is done to the observations for all candidate reference particles K, and the resulting
distribution of translated numbers of vertices is shown in Figure 5.5.
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Figure 5.4: Distributions of observed data of number of vertices in a recreated section profile compared to that of each of the
candidate reference particles K, adjusted according to the first interpretation, which interprets observed v = V7*** as v = V,7*%*.
Made using the tetrahedron (left), cube (middle) and dodecahedron (right) candidates K.
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Figure 5.5: Distributions of observed data of number of vertices in a recreated section profile compared to that of each of the
candidate reference particles K, adjusted according to the second interpretation, which translates the distribution of observed v
to that of the candidate K. Made using the tetrahedron (left), cube (middle) and dodecahedron (right) candidates K.
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For each interpretation of the observations and each candidate reference particle K, the maximum
absolute deviation between the distribution of V' corresponding to the candidate and the distribution
of V of interpreted observations is computed. Using the first interpretation of the observed data, this
deviation for the tetrahedron K is 0.6349, the greatest out of all candidates. The cube follows next, with
a deviation of 0.5016. It is the smallest for the dodecahedron candidate K, with a maximum absolute
deviation of 0.1002. This means that the dodecahedron is the best candidate for the observed dataset.
This resultis also clearly shown in Figure 5.4, where the distribution corresponding to the dodecahedron
candidate follows the observed distribution most closely.

Similarly, the maximum absolute deviations are also computed between the distribution of V for each
candidate reference particle K and the observed distribution of V, following the second interpretation.
This time, the deviation is greatest for the cube candidate K, at 0.2066. The other two candidates have
similar deviations, with the tetrahedron K having 0.0968 and the dodecahedron K having a maximum
absolute deviation of 0.0948. Although close this time, the dodecahedron turns out to be the best
candidate for the observed data again. This result is difficult to see in Figure 5.5, due to the small
difference in deviations between the tetrahedron and dodecahedron.

5.3. Estimating the Grain Volume Distribution

Following each method as described in Chapter 3 and implemented in Chapter 4, ML estimates Iflﬁ‘A and
ﬁ,’{_ 4y are computed based on the observed section profiles. The observed data is adjusted according
to each interpretation from Paragraph 5.2. Note that the estimation procedure to obtain I-AI}{, 4 and I-AInIA
does not depend on the number of vertices in a section profile, and will therefore not change between
the different interpretations of V in the observations.
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Figure 5.6: Estimates of the true H and length-biased H? grain size and volume distributions (red), computed by all methods
using the dodecahedron reference particle K. Observations are adjusted according to the first interpretation in estimates (1),
shown in orange, and according to the second interpretation in estimates (2), shown in green.
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At first, the estimates are computed using the dodecahedron as reference particle K, since it has
been established in Paragraph 5.2 to be the most fitting candidate in either interpretation of the obser-
vations. Figure 5.6 shows the resulting estimates of each estimation method using the dodecahedron
K.

The estimated distribution functions in Figure 5.6 show that all estimates approximate the true size
and volume distributions well. Estimates I-AI,Z{,A and I-AIn,A, based on the method using only the square
root transformed areas of section profiles, shown in blue, tend to consistently overestimate the true
distributions. Meanwhile, estimates A% , , and A, 4, based on the method that uses pairs of the square
root transformed area and the number of vertices in a section profile, appear much more accurate for
low values of both size and volume. This holds in either interpretation of the observations, with the
estimate resulting from the first interpretation shown in orange and the estimate resulting from the
second interpretation shown in green. For higher values of size and volume, however, the estimates
A%, , and A, 4, also overestimate by approximate equal amounts as the estimates A2 , and H,, , when
using the second interpretation of the observations. This can be observed in the orange functions in
Figure 5.6. Moreover, when the observations are adjusted according to the first interpretation, estimates
At ,, and A, 4y perform worse than estimates A% , and H,, , for higher values of size and volume, as
can be seen in the green functions in Figure 5.6.

Similar figures can be found in Appendix A for the other candidate reference particles. Figure A.3
shows the resulting estimates when using the cube K, following the first and second interpretation of
the observations, respectively. Figure A.4 shows the resulting estimates when using the tetrahedron
K, following the first and second interpretation of the observations, respectively.

Similarly to Paragraph 4.3, the error of an estimate is considered to be the infinity norm of the
difference between the estimated and corresponding true distribution functions. This estimate error
is computed for the estimates of both the length-biased distribution H? and the true distribution H,
following from each method and each interpretation of the observations. The errors of all estimates
are listed in Table 5.1. Note that taking these distributions with respect to sizes or volumes makes no
difference in estimate errors, since translating a data point between size and volume does not change
its corresponding distribution function value.

K Estimates using method & interpretation | ||H2 — H?||_ | ||H. — H]|,
method A (HE , / Hy, 4) - 0.1891 0.3502
Tetrahedron method A,V (A2 1, | Hyav) 1 0.2494 0.2303
method A,V (A2 1, | Hyav) 2 0.4121 0.6106
method A (HE , / Hy, 4) - 0.0899 0.1355
Cube method A,V (A2 o, | Hy av) 1 0.2792 0.2336
method A,V (A2 ., | Hy av) 2 0.2912 0.4183
method A (AL, / A, 4) - 0.1414 0.1449
Dodecahedron | method A,V (HZ 1, | Hy ay) 1 0.1432 0.0820
method A,V (A2 o, | Hy av) 2 0.1147 0.0636

Table 5.1: Estimate errors resulting from simulations using the observations in the dataset. Made using different reference
particles K, listed in the first column, methods of estimation, listed in the second column, and interpretations of the observations,
listed in the third column.

Table 5.1 clearly shows that using the dodecahedron reference particle K leads to overall low esti-
mate errors when estimating both H? and H, regardless of estimation method or interpretation of the
observations. The lowest of these estimate errors may be found when using estimates I-AI,’{, 4y and ﬁn_ AV
and when using the second interpretation of observations. However, the lowest error when estimat-
ing HY is actually achieved by estimate I-AI,’{,A using the cube K. This is a result which has also been
observed in Van der Jagt et al. (2025), which analyses the same dataset. Estimates based on both
the area and the number of vertices in a section profile do not perform well using the cube K, in either
interpretation of the observations, because the deviation between distributions of V for the dataset and
the cube particle is too large. This result emphasises the sensitivity of the latter estimation method to
deviations from the distribution of V.

Moreover, resulting errors in the table reveal the dependence of the estimation method based on
both the section profile area and number of vertices on the right reference particle. This is especially
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relevant since the used reference particle K determines what g;";'V, the density function of section profiles
through K, looks like. This function varies greatly among shapes of K. This is a dependency that the
method based only on the section profile areas does not have, and is what allows it to perform relatively
well for any chosen reference particle K.

The results listed in the table also make it clear that the different interpretations of the observed
numbers of vertices yield very different results. The first interpretation yields estimates that do bet-
ter than those resulting from the second interpretation when using the tetrahedron or cube K, which
performs very poorly, especially when using the tetrahedron K. On the other hand, when using the
dodecahedron K, the second interpretation performs best of all methods.



Conclusion & Discussion

In this thesis an existing estimation method for the approximation of the three-dimensional particle size
distribution H has been explained, which is based on observations of two-dimensional section profile
areas. Estimates of the particle size distribution solve the problem described in Chapter 1, and may
be used in materials science, for example, to determine the hardness of steel based on the grain size
distribution in its microstructure.

This method is then adapted, incorporating the number of vertices as parameter describing the
shape of an observed section profile, alongside its area, which describes its size. The intention of
including this shape parameter in the estimation method is to see whether or not it would improve re-
sulting estimates.

Chapter 3 describes how each of these procedures yields a maximum likelihood estimator for the
length-biased particle size distribution H?. This can then, in theory, be de-biased to obtain an esti-
mate of the true size distribution H. However, when implementing the de-bias procedure from Chapter
4, several problems have arisen. The existing estimation method also encounters some problems
when de-biasing, but has found an acceptable ‘rule of thumb’ to eliminate these problems and yield
accurate estimates of H as well. A similar, accurate de-biasing procedure for the method including the
number of vertices of a section profile has not yet been found and is thus left as a suggestion for future
research. Therefore, conclusions about the performance of each estimation method are best drawn
based on the estimates of H?, so that the different de-bias procedures do not affect outcomes.

Simulations in Chapter 4 have revealed that the estimate of H?, which is based on a sample of both
the area and number of vertices in an observed section profile, performs better on average than the
estimate of H? based only on the section profile areas of the same sample. The reduction in estimate
errors, as defined in Chapter 4, varies depending on used reference particles and true size distributions,
but it is between 0.01 and 0.02 on average. This reduction decreases slightly in magnitude when the
sample size increases. When examining these errors for each pair of estimates based on the same
sample of observations, it is revealed that this reduction in estimate error is not structural.

On the other hand, mixed conclusions may be drawn regarding the performance of estimates of H,
based on the different estimation methods. Different methods of estimating H perform better in different
situations. This has been shown in Chapter 4, using simulations based on various sample sizes, true
size distributions and reference particles. Here, the different de-bias procedures should also be taken
into account, as they do affect results.

When applying both estimation methods in practice, an additional step may be required. Both meth-
ods require a reference particle to be known, which is not always the case in applications. Therefore,
Chapter 5 describes how to determine what reference particle best fits the observations out of several
known candidates. This decision is based on the distribution of numbers of vertices in the observed
data. Another problem is revealed, however, when a number of vertices in the observations cannot
possibly be obtained from some or any of the candidate reference particles. To resolve this issue in
processing the observations, and to be able to apply the method which incorporates the number of ver-
tices in a section profile to it, two suggestions have been done in Chapter 5. Both provide alternative
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interpretations of the observations, and are motivated by the presence of noise in the process of obtain-
ing the observed numbers of vertices in section profiles. This noise in the observed number of vertices
of a section profile raises the question whether this is a useful shape parameter in practical situations,
and depending on the way it is observed, could be a reason not to use the method incorporating its
observed data altogether.

The final results are obtained when applying both estimation methods to a real sample of observed
section profiles of grains in a steel microstructure. The true grain volume distribution H is known, and is
used to compare the performance of each estimate. The observed numbers of vertices are interpreted
according to both suggestions and result into two variants of the estimation method using both the
area and the number of vertices in a section profile. The different interpretations do not alter the other
estimation method. Thus, estimates resulting from the three methods are compared to each other
using the candidate reference particle that best fits the observed distribution of numbers of vertices.
The best estimate of the length-biased grain volume distribution H? is concluded to follow from the
method based on both the area and number of vertices in a section profile. However, this is only the
best estimate when adjusting the observed numbers of vertices in the second interpretation given in
Chapter 5. Moreover, a better estimate of H? is obtained when using the method based only on the
section profile areas, with the cube as a reference particle.

This result highlights the dependence of the method incorporating the number of vertices on an
accurate reference particle and the sensitivity of this method to noise in the observed numbers of
vertices. The method based only on the section profile areas still requires a reference particle to work,
but the accuracy of its estimates is less dependent on this choice and is even independent of the
different ways to interpret observed numbers of vertices.

With all of the above taken into account, it is noted that the incorporation of the number of vertices
in the estimation procedure might not be useful when this data is not precisely observable. Other pa-
rameters to describe the shape of a section profile could be considered in future research instead of
the number of vertices, preferably parameters which are less sensitive to the observation process.

In conclusion, the incorporation of observed numbers of vertices improves the estimation procedure of
the particle size distribution in theory. On average, the resulting estimator deviates less than the result
of the estimator based only on the observed section profile areas, but in general this is not a given.
Moreover, the former estimator requires more computations to approximate, resulting in a trade-off be-
tween accuracy and computational cost. Therefore, a different method could be preferred depending
on the application. In such an application, the estimate based on both the area and number of ver-
tices in a section profile could face more difficulties, depending on the way the numbers of vertices are
observed. Since the method is highly sensitive and dependent on this observed data, its application
might lead to reduced accuracy when compared to the theoretical gains, and the method based only
on the section profile areas, which is less dependent on this data, might be preferred.
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Figure A.1: Maximum likelihood estimates of distribution H? and corresponding distribution H for the dodecahedron particle K.
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Figure A.2: Maximum likelihood estimates of distribution H? and corresponding distribution H for the tetrahedron particle K.
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Figure A.3: Estimates of the true H and length-biased H? grain size and volume distributions (red), computed by all methods
using the cube reference particle K. Observations are adjusted according to the first interpretation in estimates (1), shown in
orange, and according to the second interpretation in estimates (2), shown in green.
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Figure A.4: Estimates of the true H and length-biased H? grain size and volume distributions (red), computed by all methods
using the tetrahedron reference particle K. Observations are adjusted according to the first interpretation in estimates (1), shown
in orange, and according to the second interpretation in estimates (2), shown in green.
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