
Thesis

Interactive Imitation Learning for Force control

Authors:

LANDER Niels (4316878)

Date :
May 2021

Supervisors : Dr. C.E. Celemin Paez, Dr. J Kober
Academic year:

2020-2021

Acknowledgements
Throughout the process of writing this thesis I have received a lot of support from different

people. I would like to take this page as a thank you to everyone who has supported me.
First up, I would like to thank my daily supervisor, Dr. Carlos Celemin Paez, for being

there to answer all my questions and proofread the drafts I made, to get this thesis in the shape
it is now. I would also like to thank him for taking the time to meet with me on a weekly basis,
during the most challenging times of the process.

Secondly, I would like to thank my supervising Professor, Dr. Jens Kober, for critically
reviewing my methodology, and showing me areas of my research that needed some extra
experiments. This has helped me improve the quality of the research quite a lot.

Then I would like to thank my parents, who have also helped me to integrate the structure
to a more complete narrative. I would also like to thank them for offering me a place to write
my thesis, when I needed it.

Finally I would like to thank my partner, ing. Maaike Luykx, for proofreading and correcting
my thesis many times. I would also like to thank her for giving me mental support at the times
I needed it most, and challenging me to be a better version of myself.

ii

Summary
To generalize the use of robotics, there are a few hurdles still to take. One of these hurdles

is the programming of the robots. Most robots on the market today employ position control,
with a set of controller parameters tuned by an expert. This programming is quite expensive,
only suited for a single task, in a single configuration, and not interaction safe.

This thesis tries to solve these problems, by introducing Position And Stiffness Teaching with
Interactive Learning (PASTIL) and History Aware PASTIL (HA-PASTIL), a novel interactive
way of learning scalable variable impedance policies. The system is able to learn both positional
reference trajectories and stiffness trajectories at the same time.

PASTIL and HA-PASTIL learn these policies from positional corrections applied by a hu-
man teacher, through physical Human Robot Interaction (pHRI). For the measurement and
extraction of these corrections only the proprioception sensors of the robot are used, so no
force/torque sensors are required. To learn from these corrections, the intention of the teacher
is estimated, by segmenting the correction space in three parts. Each of these three parts
correspond to a set of update rules for the policy, that fit the intention of a correction in that
segment.

In this thesis, the proposed algorithms are validated through a series of experiments with
sample tasks, and compared with baseline algorithms. The main conclusions from these tests are
that PASTIL and HA-PASTIL, as introduced in this thesis, outperform the baseline algorithms
on task performance for all tasks and that the learned stiffness makes a positive contribution
to task performance. This means that the algorithms proposed here allow for simple systems,
with only proprioception sensors, to be instructed by users, instead of experts. This makes it
possible for robotics to be applied at lower cost, with less expertise needed to program and
operate.

These algorithms, however, still have some aspects that could use further research. The
most important example is that they are not yet tested on an actual robot, with physical
human robot interaction.

There is still quite some work left to do, but the proposed algorithms might pave the way
for more, and better, algorithms that aim to learn force control behaviour form only positional
corrections.

iii

List of Acronyms
COACH COrrective Advice Communicated by Humans. 8, 19

DMP Dynamic Movement Primitives. 6, 7, 9, 10, 12, 23, 38

DOF Degrees of Freedom. 4–7, 10–13, 21, 38

HA-PASTIL History Aware PASTIL. iii, vi, 12, 15, 18, 19, 27–38

HCRL Human Centered Reinforcement Learning. 7

IIL Interactive Imitation Learning. 3, 7–9

IL Imitation Learning. 9, 19

LWR Locally Weighted Regression. 6

MDP Markov Decision Process. 6, 7

MOA Mixture of Attractors. 6

MSE Mean Square Error. 22, 29

NN Neural Networks. 6

PASTIL Position And Stiffness Teaching with Interactive Learning. iii, vi, 12, 14, 15, 18, 19,
28, 30, 32, 36, 37

pHRI physical Human Robot Interaction. iii, 8, 9, 39

ProMP Probabilistic Movement Primitives. 6

RBF Radial Basis Function. 6, 10, 14

ROS Robot Operating System. 18, 26

SABL Strategy-Aware Bayesian Learning. 8

TAMER Training an Agent Manually via Evaluative Reinforcement. 8

TP-GMM Task Parameterized Gaussian Mixture Model. 6

iv

Nomenclature
α Learning rate for stiffnesses

αz DMP behaviour constant

β Learning rate for trajectories

βz DMP behaviour constant

αi Control value for the Impedance control. [m/s2]

q̇ Vector of joint radial velocities. [rad/s]

v̇d Desired end-effector acceleration, in Cartesian space. [m/s2]

η(q) 6-Vector containing Gravity compensation values, dependant on joint angles. [N]

Λ(q) Inertia matrix, dependent on joint angles

φk Features from the stiffness representation

φp Features from the trajectory representation

ξcorr Trajectory, as executed by the robot, with human correction

ξnc Trajectory, as executed by the robot, without human correction

ξref Reference trajectory.

dK Weight update for the stiffness representation

dP Weight update for the trajectory representation

Ea Extracted correction, used in weight update calculation

Er Reference error, used in weight update calculation

hc Wrench of control forces, in end-effector space. [N]

he Wrench of external forces, in end-effector space. [N]

J End-effector Jacobian matrix. This matrix relates joint-space to Cartesian space

Kd Controller damping matrix

KM Virtual inertia matrix. Set to identity in this work

Kp Matrix of controller stiffness parameters. The learned stiffnesses are put on the main
diagonal of this matrix

q Vector of joint angles. [rad]

ve End-effector velocity in Cartesian space. [m/s]

v

wk Weights vector of the stiffness representation, as used in PASTIL and HA-PASTIL

wp Weights vector of the DMP forcing function, as used in PASTIL and HA-PASTIL

∆vde Vector difference between the desired end-effector velocity, and the actual end-effector
velocity. [m/s]

∆xde Vector difference between the desired end-effector position, and the actual end-effector
position. [m]

γ Secondary learning rate for trajectories

Γ(q, q̇) 6-Vector containing centrifugal and Coriolis effect compensation, dependant on joint
angles and joint velocities. [N]

λseg Segmentation parameter

τ DMP time parameter

cs Cost for the stiffnesses

ct Cost for the time

cy Cost for the final Y-location

cmaxz Cost for the maximum Z deviation

cMSE Cost for the MSE of the measured Z-trajectory with the desired Z-trajectory

f DMP forcing function

q DMP goal

r(t,w) Function represented by linear function approximation

tmax Normalization parameter for ct

tmin Normalization parameter for ct

y The spatial degree of freedom that is represented by the DMP, could be any of the
Cartesian dimensions

z DMP scaled velocity

vi

Contents

1 Introduction 1

2 Literature Review 3
2.1 Force Control . 3
2.2 Policy representation . 5
2.3 Interactive Imitation Learning . 7
2.4 Conclusion . 9

3 Position And Stiffness Learning 10
3.1 Policy representation . 10
3.2 Correction extraction . 11
3.3 General algorithm structure . 11
3.4 Segmentation of the correction space . 12
3.5 PASTIL . 14
3.6 HA-PASTIL . 15

4 Experimental Setup 18
4.1 Environment . 18
4.2 Baseline Algorithms . 19
4.3 Push Task . 19
4.4 Lift Task . 22
4.5 Policy Reuse Push Task . 23

5 Results 26
5.1 Push task . 26
5.2 Lift Task . 28
5.3 Policy Reuse Push Task . 30
5.4 Conclusion . 36

6 Discussion 37
6.1 Possible further research . 37

7 Conclusion 39

References

Appendices

A Analysis of DMP weight increments
A.1 Simple Trajectory .
A.2 More realistic scenario .

B Controller Validation
B.1 Cartesian Controller .
B.2 Oracle .

vii

C Interaction Forces
C.1 Test Setup .
C.2 Results .
C.3 Conclusions .

D Rule Analysis
D.1 Towards .
D.2 None .
D.3 Uninitialized .

E Environment choice
E.1 Simulators .
E.2 Conclusions .

F Description of the Chosen Environment
F.1 Programming Languages .
F.2 ROS .
F.3 Gazebo .
F.4 Moveit! .

G Correction Interfaces
G.1 Raw forces .
G.2 Movable boxes .
G.3 Movable arrows .
G.4 Oracle .
G.5 Stiffness visualisation interface .

H Cost Breakdown
H.1 Push Task .
H.2 Lift Task .
H.3 Policy Reuse Push Task .

viii

1 | Introduction

Figure 1.1: Example image of a simulated robot
performing a simple task.

There are two main unsolved challenges that
withhold collaborative robotics from realising its
potential [1] and being used in many and di-
verse applications, from household tasks to indus-
trial fabrication. The first challenge is interaction
safety, while the second one is ease of program-
ming.

This is mostly due to the fact that most cur-
rent robot-arms achieve their accuracy by com-
bining manually programmed high-gain positional
control, with a fixed reference trajectory.

In this form of control a slight perturbation in
the end-effector position, for example due to unex-
pected contact, generates large contact forces [2].
This introduces a safety risk in case of human in-
teraction with robot-arms. Programming this kind
of control scheme is also very expensive and labour
intensive. [3] [4]

In conventional robot programming, the policy is represented as a reference trajectory and
a set of fixed controller parameters. Robots programmed this way can only execute a single
task, which they are not able to generalize beyond one exact configuration of the environment.

For a future of household robotics, that need to interact and collaborate with humans and
perform a wide-variety of tasks in a safe manner and at low costs, this fixed reference high-
gain positional control is not suitable and Machine Learning assisted Force Control would be
required. This would ideally provide maximum flexibility, easy programming and learning,
while having a minimum number of sensors and be operation safe.

Besides the interaction-safety, there are more areas where it would be beneficial to be able to
learn a Force Control scheme. Some tasks require such a scheme to be performed well, mostly
tasks that contain stochastic perturbations.

To realize this shift of paradigm, efficient Machine learning algorithms have to be devel-
oped, along with mathematical representations of the force control tasks. This thesis aims to
contribute to solving the first of these two sub-problems. As a preparation for this manuscript
a literature study was done to investigate the state of the art on interactive learning for force
control. The conclusion of this research was that there are currently no methods that inter-
actively learn both a reference trajectory, and the accompanying controller parameters. This
conclusion led to the following research question:

“How can a system be designed that interactively learns the stiffness gains of an
Impedance controller, along with the reference trajectory, from only position feed-
back? ”

which this thesis will answer. If such a system is designed, it is possible for non-expert
end users to easily, and without the use of external haptic devices, program a robot to execute
interaction safe tasks, such as preparing meals, or ironing. This would be a great step towards
the automation of many simple household tasks, through a single multi-purpose device.

1

This work will start of by describing the current state of the art for interactive learning of
force control tasks, in Chapter 2, where a brief summary of the literature review is presented.
After this summary, a novel developed method for learning force control tasks interactively will
be presented in Chapter 3. In Chapter 4 some tests will be discussed to experimentally validate
the performance of the newly introduced method. These tests will mostly consist of short
example tasks in a simulated world. An example of a simulated robot performing a simple task
is provided in Figure 1.1. The results of these tests shall be shown in Chapter 5, and discussed
in Chapter 6. Finally, some conclusions will be presented in Chapter 7.

2

2 | Literature Review
In this chapter the current state-of-the-art in both force control, and the interactive learning

of this control, are shortly discussed. To fully grasp this state-of-the-art, it is split up in three
pieces; Force Control, Policy Representation, and Interactive Imitation Learning. These three
parts have to be combined to form a complete learning system.

2.1 Force Control
The field of Robotic Force Control focuses on the control of robotics, through contact-force

feedback. This is complementary to positional control, which solely uses positional feedback.
The use of force feedback is important in tasks where the robot interacts, makes contact with,
and manipulates objects in the environment. A simple, and often used, manipulation example
is the ‘peg in a hole’ task, where a robot has to insert a peg into a hole. Due to the tight
tolerance of the peg-hole combination, and the inaccuracy of the position measurement in
robotics, performing this task is non-trivial. Teaching a robot how to solve this task robustly,
so that perturbations in hole position and orientation do not lead to task failure, is complicated
if only positional feedback is used.

Another problem of pure positional control is that the greediness of reaching the desired
position task in this type of controller is not taking into account the possible high contact forces
that are generated, leading to possible damage of the system. This problem is also solved by
using force control. Force control, overall, makes the execution of interaction tasks safer. One
of the most important drawbacks in force control is that is more complex than position-only
control, and thus more expensive and more difficult to program [1]. A general overview of the
field of force control can be found in both [5] and [2].

2.1.1 Methods
The current state-of-the art in force control can be split up in two different categories: direct

force control and indirect force control. Direct force control allows the user to directly specify
desired contact forces, where indirect force control focuses more on interaction safety. The most
important methods, along with their most defining attributes, are displayed in Table 2.1.

Indirect Direct
Stiffness Control [6] Parallel Force/Motion Control [7]
• No Force/Torque Sensor • Controls Force & Position at the same time
• Easy to implement • Sacrifices some accuracy
Impedance Control [8] Hybrid Force/Motion Control [9]
• Only needs reference and stiffness • Exact Control of Position/Force
• Interaction Safe • Decoupled Force/Motion

Table 2.1: Subdivision of the force control methods

In this table, there are four methods. Two of which are direct methods, and two of which
are indirect methods. These advantages and disadvantages of these methods shall be shortly
highlighted in the following subsections.

3

Stiffness Control

The advantage of stiffness control is that it allows safe interaction with the environment, without
the use of a force-torque sensor, and a simple control law. The downside of stiffness control is
that it is a very limited method. It does not allow the specification of contact forces, nor does
it allow the specification of the full dynamic behaviour of the system.

Impedance Control

The advantage of Impedance Control over Stiffness Control is that the dynamic behaviour is
better defined, as opposed to just defining the static behaviour. In Impedance control the entire
behaviour if the mass-spring-damper system can be regulated, rather than just the ‘spring-
stiffness’. The downside is that a force-torque sensor is required to measure the end-effector
forces.

Parallel Force/Motion Control

The advantages of this method over Hybrid Force/Motion Control are that it can control both
position and force on all DOFs, instead of having a pre-selected control modality per DOF, this
means that contact detection is no longer necessary. The disadvantages are that the position
and force control may be less accurate, as result from a constant trade-off between the two.

Hybrid Force/Motion Control

The advantages of Hybrid Force/Motion Control are that the different DOFs are controlled
completely independently, and that the control-modalities, be it force or position control, can
be selected freely and individually per DOF. This can also be used to switch control modality
upon contact detection. The main downside is that a contact detection system has to be
implemented to switch between control modalities.

2.1.2 Observations
The state-of-the-art leads to two major observations. The first observation is that indirect

force control is more focused on limiting the contact force to a interaction-safe level, which is
in line with the goals of this thesis. The second observation is that programming robotic force
control is very non-trivial, and limits its use. This is where the potential lies of combining these
control schemes with an intuitive interactive learning scheme. The control scheme best suited
for this thesis seems to be Impedance control, since it is the indirect method that offers the
most control over the dynamic behavior. A more in-depth explanation of Impedance control is
given in the following paragraph.

4

2.1.3 Impedance control
The main advantages of Impedance control, as presented in [8], are that it does not require

any form of contact detection, while providing most of the safety benefits of force control. The
control law of Impedance control is presented in Equations (2.1) and (2.2).

hc = Λ(q)αi + Γ(q, q̇)ve + η(q) + he, (2.1)

where αi is set according to

α = v̇d +K−1
M (Kd∆vde +Kp∆xde − he). (2.2)

In these equations q is the 7x1 vector of joint-angles, Λ(q) is the 6x6 inertia matrix, v̇d is a 6x1
vector containing the desired values for the linear and angular accelerations of the end effector,
∆vde is a 6x1 vector containing the differences between the desired and actual values for the six
linear and angular velocities of the end-effector, ∆xde is a 6x1 vector containing the differences
between the desired and actual values for the six Cartesian DOFs, Γ(q, q̇) is a 6x6 matrix that
includes the centrifugal and Coriolis effects, η(q) is a 6x1 vector containing the gravitational
effects, hc is a 6x1 vector containing all forces and torques represented in the end-effector task
space and he are the six external forces and torques acting on the end-effector, as measured by
a wrist-mounted F/T sensor, KM , KP , and KD are 6x6 matrices with controller gains.

In this researchKM andKD are calculated from theKP , in order to always achieve critical
damping. This is done by setting KM to the identity matrix, and KD according to

KD =
√
JM(q)JT ·

√
KP +

√
KP ·

√
JM(q)JT [10], (2.3)

where J represents the end-effector Jacobian, and M(q) is the joint-space mass matrix.
This formula is the more complex version of the scalar critical damping formulation d = 2

√
km,

from second order mass-damper systems. With these parameters set, only two parameters
remain to be learned to fully define the behaviour of the controller; the reference trajectories,
and the stiffness parameters KP .

2.2 Policy representation
To be able to generalize a learned task beyond the training setting, a policy must be learned.

A policy is a function that prescribes an action, or a probability distribution over multiple
actions, based on the current state of the system. There are multiple ways to represent such
a policy. For a robotic setting, a continuous state-action space is needed [11]. This means
that both the state, and the actions are continuous, rather than discrete. The robotic state
action space is also quite large, so a tabular method cannot be used. This leaves two major
approaches for policy representation; Function Parameterization, and Movement Primitives.
The state-of-the-art for both shall be discussed shortly in this section.

5

2.2.1 Function Parameterization
In function parameterization, a policy function is represented as a combination of a set

of features and a set of weights. These features live in the state-space, and give of a set of
activation values based on the current state. These activation values are then processed, along
with the weights, to obtain the outcome of the function for the current states. These weights
can be incremented and decremented to change the behaviour of the function, and can thus
be used to learn a different policy. Many forms of function parameterization exist, the most
well-known being tilings [11], Radial Basis Function (RBF) [12] and Neural Networks (NN)
[13].

The main advantage of these kinds of methods is that they can represent policies in large
state spaces with a relatively small sets of parameters. The main downside is that these kinds
of representations are not specifically designed to represent trajectories. This means that, for
example, it does not guarantee convergence to a goal, or posses scaling properties.

2.2.2 Movement primitives
Movement Primitives aim to represent action policies in a parameterized way, while guar-

anteeing some dynamical and scaling properties, as well as convergence to the goal point.
Movement Primitives can be state or time-dependent, and they may work with or without a
Markov Decision Process (MDP). Movement primitives can be seen as the ‘building blocks’
of complex motions. They aim to parameterize a policy that executes a single motion, which
either has a goal state, or is a constant periodic movement. These Movement Primitives can
be learned individually, and can later be combined, or ‘composed’, into more complex move-
ment schemes. This makes Movement Primitives suitable for learning all kinds of tasks, from
the smallest low level movements, to complete motion plans. Some of the more prominent
Movement Primitive approaches are; Dynamic Movement Primitives (DMP) [14], Probabilistic
Movement Primitives (ProMP) [15],Task Parameterized Gaussian Mixture Model (TP-GMM)
[16], and Mixture of Attractors (MOA) [17]. From these, the DMP framework was chosen for
this thesis, since the idea is to make a representation-independent algorithm, and DMPs have
the most community support.

Dynamic Movement Primitives

The idea behind the Dynamic Movement Primitives (DMP) framework, from [14], [18] and [19],
is to augment a simple dynamic system with a nonlinear forcing function. This simple system
is a point attractor for episodic tasks, or a limit cycle for rhythmic tasks. The key advantages
of this approach are that the nonlinear function can model many different complex behaviours,
while the point attractor guarantees the convergence to the goal point, as the time parameter
increases. The nonlinear function is mostly implemented by using function approximation with
Radial Basis Function (RBF), although other methods are possible. The parameters of the
RBF approximation can be fitted to a single trajectory, using Locally Weighted Regression
(LWR).
The basic equations of the DMP framework are

τ ż = αz(βz(g − y)− z) + f

τ ẏ = z,
(2.4)

where τ is a time parameter, y is the position of the DOF that the trajectory is modelled for, z
is a scaled version of the velocity, αz and βz are constants related to the damping behaviour of
the point attractor, and f is the non-linear ‘forcing function’ that allows the modulation of the
trajectory. The system is ‘critically dampened’, meaning that there are no oscillations around

6

the goal point and no unnecessary dampening, if βz = αz

4
[19].

Another important aspect of the DMP framework is that it does not hold an explicit dependence
on the time, it instead depends on a ‘phase parameter’. This phase parameter can be modified
to, for instance, slow or stop execution of the system. This modification can also be done
automatically, to make the system continue execution after outside perturbations, making it
more robust. This phase parameter can also be used to synchronize multiple DMPs, which
can coordinate different DOFs, control modalities, or completely different robotic agents. An
example of combined DMPs being applied to a high-DOF system can be found in [20].
The advantages of the DMP framework are that it can represent complex trajectories, in a
way that is time and scale invariant, and that the methods to fit and improve the fit of DMPs
are well established. DMPs also require relatively little data to make an initial fit. This can
already be done using only a single trajectory demonstration. Another advantage of DMPs is
that a lot of extensions to the framework exist that make it suitable for specific purposes, such
as [21], which incorporates obstacle avoidance in the framework.
Since this representation is not the main focus of the algorithm, the choice was mostly made
on the facts that a DMP can be fitted to a single trajectory and that it is supported by a large
community. Multiple reliable DMP libraries already exist within the community, for multiple
different programming languages.

2.3 Interactive Imitation Learning
The goal of Interactive Imitation Learning (IIL) is to be able to learn from human feedback,

with the human as teacher in the learning loop. This feedback may be applied in any way, but
is mostly administered as either a bounded numerical value, or a binary flag.

These kinds of feedback signals do not always require an expert in performing the task at
hand to be beneficial to the training of the agent. This is the case, since this kind of training is
very intuitive for the trainer and the processes are mostly robust against limited wrong feedback
[22].

The training of these kinds of agents is often not only interactive, but also ‘incremental’.
This means that the trainer can safely and clearly determine the performance of the robot and
base the feedback on the current performance. This also means that ‘wrong’ feedback in the
past can mostly be compensated by administering ‘correct’ feedback, making it robust against
incorrectly administered feedback.These effects make these kinds of feedback relatively cheap
to collect.

With IIL the end-user of a robotic product should be able to teach it new tasks, when
desired, making robotic products more widely applicable. A brief overview of the field of Hu-
man Centered Reinforcement Learning (HCRL), which is a subdivision of Interactive Imitation
Learning, can be found in [23].

One of the key design decisions of IIL is the kind of feedback that the system expects, since
different kinds of feedback require different approaches for handling them. The most widely
used kinds of feedback are evaluative feedback and corrective feedback. Evaluative feedback is
mostly a continuous numerical signal. Evaluative feedback is seen as a direct measure of the
desirability of visiting a certain state-action pair. As such it can directly replace the reward
function in MDP-based learning, as is demonstrated in TAMER [24]. If the reward function is
replaced by evaluative feedback, the agent should maximize direct undiscounted reward, since
the long-term consequences are supposedly already incorporated in the feedback.

Corrective feedback, on the other hand, tells the agent which action it should have taken,
and thus applying a correction, instead of evaluating the current performance. Corrective
feedback is mostly incorporated in the parameter update rule of a parameterized policy, which

7

pushes the agent into the direction of the optimal policy, rather than labeling each state with
the optimal value itself. In this thesis the choice was made to use corrective feedback, since it
seems to be the most intuitive to give in the intended pHRI setting. In the intended setting,
this kind of feedback shall be applied by the teacher, by grabbing the robot and moving it along
a better trajectory.

2.3.1 Methods
In the literature a couple algorithms were found that use IIL. These methods can be split

up in three different categories, that are relevant to this thesis. Firstly, general IIL methods,
these methods are not specifically designed to work with robotics, but can learn many different
tasks in many different settings. Secondly, methods that perform Interactive Imitation Learning
through physical interaction. These methods are a bit closer to the goal of this thesis, in the fact
that they employ physical interaction to learn from. Finally, methods that utilize Interactive
Imitation Learning for Force Control. These methods are specifically created to learn force
control policies for robotic interaction. These three categories shall now be discussed shortly.

General Methods

In Table 2.2 a summary of the general methods found in the literature study, with some of their
most important features and differences, is presented. The current state of the art in Interactive

TAMER [24]
COrrective Advise
Communicated
by Humans [25]

COnvergent
Actor-Critic

by Humans [26]
SABL [27] Policy Shaping [28] DAgger [29]

Feedback style Evaluative Corrective Evaluative Evaluative Corrective Corrective

Feedback type Numeric Numeric Numeric Binary Binary Actions

Deep Learning
Compatible Yes Yes Yes No No Yes

Table 2.2: Summary of the IIL methods.
Imitation Learning (IIL) consists mostly of general algorithms, that can learn a policy based
on corrections on this policy, which most often represents a reference trajectory. This policy,
however, does not often include different kinds of information, such as both reference positions
and stiffnesses. These kinds of algorithms do not appear to be suitable for learning these
different kinds of information from corrections on only one of them. To achieve this, a new
method has to be developed, that is designed to have this as its core feature.

It could be useful to compare such a novel designed algorithm to one of these algorithms,
to prove that learning the controller stiffnesses increases the performance. The algorithm most
suited for this seems to be COACH, since it uses the same feedback style. This algorithm
would, however, have to be adapted a little bit, to fit with the general setting of this research.

Interactive Imitation Learning through physical interaction

Besides these general frameworks, there are quite a lot of methods that specialize in trajectory
or objective function learning through physical Human Robot Interaction (pHRI). Examples of
such methods include: [30], [31], [32], [33], [34], [35] and [36]. These methods are able to update,
or learn, trajectory policies, or objective functions, based on physically applied corrections. The
main difference between these methods, and the goal of this thesis is that these methods do not
learn stiffness policies from only positional information from the proprioception sensors. In [30]
the stiffnesses are learned partly from tactile information, from a separate tactile sensor, [33]
and [36] use an Impedance controller with a set stiffness, while learning only the trajectories, [34]

8

and [32] do not use force control at all, and [35] and [31] uses information from a force/torque
sensor on the robot to infer the stiffnesses. This means that none of these methods directly
solve the proposed problem. While some of them solve a part of the problem, none of them
even seem to learn stiffness from positional data.

Interactive Imitation Learning for Force Control

In this section the current methods that extend IIL to force control tasks are discussed. While
a couple of methods were found that use Impedance control, or learn trajectories from force-
based interactions, only one method was found that learns controller parameters for a force
control scheme interactively.

In [30] the stiffness of an Impedance controlled robot arm is adapted, based on pHRI. This
is done in two different modes, ‘wiggling’ the robot around its current position decreases the
stiffness proportional to the amplitude of the wiggling. Increasing the pressure of the teachers
grip on the robot arm increases the stiffness. This increase is measured by pressure sensors
inside the robot arm. These choices were made, since these signals seem to be close to the
signals that humans use to train other humans in stiffness-dependent tasks.

One of the main advantages of this method is that the robot reacts to the teacher input
online, so the teacher can immediately experience the new stiffness. One major downside of
this method is that it only adapts stiffness, and does not learn any trajectories, meaning that
the teaching is very limited. Another downside is that the ‘learned’ gains only depend on the
current interaction signal, meaning that this method cannot learn incrementally, since it does
not use any memories of previous interactions.

2.4 Conclusion
In the current literature there are no methods that interactively learn all information needed

for a force control scheme, from only positional corrections. There are methods in IL and
IIL that learn either stiffnesses or positions, or both. These methods, however, never learn
all of this information from physically applied corrections, measured only by the robots own
proprioception sensors.

To create such a system, it would be best to combine Impedance Control, with DMPs
and a novel learning algorithm, although the system should not be too dependant on the
policy representation. Ideally, the representation could be changed afterwards, to fit the needs
of a specific implementation. The choice for Impedance control is made, as this focuses on
interaction safety, and can be fully defined by only a trajectory, and a stiffness trajectory. The
choice for DMPs is made, since these have the best community support out of all the movement
primitive approaches.

9

3 | Position And Stiffness Learning
This thesis presents a method for interactively learning variable Impedance control from

only positional information. The approach presented in this thesis creates a logic system based
on intention estimation. The method consists of a few key elements that shall be outlined in
this chapter.

The general goal in creating this approach was to create an algorithm that learns variable
Impedance control, from interactive corrections that are applied only in the positional domain.
This task can be split up in multiple sub-tasks. A successful algorithm for this task needs
to be able to represent an internal policy, extract corrections from user input, and use these
corrections to update the internal policy. In this chapter the basic approach to these three
sub-problems shall be discussed.

3.1 Policy representation
A policy representation for Variable Impedance Control needs to be able to represent both

a positional policy, and an accompanying stiffness policy. For the positional policy, there are
many solutions in the literature, while for the stiffness policy, the approaches are scarce.

In this thesis the choice was made to represent both the stiffnesses and the positions as
six different policies, one for each of the 6 Cartesian DOFs, making it twelve one-dimensional
policies total. Creating a complete representation is not the aim of this thesis, as it is aiming
to present a set of update rules that should be compatible with most representations.

A good policy representation does not only output a single trajectory, but should also be able
to generalize this trajectory to multiple different situations. A popular representation that can
handle these problems is DMP, as discussed in the literature study in Section 2.2.2. In this thesis
the six positional policies shall be represented as six separate DMPs, which are synchronized
through the phase parameter. One of the features of DMPs is a guaranteed convergence to a
predefined goal state, as the phase parameter goes to zero. To allow corrections in the later
half of the trajectory, and to allow flexibility in the final position of the trajectory, the shared
phase parameter of these DMPs is adapted to stay above 0.4, which negates this convergence
guarantee.

The six stiffnesses policies shall be represented as a weights vector, which corresponds to the
RBF features from the DMPs. A set of 50 basis functions was used for these representations.
The advantage of this approach is that only a single set of basis functions is required. The
downside is that the scaling properties of this representation are less clearly defined than the
properties of DMPs. This is, however, not a point of investigation for this thesis, since it does
not focus on the representation.

The update rules, presented in the next part, shall directly update the weights of the DMPs,
as well as the weights for the stiffnesses, based on their features. A short study was done to
validate this way of updating the trajectories, this study shows that directly increasing the
weights of a DMP system gives a similar update to the represented trajectory. A summary of
this study can be found in Appendix A. It would also be possible, if this method of updating
is undesirable, to update the trajectories themselves, and re-fit the DMPs to the updated
trajectory. This solution is recommended when, for instance, there is no direct access to the
DMP weights, which could occur when using libraries or other external code.

10

3.2 Correction extraction

Figure 3.1: Figure that illustrates the difference between the reference trajectory ξref , the executed trajectory
ξnc, and the corrected trajectory ξcorr.

The desired system should update the policy based on interactive corrections provided by
a human expert. To be able to do this the corrections have to be extracted. This is, however,
not as simple as it seems. Due to the inherent compliance that is present in Impedance control
there could be a significant difference between the reference trajectory, and the trajectory
that is executed, even when no corrections are applied, mostly due to ever-present modelling
imperfections. To solve this problem, the trajectory is first executed without corrections, after
which the trajectory is executed with human corrections. A visual representation of this way of
extracting corrections can be found in Figure 3.1. This problem could also be somewhat resolved
by looking at interaction forces, instead of positions, but this thesis focuses on learning from
position-only data, to make its applicability as widespread as possible.

In this image ξref is the reference trajectory, ξnc is the first trajectory execution, without
corrections, and ξcorr is the trajectory execution to which corrections are applied.

If the corrections are extracted this way, the assumption is made that all differences in the
measured trajectory executions are due to human corrections. To validate this assumption,
the repeatability of the trajectory execution with the Impedance controller had to be tested.
Some tests that validate this repeatability, as well as the entire correction-extraction system
are shown in Appendix B. In this appendix is concluded that, even though the controller is
deterministic, there is some randomness in the simulation environment. That being said, it also
concludes that the environment is deterministic enough to assume that all trajectory differences
are the result of corrections. This appendix also finds that applying corrections to a single DOF
through impulse-forces also affects some other DOFs. This could cause issues in extracting the
intention of impulse-force corrections. Appendix B further shows that this issue is non-existent,
when a PD-controller is used for the oracle, instead of feed forward impulse forces.

3.3 General algorithm structure
The way of extracting corrections is a limiting factor in the way the general algorithm can be

set up. It makes the learning episodic and offline in nature, since a ξnc is non-trivial to define for
a continuous task, and a pre-recorded ξnc would become invalid in an online learning scenario.
A pseudo-code for the general structure of the proposed offline episodic learning algorithm can
be found in Algorithm 1.

In this algorithm wp are the weights for the nonlinear forcing function of the DMP system,
wk are the weights for the stiffness representation, ξref is the reference trajectory, which is
obtained from a rollout from the DMP system, ξnc is a recording of an execution of the current

11

Algorithm 1: General Algorithm Pseudo-code
Initialize DMPs with initial demonstration → wp ; // Section 2.2.2
Initialize stiffnesses with uniform low value → wk ; // Section 3.1
while Behaviour not converged/satisfactory do

ξref ← Reference trajectory for current policy, rollout from DMP system
ξnc ← Record execution of current policy
ξcorr ← Record execution with interactive corrections ; // Section 3.2
for every timestep t do

Ea,t = ξcorr,t − ξnc,t
Er,t = ξcorr,t − ξref,t
Compute ∆K and ∆P according to the rules of the selected algorithm (PASTIL or
HA-PASTIL), based on Ea,t and Er,t ; // Sections 3.5 and 3.6

∆wK = ∆KφK(t)
∆wP = ∆PφP (t)
wk+=∆wK

wp+=∆wP

end
end

policy, ξcorr is a recording of a performed correction, and Ea,t and Er,t are error parameters,
that will be used in the update rules. ∆K and ∆P are intended trajectory updates that shall be
the result of these rules. ∆wK and ∆wP are weight updates for weight-based representations,
of which φK(t) and φP (t) are the corresponding features.

This algorithm follows the general structure of the described way of extracting the correc-
tions. It performs two system executions per iteration, one without corrections, and one where
the human teacher is allowed to apply corrections. From the two collected trajectories, along
with the reference trajectory, some error parameters and corrections are extracted, which are
then fed to the desired algorithm (PASTIL or HA-PASTIL, see Sections 3.5 and 3.6). The
desired algorithm then returns two update vectors, one for the positional trajectory, and one
for the stiffness trajectory. These update vectors are then translated into weight updates for
the respective representations, which are then applied.

This form of weight updates stems from a general gradient descent approach. If the final
representation, r(t,w), is a linear combination of the weights and the features, as w ·φ(t), then
the derivative of this representation, with respect to the weights is

∇r(t,w) = φ(t)[11]. (3.1)

The algorithm described in this pseudo-code is executed separately for all 6-Cartesian DOFs.
This execution is synchronized between the DOFs using the DMP time parameter. A block
diagram that further illustrates this algorithm can be found in Figure 3.2. This figure illustrates
how all the parts work together to form a complete learning algorithm. In this way it also
outlines the general loop structure.

3.4 Segmentation of the correction space
Now that a policy representation has been established, and the corrections can be extracted,

it is time to look at a way of updating the policy based on the corrections. This is where the
main contribution of this work truly begins.

To be able to learn from these corrections, an intention-estimation scheme was designed.
This scheme tries to learn the stiffnesses by making an estimation of the intention behind the

12

Figure 3.2: Block diagram of the general algorithm, where the RBF system represents the stiffnesses, and the
DMP system represents the trajectories.

applied correction.
To estimate these intentions, the choice was made to segment the correction space, based

on distance from he previous execution and the reference trajectory. “Ideal Behaviours" for any
of the segments of the correction space were thought out, which inspired update rules. The
segmentation is shown in Figure 3.3.

Figure 3.3: Segmentation of the correction space

Figure 3.4: Demonstration of the segmentation of the
correction space.

In this image ξ represents the DOF for which the correction is applied, ξref is the reference
for the DOF, and ξnc is the execution without correction. The ξ parameters in this image
correspond to the parameters in Figure 3.1. An even more visual representation is supplied in
Figure 3.4. In this image examples are given for ξref , ξnc and ξcorr, to which the segmentation
is applied.

If, as seen in the left part of Figure 3.4, the corrected execution is moved from ξnc in the
direction of ξref , but further away, it is deemed to be ‘Beyond’. If it is between ξref and ξnc,
as seen in the middle section of Figure 3.4, it is deemed ‘Towards’. If the correction is moved
away from ξref , as seen in the right section of Figure 3.4, it is deemed ‘Away’.

For a more mathematical definition of the segments, the segmentation parameter λseg,t is
introduced, according to

λseg,t =
ξcorr,t − ξref,i
ξnc,t − ξref,t

. (3.2)

13

As suggested by the sub-scripted t, this parameter is calculated at every timestep. λseg,t can
be used to determine the segment of a correction, at a certain timestep, by using

λseg,t < 0 → Beyond
0 < λseg,t < 1 → Towards
λseg,t > 1 → Away

(3.3)

These segments are introduced in an attempt to capture the difference in intention of dif-
ferent correction modes. Take, for example, a robot that has to lift an object with unknown
mass to a constant height. In this situation, the ξnc will probably be lower than the ξref . If
a human expert would want to reinforce the reference, a correction would be made ‘Towards’
ξref , while if the expert would want to alter the reference, a correction would be made either
above and ‘Beyond’ the reference, or downwards, ‘Away’ from the reference.

From this example is seen that, in this case, a difference in intention for correcting stiffnesses
or positions, leads to a different correction space segment selected by the human expert.

3.5 PASTIL
If the aforementioned segmentation is used to estimate the intention of these corrections,

and each of these segments is linked to a different set of update rules, a learning algorithm
can be obtained. These update rules can be based on an estimation of the intention of a
correction, as stated in the previous example. For instance, in the ‘Towards’ region is assumed
that the current reference is still the desired reference, therefore the stiffness probably needs
to be increased to get to the reference. This effectively leads to the first, and most simple,
version of the proposed algorithm: Position And Stiffness Teaching with Interactive Learning
(PASTIL). This algorithm increases the stiffness when a ‘Towards’ correction is made, increases
the stiffness, and changes the reference trajectory, when a ‘Beyond’ correction is made, and
changes only the reference position when an ‘Away’ correction is made. These updates are
based on the magnitude of the different error parameters, as well as the feature activations
of the internal RBF representation. The rules for this algorithm are shown in Table 3.1. In
the ‘Expected effects’ column of this table, the estimated intention of the correction is shown.
For instance, ‘K:↑’ means that the system estimates that the user wants to see the stiffness
increased, and ‘P:-’ means that the system estimates that the current reference position should
not be moved.

Segment Expected
Effects Update Rule Explanation

Beyond K: ↑P:↑ ∆K = α · |Ea,t|
∆P = β · Er,t

The correction is beyond the reference, so the current reference needs to be adjusted,
while the stiffness also needs some adjustment,

to allow the execution of a trajectory above the reference

Towards K: ↑ P:- ∆K = α · |Ea,t|
∆P = 0

The reference seems correct, while the stiffnesses need to be adjusted.

Away K: - P:↓ ∆K = 0
∆P = β · Ea,t

The reference seems to be incorrect, while nothing can be said about the stiffnesses

Table 3.1: Update rules for PASTIL

In this table K is the stiffness, P is position, ∆K is the intended update for the stiffnesses,
∆P is the intended update for the trajectories, Er,t is the difference between the correction
trajectory and the reference trajectory, Ea,t is the difference between the correction trajectory
and the executed trajectory, α is the learning rate for the stiffnesses, and β is the learning rate
for the positions. Both learning rates are hyperparameters that can be set.

14

Figure 3.5: Visual representation of the rules for PASTIL

In Figure 3.5 a visual representation of the rules is shown. This representation gives more
insight in how the rules connect to each other. From Table 3.1 and Figure 3.5 is seen that
there is no rule that reduces the stiffness. The reason for that is that it is often non-trivial
to estimate the intention based on a current correction only. One might argue to reduce the
stiffness when corrections are very far away from the reference, or to reduce the overall stiffness
by a set percentage each round to balance the occurring increases. These are, however, both
ineffective solutions. Very far corrections are quite counter-intuitive, and might be hard to
accomplish when the stiffness is already large. Reducing the overall stiffness might also have
unwanted side-effects, as the same corrections shall have to be made over and over to keep the
stiffness at the desired level.

3.6 HA-PASTIL
PASTIL does not account for temporal variations in the corrections. It does not know, or

care, about any previous corrections. Information from previous corrections can be very im-
portant in estimating the intention of certain parts of a correction. For instance, if a correction
is inconsistent with the previous correction, this could be a sign that this part of the trajectory
is not important for the task, or that the teacher changed the objective of the task. In both
cases it is undesirable to increase the stiffness in the current update round.

This is where History Aware PASTIL (HA-PASTIL) comes in. In this algorithm, segmenta-
tion information is stored about the previous correction for the every timestep. This information
can then be used to further estimate the intention of the corrections, by checking if they are
consistent with previous corrections. The rules for this algorithm are shown in Table 3.2.

Additionally to the symbols in Table 3.1, a γ is introduced. γ is a secondary learning
parameter, which is set to 0.5 · β. The secondary learning rate is included as a way to make a
compromise between the current trajectory and the correction trajectory. This is used in cases
where the current correction is very inconsistent with the previous correction. In this case, it is
likely that the current correction does not represent an ‘optimal’ path, but merely a suggestion
of where the robot should go.

15

Previous
Correction

Current
Correction

Expected
Behaviour Update Rule Explanation

Beyond Beyond K: ↑/-; P:↑ ∆K = α· max(0,(|offset|-|Er,t|))
∆P = β· Er,t

The reference seems to be quite incorrect, and needs to be adjusted,
whilst nothing can be said about the stiffness

Towards Beyond K: ↑/↓; P:↑ ∆K = α· (offset-|Er,t|)
∆P = β· Er,t

If the Correction is quite close to the reference,
the stiffness should be increased,
while, if the correction is far away from the reference,
it should be decreased.

Away Beyond K: ↓; P:↑ ∆K = α· max(-3,(2 · |offset|-|Er,t|))
∆P = γ · Er,t

The Correction seems to be inconsistent with the previous correction,
so the stiffness should be decreased,
and the position should be set somewhere in the middle

None Beyond K: ↑/↓; P:↑ ∆K = α· (offset-|Er,t|)
∆P = γ · Er,t

If the Correction is quite close to the reference,
the stiffness should be increased,
while, if the correction is far away from the reference,
it should be decreased.
The position probably should not be changed too much,
since it was apparently at the right position during the previous execution.

Uninitialized Beyond K: -; P:↑ ∆K = α· max(0,offset-|Er,t|)
∆P = β· Er,t

The initial demonstration seems to be incorrect at this point,
so the position should be changed,
whilst nothing can be said about the stiffness

Beyond Towards K: ↑; P: - ∆K = α · |Ea,t|
∆P = 0

While in the previous correction the reference might have been wrong,
in the current correction the reference is being reinforced,
so the stiffness should be increased,
while the reference should not be moved

Towards Towards K: ↑; P: - ∆K = α · |Ea,t|
∆P = 0

Both corrections are reinforcing the reference,
so the stiffness should be increased,
while the reference should not be changed

Away Towards K: ↑; P: - ∆K = α · |Ea,t|
∆P = 0

While in the previous correction the reference might have been wrong,
in the current correction the reference is being reinforced,
so the stiffness should be increased
while the reference should not be moved

None Towards K: ↑; P: - ∆K = α · |Ea,t|
∆P = 0

Although the behavior was deemed satisfactory during the previous correction,
an increase in stiffness seems to be required

Uninitialized Towards K: ↑; P: - ∆K = α · |Ea,t|
∆P = 0

The initial stiffness might not have been satisfactory,
so it should be increased

Beyond Away K: ↓; P:↓ ∆K = −α · |Ea,t|
∆P = γ · Ea,t

The Correction seems to be inconsistent with the previous correction,
so the stiffness should be decreased,
and the position should be set somewhere in the middle

Towards Away K: ↓; P:↓ ∆K = −α· |Ea,t|
∆P = γ · Ea,t

The Correction seems to be inconsistent with the previous correction,
so the stiffness should be decreased,
and the position should be set somewhere in the middle

Away Away K: -; P:↓ ∆K = 0
∆P = β · Ea,t

The reference seems to be quite incorrect, and needs to be adjusted,
whilst nothing can be said about the stiffness

None Away K: ↓; P:↑ ∆K = −α · |Ea,t|
∆P = γ · Ea,t

The Correction seems to be inconsistent with the previous correction,
so the stiffness should be decreased,
and the position should be set somewhere in the middle

Uninitialized Away K: -; P:↓ ∆K = 0
∆P = β· Ea,t

The initial reference should be adapted,
while nothing can be said about the stiffness.

Any None K: -; P: - ∆K = 0
∆P = 0

If no correction is performed,
nothing should be changed, no matter the history

Table 3.2: Table with the logic behind the suggested learning algorithm, where offset = |Er,t−
Ea,t|, α, β and γ are learning rates.

16

The ‘Away’ -‘Beyond’ rule also contains a few additional hyperparameters, to prevent the
stiffness loss from getting too large. More research is needed to see their effect, and to validate
their necessity. These rules have been designed to increase stiffness if the system is repeatedly
corrected to the same location, and to decrease the stiffness if the corrections are inconsistent
and do not converge to an optimal policy. A more intuitive visual representation of some of
the rules can be found in Figures 3.6 and 3.7. These dependency plots have also been made
for the other correction cases, to further visualise the consistency, and the effects, of the rules.
These figures, along with their explanations, can be found in Appendix D.

Figure 3.6: Visual representation of the rules for when
the previous correction was ‘Away’

Figure 3.7: Visual representation of the rules for when
the previous correction was ‘Beyond’

In these figures the location of the correction is placed on the x-axis, while the magnitude of
different dependent variables is placed on the y-axis. These figures show how the rules connect
with each other, and their transitions.

In Figure 3.6 the three rules, for the case that the previous correction was ‘Away’, are
represented. These rules make an increase in stiffness when the new correction is ‘Towards’,
since this means that the previous correction adjusted the reference to the correct position, and
the reference has to be tracked more accurately.

If the correction is ‘Beyond’, the position is increased with half the normal learning rate, to
allow finetuning. This is the basic overall strategy for conflicting positional corrections. When
‘Beyond’, the stiffness is only increased, if the new correction is very close to the reference, and
decreased if the correction is further away from the reference. This rule also has a saturation
value, to avoid losing too much stiffness. If the reference has to be adjusted a lot, it is prob-
ably not the intention to drop the stiffness to a very low value. This rule still contains some
hyperparameters, that could be removed in a future version of the algorithm.

Figure 3.7 represents the three rules that control the policy updates in the case that the
previous correction was ‘Beyond’. This plot shows that the stiffness is increased if the new
correction is closer to the reference than the executed trajectory, not updated if the correction is
further ‘Beyond’, and decreased if the new correction is further away. The position is increased
if the correction is ‘Beyond’, and decreased with half the learning rate, if the correction is
‘Away’.

17

4 | Experimental Setup
In this chapter the experimental setup for this thesis is described. This setup has been

designed to validate the performance of the proposed algorithms. Due to the COVID-crisis, and
the novel nature of the algorithm, all experiments have been performed in a virtual environment,
with virtual oracles. To test whether the algorithm does indeed correctly learn trajectories
and stiffnesses, three tasks have been designed. Each task highlights specific features of the
algorithm. These three tasks are outlined in this chapter, along with the baseline algorithms
to which the algorithm’s performance will be compared. The development of this method can
be considered a success if the learning algorithm obtains a lower cost in the selected tasks than
any state-of-the-art interactive position-only, or position and stiffness, algorithm. Tests shall
also be done to see whether the learned stiffness is an improvement over a constant stiffness.

To experimentally test the performance of PASTIL and HA-PASTIL three experiments were
designed: The Push task, the Lift task, and the Policy Reuse Push task. In the Push task a
box has to be pushed off of a table as fast as possible, while it lands as close to the table as
possible. In the Lift task, a box has to be lifted to a constant height, while the mass changes,
and in the Policy Reuse Push task, the flexibility of the algorithms is tested by changing the
objective of the task halfway through the learning process. In this chapter the task setup, the
cost function, the oracle setup and the initial trajectory for these tasks shall be described in
detail.

4.1 Environment
The validation of the algorithm shall be done in a virtual Gazebo environment. In this

environment a Franka-Emika Panda robot is controlled using a Cartesian Impedance con-
troller. Since a simulated environment with an Impedance-controlled robot was not freely
available, a custom Impedance controller has been implemented and designed for this thesis.
This Impedance controller supports stiffness values ranging from 10 to 1500. Below 10 the
tracking is not suitable to perform tasks, while above 1500 the controller starts to introduce a
lot of oscillations. In Appendix C a study has been done that shows that with these stiffness
bounds the robot can always be corrected by an average human, in terms of maximal exerted
force.

This controller does not perform path planning, since this was not trivial to implement.
Creating such an environment also seemed out of the scope of the current research. The learning
algorithm and the controller were implemented as ROS nodes, to make an eventual transfer to
a real robot arm possible. The choice for gazebo was made because of the way it integrates
with ROS and the community support. Also, there already was an existing ROS package
that supplied some of the required functionality. More information about the simulators and
environments that were considered can be found in Appendix E. More information about the
chosen environment can be found in Appendix F.

All corrections for all experiments were made by manually tuned oracles. Quite some
research has gone into designing a suitable interface to apply the corrections manually, or
through a user study, but none such interface was found, and the idea was abandoned. The
results of this study are presented in Appendix G.

18

4.2 Baseline Algorithms
Two algorithms have been used as baseline algorithms. Since there is no directly compa-

rable method in the literature, some methods had to be adapted, in order to fit the learning
task. The first baseline algorithm, representing the group of position-only-algorithms is an in-
cremental learning algorithm, loosely based on the COACH algorithm from [25]. According to
my literature study, COACH is one of the state-of-the-art algorithms for interactively learning
position-only tasks. This algorithm incrementally learns positions, with an adaptive learning
rate, based on the coherence of the corrections. This method had to be adapted to fit the
situation of this thesis, since it is online in nature, while the teaching setting in this thesis is
offline in nature. The representation is set to be for the position is the same as for PASTIL
and HA-PASTIL, only the update rules were adjusted in the general algorithm.

The second baseline algorithm, representing the Imitation Learning (IL) algorithms, is the
“mean-var" algorithm. This is an algorithm that collects all the demonstrations and corrections
in one large database, and treats the corrections as additional demonstrations. It then bases
the position profile off of the mean of the dataset, while the stiffnesses are based off of the
variance of the dataset. This approach was created for the express purpose of this thesis, but
is inspired by approaches like DAgger [29], and the approaches from [37] and [38].

4.3 Push Task
The first of the three validation tasks is the “Push task". In this task the robot has to push

a box off the table as fast as possible, while the box has to land as close to the table as possible.
When the box crosses a set line on the table, it increases its mass to a random value.

These objectives were chosen, as they are inherently contradictory, and need to be balanced
for a good task score. To throw the box off of the table as fast as possible, it would be easy to
learn a very stiff controller, with a reference very far from the edge of the table. This would,
however, fling the box very far away, which is deemed as an undesirable outcome. If, on the
other hand, the main goal is to only make the box land as close to the table as possible, it
would be easy to move it very slowly.

The mass change was added to test how the learned policies react to stochastic perturba-
tions, these kinds of perturbations are expected to occur quite often in non-standardized tasks,
and need to be dealt with gracefully.

This task tests the ability of the system to be taught a policy that remains accurate in the
face of stochastic perturbations. The policy also cannot have either saturated maximum, or
saturated minimum stiffness, since this would result in poor task performance. This means
that it tests whether the system is able to learn a middle-ground stiffness.

In the real world, this task would relate to most accurate manipulation tasks, with stochastic
perturbations. The mass-change is implemented to emulate a friction change on the sliding
surface, as if the box were to slide from one surface, onto another, more rough, surface.

The setup used for this task can be seen in Figure 4.1. A schematic drawing, along with
some measurements is shown in Figure 4.2.

This section shall give further details about the task setup. First the environment will be
described, after which the mass change shall be explained. Then the cost function and the ora-
cle shall be outlined. Finally the initial demonstration, and the expectations shall be discussed.

4.3.1 World Description
In the gazebo world, the Panda robot, indicated by a grey circle in the schematic of Figure

4.2, is placed at the origin, facing in the positive X direction. All measurements in the gazebo

19

Figure 4.1: Environment setup for the Push task. The
box has to be pushed off of the table, towards the
right, while the mass changes.

Figure 4.2: Schematic of the environment setup for
the Push task. The box changes mass, when the cen-
ter passes the red line.

world are set to be in meters. For this task, the robot is set to an initial position, where the
end effector is on the negative Y side of the green box. The box has to be pushed towards the
positive Y, until it reaches the end of the table and falls off. The box is 0.2 m by 0.2 m by 0.2
m, and is initially spawned with its center at (0.7,-0.1,0.5) m. The edge of the table is located
at Y = 0.25, so the box has to be moved at least 35 cm before it can fall off.

4.3.2 Mass Change
The box changes its mass during this task. The mass starts as 1 kg, but when the center of

the box crosses the red line, as seen in Figure 4.2, the mass gets set to a random value taken
from a uniform distribution between 2 kg and 3 kg. This change demonstrates the ability
of an algorithm to deal with stochastic disturbances, such as the random weight of the box,
while also maintaining positional accuracy. The mass change was implemented to emulate a
friction change, as in sliding a box over different materials. This emulation was necessary, since
implementing an actual friction change in the gazebo environment did not seem feasible.

4.3.3 Cost Function
The cost function for this task consists of three parts, one part that represents the distance

that the box landed from the table, one part that represents the time that the box took to get
to the ground, and one part that represents the average learned stiffness. To obtain a good
score, speed has to be balanced with how far the box is flung, while keeping the stiffnesses as
low as possible. This cost function is defined by

W0cy +W1ct +W2cs
W0 +W1 +W2

, (4.1)

where the W parameters are weights, cy is the cost for the distance from the table, ct is the
cost for the time, and cs is the score for the stiffness.

The weights vector [W0,W1,W2], in the case of this task, is set to [2,1,1]. This setting was
chosen to put more emphasis on the final Y-location. This part of the task performance was
deemed the most important, since it represents the final state of the environment. The robot
could, for instance, be placed in an industrial environment, where the box would have to fall
onto a conveyor belt close to the table. It would be beneficial if it could push more boxes per
hour, but if these boxes would miss the conveyor, the entire system is worthless.

20

The Y-location cost, cy is determined by measuring the distance from the center of the box
to the edge of the table, in meters. This distance is then normalized by dividing it by a ‘worst
case performance’ of 1 m. This obtains a cost that ranges roughly from 0 to 1.

The time cost ct is determined by measuring the time in seconds from the start of the
episode, to the point where the center of the box falls below 0.15 m. For the time, a maximum
and a minimum expected value have been determined, called tmax and tmin. These are then
used to normalize the cost, according to

t− tmin
tmax − tmin

. (4.2)

In the case of this task tmin was set to empirically determined value of 2, while tmax was set to
5.2, the length of a full episode.

The final part of the score, cs, is determined by taking the average of the full stiffness
trajectories, in the X, Y and Z directions. These are all averaged into a single score, which is
then normalized, by dividing it by the maximum allowed stiffness of 1500.

4.3.4 Oracle
For this task an oracle was set up that continually corrects the robot towards the same

point, which is slightly above the edge of the table. The oracle performs these corrections by
exerting external forces on the robot end-effector, in a similar way that the end user would do
this. The oracle uses a PD controller to determine the magnitude of the corrections. Using the
study on interaction forces done in Appendix C, the oracle has been tuned to exert maximum
forces similar to what a human would be able to apply.

This oracle is expected to increase the performance on this task, since the PD-controller
used is over-dampened. This means that it slowly approaches the desired point, instead of
going there as fast as possible and flinging the box far away.

Figure 4.3: Initial Y trajectory for Push task.

4.3.5 Initial Trajectory and Expectations
The initial supplied reference trajectory is shown in Figure 4.3. Although this trajectory

looks like it is a straight line, it actually is part of a 1
8

th circle around the origin. The other
DOFs are configured to be part of the same circle, with the Z at an almost constant value.
This trajectory was chosen, to avoid running into joint limits, while still making a movement.

The final learned trajectory of the algorithm is expected to reach a higher Y-value a bit
faster, while the other axes should not change much. For this task the analysis shall be mostly
focused on the Y-dimension, and, unless some very strange unexpected effects occur, the other
dimensions will not be discussed.

21

4.4 Lift Task
The second task is the “Lift Task". In this task, the robot has to lift a box to a pre-set height,

and move it in a 1
8

th circle on this height, while the mass changes. This task is implemented as
a stiffness focused task. This task tests the ability of the system to learn stiffnesses, without
affecting the positional trajectory.

4.4.1 World Description
The setup for this task is shown in Figure 4.4, while the initial trajectory for the Z-axis is

shown in Figure 4.5.

Figure 4.4: Environment setup for the Lift task. The
box needs to be lifted to this constant height, while
the mass changes. Figure 4.5: Initial trajectory for the Lift task.

From Figure 4.4 is seen that the world consists of a Panda robot in the origin, with a box
attached to the end-effector link. In this world the robot shall execute a trajectory in the XY-
plane, while maintaining a constant height in the Z-direction, at Z=0.45 m. This trajectory is
not blocked, or influenced by other objects in the world.

4.4.2 Mass Change
In this task, the box also changes its mass at a set time, to a random value. The box

starts out with a mass of 1 kg, and after 1.6 seconds the weight gets set to a value taken from
a uniform distribution, between 2 kg and 3 kg. This mass change represents, for instance, a
waiter holding a tray to which an object is added. The goal for this task is to keep the box as
close to the set height as possible.

4.4.3 Cost Function
The cost function of this task consists is a weighted average of three parts, and is composed

according to
W0cMSE +W1cmaxz +W2cs

W0 +W1 +W2

. (4.3)

In this task all weights in [W0,W1,W2] are set to 1, since all objectives are directly related. Part
one, cMSE is adapted from the MSE of the executed Z-trajectory with the desired “optimal"
Z-trajectory. This MSE cost is normalized by dividing by the empirically obtained value of 0.1,
to obtain cMSE.

The second part cmaxz is adapted from the maximal deviation from the path in Z-direction.
cmaxz is determined by dividing this deviation by 0.45, the maximum possible downward de-

22

viation. These two parts represent the task performance, on a global (entire trajectory), and
local (maximum deviation) level.

The last part is an average of the X-, Y- and Z-stiffness of the trajectory, a lower stiffness
is desired throughout the trajectory for interaction safety. These three scores are normalized
and combined in a weighted average. To minimise this cost, the stiffness has to be balanced
with with task performance. For the interactive learning approaches, the assumption is made
that the teacher does this implicitly.

Note that this cost function, with the exception of the stiffness part, only considers the
Z-dimension. This choice was made, since the effects that this task is meant to demonstrate
are expected to be the strongest on the Z-axis.

4.4.4 Oracle
For this task an oracle was set up as well. This oracle only corrects in the Z-dimension. It

constantly corrects the robot to a height of 0.45 m, which is the height that was chosen for the
cost function. The oracle uses a PD-controller to determine the magnitude of the corrections.
The corrections are applied to the end effector as external forces. Corrections from this oracle
are expected to increase to the task performance, because they constantly push the robot back
to the correct height, without overshoot into the beyond region.

4.4.5 Initial trajectory and Expectations
The initial trajectory is shown in Figure 4.5. Note that the initial trajectory increases very

slightly, instead of being constant. This has to do with the fact that the pydmps library, that
was used for the DMP representation of the trajectory, does not handle straight trajectories
well. It is also unable to handle a trajectory for which the end point is exactly the same as the
start point.

In this task the learning of the correct stiffness should be the most important, since the robot
has to deal with a stochastic perturbation, while keeping the box steady. The expectation is that
the algorithm does not change the positional trajectory, while it learns an increased stiffness
after the mass change, to account for the higher mass of the box.

4.5 Policy Reuse Push Task
The last task, the ‘Policy Reuse Push task’, is derived from the ‘Push task’. In the environ-

ment of this task, as seen in Figure 4.6, two boxes are present. The initial goal of this task is
the same as with the Push task, pushing the rightmost box off of the table, towards the right.
After a few iterations where the Oracle reinforces this task, the oracle decides that it wants to
push the leftmost box of the table towards the left instead. A successful completion of learning
this task would show the flexibility of this incremental learning algorithm. It would prove that
an end-user can change his/her mind about the goal of the task, without having to re-start the
algorithm. This property is useful for two main reasons.

Firstly, it makes the algorithm robust against erroneous feedback. The effect of a wrong
or mistaken correction will fade away over multiple corrections, instead of influencing the be-
haviour forever after.

Secondly, it can be used for transfer learning. If the robot has previously learned a certain
task, and the new task is similar in some ways, the previously learned task can be used as a
starting point, to decrease the amount of episodes needed in teaching.

23

4.5.1 World Description
The world of this task consists of the Panda robot, which is located at (0,0), with a 1 m

wide table, placed 0.4 m away from it, in the positive x-direction. The edges of this table are
located at 0.5 m, and -0.5 m in the Y-direction. On this table are two boxes, that will have to
be pushed of during this task. These boxes are located 0.15 m from the origin in the positive
and negative Y-direction. The size of the boxes is 0.2 by 0.2 by 0.2 m. A detailed overview,
with some of the most important measurements can be found in Figure 4.7.

Figure 4.6: Environment setup for the Pol-
icy Reuse Push task. This task is similar
to the Push task, but at a certain point
the oracle changes its mind about which
box has to be pushed off the table

Figure 4.7: Overview of the environment
of the Policy Reuse Push task, with some
of the most important measurements.

4.5.2 Cost Function
The cost functions of these boxes is the same as with the box for the Push task, as shown

in Section 4.3.3, consisting of a part, ct that measures the time, and a part that measures the
distance from the table, cy, and a part for the stiffness cs. The main difference is, that, this
time around, there are two separate cost functions, instead of just one. One cost for the initial
task, and another for the final task. For the initial task, the cost for the Y-location of the box
is calculated with respect to the right side of the table, as seen in Figure 4.6, while for the final
task the cost is calculated with respect to the side of the table that is on the left-hand side
in the image. A penalty is also added for cases where the box did not leave the table. This
penalty is constant in its magnitude of 0.5.

4.5.3 Oracle
The oracle for this task differs quite a lot from the oracles in the other tasks. For this task,

an oracle was chosen that holds a ‘desired trajectory" and corrects the robot to this trajectory,
using a PD-controller. This means that, in contrast to the other oracles, this oracle does not
always correct to the same point, but has a reference that changes over time. This kind of oracle
was chosen due to the increased complexity of the task. After a certain number of corrections,
5 in this case, the oracle changes the desired trajectory, by mirroring it around the Y-axis. This
means that the starting point is still the same, since the Panda robot starts in Y = 0 m.

The initial oracle reference trajectory is the same as the initial demonstrations provided to
the algorithm, but sped up 1.5 times. This trajectory was chosen, since it seems to capture
the essence of the task quite well, and the speedup was added to slightly decrease the time
component of the cost, with respect to the initial trajectory.

Due to this speedup, the oracle finishes the reference trajectory before the end of the episode.
This is solved by setting the final point of the reference trajectory as a PD-controlled point
attractor, when the oracle finishes the trajectory.

Images of the initial and final oracle reference trajectories are shown in Figures 4.8 and 4.9.

24

Figure 4.8: Initial oracle trajectory for the Policy
Reuse Push task

Figure 4.9: Final oracle trajectory for the Policy
Reuse Push task

4.5.4 Initial trajectory and Expectations
Figure 4.10 shows the initial Y trajectory provided to the algorithms for the Policy Reuse

Push task. This trajectory, just like in the previous tasks, is a part of a circle around the origin.
The expectation for this task is, that the algorithm learns a trajectory that goes towards

the negative Y, about as fast as the final oracle trajectory. For the stiffness, the expectation is
that the stiffness is higher when the robot is in contact with the box, while the stiffness remains
low at points where there is no contact.

Figure 4.10: Initial trajectory supplied to the learning
algorithms

25

5 | Results
In this chapter the results of the previously discussed test shall be shown and discussed.

First up, the results of the Push task are presented. Secondly, the results for the Lift task are
shown. Then the results of the Policy Reuse Push task are treated. Finally, some variations of
the algorithms are tested on the Policy Reuse Push task, to further investigate the properties
and the behaviour of the algorithm. All experiments were done using ROS melodic and Gazebo
9, on an Ubuntu 18.04 laptop with an Intel i7 7700HQ processor, an NVIDIA Quadro M1200
GPU, and 16 GB RAM.

5.1 Push task
The goal of the Push task is to learn to push a box off of a table, as fast as possible, while

the box lands as close to the table as possible. To see how well the algorithm performed, the
learned trajectory and stiffness shall be discussed, after which the resulting task-cost, and a
comparison against baseline algorithms shall be shown. This test has been repeated 20 times,
for statistical stability.

5.1.1 Analysis
In Figure 5.1 the learned reference is shown, this reference is an average of 20 learning

episodes, and plotted with its variance. If this reference is compared to the initial reference, as
seen in Figure 4.3, can be seen that the Y increases slightly faster, and the robot thus pushes
the box off faster. It also shows that the planned Y-velocity between Y 0.1 and Y 0.3, the
location near the edge of the table, is a lot lower than for the initial demonstration, which
might be beneficial in making the box land closer to the table.

The learned stiffness profile is seen in Figure 5.2, this stiffness profile is also an average of
20 learning episodes, and plotted with its variance. From this figure is seen that the stiffness
increases after the initial contact is made, peaks at around the time that the mass changes as
expected, and drops after that. The time where the mass changes is shown in Figures 5.1 and
5.2 as the vertical red line. This behaviour is in line with the expected behaviour from Section
4.3.5. In this section the expectation was set that the algorithm would learn to push the box
off of the table a little bit faster. This plot also shows that the maximum stiffness (∼112) is
still quite low, since the stiffnesses range from 0 to 1500.

In Figure 5.3 a breakdown is shown of the costs for the Push task, these costs are the
average costs of 20 runs, plotted with their variance as errorbars. This figure shows that both
the cost for the time and the cost for the Y-location of the box go down, and seem to converge
after 4-5 correction rounds. This indicates that the algorithm successfully learns to improve
performance on both these sub-goals of the task, without the stiffness rising dramatically.

26

Figure 5.1: Final executed Y-trajectory, and learned
reference, for the Push task. The vertical lines repre-
sent events that happened during the execution, where
green is the initiation of contact, and red is the change
of the mass. The green horizontal line represents the
initial location of the box, the red one represents the
location where the box changes weight.

Figure 5.2: Learned Y-stiffness for the Push task. The
vertical lines represent events that happened during the
execution, where green is the initiation of contact, and
red is the change of the mass.

Figure 5.3: Breakdown of the cost for HA-PASTIL on
the Push task. The green part represents the time it
takes for the box to be pushed off the table, while the
yellow part represents the distance of the final position
of the box to the table. The blue part represents the
cost for the stiffness.

Figure 5.4: Comparison of the evolution of the algo-
rithm performance for the Push task, over multiple
correction episodes, plotted with the variance.

27

5.1.2 Comparison
While the results from the previous paragraph validate the behaviour of the algorithm to

some extent, a comparison with the baseline algorithms discussed in Section 4.2 is required
to further prove this algorithm’s capabilities. A graph containing the costs for all algorithms,
for different numbers of training episodes can be found in Figure 5.4, as an average of 20
runs. The errorbars in this plot represent the variance. This figure shows that the costs of the
positional, PASTIL, and HA-PASTIL all go down, and converge within the five trials. From
these algorithms HA-PASTIL obtains the lowest cost. The high cost for the mean-var algorithm
is mostly due to the high stiffness that it learns, if stiffness would not be accounted for in the
task performance, the performance would be in line with the other algorithms. A breakdown
of all the costs of all the algorithms can be found in Appendix H.

Algorithm Final
Cost

Standard
Deviation

Percentage with
respect to

HA-PASTIL

P-Value with
respect to

HA-PASTIL
HA-PASTIL 0.22846 3.987E-2 100% -
PASTIL 0.25422 0.1142 111.3% 0.3471
Mean-Var 0.73229 6.149E-2 320.5% < 0.0001
Position Only 0.29539 8.563E-2 129.3% 0.0030

Table 5.1: Results for the Push task, with variance

The final costs of all the algorithms, along with their variances, are displayed in Table
5.1. This table also shows the obtained scores as a percentage of the score obtained by HA-
PASTIL, to be used for comparison purposes. From this table is seen that the P-value of the
difference between PASTIL and HA-PASTIL is 0.3471. This number represents the chance to
obtain these test results, while the actual expected results are the same. This means that the
difference between HA-PASTIL and PASTIL is not statistically significant for this test, but
mostly due to the high variance of PASTIL.

When the same calculation is done for HA-PASTIL, and the position-only algorithm, a
P-value of 0.0030 is obtained, meaning that, with a 95% confidence bound, the difference is
significant.

5.2 Lift Task
This section shall present the results for the Lift task, analyse the learned trajectories, and

compare the behaviour to the baseline algorithms. The goal of the Lift task is to validate the
performance of the stiffness learning system, since it is expected that the algorithm will not
learn anything for the positional part. This test was repeated 20 times, for statistical stability.

5.2.1 Analysis
The Z-trajectory, as learned by HA-PASTIL, is plotted in Figure 5.5, along with the final

executed trajectory. This graph shows that the learned trajectory is the same as the initial
trajectory, as presented in Section 4.4.5. This is to be expected, since the corrections will always
be towards the reference, thus only increasing the stiffness. The final executed trajectory shows
a slight dip in the position, after the mass change. The deviance from the planned path,
however, never exceeds 8 cm. The noise on the trajectory can be attributed to the controller,
which starts to introduce some oscillations at higher stiffness levels. The stiffnesses show a
significant increase from the base values. They are also higher after the weight change, than

28

before the weight change, as was expected. This is an indication that the learned stiffness
profile might be a better profile than a uniform stiffness distribution. Note that this learned
stiffness is a lot higher than the one learned for the Push task.

Figure 5.5: Learned Z-trajectory, and final executed
trajectory, for the Lift task. The vertical line represents
the change of mass.

Figure 5.6: Learned Z-stiffness for the Lift task. The
vertical line represents the change of mass.

To further analyse the learned behaviour of HA-PASTIL, a breakdown of the costs obtained
during the learning of the tasks is shown in Figure 5.7. This figure shows that both the MSE
cost, and the maximum deviation cost reduce in a smooth asymptotic way, while the stiffness
increases slightly. This seems to indicate that the algorithm is able to capture all aspects of
this task rather well.

Figure 5.7: Breakdown of the costs for HA-PASTIL on
the Lift task.

Figure 5.8: Comparison of the evolution of the algo-
rithm performance for the Lift task, over multiple cor-
rection episodes, plotted with the variance.

29

5.2.2 Comparison

Algorithm Final
Cost

Standard
Deviation

Percentage with
respect to

HA-PASTIL

P-Value with
respect to

HA-PASTIL
HA-PASTIL 0.046393 2.635E-3 100.00% -
PASTIL 0.050087 3.554E-3 107.96% 0.7246
Mean-Var 0.130532 3.464E-2 281.36% < 0.0001
Position Only 0.120460 9.271E-3 259.65% < 0.0001

Table 5.2: Results for the Lift task, with variance

A comparison of the cost obtained by HA-PASTIL, with the costs obtained by the baseline
algorithms is shown in Figure 5.8, plotted alog with the variance. This figure shows that, while
the performance is quite similar, HA-PASTIL is able to outperform PASTIL by a small margin.
The mean-var algorithm does not perform well on this task, mainly due to the high stiffness
values it learns. The positional algorithm does not seem to learn anything that affects the
performance. A further analysis of the behaviour of the baseline algorithms can be found in
Appendix H.

A numerical comparison between the final costs of the algorithms is shown in Table 5.2. If a
statistical analysis is done, for the difference between the results of HA-PASTIL and PASTIL,
a P-value of 0.7246 is obtained. This means that the difference is not statistically significant,
if a 95% confidence bound is desired. The P-value for the difference between the results of
HA-PASTIL and the position only algorithm is lower than 0.0001, meaning that the difference
between the results of these algorithms are significant.

5.3 Policy Reuse Push Task
In this section the results for the Policy Reuse Push task are shown, and shortly discussed.

First an analysis of the learned trajectory and stiffness is presented, after which a breakdown
of the scoring is shown. Finally the performance is tested against the baseline algorithms. Due
to computational complexity, this test has only been repeated 10 times.

5.3.1 Analysis
Figure 5.9 shows the trajectory that was learned by HA-PASTIL, along with the final

executed trajectory. The trajectory seen in this graph differs a lot from the initial trajectory,
as presented in Section 4.5.4. The final executed trajectory corresponds quite well to the oracle
trajectory presented in Section 4.5.3. This trajectory moves to the edge of the table quite fast,
after which it remains stationary at that position. A plot of the learned stiffnesses is shown in
Figure 5.10. In this figure the initiation of contact with the box is shown with a green vertical
line, while the loss of the contact is shown with a red vertical line. From this plot is seen that
the stiffness has its highest point, just after the initiation of the contact, and goes down after
the contact is lost. This is roughly in line with the expectations from Section 4.5.4. There is,
however, still a smaller peak in the stiffness, after the contact is lost. This peak might be here
due to the non-sparse corrections of the oracle.

A breakdown of the costs assigned to the performance of HA-PASTIL can be found in
Figures 5.11 and 5.12. In these images, the black vertical line represents the change in correction
objective. From these images is seen that HA-PASTIL manages to capture the change in
objective quite quickly. This is illustrated by the fact that after round 8, three rounds after the
objective was changed, the penalty is no longer present in Figure 5.12.

30

Figure 5.9: Learned reference, and final executed, Y-
trajectory for the Policy Reuse Push task. The hori-
zontal lines represent object in the environment, green
is the initial location of the box, and red is the end of
the table. The vertical lines represent the changes in
contact, as measured during the final execution, where
green is initiated contact and red is lost contact.

Figure 5.10: Learned Y-stiffness for the Policy Reuse
Push task. The vertical lines represent the changes in
contact, as measured during the final execution, where
green is initiated contact and red is lost contact.

Figure 5.11: Breakdown of the costs of HA-PASTIL for
the initial task of the Policy Reuse Push task

Figure 5.12: Breakdown of the costs of HA-PASTIL for
the final task of the Policy Reuse Push task

31

5.3.2 Comparison
A comparison of HA-PASTIL against the baseline algorithms is presented in Figures 5.13

and 5.14. Figure 5.13 shows the costs for the initial task, while Figure 5.14 shows the costs
for the final task. From these images is seen that both PASTIL and HA-PASTIL are able
to reliably capture the change of the task, within a few correction rounds. From these two
algorithms HA-PASTIL outperforms PASTIL in the last few corrections. While the position
only-algorithm tries to capture the change in objective, it does not seem to be able to do so
reliably, while the mean-var algorithm does not seem to capture it at all. Breakdowns of these
cost graphs, and a further explanation of the effects can be found in Appendix H.

Figure 5.13: Evolution of the costs for all the algo-
rithms for the initial task in the Policy Reuse Push
task.

Figure 5.14: Evolution of the costs for all the algo-
rithms for the final in the Policy Reuse Push task.

Algorithm Final
Cost

Standard
Deviation

Percentage with
respect to

HA-PASTIL

P-Value with
respect to

HA-PASTIL
HA-PASTIL 0.151220 4.959E-2 100.00% -
PASTIL 0.298018 5.062E-2 197.08% < 0.0001
Mean-Var 1.346117 4.515E-2 890.17% < 0.0001
Position Only 0.419553 0.4598 277.44% 0.0788

Table 5.3: Results for the final task of the Policy Reuse Push task, with variance

A numerical representation of the results of the Policy reuse Push task is presented in Table
5.3. The P-value for the difference between the results of HA-PASTIL and PASTIL is lower
than 0.0001, meaning that the difference is significant.

32

5.3.3 Tests on variations of the algorithm
To further analyse the performance of HA-PASTIL, a short ablation study was done on

the Policy Reuse Push task. This task was chosen for the ablation study, since it is the most
complicated task in this thesis, and is expected to show the most significant results.

There are two parts to this ablation study, the first part shall initialize HA-PASTIL with a
rather high stiffness, to see if it is able to recover from that. The second part shall investigate
the performance of the algorithm, while the stiffness learning is fully disabled, to prove that the
learned stiffnesses have a positive effect on the behaviour of the system. This part shall also
test the execution of the final learned trajectory with different constant stiffnesses, to further
analyse the added value of the learned stiffness profile. These tests can be considered successful,
if the learned stiffness is proven to be more beneficial to the task performance than a constant
stiffness.

Initialization with high stiffness

To test the robustness of the system and to see how well it recovers from wrongly learned
policies, a study was done. In this study HA-PASTIL had to learn the Policy Reuse Push
task, while being initialized with a relatively high stiffness. For this stiffness a value of 1000
was chosen, instead of 50. This means that the algorithm had to unlearn both the initial
trajectory in the Y-dimension and the high-initialized stiffness profiles, to test whether lowering
the stiffness is as easy as increasing the stiffness. The learned trajectory can be found in Figure
5.15, while the learned stiffnesses can be found in Figure 5.16. The goal of this test is to see
if the algorithm is able to recover from high stiffness levels. This test can be considered to be
successful, if the stiffness is reduced to an acceptable level, while the other parts of the task-cost
are comparable to those of the low-stiffness-initialisation scenario.

Figure 5.15: Learned trajectory, for the Policy Reuse
Push task, with high initial stiffness.

4
Figure 5.16: Learned stiffness, for the Policy Reuse
Push task, with high initial stiffness.

When these trajectories and stiffnesses are compared to the trajectories and stiffnesses
learned by HA-PASTIL with the recommended low-stiffness initialization, as seen in Figures
5.9 and 5.10, a rather large difference can be observed. Although the algorithm did manage to
lower the stiffnesses in the second half of the task, the stiffness remains at the initial value of
1000 during the first part of the task. This is most likely caused by the very small corrections
applied at this time. If the corrections are smaller that a pre-set threshold, the algorithm
assumes that the policy is correct, and it does not apply any changes. The small corrections

33

at this time are caused by a combination of the high stiffness, the small difference between the
two tasks, and the force based oracle. Due to the small difference between the initial trajectory
and the desired trajectory, the oracle will try to correct the robot with a small force, which is
quite ineffective against the stiff robot.

Also note that the trajectory still starts off by moving in the positive Y direction, this might
be caused by the high stiffness in this part, combined with the relatively small correction.

For the evaluation of the performance of the high stiffness initialisation, a breakdown of the
final task costs can be found in Figure 5.17, while a comparison of the final costs with the low
stiffness initialised HA-PASTIL can be found in Figure 5.18.

Figure 5.17: Final task cost breakdown, for the Policy
Reuse Push task, with high initial stiffness.

Figure 5.18: Final task cost comparison, for the Police
Reuse Push task, with high initial stiffness.

From these two figures can be seen that the high -stiffness initialised algorithm learns slower,
and also retains some of the penalty, until almost the last trial, meaning that it needs all 15 trials
to learn to consistently push the box off of the table. Due to the higher stiffnesses, the total
cost is also consistently higher, even at the end. If the stiffness-cost is removed from the total
cost, however, the final performance is comparable between the scenarios. This means that, in
a less extreme case, the algorithm is not fully robust against wrongly applied corrections, both
for the stiffnesses, and for the positions.

Some of these effects might also be explained by the way the corrections are applied. An
application on a real robot, with an actual human applying the corrections may be needed to
further investigate whether this is an issue with the algorithm, or an issue with the oracle.

Effects of learned stiffness

In order to review the significance of the learned stiffnesses, a few tests were done. Firstly a test
was done with HA-PASTIL, where the learning of the stiffnesses was disabled, so the stiffnesses
were fixed to the initial value of 100. None of the other task parameters were changed for this
test. This test can be considered successful if the task performance with stiffness learning is
better than the task performance without stiffness learning.

The resulting trajectories can be found in Figure 5.19. In this plot the green vertical line
represents the time at which contact is made with the box, the green horizontal line shows the
initial location of the box, and the red horizontal line shows the location of the edge of the table.
Note that the learned reference trajectory is quite similar in shape as the one learned, while
the stiffness learning was active, which is seen in Figure 5.9. The final executed trajectory,

34

however, differs quite a bit, due to the effect of a lower stiffness. Also not the absence of the
vertical red line. This line is not shown in the figure, because there is not a reliable point at
which the contact is lost. The final executed trajectory does not make it to the end of the
table.

Figure 5.19: Learned trajectory, for the Policy Reuse
Push task, without stiffness learning.

Figure 5.20: Cost Breakdown, for the Policy Reuse
Push task, without stiffness learning.

Figure 5.21: Cost Comparison, for the Policy Reuse
Push task, without stiffness learning. Figure 5.22: Executed trajectory for different stiffnesses.

To evaluate the effect of the stiffness on the cost, the costs for the final task are presented,
the scores for the initial task are not shown for this experiment, since these are expected to
show smaller differences. A breakdown of these task costs is shown in Figure 5.20, while a
comparison with unmodified HA-PASTIL is found in Figure 5.21, in these figures the vertical
black line represents the change in teacher policy. From the breakdown figure is seen, from
the presence of a penalty in the last trial, that without stiffness learning, the algorithm is not
able to learn to consistently push the box off of the table, within the given 15 trials. From the
comparison graph is seen that, without stiffness learning, and thus with a lower overall stiffness,
the algorithm learns faster. This is in line with the effect observed in the trial with high initial
stiffness, where an algorithm with a higher stiffness learned slower. This effect is, in part, due

35

to the force based corrections from the oracle. The conclusion of this trial is that the algorithm
performs better with stiffness learning, than without, as seen from the task cost graphs.

To analyse the effects of the learned stiffnesses even further, another trial was conducted. In
this trial the final learned trajectory from regular HA-PASTIL was taken, and combined with
multiple different constant stiffness trajectories. This is different from the previous trial, since
in this trial, the positional profile was learned with the stiffness learning enabled, to enable the
effects of jointly learning the stiffness and the position. These newly obtained policies were
then executed, and the executed trajectories were observed, along with the task costs. For the
new stiffness values, a high value, and a low value were chosen. The high value was set to 1500,
while the low value was set to 50. The resulting executed trajectories can be found in Figure
5.22.

Comparing the trajectories in this figure, the loss of contact with the box seems to lie at
around the 3 second mark for all trajectories. This is roughly when the Y location goes beyond
Y = 0.45 m, and the mass center of the box goes over the edge of the table. Until this point,
the trajectory with the learned stiffnesses is closest to the high-stiffness trajectory, while the
stiffnesses are closer to the low stiffness. This means that the learned stiffnesses can push
the box off of the table slightly faster than the low stiffnesses, but not by a large margin. A
comparison, and breakdown of the costs can be found in Table 5.4.

Low Learned High
Cost 0.15436 ± 1.48E-13 0.15418 ± 1.49E-13 0.28189 ± 5.7E-9
Y-Cost 0.02826 ± 1.48E-13 0.02861 ± 1.49E-13 0.02818 ± 5.7E-9
T-Cost 0.12410 ± 0.0 0.11071 ± 0.0 0.10671 ± 0.0
Penalty 0.0 ± 0.0 0.0 ± 0.0 0.01665 ± 0.0
Stiffness Cost 0.002 ± 0.0 0.0148703 ± 0.0 0.147 ± 0.0

Table 5.4: Breakdown of the costs of the different stiffnesses, average of 10 trials

From this table is seen that, the leaned stiffness obtains the lowest cost, albeit by a small
margin. The main advantage over the low stiffness is in the time part of the cost function, while
the main advantage over the high stiffness is in the stiffness part. Due to the extremely small
variances, the P-value of the difference between the low and learned stiffness is below 0.0001,
meaning that the difference is statistically significant. A sidenote here is that, even though it is
taken into account in the P-value, the sample size for this test was 10, which is rather low. This
might mean that the assumption of the test data being normally distributed does not hold.

5.4 Conclusion
In this chapter the results of the previously discussed tests have been shown. The conclusions

for the Push and Lift Task are that the trajectories and stiffnesses learned by HA-PASTIL seem
to make sense for the task, and that HA-PASTIL outperforms both baseline algorithms, and
PASTIL. While the difference between HA-PASTIL ad the baseine algorithms is significant,
the difference between HA-PASTIL and PASTIL is not significant for these two tasks.

For the Policy Reuse Change Task the conclusion is that both PASTIL and HA-PASTIL
are able to successfully unlearn previously reinforced trajectories. In this task there was a
statistically significant improvement in the performance of HA-PASTIL over PASTIL.

Some studies on the Policy Reuse Change Task have also been done with some variants of
HA-PASTIL. From these test can be concluded that the algorithm is not able to fully unlearn
stiffnesses that have been increased too far, which could be an area of further investigation.
These trials also conclude that the stiffness learning is beneficial to the task-performance, and
that the learned stiffness is an improvement over a static-low and a static-high stiffness.

36

6 | Discussion
In an attempt to aid the future of household robotics, a method has been developed specif-

ically for interactively learning Impedance control applications. The goal of this method is to
be able to learn simple force based tasks, through a limited number of correction episodes, from
a human supervisor, without explicit use of a force/torque sensor.

The method presented in this thesis has been tested against two baseline algorithms in three
different example tasks. Since no comparable algorithms can be found in the literature, these
baseline algorithms had to be created specifically for the purpose of this research. The results,
as presented in Chapter 5, indicate that HA-PASTIL is able to decrease the cost of all tasks,
and to obtain lower costs than the baseline algorithms, albeit that only the Policy Reuse Push
task showed a significant difference between PASTIL and HA-PASTIL. This difference is very
important, since this task demonstrates the ability to recover from wrongly learned policies,
and the intended end-users shall supposedly be suboptimal in the generation of corrections.
This alone, however, does not prove the effectiveness of the algorithm, since the effectiveness
of the baseline algorithms was never proven.

To further validate the performance HA-PASTIL a variation study was done, which proves
that HA-PASTIL is, to a certain extent, able to recover from wrongly learned policies. The
study also shows that the stiffnesses, as learned by HA-PASTIL, are more beneficial to task
performance, than a uniform stiffness.

These results combined together indicate that HA-PASTIL is able to successfully learn some
robotic interaction tasks interactively, while being robust against some wrong corrections. This
kind of learning has a lot of possible applications, where non-expert end users can easily, and
cheaply, program all kinds of robotics. This could, for instance, be used for a meal-preparation
robot, that has to perform several different impedance-based tasks.

6.1 Possible further research
While this work offers a beginning into a new way of interactive imitation learning, a lot

still has to be done to properly validate its findings, and to further improve the algorithm.
One such thing is to search for a solution for the problem found in the high-stiffness-

initialisation scenario. In this scenario, the algorithm was unable to fully recover from the
faulty initial policy. This might have to do with the way the corrections are applied, but it
definitely needs further investigation.

In this study, all experiments have been done in a gazebo simulation, where the simulation
setup, and the robot controllers, were less than ideal. It would be beneficial for the validation
of the algorithm to do some experiments on a real robot, to show that it also works in such a
setting. This would also make it possible to do a user study. All experimental data generated
in this work made use of oracles to mimic human corrections. This choice had to be made, due
to the limited simulation environment. A lot of virtual correction interfaces have been tried
and implemented, but they were deemed not intuitive enough to accurately apply corrections.
An overview of these interfaces can be found in Appendix G. While the data from the oracles
validates the performance of the algorithm to a certain extend, it currently is hard to differen-
tiate between effects caused by the oracle implementation, and effects caused by the algorithm.
A user study would negate some of these negative effects.

In this work, the algorithm was partly validated, by comparing the algorithm to non-
validated, self-compiled, baseline algorithms, since there did not seem to be any validated

37

alternatives in the literature. If the algorithm were to be tested in a real-robot setting, actual
human performance could be used as a validation baseline. It would be useful to see if the
algorithm is able to surpass human behaviour, or of it is not able to come close to it.

Also, the current way of extracting corrections is a limiting factor in the way the algorithm
can be set up. It makes the learning episodic and offline in nature, since a ξnc is non-trivial
to define for a continuous task, and a pre-recorded ξnc would become invalid if the policy is
updated online. In the future some research can be done to extend the algorithm to continuous,
or online, learning tasks.

Another point of attention for future research would be path planning. The current setup
sends the learned paths directly to the Cartesian Impedance controller, without checking if the
path is kinematically feasible. This can often cause problems in high-DOF robot applications.
For this thesis, the tasks were carefully chosen to not run into joint limits, or move into other
problematic areas. This greatly limits the applicability of the algorithm.

A further point of investigation could be the number of hyperparameters. The HA-PASTIL
algorithm currently has three “avoidable" hyperparameters. Both learning rates are probably
useful to retain, for tuning purposes. The slope and saturation hyperparameters from the
away-beyond rule, on the other hand, could probably be replaced for some automatically scaled
metric. It would also be a good idea to investigate the way that the current hyperparameters are
set. Do they need to be set per application, or can a setting be found that delivers satisfactory
performance for a multitude of different tasks?

Something that should also be investigated is the scale-ability and the generalization proper-
ties of the learned trajectories and the learned stiffnesses. The trajectories should be scale-able,
since they are able to use all the features of the DMP framework. The stiffnesses, on the other
hand, are represented by an RBF representation, that does not hold any scaling/generalization
properties. A study is needed to see of the stiffnesses should scale with the trajectory, and how
they should scale.

One last point of attention could be to investigate the resource efficiency, compared to some
other algorithms. While the algorithm might be relatively memory efficient, since it does not
store a dataset of part corrections, it might not be as computationally efficient as it could be.
Some further research could be done to see if it is necessary to improve the efficiency, and how
it could be done.

38

7 | Conclusion
Now that all the experiments have been done, and the results have been discussed, it is time

to revisit the research question, and draw a conclusion. The initial research question was “How
can a system be designed that interactively learns the stiffness gains of an Impedance controller,
along with the reference trajectory, from only position feedback?". Based on the experiments
in this thesis, the answer to this question is: “Such a system can be designed by combining
pHRI with intention estimation". In this thesis, such a system has been proposed, tested, and
validated.

The main contribution of this thesis is the introduction of a novel interactive imitation learn-
ing system, designed specifically for force control tasks. The proposed system uses intention
estimation to select a set of update rules, with which it updates both a positional trajectory,
and a controller stiffness trajectory.

This approach has been tested in three different classes of tasks. In the first task the
algorithm had to jointly learn a positional, and a stiffness trajectory, which had to work together
to complete the task.

In the second task, the algorithm had to learn a stiffness profile, while explicitly not changing
the reference. This task was introduced to show that the algorithm does not ‘overlearn’ in parts
of a trajectory where nothing needs to be learned.

In the third task, the algorithm had to transfer the policy of a learned task, to a different
task. This task was introduced to show the flexibility of the incremental nature of the algorithm.

The performance of the proposed algorithm was, for all tests, at least 30% better than the
baseline algorithms, in the task performance score. This shows that the algorithm is able to
capture these three types of tasks better than the baseline algorithms.

To further analyse the behaviour of the system an ablation study was done on the proposed
algorithm. This study shows, most importantly, that the stiffnesses the system learns are
beneficial to the task performance. This, together with the performance improvement over
the baseline, shows that the algorithm might allow robotic systems to be instructed by users,
instead of experts. This lets robotics be applied at lower cost and with less expertise needed
to program.

The ablation study also shows that the system is somewhat able to recover from a very
poorly initialized stiffness trajectory, albeit not fully. This is something that needs further
investigation in future research.

The discussion then shows some more points of improvement for the system, and some other
areas for future research. Among other things, it stresses the importance of a trial on a real
robot, with real human interaction.

This system is, all in all, still somewhat of a crude start, and a lot more work needs to be
done to make it useful in trivial applications, but it might someday contribute to a future of
household robotics.

39

References
[1] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on human–robot

collaboration in industrial settings: Safety, intuitive interfaces and applications. Mecha-
tronics, 55(June 2017):248–266, 2018.

[2] Bruno Siciliano and Khatib Oussama. Springer handbook of robotics. Number 06. Springer,
2016.

[3] Guanglong Du, Mingxuan Chen, Caibing Liu, Bo Zhang, and Ping Zhang. Human – Robot
Interaction. 65(12):9571–9581, 2018.

[4] Harish Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. Recent
Advances in Robot Learning from Demonstration. Annual Review of Control, Robotics,
and Autonomous Systems, 3(1):297–330, 2020.

[5] Luigi Villani. Encyclopedia of Systems and Control. Encyclopedia of Systems and Control,
(Whitney 1977):1–10, 2019.

[6] J Kenneth Salisbury. Active stiffness control of a manipulator in cartesian coordiates.
Proceedings of the IEEE Conference on Decision and Control, 1:95–100, 1980.

[7] S Chiaverini and L Sciavicco. Force/Postion control of manipulators in task space with
dominance in force. IFAC Proceedings Volumes, 21(16):137–143, 1986.

[8] Neville Hogan. Impedance control: An approach to manipulation. In Proceedings of the
American Control Conference, volume 1, pages 304–313. IEEE, 1984.

[9] M T Mason. Compliance and force control for computer controlled actuators. IEEE
Transactions on Systems, Man, and Cybernetics, 1(6):418–432, 1979.

[10] Alin Albu-Schäffer, Christian Ott, Udo Frese, and Gerd Hirzinger. Cartesian impedance
control of redundant robots: Recent results with the DLR-Light-Weight-Arms. Proceedings
- IEEE International Conference on Robotics and Automation, 3:3704–3709, 2003.

[11] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
Press, second edition, 2017.

[12] J. Park and I. W. Sandberg. Universal Approximation Using Radial-Basis-Function Net-
works. Neural Computation, 3(2):246–257, 1991.

[13] João P.S. Rosa, Daniel J.D. Guerra, Nuno C.G. Horta, Ricardo M.F. Martins, and
Nuno C.C. Lourenço. Overview of Artificial Neural Networks. 2008.

[14] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes for
learning motor primitives. Advances in Neural Information Processing Systems, 2003.

[15] Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic
movement primitives. Advances in Neural Information Processing Systems, pages 1–9,
2013.

[16] Sylvain Calinon. A tutorial on task-parameterized movement learning and retrieval. In-
telligent Service Robotics, 9(1):1–29, 2016.

[17] Simon Manschitz, Michael Gienger, Jens Kober, and Jan Peters. Mixture of Attractors: A
Novel Movement Primitive Representation for Learning Motor Skills from Demonstrations.
IEEE Robotics and Automation Letters, 3(2):926–933, 2018.

[18] Stefan Schaal. Dynamic Movement Primitives -A Framework for Motor Control in Humans
and Humanoid Robotics. Adaptive Motion of Animals and Machines, pages 261–280, 2006.

[19] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
Dynamical movement primitives: Learning attractor models for motor behaviors. Neural
Computation, 25(2):328–373, 2013.

[20] AJ Ijspeert, J Nakanishi, and S Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. Proceedings 2002 IEEE International Conference on Robotics
and Automation, 2:1398–1403, 2002.

[21] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Movement reproduc-
tion and obstacle avoidance with dynamic movement primitives and potential fields. 2008
8th IEEE-RAS International Conference on Humanoid Robots, pages 469–474, 2008.

[22] Knox W.B., Stone P., and Breazeal C. Training a Robot via Human Feedback: A Case
Study. In Herrmann G., Pearson M.J., Lenz A., Bremner P., Spiers A., and Leonards U.,
editors, Social Robotics, pages 460–470. Springer, 2013.

[23] Guangliang Li, Randy Gomez, Keisuke Nakamura, and Bo He. Human-Centered Reinforce-
ment Learning: A Survey. IEEE Transactions on Human-Machine Systems, 49(4):337–349,
2019.

[24] W. Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement:
The TAMER framework. K-CAP’09 - Proceedings of the 5th International Conference on
Knowledge Capture, pages 9–16, 2009.

[25] Carlos Celemin and Javier Ruiz-Del-Solar. Interactive learning of continuous actions from
corrective advice communicated by humans. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9513:16–27, 2015.

[26] James Macglashan, Mark K. Ho, Robert Loftin, Bei Bel Peng, Guan Wang, David L.
Roberts, Matthew E. Taylor, and Michael L. Littman. Interactive learning from policy-
dependent human feedback. 34th International Conference on Machine Learning, ICML
2017, 5:3557–3566, 2017.

[27] Robert Loftin, Bei Peng, James MacGlashan, Michael L. Littman, Matthew E. Taylor, Jeff
Huang, and David L. Roberts. Learning behaviors via human-delivered discrete feedback:
modeling implicit feedback strategies to speed up learning. Autonomous Agents and Multi-
Agent Systems, 30(1):30–59, 2016.

[28] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L. Isbell, and Andrea
Thomaz. Policy shaping: Integrating human feedback with Reinforcement Learning. Ad-
vances in Neural Information Processing Systems, 2013.

[29] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learn-
ing and structured prediction to no-regret online learning. Journal of Machine Learning
Research, 15:627–635, 2011.

[30] Klas Kronander and Aude Billard. Learning Compliant Manipulation through Kinesthetic
and Tactile Human-Robot Interaction. IEEE Transactions on Haptics, 7(3):367–380, 2014.

[31] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. Imitation learning of posi-
tional and force skills demonstrated via kinesthetic teaching and haptic input. Advanced
Robotics, 25(5):581–603, 2011.

[32] Andrej Gams, Tadej Petrič, Bojan Nemec, and Aleš Ude. Learning and adaptation of
periodic motion primitives based on force feedback and human coaching interaction. IEEE-
RAS International Conference on Humanoid Robots, 2015-Febru:166–171, 2015.

[33] Andrea Bajcsy, Marcia K. O’Malley, Anca D. Dragan, and Dylan P. Losey. Learning Robot
Objectives from Physical Human Interaction. (CoRL):1–10, 2017.

[34] Dylan P. Losey and Marcia K. O’Malley. Including uncertainty when learning from human
corrections. arXiv, (CoRL), 2018.

[35] Mattia Racca, Joni Pajarinen, Alberto Montebelli, and Ville Kyrki. Learning in-contact
control strategies from demonstration. IEEE International Conference on Intelligent
Robots and Systems, 2016-Novem(October):688–695, 2016.

[36] Andrea Bajcsy, Dylan P. Losey, Marcia K. O’Malley, and Anca D. Dragan. Learning
from Physical Human Corrections, One Feature at a Time. ACM/IEEE International
Conference on Human-Robot Interaction, pages 141–149, 2018.

[37] Sylvain Calinon, Irene Sardellitti, and Darwin G. Caldwell. Learning-based control strat-
egy for safe human-robot interaction exploiting task and robot redundancies. IEEE/RSJ
2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference
Proceedings, (May 2014):249–254, 2010.

[38] Alex X. Lee, Henry Lu, Abhishek Gupta, Sergey Levine, and Pieter Abbeel. Learning
force-based manipulation of deformable objects from multiple demonstrations. Proceedings
- IEEE International Conference on Robotics and Automation, 2015-June(June):177–184,
2015.

[39] K H E Kroemer. Horizontal Static Forces Exerted By Men Standing in Common Work-
ing Positions on Surfaces of Various T R Actions-Including Coefficients of Friction Be-
tween Various Floor and Shoe Materials. Technical report, AEROSPACE MEDICAL
RESEARCH LABORATORY, 1971.

[40] Coppelia Robotics. https://www.coppeliarobotics.com/.

[41] Open Source Robotics Foundation. https://www.openrobotics.org/.

[42] MathWorks. https://nl.mathworks.com/solutions/robotics.html.

[43] Carlo Pinciroli. ARGoS, https://www.argos-sim.info/authors.php.

[44] Carlo Pinciroli. https://carlo.pinciroli.net/.

[45] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics:
Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. Proceedings - IEEE International
Conference on Robotics and Automation, 2015-June(June):4397–4404, 2015.

[46] Serena Ivaldi, Vincent Padois, and Francesco Nori. Tools for dynamics simulation of robots:
a survey based on user feedback. Technical report, 2014.

[47] Jan Fras B and Kaspar Althoefer. Soft Pneumatic Prosthetic Hand Jan, volume 8069.
Springer, 2014.

Appendices

A | Analysis of DMP weight increments
To validate the way the positional trajectory is incremented, some small tests were done to

analyse the behaviour of direct increments in the DMP weights on the final rollout trajectory.
For this test different corrections were applied to two different trajectories, to see how the
corrections affect the trajectory. The first trajectory is a relatively simple one, while the second
trajectory is more complicated.

A.1 Simple Trajectory
To see what the effect is of directly updating the DMP weights, on the rollout trajectory, a

simple trajectory was chosen, for which a single weight update was done, in the same way that
it would be done in the final algorithm. The results of this experiment are shown in Figures A.1
and A.2. From these figures is seen that a simple weight update generates a similar reaction

Figure A.1: Trajectory vs. time for a DMP, to show
the difference that a weight update makes.

Figure A.2: DMP weights. This image shows the
weight update that was applied.

on this trajectory. This shows that this might be a good way to adjust the rollout trajectory
of a DMP system, though more experiments need to be done.

A.2 More realistic scenario
In the next scenario a trajectory was taken from one of the tasks, to see what the effect of

these kinds of corrections is on a more complicated trajectory. The results of this experiment
an be found in Figures A.3, A.4, and A.5.

From these figures, especially when looking at the difference plot in Figure A.5, is seen that
the final trajectory still behaves exactly as anticipated, and that it should be possible to build
a learning algorithm around this updating method.

Figure A.3: Trajectory vs. time for a DMP, to show
the difference that a weight update makes.

Figure A.4: DMP weights. This image shows the
weight update that was applied.

Figure A.5: Difference between the updated and the
initial trajectory.

B | Controller Validation
For this appendix some tests were done that validate some of the assumptions that the algo-

rithm makes about the controller. These tests look mainly into the assumption of repeatability,
and the effect that corrections have on the repeatability. This shall be done for the Cartesian
Impedance controller used in this research, to see if it is usable in the desired setting

B.1 Cartesian Controller
The tests done in this section are for the Cartesian impedance controller. This section tests

the repeatability of movements, and investigate the way corrections are extracted.

B.1.1 Repeatability
In the algorithm, the corrections are extracting by executing a policy on the robot twice,

once with corrections, and once without corrections, and subtracting the measured trajectories.
To be able to do this, the algorithm makes the assumption that multiple attempts to execute the
same policy lead to similar executed trajectories. To experimentally validate this assumption
the robot was commanded to execute the same trajectory twenty times in a row, without
corrections. The variance of these twenty trajectories, for all six Cartesian DOFs can be found
in Figure B.1.

Figure B.1: Variance for 20 repetition of the same trajectories, for all six Cartesian DOFs

from this figure is seen that the variances in the trajectory are multiple orders of magnitude
smaller than the trajectory, which has commended values of around 0.5. This gives us a rather
large signal to noise ratio for extracting the corrections, especially for the translational DOFs.
Note that the controller did not send a command for the rotational DOFs due to environment
limitations.

B.1.2 Corrections
To validate the way corrections are made and extracted, a simple trajectory was executed,

where a single correction was made in the X-axis. This correction consisted of an force of 500
N , applied on the end-effector, in the X-direction, during 0.05 seconds. The trajectory without
correction was then subtracted from the trajectory with correction, and the result was plotted
in Figure B.2.

Figure B.2: Extracted corrections for all six Cartesian DOFs.

From this figure is seen that applying corrections is not as straight forward as one would
expect, since a simple correction on the X-axis seems to have a lasting effect on all axes. This
means that making oracles for these kinds of problems is going to be quite problematic, but
that is not an issue specific this algorithm, since it assumes that the corrected trajectories are
generated by humans, instead of single impulse-forces.

B.2 Oracle
To further prove that this effect will not be a problem for the experiments done in this

thesis, a small validation study was done for the PD-controller oracle that is planned to be
used in these experiments. For this experiment, the controller was tasked with executing the
same trajectory, as in the previous experiments, but the oracle was instructed to consistently
correct towards the point [0.6;0;0.45]. For this test, the reference trajectory, the non-corrected
trajectory, and the corrected trajectory are shown in Figure B.3.

From this figure is seen that the corrected trajectories are all consistently closer to the
"target point" of [0.6;0;0.45], than the uncorrected trajectories are. This leads to the conclusions
that the previously discovered problem does not affect the PD-controlled oracle.

Figure B.3: Test of the oracle system, comparison of reference trajectory, and trajectories with and without
corrections.

C | Interaction Forces
To further study the effects of the stiffness on the robot behaviour, and to ensure the safety

of the system, a study was done into the magnitude of the interaction forces in the teaching
process.

The goal of this experiment is to obtain a maximum for the stiffness value, for which a
human can still apply corrections. The maximal forward force that a human can apply while
free standing, to an object at shoulder height, while standing on a floor with a friction coëfficient
of 0.6, is around 297 N [39]. This value is treated as an absolute maximum for the correction
force. Ideally, the interaction force should not exceed half of this value, for safety reasons.

To find the maximum stiffness, the robot was set to a single-point trajectory, in a neutral
position, that is comparable the positions it will be in during task execution. In this position
a force was applied, and the resulting deviation was measured. This was done for multiple
different stiffnesses, and two different poses.

C.1 Test Setup
Images of the two chosen positions can be found in Figures C.1 and C.2. These poses were

chosen, since they represent the poses that the Panda will take on during the different tasks.
While in these poses an interaction force will be applied to the end effector in the Z-direction,

Figure C.1: First chosen pose Figure C.2: Second chosen pose

for three seconds, while the maximal deviation is measured. This experiment is then repeated
with different forces and different stiffnesses. The entire experiment is then repeated five times
for statistical stability, even though the entire experiment should be fully deterministic.

For controller stability, the stiffness cannot exceed 1500, so the test range for the stiffnesses
will be [50-2000], while the test range for the forces will be [1-500] N .

The results of these experiments will determine the maximum saturation value for the
stiffnesses.

C.2 Results
The results of these test can be found in Figures C.1 and C.2. From these images is seen how

the magnitude of a correction relates to the force and the stiffness. Note that the maximum
displacement is around 0.4, which corresponds to the robot hitting the floor. This is the case
for the aforementioned value of 297 N , for all stiffness values.

These plots show that the second configuration is less stiff than the first configuration,
meaning that with, with the same stiffness, a larger displacement is created.

Figure C.3: First chosen pose Figure C.4: Second chosen pose

For both situations however, it is clear that even the highest stiffness can be push against the
ground, with a reasonable amount of force. This means that the full range of stiffnesses can be
used.

C.3 Conclusions
This study shows that the full range of available stiffnesses from the controller [50-1500] can

be used, without the interaction forces getting larger than a human can handle.

D | Rule Analysis
In this appendix some of the analysis images of HA-PASTIL are shown, that did not fit,

or did not add enough value to the main text. These images illustrate the connection and the
transition between the rules, and show that there are no discontinuities in the dependency of
the weight updates on the correction.

Figure D.1: Visual representation of the rules for
when the last correction was towards

Figure D.2: Visual representation of the rules for
when the last correction was None

Figure D.3: Visual representation of the rules for
when the last correction was Uninitialized

D.1 Towards
Figure D.1 shows the three rules, in the case that the last correction was towards. If the

last correction was towards, and the user does not agree with the current policy, the expected
correction is either towards again, or slightly beyond. If the new correction is in line with this
expected correction, the stiffness is increased, otherwise the stiffness is decreased. If the new
correction is beyond, the position will be updated with the normal learning rate, since it is
expected that the reference might have to be moved that way, while if the new correction is
away, the user is being inconsistent, and the position is only updated with half the normal
learning rate, to find a bit of a compromise between the last two corrections.

D.2 None
Figure D.2 shows the three rules, in case the previous correction was to not give a correction.

The rules for this are quite similar to the rules if the last correction was towards. If a previous
correction was not given, the user either agreed with the previous performance, or has not
much interest in this particular point of the trajectory. for this reason, the stiffness must be
reduced, except in the case that the new correction is closer to the reference than the executed
trajectory, in which case it should be increased. The position is updated with only half the
learning rate, for both beyond and away, to use this a sort of finetuning mode.

D.3 Uninitialized
Figure D.3 shows the set of rules used in the very first update, these rules are for the

case that the system has not been initialized yet. These rules increase the stiffness if the
corrected trajectory is closer to the reference than the executed trajectory, and do not adjust
it otherwise. The position is updated with the full learning rate, for both beyond and away,
since the expectation is that the initial trajectory is suboptimal, and has to be adjusted quite
a bit.

E | Environment choice
In this chapter a choice shall be made for the simulator environment. This shall mostly

consist of comparing different simulators and different robot arm implementations.

E.1 Simulators
In this section a comparison shall be made between multiple physics simulators, for robotic

applications.

E.1.1 CoppeliaSim
CoppeliaSim, previously known as V-REP, is a propriatary robotics simulator, developed by

Coppelia Robotics[40]. While it is propriatary software, a free eduactional license is available,
making CoppeliaSim an option to consider in this research. CoppeliaSim is a complex, heavy
weight simulator, that is very feature packed. The most notable included features are the ability
of the user to interact with the simulation during runtime, and mesh-manipulation.

E.1.2 Gazebo
Gazebo is an open-source robotics simulator that is developed by Open Robotics and is

distributed as a part of the Robotics Operating System (ROS)[41]. The Gazebo simulator is
a bit simpeler than CoppeliaSim, lacking some of its features. The major benefit of Gazebo is
the large community and the existence of a lot of third-party implementations of robots with
their controllers. This also means that there is a large forum, where questions can be asked,
and can be answered. Another major benefit is that, since it is part of the ROS ecosystem,
usage of ROS is deeply supported.

E.1.3 MuJoCo
MuJoco is a propriatary physics engine, developed by Roboti LLC, that, just like Cop-

peliaSim, offers a free educational license, allowing it to be used in this research. MuJoCo is
mostly a physics engine, but also comes with a simulator, or with Unity integration, which has
a lot of features.

E.1.4 MATLAB/Simulink
MATLAB is a proprietary tool suite developed by MathWorks[42]. Among lots of different

tools, used in different fields, it also has a built-in robotics simulation environment. While
MATLAB does not offer free educational licenses, the University offers MATLAB licenses to
its students, making it an option to consider for this research.

E.1.5 ARGoS
ARGoS is an open-source robotics simulator, developed by Carlo Pinciroli, for the Swar-

manoid project[43]. ARGoS claims to be the fastest general-purpose robot simulator in the
literature[44]. ARGoS is mostly aimed at use for swarm robotics, for that purpose it trades
complexity for performance. It does currently not support the importation of 3D meshes into
the simulation, making it hard to simulate exitisting robots.

E.2 Conclusions
Some studies were found that compare these simulators[45] [46] [47], but none of them were

recent enough to fully base the conclusion on.
The chosen environment is Gazebo with the package from https://github.com/justagist/

panda_simulator, since it is the most complete Panda simulation, and it provides the Jacobian
and the coriolis compensation from libfranka. For this environment it seemed to be the most
doable to code a custom impedance controller, without too much delay for the thesis project.

https://github.com/justagist/panda_simulator
https://github.com/justagist/panda_simulator

F | Description of the Chosen Environ-
ment

In this section the chosen environment shall be outlined. This section shall be a short sum-
mary of the documentation of the used software packages. These include the used programming
language, the used libraries, ROS, the used ROS packages and Moveit!.

F.1 Programming Languages
The programmming languages used in this research shall be Python 3 and C++, since these

are the ones compatible with ROS and the ones that the TU Delft has courses on. The focus
shall be on using Python, since it is the quickest to build these kind of research projects in,
but for an eventual industrial application C++ might be a better choice, due to its superior
performance.

F.1.1 Libraries
To limit the scope of this research, some library functions shall be used. These shall be

outlined in this section

Basic Libraries

Some basic libraries are used in this research, such as numpy, scipy, math, time, sys, matplotlib
and csv. Since these are used in almost every project, it does not seem necessary to write an
analysis of these libraries.

dtw-python

This library is used to perform dynamic time warping on the collected trajectories. This is
required for demonstrations, since some demonstrations might be performed faster than others,
and the start and the end of the recordings might not line up perfectly.

pydmps

This library is used for all the DMP representations in this research. This library was chosen
over other libraries, due to the ease of install, clear documentation and the understandable
API.

F.2 ROS
ROS is an opensource robot middleware, developed by Open Robotics, that allows commu-

nication between multiple programs on multiple different devices, created in multiple different
languages. Tme main concempt behind ROS is that these programs, called ‘nodes’ publish
their information onto ’topics’ where other nodes can find this information and process it. In
this research ROS shall be used as the main way of communicating with the simulation, this
choice was made, because ROS can use almost the same code to control an actual robot arm,
as it does for controlling the simulation.

F.2.1 panda_simulator
This ROS package provides the Robot description and the Gazebo world file, for the Gazebo

simulation, as well as ROS integration, Moveit! integration, and position, velocity and effort
controllers for the Franka Emika Panda Robot. It also supplies most of the elements needed
to build more complex controllers, such as the end-efector Jacobian, the Joint Mass Matrix, a
gravity compensation vector and a coriolis compensation vector.

Topics

In this section the most important topics of the panda_simulator package and their possible
usage shall be discussed. There are a lot more topics provided by this package, but these are
the most relevant ones for this research.
/panda_simulator/motion_controller/arm/joint_commands
This is the topic that the controller commands have to be published to. This topic allows three
different control modes, position control, velocity control and effort control. It also allow the
specification of desired positions, velocities, accelerations and control efforts. The effort control
mode can possibly be used to build more complex controllers onto.
/panda_simulator/custom_franka_state_controller/joint_states
On this topic the current Joint States are published as sensor_msgs/JointState messages. In
this message type the joint positions, velocities, accelerations and control efforts are listed, along
with the joint names. These messages can be used to record the joint states for kinaesthetic
teaching.
/panda_simulator/custom_franka_state_controller/robot_state
On this topic information about the current robot state is published, these messages contain
a lot of information, but most importantly the external forces on the end-effector, the gravity
compensation, the coriolis compensation and the Jacobian and mass matrices. This information
is can mostly be used to build controllers.

Services

The most important service provided by the panda_simulator package is the dynamic recon-
figure for the PID gains for all controllers for all joints. This is spread out over a lot of different
services, but can also be adjusted with rqt_reconfigure. This can be used to improve the
tracking and decrease the overshoot of the controllers.

F.3 Gazebo
The Gazebo simulator itself, as described in the previous chapter, also has some of its

functionalities available through the use of topics and services, the ones used in this research
shall be outlined in this section.

F.3.1 Topics
The most important topic provided by the gazebo simulator is the /gazebo/link_states

topic. This topic provides the current Cartesian location and orientation of all links of the
robot. This should be mostly used for plotting and to check results, since the information will
not be available for the control of an actual robot arm.

F.3.2 Services
The gazebo simulator provides some services that could be of use for the purposes of this

research, the most important ones are listed below:

/gazebo/spawn_sdf_model
This service can be used to spawn objects in the Gazebo environment. These objects have
to be specified in the SDF format, which allows the specification of geometry and the most
important physical properties, such as mass, inertia and surface friction coefficients. While the
SDF format has some great properties, it seemed to be lacking is some other areas, such as
parameterization. For this reason it would be great to use the xacro package, which is only
compatible with the URDF format. For this reason a custom xacro to SDF parser was built,
using the sed command.
/gazebo/delete_model
This service can be used to delete models from the Gazebo environment. This could be used
to reset the environment after manipulating an object.
/gazebo/apply_body_wrench
This service can be used to apply a Cartesian wrench (6-vector of forces and torques) to a robot
link, for a certain duration. This can be used as a proxy for kinaesthetic teaching/correcting,
since physical interaction with a simulated robot is not possible.

F.4 Moveit!
Moveit! is a software package that provides functionality for, for instance, kinematics,

motion/path planning, collision checking, 3D perception and robot interaction. While most of
its features shall not be used in this research, the ability to control the robot in Cartesian space
is great for supplying initial task demonstrations to a learning algorithm.

F.4.1 Topics
The most important topic that Moveit! publishes to is the /move_group/status topic. This

topic publishes some simple status messages of the Moveit! application, such as whether it is
idle or moving the robot. This information is mostly used to synchronize timings for recording
movements.

F.4.2 Services
Moveit! also supplies two important services, the first is /compute_fk, which can be used

to transform Joint-space coordinates to Task-space coordinates in real-time. This can be used
to replace the info of the /gazebo/link_states topic for use in Cartesian controllers. The
other service supplied be Gazebo is /compute_ik, which translates Task-space coordinates to
Joint-space coordinates. This might, for instace, be used to relate Task-space corrections to a
Joint-Space Controller.

F.4.3 API Functions
Besides the aforementioned Topics and Services, Moveit! also has an API that allows com-

munication with the robot as well as its planning environment. While this API has a lot of func-
tions, the most important ones are MoveGroupCommander.compute_cartesian_path(), Move-
GroupCommander.execute(), MoveGroupCommander.set_pose_target(), MoveGroupComman-
der.go() and PlanningSceneInterface.add_box(). MoveGroupCommander.compute_cartesian_path()
is used to generate a Joint-Space trajectory from a few Cartesian waypoints and MoveGroup-
Commander.execute() is used to make the robot execute this trajectory. PlanningSceneInter-
face.add_box() is used to add certain regions to the environment that the no part of the robot
is allowed to move into. These functions can be used in conjunction to do teaching by remote
control. MoveGroupCommander.set_pose_target() plans a path to a Cartesian Pose goal and
MoveGroupCommander.go() is used to execute this plan. This combination can be used to set
the end-effector to an initial Pose, before starting any teaching.

G | Correction Interfaces
In this appendix an overview can be found of the correction interfaces that were designed

during the process of this thesis, as well as their advantages and disadvantages. All these
interface were abandoned in the end, since an oracle was implemented instead. During the
thesis, a lot of time was invested in the creation of these interfaces, and they might be useful
for further research.

G.1 Raw forces
The first correction interface was very simple. It allowed the user to directly apply pre-

specified forces to the end-effector, in all 6 Cartesian DOFs, using the keyboard. There was no
visual feedback, other than the robot moving in the desired direction. This interface had as
downside that the forces were pre-specified, and that made it very hard to dynamically correct
the robot in a meaningful way.

G.2 Movable boxes
For this interface a box was placed in the gazebo environment, that could be moved in

XYZ-space by a user, with the keyboard. One key on the keyboard could then attach a virtual
spring/damper system between the box and the end-effector, on which the box also would
change colour, to indicate that it is in the ‘active’ state. This had as advantage that it was
easier to correct to a single point, but it had as disadvantage that the box could not be moved
fast/accurate enough to give the desired corrections. A visual interpretation of this interface
can be found in Tables G.1 and G.2.

Figure G.1: Correction interface, the blue
color indicates that the box is actively
pulling the end-effector

Figure G.2: Correction interface, the red
color indicates that the box is not pulling
the end-effector

G.3 Movable arrows
The last implemented human correction interface added floating arrows to the gazebo en-

vironment, that would float around the end-effector, as seen in Figure G.3. When one of these
arrows would be activated, by pressing and holding a key on the keyboard, this arrow would
change colour, and start floating away from the end effector, while exerting a force proportional

to its distance, meaning that the longer the key was pressed, the larger the exerted force. The
arrows would also turn gray and transparent at times when giving a correction was not appro-
priate. In this state they would also be unresponsive to key presses. While this environment
was supposed to combine the best of both previous interfaces, with a nice visual representation,
it turned out that, even with this interface, it was difficult to apply high-quality corrections.
This was mostly due to the fact that it still was not possible to apply quick corrections to a
desired trajectory, in the way that one would do when correcting a physical robot.

Figure G.3: Image of the movable arrows
correction interface

G.4 Oracle
In the end it seemed best to use an oracle. Both, for the repeatability, and since a user

study would not be possible in current times. The oracles were set up to perform corrections
using a PD-controller, but only in the three translational DOFs. This decision was made, since
the rotational DOFs do not add much for the designed tasks.

G.5 Stiffness visualisation interface
To make the correction process even more intuitive, an interface was developed to com-

municate the stiffnesses to the user, to help the user estimate the interaction forces and the
expected robot behaviour. This interface was developed in a phase of the research where the
entire system worked in joint-space instead of Cartesian space, due to this, an interface could
be designed where a slightly translucent sphere was placed on each of the robot joints. These
spheres would be green if the corresponding joint was fully compliant, and would gradually
turn to red, as the stiffness increased. An image of this interface can be found in Figures G.4
and G.5. Since the Cartesian system was designed to be used with an Oracle, and did not
have to communicate stiffnesses to an and user, no new interface was designed for stiffness
communication. From these images is seen how the visualisation interface communicates the
stiffnesses to the user. Figure G.5 shows the range of different colors between compliant and
stiff.

Figure G.4: Impedance visualization inter-
face, all stiffnesses are set to 0

Figure G.5: Impedance visualization inter-
face, all stiffnesses are set to random values

H | Cost Breakdown
In this appendix the breakdown of the cost function for the baseline algorithms is shown.

This appendix also shortly discusses some of the effects found in these graphs.

H.1 Push Task
Figures H.1, H.2 and H.3 show the breakdowns of the cost function for the baseline algo-

rithms for the push tasks. From these figures is seen that both the positional algorithm and
PASTIL improve upon the score, while the mean-var algorithm increases the stiffness too much,
to be able to improve the score. An intensive study was done into improving the behaviour
of the mean var algorithm, to see if different parameter settings would lead to more optimal
behaviour, but this did not seem to be the case.

Figure H.1: Breakdown of the cost
for PASTIL

Figure H.2: Breakdown of the cost
for the mean var algorithm

Figure H.3: Breakdown of the cost
for the position-only algorithm

H.2 Lift Task
A breakdown of the scores obtained by the baseline algorithms can be found in figures H.4,

H.5, and H.6. These figures show in more detail how the cost is built up. This information can
be used to analyse some of the weak points of the algorithms.

Figure H.4: Breakdown of the cost
for PASTIL.

Figure H.5: Breakdown of the cost
for the mean var algorithm.

Figure H.6: Breakdown of the cost
for the position-only algorithm.

From the cost breakdown for PASTIL is seen, that is closely resembles the breakdown of
HA-PASTIL. This is to be expected, since both algorithms were designed for a similar purpose,
and with a similar mindset. The breakdown for the mean-var algorithm shows that, while the
task performance seems to improve, the cost does not decrease, do to the high stiffnesses being

learned by the algorithm. A cost comparison for all algorithms, without accounting for the
stiffness can be found in Figure H.7. This comparison shows that without accounting for the
stiffnesses, the mean-var algorithm has a decreasing cost, but it still is unable to compete with
PASTIL and HA-PASTIL. Finally, the position-only algorithm does not seem to learn anything
at all for this task. This hypothesis is backed up be Figure H.8. From this figure is seen that
the “Learned" trajectory is the same as the initial trajectory, as specified in Section 4.4.5. Many
different parameter settings were tried to improve the behaviour of this algorithm, but a better
setting was not found. It might be beneficial for future research to try to find better baseline
algorithms.

Figure H.7: Comparison of all algorithms, without
accounting for the stiffness.

Figure H.8: Learned vs. Executed trajectory for the
position-only algorithm.

H.3 Policy Reuse Push Task
Figures H.9, H.10, and H.11 show the breakdown of the cost functions for the baseline

algorithms for the first task of policy reuse push task. From these images is seen that both
PASTIL, and the positional algorithm show a behaviour that is consistent with that of HA-
PASTIL, in this first task. The mean-var algorithm, on the the other hand, takes a lot longer
unlearn the initial behaviour. Also note the relatively high costs for the stiffness for both
PASTIL and the mean-var algorithm, compared to HA-PASTIL, which learns to be a lot more
compliant.

Figure H.9: Breakdown of the cost
for PASTIL. The black line repre-
sents the change in correction strat-
egy.

Figure H.10: Breakdown of the cost
for the mean var algorithm. The
black line represents the change in
correction strategy.

Figure H.11: Breakdown of the
cost for the position-only algorithm.
The black line represents the change
in correction strategy.

Figures H.12, H.13, and H.14 show the cost breakdown for the baseline algorithms, for

the final task of the policy reuse push task. From these images is seen that, from these three
algorithms, only PASTIL learns to consistently push the box off of the table. While the position
only algorithm ends up with a score that is significantly lower than the initial score, the presence
of the penalty in the end, indicates that there were still some cases in which the box was not
pushed off of the table. From these figures is also seen that the mean-var algorithm does not
learn to push the box off of the table at all. This effect can best be explained by looking at
the scores obtained during the corrected episodes. these scores can be found in Figure H.15.
These scores were obtained in episodes where the oracle was active, and these represent the
actual applied corrections. As seen from this image, the oracle is not able to push the box off
of the table, when the mean-var algorithm is executing its policy. This can partly be explained
by the high stiffnesses. This could, however, not explain the entire effect, since, as Appendix
C showed, the robot is, at maximum stiffness, still compliant enough to perform rather large
corrections. The effect might also be explained by the slow learning of the mean-var algorithm.
Since the mean is taken of the entire dataset of corrections, every new correction has a smaller
influence on the total trajectory, to a point where it almost cannot learn anymore.

Figure H.12: Breakdown of the cost for PASTIL. The
black line represents the change in correction strategy.

Figure H.13: Breakdown of the cost for the mean var
algorithm. The black line represents the change in
correction strategy.

Figure H.14: Breakdown of the cost for the position-
only algorithm. The black line represents the change
in correction strategy.

Figure H.15: Breakdown of the correction scores for
the mean-var algorithm.

	Introduction
	Literature Review
	Force Control
	Policy representation
	Interactive Imitation Learning
	Conclusion

	Position And Stiffness Learning
	Policy representation
	Correction extraction
	General algorithm structure
	Segmentation of the correction space
	PASTIL
	HA-PASTIL

	Experimental Setup
	Environment
	Baseline Algorithms
	Push Task
	Lift Task
	Policy Reuse Push Task

	Results
	Push task
	Lift Task
	Policy Reuse Push Task
	Conclusion

	Discussion
	Possible further research

	Conclusion
	References
	Appendices
	Analysis of DMP weight increments
	Simple Trajectory
	More realistic scenario

	Controller Validation
	Cartesian Controller
	Oracle

	Interaction Forces
	Test Setup
	Results
	Conclusions

	Rule Analysis
	Towards
	None
	Uninitialized

	Environment choice
	Simulators
	Conclusions

	Description of the Chosen Environment
	Programming Languages
	ROS
	Gazebo
	Moveit!

	Correction Interfaces
	Raw forces
	Movable boxes
	Movable arrows
	Oracle
	Stiffness visualisation interface

	Cost Breakdown
	Push Task
	Lift Task
	Policy Reuse Push Task

