<]
TUDelft

Delft University of Technology

Adaptive ensemble optimization for memory-related hyperparameters in retraining DNN at
edge

Xu, Yidong; Han, Rui; Zuo, Xiaojiang; Ouyang, Junyan; Liu, Chi Harold; Chen, Lydia Y.

DOI
10.1016/j.future.2024.107600

Publication date
2025

Document Version
Final published version

Published in
Future Generation Computer Systems

Citation (APA)

Xu, Y., Han, R., Zuo, X., Ouyang, J., Liu, C. H., & Chen, L. Y. (2025). Adaptive ensemble optimization for
memory-related hyperparameters in retraining DNN at edge. Future Generation Computer Systems, 164,
Article 107600. https://doi.org/10.1016/j.future.2024.107600

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.future.2024.107600
https://doi.org/10.1016/j.future.2024.107600

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Future Generation Computer Systems 164 (2025) 107600

Contents lists available at ScienceDirect L =
FIGICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
)
Adaptive ensemble optimization for memory-related hyperparameters in

retraining DNN at edge

Yidong Xu?, Rui Han ®*, Xiaojiang Zuo?, Junyan Ouyang ?, Chi Harold Liu?, Lydia Y. Chen®

2 Beijing Institute of Technology, Beijing, China
Y TU Delft, Delft, Netherlands

ARTICLE INFO

Keywords:

Edge computing

Deep neural networks (DNN)
Memory-related hyperparameters
Model retraining

ABSTRACT

Edge applications are increasingly empowered by deep neural networks (DNN) and face the challenges of
adapting or retraining models for the changes in input data domains and learning tasks. The existing techniques
to enable DNN retraining on edge devices are to configure the memory-related hyperparameters, termed m-
hyperparameters, via batch size reduction, parameter freezing, and gradient checkpoint. While those methods
show promising results for static DNNs, little is known about how to online and opportunistically optimize
all their m-hyperparameters, especially for retraining tasks of edge applications. In this paper, we propose,
MPOptimizer, which jointly optimizes an ensemble of m-hyperparameters according to the input distribution
and available edge resources at runtime. The key feature of MPOptimizer is to easily emulate the execution
of retraining tasks under different m-hyperparameters and thus effectively estimate their influence on task
performance. We implement MPOptimizer on prevalent DNNs and demonstrate its effectiveness against state-
of-the-art techniques, i.e. successfully find the best configuration that improves model accuracy by an average
of 13% (up to 25.3%) while reducing memory and training time by 4.1x and 5.3x under the same model

accuracies.

1. Introduction

Edge applications are increasingly powered up by neural networks
(DNN) and harvest the benefit of faster communication speed and
higher data security, in contrast to the solutions relying on the central
intelligence on cloud [1-4]. Typically, an edge intelligence system runs
have two types of jobs: inference jobs [5] that have stringent latency
constraints and higher priority of resource usage, and retraining jobs [6]
that are triggered when some input distribution shift happens [7]. The
retraining tasks consume larger amounts of computational resources
and need to be completed within a short retraining window (e.g. 10
or 30 min) to maintain consistent accuracy [8]. For instance, in an
edge-side intelligent transportation application, a roadside device runs
multiple inference jobs. At the same time, the DNN models used to
deliver services (e.g. object detection and image classification) needs to
continuously retrained when domain shift happens [9] (e.g. weather,
light, or object density changes) or new task arrives (e.g. unseen
vehicles or animals in previous mode training [10]). The edge system
first needs to guarantee short response time for its inference jobs,
then allocates remaining computational and memory resources to the
retraining jobs. With the increasing size of modern DNNs (e.g. convo-
lution neural networks (CNNs) and transformer-based networks [11]),

* Corresponding author.

there is a plethora of methods [12-14] to minimize the memory con-
sumption of training DNN on resource-constrained edge devices. These
methods rely on a set of memory-related hyperparameters, termed as m-
hyperparameters, to control the tradeoff between the training efficiency
and model accuracy, but also cause additional complexity in optimizing
the (re)training process.

Example of m-hyperparameters. Fig. 1 illustrates three types of
m-hyperparameters in edge-based DNN retraining: (i) microbatch [13,
15] allows a DNN to achieve a similar training effect as large batch
size training by accumulating gradients while reducing the input data’s
batch size, namely reducing the memory footprint for storing these data
points’ gradients. Microbatch’s m-hyperparameters include batch size
(e.g. 4) and gradient accumulation step size (e.g. 64). (ii) Parameter
freezing [14,16] reduces computational requirements and memory
usage by freezing a portion of model parameters, which are thus not
computed/updated during retraining. For instance, 30% of the model’s
parameters are frozen during the retraining to save 600MB memory.
(iii) Gradient checkpoint [12,17] saves memory by selecting certain
checkpoints and not storing the gradient during forward propagation
for non-checkpoint layers’ model parameters. Its m-hyperparameter is

E-mail addresses: 3120211046@bit.edu.cn (Y. Xu), hanrui@bit.edu.cn (R. Han), 3120195517 @bit.edu.cn (X. Zuo), 3220225183@bit.edu.cn (J. Ouyang),

chiliu@bit.edu.cn (C.H. Liu), lydiaychen@ieee.org (L.Y. Chen).

https://doi.org/10.1016/j.future.2024.107600

Received 15 January 2024; Received in revised form 17 August 2024; Accepted 3 November 2024

Available online 10 November 2024

0167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:3120211046@bit.edu.cn
mailto:hanrui@bit.edu.cn
mailto:3120195517@bit.edu.cn
mailto:3220225183@bit.edu.cn
mailto:chiliu@bit.edu.cn
mailto:lydiaychen@ieee.org
https://doi.org/10.1016/j.future.2024.107600
https://doi.org/10.1016/j.future.2024.107600
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.107600&domain=pdf

Y. Xu et al.

Microbatch

L s e e i . o s e s e

Microbatch Parameter freeze
hyperparameters: hyperparameters:
(batchsize,step_ac || freezing rate of feature

Gradient checkpoint
hyperparameters:
checkpoint.checkpoint_

cumulate) extraction layer, normalization | [sequential(functions, segments,
((1,256) (2,128) layer, linear layer *inputs)
(4,64) ---(256,1)) (10%. 20%. 30% ---) (1. 2. 3. . max/3)

— p—

Save 3000M | Save 600 M | Save 1700 M | |
Memory footprint of a retraining job on edge device

[700m]

Fig. 1. Example m-hyperparameters in DNN retraining tasks.

the number of segments, typically decided by the model’s layer number.
Here, ‘layer’ refers to basic layers in a DNN, such as convolutional
layers, fully connected layers, and batch/layer normalization layers. In
Fig. 1’s example, using one-third of the maximum number (i.e. max/3)
of model layers as the segment number can reduce memory usage by
1700MB.

Configuration-sensitive m-hyperparameters. Given a retraining
task, the choice of m-hyperparameters leads to very different model
performances, as minor tweaking on such hyperparameters can lead to
changes in training steps and thus result in large discrepancies in both
model accuracy and training efficiency [18,19]. Our evaluations of the
ResNet50 model show that when the microbatch method changes batch
size from 8 to 1, it reduces the memory usage from 3,000 MB to 800
MB, but also prolongs the training time by 20 times and leads to 6%
accuracy losses [19]. It is certainly no mean feat to gain potential perfor-
mance improvement from setting the best m-hyperparameters because
the performance impact of different configurations as well as their
interdependency depends on a wide range of variable factors. These
factors include model architecture and size, input data distribution, and
crucially the available memory and computational resources.

Challenges. Most m-hyperparameters tuning techniques, either used
in practice [13] or described in the prior art [18,19], depend on appli-
cation owners to manually set them in an offline fashion. However,
today’s edge applications usually have to tackle evolving input distribu-
tions with big data, which consist of new domains [9] or tasks [10], and
dynamically changing available resources. For such applications, static
configuration tuning techniques may overlook the potential enhance-
ment through hyper-parameter optimization, because the optimal one
is highly volatile. Two major challenges arise in adjusting a retraining
task’s m-hyperparameters for improving application performance.

First, retraining tasks need to be completed within a short training
window (e.g. 10 min), but profiling time-varying input distributions
and resources in a resource-constrained edge environment usually takes
a long time. It needs a few iterations to verify the performance differ-
ence, e.g., resource consumption and accuracy improvement, between
two configurations of m-hyperparameters. Finding the optimal combi-
nation of m-hyperparameters may need to compare hundreds of such
hyperparameter values and thus need thousands of training iterations.
The first challenge, therefore, is how to develop a lightweight on-
device profiling approach to optimize m-hyperparameters searching
while avoiding time-consuming profiling.

Second, each retraining task has an ensemble of m-hyperparameters,
related to microbatch, parameter freezing, and gradient checkpoint
methods, and each of them has a wide set of values. Moreover, de-
pending on the applications’ dynamics, a given combination of m-
hyperparameters can result in different model accuracies. Determining

Future Generation Computer Systems 164 (2025) 107600

the combination of m-hyperparameters that maximize both accuracy
improvement and efficiency within an extensive search space poses
an NP-hard problem. This raises the second challenge about how to
efficiently search through the large m-hyperparameters space according
to the transient dynamics on edge applications at run-time.

In this paper, we propose MPOptimizer, an adaptive ensemble
optimizer to tune Memory-related hyperParameters in real-time re-
training DNNs at the edge. Our run-time tuning approach is designed
to find the optimal configuration of m-hyperparameters via online
profiling and searching, adapting to the latest input distribution and
available resources. Note that MPOptimizer differs from traditional
training hyperparameter optimization techniques [20], which search
for the optimal hyperparameters (e.g. learning rate) to maximize model
accuracy [18,21] via offline profiling. In contrast, we focus online
configuring the m-hyperparameters studied and consider both model
accuracy and resource consumptions. In particular, the contributions
of this paper are as follows:

> Online resource profiler based on prior knowledge. MPOp-
timizer develops a lightweight resource profiler that computes re-
source utilization for various m-hyperparameters configurations. This
computation is based on offline analysis conducted during the pre-
training phase, as well as online knowledge acquired from prior train-
ing rounds. The resource profiler takes the retrained model, the current
m-hyperparameters configuration, and the present system state and
dataset as inputs for each m-hyperparameters combination. It then
dynamically generates a resource profiling file. Ultimately, the profiler
stores mappings of the m-hyperparameters and their respective resource
profiling files.

> Rule engine-based optimal hyper-parameter searching. Based
on the Drools rule engine [22], MPOptimizer comprehensively de-
scribes the searching of m-hyperparameters mechanisms using busi-
ness rules, thus automating the search of large hyper-parameter space
as judgment conditions of the rule engine and completing searching
quickly when input distribution and available resources change.

> Implementation and evaluation. We implemented MPOptimizer
on the prevalent DNNs including CNNs (ResNet-50, ResNet-101 [23],
MobileNet-v2 [24]) and transformers (MobileViT [25]) to support re-
training tasks of domain adaptation [9] and continual learning [10].
We evaluate our approach in real edge devices against state-of-the-art
techniques and the results show: (i) MPOptimizer can effectively cope
with changing input distributions and training resources by choosing
appropriate m-hyperparameters to improve accuracy by an average
of 13% (and up to 25.3%) (ii) under the same model accuracies,
our approach reduces memory footprint by 4.1x and accelerates the
retraining time by 5.3x.

The remainder of this paper is organized as follows: Section 2 briefly
introduces the background of m-hyperparameters and related work.
Section 3 explains the design of our approach and Section 4 evaluates
it. Finally, Section 5 summarizes the work.

2. Background and related work

Performing training tasks on devices with limited memory resources
is very challenging [1,3,9,10,26-28]. In this section, we first introduce
the main types of memory footprint during training and the correspond-
ing memory optimization strategies [29,30], and then we will focus on
optimization techniques related to the activation memory [31] while
eliciting the m-hyperparameters involved in these techniques. Finally
we present relevant existing ensemble optimization techniques.

2.1. Memory footprint of training
The data to be saved for training usually occupies a large amount of

memory, and the batch size of the input data affects data memory. The
data samples in Fig. 2 illustrate this memory footprint. In addition to

Y. Xu et al.

Data Model Weight Optimizer
oo DD —0 s
Parameter + Momentum + Variance
s | '
Data Activation M Model Optimizer —
O ctivation Memory e Memory ry :
| 1% ~ 5% | >75% | 1% ~ 5% | 3% ~15% |total memory

Fig. 2. Memory generated at each stage of the deep neural network training process.

the data memory footprint of the input dataset, there are three types of
memory that are typically generated during neural network training:

(1) Model memory. In the context of deep learning models, model
memory refers to the memory allocated for storing the model’s weights.
The model weight in Fig. 2 demonstrates this memory footprint. Prun-
ing [32,33] as well as knowledge distillation [34] are common memory
optimizations for this part of the memory.

(2) Optimizer memory. Optimizer memory is the memory used
to store the gradient and momentum buffers corresponding to the
parameters. The optimizer in Fig. 2 demonstrates the memory required
by the Adam [35] optimizer during training, which is three times the
model weights. CPU Offload [36] is a strategy that can reduce the
memory usage during training by offloading the memory of optimizer
from the GPU to the host CPU during training.

(3) Activation memory. As shown in Fig. 2, the forward prop-
agation parameters obtained from the input data by performing cal-
culations with the model weights are stored as activation memory,
which tends to occupy the largest memory space. The following section
describes related work on shrinking the activation memory, which are
orthogonal to the other memory optimization methods described above.

2.2. Memory hyperparameter definition

. There exist numerous optimization techniques for activation mem-
ory without losing too much accuracy, which can be broadly cat-
egorized into three groups: microbatch/gradient accumulation [13],
parameter freezing [14] and gradient checkpoint [12]. These tech-
niques can control the adjustment intensity by setting corresponding
hyperparameters. We call these hyperparameters that can adjust mem-
ory usage m-hyperparameters. The following will introduce in detail
the specific m-hyperparameters corresponding to each technique:

Microbatch (gradient accumulation) is done by using smaller
batches than minibatch for the input data stream into the network and
accumulating the gradients equal to the number of minibatches. We
regulate the impact of microbatch by the batch size and the step size of
gradient accumulation (b, a) in the m-hyperparameters.

Parameter freezing is one of the common methods used to re-
train models, some layers of the model need to be frozen, others
positioned as updatable and fine-tuned during retraining. We regulate
the impact of parameter freezing by the parameter freeze rates r in the
m-hyperparameters.

Gradient checkpoint involves storing only a subset of network
gradients during the forward propagation of the network, rather than
all intermediate outputs. Other gradients are then recalculated from the
nearest checkpoint when they are needed for backward propagation.
We regulate the impact of gradient checkpoint by the number of segments
cs in the m-hyperparameters.

2.3. Hyperparameter optimization techniques

With m-hyperparameters, we can easily adjust the impact of above
three types of techniques and use them in combination at the same
time to achieve better memory optimization. Efficiently selecting hy-
perparameters is a extensively discussed issue, and numerous classic
techniques [37-40] can be employed to tune m-hyperparameters. In

Future Generation Computer Systems 164 (2025) 107600

the following, we will introduce the existing hyperparameters tuning
techniques which can be used for selecting m-hyperparameters:

Static setting based on the knowledge acquired during the pre-
training phase is a widely adopted approach for configuring hyper-
parameters. In a large variety of methods for hyperparameter tuning
through static analysis [21], static tuning for m-hyperparameters [13,
18] is a static setup method that analyzes the memory impact of
different batch sizes b, different parameter freeze rates r and different
number of checkpoint segments cs on training, and picks a set of m-
hyperparameters that adapts to the available memory based on the
current state of memory resources.

Dynamic adjustment technologies include online grid random
search [21], dynamic rule search [19] and other tuning tools to find
the optimal hyperparameters [41]. For m-hyperparameters tuning,
there are a lot of tuning techniques [19] including dynamic gradient
checkpointing, dynamic gradient accumulation, and hybrid strategy
Sage. Dynamic Gradient Checkpointing (DGC) keeps all intermediate
computation results in memory until the upper limit of available
memory is reached, at which point it will set gradient checkpoint
segments c¢s in m-hyperparameters and iteratively evict existing non-
checkpointed computation results from memory. Dynamic Gradient
Accumulation (DGA) prioritizes the maximum microbatch size sup-
ported under current memory conditions, sets a lower batchsize » and
gradient accumulation step @ in m-hyperparameters once memory is
insufficient, and evicts all intermediate state individual batches from
memory. Sage is a hybrid m-hyperparameters tuning technique that
combines both DGC and DGA strategies.

Bayesian optimization (BO) [21] is the state-of-the-art technique
among the hyperparameter tuning methods based on the training
model. This hyperparameter optimization technique is usually used
for the integrated tuning of network training hyperparameters such
as learning rate, dropout rate and so on. Bayesian optimization has
been widely used for hyperparameter tuning of different computing sys-
tems [42-45] discusses hyperparameter tuning under the simultaneous
consideration of overall performance of memory, time, and accuracy,
and [46] integrates various tuning methods for black-box optimization
of hyperparameters on the basis of BO, but there is no work that applies
it directly to the tuning of m-hyperparameters.

In summary, static methods [13,18] for setting m-hyperparameters
may not always yield the most accuracy efficient configurations when
facing changing input data in a dynamic domain. Dynamic adjustment
technologies [19,41] offer better memory optimization under varying
resource conditions, but their main focus is on improving memory effi-
ciency. However, little attention has been given to the impact of these
memory optimization methods on training accuracy. While Bayesian
optimization [45] is a general method for hyperparameter tuning, di-
rectly applying it to memory tuning can be resource-intensive and may
not allow enough time for retraining to improve accuracy. Therefore,
our focus is on efficiently improving training accuracy while optimizing
memory. To address this, we propose MPOptimizer, a lightweight
edge-integrated method for m-hyperparameters tuning.

3. MPOptimizer
3.1. Overview

MPOptimizer is designed to improve performance of continuous
model retraining via optimizing m-hyperparameter configurations on
resource-constrained edge devices. As shown in Fig. 3, MPOptimizer
integrates an offline knowledge extraction scheme with a rule engine,
enabling lightweight tuning and retraining. At the online stage, MPOp-
timizer models the tuning effort of m-hyperparameters as an objective
function and aims to obtain the optimal solution for this objective
function using its three key components: Resource Profiler, Rule Engine,
and Tuning Controller. In summary, MPOptimizer remains active on the

Y. Xu et al.

Future Generation Computer Systems 164 (2025) 107600

Trial training iterations

o

m-hyperparameters configuration

iterations

—

Retraining]

1
A
: Current m-hyperparameters and profiling information 1

1 A sorted map by accuracy gains [)

IOptimal m-hyperparameters

I
1
: Rule Engine
]

|| <«— Accuracy gain g
I}

lterationt; =»""" =»

!

[Accuracy enhancement algorithm]

Resource Profiler Generate a \2
performance Tuning
Performance | Performance | Profile Controller
profiles from | profiles from
offline n past Resourcel NnNA
pre-training tasks consumption :
information 1 L______
v Memory,
lemory, .)
{AT'me‘ Estimate Memory | e t
Time, ceuracys | resource s
consumptions | m,; MB t, us
Accuracy, Memory,, P 1 1H
<|iTime,7
Accuracy, ms MB t US

e

Design objective 1:
Lightweight and scalable tuning

“r

Design objective 2:
Leveraging historical knowledge

Gradient g; after iteration t;

r

Design objective 3:
Retraining improvement of accuracy

Fig. 3. MPOptimizer and its three design objectives.

edge device throughout the retraining process and it is designed with
three objectives.

Lightweight and scalable tuning.On resource-limited edge de-
vices, MPOptimizer serves as a lightweight online integrated method
form-hyperparameter tuning. It rapidly completes the search for m-
hyperparameters by extracting and integrating the necessary tuning
knowledge. The rule engine in MPOptimizer utilizes the knowledge
obtained from a small number of trial training iterations as the basis
for updating the m-hyperparameters.

Leveraging historical knowledge. In MPOptimizer, the resource
profiler plays a crucial role in handling each new retraining job. It
takes the historical performance profiles stored during the pre-training
phase and the retraining phases of previous tasks as input, and outputs
a performance profile and a table of resource consumptions accord-
ing to the current m-hyperparameters configuration. This information
allows MPOptimizer to reason about the resource requirements of
different m-hyperparameters configurations, and search for the optimal
solution.

Retraining accuracy improvement. The rule engine of MPOp-
timizer develops an accuracy enhancement algorithm that takes the
gradient g; of the current iteration r; as input and uses a number of
iterations to calculate the final accuracy gain g. This information is then
passed to the tuning controller, which manages the hyperparameter
configurations and performs their tuning efficiently.

3.2. Problem statement

MPOptimizer aims to unearth the best overall performance of the
system in resource-constrained scenarios at the edge end. To this end,
this section presents the formulation of performance and define the
performance model of a resource-constrained system.

We first define the three metrics used in optimization: (1) memory
usage M, (67,> is decided by the configuration 5, of m-hyperparameters

and the retraining data set D; (2) retraining Time T}, (5,) denotes the

model training time on data set D when using configuration §,-; and
(3) accuracy metric Ap, (5,) is the average accuracy improvement for a
given configuration 5, of m-hyperparameters.

In optimization, MPOptimizer first find the range of m-
hyperparameters under the limited memory M, (5,), and then searches

the optimal configuration of m-hyperparameters to maximize the accu-
racy gain of with resource constraints:

A= U A, (when M) (@) <M, 6))
i=0
2y — 7 P A
P@) = adp(0)+) @
6% = arg max P@) 3

In Eq. (1), A is the overall tuning space of all m-hyperparameters
within the maximal memory M,,,,. In Eq. (2), P(d;) is the performance
objective function, a« and p are the weights for accuracy and retraining
time in Weighted Sum [47], where a + # = 1. We note that proper
settings of « and # depends on both training dataset and available
device resources. That is, a higher value of « prefers accuracy improve-
ment, and a higher value of § means retraining resource is limited.
Hence for a specific retraining job, MPOptimizer chooses « and f using
Bayesian Optimization (BO) [48] and tunes them together with other
hyperparameters in Eq. (3). In Eq. (3), 6* is the optimal configuration
of m-hyperparameters.

3.3. Resource profiler

The profiler collects resource utilization data for the pre-training
phase and the completed retraining phase, utilizes this information
to estimate the memory consumption of the current retraining job
under different configurations of m-hyperparameters, and sends the
estimation result to the rule engine.

As shown in Fig. 3, the profiler maintains three types of information
from the pre-training and previous retraining phases: memory, training
time, and accuracy. Using this accumulated information, the profiler
estimates the impact of the current hyperparameter configuration on
the resource consumption (m;, ;) of each layer in the network.

3.4. Rule engine

The rule engine utilizes a few quick trial iterations to provide
a quick and lightweight solution for simplifying the hyperparameter
search process. It contains two components: a memory range searcher
and an accuracy enhancement algorithm.

Y. Xu et al.

Memory range searcher. To determine the range of the m-
hyperparameters set in Eq. (1), the searcher utilizes a dichotomy-based
approach for range reduction, and identifies sets of m-hyperparameters
that satisfy the memory constraints. For instance, Table 1 shows all
the hyperparameters that need tuning The hyperparameter space size
in Table 1 is 256 x 256 x 100 x & x 100 x (10=2 — 10~5) (according to
Eq. (1)) representing a quite large search space. After applying the Rule
Engine’s reduction process, the compressed space can be reduced to 10.

Accuracy enhancement algorithm. Solving the problem of finding
the optimal performance configuration in Eq. (2) is challenging since it
involves average accuracy and retraining time metrics, both of which
are affected by the m-hyperparameters. This problem equals to the
typical NP-hard problem of Resource-Constrained Project Scheduling
Problem (RCPSP) [49]. Specifically, each m-hyperparameter’s resource
usage and accuracy gain correspond to a task in RCPSP; memory
constraints and retraining windows correspond to its resource limits;
and the configuration of m-hyperparameters corresponds to a complete
project schedule in RCPSP.

To simplify the calculation and bring the average accuracy and
retraining time under a common scale, MPOptimizer proposes an accu-
racy enhancement algorithm. This algorithm considers the performance
of accuracy improvement when all m-hyperparameters simultaneously
act on the training process within a unit time. It sorts this metric, which
can then be multiplied by the number of retraining epochs under unit
time, thus effectively reflecting the impact on the final performance.
Specifically, the memory range searcher reduces the tuning space into
a to a smaller size (e.g. 10 hyperparameter configurations). It enables
an efficient linear search of optimal hyperparameter configuration
for retraining. Subsequently, accuracy enhancement algorithm linearly
searches for the optimal hyperparameter configuration by estimating
performance/accuracy improvement for each configuration in the re-
duced tuning space. The accuracy improvement is measured by the
reduction of model gradient value under a specific hyperparameter
configuration per unit time. That is, a larger gradient reduction indi-
cates a higher improvement. Finally, the configuration with the highest
improvement is selected as the final choice for retraining.

Algorithm 1 equates the time window T used for retraining into
smaller units of time ¢. Microbatch, checkpoint, and parameter freezing
are three memory optimization methods corresponding to adjustable
m-hyperparameters batchsize_accumulate, checkpoint segments, and
freezing rate (line 1 to 4). The Acc function uses the gradient re-
duction value at the unit time of calculation to return the accuracy
enhancement efficiency (lines 5 to 11). The algorithm comprises puts
m-hyperparameters together for a complete training process per unit of
time, records the accuracy improvement performance in this configu-
ration (lines 12 to 18), adds it to the accuracy sorting map Acc_map for
sorting (line 19 to 24). Finally, the algorithm returns a sorted map by
accuracy performance from high to low.

3.5. Tuning controller

The controller regulates the functioning of the entire system by
invoking other components of MPOptimizer and conducts hyperpa-
rameter tuning using four steps. Step 1 obtains the edge device’s
available resource information; step 2 triggers MPOptimizer to get the
latest m-hyperparameters configuration; step 3 searches the optimal
configuration with the memory and time constraints; and the final step
sets the current retraining job according to the optimal configuration.

3.6. Running example

Fig. 4 illustrate the process of MPOptimizer in searching the op-
timal m-hyperparameter configuration within memory constraint and
retraining window T;. During the trial training iterations, the resource
profiler obtains historical performance profiles of pre-training and past
retraining, and generates performance profiles as well as the memory

Future Generation Computer Systems 164 (2025) 107600

Algorithm 1 Accuracy enhancement algorithm

Input: estimation requests R, m-hyperparameters H, one micro-
window epoch seconds ¢, training window of T
1. budget <« T
2. ba < batchsize_accumulate <« H|0]
3. ¢s « checkpoint_segments «— H[1]
4. fr « freezing_rate «— H[2]
5. function Acc (r,ba, cs, fr) {Accuracy improvement estimation}
6 acc; < r.get_acc()
Using these parameters, retrain the model for request
7. r for t seconds
8 accy < r.get_acc()
9. budget « budget —t
10. return (acc; — acc;)/t {Returns the accuracy gain}
11. end function
12. for r - R do
13. ba,cs, fr « H
14. Acc_map(r, parameter_list) < Acc(r, ba,cs, fr)
15. end for
16. sorted(Acc_map) {Accuracy sorted from high to low}
17. while ¢t < budget {Linearly searching from narrowed search

space}

18. parameter_list «— Acc_map[0]

19. ba,cs, fr « parameter_list {Max_gain parameters}
20. Acc_map(r, parameter_list) « Acc(r, ba,cs, fr)

21. sorted(Acc_map)

22. end while

-) Continous model retraining at edge User end
= - s .
.?. X 64 Training
2 o — data
3 I -

it m- hyperparameters 1,64) 50% max/3 usages
Historical Training
performance profiles window T; Time

r budget
Trial training

1
parameter Retraining
configuration iterations

iterations

MPOptimizer
LResource Profiler | ————
Resource consumptions
Rule Engine \

Performance profiles

ool Memory Time ¢;
I —>(4,64)— m

: ! ! o) 110MB 12.7 us

! Parameter freezing “—» 509% ——»m, t, Yf= E==

T (= M2 b2 VS oreME T13ps .

i kpoint L »max/3——wms t; | 33MB__ 18ps Tuning

Controller
max/3
{) Accuracy gain
Z 91
Accuracy

sort

Accuracy gain estimation

!

How rule engine searches the optimal m-hyperparameter configuration

Reduced search space

Large m-hyperparametersM search space

Fig. 4. Example m-hyperparameters tuning process with MPOptimizer.

Y. Xu et al.

and time consumptions as input of the rule engine. After retraining, the
profiler retains the actual resource usages and performance (e.g. m; =
110 MB, t; = 12.7 pus,t; = 1.8 ps) for future retaining.

Subsequently, the rule engine performs emulations to estimate the
existing m-hyperparameters configurations, feeds the predicted accu-
racy gain g, to an accuracy sorted array, and outputs an accuracy
estimation sorted by accuracy improvement efficiency. In searching
for the optimal configuration, the rule engine first narrows down the
large search space, which contains all the ranges in which the m-
hyperparameters can be tuned, to a reduced space of less than ten sets
of m-hyperparameters combinations. It then quickly searches this space
to find the configuration with the highest accuracy improvement using
the accuracy enhancement algorithm.

Finally, the rule engine outputs the optimal configuration of m-
hyperparameters ((8,32), 20%, 55) to the tuning controller, which con-
ducts the hyperparameter tuning for the current retraining job.

4. Evaluation

In this section, we evaluate the implementation of MPOptimizer,
built on the PyTorch framework. We conduct extensive experiments
using a list of data benchmarks. First, we demonstrate the accuracy
improvement of the m-hyperparameters chosen by MPOptimizer. (Sec-
tion 4.2). Second, we present an analysis of resource consumption,
emphasizing the advantages of MPOptimizer in reducing memory us-
age and training time (Section 4.3). Finally, we discuss the migrata-
bility of MPOptimizer (Section 4.4), its capabilities for lightweight
configuration (Section 4.5), and its accuracy enhancement algorithm
(Section 4.6).

4.1. Evaluation settings

Testbeds. We choose both CPU and GPU edge devices imposing dif-
ferent architectural features to demonstrate the MPOptimizer’s tuning
capabilities. The following three edge devices are used:

(i) Raspberry-Pi 4B, equipped with a 64-bit quad-core processor
running at 1.5 GHz and 8 GB LPDDR4 memory;

(ii) Nvidia Jetson Xavier NX, featuring a 384-core Volta GPU with
48 Tensor Cores and 16 GB LPDDR4 memory;

(iii) Nvidia Jetson Nano, with a 128-core NVIDIA Maxwell GPU and
4 GB 64-bit LPDDR4 memory.

To address potential configuration challenges in ARM framework
systems, we provide a docker environment that can directly simulate
the experimental setup. In the PyTorch node, the versions of Python,
PyTorch, CUDA, cuDNN, and Redis are 3.8.5, 1.7.1, 10.2, 7.6.4, and
6.0.10, respectively.

Models. Four prevalent DNN models are tested: (i) Convolutional
Neural Networks (CNNs), including ResNet-50, ResNet-101 [23], and
MobileNet-v2 [24]; (ii) a Transformer-based model called Mobile-
ViT [25]. These models are commonly employed in retraining tasks
for training classifiers that demonstrate strong generalization capabil-
ities across different domains with varying data distributions [50]. In
particular, ResNet-50 consists of 50 layers and has a parameter size of
98MB. ResNet-101 is deeper with 101 layers and a parameter size of
171 MB. MobileNet-v2 is composed of 54 layers and requires 28MB
of memory for its trainable parameters. MobileViT-XXS comprises 5
primary network layers and has 5MB of parameters.

Tuning space of m-hyperparameters. The space includes all hy-
perparameters associated with the three memory optimization tech-
niques, as listed in Table 1.

MPOptimizer setting. For the m-hyperparameters, we initially set
the default values for all methods as follows: (batch size, accumulate
step size) = (8, 32); the number of checkpoint segments = \/F (where
N represents the total number of layers in the network); parameter
freeze rates = 40%. Regarding other hyperparameters, we employ the
Adam optimizer. In the case of reducing the batch size (batch_size)

Future Generation Computer Systems 164 (2025) 107600

Table 1

The tuning space of MPOptimizer.
m-hyperparameters Min Max
Batchsize 1 256
Step Accumulate 256 1
Freezing Rate 0 100%
Segment 1 N/3
Epoch 1 100
Learning Rate 1073 1072

using the microbatch method, we decrease the learning rate by the
same factor as the training converges. When the batch size is 256, the
learning rate is set to 0.001.

Compared baseline. We evaluate and compare five state-of-the-art
techniques for optimizing m-hyperparameters:

(i) The static m-hyperparameters setting strategy [18] proposes a static
configuration strategy for combined m-hyperparameters. It achieves
this by analyzing the memory consumption associated with different
m-hyperparameters settings for three memory reduction techniques:
microbatch, gradient checkpoint, and parameter freezing.

(ii) DGC [12] introduces a method to dynamically adjust the m-
hyperparameters specifically for the gradient checkpoint technique,
based on the available memory resources.

(iii) DGA [13] presents a dynamic adjustment method that adapts
the m-hyperparameters for the microbatch strength, taking into account
the available resources.

(iv) Sage [19] integrates the technologies of DGC and DGA. It
continuously monitors the changes in available memory resources
and dynamically adjusts the current m-hyperparameters using a com-
bination of these two techniques. Sage offers a wider range of m-
hyperparameters adjustment and can be utilized in scenarios with lower
memory resources on the device.

(v) BO [45] employs the Bayesian Optimization algorithm to effi-
ciently select hyperparameters. We directly apply this technique in the
context of m-hyperparameters search.

Evaluation metrics. Accuracy is evaluated by quantifying the en-
hancement in model retraining within a fixed training time window.
Resource consumption is measured by the memory and time during the
retraining process.

4.2. Comparison of retraining accuracy

4.2.1. Comparison of accuracy improvement

The first evaluation tests the CIFAR-10-C dataset [51]. This dataset
contains 15 distinct types of corruption, such as Gaussian noise, blur,
snow, frost, fog, contrast, and others. Each corruption category includes
5 severity levels, thereby offering a diverse scenarios in evaluation. The
evaluation focuses on the adaptation stage of the first six domains of
CIFAR-10-C: natural, gaussian_noise, shot_noise, fog, saturate, and frost.
The experiments run on two memory-constrained devices: Raspberry Pi
and Nvidia Jetson Nano.

Evaluation settings. We set different retraining windows for the
four different DNN models: ResNet-50 (110s), ResNet-101 (200s),
MobileNet-v2 (180s), and MobileViT (200s). For all models, we set the
initial m-hyperparameters batch size, step_accumulate, freezing rate,
segments, epoch, and learning rate to 8, 32, 40%, 20, 5, and 0.085,
respectively.

Evaluation results. We test an average of 100 retraining processes
for each model and report the average percentage of accuracy im-
provement under different domains. As shown in Fig. 5, MPOptimizer
achieves higher accuracy improvements in most of the cases compared
to baseline techniques. For ResNet-50, ResNet-101, MobileNet-v2, and
MobileViT, the average accuracy improvement is 25.32%, 10.58%,
9.5%, and 6.68%, respectively. The result indicates that MPOptimizer
successfully set better configuration of m-hyperparameters that lever-
age limited devices resources to improve model accuracy.

Y. Xu et al.

ResNet-50 ResNet-101

Future Generation Computer Systems 164 (2025) 107600

MobileNet-v2

MobileViT

Jetson Nano

Retraining Window: 110s Retraining Window:200s
T T T T T T T T

o=
Retraining Window:180s Retraining Window:200s
T T T

0 10 220 330 440 550 660 0 200 400 600 800
Time (s) Time (s)

T T T T
1080 0 200 400 600 800 1000

Time (s)

T T T T
1200 0 180 360 540 720 900
Time (s)

T
1000 1200

Rsapberry Pi 4B 8

40

20

<
1Retraining Window:180s

oJRetraining Window:110ls E 1 Retraining Window:200s % Retraining Window:200s
0 110 220 330 440 550 660 0 200 400 600 800 1000 1200 0 10 360 sS40 720 900 1080 0 200 400 600 800 1000 1200
Time (s) Time (s) Time (s) Time (s)
e MPOptimizer Sage BO Static setting =~ —=—=—= DGC —=—-—- DGA

Fig. 5. Percentage of accuracy performance using different m-hyperparameters tuning techniques.

ResNet-50 ResNet-101 MobileNet-v2 MobileViT
500 .y _ 2501
3000 6000 -s00 1000
_ 400 2000 leoo 30007 L800
g 4000 [rose =
< 20004 300 1 1500 4 600 3
& 400 400 2000 3
E 200 1000+ L400 @
(] ol
= 10004 2000 L 200 l200 10004
I 100 " 500 I |'| I |'| 200
. 0 PR | 10 Y Y LR wflwll Wl G, lln B0 0l all un .
) O X & P & ¢ L X & 2 4 R R S PN S BN e O © O & &
@‘0 RO @@ e gq,q&, & P é&t@ @ cgq,%@@ : a?}\o & $,}\\‘9 k) @ﬁq_\@“’ ﬁ‘\ & 0@‘?&@ Loy §-\w
R @ R Qf 2 R o & F
%9 Q © «© o) £ &
o ¥ o® N & & o N

I \Viemory 1 Time

Fig. 6. Comparison of resource consumptions with same accuracy improvement.

Results. When considering all evaluations, MPOptimizer improves re-
training accuracy by 13% on average when using the same memory and
training window as other baseline, and up to 25.3% in ResNet-50.

4.2.2. Impact factors of tuning m -hyperparameters

Following the setting of the previous experiment, this evaluation
tests ResNet-50 model on the Gaussian Noise Domain dataset and
discusses two important factors that influence m-hyperparameter
tuning.

(1) Training time per round. In MPOptimizer, each round of it-
erations completes faster compared to other baseline methods, and
thus the model can achieve higher accuracy with more rounds within
the same training time. This improvement is particularly noticeable
with tight retraining window. For example, ResNet-50 achieved the
highest average accuracy when the training window is only 110 s.
In average, MPOptimizer increases training rounds by 5x compared
to other techniques and thus improves the model accuracy by 9.12%
with the same retraining window. (2) Accuracy improvement per training
round. The m-hyperparameters in MPOptimizer also brings the high-
est accuracy improvement at each training round. Table 2 lists the
m-hyperparameters configurations of all tuning techniques. We can
see the combination of these hyperparameters found by MPOptimizer
achieves the largest accuracy improvement per round.

4.3. Comparison of resource consumption

In this section, we compare the resource consumptions between
MPOptimizer and five m-hyperparameters tuning techniques under the
same accuracy improvements. The evaluation tests the office-31 dataset
and runs on an Nvidia Jetson Xavier NX device.

Evaluation settings. To ensure a fair comparison, all techniques
are configured to achieve an accuracy of over 80% when migrat-
ing from the Amazon domain to the Digital domain. The initial m-
hyperparameters batch size, step accumulation, freezing rate, segments,

Table 2
Example of optimal m-hyperparameter configurations and performance by each tuning
technique on CIFAR10-C (Gaussian Noise Domain).

Bestm-hyperparameters Configuration Found by Each Technique

Tuning technique MPOptimizer Sage BO Static setting DGC DGA
Batch size 4 1 2 8 8 1

Step Accumulate 64 256 128 32 32 256
Freezing Rate 52.60% 40% 27.80% 40% 40% 40%
Segment 44 41 26 20 33 20
Epoch 9 7 3 5 3 2
Learning Rate 0.042 0.0053 0.0081 0.085 0.088 0.0046
The Performance of ResNet-50 by each technique on Gaussian Noise Domain in CIFAR10-C

Tuning techniques MPOptimizer ~Sage BO Static setting DGC DGA

Each round’s training time(s) 12 16 45 35 47 53
Accuracy improvement (%) 69.4 68.7 63.9 62.5 49.4 56.9

epoch, and learning rate are set to 32, 8, 0, 1, and 0.01, respectively.
These values are obtained from pre-training of ImageNet dataset.

Evaluation results. Fig. 6 illustrates the resource consumptions
of different techniques. We can see MPOptimizer outperforms other
baselines by reducing training memory by an average of 1.8x, 5.6x,
2.1x, and 6.8x for ResNet-50, ResNet-101, MobileNet-v2, and Mobile-
Vit, and reducing training time by an average of 6.5x, 11.6x, 1.5x,
and 1.6x, respectively. This is because MPOptimizer comprehensively
utilizes multiple memory reduction techniques and hence benefits from
their performance improvements to find a global optimal solution.

Results. Compared to baseline techniques under the same accuracy
improvement, MPOptimizer reduces memory footprint and training time by
an average of 4.1x and 5.3x, respectively..

4.4. Discussion of accuracy improvement across different domains

This section’s evaluation discusses the migratability of our approach
and the two best hyperparameter tuning techniques in previous exper-
iments: Sage and BO.

Evaluation settings. This evaluation tests a baseline method that
using sufficient memory resource (2000M) to train the ResNet-50

Y. Xu et al.

Jetson Xavier NX

Remaining training time: = training time =}

Jetson Nano

|

Future Generation Computer Systems 164 (2025) 107600

Raspberry Pi 4B

Reconfiguration = Reconfiguration =je

=
= —
First round of learning —jum First round of learning =fu
= |—

F
Initialization = Initialization

Remaining training time =4 —
=== VPOptimizer
Reconfiguration | wes DGA
S DGC
First round of Iearning-;‘7 = BO
— Sage
INitialization ~}— =mm Static Settings

1 1 T T T 1T T 11 T
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80

Time (s)

Time (s)

1 1 1 1 11 11
0 20 40 60 80 100 120 140 160 180 200
Time (s)

T 1 1 1 11
100 120 140 160 180 200

Fig. 7. Time consumed in the first round of configuration.

Jetson Xavier NX Jetson Nan
e s —
e
Memory for retraining —j— Memory for retraining —ju——
= -
m
Reconfiguration s Reconfiguration —ju
I =
= p—
Initialization —juy Initialization —juy
0 1000 2000 3000 0 500 1000 1500
Memory(M) Memory(M)

Fig. 8. Memory consumed in the

Table 3
Classification accuracy (%) on Digits dataset. S:SVHN, U:USPS, M:MNIST.

Method (Source—Target) M-U U-M S—-M Avg.
Baseline (sufficient memory) [23] 82.2 69.6 67.1 73.0
BO 69.1 53.4 49.7 57.4
Sage 75.6 64.3 61.2 67.0
MPOptimizer 80.8 68.9 66.3 72.0

model. In contrast, MPOptimizer, BO, and Sage runs on a Raspberry
Pi device with less than 500M memory. All four techniques has a
retraining window of 10 min for each data domain, and three different
domains of the Digits dataset are tested: SVHN, USPS, and MNIST.

Evaluation results. Table 3 presents the accuracy improvements of
the four techniques when retraining models for different domains. It is
not surprisingly that the baseline technique using the largest memory
has the highest accuracy improvement. MPOptimizer outperforms the
other two techniques in all tested domains. This is because Sage does
not consider accuracy optimization metrics for different datasets, and
BO utilizes more memory in hyper-parameter searching, resulting in
insufficient memory for running the retraining job. BO thus freezes
more parameters and degrades accuracy in retraining. In contrast,
MPOptimizer employs a lightweight tuning technique and prioritizes
accuracy improvement in optimal hyperparameter searching.

Results. MPOptimizer achieves the largest accuracy improvement when
migrating to different three target domains (15% higher than BO and
9.6% higher than Sage), and only has slightly lower accuracy (1% lower)
compared to the baseline method with sufficient memory resource.

4.5. Resource consumption during initialization

This evaluation test the time and memory usage of MPOptimizer
and baseline techniques during the initial round of m-hyperparameter
configuration using ResNet-50 and CIFAR-10-C.

Evaluation settings. The initial round of the training task is con-
ducted with a fixed time duration of 200 s on three different devices:
Nvidia Jetson Xavier NX, Nvidia Jetson Nano, and Raspberry Pi 4B. The
m-hyperparameters are uniformly set to their default values. The prod-
uct of the batch size and accumulate_step are kept constant (256). When

0 Raspberry Pi 4B
Memory for retraining

== MPOptimizer
Reconfiguration ! * DGA
DGC

= BO
R Sage
Initialization Static Settings

2000 0 100 200 300 400 500

Memory(M)

first round of configuration.

the batch size increases, the learning rate also increases proportionally
to ensure an optimal training process.

Evaluation results. Fig. 7 shows that compared to baseline tech-
niques, MPOptimizer completes the initialization faster and thus leaves
more time for retraining. The static setting method has the longest
remaining retraining time because it has no hyperparameter tuning.

In addition, Fig. 8 shows that when running on devices whose
memory capacities are 3000MB, 1800MB, and 500MB, MPOptimizer
and Sage consumes the least amount of memories during initialization,
which take 9% and 7.6% of the total memory, thus remaining the most
resources for retraining.

Results. During the initialization phase, MPOptimizer consumes 60.88% of
the time and 20.95% of memory compared to baseline tuning techniques.

4.6. Discussion of the accuracy enhancement algorithm

This section’s evaluation tests the overheads and accuracy improve-
ment of the accuracy enhancement algorithm in MPOptimizer.

Evaluation settings. ResNet-50 is trained using each of the 15
domains in the CIFAR-10-C dataset. The baseline techniques employ
a memory-intensive training configuration, including a batch size of
256, step accumulation of 1, freezing rate of 0, and a single segment.
MPOptimizer is tested using the accuracy enhancement algorithm or
not.

Evaluation results. Table 4 lists the comparison results. We can
see that using the algorithm indeed increases retraining accuracies by
12.76% when considering all domains, while only slightly increasing
memory usage and training time.

5. Conclusion

In this paper, we present MPOptimizer to optimize configuration of
m-hyperparameters for evolving input distributions in edge-based re-
training jobs. The core part of MPOptimizer is a rule engine that makes
trade-off between three dimensions: memory, time, and accuracy, and
quickly search for the optimal m-hyperparameters configuration for the
current input distribution. MPOptimizer is implemented on PyTorch
and evaluated against state-of-the-art m-hyperparameters optimization
techniques to demonstrate its improvement in both model accuracy and
training performance.

Y. Xu et al.

Table 4
Discussion of accuracy enhancement algorithm using 15 domains.

Future Generation Computer Systems 164 (2025) 107600

Task Baseline

MPOptimizer without accuracy enhancement algorithm

MPOptimizer

Memory (M) Time (s) Accuracy (%) Memory (M) Time (s) Accuracy (%)

Memory (M) Time (s) Accuracy(%)

natural 3113 160 62.6 155 181
gaussian_noise 3328 163 44.1 195 275
shot_noise 3224 162 48.8 157 185
specke_noise 3009 159 48.8 152 175
impuluse_noise 3138 160 36.7 155 180
defocus_blur 3206 160 55.8 156 180
gaussian_blur 3179 160 52.9 153 176
motion_blur 3442 168 51.3 158 192
zoom_blur 3120 160 51.7 155 180
snow 3544 169 58 162 199
fog 3100 160 49.6 152 177
brightness 3240 162 64.5 154 184
contrast 3155 160 40.1 155 182
saturate 3782 176 56.1 169 204
frost 3161 156 63.2 154 179

68.2 178 207 83.9
58.1 211 291 71.3
60.6 182 221 74.7
60.5 176 210 74

51.6 178 206 63

62 180 214 74.8
59.3 178 211 70.8
55.4 185 212 64.6
56 178 217 66.4
64.3 185 235 78.9
50.5 176 212 59

73.9 180 220 92.1
39.5 177 215 47.9
59.8 194 278 72.2
73.3 180 221 92.9

CRediT authorship contribution statement

Yidong Xu: Writing — original draft, Methodology. Rui Han: Writ-
ing — review & editing, Supervision, Investigation, Funding acquisition.
Xiaojiang Zuo: Methodology, Data curation. Junyan Ouyang: Writ-
ing — original draft, Software. Chi Harold Liu: Writing — original
draft, Funding acquisition. Lydia Y. Chen: Writing — review & editing,
Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This paper was supported by the National Natural Science Foun-
dation of China (Grant No. 62272046, 62132019, 61872337). Equal
contributors: Yidong Xu and Xiaojiang Zuo.

Data availability

Data will be made available on request.

References

[1] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, M. Shah, A survey of on-device
machine learning: An algorithms and learning theory perspective, ACM Trans.
Internet Things 2 (3) (2021) 1-49.

[2] J. Chen, X. Ran, Deep learning with edge computing: A review, Proc. IEEE 107
(8) (2019) 1655-1674.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: Paving
the last mile of artificial intelligence with edge computing, Proc. IEEE 107 (8)
(2019) 1738-1762.

[4] M.S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, F. Hussain,
Machine learning at the network edge: A survey, ACM Comput. Surv. 54 (8)
(2021) 1-37.

[5] X. Yao, N. Chen, X. Yuan, P. Ou, Performance optimization of serverless edge
computing function offloading based on deep reinforcement learning, Future
Gener. Comput. Syst. 139 (2023) 74-86.

[6] T. Veiga, H.A. Asad, F.A. Kraemer, K. Bach, Towards containerized, reuse-
oriented Al deployment platforms for cognitive IoT applications, Future Gener.
Comput. Syst. 142 (2023) 4-13.

[7] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Karianakis, K.
Hsieh, P. Bahl, I. Stoica, Ekya: Continuous learning of video analytics models
on edge compute servers, in: 19th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 22, 2022, pp. 119-135.

[8] H. Zhang, M. Shen, Y. Huang, Y. Wen, Y. Luo, G. Gao, K. Guan, A serverless
cloud-fog platform for DNN-based video analytics with incremental learning,
2021, ArXiv, arXiv:2102.03012.

[9] M. Wang, W. Deng, Deep visual domain adaptation: A survey, Neurocomputing
312 (2018) 135-153.

[10] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,
T. Tuytelaars, A continual learning survey: Defying forgetting in classification
tasks, IEEE Trans. Pattern Anal. Mach. Intell. 44 (7) (2021) 3366-3385.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
1. Polosukhin, Attention is all you need, in: Advances in Neural Information
Processing Systems, vol. 30, 2017.

[12] T. Chen, B. Xu, C. Zhang, C. Guestrin, Training deep nets with sublinear memory
cost, 2016, arXiv preprint arXiv:1604.06174.

[13] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam,
Q.V. Le, Y. Wu, et al., Gpipe: Efficient training of giant neural networks using
pipeline parallelism, in: Advances in Neural Information Processing Systems, vol.
32, 2019.

[14] Q. Zhou, Z. Qu, S. Guo, B. Luo, J. Guo, Z. Xu, R. Akerkar, On-device learning
systems for edge intelligence: A software and hardware synergy perspective, IEEE
Internet Things J. 8 (15) (2021) 11916-11934.

[15] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger,
P. Gibbons, Pipedream: Fast and efficient pipeline parallel dnn training, 2018,
arXiv preprint arXiv:1806.03377.

[16] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, G. Zhang, Communication-
efficient federated learning with adaptive parameter freezing, in: 2021 IEEE 41st
International Conference on Distributed Computing Systems, ICDCS, 2021, pp.
1-11.

[17] J. Feng, D. Huang, Optimal gradient checkpoint search for arbitrary computation
graphs, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 11433-11442.

[18] N.S. Sohoni, C.R. Aberger, M. Leszczynski, J. Zhang, C. Ré, Low-memory neural
network training: A technical report, 2019, arXiv preprint arXiv:1904.10631.

[19] I Gim, J. Ko, Memory-efficient DNN training on mobile devices, in: Proceedings
of the 20th Annual International Conference on Mobile Systems, Applications
and Services, 2022, pp. 464-476.

[20] A. Zhou, J. Yang, Y. Gao, T. Qiao, Y. Qi, X. Wang, Y. Chen, P. Dai, W. Zhao, C.
Hu, Brief industry paper: Optimizing memory efficiency of graph neural networks
on edge computing platforms, in: 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium, RTAS, IEEE, 2021, pp. 445-448.

[21] T. Yu, H. Zhu, Hyper-parameter optimization: A review of algorithms and
applications, 2020, arXiv preprint arXiv:2003.05689.

[22] S. Balcerek, V. Karovi¢, V. Karovi¢, Application of business rules mechanism in
IT system projects, in: Developments in Information & Knowledge Management
for Business Applications, vol. 2, 2021, pp. 33-112.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted
residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4510-4520.

[25] S. Mehta, M. Rastegari, MobileViT: Light-weight, general-purpose, and
mobile-friendly vision transformer, 2021, arXiv e-prints, arXiv-2110.

[26] X. Qiang, Y. Hu, Z. Chang, T. Hamalainen, Importance-aware data selection
and resource allocation for hierarchical federated edge learning, Future Gener.
Comput. Syst. (2023).

http://refhub.elsevier.com/S0167-739X(24)00564-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb4
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb4
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb4
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb4
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb4
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb7
http://arxiv.org/abs/2102.03012
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb9
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb9
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb9
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb11
http://arxiv.org/abs/1604.06174
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb14
http://arxiv.org/abs/1806.03377
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb17
http://arxiv.org/abs/1904.10631
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb20
http://arxiv.org/abs/2003.05689
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb25
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb25
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb25
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb26

Y. Xu et al.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

X. Wang, Y. Han, V.C. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge
computing and deep learning: A comprehensive survey, IEEE Commun. Surv.
Tutor. 22 (2) (2020) 869-904.

H. Li, K. Ota, M. Dong, Learning IoT in edge: Deep learning for the Internet of
Things with edge computing, IEEE Netw. 32 (1) (2018) 96-101.

B. Steiner, M. Elhoushi, J. Kahn, J. Hegarty, Model: memory optimizations for
deep learning, in: International Conference on Machine Learning, PMLR, 2023,
Pp. 32618-32632.

M. Katsaragakis, L. Papadopoulos, M. Konijnenburg, F. Catthoor, D. Soudris, A
memory footprint optimization framework for Python applications targeting edge
devices, J. Syst. Archit. 142 (2023) 102936.

A. Dorri, S.S. Kanhere, R. Jurdak, MOF-BC: A memory optimized and flexible
blockchain for large scale networks, Future Gener. Comput. Syst. 92 (2019)
357-373.

S. Vadera, S. Ameen, Methods for pruning deep neural networks, IEEE Access
10 (2022) 63280-63300.

B.J. Eccles, P. Rodgers, P. Kilpatrick, I. Spence, B. Varghese, DNNShifter: An
efficient DNN pruning system for edge computing, Future Gener. Comput. Syst.
152 (2024) 43-54.

J. Gou, B. Yu, S.J. Maybank, D. Tao, Knowledge distillation: A survey, Int. J.
Comput. Vis. 129 (2021) 1789-1819.

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

J. Ren, S. Rajbhandari, R.Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang, D. Li, Y.
He, {ZeRO—Of fload}: Democratizing { Billion—Scale} model training, in: 2021
USENIX Annual Technical Conference, USENIX ATC 21, 2021, pp. 551-564.

M. Merenda, C. Porcaro, D. lero, Edge machine learning for ai-enabled iot
devices: A review, Sensors 20 (9) (2020) 2533.

R. Zaheer, H. Shaziya, A study of the optimization algorithms in deep learning,
in: 2019 Third International Conference on Inventive Systems and Control, ICISC,
IEEE, 2019, pp. 536-539.

L. Yang, A. Shami, On hyperparameter optimization of machine learning
algorithms: Theory and practice, Neurocomputing 415 (2020) 295-316.

S. Liu, T. Ju, Apapo: An asynchronous parallel optimization method for DNN
models, Future Gener. Comput. Syst. 152 (2024) 317-330.

W. Chen, X. Dong, X. Chen, S. Liu, Q. Xia, Q. Wang, pommDNN: Performance
optimal GPU memory management for deep neural network training, Future
Gener. Comput. Syst. (2023).

J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine
learning algorithms, in: Advances in Neural Information Processing Systems, vol.
25, 2012.

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, E.P. Xing, Neural archi-
tecture search with bayesian optimisation and optimal transport, in: Advances
in Neural Information Processing Systems, vol. 31, 2018.

X. Ma, A.R. Triki, M. Berman, C. Sagonas, J. Cali, M.B. Blaschko, A Bayesian
optimization framework for neural network compression, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 10274-10283.
X. Li, G. Zhang, W. Zheng, SmartTuning: selecting hyper-parameters of a ConvNet
system for fast training and small working memory, IEEE Trans. Parallel Distrib.
Syst. 32 (7) (2020) 1690-1701.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, D. Sculley, Google vizier:
A service for black-box optimization, in: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017, pp.
1487-1495.

R.T. Marler, J.S. Arora, The weighted sum method for multi-objective
optimization: new insights, Struct. Multidisc. Optim. 41 (2010) 853-862.

S. Falkner, A. Klein, F. Hutter, BOHB: Robust and efficient hyperparameter
optimization at scale, in: International Conference on Machine Learning, PMLR,
2018, pp. 1437-1446.

F. Habibi, F. Barzinpour, S. Sadjadi, Resource-constrained project scheduling
problem: review of past and recent developments, J. Project Manag. 3 (2) (2018)
55-88.

D. Wang, E. Shelhamer, S. Liu, B.A. Olshausen, T. Darrell, Fully test-time
adaptation by entropy minimization, 2020, ArXiv, arXiv:2006.10726.

A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny
images, 2009.

10

Future Generation Computer Systems 164 (2025) 107600

Yidong Xu is a Master student at the School of Computer
Science and Technology, Beijing Institute of Technol-
ogy, Beijing, China. His research interests include edge
computing and deep learning optimization.

Rui Han is an Associate Professor at the School of Computer
Science and Technology, Beijing Institute of Technology,
China. Before joining BIT, He received M.Sc. with honor
in 2010 from Tsinghua University, China, and obtained his
Ph.D. degree in 2014 from Imperial College London, UK.
His research interests are system optimization for cloud data
center workloads (in particular highly parallel services and
deep learning applications). He has over 40 publications in
these areas, including papers at MobiCOM, TPDS, TC, TKDE,
INFOCOM, and ICDCS.

Xiaojiang Zuo is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology, Beijing
Institution of Technology, Beijing, China. His research in-
terests include federated learning and edge computing.

Junyan Ouyang is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology, Beijing In-
stitute of Technology, Beijing, China. His research interests
include deep learning, federated learning and privacy.

Chi Harold Liu (SM’15) received the B.Eng. degree from
Tsinghua University, Beijing, China, and the Ph.D. degree
from the Imperial College London, London, UK. He is
currently a Full Professor and the Vice Dean with the School
of Computer Science and Technology, Beijing Institute of
Technology, Beijing. Before that, he worked for IBM Re-
search - China and Deutsche Telekom Laboratories, Berlin,
Germany, and IBM T. J. Watson Research Center, USA. He
is now an Associate Editor for IEEE Trans. Network Science
and Engineering. His current research interests include the
big data analytics, mobile computing, and deep learning. Dr.
Liu is a fellow of IET, and a fellow of Royal Society of the
Arts.

Lydia Y. Chen is a full professor in the Department of
Computer Science at the Technology University Delft. Prior
to joining TU Delft, she was a research staff member at the
IBM Zurich Research Lab from 2007 to 2018. She received
Ph.D. from the Pennsylvania State University and B.A from
National Taiwan University Her research interests center
around dependability management, resource allocation and
privacy enhancement for large scale data processing systems
and services. She has published more than 80 papers in
journals, e.g., IEEE Transactions on Distributed Systems,
IEEE Transactions on Service Computing, and conference
proceedings, e.g., INFOCOM, Sigmetrics, DSN, and Eurosys.
She was a co-recipient of the best paper awards at CCgrid’15
and eEnergy’15. She is a senior IEEE member.

http://refhub.elsevier.com/S0167-739X(24)00564-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb28
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb28
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb28
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb32
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb32
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb32
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb34
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb34
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb34
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb40
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb40
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb40
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb47
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb47
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb47
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb49
http://arxiv.org/abs/2006.10726
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00564-8/sb51

	Adaptive ensemble optimization for memory-related hyperparameters in retraining DNN at edge
	Introduction
	Background and Related Work
	Memory Footprint of Training
	Memory Hyperparameter Definition
	Hyperparameter Optimization Techniques

	MPOptimizer
	Overview
	Problem Statement
	Resource Profiler
	Rule Engine
	Tuning Controller
	Running example

	Evaluation
	Evaluation Settings
	Comparison of Retraining Accuracy
	Comparison of Accuracy Improvement
	Impact Factors of Tuning m -hyperparameters

	Comparison of Resource Consumption
	Discussion of Accuracy Improvement across Different Domains
	Resource Consumption during Initialization
	Discussion of the Accuracy Enhancement Algorithm

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

