
 
 

Delft University of Technology

Spatial dynamics of household energy consumption and local drivers in Randstad,
Netherlands

Mashhoodi, Bardia

DOI
10.1016/j.apgeog.2018.01.003
Publication date
2018
Document Version
Accepted author manuscript
Published in
Applied Geography

Citation (APA)
Mashhoodi, B. (2018). Spatial dynamics of household energy consumption and local drivers in Randstad,
Netherlands. Applied Geography, 91, 123-130. https://doi.org/10.1016/j.apgeog.2018.01.003

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.apgeog.2018.01.003
https://doi.org/10.1016/j.apgeog.2018.01.003


1 

Spatial Dynamics of Household Energy Consumption and Local Drivers in Randstad, Netherlands 

Abstract 

This study is an attempt to bridge an eminent knowledge gap in the empirical studies on Household Energy 

Consumption (HEC): the previous studies implicitly presumed that the relationships between HEC and the 

geographic drivers is uniform in different locations of a given study-area, and thus have tried to disclose such 

everywhere-true relationships. However, the possible spatially varying relationships between the two remain 

unexplored. By studying the performance of a conventional OLS model and a GWR model -adjusted R
2
, 

randomness of distribution of residual (tested by Moran’s I), AIC and spatial stationary index of the geographic 

drivers, ANOVA test of residuals- this study demonstrates that the GWR model substantially provides a better 

understanding of HEC in the Randstad. In this respect, the core conclusion of this study is: the relationships 

between HEC and geographic drivers are spatially varying and therefore needed to be studied by means of 

geographically weighted models. Additionally, this study shows that considering spatially varying relationships 

between HEC and geographic drivers, by application of hierarchical clustering, the areas of the Randstad can be 

classified in four clusters: building age and income impact areas, building density impact areas, population 

density and built-up impact areas, household size and income impact areas.     

Highlights 

 The geographic drivers of household energy consumption are spatially varying

 Household energy consumption has to be studied by geographically weighted models

 Policies regarding household energy consumption need to be location-specific
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Household Energy Consumption, Geographically weighted regression, Randstad, Netherlands 
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Spatial Dynamics of Household Energy Consumption and Local Drivers in Randstad, Netherlands 

 

1. Introduction  

 

 

 

Curbing level of energy consumption has been matter of policy makers’ interest since 1970s subsequent to 

geopolitical turmoil in 1973 and 1979. The interest has been widened into the environmental impact of energy 

consumption, particularly greenhouses gases (GHG) emission and global warming, following United Nations 

Framework Convention on Climate Change (UNFCC) in 1992, and preparation of Kyoto treaty in 1997, and 

United Nations Climate Change Conference held in Paris, 2015. However, despite the effort spend on 

international treaties, between 1990 and 2012, final energy consumption in EEA countries (the European 

Economic Area) increased by 6.5% (European Environment Agency, 2015a). In EU-15 countries between 1990 

and 2011, the GHG emission decreased for 14.9% (European Environment Agency, 2013), which is still short of 

the target set by 2020 climate & energy package: 20% cut from 1990 level (Climate Action 2020 European 

commission, 2009). The share of Households energy consumption (HEC) in total energy use is substantial. In 

EU-27 countries in 2010, HEC accounts for some 27% of the total final energy consumption (European 

Environment Agency, 2015b) and creates 25% of GHG emissions (European Environment Agency, 2012). In 

the Netherlands, in order to reduce HEC, Third National Energy Efficiency Action Plan for the Netherlands 

(Ministry of Economic Affairs, 2014) introduces set of incentives and regulations, applicable for all the 

locations of the country, which mainly aim for improving quality of buildings e.g. low interest loans for building 

insulation, low-interest loans for building renovation, stricter energy standards for new construction, and 

compulsory measures to ensure efficiency of buildings’ heating and ventilation appliances. 

 

Many previous studies explored the impact of variety of geographic drivers on the HEC. Plenty of the previous 

studies have established links between level of the income of the inhabitants and the level of HEC (for instance 

Yun & Steemers, 2011; Druckman & Jackson, 2008; Joyeux & Ripple, 2007). Several previous studies found 

associations between family type and HEC, mainly concluding that consumption per head drops as the size of 

family grow (for instance Fong et al., 2007; Lenzen et al., 2006; Tso & Yau, 2003). The age of the inhabitants is 

also introduced as one of the significant drivers of HEC, particularly the portion of children and senior citizens 

from total population (Yun & Steemers, 2011; York, 2007; Yust et al., 2002). Moreover, the higher percentage 

of economically inactive inhabitants –for instance inhabitants with disability or retired- has been seen as sources 

of higher HEC (for instance Fong et al., 2007). The HEC of the inhabitants of different housing tenure also 

found to be meaningfully different due to varying level of investment in insulation and different methods of 

payment for energy cost (for instance Druckman & Jackson, 2008; Tso & Yau, 2003; Aydinalp et al., 2004). 

Several studies highlighted significant variation of HEC between different types of dwellings, for instance 

between single-family and multi-family houses, and also between dwellings of different age (for instance Yun & 

Steemers, 2011; Druckman & Jackson, 2008; Aydinalp et al., 2004). Moreover, land-cover has been found to be 

effective on HEC due to its links with formation of urban heat islands (for instance Madlener & Sunak, 2011; 

Georgakis & Santamouris, 2006; Hui, 2001). Wind intensity is found to impact HEC by affecting the thermal 

exchange between buildings and outside space by affecting infiltration and exfiltration of the buildings (for 

instance Sanaiean et al., 2014; van Moeseke et al., 2005). Ewing and Rong (2008) suggest that higher building 

density could decrease the energy used for heating, and increase that for cooling. Several studies suggest that the 

surface-to-volume ratio of the building affects the heat loss of buildings and HEC (for instance Steemers and 

Yun, 2009; Druckman and Jackson, 2008; Lenzen et al., 2006). Population density is also considered as an 

effective determinant of HEC (for instance York, 2007; Lenzen et al., 2006). 

 

 

A knowledge gap is eminent in the current body of literature on HEC: all of previous studies implicitly 

presumed that geographic drivers have an unvarying impact on HEC across a given area, and therefore 

attempted to disclose such everywhere-true impacts. Consequently, the policies-recommendation brought 

forward by previous study are uniform and generic for all areas in question instead of location-specific and 

spatially varying. The core objective of this research is to tackle such knowledge gap chasing answers to the 

following questions: (a) Are the relationships between HEC and the geographic drivers spatially varying across 
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the areas of the Randstad region, the Netherlands? (b) If yes, how such relationships differ across the areas of 

the Randstad region?  

 

 

To do so, this study aim to conduct geographically weighted regression (GWR) for studying HEC. The method 

has been successfully deployed in several geographic studies of different disciplines such as afforestation 

(Clement et al., 2009), regional wealth and land cover (Ogneva-Himmelberger et al., 2009), urban landscape 

fragmentation (Gao & Li, 2011), agriculture and urbanization (Su et al., 2012), land use and water quality (Tu, 

2011), residential land price (Hu et al., 2016), late-stage prostate cancer diagnosis (Goovaerts et al., 2015), 

urban heat island (Ivajnšič et al., 2014), and fire density (Oliveira et al., 2014). However, surprisingly, HEC 

studies are lagging behind in application of GWR. To bridge this gap, this study investigates the location-

specific effect of variety of socioeconomic, housing, urban morphology, solar radiation and wind-intensity 

related indicators on HEC in the neighborhoods of the Randstad region, the Netherlands. 

 

 

2. Material and Methods 

 

2.1 Case study 

 

The study-area is consisted of buurten, a spatial division defined by the Dutch central bureau of 

statistics (CBS), roughly could be translated as neighborhoods, in the Randstad region in 2013 

(account for 2413 neighborhoods). The Randstad is a conglomeration of highly urbanized areas located 

in the south west of the Netherlands comprising the four major Dutch cities of Amsterdam, Rotterdam, 

the Hague and Utrecht, as well as the relatively less urbanized areas between them – the so-called 

“green heart”. In order to avoid the boundary-effect problem in GWR models, we also defined 

“analysis areas” which is consist of the study-area plus a 20 km buffer around it  (3514 neighborhoods 

in total). All the calculations are conducted on the analysis area, however at the end only the results 

obtained for areas within the study-areas are reported (Figure 1). 

    

2.2 Data collection and processing   

 

2.2.1 Dependent variable 

 

The dependent variable of this study is average annual energy expenditure per head within the 

dwellings on gas and electricity, in 2013 (Figure 1). The data on consumption of gas and electricity are 

extracted from wijk-en-buurtkaart 2013 (Centraal Bureau voor de Statistiek, 2013). As the available data 

does not indicate the neighborhoods with solar energy supply or district heating, the abnormal values 

of gas and electricity use needed to be filtered out thus univariate outliers of gas and electricity use 

(incidents with z-value <= -2.5 or z-value >= +2.5 ) are identified as outlier and excluded. The average 

cost of gas and electricity for domestic consumption in 2013 in Netherlands, is taken from Eurostat 

(Eurostat, 2015). 
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Figure 1: Annual energy expenditure per capita (dependent variable of this study), the study-area and 

the analysis area. 

 

2.2.2 Independent variables 

 

This study is conducted on 21 independent variables (Table 1). The first two variables indicate the 

portion of the population aged 14 or younger and aged 65 or older. One variable show population 

density per square kilometer. One variables specify the household structure by demonstrating average 

household size. Three variables show economic status of the residents: average annual disposable 

income per head (in euros), Percentage of population aged 15–64 receiving disability benefits, and 

Percentage of population aged 15–64 receiving unemployment benefits. Four variables are deployed in 

order to describe the status of housing tenure in the areas: Property-value (WOZ in Dutch), shows the 

average value of residential real estate in the areas; percentage of housing tenure owned by public 

associations (not necessarily social housing); median age of residential buildings; and percentage of 

residential floor area constructed after the introduction of building energy-efficiency standards in 

1988. Land-cover of the areas is further explained by means of two variables including the portion of 

built-up areas, semi built-up areas and portion of green land covers (consisted of recreational, 

agricultural and natural areas). 

 

The status of urban morphology (properties related to geometrical distribution of the building masses 

within space) is described using five variables: floor area ratio (FAR); building coverage ratio (BCR); 

buildings’ surface to volume ratio; frontal area index (f ) - the ratio of total building walls facing wind 

flow to neighborhoods’ total area; and rugosity, the variation of building height which, adopted from 

Adolph (2001), is calculated as the standard deviation of height values of Digitally Elevated Model 

(DEM) of the neighborhoods. As a proxy for wind speed, aerodynamic roughness length (ARL), the 

height in which the effective wind speed is theoretically zero, is used. Higher values of ARL 

correspond with lower wind intensity (Landsberg, 1981). The morphometric model introduced by 

Macdonald et al. (1998), one of the most comprehensive models according to a review by Grimmond 

and Oke (1999), is used:  
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𝑍𝑑

𝑍𝐻
= 1 + 𝛼−𝐵𝐶𝑅(𝐵𝐶𝑅 − 1)                                                                                                   (equation 1)                                                                                                             
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𝑍𝐻
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𝑘2
(1 −

𝑍𝑑

𝑍𝐻
))

−0.5

)                                                                 (equation 2)                                                                            

 

 

 

 

Where Z0 is aerodynamic roughness length for momentum, Zd is zero-plane displacement height, ZH is 

height of roughness element (m), BCR is building coverage ratio, f frontal area index, α = 4.43, β = 

1.0, k = 0.4, and CD  1.  

 

Deploying the Arcgis 10.2 solar radiation toolbox, status of solar radiation is described by two 

variables: solar radiation per square meters of neighborhoods’ surface (solar radiation on neighborhood 

(WH/m2)) and per cubic meters of the buildings (solar radiation per building volume (WH/m3)). Each 

of the values show the average solar radiation on the longest (21 June) and shortest (21 December) day 

of 2013.  

 

 

The data on the first socioeconomic are provided by wijk-en-buurtkaart 2013 (Centraal Bureau voor de 

Statistiek, 2013). The data on land-cover are extracted from Bodemgebruik database. 2012(Bodemgebruik, 

2012). The DEM used to prepare the urban morphology and wind and solar variables, is prepared based 

on the building height database in the Netherlands, the so-called as 3D BAG (Esri Netherlands, 2016).  

 

 

2.2.3 Factor analysis of the independent variables 

 

To avoid the potential misleading results caused by multicollinearity between the 21 independent 

variables, factor analysis, with extraction method of principal component analysis and rotation method 

of Oblimin with Kaiser Normalization, is deployed. As result, the effect of the variables is compressed 

in five factors (Table 1). The five factors account for almost 75% of the total variance of the variables. 

The first factor, FAC1 Population density & built-up areas, is positively loaded onto built up coverage 

(%), BCR, f, population density and FAR, and negatively on green-coverage (%). The second 

component, FAC2 Income & private tenure, is positively loaded onto income per capita and property 

value, and negatively loaded onto disability (%), unemployment (%) and public rental (%). FAC3 

Household size & population younger than 14, is positively loaded onto population ages 0–14 (%) and 

household-size, and negatively loaded onto population ages 65+ (%). FAC4 Building age, is positively 

loaded onto building median age, and negatively onto floor area after 1988 (%). FAC5 Building 

density, is and positively onto FAR, rugosity and ARL and negatively onto solar radiation per building 

volume (WH/m3) and solar radiation on neighborhood (WH/m2).  
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Factors 

    

Variables FAC1 

population 
density & 

built-up areas 

FAC2                  

Income & 
private tenure 

FAC3 

Household 
size & 

population 

younger than 
14 

FAC4             

Building age 

FAC5 

Building 
density 

built-up coverage (%) ,977 -,089 -,091 -,177 -,067 

building coverage ratio (BCR) ,905 ,075 ,005 ,177 -,005 

green-coverage (%) -,891 ,086 ,075 ,216 -,065 

frontal area index ,750 ,021 ,064 ,201 ,291 

population-density ,621 -,165 ,231 ,125 ,270 

income per capita ,126 ,892 -,304 -,113 ,121 

public-rent (%) ,050 -,780 -,070 -,047 ,183 

property-value -,276 ,739 -,058 ,020 -,085 

disability (%) -,147 -,631 -,266 -,024 ,088 

unemployment (%) ,221 -,481 -,056 -,040 -,014 

population ages 65+(%) ,019 ,037 -,891 -,067 -,064 

population ages 0-14 (%) -,020 ,002 ,748 -,343 -,125 

household-size -,167 ,218 ,478 -,338 -,380 

building median age -,061 ,110 ,046 ,855 ,119 

floor area after 1988 (%) -,013 ,205 ,283 -,674 ,267 

solar radiation per building volume ,028 ,089 -,055 ,002 -,919 

rugosity ,288 -,021 ,026 ,139 ,751 

solar radiation on neighbourhood  -,260 -,031 -,066 -,273 -,741 

aerodynamic roughness length (ARL) ,175 -,168 -,001 -,143 ,721 

floor area ratio (FAR) ,484 ,099 ,067 ,306 ,532 

Buildings’ surface to volume ratio ,067 -,005 ,191 ,138 -,379 

 

Table 1: Independent variables of the study and pattern matrix showing the loading of factors on 

independent variables. Coefficients with absolute value greater than 0,400 are marked bold.  
 

 

2.3 Geographically weighted regression 

 

The first session of the method is consisted of a conventional linear regression model, (see equation 3), 

which assess the generalizable influence of geographic drivers on HEC:  

 

iik

k

ki xy   0                                                                                                        (equation 3)                                                                                                             

 

Where iy represent the estimated value of HEC in the location i , 0 show the intercept of the 

estimation, k denote the coefficient slope of the factor k, ikx represents its value of factor in location i
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. 
i accounts for the random error term in location i . The second session, GWR model, (see equation 

4), is deployed on the same dataset: 

 

iikii

k

kiii xy    ),(),(0                                                                                  (equation 4)                                 

 

Where ( , )i i  express the geographic coordination of location i . ( , )k i i   and ),(0 ii  are the local 

coefficient and intercept of factor k estimated specific to location i . The local estimates are obtained 

by weighting the instances around location i  (equation 5): 

 
1ˆ( , ) ( ( , ) ) ( , )T TX W X X W y                                                                                        (equation 5)                     

 

Where ˆ( , )    denote the unbiased estimate of   , ( , )W   is weighting matrix obtained by means of 

adaptive Gaussian function (equation 6): 

   

)/exp( 2

)(

2

kiijij dW  , if  
)(kiijd   

0ijW  ,                       otherwise                                                                                              (equation 6)                                                                                                        

 

Where   
ijW  denote the weight of instance observed at location j for estimating the coefficient at 

location i , 
ijd  is the bird-fly metric distance between i  and j  , and 

)(ki is an adaptive bandwidth 

defined as the distance from the kth nearest neighbor distance. In this study, using ArcGIS (version 

10.2), the bandwidth is specified as 108 neighbors, in order to minimize the Akaike Information 

Criterion (AIC) of the GWR model.  

 

The performance of the OLS and GWR model are compared by means of five test: improvement of 

adjusted R
2
; reduction of AICc (for at least three points as previously established by other authors e.g. 

Hu et al., 2016; Gao & Li, 2011); the randomness of the spatial distribution of the residual of the two 

models (assessed by Moran’s I); ANOVA test of improvement of residual in GWR model; and spatial 

stationary index - the ratio of interquartile ranges of the standard error of coefficients in GWR model 

to twice of standard error of the coefficients in OLS model (Charlton et al, 2003).  

 

 

At the last session, is cluster analysis of GWR results. The advantages of GWR models is provision of 

an extensive number of local coefficients. However, such an advantage is also a challenge where the 

summarization and interpretation of the results for the end users –e.g. policy makers-  could be 

challenging (Mennis, 2013, Matthews & Yang, 2012). In this respect, in order to summarize the results 

of GWR in an interpretable format, hierarchical clustering technique, with Ward’s method and 

squared Euclidean distance, on the local standardized coefficients of GWR model is conducted 

(insignificant coefficients are considered equal to zero). The study areas are subsequently clustered 

into two, three and four groups (see dendrogram in Fig 4a). The clusters are compared by one-way 

ANOVA test of the local coefficients and named after the effects which differentiate them the most 

from one another. 
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3. Results 

 

3.1. Comparison between performance of OLS and GWR models 

 

Comparison between adjusted R
2
 of the two models (see Table 2) show some 10% improvement of the 

estimation by deploying geographically weighted model (0.796 in GWR model compare to 0.691 of 

OLS). The spatial variation of the adjusted R
2
 is demonstrated in Fig. 2. The range of the local 

adjusted R
2
 (0.48 to 0.91) show that the goodness-of-fit of the estimation of some 76% of the studied 

areas is higher than that of OLS model. The geographic pattern of the values show a concentration of 

higher values of R
2
 around The Hague, Haarlemmermeer, Amsterdam west and Zoetermeer, Utrecht 

west and Barendrecht. in contrary, the goodness-of-fit in the areas of central Rotterdam, central 

Utrecht, Leiden and Dordrecht are the lowest values within Randstad. Presumably, the latent variables 

affecting HEC, such as detailed information on dwellings quality as well as individual habits, have a 

stronger impact in these areas.  

 

 
 

Figure 2 : Local adjusted R-squared of GWR estimation of HEC in the Randstad 

 

 

 

AICc of the GWR model is substantially smaller than that of OLS (4780 of GWR compare to 5882 in 

case of OLS model), indicating remarkable better performance in this respect. In case of this study, 

Moran’s I of the GWR model is substantially closer to 0, implying higher randomness of distribution 

of its residual compare to that of OLS model , -0.008 in case of GWR compare to 0.272 of OLS. As all 

the spatial stationary indices are greater than one, the results demonstrate that the impact of all the 

geographic factors are spatial non-stationary and therefore need to be locally studied. (Table 2).      
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Variable GWR results     OLS 

results 

 β Mean β Min β Max β SD Stationary index β  

Intercept -0,004 -0,537 0,507 0,199   0,000* 

FAC1 population density & built-up areas -0,178 -0,729 0,215 0,118 1,125  -0,199* 

FAC2 Income & private tenure 0,459 -0,065 0,793 0,123 1,772  0,420* 

FAC3 Household size & population younger 
than 14 

-0,453 -0,848 0,062 0,124 1,142  -0,482* 

FAC4 Building age 0,432 -0,141 0,861 0,143 2,263  0,361* 

FAC5 Building density -0,261 -1,069 0,247 0,183 2,622  -0,321* 

 

        
R-squared 0,830       0,692* 

Adjusted R-squared 0,796       0,691* 

AICc 4780,15       5852,00 

Residuals Moran's I -0,0078      0,2715 

Neighbours 108,000       
β: standardized regression coefficient       
* p-value <0,05        

 

Table 2. Estimated parameters and diagnostic statistics in the OLS and GWR models. 

 

 

The ANOVA test of the residuals of GWR and OLS model show the significant improvement in case 

of the former (Table 3). 

  Df Sum Sq Mean Sq F value 

OLS Residuals 6.000 1083.53     

GWR Improvement 92.037 272.63 296.213   

GWR Residuals 3.415.963 810.90 0.23739 12.478* 

*p-value < 0,001         

 

 

Table 3. ANOVA test of residuals of GWR and OLS models 

 

 

 

Local coefficient of the FAC1 population density & built-up areas ranges from -0.729 to 0.215 where 

the global coefficient of the factor, obtained from OLS model, is -0,199 (Table 2). Study of the 

significance level of the local coefficient at p<0.05 level reveals that merely some 58% of the local 

coefficients of the FAC1 are significant. Almost all of the significant local coefficients are negative. In 

other words, in almost three fifth of the areas the higher values of the factor are associated with lower 

levels of HEC. The highest negative elasticity between FAC1 population density & built-up areas and 

HEC is observed in some areas of city of Utrecht. Some dispersed pockets of high negative elasticity 

are also identified in the so-called green heart areas (Fig 3a).       

 

Local coefficients of FAC2 Income & private tenure range from -0.065 to 0.793 compare to 0.420 of 

the global model (Table 2). Some 99% of the local coefficients are found significant at the p<0.05 

level, which are all positively associated with HEC. The elasticity between FAC2 Income & private 

tenure and HEC reaches its maximum in Haarlemmermeer and Harlem. The magnitude of the positive 
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elasticity roughly resembles in case of Amsterdam, Utrecht and The Hague. Whereas, in case of 

Rotterdam either the coefficient estimate is not significant or the its magnitude is marginal (Fig 3b). 

 

Although local coefficients of the FAC3 Household size & population younger than 14 range from -

0.848 to 0.062 (compare to -0.482 in global model), however all of the significant coefficients, account 

for some 97% of the areas, are positive. Relatively high elasticity between FAC3 Household size & 

population younger than 14 and HEC is estimated in case of city center of Amsterdam and Leidn. No 

significant elasticity between the factor and HEC is estimated in city the centers of Utrecht. Though 

the estimated coefficient in case of Rotterdam is significant, however the magnitude is relatively 

modest (Fig 3c).       

  

Local coefficient of the FAC4 Building age ranges from -0.141 to 0.861 (compare to 0.361 in global 

model). Some 95% of the estimated coefficients values are significant (at p-value< 0.05 level) which 

all are all positive. The largest elasticity between HEC and FAC4 Building age is estimated in some 

areas of the so-called green heart particularly in vicinity of Zoetermeer. FAC4 Building age is 

estimated to substantially increase level of HEC in vicinity of Zandaan and Dordrecht (Fig 3d). 

 

In case of local coefficient of the FAC5 Building density, although the values are ranged from -1.069 

to 0.247 (compare to -0.321 of the OLS model), however almost all the significant coefficients, 

observed in some 62% of the study areas, are negative. The concentration of the high values of 

estimated coefficient is central areas of Utrecht and Rotterdam. Also, high elasticity are estimated for 

areas north of Amsterdam and around port of Rotterdam (Fig 3e).   
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Figure 3: Local standardized coefficient of the independent factors and their level of significance. The 

box plot illustrates the variability of the significant coefficients. 
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3.2. The typologies of local geographic impacts on HEC 

 

 

As result of hierarchical clustering of the local standardized coefficients of the independent factors, 

insignificant coefficients are considered to be equal to zero, four clusters are identified. ANOVA table 

show that all the clusters are significantly differentiated based on the mean value of local standardized 

coefficients (Fig 4).  

 

The first impact-type, differentiated at the first stage of clustering (see dendrogram at Fig 4a) labelled 

“Cluster1 building age and income”, accounts for some 39,9% of the studied-areas. The areas of the 

type are differentiated from those of the other impact-types according to substantial positive 

coefficients of FAC4 Building age and FAC2 Income & private tenure. The impact of FAC1 

population density & built-up areas and FAC3 Household size & population younger than 14 are 

roughly at the average level of local coefficients in the Randstad. The impact of FAC5 Building density 

on HEC in the areas of this type is marginal (Fig 4c).  

 

The areas of the second impact-type, differentiated in the second stage of clustering, account for 11,1% 

of the areas, are identified as “Cluster2 building density” as FAC5 Building density show the largest 

negative coefficient value. The impact of FAC1 population density & built-up areas is roughly at the 

average level of local coefficients in the Randstad. That of FAC2 Income & private tenure, FAC3 

Household size & population younger than 14 and FAC4 Building age are lower than other clusters.  

 

Two clusters are identified in the third stage of clustering. In the areas of the third impact-type, 

labelled as “Cluster3 population density and built-up area”, accounting for 23% of the study areas, 

merely one factors have remarkable impact on HEC: FAC1 population density & built-up areas. 

Whereas, the impact of other factors is almost at the average of the Randstad areas. 

 

The fourth impact-type, account for 26% of the areas, is identified as “Cluster4 household size and 

income” are differentiated by substantial impact of two factors: FAC2 Income & private tenure, FAC3 

Household size & population younger than 14. The impact of FAC1 population density & built-up 

areas on the areas of this cluster is almost zero, and that of FAC4 Building age and FAC5 Building 

density stands at average level.    
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Figure 4: Four types of impact of geographic drivers on HEC obtained by hierarchical clustering of 

local standardized coefficients 
 

 

4. Discussion 

 

The core aspect of this exploration was whether the impacts of geographic drivers on HEC are 

spatially non-stationary or not, and whether GWR models provide a better understanding of HEC 

rather than conventional OLS. As illustrated by the comparison between conventional OLS model and 

GWR model on HEC, the latter model significantly improves our understanding of HEC’s drivers in 

different aspects: goodness-of-fit of estimate is some 10% higher (measured by R
2
); AIC is 

substantially lower; and the residual of the model is smaller and more randomly distributed (tested by 

means of ANOVA and Moran’s I test on residual). In addition, verified by spatial stationary index, it is 

demonstrated that the impacts of all the geographic factors on HEC vary over the study areas.  

 

Considering the second research question, how the impacts of geographic drivers on HEC differ across the 

urban areas of the Randstad urban region, subsequent to application of GWR model, four types of impacts 

on HEC are identified: building age and income impact, building density impact, population density 

and built-up area impact, and household size and income impact. However, the output of GWR models 

is limited into discovering the associations and does not disclose the causal mechanisms. in this 

section, for sake of opening up new discussion and stimulating further studies, some speculations of 

the causal mechanisms are presented.  
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The first type of impact, called as “building age and income”, highlights the areas in which HEC is the 

most increased by building age, inhabitants’ income and property value. The neighborhoods of this 

cluster are mainly less urbanized areas of the Randstad. Presumably, considering the higher amount of 

free standing dwellings, the impact of quality of buildings on HEC is remarkably higher compare to 

other clusters. In a similar fashion, higher income and private tenure, which presumably is associated 

with larger dwelling size and possession of more appliances, has a substantial impact on increasing 

HEC. Observed positive elasticity of income shows that though the more affluent inhabitants can 

afford better maintenance and insolation for their dwellings, however, due to different life style, 

ultimately their energy consumption outnumber that of those with lower income.  

 

The second type of impact, labelled as “building density”, is mainly identified by remarkable impact of 

high FAR and low solar radiation and wind intensity (associated with high values of ARL) on 

decreasing HEC. The areas of this cluster are mainly located in Rotterdam and Utrecht. Presumably 

the remarkable impact of these indicators in these cities is related to higher variability of building 

density compare to rest of the neighborhoods. One possible reason for impact of FAR on decreasing 

HEC is compactness of dwellings and higher heat exchange between them. FAR could be also 

associated with formation of urban-heat-islands (UHI) which can result in higher air temperature and 

thus decrease HEC (similar to conclusions drawn by Ewing and Rong, 2008). The association between 

lower HEC and lower solar radiation and wind intensity could be due to two causal mechanisms. First, 

higher solar radiation presumably raises electricity use for cooling and ventilation in warm and sultry 

months, whereas it is supposedly not intense enough to decrease the amount of energy used for 

warming in cold seasons. Second, presumably high wind intensity increases thermal loss of the 

buildings due to higher levels of infiltration and exfiltration – which can raise gas use (Sanaiean et al., 

2014, van Moeseke et al., 2005). Apparently, such energy loss offsets the thrift gained by better 

ventilation in windy areas.  

 

The third impact-type, labelled as “population density and built-up areas”, highlights the areas in 

which HEC is the most affected by population density and presence of built-up areas. The areas of this 

cluster are mainly located in the fringes of the big cities of the Randstad. Such areas could vastly vary 

in population density as they include different types of developments ranged from populated modernist 

developments (as Zoetermeer) to suburban areas with villas (as Vrijenburg located in North of 

Barendrecht). Higher population density in the fringe areas is presumably associated with more vital 

urban environment which, according to a study by Heinonen et al. (2013), could increase participation 

of residents in outdoor activities and thus reduce amount of time spent at dwellings and HEC.  

 

The last impact-type, labeled as “household size and income”, point out the areas in which HEC is 

remarkably affected by presence of larger households with children and adolescences (negative 

coefficient) as well as higher income of the residents (positive coefficient). The areas of this cluster are 

mainly located in highly urbanized areas of Amsterdam, The Hague, Leiden and Almeer. Decrease in 

level of HEC in response to presence of larger households is supposedly due to economies of scale 

(similar to the conclusion drawn by O'Neill and Chen, 2002). Presumably, the remarkable impact of 

household size and younger age groups on HEC is due to distinguished life style of such families from 

that of retired citizens living in small households. 

 

 

5. Conclusion 

 

HEC has been a hot topic in the policy-making and scholar circles in the last decades. However, one 

knowledge gap in the existing body of literature on HEC is eminent: all the previous studies implicitly 

presumed that the influence of geographic drivers on HEC resemble across the study areas. Therefore, 



15 
 

deploying conventional statistical method, merely the average global impact of geographic drivers on 

HEC has been estimated, where location specific relations has remained unexplored. The main 

conclusion of this study is: HEC is vastly affected by location specific impacts and thus understanding 

of such impacts is essential for enhancing further understanding of HEC.      

 

This result of this study has also two policy implication. Policies aimed at the reduction of HEC in the 

Netherlands, as like The Third National Energy Efficiency Action Plan (Ministry of Economic Affairs, 

2014), follow two unwritten presumptions: First, that it is possible to formulate certain policies which 

are optimally suitable in all the locations of the country. Secondly, that the main way to reduce HEC is 

to improve energy efficiency of buildings. According to the result of this study both these 

presumptions could be revisited.  First, it is established that the effects of socioeconomic, housing, 

land cover and morphological indicators on HEC are spatially variant. In this case, a certain set of 

policy guidelines would not fit the circumstances of all the areas and thus one-size-fits-all type policies 

need to be completed with location-specific strategies. By proposing location-specific strategies, 

decision makers could prioritize different incentives and obligations in different areas of the region. 

Secondly, the results show that the effect of energy efficiency of buildings on reduction of HEC is not 

necessarily the only effective determinant of HEC in all the areas. Thus, the policies need to add 

socioeconomic and morphological angles to their approach. 

 

This study also has one major limitations: there are some latent variables which potentially affect HEC 

such as behavioral habits of the inhabitants or detailed data on building quality. Although obtaining 

such data on the scale of an urban region in size of the Randstad is practically impossible, however the 

potential “omitted variable bias” need to be acknowledged. Finally, further study on HEC could chase 

the possibilities for application of geographically weighted structural models, such as path analysis -

which are typically used for studying HEC.   
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