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Abstract. Uncertainty manifests itself in almost every aspect of decision making. 
Adaptive and flexible policy design becomes crucial under uncertainty. An adaptive 
policy is designed to be flexible and can be adapted over time to changing 
circumstances and unforeseeable surprises. A crucial part of an adaptive policy is the 
monitoring system and associated pre-specified actions to be taken in response to 
how the future unfolds. However, the adaptive policymaking literature remains silent 
on how to design this monitoring system and how to specify appropriate values that 
will trigger the pre-specified responses. These trigger values have to be chosen such 
that the resulting adaptive plan is robust and flexible to surprises in the future. 
Actions should be neither triggered too early nor too late. One possible family of 
techniques for specifying triggers is optimization. Trigger values would then be the 
values that maximize the extent of goal achievement across a large ensemble of 
scenarios. This ensemble of scenarios is generated using Exploratory Modeling and 
Analysis. In this paper, we show how optimization can be useful for the specification 
of trigger values. A Genetic Algorithm is used because of its flexibility and efficiency 
in complex and irregular solution spaces. The proposed approach is illustrated for 
the transitions of the energy system towards a more sustainable functioning which 
requires effective dynamic adaptive policy design. The main aim of this paper is to 
show the contribution of optimization for adaptive policy design.  
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1   Introduction 

Adaptive policymaking is an approach for developing policies that can be adapted 
over time to surprises caused by uncertainty. Adaptivity and flexibility are of great 
importance under deep uncertainty and should be taken into consideration in policy 
design (Neufville & Scholtes, 2011). This can be achieved through for example real 
options (Neufville, 2003) or contingency planning (Kwakkel et al., 2010). In either 
case, the specification of the conditions under which the option or contingency action 
is to be used is of crucial importance to achieve dynamic adaptive robustness.  

Robust optimization is a methodology that is commonly used for optimizing under 
uncertainty. Uncertainty is prevalent in almost all steps of policymaking, so also for 
trigger values. In this paper, we argue that robust optimization can be employed for 
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optimizing these trigger values in order to achieve a robust adaptive policy. In a 
recent study, we have proposed an iterative approach for adaptive policy design under 
uncertainty (Hamarat et al., Forthcoming). In this paper, this iterative policy design 
approach is combined with robust optimization for optimizing the trigger values. So, 
we show how optimization can be effectively used in adaptive policymaking.   

The proposed approach is illustrated through a case which focuses on the transition of 
an energy generation system toward more sustainable functioning. In today’s mostly 
fossil-based energy system, there is a need for effective policies for steering the 
transition toward sustainable and cleaner energy technologies. The case is used to 
illustrate how our proposed approach can be used in guiding and shaping structural 
and systemic societal transformations.  

The organization of the rest of the paper is as follows: Section 2 introduces adaptive 
policymaking under uncertainty and optimization. In Section 3, Exploratory Modeling 
and Analysis, Computer Aided Dynamic Adaptive Policy Design and Optimization by 
means of Genetic Algorithms are explained. The case and the results can be found in 
Section 4. Discussion of the results and conclusions are provided in Section 5.  

2   Problem Description 

2.1   Adaptive Policymaking under Uncertainty 

Uncertainty manifests itself in almost every aspect of policymaking. Unforeseen 
events due to uncertainty can affect the performance of a policy dramatically. For 
instance, designing a static policy based on a best estimate future will most likely 
perform poorly in an uncertain and complex future (Walker et al., 2010). For an 
uncertain and complex future, adaptivity and flexibility should be the main aim for 
designing robust policies (Lempert et al., 2003; Neufville & Odoni, 2003; Neufville & 
Scholtes, 2011; Schwartz & Trigeorgis, 2004; Swanson et al., 2010; Walker et al., 
2001).  

Various approaches for designing adaptive policies have been put forward. The initial 
ideas for this paradigm were founded almost a century ago. Dewey (1927) put forth 
an argument proposing that policies be treated as experiments, with the aim of 
promoting continual learning and adaptation in response to experience over time 
(Busenberg, 2001). Early applications of adaptive policies can be found in the field of 
environmental management (Holling, 1978; McLain & Lee, 1996). Policies are 
designed from the outset to test clearly formulated hypotheses about the behavior of 
an ecosystem being changed by human use (Lee, 1993). A similar attitude is also 
advocated by Collingridge (1980) with respect to the development of new 
technologies. Given ignorance about the possible side effects of technologies under 
development, he argues that one should strive for correctability of decisions, 
extensive monitoring of effects, and flexibility. More recently, Walker et al. (2001) 
developed a structured, stepwise approach for dynamic adaptation. This approach 
advocates that plans should be adaptive: one should take only those actions that are 
non-regret and time-urgent and postpone other actions to a later stage.  



A central idea in these approaches is the combination of time urgent actions to be 
taken immediately with pre-specified action taken in response to how the future 
unfolds. The correct specification of when to respond with these pre-specified actions 
is essential for a robust and adaptive policy design. To this purpose, signposts to track 
specific information can be defined for monitoring the system. Specific values of 
these signposts are called triggers and they are triggered when pre-specified 
conditions occur in the system (Kwakkel, et al., 2010). However, the literature 
remains silent on the monitoring system and the specification of trigger values. A 
common approach is to consult for expert opinions or to estimate values based on 
historical trends. These approaches are open to surprises caused by uncertainty and 
can lead to poor policy performances. For this reason, it is crucial to use more 
intelligent and robust methods for specifying trigger values. The use of optimization 
can be a possible solution approach for such a problem. 

2.2   Robust Optimization 

Optimization is widely used in every aspect of policymaking and in various fields 
ranging from engineering to science and from business to daily life. Optimization is 
mostly referred as finding the optimum solution among a set of plausible alternatives 
under certain constraints. It is the common practice to use optimization for predictive 
purposes, aiming for a single best solution. However, this predictive approach might 
be misleading under uncertainty for policymaking, where often an optimum single 
goal is not the main aim (Bankes, 2011). A field in optimization to overcome the 
difficulty of uncertainty is robust optimization. Robust optimization methods aim at 
finding optimal outcomes in the presence of uncertainty about input parameters (Ben-
Tal & Nemirovski, 1998, 2000; Bertsimas & Sim, 2004). To this purpose, robust 
optimization methods can be of great use for adaptive policymaking.  

There is an enormous variety of different techniques and methods in the optimization 
literature. Among various optimization techniques, Genetic Algorithm (GA) is a 
commonly used heuristic method. GA is flexible and efficient in complex and 
irregular solution spaces. It mimics the evolution process and tries to find the fittest 
survivor. In GA, a candidate solution is represented as a chromosome where each 
allele of the chromosome is a decision variable. Each trigger value can be considered 
as a decision variable that these trigger values form a candidate policy. So, Genetic 
Algorithm can be used for the specification of trigger values in adaptive 
policymaking.   

3   Methodology 

3.1   Exploratory Modeling and Analysis 

Exploratory Modeling and Analysis (EMA) is a research methodology that uses 
computational experiments to analyze complex and uncertain systems and support 
long-term strategic decision making under deep uncertainty (Agusdinata, 2008; 
Bankes, 1993). EMA can be contrasted with the use of models to predict system 
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behavior, where models are built by consolidating known facts into a single package 
(Hodges & Dewar, 1992). In predictive modeling, a single best estimate model is used 
as a surrogate for the actual system. Where applicable, this consolidative 
methodology is a powerful technique for understanding the behavior of complex 
systems. Unfortunately, for many systems of interest, the construction of a model that 
may be validly used as surrogate is simply not a possibility (Cambell et al., 1985; 
Hodges & Dewar, 1992). For many systems, a methodology based on consolidating 
all known information into a single model and using it to make best estimate 
predictions can be highly misleading. However, models can be constructed that are 
consistent with the available information, but such models are not unique. Rather than 
specifying a single model and falsely treating it as a reliable image of the system of 
interest, the available information is consistent with a set of models, whose 
implications for potential decisions may be quite diverse. A single model run drawn 
from this potentially infinite set of plausible models is not a “prediction”; rather, it 
provides a computational experiment that reveals how the world would behave if the 
various guesses made in any particular model about the various unresolvable 
uncertainties were correct. By conducting many such experiments, EMA provides 
insights and understanding about the system functions and effectiveness/robustness of 
policies despite the presence of deep uncertainty. EMA is not a modeling technique 
by itself, but it is a methodology for building and using models under deep 
uncertainty. 

3.2   Computer Aided Dynamic Adaptive Policy Design 

EMA could be used to develop dynamic adaptive policies. EMA allows for the 
explicit representation and exploration of a multiplicity of plausible futures under 
deep uncertainty. Thus, EMA can be used to identify the vulnerabilities and 
opportunities that this ensemble of futures holds, paving the way for designing 
targeted policies that address vulnerabilities or seize opportunities. The efficacy of 
these policy designs can then be tested against the ensemble of futures. Moreover, 
EMA can be used to identify conditions under which changes in a policy are required. 
That is, it can help in developing the monitoring system and its associated actions. It 
thus appears that EMA can be of use in all the steps of the design phase of a dynamic 
adaptive policy. 
Here, an iterative approach we call Computer Aided Dynamic Adaptive Policy 
Design (CADAPD) has been proposed (Hamarat, et al., Forthcoming):  

1. conceptualization of the problem,  
2. identification of the uncertainties,  
3. development of an ensemble of models for exploring the uncertainties, 
4. running the computer model(s) without introducing any policies in order to 

generate the ensemble of futures, 
5. analysis of the results obtained from Step 4 in order to identify the 

vulnerabilities and opportunities, 
6. design of candidate policies for addressing vulnerabilities and seizing 

opportunities, 
7. testing of candidate policies across the ensemble of futures, 
8. iteration through Steps 5-7 until a satisfying policy emerges.  



3.3   Genetic Algorithm 

Genetic Algorithms (GA) are optimization methods based on natural selection as can 
be observed in biological systems (Fraser & Burnell, 1970; Holland, 1975). This 
approach requires constructing an initial population composed of chromosomes, 
where each chromosome represents a candidate solution. Next, the fitness of each 
population member is assessed using a user specified objective function. In light of 
the fitness scores of the current population members, the next generation is created. 
For creating the next generation, the new members are reproduced from those selected 
through evolutionary processes such as crossover and mutation. Once the next 
generation is created, the fitness calculations are computed again for the new 
population members. This process of fitness evaluation and reproduction of new 
generation is repeated until a pre-specified termination criterion is met. Possible 
termination criteria include reaching a desired solution, a fixed number of iterations, 
and convergence of the fitness scores.  

GA are commonly used for solving decision making problems due to their flexibility 
and efficiency in complex and irregular solution spaces (Chambers, 1999). We argue 
that GA can be efficiently used in CADAPD for optimizing trigger values. The 
chromosome structure for representing a candidate solution can be easily used for 
representing a set of trigger values as a candidate policy setting. In this case, each 
genome of a chromosome will be a trigger value and each chromosome will represent 
is a complete representation of the monitoring system. So, GA can be employed for 
optimizing the set of trigger values.  

The trigger values for the various actions in a monitoring system should be robust 
across the ensemble of plausible futures. The criterion used for performance 
calculation in robust optimization is quite important. There are different criteria such 
as minimizing the maximum regret (minimax), maximizing the minimum gain 
(maximin) or maximizing the maximum gain (maximax) (Winston & Goldberg, 
2004). GA is often used for robust optimization (Herrmann, 1999; Li et al., 2005; 
Maruyama & Igarashi, 2008). In this study, a cardinality criterion, which is the 
number of cases above a certain threshold, is utilized. We start by generating a 
population of trigger values. Each population member is a set of trigger values for the 
actions in the monitoring system. The performance of each population member is 
evaluated according to the cardinality criterion over a fixed number of plausible 
futures.  

4   The Case 

4.1   Energy Transitions 

We use an energy transitions case to demonstrate the outlined approach. Transition 
studies aim at analyzing the underlying mechanisms that drive transitions, and 
developing methods for steering the transition toward the desired goals (Loorbach et 
al., 2010). Energy systems are a crucial domain in which a fundamental transition 
toward cleaner energy production is necessary (Loorbach, et al., 2010). The current 
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energy system is mainly based on fossil energy generation. Although new sustainable 
energy technologies are entering the market, their contribution to the total amount of 
energy generation is still relatively small. 

System Dynamics (SD) is a modeling method for understanding the behaviors of 
nonlinear, dynamically complex systems, and for policy analysis and design 
(Forrester, 1961; Sterman, 2000). In order to explore the problem and the 
uncertainties, a System Dynamics model developed for exploring the dynamics of 
energy systems transitions illustrated in (Pruyt et al., 2011) is used in this study. The 
SD model incorporates, at a high level of aggregation, the main structures driving the 
competition among four energy technologies. Technology 1 is the old dominant 
technology that is non-renewable and mainly fossil fuel based. The other three 
technologies are new –more or less- sustainable technologies. Since fast and relatively 
simple models are needed for EMA, the more sustainable technologies (2, 3 and 4) 
are considered to be generic for the sake of simplicity. The four technologies compete 
with each other in order to increase their share of energy generation, driven by 
mechanisms such as total energy demand, cost of commissioning capacity of a 
technology and the effect of learning curves on costs. A more detailed explanation 
about the model can be found in (Pruyt, et al., 2011). The uncertainties considered in 
the model include both parametric uncertainties (e.g. initial values) and model 
structure uncertainties (e.g. different mixes of decision criteria). A detailed 
description of the uncertainties taken into consideration and their corresponding 
ranges can be found in (Hamarat, et al., Forthcoming).  

4.2   Policy Descriptions 

Starting without introducing a policy, the analysis based on a previous study 
(Hamarat, et al., Forthcoming) show that the transition towards sustainability is 
hampered by a long lifetime of the dominant technology 1 (Hamarat, et al., 
Forthcoming). Therefore, a basic policy would be to increase the decommissioning of 
the old dominant technology, thus effectively shortening its lifetime in all cases.  

The efficacy of this basic policy is again assessed over the ensemble of plausible 
futures. An analysis of these results shows that there are two main vulnerabilities, 
namely a poorly performing technology 2 and a mismatch between the economic 
dynamics and the investment in new technology. To address these vulnerabilities, two 
adaptive actions that are only triggered if needed and associated trigger values are 
specified: (1) a subsidy for the costs of new technologies, and (2) stopping the 
commissioning of technology 2 and replacing it with additional commissioning for 
Technology 3 and 4. In Action 1, the costs of Technologies 2, 3 and 4 are monitored 
and if they are close enough to the cost of Technology 1, a subsidy for their costs are 
introduced over a period of 10 years. The trigger value for this action is the proximity 
of the cost of the new technologies to the cost of technology 1. There are three trigger 
values for this action because each of the new technologies is monitored separately. 
Action 2 monitors the performances of Technologies 2, 3 and 4 based on the learning 
curves, CO2 emission levels and the expected costs. Monitoring these indicators, if the 
overall performance of Technologies 3 or 4 is close enough to the performance of 
Technology 2, then the commissioning of Technology 2 is diverted towards 



Technology 3 and 4. For this action, only one trigger value is used and its value is the 
proximity factor of the performances. This set of four trigger values is used as input 
for the optimization to achieve an adaptive policy with optimized trigger value 
parameters for two adaptive actions.  

To optimize the adaptive policy, we use Pyevolve (Perone, 2009) for implementing 
GA. Our decision variables for GA are the four trigger values to form a candidate 
policy setting. The GA is ran for 100 generations and with a population size of 50 for 
each generation. Each candidate is tested over 1000 experiments that are generated 
using Latin Hypercube Sampling (LHS) by exploring over the uncertainties. These 
1000 experiments span the uncertainty space so each candidate is tested across an 
ensemble of plausible futures. The number of experiments where the end states for the 
total fraction of new technologies are above 0.60 determines the fitness score of the 
candidate. This robust optimization approach of testing over a large number of 
experiments and calculating the fitness based on a cardinality criterion makes our 
adaptive policy robust and flexible for a variety of cases. Other GA parameters used 
are as follows: crossover rate of 0.75 and mutation rate of 0.05. The final fitness of 
the best candidate found by GA is 0.84. This means that about 840 of the 1000 cases 
are above the sustainable fraction level of 0.60. The optimized trigger values obtained 
from GA are used as new parameters for the adaptive policy and this modified policy 
is called as the optimized adaptive policy.  

In this study, there are four policy options to be analyzed: no policy, the basic policy, 
the adaptive policy with user specified trigger values, and the optimized adaptive 
policy. As the outcome of interest, we used the fraction of the new sustainable 
technologies over the total energy generation. By exploring the uncertainties 
specified, 10000 experiments were generated using LHS, and the performance of each 
policy option was assessed over these experiments. Fig. 1 shows the results for four 
policy options. The left side of the figure illustrates the envelopes of upper and lower 
limits over a time horizon of 100 years for each design. The right side of the figure 
shows a Gaussian kernel density estimate of the end states. 



8 
 

 
Fig. 1. Comparison of No Policy, Basic, Adaptive and Optimized Adaptive Policy 

When there is no policy (purple line), the runs are concentrated around a fraction of 
0.5. Introducing the basic policy improves the performance substantially to a level of 
0.6 but this level is still not good enough. The adaptive policy with the monitoring 
system and user specified triggers has a considerable effect on the fraction of new 
technologies, which is around a fraction of 0.8. A further improvement can be reached 
when the trigger values are optimized. The optimized policy also seems to reach a 
fraction level around 0.8. However, focusing on the difference between the red 
(adaptive) and the green (optimized) lines, there is a clear shift upwards by the 
introduction of optimized policy. A number of the adaptive policy cases that are 
below a level around 0.6 are pushed to a level around 0.8 by the introduction of 
optimized adaptive policy. In other words, there is an improvement of performance in 
the level of individual scenarios, and thus over the ensemble of scenarios. 

In order to understand the optimized adaptive policy better, Fig. 3 shows a boxplot of 
the trigger values showing when and how often they are triggered. Action 2, 
replacement of Technology 2 with Technology 3 or 4 according to the performance, is 
instantly activated for almost all of the cases. This means that this action should be 
included in the basic policy and Technology 2 should not be invested in. In other 
words; with learning effects, competition between (renewable) technologies and 
under deep uncertainty, investments should be concentrated and spread at the same 
time. On the other hand, subsidy triggers of Action 1are activated after around 10-15 
years and even for some of the cases, they are triggered at a much later stage. So, it is 
more appropriate to keep this action as a part of the contingency plan.  



 
 

Fig. 2. Boxplot for the activation times of adaptive actions 

5   Concluding Remarks 

This study presents how optimization can be effectively used in adaptive 
policymaking. The approach is illustrated on a case about the transition towards a 
more sustainable energy system. (Hamarat, et al., Forthcoming) proposed an iterative 
adaptive policy design approach in a recent study to develop adaptive policies under 
deep uncertainty. In this paper, this iterative approach is combined with optimization 
to improve the performance of adaptive policymaking by optimizing the trigger value 
specification. With the optimized trigger values, the monitoring system will be 
improved so that the adaptive actions can be taken on time and if needed. 

In the previous study (Hamarat, et al., Forthcoming), the analysis resulted in an 
adaptive policy that is a combination of a basic policy and a contingency plan with 
two adaptive actions to be taken according to user-specified trigger values. Using 
robust optimization, new optimized values are specified for these trigger values. This 
optimized policy shows that shifting one of the adaptive actions of the previous study 
from the contingency plan to the basic plan results in an improvement of individual 
scenarios and hence, the ensemble performance.   

Robust optimization is an optimization methodology for optimizing robustness under 
uncertainty. A crucial concept in robust optimization is the choice of robustness 
calculation. In this study, we also employ a robust optimization method for 
calculating the fitness of a candidate solution according to a cardinality criterion. 
However, there are other criteria such as minimax, maximax or maximin. Maximin is 
a common approach used in robust optimization where we look for the worst cases for 
each candidate solution and try to maximize the worst cases. Since the choice of 
optimization criterion can have a great importance on the solution, other possible 
criteria should also be considered and tested.  
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Another issue for future research is the number of cases to be used for robustness 
calculation. In order to find the most robust policy setting, each candidate policy 
design is tested against a certain number of cases. The average value of the end states 
for the sustainable fraction over these cases is used to compute the fitness of a 
candidate solution. A small number of cases will not be determining whereas a higher 
number is computationally exhaustive. For this reason, the number of cases to be 
tested should be selected properly to increase the performance of the optimization.   
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