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Abstract
We propose the Stationary spectrum Plus Low­rank Iterative TransmiTtance EstimatoR (SPLITTER) for
removing wideband atmospheric noise from observations of high­redshift galaxies. This algorithm has
specifically been developed for the DEep Spectroscopic HIgh­redshift MApper (DESHIMA) 2.0, a spec­
trometer that is designed to observe the waveband from 220 GHz to 440 GHz in 347 spectral channels.
This octave bandwidth poses a challenge, due to the spectrotemporal changes in the atmosphere col­
umn between the instrument and the target source. Removing the time­varying nonlinear interference
and distortion caused by the atmosphere is a difficult task, as the atmospheric emission is much stronger
than a typical galaxy signal.

The goal of this thesis is to develop a method that can estimate both narrow spectral lines and the
broad continuum emission with a higher sensitivity than the currently used method of directly subtracting
noisy on­ and off­source spectra. We develop a logarithmic data model for separating atmospheric
noise from the galaxy signal in position switching­observations. Because the atmospheric transmittance
appears as a multiplicative term in both the atmospheric interference and the signal modulation, the
logarithmic model allows for an additive decomposition of the data. The atmospheric transmittance
behaves as a low­rank component in this model.

Using the model, we develop an optimization algorithm (SPLITTER) to perform the separation of
the signal and the low­rank atmospheric transmittance. Several implementations are discussed. The
final algorithm uses a Singular Value Decomposition (SVD) to estimate the atmosphere component and
the Alternating Directions Method of Multipliers (ADMM) for estimating the source signal. Instead of
subtracting the noisy estimate of the source from the data directly, a denoised model is used in this step,
such that we can trade some spectral resolution for a higher sensitivity.

SPLITTER is tested on simulated data using the Time­dependent End­to­end Model for Post­process
Optimization of the DESHIMA spectrometer (TiEMPO), a dedicated software package for simulating
DESHIMA observations. We show that SPLITTER is able to estimate the spectrum with a higher sensi­
tivity than the conventional method. The improvement factor in our weighted root mean squared error is
up to ∼ 1.7 for the full spectrum and up to ∼ 1.3 for the spectral lines only compared to the conventional
method. The larger improvement for the full spectrum is achieved by trading spectral resolution for a
higher sensitivity in the smooth continuum. With these results, we have an indication that a statistically
driven method for DESHIMA observations can provide better estimates than the current method with
the same amount of observing time.

More work is needed to create a robust version of the algorithm, because although the sensitivity
benefit of SPLITTER is larger in the continuum regions, there are also situations where the contin­
uum is overestimated. The conditions for this to occur are not yet clear. A more robust version could
make SPLITTER a reliable new method that can replace current data reduction methods for wideband
atmospheric noise removal. In this way, it can be used to make background­limited direct detection
spectrometers on both existing and future telescopes observe more efficiently.
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1
Introduction

Astronomy and the technology used for astronomical observations have always developed together.
Where astronomers used to simply measure using a telescope and the naked eye. Now, increasingly
complex instruments are available to them. In imaging astronomy, photographic plates have been re­
placed by CCDs with a much higher sensitivity and more reliable linearity [1]. This has opened up many
new science cases and simultaneously given rise to the demand for even better instruments. A similar
development has occurred in spectroscopy, where the demand for more wideband and higher resolution
spectrometers is ever present.

One of the frequency bands where such spectrometers are not yet widely available is the 100 GHz
to 10 THz band [2],[3]. This is a waveband that contains much information about starburst galaxies
[4], which are galaxies with a high amount of star­formation that are important astronomical targets.
Although instruments that can observe in this waveband have been developed, they are often limited in
bandwidth. Therefore, more technological developments are needed to truly close the gap. One of such
efforts is the development of the DEep Spectroscopic HIgh­redshift MApper (DESHIMA). After succesful
tests with a first generation DESHIMA instrument [5], DESHIMA 2.0 is now in development. This is a
wideband spectrometer that is able to measure in 347 channels in the 220 to 440 GHz band [6]. This is
an unprecedented bandwidth for a spectrometer in this frequency band.

1.1. Motivation
With the development of new instruments, new challenges emerge. The octave bandwidth of the
DESHIMA spectrometer does not only collect data from the source it is observing, but also integrates ra­
diation from the terrestrial atmosphere. Traditionally, atmospheric influences have been modelled using
a linear model that could be normalized out [5],[7], but the spectrally nonlinear atmospheric absorption
in the frequency band of DESHIMA 2.0 cannot be adequately modelled in this way. This results in a
distorted galaxy spectrum, as shown in Fig. 1.1. To make matters worse, this distortion is temporally
changing.

In order to remove the atmospheric components from the data, measurements of both the target
area and empty sky are performed. This is done using a chopper­wheel called a Position SWitching
wheel (PSW) that has a rotation frequency of a few hertz and can switch between two fields of view of
the telescope. The telescope is positioned such that one field of view contains a galaxy and the other
only empty sky. In the convential method, the empty sky measurements are then subtracted from the
measurements that contain the source. This results in a spectrum similar to the orange line in Fig. 1.1.
In order to estimate the blue line, a second Chopper Wheel (CW) is used, that switched between on­
source measurements and calibration measurements. The multiplicative factor between the blue and
the orange line can be estimated by the difference between the two positions of the second chopper
wheel [8].

The conventional method introduces a factor √2 in the variance of the final estimate, due to the direct
subtraction of two noisy spectra. A novel approach based on the statistical properties of the noise might
improve upon this method, by limiting the transfer of the noise of one spectrum to the other. This can
be done by exploiting what is known about the shape of the spectrum and trading some resolution for a

1



220 240 260 280 300 320 340 360 380 400 420 440
 (GHz)

10
5

10
4

10
3

10
2

T 
(K

)
T *

A  (true) TA (after atmosphere)

Figure 1.1. A spectrum of galaxy with and without atmospheric absorption. The blue curve is the spectrum of the galaxy itself, the
orange curve shows the remainder of the signal after absorption in the atmosphere.

higher sensitivity in areas where this is possible.
A method based on statistical information is plausible due to the amount of measurements. A typical

observation will last several hours at a sampling frequency of 160 samples per second [9].

1.2. Research Goals
The goal of this project is to formulate a new method for atmospheric noise removal from DESHIMA 2.0
spectroscopic data. This method includes a statistical data model and a noise removal method based on
this model. Furthermore, the implications of this new method of noise removal for the optimal observing
strategy are investigated. In line with this goal, the research question to be answered is:

“Is there a way to efficiently remove the wideband atmospheric noise from DESHIMA 2.0 data
in order to recover both the narrow line spectra and the broad continuum emission with a higher
sensitivity than the current direct subtraction method?”

In order to answer this question, a data model for the DESHIMA 2.0 observations is formulated and
an algorithm named Stationary spectrum Plus Low­rank Iterative TransmiTtance EstimatoR (SPLITTER)
is designed. In this design, we take inspiration from Taniguchi et al. [10], who have created a similar
method for a different type of spectrometer.

We assume the existing observing strategy, but an optimal observing strategy is also briefly touched
upon in this thesis. This is because the optimal observing strategy is directly dependent upon the de­
veloped noise removal method. In the traditional method of on­target and empty sky subtraction for ex­
ample, the switching between on­ and off­source needs to happen sufficiently fast that the atmosphere
has remained approximately constant between the two positions. This means that a fast mechanical
chopper wheel is needed for position switching. A method that is able to predict the behaviour of the
atmosphere during the on­source measurements based on the off­source measurements might be able
to observe without the added complexity of this mechanical component.

1.3. Contributions
The contributions made in this thesis, in chronological order of execution, are:

• Contributions to a software package for simulating high redshift galaxies, named GalSpec [11].

• Contributions to a software package for an end­to­end simulation of the DESHIMA 2.0 spectrome­
ter named tiempo_deshima and a conference contribution about this package [12]. The simula­
tions from this package start with the simulated galaxy from GalSpec and include effects from the
atmosphere, telescope and instrument. The output is the DESHIMA output power and calibrated
sky temperature as measured by the frequency dependent detectors in the spectrometer.

• A data model tailored toward removing atmospheric noise from DESHIMA 2.0 measurements with­
out requiring direct subtraction of two equally noisy spectra. This model describes the DESHIMA

2



output signal, including several of its noise properties in matrix form. The goal of this data model
is to function as a starting point to formulate more efficient data reduction methods.

• An algorithm that processes DESHIMA 2.0 output data based on the data model and computes an
atmosphere corrected galaxy spectrum. This algorithm is called Stationary spectrum Plus Low­
rank Iterative TransmiTtance EstimatoR (SPLITTER).

• An analysis of the performance of SPLITTER on TiEMPO simulations in various situations. It is
shown that SPLITTER is able to reduce the error in the galaxy estimate with a factor of up to
∼ 1.65 for the entire spectrum. The noise removal is less efficient in spectral line areas, where the
improvement factor is only up to ∼ 1.3.

• A brief summary of the implications this noise removal method could have on the observing strategy
used for future DESHIMA 2.0 measurements.

1.4. Outline
This thesis consists of 8 chapters. In Chapter 2, the relevant background information regarding the thesis
topic is discussed, as well as current state­of­the­art wideband atmospheric noise removal methods.
Using the knowledge from Chapter 2, a data model is developed in Chapter 3. This model describes
how the statistical properties of the signal and various noise sources in the data relate to each other,
such that these properties can be exploited later on. We explore the mean values and variances of
these matrices numerically in Chapter 4. In Chapter 5, the data model is reformulated into various
optimization problems with an accompanying solution strategy in order to formulate the algorithm. The
properties of the matrices shown in Chapter 4 are compared to those same properties for the matrices
that are estimated by running the various versions of the algorithm in Chapter 6. From these analyses,
the best performing algorithm is selected. The performance of this algorithm in various situations is
then further analyzed in Chapter 7. Finally, the most important findings of the thesis are summarized in
Chapter 8, accompanied by recommendations for future work.
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2
Background

This chapter explains the physical background of the optimization problem. First, the astronomical
science cases and difficulties are explained to motivate the need for instruments such as DESHIMA.
Secondly, the properties and working of DESHIMA itself are discussed. This section also contains a
subsection on the data produced by DESHIMA as well as the calibration that is performed to remove
most noise sources. Subsequently, the noise sources that cannot (easily) be removed with calibration
and therefore need to be removed in post­processing are listed. Finally, current state­of­the­art meth­
ods for post­processing the data are explained. These methods set a standard for the sensitivity of the
galaxy estimate, and are therefore the baseline that a new method has to compete with in order to be
considered as a choice for post­processing method.

2.1. Radio Astronomy
To begin, we briefly discuss the reason why the waveband from 220 GHz to 440 GHz is of scientific
interest and why there are not yet many instruments that observe over wide bandwidths in this area.

2.1.1. Science Targets
The most exuberant star forming regions within a galaxy are also naturally the parts of galaxies that
contain many thick gas clouds and interstellar dust. As galaxies evolve, they accrete more matter,
either by merging with other galaxies or due to the gravitational attraction of gas from their own viralized
gas cloud [5]. As the gas and dust clouds within the galaxies become more dense, they collapse under
their own gravitational pull and create stars [13]. The parts of the dust cloud that did not collapse into
stars remain in the galaxy. These dust clouds obscure the optical and ultraviolet light that is emitted from
heavily stellar populated areas [4]. This light is then re­emitted at lower far­infrared wavelengths.

Many of these galaxy forming processes occurred in an earlier stage of the Universe, in the order
of 10 billion years ago [5],[14]. In the time that the light has been travelling from these distant galaxies
to the Earth, the Universe has expanded. This expansion is described by Hubble’s law, which states
that distant objects move away from an observer, at a speed proportional to their distance. As the
distant galaxies move away from the Earth in the expanding Universe, a Doppler shift towards longer
wavelengths is introduced to their radiation, which is known as the cosmological redshift 𝑧:

𝑧 = 𝜆𝑜 − 𝜆𝑠
𝜆𝑠

, (2.1)

where 𝑧 denotes the dimensionless cosmological redshift, 𝜆 is the wavelength of the light in arbitrary
units and the subscripts 𝑜 and 𝑠 represent the observed wavelength and the wavelength when the light
was emitted by the source, respectively.

Specific atoms and molecules in the interstellar matter can absorb light through quantummechanical
effects, resulting in absorption lines in the galaxy spectrum. Furthermore, emission also happens at
quantized frequencies, resulting in emission lines where the spectrum is brighter.

Many spectral lines of interest for studying distant galaxies are found in the (sub)millimeter regime,
due to the emission and absorption in the interstellar medium and the cosmological redshift. As such,
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Figure 2.1. Example of a galaxy spectrum with blackbody radiation and spectral lines. The galaxy has a redshift of 2 and a
luminosty of 𝐿 = 1013.7𝐿⊙. Figure generated using GalSpec [11].

spectral measurements, especially at 𝑧 ≥ 4, are needed to properly create a model of the amount of
dust­obscured star formation in the early Universe [15]. This will shed more light on the history of cosmic
star formation.

2.1.2. Source Description
The source signal from a galaxy before it reaches Earth consists of two components: a broad continuum
and narrower spectral lines. This results in a spectrum such as shown in Fig. 2.1. In the scope of
this thesis, it is mainly important to know that the spectrum consists of these two shapes, where the
continuum extends across the entire spectrum and is smooth, but the spectral lines are only visible
in a few neighbouring spectral channels. The data model and SPLITTER algorithm are designed to
be applicable to generic galaxies. As such, there are no firm constraints on the type of radiation that
can be in a galaxy. For the interested reader, a short description of the emission mechanisms inside
high­redshift galaxies is given below, however.

The broad continuum consists mainly of blackbody radiation1. This radiation is caused by the inter­
stellar dust in thermal equilibrium with the incoming radiation emitted by stars. The dust then radiates
following Planck’s law,

𝐵𝜈(𝑇) =
2ℎ𝜈3/𝑐2

exp(ℎ𝜈/𝑘B𝑇) − 1
. (2.2)

In this equation, 𝐵𝜈 is the spectral brightness in units of power per unit area per unit frequency per
unit solid angle. The number ℎ is the Planck constant, 𝑐 the speed of light and 𝑘 the Boltzmann constant.
The frequency of the light is denoted by 𝜈. The dust in the galaxies of interest typically has temperatures
in the order of 10 K. In the submillimeter wavelength regime, this means that the radiation is in the
Rayleigh­Jeans limit of ℎ𝜈 ≪ 𝑘𝑇. Expanding the exponential then results in the Rayleigh­Jeans law,

𝐵𝜈(𝑇) =
2𝜈2
𝑐2 𝑘B𝑇. (2.3)

Aside from the continuum, there are the sharp spectral lines. As a part of this thesis, the author
contributed to the open source GalSpec2 package which can be used tomodel the blackbody continuum
and spectral lines of a high­redshift galaxy. The model contains spectral lines from CO, SIII, SiII, OIII,
OI, NIII, NII, CII and CI with various ratios with respect to the continuum. The line amplitudes of these
lines are based on [16]–[19].
1In reality, there is also a power law contribution of synchrotron radiation and a nearly flat contribution of free­free emission at
these frequencies. However, these contributions are smaller than that of blackbody radiation, and not included in the simulations
used in this thesis.
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2.1.3. Terahertz Gap
Unfortunately, the submillimeter wavelength regime of interest is located inside the terahertz gap, which
ranges from 100 GHz to 10 THz [2],[3], corresponding to wavelengths from 30 𝜇m to 3 mm. This ‘gap’ is
a name for a region in the electromagnetic spectrum, for which it is very difficult to create good detectors.

Coherent receivers are able to perform high resolution spectroscopy in the terahertz gap, but are not
scalable to large bandwidths or are not able to create a larger image by multiplexing to many pixels at
once. Due to this, many instruments that can cover a larger range of wavelengths in the submillimeter
regime need to be tuned between observations to be able to access different wavebands, resulting in
a very time­costly observation. An instrument that is currently operational and suited for this type of
observation is the Atacama Large Millimeter Array (ALMA), but observing time on this instrument is very
scarce. Therefore, obtaining many wideband spectra with ALMA is not a feasible endeavour [20]. This
means that there are currently no extensive maps of the sky available across broad frequency ranges
in the terahertz gap, limiting our knowledge of the Universe in the redshift range of dust­obscured star
formation. Because of this, a lower resolution solution without employing coherent reception, but rather
direct detection needs to be investigated. Such an instrument requires a filter or spectrometer between
the collector and detector in order to separate the different wavebands.

Possible existing solutions include a grating, a Fabry­Pérot interferometer and a Fourier transform
spectrometer [21]. Scaling a grating up to larger multipixel arrays is difficult as multiple gratings need to
be installed which increases the size of the instrument. Grating components need to be cooled down to
a few kelvins in order to function with a high enough sensitivity, but building cryostats at these sizes is not
(yet) possible. Therefore, the grating cannot be scaled to a larger pixel array whilst also being wideband.
The Fabry­Pérot interferometer and a Fourier transform spectrometer can image more naturally, but
also need to be large for the frequencies of interest. Furthermore, although they can observe with
multiple pixels at once, they cannot instantaneously obtain a full spectrum. A Fabry­Pérot interferometer
observes one frequency band at a time and then needs to be adjusted to move on to the next. This is
similar for the Fourier transform spectrometer, except this measures one Fourier component at a time.
Because of this, they achieve a lower sensitivity than a filterbank in the same amount of observation
time when obtaining a full spectrum for a point source. Therefore, traditional instruments are either very
narrow band, are not scalable to larger pixel arrays, or have sensitivity penalties.

A new instrument that can measure wideband spectra with multiple pixels simulateneously whilst
maintaining a higher sensitivity is therefore desired. A possible solution is a filterbank that has a smaller
volume than a grating, as filterbanks naturally lend themselves to observing full spectra. If a filterbank
can be made sufficiently small, it is possible to put multiple filterbanks in the focal plane. In this way, each
filterbank can function as one pixel that observes a full spectrum. This solution allows for mapping that
is fast, has high sensitivity and can be used for measuring broadband spectra in the terahertz regime.

2.2. The Instrument
A step on the road to such an instrument is the integrated filterbank of the DEep Spectroscopic HIgh­
redshift MApper (DESHIMA). It uses the novel technology of microwave kinetic inductance detectors.
This technology is easily integrated on a chip, as only one readout line is needed to read out many
different channels. Therefore, in later versions the instrument will be scalable to multiple pixels.

In this section, the signal pipeline of DESHIMA is described, including the telescope in which it is
installed. The section follows the same pipeline as the signal, starting at the point where it first reaches
the telescope and ending in the readout signal.

2.2.1. The Atacama Submillimeter Telescope Experiment
The Atacama Submillimeter Telescope Experiment (ASTE) is a single dish Cassegrain focus telescope
located in the Atacama desert in northern Chile [22]. The ASTE site is favorable, as it is at a high altitude
(4,860 m above sea level), which means the atmosphere above it is thin compared to the atmospheric
layer above a telescope at sea level. Additionally, the air above the Atacama desert is extremely dry.
Both these factors reduce the amount of water vapor above the telescope and therefore make it easier
to observe distant galaxies.

Galaxies that are potential science targets for DESHIMA can be treated as point sources, which
means that only one telescope pointing is needed to capture their light. This is because the diameter
of the telescope dish is 10 m. For light with a frequency of 300 GHz, corresponding to a wavelength of
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Figure 2.2. The signal pipeline inside the ASTE telescope. Light comes in from the sky, where it is directed to the Position
SWitching chopper wheel (PSW) using Flat Mirrors (FM). There are two different paths to the PSW wheel, corresponding to two
possible on­sky chop positions. 50% of the wheel is reflective, if the reflective part is in the signal path, the light from chop position
1 is reflected into the telescope (blue path). The other half is transparent, if this is in the signal path, the light from chop position
2 is transmitted into the telecope. After passing the PSW wheel, the light is first focused further into the telescope using the two
mirrors in the Cassegrain focus. Subsequently, it is reflected by an ellipsoidal mirror (EM) and a hyperbolic mirror (HM) in order to
focus it into the 4 K cryostat. Before reaching the cryostat, the light must pass through the room temperature blackbody Chopper
Wheel (CW). Inside the cryostat, the light passes through a low­pass filter (LPF), is reflected by two parabolic mirrors (PM) and
passes through a wiregrid (WG) before reaching the colder 120 mK cryostat when it reaches the second low­pass filter. Finally,
it is filtered by a band­pass filter (BPF) and guided into the DESHIMA instrument. The enlarged picture is a photograph of the
DESHIMA 1.0 instrument. Figure adapted from [5].

∼ 1 mm, this means that the angular resolution of the telescope is ∼ 𝜆/𝐷 = 10−4 rad or ∼ 20″ [23]. As
this number is significantly higher than the angular size of most high­redshift galaxies, light emitted from
every part of the source that is collected by the dish couples to a single pixel.

2.2.2. Chopper Wheels
The path of the light inside the telescope is shown in Fig. 2.2. A very important part of this setup are the
two chopper wheels, namely the Position SWitching wheel (PSW) and the blackbody Chopper Wheel
(CW).

The PSW wheel is used to rapidly change the on­sky position of the telescope. The chopper wheel
alternates the line of sight of the telescope between the on­source position and an off­source position
nearby. The positions are chosen such that the primary telescope beams of the pointings overlap mostly
within the terrestrial atmosphere, but the beams are spatially separated in the far field. This is illustrated
in Fig. 2.3. As the atmosphere is mostly shared between the two beams, the empty sky around the
galaxy can be estimated using the off­source measurement. The wheel rotates such that the beam is
pointed off­source and then back on­source again 10 times per second3. Combined with the readout
3The wheel is divided into four quarters and rotates at 5 rotations per second. This achieves the same chopping frequency as a

8



Figure 2.3. Illustration of how the chopper wheel is used to estimate the empty sky brightness. Left: The telescope pointings
for the on­ (red) and off (blue) positions. Top right: Primary beam outline in the far field. The beams, denoted here as colored
circles, are spatially separated in this regime. Bottom right: The same beams, at 1 km above the telescope. The primary beams
largely overlap in this regime, which means that the atmospheric brightness in one beam can be estimated using the brightness
in the other. Figure not to scale. Figure adapted from [24].

frequency of 160 samples per second, this means that during each rotation of the chopper wheel, 8
samples on­source are obtained subsequently, followed by 8 samples off­source4. In Section 2.3.1, we
describe how the off­source measurements are used to estimate the galaxy brightness temperature.

Due to the position switching, the light follows slightly different paths through the telescope for the on­
and off­source measurements. As an effect, the main beam efficiency can differ between the chopping
positions. In order to compensate for this, the entire telescope is nodded at a set time interval that is
larger than the chopping interval [25]. The nodding is done such that the on­source position is moved
to the other ’side’ of the chopper wheel after nodding. In this way, the path that the light follows for the
off­source chopping position at one nod position now becomes the path of the light for the on­source
position at the other nod position (see Fig. 2.7 for an illustration). This chopnodding scheme is referred
to as ABBA nodding5.

The CW chopper wheel at the entrance to the cryostat is used for calibration of the temperature that
is measured by DESHIMA. Half of this wheel lets the light pass through unchanged, the other half blocks
it. This blocking half wheel behaves like a blackbody at room temperature, such that the light emitted
from this half of the wheel can be described using Eq. (2.2). Since this temperature is known, measured
brightness temperatures can be calibrated using the measurements of the opaque half of the wheel.

2.2.3. DESHIMA
After reaching the cryostat, the light is guided onto the DESHIMA superconducting integrated filterbank.
A description of how this filterbank operates can be read in Appendix A. The most important part to note
here is that DESHIMA is a direct detector. It uses Microwave Kinetic Inductance Detectors (MKIDs) to

wheel that is divided into two halves and rotates 10 times per second.
4It should be noted that in reality, some samples near the moment the chop is performed will be unusable due to diffraction if the
edge of the chopper wheel is still too close to the aperture at the moment the sample is taken. This effect is not considered in
the scope of this thesis, however.

5This is not an acronym. The letters refer to nod positions A and B. When the telescope has moved from nod A to nod B it stays
there for several chopping cycles before returning back to nod A. For this reason, the two Bs follow each other in the name of
the method.
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measure the spectrum. These MKIDs change resonance frequency when they are optically loaded [26].
This shift in resonance frequency can be read out using frequency division multiplexing on a readout
line. In operation, DESHIMA performs a sweep of the full filterbank every 6.25 ms. This is a sampling
frequency of 160 Hz6. The phase shift in the resonance frequencies can directly be converted to a sky
brightness temperature. This is fundamentally different from coherent receivers that often measure a
voltage, which needs to be squared to compute a power.

In order to ensure the phase shift translates to the correct sky brightness temperature, DESHIMA
needs to be calibrated. This calibration is done using the measured temperature of the CW blackbody
(CW in Fig. 2.2) and a skydip line of sight measurement. This is an iterative procedure, where the MKID
readout signal is compared to the expected sky brightness at an interval of elevations, from 32∘ to 88∘
above the horizon. Using this procedure, a responsivity model is created toconvert the MKID readout
signal to sky brightness temperature [27]. This calibration is performed every 1 to 2 hours, in order
to ensure the telescope remains calibrated. The aperture efficiency is also measured, using a planet
scan [9].

2.3. Simulations of Data and Noise Sources
Despite the calibrations performed on DESHIMA, some systematic errors remain, as well as some noise
sources. In the scope of this thesis, we focus on three main noise sources, namely atmospheric noise,
photon noise and two level system noise. In total the measured brightness temperature can be written
as:

𝑇measured(𝜈, 𝑡) = 𝑇sky(𝜈, 𝑡) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡) (2.4)

Where 𝑇measured(𝜈, 𝑡) is the total measured brightness temperature, 𝑇sky(𝜈, 𝑡) is the deterministic
brightness temperature of the sky. This is composed of the brightness of the astronomical source that
we want to measure and noise introduced by the atmosphere. 𝑇ph(𝜈, 𝑡) is the photon noise, which is the
random variation of the sky brightness temperature around the mean 𝑇sky(𝜈, 𝑡). 𝑇TLS(𝜈, 𝑡) is called Two
Level System (TLS) noise. Below, these three noise sources are explained in more detail, as they are
important for the development of the data model. After these three main noise sources, a short list of
errors and effects that are not in the scope of this thesis is given.

As there is no DESHIMA 2.0 data available yet, it is not possible to apply the methods discussed in
this thesis on real on­sky data. Instead, simulations were made using TiEMPO7 [12]. This is an open
source Python package for simulating the full signal pipeline in DESHIMA. The author has contributed
to this package as a part of this thesis. A TiEMPO simulation starts with a GalSpec8 simulation of a
galaxy, and includes a simulation of the atmosphere (including different telescope pointings), the optical
chain and the detectors. In this way a realistic simulation of DESHIMA observations can be obtained.
TiEMPO does not include two level system noise, but a model for the TLS noise based on work by
Kaushal Marthi [28] is used to create a noise source with the required statistical properties. This noise
is generated and added in the power domain and then converted to a brightness temperature using a
simulation of the skydip calibration.

2.3.1. Atmospheric Noise
The atmospheric ‘noise’ is the dominant noise source in the signal. It is very difficult to remove, as it is
temporally correlated and nonlinear between the channels of the detector. Furthermore, it appears in
both an additive and a multiplicative term, which renders noise removal even more difficult.

The atmosphere noise is caused by the frequency dependent absorption of incident light in the at­
mosphere. This absorption is the multiplicative term applied to the signal, as it dims the galaxy at
frequencies with much absorption. On the other hand, the atmosphere is also an emitter itself, causing
additive noise. This can be summarized by the radiation transfer equation [29]:

𝑇sky(𝜈, 𝑡) = 𝑇∗𝐴(𝜈)𝑒−𝜏(𝜈,𝑡) + 𝑇𝑝,atm(𝑡) (1 − 𝑒−𝜏(𝜈,𝑡)) . (2.5)

6When mentioning a ‘sample’ in this thesis, we are referring to a full spectrum. This means that a sample contains measurements
in all 347 channels of the DESHIMA spectrometer.

710.5281/zenodo.4279085
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Figure 2.4. Contrast between the atmospheric brightness temperature 𝑇𝐵,atm (green) and the source signal after transmission
through the atmosphere (orange). The original signal arriving at the atmosphere is also shown in blue. waveband is chosen to
correspond with that of DESHIMA 2.0. In this figure, a galaxy at redshift 2.2 with a luminosity of 1013.7𝐿⊙ is used. The atmosphere
has a Precipitable Water Vapor (PWV) level of 1.3 mm.

In this equation, 𝑇sky is the measured brightness temperature in K, 𝑇∗𝐴 is the brightness temperature
of the astronomical object (a galaxy), where the ∗ denotes that atmospheric effects are removed9, also
in K. The optical depth of the atmosphere is denoted by the dimensionless 𝜏. If the optical depth is very
large, the mean free path length of a photon travelling through the atmosphere is very small compared to
the thickness of the atmosphere layer and much of the incident light will be absorbed. Finally, 𝑇𝑝,atm de­
notes the physical temperature of the atmosphere in K. Note the difference with the spectral brightness
temperature of the atmosphere, 𝑇𝐵,atm(𝜈, 𝑡) = 𝑇𝑝,atm(𝑡) (1 − 𝑒−𝜏(𝜈,𝑡)).

Instead of the optical depth, the atmospheric transmittance 𝜂atm(𝜈, 𝑡)is often used to write Eq. (2.5)
more compactly. The atmospheric transmittance is a number between 0 and 1 that describes what
fraction of incident light is able to travel through the atmosphere to the telescope dish and is computed
with 𝜂atm(𝜈, 𝑡) = 𝑒−𝜏(𝜈,𝑡). Using this transmittance, the radiation transfer function can be written as

𝑇sky(𝜈, 𝑡) = 𝑇∗𝐴(𝜈)𝜂atm(𝜈, 𝑡) + 𝑇𝑝,atm(𝑡)(1 − 𝜂atm(𝜈, 𝑡)). (2.6)

This second form of the radiative transfer equation is the form we will use throughout this thesis.
There are some frequency bands where the transmittance is close to 1 and most of the light from the
source can pass through the atmosphere. These bands are called atmospheric windows. Outside the
windows, the signal is much harder to detect. This is because of two reasons: first of all, more of the
signal emitted by the galaxy is absorbed, so the source signal at the telescope is weaker. Secondly,
the atmosphere itself is radiating more energy in these low transmission regions. Therefore, the areas
where the signal is at its weakest are also the areas where the noise is the strongest. This is illustrated
in Fig. 2.4, where the green line is the brightness temperature of the atmosphere, and the orange line
shows what is left of the galaxy signal after transmission through the atmosphere.

Now that we can express the brightness temperature of the light arriving at the telescope, we can
look at its variation in frequency and time. The brightness temperature of the astronomical source can
be viewed as static in time, as the timescales in which galaxies evolve are much larger than relevant
for an observation, or even several observations over several years. There is a frequency dependence,
however, as described in Section 2.1.2. The physical temperature of the atmosphere is frequency inde­

9A convention in astronomy, where the observed signal usually still contains atmospheric effects, so the removal of these effects
must be explicitly stated.
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Figure 2.5. Atmospheric transmittance as a function of frequency within the DESHIMA 2.0 bandwidth for three different levels of
Precipitable Water Vapor (PWV).

pendent as it is a physical temperature rather than a brightness temperature. It is slightly time dependent,
as the outside temperature can vary by a few kelvins over multiple hours [30].

As the variation of the physical temperature of the atmosphere is slow, both the temporal and spectral
variation of the atmospheric noise are dominated by the atmospheric transmittance. This transmittance
varies mostly based on the variation in water vapor content in the line of sight of the telescope [31]. Even
at a dry and elevated site such as that of ASTE, water vapor influences the atmospheric transmission of
the atmosphere drastically [32]. In this thesis, the metric used for water vapor is the Precipitable Water
Vapor (PWV), a measure for how many millimeters of rainfall would be observed if all the water in the
atmosphere column above the telescope would be precipitated as rain. A higher PWV indicates more
water in the atmosphere.

Although the change in atmospheric transmittance is dependent on the change in PWV, the conver­
sion between PWV and transmittance is not straightforward and there is no single equation to describe
it in closed form for long timescales. The frequency dependence of the atmospheric transmittance for
several levels of water vapor is shown in Fig. 2.5.

Although there is no direct conversion between the PWV and the atmospheric transmittance for
the full spectrum, the optical depth in a single channel can be written as a linear function of the PWV
[10],[33],[34]:

𝜏(𝜈, 𝑡) = − ln 𝜂atm(𝜈,𝑡) ≈ 𝑎(𝜈)𝑃𝑊𝑉(𝑡) + 𝑏(𝜈) (2.7)

The parameters of this function, 𝑎(𝜈) and 𝑏(𝜈) depend on the weather conditions and channel fre­
quency and are not known prior to the observation. Using this equation, the change in optical depth
for the full spectrum can be described with the change in PWV, on short timescales [31]. For longer
timescales, the linearization is no longer valid. In TiEMPO, the atmospheric transmittance is simulated
used the model created by Pardo et al. [35]. More information on how the temporally changing PWV is
created is given in Appendix B. The first order and second order moments of the PWV are dependent
on weather conditions, the time of day, the time of the year and even variations between years. At
the telescope site, the mean PWV is expected to typically be around 1.2 mm [36]. A typical standard
deviation for the PWV used in this thesis is ∼ 1.5 ⋅ 10−2 mm [24], which corresponds to a variance of
∼ 2.3⋅10−4 mm. This number is small, but leads to variances up to a Kelvin in the atmospheric brightness
temperature.

2.3.2. Photon Noise
Aside from the atmospheric noise, there are also the two additive noise sources, the first of which is the
photon noise 𝑇ph(𝜈, 𝑡). This photon noise is a fundamental noise, that is not caused by the detector but
the incoming light itself. In reality, the photon noise is a part of the signal, such that the signal has a
mean value of the sky temperature, with a variance characterized by the photon noise. Here, we treat
photon noise as a zero mean noise source added to the sky temperature instead.

Photon noise is created by shot noise and photon bunching. Shot noise is caused by the fact that
photons are only measured at the time of their arrival at the detector. This arrival time is discretized in
time and the arrivals occur at random time intervals. It is thus subject to a Poisson distribution. Photon
bunching occurs because of the wave nature of the incoming light. Photons can interfere with each other
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Figure 2.6. Frequency noise spectrum of the different noise sources in a DESHIMA channel near 300 GHz. Note that the frequency
axis shown here is an operating frequency axis (denoted by 𝑓), rather than the frequency of the light incident on the detector
(denoted by 𝜈). Left: PSDs computed from TiEMPO data using the Welch method. Right: The PSDs of the different noise
sources with an overlay of their true spectrum.

at the detector and arrive in ’bunches’ because of this, which also gives rise to a Poisson distribution.
The number of photons arriving at the detector is very large and the sampling frequency of 160 Hz

that DESHIMA uses is much smaller than the effective bandwidth of the filters. Therefore, the central
limit theorem can be used to approximate the Poisson distribution of the photon noise with a Gaussian
distribution [24]. As such, all photon noise in TiEMPO is modeled as a Gaussian. The standard deviation
of this Gaussian depends on the power incident upon an MKID. As the shot noise power increases with
the square root of the incident power and the photon bunching noise increases with the incident power
itself, a higher incident power in a channel also results in more photon noise at that detector10. As
discussed above, the Gaussian is separated, such that the variance caused by shot noise and photon
bunching is modeled as a zero mean additive noise source. The mean of this Gaussian is put into the
sky temperature as the signal we want to detect.

Naturally, an observation is much longer than a single sample. When we estimate the galaxy tem­
perature, we average over many measurements in time. If 𝜎𝑇(𝜈) denotes the standard deviation of the
detected temperature in a single sample and we integrate over 𝑁 measurements, the standard devia­
tion on the time averaged temperature 𝑇(𝜈) is 𝜎𝑇(𝜈) = 𝜎𝑇(𝜈)/√𝑁 due to the Gaussian properties of the
noise. This is only the case if the underlying temperature 𝑇(𝜈) stays constant, however. Therefore,
time­varying effects need to be removed prior to averaging.

2.3.3. Two Level System Noise
Another noise source in the spectrum is the Two Level System (TLS) noise 𝑇TLS(𝜈, 𝑡). This is noise
contribution is caused by small electric defects [37]. The TLS noise is spectrally uncorrelated, since it is
created in each channel independently. It is temporally correlated, however. Its power spectral density
drops off reciprocally with frequency. Therefore, the noise drops below the photon noise level if the
sampling frequency is sufficiently high.

2.3.4. Noise Comparison
In order to understand how the different noise sources behave in time and what noise sources dominate
at what operating frequencies, it is helpful to look at the power spectral density (PSD) of a TiEMPO
simulation. This is plotted in Fig. 2.6. The PSD has been computed using the Welch method [38] on the
detected power in a single MKID with a center frequency near 300 GHz. The spectra are noisy as only
a finite amount of data (30 mins) was used. The operating frequency is the effective frequency in the
noise spectrum. When using the direct subtraction method, the operating frequency is the reciprocal of
the time between two samples that are subtracted from each other. Using the PSW wheel, the operating
frequency is 10 Hz for DESHIMA 2.0.
10The interested reader is referred to [12] for a more thorough treatment of the Poisson and bunching noise.
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At different operating frequencies in the spectrum, different noise sources dominate. The photon
noise is white and therefore has a constant noise power across all frequencies. The atmospheric noise
and TLS noise, on the other hand, drop off in a 1/𝑓 shape. The atmosphere noise drops off faster past
an operating frequency of approximately 0.5 Hz in this plot. This is not a physical effect, but due to
discretization effects in TiEMPO and ARIS (see Appendix C for a more detailed explanation).

Because of the difference in the shape of the power of the photon noise on the one hand, and the
TLS and atmospheric noise on the other, the total noise has a knee around 1 Hz. In practice, the
exact location of the knee for both the TLS and the atmospheric noise can be at a slightly different
operating frequency, but the overall shape of the spectrum remains. This means that different noise
sources dominate at different timescales. At time differences of longer than ∼ 𝑇knee = 1/𝑓knee = 1 s, the
temporal correlation of the TLS noise and atmospheric noise causes an error in the measurement that
is larger than the noise introduced by the photon noise.

In order to exploit the photon noise limited properties of the MKID detectors in DESHIMA and obtain
the best estimate possible, samples that are directly compared should therefore not be further apart
than 𝑇knee. In the current method of direct subtraction, this means that the on­ and off­chopping of the
telescope must occur with a frequency of ≥ 1 sample per second. This is also the reason why the
chopper wheel rotates at 10 cycles per second, as this is safely above the knee frequency of both 1/𝑓
noise sources.

2.3.5. Remaining Errors
Aside from the noise sources listed above, some systematic errors remain ,as well as noise sources that
can be neglected compared to the noise sources mentioned above. These errors and noise sources are
not analyzed in the scope of this thesis, but can be relevant to the interested reader. For completeness,
they are briefly listed below.

Responsivity shape: Inside TiEMPO, the responsivity of all MKIDs is assumed to be of Lorentzian
shape. In reality, the responsivity has a more complex shape [5]. This shape influences the waveband
over which the MKID integrates, as well as its peak frequency. A different responsivity therefore needs
to be carefully calibrated for, or it will introduce systematic errors in the spectral estimates.

Different telescope paths: The different telescope paths for the two different positions of the chop­
per wheel are not included in TiEMPO and therefore the systematic error caused by the difference in
optical efficiency and main beam efficiency is not included in the simulations. The chopping and nod­
ding behaviour of the telescope can be included in terms of sky positions, however.

Readout Noise: The readout line of DESHIMA is connected to an Analog to Digital Converter (ADC),
which introduces ADC noise. Additionally, there is noise introduced by the amplifier. This noise is zero
mean and white and expected to be at a lower level than the photon noise [28]. Therefore, the noise is
dominated by other noise sources than the ADC noise for all sampling frequencies and the ADC noise
can safely be omitted from the simulations.

2.4. Existing Data Reduction Methods
Generally, astronomers reduce photon noise by using longer integration times and approximate atmo­
spheric effects with a baseline that is linear in frequency and can be subtracted to remove atmospheric
effects. In the wide bandwidth of DESHIMA 2.0, however, the atmosphere cannot accurately be ap­
proximated using a model that is linear in frequency (see Fig. 2.5). Therefore, more sophisticated data
reduction models are being developed. Below I give an overview of a currently existing post processing
methods, along with a method similar to ours that is still in development.

2.4.1. Direct Subtraction
In direct subtraction chopping and nodding, the noisy empty sky signal is directly subtracted from the
source signal. See Fig. 2.7 for an illustration of the sky positions at the different telescope setups. Note
that the telescope can be in two different positions called nodding positions (denoted by 𝐴 and 𝐵). These
two nodding positions both have two different pointings, called chopping positions (denoted by 𝑎 and
𝑏). In this way, both nod 𝐴 chop 𝑏 and nod 𝐵 chop 𝑎 are on­source positions. Nod 𝐴 chop 𝑎 and nod 𝐵
chop 𝑏 on the other hand are off­source. Below, we use subscripts to denote the different chopping and
nodding positions of several variables. The uppercase subscript denotes the telescope nod, and the
lowercase subscript denotes the PSW chopping position. At a single point in time, the sky temperatures
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Figure 2.7. Chopping and nodding. The blue beam indicates the possible fields of view for nodding position 𝐴. If the chopper
wheel is in position 𝑎, the left side (blue) of this beam is observed. If the chopper wheel is in position 𝑏, the right side (purple) is
observed. When the dish is put in nodding position 𝐵, the red beam represents the possible pointings. Nodding position 𝐴 with
the chopper wheel in position 𝑏 and nodding position 𝐵 with the chopper wheel in position 𝑎 both point towards the target galaxy
(shown as a star here).

measured at the different positions can be described as:

𝑇Ab(𝜈, 𝑡) = (1 − 𝜂atm,Ab(𝜈, 𝑡))𝑇𝑝,atm(𝑡) + 𝜂atm,Ab(𝜈, 𝑡)𝑇∗𝐴(𝜈) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡),
𝑇Aa(𝜈, 𝑡) = (1 − 𝜂atm,Aa(𝜈, 𝑡))𝑇𝑝,atm(𝑡) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡),
𝑇Ba(𝜈, 𝑡) = (1 − 𝜂atm,Ba(𝜈, 𝑡))𝑇𝑝,atm(𝑡) + 𝜂atm,Ba(𝜈, 𝑡)𝑇∗𝐴(𝜈) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡),
𝑇Bb(𝜈, 𝑡) = (1 − 𝜂atm,Bb(𝜈, 𝑡))𝑇𝑝,atm(𝑡) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡). (2.8)

The telescope cannot observe instantaneously, so the dependence on 𝑡 will be replaced by a sub­
script that denotes the sample, 𝑖. So if sample 𝑖 is collected at time 𝑡𝑖, it is denoted 𝑇Ab,𝑖(𝜈), rather than
𝑇Ab(𝜈, 𝑡𝑖). Since both the telescope and the PSW wheel can only be in one position at a given time, the
measured sky temperature will always be only one of the temperatures in Eq. (2.8). In order to denote
this, an indicator function for the position is introduced. This function is denoted as 𝑚Ab,𝑖 for sample 𝑖 in
position 𝐴𝑏. The function is equal to 1 when the telescope is in position 𝐴𝑏 and zero otherwise.

Subsequently, the off­positions 𝐴𝑎 and 𝐵𝑏 are subtracted from the on­positions 𝐴𝑏 and 𝐵𝑎 and a
sum is taken over all samples. Since the galaxy is present in half of the 𝑁 samples, the sum is multiplied
by 2/𝑁. Effectively, this is the mean of the on­source positions minus the off­source positions.

�̂�𝐴(𝜈) =
2
𝑁 ∑

𝑖
𝑇Ab,𝑖(𝜈)𝑚Ab,𝑖 + 𝑇Ba,𝑖(𝜈)𝑚Ba,𝑖 − 𝑇Aa,𝑖(𝜈)𝑚Aa,𝑖 − 𝑇Bb,𝑖(𝜈)𝑚Bb,𝑖

Plugging in the equations listed above gives:

�̂�𝐴(𝜈) =
2
𝑁

𝑁

∑
𝑖=1
[(1 − 𝜂atm,Ab,𝑖(𝜈))𝑇𝑝,atm,𝑖 + 𝜂atm,Ab,𝑖(𝜈)𝑇∗𝐴(𝜈) + 𝑇ph,𝑖(𝜈) + 𝑇TLS,𝑖(𝜈)]𝑚Ab,𝑖

+ [(1 − 𝜂atm,Ba,𝑖(𝜈))𝑇𝑝,atm,𝑖 + 𝜂atm,Ba,𝑖(𝜈)𝑇∗𝐴(𝜈) + 𝑇ph,𝑖(𝜈) + 𝑇TLS,𝑖(𝜈)]𝑚Ba,𝑖

− [(1 − 𝜂atm,Aa,𝑖(𝜈))𝑇𝑝,atm,𝑖 + 𝑇ph,𝑖(𝜈) + 𝑇TLS,𝑖(𝜈)]𝑚Aa,𝑖

− [(1 − 𝜂atm,Bb,𝑖(𝜈))𝑇𝑝,atm,𝑖 + 𝑇ph,𝑖(𝜈) + 𝑇TLS,𝑖(𝜈)]𝑚Bb,𝑖 .
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Note that the TLS noise and the photon noise are independent of the sky­position and therefore have
not been given a subscript. Reordering using 𝑚Ab,𝑖 +𝑚Ba,𝑖 +𝑚Aa,𝑖 +𝑚Bb,𝑖 = 1∀𝑖 gives

�̂�𝐴(𝜈) =
2
𝑁

𝑁

∑
𝑖
[𝜂atm,Ab,𝑖(𝜈)𝑇∗𝐴(𝜈)𝑚Ab,𝑖 + 𝜂atm,Ba,𝑖(𝜈)𝑇∗𝐴(𝜈)𝑚Ba,𝑖]

+ [−𝜂atm,Ab,𝑖(𝜈)𝑚Ab,𝑖 − 𝜂atm,Ba,𝑖(𝜈)𝑚Ba,𝑖 + 𝜂atm,Aa,𝑖(𝜈)𝑚Aa,𝑖 + 𝜂atm,Bb,𝑖(𝜈)𝑚Bb,𝑖] 𝑇𝑝,atm,𝑖
+ [𝑇ph,𝑖(𝜈)𝑚Ab,𝑖 + 𝑇ph,𝑖(𝜈)𝑚Ba,𝑖 − 𝑇ph,𝑖(𝜈)𝑚Aa,𝑖 − 𝑇ph,𝑖(𝜈)𝑚Bb,𝑖]
+ [𝑇TLS,𝑖(𝜈)𝑚Ab,𝑖 + 𝑇TLS,𝑖(𝜈)𝑚Ba,𝑖 − 𝑇TLS,𝑖(𝜈)𝑚Aa,𝑖 − 𝑇TLS,𝑖(𝜈)𝑚Bb,𝑖] .

(2.9)

Since the on­off chopping occurs above the knee­frequency of the TLS noise, 𝑇𝑇𝐿𝑆,𝑖(𝜈) in the on­
source position is almost equal to its subtracted off­source counterpart half a chopping period later.
Therefore, the TLS terms that are being subtracted from each other become negligible, and can be
omitted. Furthermore, if the positions are spaced together closely enough, the atmosphere at the two
different chopping positions for one nod position can be considered equal. If the chopping occurs quickly
enough (above the knee frequency), we can assume that the atmosphere has stayed constant in the half
chopping period that is between the two positions. If half a chopping period is 𝑗 samples, 𝜂atm,Ab,𝑖(𝜈) ≈
𝜂atm,Aa,𝑖+𝑗(𝜈) and 𝜂atm,Ba,𝑖(𝜈) ≈ 𝜂atm,Bb,𝑖+𝑗(𝜈). Eq. (2.9) then becomes more attractive:

�̂�𝐴(𝜈) =
2
𝑁

𝑁

∑
𝑖
𝜂atm,𝑖(𝜈)𝑇∗𝐴(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖) + 𝑇ph,𝑖(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖 −𝑚Aa,𝑖 −𝑚Bb,𝑖) (2.10)

The photon noise still has an effect on the final estimate, but since it is modeled as zero mean11,
𝔼{𝑇ph,𝑖(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖 −𝑚Aa,𝑖 −𝑚Bb,𝑖)} = 0, so the larger 𝑁 becomes, the smaller this noise term will
be. Unfortunately, we do not yet have an estimator for the galaxy brightness temperature 𝑇∗𝐴(𝜈) itself,
but rather for 𝜂atm(𝜈, 𝑡)𝑇∗𝐴(𝜈) at the on­source positions. This is what is left of the brightness temperature
of the galaxy after passing through the atmosphere.

In order to remove the 𝜂atm(𝜈, 𝑡) term, the blackbody chopper wheel (CW) in the telescope is used.
This chopper wheel can alternate between the sky position and a room temperature calibration black­
body to estimate the galaxy brightness before atmospheric transmission. Once every 1 or 2 hours,
the blackbody is observed to ensure 𝑇Blackbody is still well­estimated12. The PSW chopper wheel that
switches between the on­ and off­position is then paused. Using the CW chopper wheel, the source
brightness temperature can be estimated. Instead of using Eq. (2.10), we use Eq. (2.11):

�̂�∗𝐴 =
2
𝑁

𝑁

∑
𝑖

𝑇Ab,𝑖(𝜈)𝑚Ab,𝑖 + 𝑇Ba,𝑖(𝜈)𝑚Ba,𝑖 − 𝑇Aa,𝑖(𝜈)𝑚Aa,𝑖 − 𝑇Bb,𝑖(𝜈)𝑚Bb,𝑖
𝑇Blackbody − 𝑇Aa,𝑖(𝜈)𝑚Aa,𝑖 − 𝑇Bb,𝑖(𝜈)𝑚Bb,𝑖

𝑇Blackbody. (2.11)

where 𝑇Blackbody represents the blackbody temperature. If the temperature of the blackbody is suf­
ficiently close to the physical temperature of the atmosphere, this can be used to divide out the atmo­
spheric transmission. So, we assume that 𝑇Blackbody ≈ 𝑇𝑝,atm,𝑖. Using the same approximations as
above 𝑇Aa,𝑖(𝜈)𝑚Aa,𝑖+𝑇Bb,𝑖(𝜈)𝑚Bb,𝑖 ≈ (1−𝜂atm,𝑖(𝜈))𝑇𝑝,atm,𝑖(𝑚Aa,𝑖+𝑚Bb,𝑖)+𝑇ph,𝑖(𝜈)(𝑚Aa,𝑖+𝑚Bb,𝑖), such
that:

𝑇Blackbody − 𝑇Aa,𝑖(𝜈)𝑚Aa,𝑖 − 𝑇Bb,𝑖(𝜈)𝑚Bb,𝑖 ≈ 𝜂atm,𝑖(𝜈)𝑇𝑝,atm,𝑖(𝑚Aa,𝑖 +𝑚Bb,𝑖) − 𝑇ph,𝑖(𝜈)(𝑚Aa,𝑖 +𝑚Bb,𝑖).
This means that

�̂�∗𝐴(𝜈) ≈
2
𝑁

𝑁

∑
𝑖

𝜂atm,𝑖(𝜈)𝑇∗𝐴(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖) + 𝑇ph,𝑖(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖 −𝑚Aa,𝑖 −𝑚Bb,𝑖)
𝜂atm,𝑖(𝜈)𝑇𝑝,atm,𝑖(𝑚Aa,𝑖 +𝑚Bb,𝑖) − 𝑇ph,𝑖(𝜈)(𝑚Aa,𝑖 +𝑚Bb,𝑖)

𝑇𝑝,atm,𝑖 . (2.12)

11In reality, the mean value of the photon noise is the true brightness temperature, but this is separated from the photon noise in
our model (see Section 2.3.2).

12This is measured during the skydip calibration, described in Section 2.2.3
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Therefore, since the effects of the photon noise tend to zero for longer integration times,

�̂�∗𝐴(𝜈) ≈
2
𝑁

𝑁

∑
𝑖

𝜂atm,𝑖(𝜈)𝑇∗𝐴(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖)
𝜂atm,𝑖(𝜈)𝑇𝑝,atm,𝑖(𝑚Aa,𝑖 +𝑚Bb,𝑖)

𝑇𝑝,atm,𝑖 =
2
𝑁

𝑁

∑
𝑖

𝜂atm,𝑖(𝜈)(𝑚Ab,𝑖 +𝑚Ba,𝑖)
𝜂atm,𝑖(𝜈)(𝑚Aa,𝑖 +𝑚Bb,𝑖)

𝑇∗𝐴(𝜈)

Such that �̂�∗𝐴 ≈ 𝑇∗𝐴. A systematic error remains, however, due to the difference between 𝑇Blackbody
and 𝑇𝑝,atm [8]. Typically, this error is in the order of 0.1𝑇∗𝐴.

Although the direct subtraction method has been shown to be able to detect spectral lines with
DESHIMA 1.0 [5], it suffers from two disadvantages. First of all, the room temperature blackbody needs
to be held as close as possible to the physical temperature of the atmosphere, as any deviations cause
a systematic error. Secondly, the computation of the numerator, where the on­ and off­source measure­
ments are subtracted from each other, introduces a factor √2 to the noise of the final estimate, as both
spectra contain noise.

2.4.2. Noise Removal Using Common Modes for Heterodyne Receivers
Another method that has recently been developed uses a Singular Value Decomposition (SVD) to re­
move the atmospheric noise and other common noise modes. This method is by Taniguchi et al. and is
described in [10]. This method has the advantage that it does not require the direct subtraction of two
full noisy spectra, and is therefore used as a starting point for the work presented in this thesis.

There are two fundamental differences between the work by Taniguchi et al., and the work presented
in this thesis. First of all, Taniguchi et al. focus on spectrally sparse sources, rather than a full spectrum.
This means that only line emission is estimated. As such, the on­source measurements that do not
contain a spectral line from the source can also be used to estimate the atmospheric transmission,
which improves the estimate. As a downside, however, continuum emission cannot be recovered using
this method.

Secondly, the work by Taniguchi assumes heterodyne receivers. These receivers have a different
noise characteristic than DESHIMA. They are not background limited and therefore have their own noise
temperature and frequency dependent gain, which is already calibrated for in the case of DESHIMA.
On the other hand, they do not have the 1/𝑓 TLS noise that is present in the direct detectors used in
DESHIMA. Aside from noise behaviour, the second major difference is that heterodyne receivers retain
both phase and amplitude information when downconverting the signal. As such, the spectrum can be
digitally computed at a very high spectral resolution for a narrow bandwidth. This means that spectral
lines are wide compared to the width of a channel. In the case of DESHIMA, the spectral resolution
is determined by the instrument itself and as such, spectral lines often only span one or a few of the
much wider spectral channels. This mainly has implications for the shape of a line in the measured
spectrum, rather than its sensitivity, as the sensitivities of DESHIMA and a heterodyne receiver are the
same (unless the DESHIMA channel is wider than the line itself).

In the method by Taniguchi et al., the on­sky measurements are modeled as:

𝑃sky(𝑓, 𝑡) = 𝐺(𝜈, 𝑓)𝑘B[𝜂fwd(𝜈)𝑇sky(𝜈, 𝑡) + (1 − 𝜂fwd(𝜈))𝑇amb + 𝑇noise(𝜈)]. (2.13)

In this equation, 𝑃sky is the power measured in an on­sky measurement. 𝑓 is the intermediate or
downconverted frequency, rather than the observed frequency 𝜈. The two are converted using 𝜈 =
𝑓 +𝑚, where |𝑚| is the local oscillator frequency of the heterodyne receiver. 𝐺(𝜈, 𝑓) is the channel and
observing frequency dependent gain of the receiver. 𝑘B is the Boltzmann constant. 𝜂fwd(𝜈) is the forward
efficiency of the telescope feed, 𝑇amb is the ambient temperature near the telescope and 𝑇noise(𝜈) is the
noise temperature. Subsequently, 𝑇sky, the sky brightness temperature in the absence of photon noise,
is expressed as:

𝑇sky(𝜈, 𝑡) = {
𝑇∗𝐴(𝜈)𝜂atm(𝜈, 𝑡) + 𝑇𝑝,atm(𝑡)(1 − 𝜂atm(𝜈, 𝑡)) , on­source

𝑇𝑝,atm(𝑡)(1 − 𝜂atm(𝜈, 𝑡)) ,off­source. (2.14)

These two equations are then unified using a new variable 𝑇ast(𝜈, 𝑡), which is equal to 𝑇∗𝐴(𝜈) when
the telescope is pointed on­source and equal to 0 when it is pointed off source, such that 𝑇sky(𝜈, 𝑡) =
𝑇ast(𝜈, 𝑡)(𝜈)𝜂atm(𝜈, 𝑡) + 𝑇𝑝,atm(𝑡)(1 − 𝜂atm(𝜈, 𝑡)) for all measurements.
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Taniguchi et al. also define the power that is measured when the room temperature blackbody of the
CW is measured:

𝑃cal(𝑓, 𝑡) = 𝐺(𝜈, 𝑓)𝑘B[𝑇blackbody + 𝑇noise(𝜈)]. (2.15)

The difference between the two is then defined as d𝑃sky(𝑓, 𝑡) = 𝑇sky(𝜈, 𝑡)−𝑃cal(𝑓, 𝑡). The expression
is simplified by assuming that the atmosphere, the ambient air around the telescope and the calibrator
blackbody all have the same, constant, temperature. This leads to the following expression:

d𝑃sky(𝑓, 𝑡) = 𝑇sky(𝜈, 𝑡) − 𝑃cal(𝑓, 𝑡) = 𝐺(𝜈, 𝑓)𝑘B𝜂fwd(𝜈)𝜂atm(𝜈, 𝑡)(𝑇ast(𝜈, 𝑡) − 𝑇𝑝,atm). (2.16)

Subsequently, a new dimensionless variable is defined:

𝑋(𝑓, 𝑡) ≡ ln(−
d𝑃sky(𝑓, 𝑡)
𝑘B𝑇𝑝,atm

) = ln{𝐺(𝜈, 𝑓)𝜂fwd(𝜈)𝜂atm(𝜈, 𝑡)} + ln(1 − 𝑇ast(𝜈, 𝑡)𝑇𝑝,atm
) . (2.17)

This expression is then put into matrix form,

𝐗 = [ ln{𝐺(𝜈, 𝑓)𝜂fwd(𝜈)𝜂atm(𝜈, 𝑡)}] + [ ln(1 −
𝑇ast(𝜈, 𝑡)
𝑇𝑝,atm

) ], (2.18)

where the measured frequency is put on one axis and time on the other. The two components of 𝐗,
where the bold typesetting represents a matrix, are defined as:

𝐋 ≡ [ ln{𝐺(𝜈, 𝑓)𝜂fwd(𝜈)𝜂atm(𝜈, 𝑡)}] (2.19)

and

𝐒 ≡ [ ln(1 − 𝑇ast(𝜈, 𝑡)𝑇𝑝,atm
) ]. (2.20)

Matrix 𝐋 is only dependent on time in the dependence on 𝜂atm(𝜈, 𝑡). As explained in Section 2.3.1,
the temporal changes in 𝜂atm(𝜈, 𝑡) are dominated by the changes in PWV. For small PWV changes,
this change in PWV can be linearized as in Eq. (2.7). The time dependence can therefore be modelled
as 𝐿(𝜈, 𝑡) = 𝑎(𝜈) + 𝑏(𝜈)𝑃𝑊𝑉(𝑡) on timescales in the order of an hour13. This suggests that 𝐋 can be
expressed as a low­rank matrix.

As a line spectrum is expected, 𝑇ast(𝜈, 𝑡) is zero in most channels, since most channels do not
contain a spectral line. Taniguchi et al. place the limit for the fraction of lines at around 15% of the
spectrum, although an exact limit is not known. Additionally, 𝑇ast(𝜈, 𝑡) is also equal to zero in all off­
source measurements. Note that the entries of 𝐒 are equal to zero if 𝑇ast(𝜈, 𝑡) = 0. It is therefore a
sparse matrix with blocks of nonzero data.

In order to separate the two terms of 𝑋(𝑓, 𝑡), an iterative low­rank plus sparse approximation is used.
In this approach, a truncated Singular Value Decomposition (SVD) is used to approximate the low­rank
matrix with a matrix of 𝑟 components. The SVD is an operation where an 𝑀 × 𝑁 matrix 𝐀 of rank 𝑟
is decomposed as14: 𝐀 = 𝐔𝚺𝐕𝑇. 𝐔 is an 𝑀 × 𝑟 matrix that contains the left singular vectors of 𝐀.
These vectors are the eigenvectors of 𝐀𝐀𝑇. Similarly, the columns of 𝐕 contain the right singular vectors
of 𝐀, that are the eigenvectors of 𝐀𝑇𝐀. 𝚺 is an 𝑟 × 𝑟 diagonal matrix that has the singular values of
𝐀 on its main diagonal. These values are the square roots of the eigenvalues of 𝐀𝐀𝑇 and 𝐀𝑇𝐀. By
convention, 𝚺 is usually ordered in descending order of singular values. In order to find the optimal
low rank approximation of 𝐗 − 𝐒, the SVD can be truncated to the appropriate rank. In the case of the
algorithm under consideration, 𝐗 − 𝐒 is full rank due to the role of various noise sources. In order to
reduce its rank to 𝑟, the first 𝑟 columns of 𝐔 and 𝐕 are taken, and only the first 𝑟 singular values are
used.
13Note that the signs of 𝑎(𝜈) and 𝑏(𝜈) are flipped here, which does not matter as we use no prior information on them and they
are arbitrary constants.

14as only real values are used in the context of this thesis, we treat the real case here and therefore use the transpose instead of
the Hermitian operator.
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Figure 2.8. Illustration of a typical 𝛀𝑘+1. The black blocks are entries that are equal to 1, the white blocks are equal to 0. Where
the spectrum (shown in blue) has a spectral line, 𝛀𝑘+1 is set to 1 for the on­source positions. This creates blocks where the matrix
is equal to one, surrounded by zeros.

Subsequently, this estimate of 𝐋, denoted 𝐋𝑘 for the 𝑘th iteration, is subtracted from 𝐗 and the 𝑛
largest components in the absolute value of the temporally integrated spectrum are identified. 𝐒𝑘 is then
estimated as the value of 𝐗 − 𝐋𝑘 at a selected set of frequencies in on­source measurements. All other
components are set to zero. This estimate is then subtracted from 𝑋 and a new iteration begins. The
full algorithm as proposed by Taniguchi et al. is summarized by Alg. 1.

Algorithm 1: The algorithm proposed by Taniguchi et al. [10].
Result: 𝐋𝑘 , 𝐒𝑘
Input: 𝐗, 𝑛, 𝜖
𝐋0 ≔ 𝟎;
𝐒0 ≔ 𝟎;
𝑘 ≔ 0;
while |𝐗 − 𝐋𝑘 − 𝐒𝑘|2𝐹/|𝐗|2𝐹 ≥ 𝜖 do

𝐋𝑘+1 ≔ SVD𝑟(𝐗 − 𝐒𝑘);
𝛀𝑘+1 ≔ SparseID@PSW(|𝐗 − 𝐋𝑘+1|; 𝑛);
𝐒𝑘+1 ≔ 𝛀𝑘+1 ∘ (𝐗 − 𝐋𝑘+1);
𝑘 ≔ 𝑘 + 1

end

In this algorithm SVD𝑟 denotes an SVD truncated to rank 𝑟. ∘ denotes the Hadamard product (ele­
mentwise multiplication). SparseID@PSW(𝐀; 𝑛) returns a matrix of the same dimensions as 𝐀 that is
equal to 1 at the on­source positions that correspond to 𝑛 frequencies where a line is detected. Typically,
𝛀𝑘 is therefore a matrix that is filled with zeros, but has ‘blocks’ of ones at the frequencies where spectral
lines are detected. These blocks periodically appear and disappear with the chopping of the telescope,
as illustrated in Fig. 2.8. The matrix with the spectrum is then found as:

�̂�ast(𝜈, 𝑡) = 𝑇𝑝,atm[1 − exp(𝐗 − 𝐋𝑘)], (2.21)

And the galaxy temperature is equal to the time average of all on­source samples. This algorithm has
shown to improve the noise characteristic with a factor 1.65 compared to conventional direct subtraction
methods. Due to this promising result, this method is taken as a starting point for the analysis in this
thesis, but adapted to the situation of DESHIMA.

2.5. Research questions
Using the toolbox of terms and techniques described in this chapter, the research question posed in
Section 1.2 can be refined and divided into several subquestions. The subquestions that are answered
in this thesis are listed here, and we explain in which parts of this thesis they are answered. The main
research question is:
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Main question

“Is there a way to efficiently remove the wideband atmospheric noise from DESHIMA 2.0 data
in order to recover both the narrow line spectra and the broad continuum emission with a higher
sensitivity than the current direct subtraction method?”

As mentioned above, the starting point for the research done in the context of this thesis is the
method proposed by Taniguchi et al. Since the data model posed in [10] is not directly applicable to data
obtained by the DESHIMA 2.0 instrument, the first question that is addressed is:

• “How can we formulate a variation of the model presented by Taniguchi et al. in [10] that is appli­
cable to DESHIMA 2.0?”

This is done in Sections 3.1 and 3.3. Since the noise behaviour of the DESHIMA spectrometer is very
different from that of a heterodyne receiver, a natural extension of this subquestion is:

• “What is the behaviour of the various noise sources (i.e. atmosphere, photon and TLS noise) in
this model?”

Which is discussed mathematically in Section 3.3. In Chapter 4, the statistical properties of the model
and the noise are further explored though simulations.

After the data model has been created and understood, it can be used to remove the wideband
atmospheric noise. Therefore, the next subquestion in this thesis is:

• “How can this data model be used to formulate an algorithm that estimates both the continuum
emission and the spectral lines of high­redshift galaxies?”

Several methods of formulating the problem with accompanying solution strategies are given in Chap­
ter 5. The results of running these algorithms are compared to the desired results from Chapter 4 in
Chapter 6. In Chapter 6, we also argue what set of solutions is best to use in SPLITTER.

In order to determine if the algorithm removes the atmospheric noise with a higher sensitivity, as the
main research question states, the results produced by the algorithm must be compared to a standard.
The standard used in this thesis is the direct subtraction method outlined in Section 2.4.1. The question
to answer then becomes:

• “How do the estimates by SPLITTER compare to the estimates created using direct subtraction?”

Some preliminary results for this are shown in the end of Chapter 6, but Chapter 7 focuses on this
question specifically.

Another main concern for Chapter 7 is the observing strategy for SPLITTER. Since SPLITTER is
a fundamentally different technique from direct subtraction, it is possible that an observing strategy
that is (nearly) optimal for direct subtraction, is not optimal at all for SPLITTER. If this is the case, it can
potentially occur that the results found using SPLITTER are worse than using direct subtraction, whereas
SPLITTER could provide better results for a different observing strategy. Additionally, it is possible that
an observing technique with more relaxed requirements can be used for SPLITTER, such as a PSW
chopper wheel that rotates more slowly. Therefore, the final subquestion touched upon in this thesis is:

• “Should the observing strategy of DESHIMA 2.0 be changed for this algorithm?”

Together, these five subquestions are used to answer the main research question.
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3
Data Model

A suitable data model is required for developing an algorithm for noise removal. This is so important,
since the steps that the algorithm needs to take to remove noise are determined by the way the signal
and the noise behave in the model. Here, the model is described starting at the physical model from
the previous chapter. We briefly review the statistical properties of all terms in this physical model.
Subsequently, the assumptions we need for deriving the model are listed and motivated. Using the
groundwork laid by the statistical properties and the assumptions, the data model is then derived in a
way such that it can easily be used in the algorithm explained in the next chapter.

3.1. Physical Model
Recall that the equation for the brightness temperature measured by DESHIMA 2.0 is

𝑇measured(𝜈, 𝑡) = {
𝑇∗𝐴(𝜈)𝜂atm(𝜈, 𝑡) + 𝑇𝑝,atm(𝑡)(1 − 𝜂atm(𝜈, 𝑡)) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡), on source

𝑇𝑝,atm(𝑡)(1 − 𝜂atm(𝜈, 𝑡)) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡), off source.
(3.1)

For developing the algorithm, it is helpful to have both positions in a single more general equation.
To this end, we now define a deterministic and known variable that discerns whether the telescope is
pointed on­source or off­source:

𝑚(𝑡) = {1, on source
0, off source. (3.2)

We call this the indicator function. This equation can be used to combine the on­source and off­
source positions in Eq. (3.1) into one equation, namely

𝑇measured(𝜈, 𝑡) = 𝜂atm(𝜈, 𝑡)𝑚(𝑡)𝑇∗𝐴(𝜈) + (1 − 𝜂atm(𝜈, 𝑡))𝑇𝑝,atm(𝑡) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡). (3.3)

Before deriving the model, it is important to have a clear overview of which terms in this equation are
deterministic, and which ones are random variables. They are listed here from left to right:

• 𝑇measured(𝜈, 𝑡): This is the measurement from the telescope. A random variable of which the value
is known.

• 𝜂atm(𝜈, 𝑡): The atmospheric transmittance is a random variable that cannot be directly measured.
It is correlated in time and between channels.

• 𝑚(𝑡): The indicator function is a known deterministic variable.

• 𝑇∗𝐴(𝜈): This is the unknown but deterministic temperature of the galaxy that is under observation.
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• 𝑇𝑝,atm(𝑡): This is the physical temperature of the atmosphere. It is a very slowly changing deter­
ministic variable [30], that is assumed to be known due to sensors at the telescope or the room
temperature blackbody.

• 𝑇ph(𝜈, 𝑡): This is a zero mean unknown Gaussian distributed random variable.

• 𝑇TLS(𝜈, 𝑡) : This is an unknown random variable that is strongly correlated in time, but uncorrelated
between channels.

3.2. Assumptions
Several assumptions are needed for the data model. First of all, we assume that the physical temper­
ature of the atmosphere 𝑇𝑝,atm is known and can be approximated as constant within the observation.
This assumption is made, since the temperature of the atmosphere varies slowly compared to all other
variables and its variations are small compared to its value. This means that the time dependence of the
physical temperature is dropped from here on in the notation. Note that this assumption is comparable
to the assumptions in the existing data reduction method and the assumptions by Taniguchi et al. in [10],
where 𝑇𝑝,atm is assumed to be equal to the room temperature blackbody between skydip calibrations.

Secondly, we assume that 𝑇𝑝,atm is much larger than 𝑇∗𝐴, 𝑇ph(𝜈, 𝑡) and 𝑇TLS(𝜈, 𝑡). To place this in
perspective, the physical temperature of the atmosphere is expected to be near the freezing point of
water at 𝑇𝑝,atm ∼ 270 K [30]. A typical galaxy brightness temperature 𝑇∗𝐴 is a few millikelvins. The
photon noise, 𝑇ph(𝜈, 𝑡) is zero mean and channel dependent. In the channels where the photon noise
is strongest, the standard deviation is ∼ 0.1 K. Finally, the TLS noise is also maximally on the subkelvin
level. These three conditions also ensure that 𝑇𝑝,atm > 𝑇measured(𝜈, 𝑡) as long as 𝜂atm > 0. We assume
this is the case in all channels.

Due to the temporally correlated nature of the TLS noise, it stays nearly at a constant level for short
timescales in the order of a few seconds. Therefore, the TLS noise and zero mean photon noise can
be modeled together by a single Gaussian with a nonzero mean. This is illustrated in Fig. 3.1 for 10
seconds of data. For long timescales (illustrated in Fig. 3.2 for 30 minutes), the TLS noise can vary,
leading to a random variable that is difficult to model. This means that we assume that the TLS noise
and photon noise form this Gaussian variable together. The mean value is constant for these short
timescales and denoted as 𝑇𝜇(𝜈). We also define a new zero mean Gaussian random variable 𝑇𝜎(𝜈, 𝑡),
such that 𝑇TLS(𝜈, 𝑡) + 𝑇ph(𝜈, 𝑡) = 𝑇𝜇(𝜈) + 𝑇𝜎(𝜈, 𝑡).
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Figure 3.1. Histogram of the photon noise and TLS noise for 10 seconds of data in channel 28.

Finally, there is an assumption on the variation of the atmospheric transmittance. Recall from Sec­
tion 2.3.1 that the optical depth is 𝜏 = − ln 𝜂atm(𝜈, 𝑡) and that small changes to this can be linearized
by the PWV. When this optical depth is placed in a matrix with the channels on one axis and the time
on the other, it can be described with a low rank matrix [10]. For short timescales of a few second,
variations in the transmittance can be described with a single component [31]. Therefore, in the regime
where the TLS noise can be modeled as a constant, the optical depth can be modeled using a rank 1
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Figure 3.2. Histogram of the photon noise and TLS noise for 30 minutes of data in channel 28.

matrix. We assume this to still be true with a small temporally constant overhead per channel. That is,
we assume that the matrix with entries − ln {𝜂atm(𝜈, 𝑡) − 𝑇𝜇(𝜈)/𝑇𝑝,atm} is rank 1 if its width is such that
it only describes a few seconds of data. This is because 𝑇𝜇(𝜈)/𝑇𝑝,atm is such a small number that small
changes in the atmosphere can be linearized without significant perturbations.

3.3. Matrix Formulation
In order to estimate the source, 𝑇∗𝐴(𝜈) needs to be isolated from the other variables. In order to do this,
the nonlinearly varying multiplication by 𝜂atm(𝜈, 𝑡) must be removed. Since the optical depth 𝜏(𝜈, 𝑡) =
− ln 𝜂atm(𝜈, 𝑡) can be written as a linear function of the PWV, transforming the data to the logarithmic
domain enables us to use methods that exploit low­rank properties of the optical depth to decompose
the data. As such, we follow the example of Taniguchi et al. in [10] and define a new dimensionless
random variable:

𝑋(𝜈, 𝑡) = − ln(−
𝑇measured(𝜈, 𝑡) − 𝑇𝑝,atm

𝑇𝑝,atm
) . (3.4)

This variable can be calculated for each channel at each sample. This results in an 𝑀 × 𝑁 matrix,
where 𝑀 = 347 for the number of channels in DESHIMA and 𝑁 is the number of measurements. 𝑁
Can be a very large number, as the sampling frequency is 160 Hz and an observation is typically in the
order of hours for high redshift galaxies. The matrix is therefore very wide. Using bold capitals to denote
matrices, the matrix is then written as:

𝐗 = [ − ln(−
𝑇measured(𝜈, 𝑡) − 𝑇𝑝,atm

𝑇𝑝,atm
) ]. (3.5)

We call this matrix the ‘data matrix’. The goal of this chapter is to separate the different parts of the
data matrix, such that the galaxy can ultimately be isolated. This is done by rewriting 𝐗 into the form

𝐗 = 𝐒 + 𝐋 + 𝐍. (3.6)

Where 𝐒 denotes a matrix that represents the source, 𝐋 represents a low­rank matrix that contains
the effects of the atmospheric transmittance and 𝐍 represents a matrix that contains all residual noise.
To get to this form, the equation for 𝑇measured(𝜈, 𝑡) (Eq. (3.3)) is plugged in and the 𝑇𝑝,atm in the numerator
of the fraction is rewritten:

𝐗 = [ − ln(−
𝜂atm(𝜈, 𝑡)(𝑚(𝑡)𝑇∗𝐴(𝜈) − 𝑇𝑝,atm) + 𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡)

𝑇𝑝,atm
) ]. (3.7)

Subsequently, the fraction is split, resulting in:
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𝐗 = [ − ln {𝜂atm(𝜈, 𝑡) (1 −
𝑚(𝑡)𝑇∗𝐴(𝜈)
𝑇𝑝,atm

) −
𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡)

𝑇𝑝,atm
} ]. (3.8)

Note that the part of the equation between round brackets only depends on the desired variable
𝑇∗𝐴(𝜈) and the known quantities 𝑚(𝑡) and 𝑇𝑝,atm. We therefore isolate this part into a factor within the
logarithm:

𝐗 = [ − ln {(1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
)(𝜂atm(𝜈, 𝑡) −

𝑇ph(𝜈, 𝑡) + 𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)

)} ]. (3.9)

If the time support of 𝐗 is sufficiently short, 𝑇TLS(𝜈, 𝑡) + 𝑇ph(𝜈, 𝑡) = 𝑇𝜇(𝜈) + 𝑇𝜎(𝜈, 𝑡). Note that the
TLS noise 𝑇TLS(𝜈, 𝑡) is correlated for the full observation, whereas the photon noise is an uncorrelated
random variable. Therefore, the fraction that contains them is split:

𝐗 = [ − ln {(1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
)(𝜂atm(𝜈, 𝑡) −

𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)

−
𝑇ph(𝜈, 𝑡)

𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)
)} ], (3.10)

and subsequently, the correlated variables 𝜂atm(𝜈, 𝑡) and 𝑇TLS(𝜈, 𝑡) are put into a separate factor as
well:

𝐗 = [ − ln {(1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
)(𝜂atm(𝜈, 𝑡) −

𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)

)

(1 −
𝑇ph(𝜈, 𝑡)

𝜂atm(𝜈, 𝑡)[𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)] − 𝑇TLS(𝜈, 𝑡)
)} ]. (3.11)

Now, since ln(𝑎𝑏) = ln𝑎 + ln 𝑏, the logarithm can be split into a sum:

𝐗 = [ − ln {1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
} ] + [ − ln {𝜂atm(𝜈, 𝑡) −

𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)

} ]+

[ − ln {1 −
𝑇ph(𝜈, 𝑡)

𝜂atm(𝜈, 𝑡)[𝑇𝑝,atm −𝑚(𝑡)𝑇∗𝐴(𝜈)] − 𝑇TLS(𝜈, 𝑡)
} ]. (3.12)

Since we assume that 𝑇∗𝐴(𝜈) ≪ 𝑇𝑝,atm, we can simplify the denominators in the second and third
matrix:

𝐗 ≈ [− ln {1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
} ]+[− ln {𝜂atm(𝜈, 𝑡) −

𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm

} ]+[− ln {1 −
𝑇ph(𝜈, 𝑡)

𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇TLS(𝜈, 𝑡)
}

(3.13)
This final equation has a form where the brightness temperature is the only unknown in the first

matrix. The second matrix contains the temporally correlated random variables 𝜂atm(𝜈, 𝑡) and 𝑇TLS(𝜈, 𝑡)
and the last matrix contains the photon noise. We can now define:

𝐒 ≡ [ − ln {1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
} ] (3.14)

𝐋 ≡ [ − ln {𝜂atm(𝜈, 𝑡) −
𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm

} ] (3.15)

𝐍 ≡ [ − ln {1 −
𝑇ph(𝜈, 𝑡)

𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇TLS(𝜈, 𝑡)
} ]. (3.16)

Such that:

𝐗 = 𝐒 + 𝐋 + 𝐍. (3.17)
In the remainder of this chapter, the properties of these matrices are discussed.
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3.3.1. Source Matrix
The source matrix is given by:

𝐒 ≡ [ − ln {1 − 𝑚(𝑡)𝑇
∗
𝐴(𝜈)

𝑇𝑝,atm
} ]. (3.18)

As described above, the purpose of the source matrix is to have a matrix from which 𝑇∗𝐴(𝜈) can be
estimated. Since the galaxy does not change, the entire time dependence is contained in 𝑚(𝑡). In the
columns where 𝑚(𝑡) = 0, the fraction disappears. This means that when 𝑚(𝑡) = 0, the entire column
of 𝐒 is equal to zero. When 𝑚(𝑡) = 1, the columns contain positive numbers, as 1 − 𝑇∗𝐴(𝜈)/𝑇𝑝,atm < 1.
Additionally, all of these columns are equal to each other, since the time dependence is only present in
𝑚(𝑡). We now define an 𝑀 × 1 vector that describes the nonzero columns of 𝐒:

𝐬 ≡ [ − ln {1 − 𝑇∗𝐴(𝜈)
𝑇𝑝,atm

} ]. (3.19)

The lowercase bold typesetting denotes a vector. Therefore, we call 𝐬 the source vector. We then
also define an𝑁×1 vector𝐦. The components of this vector are 0 and 1, denoting whether the telescope
points on­source or off­source. This means that 𝐒 van be written as:

𝐒 = 𝐬𝐦𝑇 . (3.20)

This is a completely deterministic matrix with columns either equal to 𝟎 or 𝐬.

3.3.2. Atmosphere Matrix
For convenience, the low rank matrix with the atmospheric effects is repeated here:

𝐋 ≡ [ − ln {𝜂atm(𝜈, 𝑡) −
𝑇TLS(𝜈, 𝑡)
𝑇𝑝,atm

} ]. (3.21)

Since both 𝜂atm(𝜈, 𝑡) and 𝑇TLS(𝜈, 𝑡) are correlated in time, the time support of this matrix is very
important to its statistical behaviour. If the time support of the matrix is sufficiently small, the TLS noise
becomes a constant per channel and the effects of the atmospheric transmittance can be described by
a rank 1 matrix. In order to achieve this, the matrix is split into 𝑙 narrower matrices:

𝐋 = [𝐋1, 𝐋2, 𝐋3, … , 𝐋𝑙]. (3.22)

That all have a time support 𝑡𝑙 equal to the total length of the observation divided by 𝑙. We can now
operate on the smaller matrices 𝐋𝑖. This split also has the benefit that discontinuities in the atmosphere
can be incorporated naturally when the observation needs to be paused and started again (for example
for calibrations). This is possible, since each block of data can be processed independently. If the
matrices 𝐋𝐢 have a sufficiently small time support, the time dependence of the TLS noise disappears
and we can replace it with 𝑇𝜇(𝜈):

𝐋𝑖 = [ − ln {𝜂atm(𝜈, 𝑡) −
𝑇𝜇(𝜈)
𝑇𝑝,atm

} ], (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 . (3.23)

Each matrix 𝐋𝑖 is a rank one matrix. In this context, only 𝜂atm(𝜈, 𝑡) is a random variable. Furthermore,
since 𝑇𝜇(𝜈)/𝑇𝑝,atm is a very small number and 𝜂atm(𝜈, 𝑡) is always between 0 and 1, the matrix 𝐋𝑖 has
only nonnegative values.

3.3.3. Residual Noise Matrix
The final matrix in the model is the residual noise matrix 𝐍. This matrix can be split up in the same way
as the low rank atmosphere matrix, where we replace 𝑇TLS(𝜈, 𝑡) and 𝑇ph(𝜈, 𝑡) by 𝑇𝜇(𝜈) and 𝑇𝜎(𝜈, 𝑡):

𝐍𝑖 = [ − ln {1 − 𝑇𝜎(𝜈, 𝑡)
𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)

} ], (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 . (3.24)

Although there is a time dependence in 𝜂atm(𝜈, 𝑡), the time dependence of 𝑇𝜎(𝜈, 𝑡) is much more
variable. Therefore, this matrix is dominated by the zero mean Gaussian random variable 𝑇𝜎(𝜈, 𝑡). The
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realizations of this variable are scaled due to the temporal changes in the atmospheric transmittance,
but these changes are relatively small for channels that are either well within or well outside of an at­
mospheric window. Since 𝑇𝑝,atm ≫ 𝑇𝜎(𝜈, 𝑡), the fraction inside the expression for 𝐍𝑖 is small as long as
𝜂atm(𝜈, 𝑡) is not too small. Thematrix can thus be linearized around 𝑇𝜎(𝜈, 𝑡)/[𝜂atm(𝜈, 𝑡)𝑇𝑝,atm−𝑇𝜇(𝜈)] = 0
using the Taylor expansion.

𝐍𝑖 ≈ [ − ln 1+ 𝑇𝜎(𝜈, 𝑡)
𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)

]+ [𝒪 {( 𝑇𝜎(𝜈, 𝑡)
𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)

)
2
} ]

= [ 𝑇𝜎(𝜈, 𝑡)
𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)

]+ [𝒪 {( 𝑇𝜎(𝜈, 𝑡)
𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)

)
2
} ], (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 .

(3.25)

Where𝒪{⋅} denotes higher order terms of the expression inside the brackets. When 𝑇ph(𝜈, 𝑡)/[𝜂atm(𝜈, 𝑡)𝑇𝑝,atm−
𝑇TLS(𝜈)] is very small, the dependency on the higher order terms is also very small and they can be ne­
glected. In this case,𝐍𝑖 behaves as a zeromeanGaussian in the first order. If 𝑇ph(𝜈, 𝑡)/[𝜂atm(𝜈, 𝑡)𝑇𝑝,atm−
𝑇TLS(𝜈)] is larger, the quadratic terms will play a role, and that row of the matrix will have a positive
mean value. To circumvent this issue, the channels with an atmospheric transmittance below 10% are
removed from the matrices, reducing the number of rows. Under typical weather conditions at the ASTE
site, this is about 5% of the channels, where the signal to noise ratio is lowest. This means that the loss
of information by removing these channels is small, whereas separating the signal and noise matrices
becomes easier. Due to the photon noise in the numerator, 𝐍𝑖 behaves as a Gaussian in the temporal
direction. Therefore, it is expected to be a full­rank matrix with an (almost) diagonal covariance matrix.
The denominator is correlated across channels due to the 𝜂atm(𝜈, 𝑡) term, and can introduce off­diagonal
terms in the covariance matrix.

3.3.4. Full Data Model
Using the derivations above, the full data model for each data block is:

𝐗𝑖 = 𝐒𝑖 + 𝐋𝑖 + 𝐍𝑖 , (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 . (3.26)

Here, the newmatrix 𝐒𝑖 is introduced. This matrix is formed by splitting up𝐦, the vector that describes
the telescope pointing, into subvectors, 𝐦 = [𝐦𝑇

1 ,𝐦𝑇
2 , …𝐦𝑇

𝑙 ]𝑇. The deterministic matrix is simply

𝐒𝑖 = 𝐬𝐦𝑇
𝑖 , (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 . (3.27)

with 𝐬 = [ − ln {1 − 𝑇∗𝐴(𝜈)
𝑇𝑝,atm

} ] (3.28)

Whereas the two stochastic matrices are given by:

𝐋𝑖 = [ − ln {𝜂atm(𝜈, 𝑡) −
𝑇𝜇(𝜈)
𝑇𝑝,atm

} ], (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 (3.29)

and

𝐍𝑖 = [
𝑇𝜎(𝜈, 𝑡)

𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)
], (𝑖 − 1)𝑡𝑙 < 𝑡 ≤ 𝑖𝑡𝑙 . (3.30)

Bear in mind that the time split of the data is done to make sure the TLS noise can be modeled as
a constant and that the atmospheric transmittance can be described with a single component. There is
no such boundary on the deterministic source matrix. Therefore, the vector 𝐬 can be obtained from any
row or combination of rows of the data, as long as there is an estimate for the rows of 𝐗, 𝐋 and 𝐍 there.
As such, 𝐒 can be estimated using the complete dataset still, where 𝐋 and 𝐍 are simply a concatenation
of the data blocks like in Eq. (3.22).
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4
Analysis

In this chapter, the properties of the matrices in the data model are simulated. This is done by looking
at a typical examples of the matrices, as well as the sampling mean of each channel and the sampling
covariances of the matrices. The assumptions of Chapter 3 can be checked with these simulations.

4.1. Simulations
The simulations in this chapter are created using TiEMPO1.Due to its modular setup, TiEMPO allows for
calculating the different variables inside the matrices in the full data model.

First of all, 𝑇𝑝,atm is fixed at 273 K in TiEMPO. Since the photon noise can be turned off in the simula­
tions, 𝜂atm(𝜈, 𝑡) can be calculated from the empty sky simulation. The difference between an empty sky
simulation with and without photon noise is used to calculated 𝑇ph(𝜈, 𝑡). Additionally, since TLS noise
is added to the output of TiEMPO after execution, both measurements with and without TLS noise are
available, which allows for calculating 𝑇TLS(𝜈, 𝑡). In order to satisfy the model, the TLS noise and photon
noise are added to create a Gaussian, the mean of which is constant per timescale 𝑡𝑙. The deviations
around this constant level are put into the photon noise, as not to remove noise from the simulations. Fi­
nally, the galaxy brightness temperature 𝑇∗𝐴(𝜈, 𝑡) can be simulated using the GalSpec2 package and the
same responsivity model as in TiEMPO. The other variables used in the simulation are listed in Table I.

𝑝𝑤𝑣0 telescope elevation redshift observation time luminosity velocity width of line
1.0 mm 60∘ 3 30 mins 1013.8𝐿⊙ 600 km/s

TABLE I. Input parameters of TiEMPO

4.2. Typical Matrices
Fig. 4.1 shows a typical realization of the matrices in the data model. In line with expectation, low­rank
atmosphere matrix 𝐋𝑖 is very similar to data matrix 𝐗𝑖. This confirms that the measured data is dominated
by the atmosphere prior to noise removal (see Fig. 2.4 for the brightness of the atmosphere compared to
the galaxy). Furthermore, 𝐋𝑖 is nearly constant in the horizontal temporal dimension, confirming that the
atmosphere does not changemuch over the 160 samples (one second) that this matrix is wide, especially
compared to the much larger channel to channel variations. The fact that the temporal changes are
small re­enforces the idea that they can be linearized. The bright frequencies in 𝐋𝑖 coincide with the
frequencies where the atmospheric transmittance is low (examples of the atmospheric transmittance
can be found in Fig. 2.5). From this, we conclude that the value of 𝐋𝑖 is dominated by the atmospheric
transmittance rather than the TLS noise.

If all matrices are plotted on the same color scale as data matrix 𝐗𝑖, the structure in 𝐒𝑖 and 𝐍𝑖 is
invisible. This is because 𝐗𝑖 and 𝐋𝑖 have much larger numbers, even inside the atmospheric windows.
Therefore, the matrices are plotted again in Fig. 4.2, where each matrix has its own color scale. Note
110.5281/zenodo.4279085
210.5281/zenodo.4279061
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Figure 4.1. Typical example of the four matrices in the data model at the same color scale. The color denotes the dimensionless
quantity in the matrices. The greyed out values represent ommitted samples where 𝜂atm < 10%. Matrix 𝐋𝑖 dominates over 𝐒𝑖 and
𝐍𝑖.

that the colorscale of 𝐍𝑖 is 10 times as large as that of 𝐒𝑖. It becomes clear that the source matrix 𝐒𝑖
is the weakest component inside a single block of data 𝐗𝑖. Only when multiple blocks are combined to
remove 𝐋𝑖 and 𝐍𝑖 from 𝐗𝑖, the signal can be recovered. The matrix 𝐒𝑖 has a a pattern of vertical stripes,
caused by the on­off chopping of the telescope. In the off position, the matrix is equal to zero. In the
other positions, the structure of the galaxy brightness temperature can be seen. There is a color gradient
caused by the continuum, as well as a few sharper horizontal lines signifying spectral lines. Residual
noise matrix 𝐍𝑖 is randomly varying in the horizontal direction that represents time, as is expected from
the Gaussian distributed photon noise. Additionally, the noise amplitude is larger in the channels where
the atmospheric transmission is low, as is evident by the yellow and blue dots at the same frequencies
where atmosphere matrix 𝐋𝑖 is large.
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Figure 4.2. Typical example of the four matrices in the data model at different color scales to improve contrast. The color denotes
the dimensionless quantity in the matrices. The greyed out values represent ommitted samples where 𝜂atm < 10%. The structure
of data matrix 𝐗𝑖 is mostly the same as that of 𝐋𝑖. The source matrix 𝐒𝑖 has vertical stripes, that are cause by the on­off chopping.
The amplitude of 𝐍𝑖 is larger at the frequencies where 𝐋𝑖 is high.

An important assumption in the datamodel is that 𝐋𝑖 is rank 1 and𝐍𝑖 is full rank. In order to investigate
this, the singular values of the matrices have been plotted in Fig. 4.3. The first singular value of 𝐋𝑖 is over
a factor 100 larger than all other singular values of 𝐋𝑖, 𝐒𝑖 and 𝐍𝑖. Therefore, it can safely be assumed
that 𝐋𝑖 can be approximated as a rank 1 matrix. The size of the first singular value of 𝐗𝑖 is comparable
to the first singular value of 𝐋𝑖. All other singular values of 𝐗𝑖 are comparable to those of 𝐍𝑖. The fact
that there are no large differences between the singular values shows that 𝐍𝑖 is a full rank matrix. The
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Figure 4.3. Singular values of the different matrices on a logarithmic scale. There is only one very large singular value that
dominaties over all other singular values. This is the first singular value of the low­rank atmosphere matrix 𝐋𝑖. On the other hand,
𝐍𝑖 has a much more gradual decrease in singular values. Note that most of the singular values of 𝐋𝑖 and 𝐒𝑖 are so small that they
are not shown in this plot.

singular values are not all equal, but this is statistically expected in a full rank noise matrix [39]. The
singular values of both 𝐋𝑖 and 𝐍𝑖 behave as expected from the reasoning Chapter 3.

4.3. Statistical Properties
In order to fully understand the matrices, their statistical properties must also be understood. To this
end, the sampling means of the full dataset and the sampling covariances of the data blocks have also
been plotted.

Figure 4.4. Sampling means of all matrices in the data model. Since the contrast between the matrices that compose 𝐗 is so
large, they are plotted on different scales.

The means were found by averaging over 30 minutes of data. They are shown in Fig. 4.4. The
shape of the optical depth of the atmosphere is clearly present in atmosphere matrix 𝐋 and data matrix
𝐗. In source matrix 𝐒, the shape of a spectrum with a broad continuum and more narrow spectral lines is
shown. It is important to note that half of the 𝐒matrix is equal to zero due to the off­sourcemeasurements,
so the mean of the timesamples that do contain the galaxy is actually twice as large as the mean of the
entire matrix shown here.
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Figure 4.5. Sampling covariance matrix of data 𝐗𝑖, the color
shows the covariance. The grey areas represent the chan­
nels that have been omitted from the analysis, as the atmo­
spheric transmittance is too low at these frequencies. Note
that this matrix is very similar to that of the atmosphere matrix
𝐋𝑖, which is shown in Fig. 4.6.
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Figure 4.6. Sampling covariance matrix of 𝐋𝑖, the color
shows the covariance and the channels where the atmo­
spheric transmissions is lowest omitted once more. This ma­
trix has strong vertical and horizontal lines, which are also
faintly visible in the darker areas of the matrix. This striped
profile occurs because 𝐋𝑖 is a rank 1 matrix.

The mean of residual noise matrix 𝐍 is always nearly zero, but its mean deviates from 0 more in
channels with low atmospheric transmittance. This is due to the the division by 𝜂atm(𝜈, 𝑡)𝑇𝑝,atm −𝑇𝜇(𝜈),
which can be a very small number if the atmospheric transmittance is also small. This division by a small
number van make the Gaussian noise is made relatively large. Since the values are still very small, this
does not seem to be a problem. However, wemust bear in mind that the current form of the residual noise
matrix (Eq. (3.30) instead of Eq. (3.24)) is only valid if 𝑇𝜎(𝜈, 𝑡) ≪ 𝜂atm(𝜈, 𝑡)𝑇𝑝,atm−𝑇𝜇(𝜈) in that channel.
Since 𝑇𝜎(𝜈, 𝑡) is largest where 𝜂atm(𝜈, 𝑡) is smallest, channels with a low atmospheric transmittance are
naturally not well modeled with a zero mean Gaussian timestream in 𝐍𝑖. Therefore, higher order terms
of the Taylor polynomal for 𝑇𝜎(𝜈, 𝑡)/(𝜂atm(𝜈, 𝑡)𝑇𝑝,atm − 𝑇𝜇(𝜈)) come into play, and the expected value of
𝐍𝑖 becomes larger than zero. Since this effect is present in both on and off samples and is dependent
on the atmospheric transmittance, this offset could be added to the estimate of atmosphere 𝐋𝑖 by the
algorithm during running. This would not be a problem, however, as 𝐋𝑖 and 𝐍𝑖 do not strictly need to be
separated from each other, only from 𝐒𝑖.

The sampling covariance matrices are created using cov(𝐗) = 1
𝑙 ∑

𝑙
𝑖=1(𝐗𝑖 − 𝐗)(𝐗𝑖 − 𝐗)𝑇, where 𝐗𝑖

is the matrix of which the covariance is calculated. The notation 𝐗 denotes a matrix that has the same
width as 𝐗𝑖 and contains the sampling mean of the matrix in its columns.

The covariance matrices of 𝐗𝑖 and 𝐋𝑖 are once again very similar (see Fig. 4.5 and Fig. 4.6), further
confirming that 𝐋𝑖 is the dominant matrix in 𝐗𝑖. The fact that 𝐗𝑖 and 𝐋𝑖 are so similar is what allows for
estimating 𝐋𝑖 by a low rank approximation of 𝐗𝑖.

The sampling covariance matrix of 𝐍𝑖 is shown in Fig. 4.7. This is a diagonal matrix. The main
diagonal of the matrix varies between channels. This is caused by the photon noise, as it has a higher
standard deviation in the channels where the atmospheric brightness is highest. Therefore, the main
diagonal of the sampling covariance matrix of 𝐍𝑖 also contains higher values at the channels where the
atmosphere is brightest. The diagonal structure of this matrix means that the noise in 𝐍𝑖 is not (strongly)
correlated across different channels. In combination with the mean in Fig. 4.4, this shows that 𝐍𝑖 is an
uncorrelated noise matrix with (approximately) zero mean.

Finally, the sampling covariance of 𝐒𝑖 is shown in Fig. 4.8. Essentially, this matrix is the mean of
𝐒𝑖 correlated with itself. This occurs because the mean is equal to half of 𝐬, so after subtraction of the
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Figure 4.7. Sampling covariance matrix of residual noise ma­
trix 𝐍𝑖 where the color shows the covariance. The main diag­
onal dominates in this matrix. The channel dependent nature
of this diagonal is visible from the changes in brightness.
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Figure 4.8. The covariance matrix of 𝐒𝑖, the color shows the
covariance. The profile of the galaxy (smooth continuum with
spectral lines) is clearly visible in this matrix.

mean, there is power in all columns of the matrix. The on­source columns become equal to 𝐬/2 and the
off­source columns become equal to −𝐬/2. By subsequently multiplying this matrix with its transpose,
the matrix shown in Fig. 4.8 is created.
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5
Algorithm

In order to separate the noise matrices 𝐋, 𝐒 and 𝐍, the Stationary source Plus Low­Rank Transmit­
Tance EstimatoR (SPLITTER) is developed. In this chapter, a number of possible algorithm designs
are discussed. These are presented as modular options for estimating the various matrices. Not every
possibility presented in this chapter is fully pursued to a working version within the scope of this thesis.
The different possible options are listed here, however, accompanied by an explanation of why they
were not chosen.

First, the optimization problem needs to be formulated. Since 𝐗𝑖 = 𝐒𝑖 + 𝐋𝑖 + 𝐍𝑖 for each chunk of
data 𝑖 and since the residual noise matrix 𝐍𝑖 is Gaussian in time, 𝐍𝑖 can be estimated by minimizing the
Frobenius norm of 𝐗𝑖−𝐋𝑖−𝐒𝑖. Adding the constraints formulated in Chapter 3 leads to the generic form
of the optimization problem:

minimize
𝐋𝑖 ,𝐬

1
2

𝑙

∑
𝑖=1
‖𝐗𝑖 − 𝐋𝑖 − 𝐒𝑖‖

2
𝐹

subject to rank{𝐋𝑖} = 1
𝐒𝑖 = 𝐬𝐦𝑇

𝑖
𝐋𝑖 ≥ 0
𝐬 ≥ 0.

(5.1)

An analytic closed form solution of this problem does not exist, nor can it easily be solved using
convex optimization methods, as the low­rank constraint is a quasiconcave constraint [40]. Due to the
large number of zero­entries in 𝐒 (where the entries of 𝐦𝑖 are zero, due to the telescope pointing off­
source), the problem is related to low rank plus sparse estimation problems, such as those discussed
by Slavakis et al. [41]. Slavakis et al. assume a much less structured type of matrix than used here, so
methods from this source should be implemented with caution. We cannot apply methods that rely on
randomly distributed nonzero samples. Another more closely related problem is the method described
by Taniguchi et al. in [10], where the matrix is also much more structured. In Taniguchi et al, the nonzero
entries appear in blocks however, whereas those in our data model appear in columns. In our model,
the number of zero entries is smaller than in Taniguchi et al.

Despite the structure in 𝐒, the general solution structure proposed by Slavakis et al. and Taniguchi et
al. can be applied. Their approach is to split the optimization problem in a minimization problem where
one of the optimization matrices is kept at a fixed value while optimizing the other, and then keeping the
latter fixed at its optimal value and optimizing the first matrix. By iterating this process, both matrices
are then expected to converge to the optimum. This method is widely used, although it has not been
mathematically proven to converge [41].

If the problem is simply solved for 𝐬 and 𝐋𝑖 separately, the noise limit that can be reached has no
improvement over a simple direct subtraction. This is because we subtract 𝐒𝑘 from 𝐗 in order to estimate
𝐋𝑘+1. This subtraction means that there is now more noise in the on­source positions of 𝐗 − 𝐒𝑘 than
there was originally in those of 𝐗. Taking a rank one approximation of 𝐗 − 𝐒𝑘 cannot remove all of the
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added noise and therefore there is additional noise in 𝐋𝑘+1𝑖 . As 𝐒𝑘+1𝑖 is estimated from 𝐗𝑖 − 𝐋𝑘+1𝑖 , the
photon noise is transferred back into 𝐒𝑘+1𝑖 and there is no noise removal compared to direct subtraction.
In order to avoid this, denoising strategies need to be investigated as well, such that the photon noise
is left in 𝐍𝑖 as much as possible.

The general form of the algorithm is shown in Alg. 2. Note that unlike in Taniguchi et al., we use
an iteration number (denoted by 𝑘) as a stopping condition, rather than the Frobenius norm. This is
because we want to leave the photon noise in 𝐍𝑖, such that it cannot converge to zero. Furthermore, in
this algorithm 𝐬 is optimized, which is equivalent to optimizing 𝐒 or 𝐒𝑖, as the columns of these matrices
are given by 𝐬.
Algorithm 2: Basic form of the algorithm under development.
Result: 𝐬, 𝐋𝑖
Input: 𝐗,𝐦, 𝑘𝑚𝑎𝑥
𝐬0 = 𝟎;
𝑘 = 0;
while 𝑘 < 𝑘𝑚𝑎𝑥 do

update 𝐋𝑘+1𝑖 ∀𝑖 using 𝐬𝑘;
update 𝐬𝑘+1 using 𝐋𝑘+1;
denoise 𝐬𝑘+1;
𝑘 ≔ 𝑘 + 1;

end
The structure of this chapter is the same as that of the algorithm: first, the optimization of 𝐋𝑖 is

discussed, followed by that of 𝐬. After that, we discuss the denoising of 𝐬 and finally the full algorithm in
its modular form.

5.1. Optimizing the Low Rank Atmosphere Matrix
When the signal matrix 𝐒𝑖 is held constant and only 𝐋𝑖 is optimized, the problem takes the form

minimize
𝐋𝑖

1
2

𝑙

∑
𝑖=1
‖𝐗𝑖 − 𝐒𝑖 − 𝐋𝑖‖

2
𝐹

subject to rank{𝐋𝑖} = 1
𝐋𝑖 ≥ 0.

(5.2)

This nonconvex optimization problem cannot be solved using local optimization solutions directly
due to the quasiconcave rank constraint. Despite this constraint, several solutions are available. In this
thesis, 3 options were considered:

• Transforming the problem into a convex problem using slack variables and solving it with descent
algorithms.

• Truncating 𝐗𝑖 − 𝐒𝑖 to a rank 1 matrix using a Singular Value Decomposition (SVD).

• Approximating 𝐋𝑖 ≈ −[ln 𝜂atm(𝜈, 𝑡)] and fitting the time dependence of basis spectra of 𝜼atm(𝜈)
for several PWV values.

All options can become very computationally expensive, due to the large data sizes involved for long
observations. Fortunately, all smaller matrices 𝐋𝑖 are decoupled from each other and can therefore be
optimized independently. The optimization of 𝐋𝑖 can thus be done in parallel, reducing the execution
time of the algorithm and bringing it down to feasible lengths.

The first option is a commonly used approach and allows us to optimize the problem using relatively
efficient convex optimization methods, but a downside to it is that it is only an approximation of the
original problem and therefore the results may be less reliable (this is further discussed in Chapter 6).
The second method is more precise, as an SVD truncated to rank 1 is the optimal approximation of a
full rank matrix at rank 1. SVDs can be very computationally expensive, however.

The final option was not implemented in the scope of this thesis. The most important reason for this
is that it is no longer possible to compensate for the TLS noise in the model if basis spectra are used.
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In Section 3.3.2, we defined 𝐋𝑖 = [− ln{𝜂atm(𝜈, 𝑡) − 𝑇𝜇(𝜈)/𝑇𝑝,atm}]. The TLS noise term in this matrix
cannot be modeled by a prior distribution because it is uncorrelated across channels. Since the TLS
noise cannot be modeled in 𝐋𝑖 if basis spectra are used, and it cannot be put into 𝐍𝑖 either, as it is a
constant value that will be pushed out of the Frobenius norm in optimization, it will be forced into the
source matrix 𝐒𝑖. This is not a desirable situation, that the top two methods do not suffer from.

5.1.1. Transforming the Problem into a Convex Problem
The first method to optimize the low rank atmosphere matrix is to transform the problem into a convex
problem. The only part of the problem that is not convex yet is the rank constraint. The Frobenius norm
is a convex function in 𝐋𝑖 and the 𝐋𝑖 ≥ 0 constraint describes a convex set. Using a slack variable of
the nuclear norm, the problem can then be transformed into a convex problem [41]:

minimize
𝐋𝑖

1
2

𝑙

∑
𝑖=1
‖𝐗𝑖 − 𝐒𝑖 − 𝐋𝑖‖

2
𝐹 + 𝛾 ‖𝐋𝑖‖∗

subject to 𝐋𝑖 ≥ 0.
(5.3)

The nuclear norm || ⋅ ||∗ denotes the sum of the singular values of the matrix inside the operator and
is a convex envelope of the rank constraint [40]. The relative importance of the original minimization
objective versus the slack variable that represents the rank constraint is controlled by the parameter 𝛾.

Following the methods described in [41], this problem can be further simplified by replacing 𝐋𝑖 by the
vectors that span the matrix: 𝐋𝑖 = 𝐚𝑖𝐛𝑇𝑖 . Here, 𝐚𝑖 and 𝐛𝑖 represent 𝑀×1 and 𝑁× 1 vectors respectively,
that through multiplication create the 𝑀 × 𝑁 matrix 𝐋𝑖. To ensure that 𝐋𝑖 is nonnegative in all positions,
𝐚𝑖 and 𝐛𝑖 need to both be either be nonnegative or nonpositive in all entries. We opt for the former here.
Furthermore, the slack variable ‖𝐋𝑖‖∗ = ‖𝐚𝑖𝐛𝑇𝑖 ‖∗ can be approximated 1 by (‖𝐚𝑖‖

2
2+‖𝐛𝑖‖

2
2)/2, such that

the new formulation becomes

minimize
𝐚𝑖 ,𝐛𝑖

1
2

𝑙

∑
𝑖=1
‖𝐗𝑖 − 𝐒𝑖 − 𝐚𝑖𝐛𝑇𝑖 ‖

2
𝐹 +

𝛾
2(‖𝐚𝑖‖

2
2 + ‖𝐛𝑖‖

2
2)

subject to 𝐚𝑖 ≥ 𝟎.
𝐛𝑖 ≥ 𝟎.

(5.4)

A reasonable assumption at the timescales considered in this problem is that the atmosphere remains
nearly constant. In such cases, neglecting the mean value of the TLS noise, 𝐚𝑖 represents the optical
depth of the atmosphere. This means that 𝐚𝑖 ≥ 0. Since 𝐚𝑖𝐛𝑇𝑖 ≥ 0, is must be true that 𝐛𝑖 ≥ 0 as well.
This means that Eq. (5.4) can be rewritten to form a nonnegative matrix factorization problem,

minimize
𝐚𝑖 ,𝐛𝐢

1
2

𝑙

∑
𝑖=1
‖𝐗𝑖 − 𝐒𝑖 − 𝐚𝑖𝐛𝑇𝑖 ‖

2
𝐹 +

𝛾
2(‖𝐚𝑖‖

2
2 + ‖𝐛𝑖‖

2
2)

subject to 𝐚𝑖 ≥ 0
𝐛𝑖 ≥ 0.

(5.5)

Unfortunately, this problem is once again not convex, as ‖𝐗𝑖 − 𝐒𝑖 − 𝐚𝑖𝐛𝑇𝑖 ‖
2
𝐹 is not convex when both

𝐚𝑖 and 𝐛𝑖 are optimized simultaneously. However, a low­complexity approach that circumvents this
problem is available: alternating nonnegative least squares [42]. In this approach, once again, one

1Note that this approximation is not absolutely necessary, as ‖𝐚𝑖𝐛𝑇𝑖 ‖∗ = ‖𝑎‖2 ‖𝑏‖2. Not using the approximation makes the
derivations of an optimal step such as that listed in Eq. (5.7) difficult, as ∇𝐚𝑖 ‖𝑎‖2 ‖𝑏‖2 = (‖𝑏‖2 / ‖𝑎‖2) 𝐚. A term of ‖𝑎‖2 will
then appear in the derivative of the objective function, such that 𝐚 cannot easily be separated anymore, and we can no longer
take an optimal step by setting the derivative to 0.
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optimization variable is kept constant, while the other is optimized. This is effective because for a fixed
𝐚𝑖, the problem is convex in 𝐛𝑖 and vice versa.

Since the problem is now convex, a local optimization method can be used to obtain the global
minimum. Therefore, in order to optimize the problem, a step must be found for 𝐚𝑖 and 𝐛𝑖 that comes as
close as possible to the minimum of the problem in each iteration. For a convex problem, all extrema
of the objective function are a global minimum. Therefore, the optimization can be achieved by setting
the derivatives of the objective to zero for each iteration. If we define the objective as 𝑓𝑎𝑏(𝐚𝑖 , 𝐛𝑖) =
1
2 ∑

𝑙
𝑖=1 ‖𝐗𝑖 − 𝐒𝑖 − 𝐚𝑖𝐛𝑇𝑖 ‖

2
𝐹 +

𝛾
2 (‖𝐚𝑖‖

2
2 + ‖𝐛𝑖‖

2
2), the derivatives are given by

∇𝐚𝑖𝑓𝑎𝑏(𝐚𝑖 , 𝐛𝑖) = (𝐚𝑖𝐛𝑇𝑖 − (𝐗𝑖 − 𝐒𝑖))𝐛𝑖 + 𝛾𝐚𝑖
∇𝐛𝑖𝑓𝑎𝑏(𝐚𝑖 , 𝐛𝑖) = (𝐚𝑖𝐛𝑇𝑖 − (𝐗𝑖 − 𝐒𝑖))𝑇𝐚𝑖 + 𝛾𝐛𝑖 .

(5.6)

In order to find an optimal 𝐚𝑖 for a given 𝐛𝑖, we use the 𝐚𝐢 that results in ∇𝐚𝑖𝑓𝑎𝑏(𝐚𝑖 , 𝐛𝑖) = 𝟎 and vice
versa for 𝐛𝑖. The update equations for this are

𝐚𝑘+1𝑖 = (𝐗𝑖 − 𝐒𝑖)𝐛𝑘𝑖
(𝐛𝑘𝑖 )

𝑇 𝐛𝑘𝑖 + 𝛾

𝐛𝑘+1𝑖 = (𝐗𝑖 − 𝐒𝑖)𝑇𝐚𝑘+1𝑖

(𝐚𝑘+1𝑖 )𝑇 𝐚𝑘+1𝑖 + 𝛾
.

(5.7)

Since an estimate of 𝐚𝐢 is needed to estimate 𝐛𝑖 and vice versa, a proper initialization is necessary.
This can be done by initializing all 𝐚𝑖 with the mean of the data in the temporal direction. Since the low
rank atmosphere matrix is much larger than all other components in 𝐗, this is a good first order estimate
of the atmospheric transmittance. For long datasets, the dataset can be cut up into smaller sets of a few
minutes to initialize the different 𝐚𝑖, to avoid problems with atmospheric drift. Regardless of separating
the dataset, 𝐛𝑖 is initialized by executing the update equation in Eq. (5.7).

5.1.2. Truncating 𝐗𝑖−𝐒𝑖 to a Rank 1 Matrix Using a Singular Value Decomposition
Instead of transforming the problem, an SVD can also be used of 𝐗𝑖 − 𝐒𝑖 restrict its rank. Since 𝐗𝑖 =
𝐒𝑖 + 𝐋𝑖 +𝐍𝑖, subtracting 𝐒𝑖 from 𝐗𝑖 results in 𝐋𝑖 +𝐍𝑖. As discussed in Chapter 4, the first singular value
of 𝐋𝑖 dominates over that of 𝐍𝑖. This means that if only the first singular vectors of 𝐋𝑖 + 𝐍𝑖 are used,
most of the photon noise is removed and 𝐋𝑖 is estimated. Effectively, this is a projection that separates
the noise subspace with 𝐍𝑖 from the atmosphere plus noise subspace. By only using the first singular
vectors, most of the photon noise is removed from 𝐋𝑖.

Computing a full SVD is computationally expensive. Therefore, computationally it is wiser to directly
compute the truncated SVD rather than the full SVD to be truncated. The implementation used in this
thesis uses sklearn [43] to find an approximate truncated SVD and has a complexity 𝒪(𝑀𝑃 log(𝑟) +
(𝑀 + 𝑃)𝑟2) operations for an 𝑀 × 𝑃 matrix that is truncated to rank 𝑟 [44]. As the width of each matrix
is reasonable due to the dataset being divided into smaller matrices in order to remove the TLS noise,
this SVD operation becomes feasible to use in the algorithm.

5.2. Optimizing the Source Matrix
After each iteration of the optimization of the low rank matrix 𝐋𝑖, the source matrix is updated as well.
Since 𝐒 does not contain the atmospheric transmittance nor the TLS noise (see Eq. (3.19)), there is no
reason stemming from the data model to limit the time support of the source matrix. Therefore, we can
work with the full matrix 𝐗 again, rather than the blocks 𝐗𝑖. In order to do this, the blocks of 𝐋𝑖 and 𝐍𝑖
are concatenated back into 𝑀 ×𝑁 matrices 𝐋 and 𝐍. Only one vector, 𝐬, needs to be found to optimize
𝐒, as 𝐦 is perfectly known prior to processing.Eq. (5.1) can then be rewritten to

minimize
𝐬

1
2 ‖𝐗 − 𝐋 − 𝐒‖

2
𝐹

subject to 𝐒 = 𝐬𝐦𝑇

𝐬 ≥ 𝟎.

(5.8)
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The matrices in Eq. (5.8) can become millions of samples wide. This makes many optimization
algorithms too inefficient to realistically use. Therefore, a way to process the data in parallel is desirable.
A difficulty in parallel processing the data is that, unlike the case of the atmosphere matrix, the source
vector is equal across all on­source samples. Therefore, the problem is coupled across all data blocks
and it is not straightforward to parallel process the problem. In order to still be able to employ parallel
methods, two solutions are considered: the Alternating Direction Method of Multipliers and a solutions
where pieces of data are randomly paired every iteration.

In the parallel processed methods, the dataset is divided into 𝑛 parts denoted by the number 𝑗. The
number 𝑛 is generally different from the number of blocks of data used to compute 𝐋 which is denoted
by 𝑙. As such the split in the data set happens in a different way. This is because the split in 𝐋 is limited
by time, whereas the split in 𝐬 is done for parallel processing (and later denoising). The widths of the
data blocks used for estimating the source matrix are thus generally much larger. Additionally, since 𝐬
is a constant, the data blocks do not need to be a constant time stream. Only the on­source samples
are needed, and they do not have to be in consecutive order.

5.2.1. Alternating Direction Method of Multipliers
Alternating Direction Method of Multipliers (ADMM) [45] is a form of consensus optimization. In this
method a slack variable is used to formulate a problem equivalent to Eq. (5.8). Every block of data 𝑗 has
a vector 𝐬𝑗 that is optimized. In other words, for each block 𝑗, a function 𝑓𝑗(𝐬𝑗) is defined as a separate
objective that is independent on the other data blocks. In order to ensure that one final solution will be
found, a vector 𝐳 is introduced as a central collector. All 𝐬𝑗 are forced to be equal to the central collector
through the constraints:

minimize
𝐬𝑗

1
2

𝑛

∑
𝑗=1
𝑓𝑗(𝐬𝑗)

with 𝑓𝑗(𝐬𝑗) = ‖𝐗𝑗 − 𝐋𝑗 − 𝐬𝑗𝐦𝑇
𝑗‖

2

𝐹
subject to 𝐬𝑗 = 𝐳

𝐳 ≥ 𝟎.

(5.9)

Due to the constraint that forces all 𝐬𝑗 to be equal to 𝐳, the problem is not fully decoupled yet and
therefore the data blocks cannot be processed independently. In order to decouple it, 𝐳 must be put
into the cost function as a slack variable, rather than as a constraint. This is done using an augmented
Lagrangian,

minimize
𝐬𝑗

𝐿𝜌(𝐬𝑗 , 𝐳, 𝐲𝑗)

with 𝐿𝜌(𝐬𝑗 , 𝐳, 𝐲𝑗) =
𝑛

∑
𝑗=1
𝑓𝑗(𝐬𝑗) + 𝐲𝑇𝑗 (𝐬𝑗 − 𝐳) +

𝜌
2 ‖𝐬𝑗 − 𝐳‖

2
2

𝑓𝑗(𝐬𝑗) =
1
2 ‖𝐗𝑗 − 𝐋𝑗 − 𝐬𝑗𝐦

𝑇
𝑗‖

2

𝐹
subject to 𝐬𝑗 ≥ 𝟎,

(5.10)

where the dual variables 𝐲𝑗 are introduced. Each full summand of 𝐿𝜌 can now be optimized sepa­
rately, after which 𝐲𝑗 and 𝐳 can be updated. This is done with the algorithm shown in Alg. 3.

In this algorithm, first 𝐬𝑗 is updated for each block of data. Subsequently, the central collector and 𝐲𝑗
are updated to the new average of the different 𝐬𝑗. This ensures that 𝐳 and 𝐲𝑗 always increase the cost
if the different 𝐬𝑗 are more different. If all 𝐬𝑗 are equal to each other, 𝐳 is equal to 𝐬𝑗, and 𝐲𝑗 = 𝟎.

Updating 𝐳 and 𝐲𝑗 is straightforward, but updating 𝐬𝑗 is more complicated as a minimization is re­
quired. The equation that is to be minimized is convex. Therefore, similarly to the first solution for updat­
ing the low rank atmosphere matrix, this can be done by finding the 𝐬𝑘+1𝑗 for which ∇𝐬𝑗𝐿𝜌(𝐬𝑗 , 𝐳, 𝐲𝑗) = 𝟎.
The gradient is

∇𝐬𝑗𝐿𝜌(𝐬𝑗 , 𝐳, 𝐲𝑗) = [𝐬𝑗𝐦𝑇
𝑗 − (𝐗𝑗 − 𝐋𝑗)]𝐦𝑗 + 𝐲𝑗 + 𝜌(𝐬𝑗 − 𝐳). (5.11)
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Algorithm 3: ADMM
Result: 𝐬𝑘+1𝑗 , 𝐳𝑘+1
Input: 𝐗, 𝐋𝑘 ,𝐦, 𝐬𝑘𝑗 , 𝐳𝑘 , 𝐲𝑘𝑗
𝐬𝑘+1𝑗 ≔ argmin

𝐬𝑗
‖𝐗𝑗 − 𝐋𝑗 − 𝐬𝑗𝐦𝑇

𝑗
𝑇‖

2

𝐹
+ (𝐲𝑘𝑗 )𝑇(𝐬𝑗 − 𝐳𝑘) +

𝜌
2 ‖𝐬𝑗 − 𝐳

𝑘‖22;

𝐳𝑘+1 ≔ 1
𝑛 ∑

𝑛
𝑗=1(𝐬𝑘+1𝑗 + 1

𝜌𝐲
𝑘
𝑗 );

𝐲𝑘+1𝑗 ≔ 𝐲𝑘𝑗 + 𝜌 (𝐬𝑘+1𝑗 − 𝐳𝑘+1) 𝑘 ≔ 𝑘 + 1

Subsequently, we use [𝐬𝑗𝐦𝑇
𝑗 − (𝐗𝑗 − 𝐋𝑗)]𝐦𝑗 = 𝐬𝑗𝐦𝑇

𝑗𝐦𝑗 − [𝐗𝑗 − 𝐋𝑗]𝐦𝑗. The number 𝐦𝑇
𝑗𝐦𝑗 is a

scalar value. As all entries of 𝐦𝑗 are either 0 or 1, it is equal to ∑𝑁/𝑛𝑝=1(𝑚𝑗)𝑝, the number of on­source
samples in block 𝑗. This scalar can be moved in front 𝐬𝑗, such that 𝐬𝑗𝐦𝑇

𝑗𝐦𝑗 = 𝐦𝑇
𝑗𝐦𝑗𝐬𝑗. The exact

update for 𝐬𝑗 that sets the gradient to zero is then

𝐬𝑗 =
𝜌𝐳 + (𝐗𝑗 − 𝐋𝑗)𝐦𝑗 − 𝐲𝑗

𝐦𝑇
𝑗𝐦𝑗 + 𝜌

. (5.12)

5.2.2. Data Pairing and a Mean Value
If 𝐋 is estimated correctly, all noise that is left in 𝐬 is temporally white Gaussian noise. Therefore, the
sampling mean in time of (𝐗 − 𝐋)|𝐦=1 is the maximum likelihood estimator of the underlying source
signal. Here ⋅|𝐦=1 denotes the samples where (𝑚𝑗)𝑝 = 1 and the telescope is thus pointing towards the
source. The sum of the on­source samples is given by (𝐗 − 𝐋)𝐦. We can therefore use:

𝐬 =
(𝐗 − 𝐋)𝐦
𝐦𝑇𝐦 . (5.13)

This method is a very straight forward way of obtaining an estimate of 𝐬. For reasons outlined in
Section 5.3, it is beneficial to have several different estimates of 𝐬 that can be combined. In ADMM, this
was automatically the case due to the way the data was split into 𝑛 blocks. A similar split in the mean
value approach is not directly possible, since there is no global collector forcing the estimates together.
As such, the different 𝐬𝑗 would not necessarily converge if the data set is split in consecutive blocks.

In order to reach convergence with the mean value approach, the matrices and vector can instead
be shuffled in time and randomly split up into 𝑛 equally sized chunks prior to taking the mean every time
𝐬𝑗 is estimated. In this way, 𝑛 separate estimate 𝐬𝑗 are created. Since the brightness temperature of
the galaxy is constant in time, the expectation value of the mean is the same for all data pairings. By
randomly dividing the data every iteration, we avoid systematically treating timesamples differently from
others, and the estimates of 𝐬𝑗 will not diverge. If we define 𝐀, the matrix with the shuffled columns of
𝐗|𝐦=1 − 𝐋|𝐦=1, we can define the mean value method as Alg.4.

Algorithm 4: Mean value method
Result: 𝐬𝑘+1𝑗
Input: 𝐗|𝐦=1, 𝐋𝑘|𝐦=1,𝐦𝑗
𝐀 ≔ randomly shuffle columns of 𝐗|𝐦=1 − 𝐋|𝐦=1;
[𝐀1, 𝐀2, … , 𝐀𝑛] ≔ 𝐀;
𝐬𝑘+1𝑗 ≔ 𝐀𝑗𝐦𝑗/(𝐦𝑗𝐦𝑇

𝑗 );

5.3. Denoising
If 𝐋𝑘+1𝑖 is directly estimated from 𝐗𝑖 −𝐒𝑘𝑖 , any noise that remains in the estimate of 𝐬𝑘 will also introduce
noise in the estimate of 𝐋𝑘+1𝑖 . If 𝐬𝑘+1 is then reestimated from 𝐋𝑘+1𝑖 , the noise that was present in 𝐬𝑘 will
still be present in 𝐬𝑘+1. Therefore, no improvement in sensitivity is expected without denoising, as the
addition of noise through direct subtraction is still present. The estimate of 𝐒𝑘 is noisy, because it is not
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possible to completely remove 𝐍𝑘 from 𝐒𝑘. Therefore, it is better to create a denoised version of 𝐬𝑘 to
subtract from 𝐗 prior to estimating 𝐋𝑘+1. This does mean that 𝐬𝑘 cannot be used as a final estimate of
the spectrum anymore, since it has been artificially denoised and therefore does not give an accurate
representation of the noise level in the spectrum. The final estimate of the galaxy brightness temperature
is therefore best estimated from 𝐗𝑘 − 𝐋𝑘, as this still contains the noise:

�̂�∗𝐴 = 𝑇𝑝,atm (1 − exp {
(𝐗 − 𝐋)𝐦
𝐦𝑇𝐦 }) . (5.14)

In order to denoise 𝐬, information about the shape of the spectrum can be used. Since 𝐬 = [ln(1 −
𝑇∗𝐴(𝜈)/𝑇𝑝,atm)], the only part that varies with channel in 𝐬 is 𝑇∗𝐴(𝜈). This means that the broad continuum
shape with much sharper spectral lines in 𝑇∗𝐴(𝜈), is also reflected in the spectrum of 𝐒. Since both the
broad and narrow features must remain in the estimate, simple filtering methods for denoising cannot
be applied. Low pass filtering or other smoothing methods reduce the resolution in the spectral line
channels and thereby change the shape of the lines to a wider line with a lower amplitude. Because of
this, smoothing with a model spectrum was decided upon2.

In this method, we start with a number of noisy estimates 𝐬𝑘𝑗 , obtained by either using ADMM or the
mean value method with random data order. Based on this noisy estimate, a model of the continuum is
created. Subsequently, spectral lines are estimated from the noisy spectra and added to the modeled
continuum to create a full model of the galaxy. This full model is then used as 𝐒𝑘𝑖 .

In this way, the noise in the continuum is reduced, such that no noise peaks are subtracted from 𝐗𝑖.
This means that the new estimate 𝐋𝑘+1𝑖 is less noisy. This noise reduction of the continuum is reduced
because information from multiple channels is used to create a model for the continuum. This, in turn,
means that the spectral resolution in the continuum is lower. This is not a problem, as there are no sharp
features in the continuum itself.

The used model for the continuum is a third order polynomial3. This shape was chosen, as it has
a reasonable shape for approximating the spectral shapes expected from the continuum whilst having
only four degrees of freedom. The fit is weighted by �̂�2atm. This weighting is chosen, since the lower
the atmospheric transmittance is, the more of the galaxy signal is absorbed, so the weaker the signal
is. Additionally, the lower the atmospheric transmission, the more light from the atmosphere is in that
channel. Therefore, the noise pollution is higher for a weaker signal if the atmospheric transmission
decreases. This means that the signal to noise ratio is scaled approximately by 1/(𝜂atm(𝜈))2. To counter
this effect, the weighting by (𝜂atm(𝜈))2 is used. The resulting continuum that is fitted to 𝐬𝑘𝑗 is denoted by
𝝃𝑘𝑗 .

After the continua 𝝃𝑘𝑗 are estimated, they are subtracted from the noisy spectra they were fitted to.
This results in residuals 𝐬𝑘𝑗 −𝝃𝑘𝑗 containing only the spectral lines and noise. In order to locate the lines,
the residual is weighted by an estimate of �̂�2atm, such that the highest noise peaks are reduced and
false line detections at the edges of the spectral windows are avoided. The estimate of �̂�atm is created
using �̂�atm = exp{−𝐋𝟏}. Then, the Θ highest peaks in �̂�2atm ∘ |𝐬𝑘𝑗 − 𝝃𝑘𝑗 | are selected as line locations.
The absolute value is used, since this also allows for detecting absorption lines, which become negative
when the continuum is subtracted. The locations of the Θ highest peaks are denoted by 𝜽𝑘𝑗 . This vector
is equal to 1 when a line is present, but 0 when there is no line.

In some channels, there could be a noise peak that is larger than some of the spectral lines in the
spectrum, especially in earlier iterations. If this noise peak is added back onto the continuum, it will
remain in the spectrum in later iterations. In order to avoid this, a heuristic is used. A random other
block of data denoted by 𝑞 ≤ 𝑛 is assigned to block 𝑗 at every iteration. The line positions from block 𝑞
are used as the line positions for block 𝑗. The amplitudes from block 𝑗 are used. The spectral lines added
back to block 𝑗 are then 𝜽𝑘𝑞 ∘(𝐬𝑘𝑗 −𝝃𝑘𝑗 ), such that the denoised version of 𝐬𝑘𝑗 is equal to 𝝃𝑘𝑗 +𝜽𝑘𝑞 ∘(𝐬𝑘𝑗 −𝝃𝑘𝑗 ).
As the noise lines are stochastic, it is less likely to have a strong noise peak in both blocks of data. Using
the heuristic, if a false line location is selected in block 𝑞, this is not necessarily problem as the amplitude
noise amplitude in the selected channel in block 𝑗 is most likely small. Therefore, only a small noise peak

2By separating the continuum and the spectral lines as we do below, smoothing through a regularizer also becomes an option. In
the scope of this thesis, this was not fully worked out, but an alternative optimization problem with a regularizer is described in
Appendix D

3Low pass filtering and other smoothing methods were also considered for estimating the spectrum, but a polynomial fit proved
to work better experimentally.

39



is added and it is more likely to disappear in the next pass. Since the blocks used for selecting the line
locations are randomly assigned every iteration, lines must have a large amplitude in each block of data
to survive the procedure. Whilst it is possible for noise lines to survive this procedure, this happens
much less often than when the same residual is used for estimating both the line position and amplitude.

The hyperparameter Θ that determines the number of lines needs to be chosen with care. If the
value is too low, some lines are missed. On the other hand, choosing a value that is too large can result
in noise lines being misidentified as spectral lines. Even if Θ is chosen well, there is a probability that
unresolved or barely resolved spectral lines that are too buried in noise are missed.

Algorithm 5: Algorithm for creating a model of the spectra estimated for 𝐒
Result: 𝐦𝐨𝐝𝐞𝐥𝑘𝑗
Input: 𝐬𝑘𝑗 , �̂�atm, 𝑛
𝑗 ≔ 1;
while 𝑗 < 𝑛 do

𝐚 ≔ argmin
𝑎𝑖

‖�̂�2atm ∘ (𝐬𝑘𝑗 − ∑
3
𝑖=0 𝑎𝑖𝝂(𝑖))‖

2

2
;

𝝃𝑘𝑗 ≔ ∑3𝑖=0 𝑎𝑖𝝂(𝑖);
𝑗 ≔ 𝑗 + 1;

end
𝑗 ≔ 1;
while 𝑗 < 𝑛 do

𝑞 ≔ random number {1, 2, … , 𝑛};
𝜽𝑘𝑞 ≔ largest positions {�̂�2atm ∘ |𝐬𝑘𝑞 − 𝝃𝑘𝑞|};
𝐦𝐨𝐝𝐞𝐥𝑘𝑗 ≔ 𝝃𝑘𝑗 + 𝜽𝑘𝑞 ∘ (𝐬𝑘𝑗 − 𝝃𝑘𝑗 );
𝑗 ≔ 𝑗 + 1;

end

The full algorithm for creating a model of the spectrum is summarized in Alg. 5. In this algorithm,
𝝂(𝑖) denotes a vector with the center frequencies of the channels in DESHIMA 2.0 to the power 𝑖. This
is used for the polynomial fit.

5.4. Full Algorithm
Finally, all steps are combined in the algorithm shown in Fig. 5.1. The modular structure of the algorithm
allows for easily changing the update steps in 𝐋 and 𝐬. In this way, changing the algorithm to a more
optimal solution in future implementations is easily done.
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𝑳𝑘 ≔ 𝑳1, 𝑳2, … , 𝑳𝑙

Figure 5.1. The full algorithm is shown in this figure. The rounded rectangles indicate initializations and the final estimate. The
diamond shape shows a conditional statement and the rectangles are operations. In light blue, the options for performing an
operation are indicated. When the algorithm is run, only one of these options is executed. This is a more detailed version of the
algorithm shown in Alg. 2.
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6
Simulation and Method Selection

If the algorithm is able to separate the signal from the noise and interference matrices, the properties
of the estimated matrices will be comparable to those of the matrices in Chapter 4. In order to gauge
how well each method performs, simulations using TiEMPO1 data are presented below. The dataset
used has the same properties as in Chapter 4, to make a comparison easier. First, the estimate of the
low­rank matrix is discussed, followed by that of the signal matrix.

6.1. Estimating the Low­Rank Atmosphere Matrix

Since the low rank atmosphere matrix dominates the data, it is best to first find a suitable method to
remove this. In order to test the methods presented in Section 5.1, a dataset of the telescope observing
empty sky without chopping is used. This is the simplest problem that can be presented to the algorithm.
In this section, the results of the convex method and the SVD method are presented side­by­side. The
convex method requires one full iteration (one update for 𝐛𝑖 and one for 𝐚𝑖) after initialization to obtain
a reasonable estimate of 𝐋𝑖. Therefore, results after one iteration are shown here.

The means of 𝐗, 𝐋𝑘 and 𝐍𝑘 are shown in Fig. 6.1 for the convex method and Fig. 6.2 for the method
that uses an SVD. The mean of 𝐋𝑘 fully overlaps with that of 𝐗 for both methods, as is also the case in
the model presented in Chapter 4. The mean of 𝐍𝑘 looks different from the expectation, however. In the
channels with a high atmospheric transmittance (where the mean of 𝐋𝑘 is low), 𝐍𝑘 is close to zero, as
expected. In the low atmospheric transmittance channels (where the mean of 𝐋𝑘 is high), however, 𝐍𝑘 is
much smoother than before. This means that the separation between zero mean noise and temporally
correlated noise has not been entirely successful in the low transmittance channels.

110.5281/zenodo.4279085
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Figure 6.1. Means of 𝐗, 𝐋𝑘 and 𝐍𝑘 after applying one iteration of the convex atmosphere matrix estimator. The grey areas
represent omitted channels.
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Figure 6.2. Means of 𝐗, 𝐋𝑘 and 𝐍𝑘, after 𝐋𝑘 has been estimated using an SVD. The grey areas represent omitted channels.

In the sampling covariances, the same type of effect is visible, where the matrices behave similar to
the expectations, except for the residual noise matrix in low atmospheric transmittance channels. The
estimated covariance matrix of 𝐋𝑘𝑖 resembles that of the model in all channels (see Fig. 6.3, Fig. 6.4
and Fig. 6.5). Additionally, there is a clear diagonal visible in for 𝐍𝑘𝑖 , as can be seen in Fig. 6.7 and
Fig. 6.8. In the low transmittance channels, however, 𝐍𝑘𝑖 has a stronger correlation between different
channels when the estimate is computed than according to the model from Chapter 4. This means that
some of the noise from 𝐋𝑘𝑖 remains in 𝐍𝑘𝑖 . This potentially influences the estimate of 𝐒𝑘 when a signal is
present, as there is residual correlated noise in 𝐗−𝐋𝑘. Since this effect is bound to the low transmittance
channels, an option is to raise the threshold on the atmospheric transmittance that is used to exclude low
transmittance channels. This ensures that more correlated noise is removed, but also removes spectral
information.

44



220 250 300 350 400 440
 (GHz)

220

250

300

350

400

440

 (G
H

z)

0 100 200 300
channel

0

100

200

300

ch
an

ne
l

0.0 0.2 0.4 0.6 0.8 1.0

Sampling covariance of Li

1e 2

Figure 6.3. Sampling covariance matrix of 𝐋, if the
matrix is adhering to the model. The color shows
the covariance.
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Figure 6.4. Sampling covariance matrix 𝐋𝑘𝑖 after one
iteration of the convex method with an empty sky
dataset.
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Figure 6.5. Sampling covariance matrix 𝐋𝑘𝑖 obtained
using an SVD with an empty sky dataset.
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Figure 6.6. Sampling covariance matrix of 𝐍, if the
matrix is adhering to the model. The color shows
the covariance.
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Figure 6.7. Sampling covariancematrix𝐍𝑘𝑖 after one
iteration of the convex method with an empty sky
dataset.
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Figure 6.8. Sampling covariancematrix𝐍𝑘𝑖 obtained
using an SVD to calculate 𝐋𝑘𝑖 with an empty sky
dataset.
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The SVD is theoretically a better method to compute 𝐋𝑖, as it is the optimal low­rank approximation
of 𝐗−𝐒. However, in all figures, there is no clear difference between the convex method and the method
that uses an SVD. As such, we compare the results of estimating the source instead.

6.2. Estimating the Source Matrix
As both methods for estimating the low rank atmosphere matrix need to be explored further and there
are two methods for estimating the source vector, four methods are tested here. All four methods are
performed with the parameters in Table I, where those parameters apply.

Threshold on 𝜂atm 𝜌 𝛾 𝑛 Θ Iterations Number of parallel processes
20% 105 10−6 5 10 50 10

TABLE I. Parameters of the simulation. 𝜌 controls how quickly the different estimates 𝐬𝑗 are pushed together in ADMM, 𝛾 controls
the slack variable for the nuclear norm in the convex method. The amount of different estimates 𝐬𝑗 in both ADMM and the mean
method is set by 𝑛. Θ controls the number of lines that the algorithm attempts to identify.

In order to keep the problem as simple as possible, a simplified chopping scheme is used. In this
scheme, the telescope observes a single position in the sky, where a galaxy appears and disappears to
simulate the on­off chopping. In real observations the telescope would need to move to a different field
of view to observe the off­source position. The threshold on 𝜂atm, was raised to 20% in this simulation,
to exclude the areas where he residual noise matrix 𝐍 cannot accurately be estimated. In the case of
the estimates shown here, this means that a total of 24 channels are omitted (7% of the total amount of
channels).

6.2.1. Estimating the Spectral Lines
The results of running the different versions of the algorithm are listed in Table II and Table III. The
difference between these tables is the time support 𝑡𝑙 of each matrix 𝐋𝑖. In Table II, the matrices have a
length of 160 samples and in Table III they have a length of 1600 samples. A shorter length means that
the atmosphere and TLS noise level have less time to change significantly, so they are easier to model.
On the other hand, since there are fewer samples in total per matrix the photon noise is more difficult to
remove from the low­rank atmosphere matrices.

The simulations are run using Python on a laptop with Windows 10, an Intel i7­9750H processor
with clockspeed 2.6 GHz and 16 GB RAM. In the following section, a time estimate of the computation
time is also given. It should be noted that the code run here is not completely optimized for efficiency,
but the execution time can give an indication of the relative complexity of the different versions of the
algorithm.

The other discussed metrics are more interesting, as they give an indication of how well the algorithm
converges to the desired result. The first metric is the final loss in the Frobenius norm: ||𝐗 − 𝐋 − 𝐒||2𝐹.
This is the most basic version of the cost function on which all versions of the algorithm are based.
Minimizing this is not the ultimate goal of the algorithm, as we ultimately only care about the estimate of
𝑇∗𝐴(𝜈). It is a good metric to check if the algorithm has converged, however.

A reasonable metric to gauge how well the algorithm recovers 𝑇∗𝐴(𝜈) would be the mean square error
between the true value of 𝑇∗𝐴(𝜈) and its estimate �̂�∗𝐴(𝜈). The problematic part of this error is that the signal
to noise ratio of the channels varies wildly. The lower the atmospheric transmittance is, the weaker the
signal and the stronger the interference of the atmosphere. This means that the error estimate would
be dominated by the channels in which the SNR is very low, and a good estimate is therefore often
impossible. A more reasonable estimate of the error gives a larger significance to the channels inside
atmospheric windows. Therefore, the difference should be weighted by 𝜂atm(𝜈, 𝑡). In order to do this,
the same estimator for 𝜂atm(𝜈, 𝑡) as in the algorithm is used, namely �̂�atm = exp{−𝐋𝑘𝟏}. The metric for

how well 𝑇∗𝐴(𝜈) is computed is then√ 1
𝑀 ∑𝜈[�̂�atm(𝜈)(𝑇

∗
𝐴(𝜈) − �̂�∗𝐴(𝜈))]2, where𝑀 is the number of channels

used to estimate the spectrum. This is listed as WRMSE (Weighted Root Mean Square Error) in Table II
and Table III.

Since the fraction of lines is relatively small compared to the fraction of continuum in the spectrum, the
WRMSE error is mainly useful in finding out how well the method fits the continuum. In order to judge the
peak estimation, the continuum areas should be excluded. Therefore the WRMSE of only the channels
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that contain spectral lines is also listed. The channels that are still included in the error calculation are
highlighted in green in Fig. 6.9. The WRMSE of the spectral lines only is listed as ‘WRMSE lines’ in
Table II and Table III.
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Figure 6.9. Spectral line locations selected for the computation of the error of the spectral lines.

Execution time of
Method ||𝐗 − 𝐋 − 𝐒||2𝐹 WRMSE WRMSE lines iterative part

Convex with ADMM 13.72 7.44 ⋅ 10−5K2 9.02 ⋅ 10−5K2 9m35s
Convex with mean 13.72 7.17 ⋅ 10−5K2 9.66 ⋅ 10−5K2 8m53s
SVD with ADMM 13.72 7.17 ⋅ 10−5K2 8.65 ⋅ 10−5K2 19m47s
SVD with mean 13.72 7.10 ⋅ 10−5K2 9.80 ⋅ 10−5K2 18m07s

TABLE II. Results for a width of 160 samples for 𝐋𝑖

Execution time of
Method ||𝐗 − 𝐋 − 𝐒||2𝐹 WRMSE WRMSE lines iterative part

Convex with ADMM 14.72 7.35 ⋅ 10−5K2 8.54 ⋅ 10−5K2 8m18s
Convex with mean 14.72 7.20 ⋅ 10−5K2 9.94 ⋅ 10−5K2 7m06s
SVD with ADMM 14.72 7.08 ⋅ 10−5K2 8.87 ⋅ 10−5K2 13m59s
SVD with mean 14.72 7.11 ⋅ 10−5K2 9.73 ⋅ 10−5K2 11m14s

TABLE III. Results for a width of 1600 samples for 𝐋𝑖

In both tables, the squared Frobenius norm does not change significantly between the different meth­
ods. Since the Frobenius norm is expected to be mostly determined by the fit of 𝐋𝑘𝑖 , this indicates once
again that both the convex method and the SVD are able to fit the atmosphere matrix reasonably well,
also in the presence of the signal. Furthermore, the Frobenius norm does not drop to zero, indicating
that there is residual noise inside it. This is desired and in line with expectations, as it means that the
photon noise is not completely contained in 𝐋𝑘 or 𝐒𝑘. Additionally, the Frobenius norm for the time sup­
port of 𝐋𝑖 being 1600 is larger than that of 𝐋𝑖 with time support 160. This is unsurprising, as there are
more samples that need to be fit per free parameter in 𝐋𝑘𝑖 .

In terms of the WRMSE in the spectral line channels only, the methods that use ADMM are per­
forming better than their counterparts that use the mean. As the detection of spectral lines is one of the
main goals of this research, the lower line sensitivity for the mean method is not deemed acceptable.
Therefore, for the remainder of this thesis, only the ADMM method will be considered.

The total WRMSE level is comparable with all methods on both timescales, but generally a bit larger
for the convex method. Based on this, we conclude that the SVD based method is slightly better at
estimating the continuum than the convex method. The results are very close, however. Since the
convex method is much faster and can therefore more easily be applied to large datasets, we investigate
this trade­off a bit further. Both methods converge at a similar level at the same iteration number, as is
shown in Fig. 6.10. However, since the SVD method takes longer per iteration, its convergence is about
twice as slow in terms of computing power.
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Figure 6.10. Convergence of the SVD and convex method with ADMM as a function of both iterations and execution time for
𝑡𝑙 = 1600.

It should be noted that after a short period of 10­20 iteration in which both the TLS and TLS lines
decrease very rapidly, the overall WRMSE increases again, whilst the WRMSE lines does not. This
is most likely due to the tendency of the algorithm to slightly overestimate the signal, as is shown in
Fig. 6.13. As the algorithm converges, the estimate moves from the initialization at zero to the slightly
overestimated level, causing the dip. Since WRMSE lines is still decreasing at this iteration number, the
algorithm cannot be stopped yet. The latter still changes because the spectral lines can only be found
once the continuum is near its true position.

Fig. 6.10 also shows the error of the direct subtraction method, which is the conventional method
for these estimates. SPLITTER does perform better than the direct subtraction method, but the two are
much closer together for the spectral line error than for the full estimate. This is because SPLITTER
cannot use the polynomial model to make a trade­off between resolution and sensitivity on the spectral
lines, but it can do so on the continuum.

As can be concluded from Table II and Table III, the choice of 𝑡𝑙 has an impact on the final estimate.
Therefore, the metrics of these tables are investigated as a function of 𝑡𝑙 for both the convex and the
SVD method with ADMM. The results are shown in Fig. 6.11. A number of things stand out in this plot.
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Figure 6.11. Squared Frobenius norm, WRMSE, WRMSE lines and the total execution time for the convex and SVD based
methods using ADMM. The 𝑡𝑙 values shown in Table II and Table III are shown in black.

In the top left panel, a slight increase in the trend of the squared Frobenius norm is visible as 𝑡𝑙
increases for both methods. This is expected, but the Frobenius norm starts increasing at a faster rate
past 𝑡 ∼ 5 ⋅ 103. This indicates that a good fit can no longer be found. This is also visible in the WRMSE
and WRMSE lines plots, where the estimate deteriorates for these higher values of 𝑡𝑙.

For very low values of 𝑡𝑙, in the order of 𝑡 ∼ 101, the estimates of the spectrum also deteriorate,
especially for the spectral line regions. This could be due to two reasons. First of all, for low values
of 𝑡𝑙, there can be a strong imbalance between the number of on­ and off­source measurements. For
example, if 𝑡𝑙 = 24, each chunk of 𝐋𝑖 contains 1.5 on­off cycles. This means that it is possible for one
chunk to contain 16 on­source samples and only 8 off­source samples. This could lead to problems in
estimating the level of the continuum. An argument against this is that the WRMSE does not increase a
lot, whereas the WRMSE in the spectral line regions does. This leads to a second hypothesis, which is
that the time support of the 𝐋𝑖 matrices is so short that photon noise is fitted more strongly compared to
atmospheric and TLS noise than before. This means 𝐋𝑖 is estimated less well, such that the estimate of
the spectral lines also becomes worse.

A third item of interest in the plots is the behaviour of the convex method and higher values of 𝑡𝑙.
As 𝑡𝑙 increases, the estimates of the convex method stop lying on a single line and start spreading out.
This is especially visible for the Frobenius norm and the WRMSE in the spectral line areas. Interestingly,
the Frobenius norm drops, whereas the WRMSE in the line regions increases. As such, the estimates
obtained using the convex method become less reliable as 𝑡𝑙 increases.

Due to the spread in results for the higher values of 𝑡𝑙 and due to the slightly higher WRMSE in
Table II and Table III, the convex method is deemed less reliable than the SVD method. Therefore,
the SVD is adopted in the next chapter. It is important to note that this does not mean that the convex
approximation method is not useful, however. At values near 𝑡𝑙 = 160 it behaves very comparably to the
SVD based methods, whilst having a shorter execution time. For large volumes of data, it can therefore
be a better method.

6.3. Stationary spectrumPlus Low­rank Iterative TransmiTtance Es­
timatoR

The final version of the algorithm in the scope of this thesis is shown in Fig. 6.12. For the remainder
of this thesis, this is the algorithm that is referred to as Stationary spectrum Plus Low­rank Iterative
TransmiTtance EstimatoR (SPLITTER).
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Figure 6.12. The final version of the SPLITTER algorithm used in this thesis.
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Figure 6.13. Final result of the SVD with ADMM algorithm running for 𝑡 = 1600. The greyed out areas are omitted due to low
atmospheric transmittance. There is a slight overestimate of the spectrum at higher frequencies.
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Fig. 6.13 showns a final estimate produced by SPLITTER. The improvement factor in total WRMSE
for this estimate is 1.65, where the improvement factor is defined as theWRMSE of the direct subtraction
estimate, divided by the WRMSE of the SPLITTER estimate. In the spectral line areas, the improvement
factor is only 1.26. The larger improvement in the full spectrum is due to the fact that the continuummodel
is used.

It is interesting to note that the 1.65 improvement is in perfect agreement with the improvement of a
factor 1.65 that Taniguchi et al. report [10] in their line­free channels for a heterodyne receiver. The fact
that the values are exactly equal is likely to be a coincidence, as the other versions of the algorithm result
in slightly different values, and the improvement factor for SPLITTER varies from estimate to estimate.
Note that the error metric used in Taniguchi et al. is different in 3 ways, namely that only the line­free
channels are used, that the standard deviation of the estimate is used rather than the root mean squared
error and that the result is not weighted for atmospheric transmittance. In the case of this comparison,
this is not a problem however. This is because the spectral lines are only significant in a relatively small
fraction of the total spectrum for SPLITTER, which means their effect on the total WRMSE is negligible.
Furthermore, since Taniguchi et al. also remove their continuum using the low­rank matrix, the emission
is equal to zero outside of the emission lines. For an unbiased estimator, the sampling standard deviation
and root mean squared error are equivalent. Finally, since the bandwidth of the spectrum by Taniguchi
et al. is much narrower than that of DESHIMA 2.0, the weighting of all channels would be nearly equal if
the WRMSE would be computed. Therefore, the WRMSE would simply be the RMSE scaled by a scalar
weighting factor that is common for all channels. Since this weighting factor is the same for both direct
subtraction and the new method, it will drop out when the two are divided. This means that weighting
has (nearly) no effect on the improvement factor for Taniguchi et al.

A final comment that is important to make before moving on to the experiments is that SPLITTER can
be prone to overestimating the continuum of a galaxy for some parameter choices and noise realizations.
The exact conditions for this to occur are unclear. When this occurs, the spectral lines are often still
correctly identified, however. An example of this is shown in Fig. 6.14. In these cases, the estimate can
be of use for applications that solely focus on the spectral lines, and remove the continuum.
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Figure 6.14. Example of an estimate where the continuum is overestimated, but the spectral lines are still detected. A false
spectral line is circled in red.

Another potential issue is that SPLITTER is able to ‘create’ false spectral lines in the lower trans­
mission areas, such as the one below 400 GHz in Fig. 6.14. This happens when a higher number of
spectral lines Θ is given as an input than the number of lines SPLITTER can identify. In this case, the
next highest peaks in the source estimates 𝐬𝑗 are selected. If a noise peak is particularly strong in sev­
eral 𝐬𝑗, a positive feedback loop can accidentally be created that amplifies such a noise peak. For this
reason, the parameter Θ that determines the amount of lines that are selected must be chosen carefully.
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7
Tuning and Experiments

After determining what version of the algorithm to use as SPLITTER in the previous chapter, the per­
formance of SPLITTER in various situations can be evaluated. In this part of the thesis, we present
the performance of SPLITTER in several small experiments. These are experiments with regard to the
tuning of SPLITTER’s parameters and implications on observing strategies and the requirements on
DESHIMA. Due to the many nonlinearities involved, this chapter is not intended as a comprehensive
guide to how the parameters should be set or how the telescope should be used. It is simply intended
as a first exploration of the capabilities and limitations of the algorithm.

7.1. Rebinning the Final Spectrum
Since SPLITTER relies on smoothing the estimate of the source inside the algorithm to denoise the on­
off subtraction, it is important to be careful that SPLITTER is not simply smoothing the final estimate of
the galaxy, but instead truly avoids adding additional noise by avoiding direct subtraction. If SPLITTER
is only smoothing the final estimate, averaging over several bins in the final estimate of direct subtraction
would have the same sensitivity as SPLITTER, but be much less computationally expensive. One way
to tentatively check for this is to check the effect of post­rebinning both the direct subtraction estimate
and the SPLITTER estimate. This is a method of post­processing where the widths of the frequency
frequency channels in the final estimate are changed, such that several measurements fit inside a bin.
This increases the number of measurements in a bin and reduces the variance on the estimate. Here,
we simulate this by taking the average over two channels at a time. If SPLITTER is simply an artificially
smoothed version of direct subtraction that contains no new information, there will be little to no gain in
averaging over bins.
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Figure 7.1. Rebinned version of Fig. 6.13. Every bin in this plot contains two of the channels in the original plot. The center
frequencies correspond to the average of the two center frequencies in the bin.
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Fig. 7.1 shows the result of rebinning the spectra from Fig. 6.13, where each bin contains two of
the original channels. In this estimate, SPLITTER is still visually smoother than direct subtraction. The
improvement factor in the WRMSE is 1.73. This is slightly higher than the original 1.65. For rebinning
with an average of 3 bins instead of 2, the improvement factor is 1.58. With this test, we show that
the improvement in sensitivity is not likely to be equivalent to sacrificing resolution after estimating the
spectrum. This supports the claim that SPLITTER avoids increasing the noise value by avoiding the
direct subtraction of noisy spectra.

7.2. Chopping Time and TLS Knee Frequency
In order to determine the effect of the knee in the noise spectrum (recall Fig. 2.6), two experiments are
possible. First of all, the chop length of the observation can be changed using a set TiEMPO simulation.
The second option is to change the knee frequency of the TLS noise.

In the first experiment, the noise spectrum is kept the same, but the frequency at which the obser­
vation changes from on­source to off­source is varied. For the direct subtraction method, this means
changing the operating point on the noise spectrum to a different frequency, as it directly compares two
samples. The reciprocal of the time interval between these samples is then the operating frequency.
For SPLITTER, this is not as straightforward, since multiple time samples are combined to estimate the
low­rank matrix. Therefore, there is no direct translation from the chopping time to the noise spectrum.

In the second option where the knee frequency of the TLS noise is changed, the TLS noise level is
altered across the entire noise spectrum. This experiment is similar to the first experiment in the sense
that the ratio between the knee frequency of the TLS noise and the chopping frequency is varied. On
the other hand, it is fundamentally different from changing the chopping time, as it means that the knee
frequency of the atmospheric interference and the TLS noise are no longer in the same range. This
can be detrimental to the estimate for high TLS knee frequencies, as it is more difficult to estimate the
atmospheric interference with only one vector if the TLS noise is more dominant.
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Figure 7.2. Errors as a function of chop length. The black line indicates the 100 ms chop length that corresponds to a the PSW
wheel rotating at 10 Hz.

The first experiment is shown in Fig. 7.2. Here, it is clear that SPLITTER is more robust against a
slower chopping speed than the direct subtractionmethod. The direct subtractionmethod starts suffering
from additional noise at a chopping length of about 0.2 s, and as a result has a much higher error than
SPLITTER at higher chopping cycle lengths. Direct subtraction already has a large penalty in both
the continuum and the spectral line areas at a chopping time of 1 s, which corresponds to the knee
frequency of 1 Hz. SPLITTER only starts to suffer around this chopping cycle length. This means that a
slower PSW wheel can potentially be used when observing with SPLITTER. Unfortunately, SPLITTER
does have a serious noise penalty at multisecond chopping cycle lengths. This means that a chopper
wheel is still necessary to switch positions and we cannot resort to simply noddig the telescope. If a
later version of SPLITTER can remain penalty free for larger chopping cycle lengths, the mechanical
chopper wheel can potentially be omitted. This is therefore a potential area for future work.

The second experiment, where the knee frequency of the TLS noise is moved, is shown in Fig. 7.3.
Here, the pattern looks very different. Both SPLITTER and the direct subtraction method start showing
an increasedWRMSE near a knee frequency of 10 Hz, which is the chop cycle frequency. For clarity, the
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Figure 7.3. Errors as a function of TLS knee frequency. The black line indicates the 1 Hz where the knee frequency is usually
located.

power spectra of the datasets used to create Fig. 7.3 are shown in Fig. 7.4. When the knee frequency
of the TLS noise is increased, the 1/𝑓 part of the spectrum shifts up. When the knee frequency of the
TLS noise becomes lower than that of the atmosphere noise, the spectrum does not change anymore,
as the atmosphere noise dominates over the TLS noise at lower frequencies.
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Figure 7.4. Noise power in a channel near 255 GHz. Left: The noise PSDs of the datasets used to create Fig. 7.3 determined
using the Welch method. Right: The expected shapes of the components of the spectrum. The TLS 1/𝑓 spectra are shown in
colors, in black the atmosphere spectrum and the photon noise are shown. For low knee frequencies, the TLS noise is not visible
in the full PSD as the atmosphere noise and photon noise dominate over it across the entire spectrum.

From the TLS noise perspective, increasing the TLS knee frequency is equivalent to reducing the
chopping cycle frequency. Therefore, the fact that SPLITTER responds differently to the change in knee
frequency than it does to the change in chopping cycle length means that increase in error cannot be
explained by TLS noise alone. A probable explanation is that the issue arises because increasing the
TLS knee frequency means increasing the TLS noise across the entire noise spectrum (see Fig. 7.4).
Therefore, the TLS noise PSD becomes larger than that of the atmosphere. This in turn results in more
difficulty of fitting the atmospheric transmittance within the low rankmatrix. From this, it can be concluded
that the issue is most likely in the TLS noise dominating over the atmospheric noise, rather than the TLS
noise dominating over the photon noise. If the TLS noise becomes too large, the approximation that
the low­rank source matrix 𝐋𝑖 is only dependent on time in the atmospheric transmittance is not valid
anymore.

In order to check this idea, the experiment with the increased chop length is repeated without added
TLS noise. The results are shown in Fig. 7.5. Here, we indeed see that a much slower PSW frequency
is possible. SPLITTER is able to correctly estimate the galaxy up to a chop cycle length of almost 10 s,
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or 0.1 Hz. This is a factor 10 under the knee frequency. The higher errors at chopping cycle lengths
over 10 seconds long can be due to either the chopping cycle being too long, or due to the number of
chopping cycles within 𝑡𝑙 (the time support of one block of atmosphere data). Since 𝑡𝑙 = 1600, chopping
cycles that are just below that can have an unbalanced number of on­ and off­source measurements,
leading to an increased error, as in Fig. 6.11.
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Figure 7.5. Errors as a function of chop length when TLS noise is omitted. The black line indicates the 100 ms chop length that
corresponds to a the PSW wheel rotating at 10Hz. Note the different scale compared to Fig. 7.2.

7.3. Fraction of Samples On­Source
The current direct subtraction method requires the time spent observing the on­source sky to be equal
to the time spent observing the on­source sky as is spent observing the empty sky. This is because the
noise on the final estimate is the root of the square sum of the noise on the on­source and off­source
spectra. Since this is not directly the case for SPLITTER, it is potentially possible to have more samples
on­source than off­source. This leads to a higher effective observation time of the galaxy itself.

Three examples of a varied on­source fraction are shown in Fig. 7.6. The middle figure, Fig. 7.6b
shows the current situation with 50% of samples on­source. The top figure has 3 out of 16 samples
on­source (∼ 20%) and the bottom figure has 13 out of 16 samples on­source (∼ 80%).

In the figure where the on­source fraction is reduced, there is more noise in the final estimate. This
is comparable to the effect of reducing the total integration time. Although the noise is increased, the
continuum level is estimated at the right brightness temperature, and the spectral lines near 250GHz and
280 GHz are visible in the spectrum. In the second spectral window from the high end of the spectrum,
between 380 GHz and and 420 GHz the spectrum is not very well estimated.

In the bottom plot where more time is spent on­source, the continuum is very smooth, but overes­
timated. Additionally, most of the spectral lines have not been found. This is most likely due to the
estimate still suffering from the reduced off­source time. This makes the atmosphere more difficult to
characterize. The estimate is therefore not an improvement over the traditional observing strategy.

All in all, the hypothesis that SPLITTER could allow for a higher fraction on­source samples is not
supported by these results. Even though the connection between the percentage of samples spent
on­source and the quality of the final estimate is not as clear for SPLITTER as for direct subtraction,
the estimate of the empty sky is deteriorated too much by spending less time off­source. Therefore,
the observing strategy that is currently used is also a good observing strategy for the current version of
SPLITTER.
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(a) 3 samples on­source, 13 samples off­source for each chop cycle
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(b) 8 samples on­source, 8 samples off­source for each chop cycle

(c) 13 samples on­source, 3 samples off­source for each chop cycle

Figure 7.6. Estimated spectra for different fractions of time spent on­source during the chopping cycle.

7.4. The number of Different Estimates of the Source
When using ADMM, the parameter 𝑛 determines howmany instances of the source vector 𝐬𝑗 are created
and therefore how large the data blocks of the source matrix are. Having too many can lead to a low
accuracy per 𝐬𝑗, as the observation time per estimate is limited. Having too few means that the spectral
line detection will not work well anymore. This is because we randomly assign a block of data for the
line detection to another block of data for the line amplitude. If there are too few blocks, a blocks will
often be assigned to the same block for peak detection, which can result in noise lines being amplified

Fig. 7.7 shows the results for 𝑛 ranging from 1 to 75 on the same dataset as before, using SVD. From
this figure, it is clear that the dependence on 𝑛 is much weaker than that on 𝑡𝑙, which determines the
amount of blocks the atmosphere matrix is divided into. Most metrics stay (nearly) flat throughout the
tested range. The most significant effect is in the line detection, as expected. For 𝑛 = 1 and 𝑛 = 2, the
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Figure 7.7. Plot of the dependence of the final estimate on 𝑛, the number of ADMM source vectors. In black, the value of 𝑛 = 5
used in the previous chapter is shown. In the plots of the WLS and the WLS lines, the value for direct subtraction is shown in
orange.

error is relatively high. For 𝑛 = 3, there is a drop, and the error stays lower until 𝑛 = 8, which confirms
the idea that finding a suitable 𝑛 is trade­off. For this dataset, a suitable 𝑛 lies in the range 4 − 7. For
𝑛 = 5, the improvement in WRMSE compared to direct subtraction is a factor of 1.61, in the line areas
the improvement is smaller at a factor of 1.25.

7.5. Threshold on the Atmospheric Transmittance
In the Chapter 6, the threshold on the atmospheric transmittance was increased from 10% to 20%, to
remove the channels that induced strong non­diagonal elements to the residual noise matrix 𝐍. The
effects of this threshold can also be simulated. To this end, 30 different simulations with thresholds
ranging from 0% to 29% transmittance are run. It should the noted that the threshold is a threshold on
the transmittance of the atmosphere, not the amount of channels used directly. The results are shown
in Fig. 7.8.

0.0 0.1 0.2 0.3
Threshold on atm

0.0

0.5

1.0

1.5

W
R

M
SE

1e 4

SPLITTER
Direct subtraction

0.0 0.1 0.2 0.3
Threshold on atm

W
R

M
SE

 li
ne

s

0.1

0.1

0.2

0.2

Figure 7.8. Error in the estimate as a function of the threshold on the atmospheric transmittance.

The dependence of the quality of the estimate on the threshold is not clear. There is an almost
periodic looking effect, that the author is unable to explain at the time of writing. The initial choice of a
threshold at 10% is very unfortunate, as this happens to be the worst outlier of the estimate shown in
this plot. The increased threshold at 20% is indeed better, but not necessarily the best choice. A lower
threshold of about 5% would lead to a better estimate. For the threshold at 5%, the improvement would
be a factor of 1.28 in the line areas and a factor of 1.68 for the continuum.

Note that an estimate with the same data set and the exact same parameter set, aside from the
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threshold on the atmospheric transmittance can lead to a very different result. This instability is unfor­
tunate. However, the main error that SPLITTER often makes is to overestimate the continuum. Fur­
theremore, there is not yet a reason to use a very different observing strategy for SPLITTER and for
the current direct subtraction method. This means that SPLITTER can be run on a dataset obtained
for the direct subtraction method with various thresholds in use. The agreement of the mean level of
the spectra obtained using SPLITTER and the direct subtraction method can then be used to find the
optimal estimate. This method is far from ideal, but does offer a way of working around the instability
that SPLITTER can present in its current form.

7.6. Chopping and Nodding
Thus far, only results using a perfectly aligned on­source and off­source position have been presented. In
these simulations, the galaxy was ’turned on and off’, whilst the telescope pointing remained stationary.
Although this is possible in simulations, in the real world the telescope must have a different pointing
to observe on­source and off­source positions. Therefore, a simulation using ABBA chopnodding (see
Section 2.2.2) is also performed. For this simulation, a nodding cycle of 60 s was used. The result is
shown in Fig. 7.9.
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Figure 7.9. ABBA simulation vs perfect alignment of the on­ and off­source beams for a galaxy with 𝑧 = 3 with an atmospheric
transmittance threshold of 5%.

The general shape of the ABBA and perfect alignment estimates are comparable, but SPLITTER
has more trouble identifying the spectral lines in the ABBA estimate. One of the lines near 290 GHz is
no longer found. Therefore, the estimate is negatively influenced by using ABBA chopnodding rather
than the idealized situation where the beams are perfectly aligned.
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Figure 7.10. ABBA simulation vs perfect alignment of the on­ and off­source beams for a galaxy with 𝑧 = 1.8 with an atmospheric
transmittance threshold of 5%.

A similar estimate, but for a galaxy with a redshift of 1.8 and a luminosity of 1013.4𝐿⊙ is shown in
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Fig. 7.10. This emphasizes the instability that SPLITTER can display, as the galaxy is clearly overesti­
mated in this plot, both for perfect alignment and for ABBA. This can (partially) be improved by increasing
the threshold on the atmospheric transmittance, as shown in Fig. 7.11. Here, the estimate of the contin­
uum has significantly improved, but SPLITTER is unable to correctly identify the spectral lines. For the
same parameter set, a galaxy with 𝑧 = 4.43 and a luminosity of 1013.8𝐿⊙ is also estimated, the result is
shown in Fig. 7.12. Here, the ABBA estimates the continuum level better, but the large central line in the
middle of the spectrum is underestimated. An overview of the improvement factors is shown in Table I.
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Figure 7.11. ABBA simulation vs perfect alignment of the on­ and off­source beams for a galaxy with 𝑧 = 1.8 with an atmospheric
transmittance threshold of 9%.
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Figure 7.12. ABBA simulation vs perfect alignment of the on­ and off­source beams for a galaxy with 𝑧 = 4.43 with an atmospheric
transmittance threshold of 9%.

Simulation Shown in Improvement factor Line improvement factor
𝑧 Threshold on 𝜂atm ABBA Perfect alignment ABBA Perfect alignment
3 5% Fig. 7.9 1.68 1.57 1.27 1.16
1.8 5% Fig. 7.10 1.02 1.43 0.88 1.23
1.8 9% Fig. 7.11 1.56 1.74 1.29 1.32
4.43 9% Fig. 7.12 1.74 1.67 0.98 1.41

TABLE I. Improvement factors for ABBA and perfect alignment. Line detection can be more difficult with ABBA, as can be seen
by the two deteriorated errors in red. This is not the case for all ABBA experiments, however.

In general, SPLITTER is often able to recover a galaxy spectrum with a better sensitivity than the
direct subtraction method. There are, however, still many cases where the estimate by SPLITTER fails
to find the spectrum at the right level. From this, it can be concluded that a SPLITTER based method
can be used to estimate spectra with a higher sensitivity using the same dataset, but that work is still
needed in order to make the method robust enough to be reliably usable in practice.
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8
Conclusions and Future Work

In this thesis, the removal of wideband atmospheric noise from spectra of high redshift galaxies ob­
tained by the DEep Spectroscopic HIgh­redshift MApper (DESHIMA) 2.0 is investigated. This removal
is done using the newly developed Stationary spectrum Plus Low­rank Iterative TransmiTtance Estima­
toR (SPLITTER). This chapter describes the main findings in the thesis, the limitations of SPLITTER
and provides suggestions for future work.

8.1. Discussion and Conclusions of the Research Questions
The presented work is structured around five research questions listed in Section 2.5. Together, these
questions provide an answer to the main research question of how to remove wideband atmospheric
noise from DESHIMA 2.0 data such that both the spectral lines and the continuum are well estimated.
These subquestions are listed here with a short discussion for each question.

“How can we formulate a variation of the model presented by Taniguchi et al. in [10] that is
applicable to DESHIMA 2.0?” A data model that is comparable to that of Taniguchi et al. is presented
in Sections 3.1 and 3.3. Obvious differences between the data model presented in this thesis and in
Taniguchi et al. are that there is no forward efficiency or variable gain term necessary for our DESHIMA
2.0 observations, as we assume that these terms are already calibrated in for in the sky temperature data
we use as an input for SPLITTER. For our instrument, however, temporally correlated TLS noise must
be incorporated. This means that the low­rank atmosphere matrix must be split up into shorter pieces
of data. Splitting is not needed for the heterodyne receivers Taniguchi et al. work with. Additionally, the
model by Taniguchi et al. focuses only on spectral lines and not the continuum, whereas we create a
model that contains both. Furthermore, the spectral lines in Taniguchi et al. are much broader compared
to the channel width than is the case for DESHIMA 2.0. Finally, the photon noise term is more explicitly
considered in our model than in that of Taniguchi et al.

“What is the behaviour of the various noise sources (i.e. atmosphere, photon and Two Level
System (TLS) noise) in this model?” The TLS noise and photon noise can be modelled together as
a Gaussian. The atmospheric transmittance and the mean value of this Gaussian are put into a low­
rank matrix. This allows us to remove them using low­rank estimation methods. The remainder of the
Gaussian noise is put into a residual noise matrix. Chapter 4 shows the properties of these matrices.
We see here that the low rank matrix is approximately a rank one matrix that has much larger values
than the source and residual noise matrices. The residual noise matrix is almost a diagonal matrix, but
it does contain off­diagonal terms in channels where the atmospheric transmittance is very low. If the
time support of the low rank matrix is very short, this problem is circumvented, but the photon noise can
distort the estimate of the low­rank matrix. Therefore, a balance must be stricken in the time support of
the low­rank matrix.

“How can this data model be used to formulate an algorithm that estimates both the continuum
emission and the spectral lines of high­redshift galaxies?” Several solutions were investigated
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and implemented. The final version of SPLITTER uses an approximate Singular Value Decomposition
(SVD) from sklearn [43] to estimate the low­rank atmosphere matrix. The source matrix is optimized
using the Alternating Direction Method of Multipliers (ADMM).

This source matrix is denoised by creating a model spectrum for every iteration. In this model spec­
trum, some resolution in the continuum is traded for a higher sensitivity. Since the continuum is very
broad and smooth, this loss in spectral resolution is permissible. Denoising the source matrix essentially
means we do not transfer additional noise from the estimate of the source back into the low­rank atmo­
sphere matrix. Therefore, the low rank atmosphere matrix has lower noise than is we would subtract the
source from it without denoising. As there is less noise in the low­rank atmosphere matrix, estimating
the source using the difference between the data matrix and the low­rank source matrix reaches a higher
sensitivity than estimation using direct subtraction of noisy spectra.

“How do the estimates by SPLITTER compare to the estimates created using direct subtraction?”
Especially in terms of sensitivity in the continuum, SPLITTER seems to be able to comfortably achieve a
higher sensitivity than the direct subtraction method (see Section 6.2.1 and Chapter 7). However, there
are also cases where the continuum is overestimated by SPLITTER, which does not occur for direct
subtraction in the same situations. Therefore, SPLITTER seems to have a higher sensitivity than direct
subtraction in principle, but can still arrive at a worse galaxy estimate due to robustness issues. It is
not yet clear for what conditions this does and does not occur. Robustness is therefore one of the main
issues that needs to be addressed.

A natural question to ask is whether the improved sensitivity thanks to the trade­off with resolution in
the continuum is truly unique to SPLITTER. It is also possible to perform direct subtraction and then aver­
age over several channels to obtain a smoother final estimate. There are two ways in which SPLITTER
challenges this idea. The first is that the averaging over channels is still possible with SPLITTER, as
we do not actually rebin the spectrum. This means that the channels in which SPLITTER estimates the
galaxy are the same as the channels in the input data set, aside from the removed channels outside the
atmospheric windows. The second advantage that SPLITTER has over smoothing a direct subtraction
estimate is that the telescope does not have to switch positions as fast as with direct subtraction. This
means that the Position SWitching wheel (PSW) does not have to rotate as fast and other observing
techniques can possibly be investigated in the future.

“Should the observing strategy of DESHIMA 2.0 be changed for this algorithm?” Aside from
allowing for a lower PSW frequency (see Section 7.2), SPLITTER appears to require an observing
strategy that is very similar to the optimal observing strategy for direct subtraction. Furthermore, using
an observing scheme that can be used for direct subtraction allows for comparing the estimates by
SPLITTER and direct subtraction. This enables the user to verify whether the continuum has been
overestimated. Therefore, the current observing scheme cannot be replaced, unless a more robust
version of SPLITTER is developed.

Main Research Question The results from these five questions combined can answer the main ques­
tion of this thesis:

Main question

“Is there a way to efficiently remove the wideband atmospheric noise from DESHIMA 2.0 data
in order to recover both the narrow line spectra and the broad continuum emission with a higher
sensitivity than the current direct subtraction method?”

The results indicate that SPLITTER is able to achieve a higher sensitivity than direct subtraction.
This is shown up to a factor of ∼ 1.7 over the full spectrum, with an improvement of a factor ∼ 1.3 in the
line areas. This means that SPLITTER is a proof of concept that such a more statistically driven method
can improve the estimates of high redshift galaxies in both the line and continuum areas of the spectrum.
For SPLITTER to truly have advantages over direct subtraction, more work is needed on robustness.
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8.2. Contributions and Implications
Several contributions were made in this thesis. First of all, work was done on distributing existing simula­
tion packages that are now open­source available. These tools can now be freely used by the scientific
community to create wideband position switching simulations.

Secondly, a data model for DESHIMA 2.0 data was developed. This statistically oriented approach
to DESHIMA data had not been worked out on this level before and can provide valuable insights for
future work, even if another algorithm is adopted. Insights in the behaviour of noise sources other than
the atmospheric noise, such as the photon noise, are also useful for the development of methods that
only focus on spectral lines, such as the method by Taniguchi et al.

As a third point, the SPLITTER algorithm is able to reduce the error in the estimate of high­redshift
galaxies in the same amount of observing time. This means that SPLITTER can potentially reach the
same sensitivity in a shorter observing time. In DESHIMA 2.0, this means that more sources can be
measured in the same amount of observing time, or the same amount of sources can be measured with
a higher sensitivity.

A final contribution is the result that SPLITTER is able to function at a lower position switching fre­
quency than the traditional direct subtraction method. In the current situation, SPLITTER seems to
be limited by the position switching frequency compared to the TLS knee frequency, rather than the
atmospheric noise frequency. Therefore, SPLITTER can potentially work with a much slower on­off
frequency, if the TLS noise is sufficiently suppressed.

8.3. Limitations
Before the SPLITTER method can be used to replace other methods, however, robustness issues need
to be resolved. In the current version of SPLITTER, parameters need to manually be tuned in order to
remove the overestimation bias from the galaxy estimate. This means that SPLITTER is not reliable
enough to replace existing methods at the current time.

Another important limitation is that SPLITTER has only been tested on simulated spectra that have
a reasonably high signal­to­noise ratio. Because SPLITTER has only been tested on TiEMPO simula­
tions, only a constant and known physical atmosphere temperature was used. In reality, the physical
temperature can drift by a few Kelvins during a long observation. The effects of a change in atmosphere
temperature are not yet investigated. Other effects not currently included are the difference between
beam paths on both sides of the position switching chopper wheel. This difference will result in a differ­
ent main beam efficiency for both on­sky positions, as mentioned in Section 2.2.2. The effect of these
different main beam efficiencies should be investigated. Thirdly, due to the rotation of the PSW wheel
in finite time and diffraction effects near the transition from on­source to off­source, a number of sam­
ples will be unusable for every chopping cycle. The impact of these missing samples should also be
inspected. Finally, there is no readout noise in TiEMPO. This is most likely not an issue for SPLITTER
due to how small the noise power is [28], but needs to be investigated nonetheless.

8.4. Future work
As described above, the most important step in developing a future version of SPLITTER is to solve the
robustness issue where the continuum is overestimated. Wewould like to propose two potential methods
to work on this issue. The first is to exploit the structure of the source matrix more. Since the positions
where this matrix is equal to zero are known prior to the observation, it is known what columns of the
data only contain the low­rank atmosphere matrix and the residual noise matrix. On these columns, a
basis for the column space of the atmosphere matrix can be estimated before the iterative part of the
algorithm starts. In this way, the estimate of the column space is not distorted by the estimate of the
source. Subsequently, only the time behaviour of the atmosphere matrix needs to be fitted. A second
option is to look at less restrictive smoothing methods, such as the one using a regularizer proposed in
Appendix D.

Whilst the main robustness issue is in the continuum estimation, SPLITTER also occasionally misses
weak spectral lines, that become smoothed like the continuum. On the other hand, SPLITTER can
‘boost’ false lines. Because of this, a more advanced line detection algorithm can also be very beneficial
to SPLITTER.

Another interesting subject to investigate is whether a logarithmic data model is indeed the most
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useful model. On the one hand, an advantage of the logarithmic model is that the logarithm of the
atmospheric transmittance is well­approximated by a linear function of the precipitable water vapor.
However, since the timescales of SPLITTER are very limited, it may be possible to do the same for the
atmospheric transmittance directly. An advantage of this is that it simplifies the data model and fewer
linearizations of the model itself are necessary.

Regardless of how robustness can finally be achieved, a robust version of SPLITTER can have big
implications on the planning of future observation campaigns. Therefore, a robust version of SPLITTER
also requires a more rigorous analysis of the observing strategy in order to find an optimal scheme for
when direct subtraction is no longer needed to verify the results. Additionally, all simulated spectra in
this thesis have a reasonably high signal­to­noise ratio. Therefore, a more thorough analysis with cases
where there are only one or two barely resolved lines and a continuum below the noise level should be
performed. On top of that, a better understanding of how the differences between real observations and
TiEMPO simulations influence the results of SPLITTER is needed.
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A
DESHIMA

In this appendix, a short overview of how the DESHIMA chip works is given
The DESHIMA chip is located inside a cryostat to reduce thermal noise and ensure superconductivity.

A schematic of the DESHIMA chip is shown in Fig. A.1. The incoming light is guided to the fully on­chip
filterbank using a leaky lens antenna. The remainder of the chip is shielded from radiation.

The detectors in DESHIMA are Microwave Kinetic Inductance Detectors (MKIDs). These detectors
are suitable for weak­signal detection as they are photon noise limited. The filter bank (shown in blue)
consists of 347 superconducting microstrip filters that couple the detectors to the sky signal line. This
allows for extracting the energy from the line at a specific resonance frequency for each filter, without
loading the line significantly at other frequencies [46]. In this way, each detector is only coupled to one
specific center frequency between 220 GHz and 440 GHz. On the green side of the illustration, the
shorted end of the MKID is coupled to the filter that feeds it, and the open end is coupled to the readout
line [9].

MKIDS are direct detectors, which means they detect power directly. This works as follows. Inside
the superconducting MKIDs, electrons condensate. This means that two fermionic electrons form a pair
that can be regarded as a boson. These pairs are called Cooper pairs and exist just below the Fermi
energy. Around the Fermi energy, an energy gap of width 2Δ exists. If an incident photon has an energy
of 𝐸 = ℎ𝜈 ≥ 2Δ, it can break a Cooper pair up into quasiparticles that are a superposition of an electron
above the gap and a hole below the gap.As Cooper pairs have a kinetic inductance, the breaking up of
Cooper pairs changes the resonance frequency of the MKID (illustrated in Fig. A.2). The phase shift of
this resonance frequency can then be detected in the readout line [26].

Due to the frequency dependent nature of the MKIDs, they naturally lend themselves to frequency
division multiplexing. This means that only one pair of cables is needed to read out all MKIDs, which
has two advantages. First of all, only two thermal loads are added, which makes the cryostat more

Readout signal
(4-6 GHz)

Sky signal line

220 GHz

440 GHz

Leaky lens antenna

MKID
Aluminium absorber

Filter

NbTiN ground plane

Amorphous Si

347 spectral channels

Figure A.1. Schematic of the DESHIMA 2.0 instrument. The signal arrives through the leaky lens antenna on the bottom left and
then travels through the sky signal line. Subsequently, it is filtered between the 347 different filters and absorbed in the Microwave
Kinetic Inductance Detectors (MKIDs). These 347 MKIDs are read out with a single readout line shown in green. Figure taken
form [46].
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Figure A.2. Illustration of the operating principle of a Microwave Kinetic Inductance Detector (MKID). Left: Cooper pairs at the
Fermi energy can be broken apart into quasiparticles in the upper conduction band. 𝐸𝐹 denotes the Fermi energy in the normal
state. Right: Transmission through a readout line with one MKID in the complex plane. As Cooper pairs are broken apart, the
phase of the resonance frequency shifts. Figure based on [26].

efficient than a solution with more cables. Secondly, only one analog to digital converter is needed,
which reduces the cost and complexity of the electronics. The readout signal ranges from 4 GHz to
6 GHz, but the line is read out at 160 samples per second. Which means that a full spectrum is obtained
every 6.25 ms.
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B
Structure function of the Precipitable

Water Vapor
In TiEMPO, the change in PWV has been modeled using the Astronomical Radio Interferometer Simula­
tor (ARIS), which in turn models the structure of the atmosphere using Kolmogorov turbulence [47],[48].
This is a thin­layer atmosphere model that is used to create a phase screen, which is later converted to
a PWV screen. In this model, all water vapor in the atmosphere is modeled as being at a single layer
at an altitude in the order of 1 km. The spatial variation of the atmosphere is modeled using a structure
function for the spatial variation [49]. The spatial variation can subsequently be used to model the tem­
poral behavior of the column of atmosphere above the telescope, by transforming the spatial changes
into temporal changes at a stationary position using the windspeed.

The spatial structure function is the second order statistic of the difference in water vapor content,

𝐷(𝑠) = 𝑎2𝔼 {[𝑃𝑊𝑉(𝑥 + 𝑠) − 𝑃𝑊𝑉(𝑥)]2} . (B.1)

In this equation, 𝑎 is a constant, in this thesis 𝑎 = 6.587 is used, based on work by [24]. The
operator 𝔼{⋅} denotes an expected value, 𝑥 denotes a position in the layer of water vapor and 𝑠 the
displacement from this position. The structure function can be characterized using a minimum and
maximum correlation length,

𝐷(𝑠) = {
𝐶2𝑠5/3, 𝑠 ≤ 𝐿1
𝐶2𝐿1𝑠2/3, 𝐿1 < 𝑠 ≤ 𝐿2
𝐶2𝐿1𝐿2/32 , 𝑠 > 𝐿2.

(B.2)

Here, 𝐶 denotes a constant structure coefficient and 𝐿1 and 𝐿2 denote the minimum and maximum
correlation length, respectively. These can vary based on atmospheric conditions. In the simulations
used in this thesis, 𝐶 is set using √𝐷(𝑠 = 100m) = 50𝜇m, which translates to 𝐶 ≈ 1.077 ⋅ 10−6m1/6.
Furthermore, 𝐿1 = 1, 638.4m and 𝐿2 = 13, 107.2m are used.

As noted above, the structure function can also be written as a function of time for a stationary
observer using a constant windspeed 𝑣wind. Let 𝜏′ be a time difference. In that case, 𝑠 = 𝑣wind𝜏′ and
the structure function becomes 𝐷(𝜏′) = 𝑎2𝔼 {[𝑃𝑊𝑉(𝑡 + 𝜏′) − 𝑃𝑊𝑉(𝑡)]2}. Therefore, the equation can
also be written as:

𝔼 {[𝑃𝑊𝑉(𝑡 + 𝜏′) − 𝑃𝑊𝑉(𝑡)]2} =

⎧
⎪⎪

⎨
⎪⎪
⎩

(𝐶𝑎)
2
𝑣5/3wind𝑡5/3, 𝜏′ ≤ 𝑇1

(𝐶𝑎)
2
𝑣5/3wind𝑇1𝑡2/3, 𝑇1 < 𝜏′ ≤ 𝑇2

(𝐶𝑎)
2
𝑣5/3wind𝑇1𝑇

2/3
2 , 𝜏′ > 𝑇2,

(B.3)
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where 𝑇1 = 𝐿1/𝑣wind and 𝑇2 = 𝐿2/𝑣wind. For a windspeed of 10 m/s, 𝑇1 is approximately 2.5 minutes
and 𝑇2 is approximately 22 minutes. Inside TiEMPO, the PWV is only known at discrete positions, spaced
at a distance of 20cm for this thesis.
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C
Discretization in Power Spectral Density

In Fig. 2.6, the atmospheric noise shows a sharper drop­off near 1 Hz than the expected 1/𝑓 drop­off.
In this appendix, we explain why this occurs, and why this is not problematic.

The PSD spectra were created using TiEMPO. In particular, the atmospheric noise spectrum is simply
created using a timestream of an off­source beam with photon noise turned off. In order to simulate
the temporal variations of the atmosphere, TiEMPO uses ARIS [48]. Without going into detail how the
atmosphere is simulated, it suffices to know that ARIS simulates the atmosphere at discrete grid points.
TiEMPO then interpolates the atmosphere between those points to create a screen of the atmosphere
for the full observation.

A zoomed out version of Fig. 2.6 is shown in Fig. C.1. In this figure, the artifacts caused by the
discrete grid points are much clearer. In the case of the simulation shown in Fig. C.1, the grid points
are spaced 20 cm apart. Furthermore, a windspeed of 9.6 m/s is used. This means that a new grid
point enters the beam every ∼21 ms. This is at a frequency of 48 Hz, where the largest ‘bump’ in the
atmospheric noise spectrum is shown. The other visible peaks are at 16 Hz, 32 Hz and 64 Hz. These
are harmonics of the 48 Hz peak, with aliasing due to the 160 Hz sampling frequency of DESHIMA.
This means that the steeper drop off and peaks are not a fundamental property of the atmosphere, but
a modulation caused by the imperfect simulation.
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Figure C.1. Frequency noise spectrum of the different noise sources in a DESHIMA channel near 300GHz. Note that the frequency
axis shown here is a sampling frequency axis, rather than the frequency of the light incident on the detector. This zoomed out
version of the figure clearly shows aliasing effects.

Although the modulation in the figure looks quite extreme, it is actually not expected to be prob­
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lematic for the results of the simulation. This is because the photon noise (shown in orange) is much
stronger than both the realized and the expected PSD of the atmospheric noise in the regions where
the atmospheric noise does not follow a 1/𝑓 distribution. As such, the regions where the deviation is
strong are dominated by photon noise and the atmospheric noise does not play a significant role at these
frequencies.
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D
Alternative Denoising Strategy

In the main method described in this thesis, a model spectrum is fitted to denoise the estimate of the
source matrix. This is a restrictive way of denoising, since we force the continuum to adhere to the
shape of the chosen model, in this case a third order polynomial. A method without a model spectrum
means that the fit is more flexible. One such methods is to add a regularizing term to the spectrum.

The optimization of this new cost function can then be intialized by the noisy estimate 𝐬𝑗. It takes the
place where the continuum fit is in the current estimation method. This is because the regularizer will
also smooth out the spectral lines, making them broader and lowering their amplitude.

A regularizer for the spectrum must punish large channel to channel variations in the continuum, as
the shape of the spectrum is smooth in the continuum by definition. Small channel to channel variations
should still be permissable, however. Therefore, an 𝓁2­norm regularizer is used, as this regularizer
punishes large variations. The new cost function then becomes:

minimize
𝐬𝐣

𝐿𝜌(𝐬𝐣, 𝐳, 𝐲𝐣)

with 𝐿𝜌(𝐬𝐣, 𝐳, 𝐲𝐣) =
𝑛

∑
𝑗=1
𝑓𝑗(𝐬𝐣) + 𝐲𝑇𝐣 (𝐬𝐣 − 𝐳) +

𝜌
2 ‖𝐬𝐣 − 𝐳‖

2
2

𝑓𝑗(𝐬𝐣) =
1
2 ‖𝐗𝑗 − �̃�𝑗 − 𝐬𝐣𝐦

𝑇
𝑗‖

2

𝐹
− 𝜇𝑛𝐬

𝑇
𝐣 𝟏 +

𝛾
𝑛 ‖

d𝐬𝑗
d𝜈 ‖

2

2
subject to 𝐬𝐣 ≥ 𝟎.

(D.1)

Where 𝛾 ≥ 0 is the weight of the regularizer. The (𝑀 + 1) × 1 vector d𝐬𝑗
d𝜈 represents the channel to

channel variation and is given by d𝐬𝑗
d𝜈 = ([𝐬

𝑇
𝑗 , 0]𝑇 − [0, 𝐬𝑇𝑗 ]𝑇) ⊘ ([𝝂 𝑇 , 0]𝑇 − [0, 𝝂 𝑇]𝑇), where ⊘ denotes

Hadamard or elementwise division. In this equation 𝝂 is a vector that contains the center frequencies of
the filters. This means that (d𝐬𝑗

d𝜈 )𝑚 = [(𝑠𝑗)𝑚 − (𝑠𝑗)𝑚−1]/(𝜈𝑚 − 𝜈𝑚−1). This cost function contains a new
hyperparameter 𝛾, which must be chosen with care.
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