
 
 

Delft University of Technology

Unbalanced Bit-slicing Scheme for Accurate Memristor-based Neural Network
Architecture

Diware, Sumit; Gebregiorgis, Anteneh ; Joshi, Rajiv V.; Hamdioui, Said ; Bishnoi, Rajendra

DOI
10.1109/AICAS51828.2021.9458443
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)

Citation (APA)
Diware, S., Gebregiorgis, A., Joshi, R. V., Hamdioui, S., & Bishnoi, R. (2021). Unbalanced Bit-slicing
Scheme for Accurate Memristor-based Neural Network Architecture. In 2021 IEEE 3rd International
Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 1-4). Article 9458443 IEEE.
https://doi.org/10.1109/AICAS51828.2021.9458443
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/AICAS51828.2021.9458443
https://doi.org/10.1109/AICAS51828.2021.9458443


Unbalanced Bit-slicing Scheme for Accurate
Memristor-based Neural Network Architecture

Sumit Diware∗ Anteneh Gebregiorgis∗ Rajiv V. Joshi† Said Hamdioui∗ Rajendra Bishnoi∗
∗Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands.

Email: {S.S.Diware, A.B.Gebregiorgis, S.Hamdioui, R.K.Bishnoi}@tudelft.nl
†IBM Research Division, Yorktown Heights, NY, USA. Email: rvjoshi@us.ibm.com

Abstract—Emerging memristor-based computing has the po-
tential to achieve higher computational efficiency over con-
ventional architectures. Bit-slicing scheme, which represents a
single neural weight using multiple memristive devices, is usually
introduced in memristor-based neural networks to meet high bit-
precision demands. However, the accuracy of such networks can
be significantly degraded due to non-zero minimum conductance
(Gmin) of memristive devices. This paper proposes an unbalanced
bit-slicing scheme; it uses smaller slice sizes for more important
bits to provide higher sensing margin and reduces the impact of
non-zero Gmin. Moreover, the unbalanced bit-slicing is assisted by
2’s complement arithmetic which further improves the accuracy.
Simulation results show that our proposed scheme can achieve
up to 8.8× and 1.8× accuracy compared to state-of-the-art for
single-bit and two-bit configurations respectively, at reasonable
energy overheads.

I. INTRODUCTION

Neural network-based cognitive applications like object
recognition [1], natural language processing [2] have become
an integral part of modern computing systems. Existing com-
puting systems based on von-Neumann architecture e.g. CPUs,
GPUs and TPUs lead to degradation of performance and
energy efficiency for neural network applications, mainly due
to the memory wall [3]. Computation In-Memory (CIM) using
emerging non-volatile memory technologies such as resistive
random access memories (RRAMs) also known as memristors
can perform analog computing within the memory itself by
replacing digital operations with circuit laws [4], [5]. Hence,
CIM can potentially serve as a more efficient alternative to
von-Neumann architecture [6]. The bit-capacity of RRAM
devices is typically less than that demanded by neural net-
work applications. Therefore, a bit-slicing scheme [7], [8] is
commonly employed in CIM architectures; multiple RRAM
devices represent a single neural weight and shift-and-add
post-processing is performed to combine the partial outputs.
However, these architectures suffer from non-zero minimum
conductance (Gmin) error, in which a zero weight in the neural
network is represented by a RRAM device with non-zero Gmin
conductance [9]. Such RRAM devices with Gmin conductance
produce non-zero operational currents that severely impact the
sensing margin and make the output erroneous.

Limited work has been published on mitigating the impact
of non-zero Gmin error for CIM architectures with bit-slicing.
RRAM-based CIM accelerators ISAAC [7] and PUMA [8]
both use the same balanced bit-slicing (BBS) scheme for

Vector-Matrix Multiplication (VMM). However, BBS scheme
cannot provide good accuracy in presence of non-zero Gmin
error due to limited sensing margin and high accumulative
non-zero Gmin error. PANTHER [10], which is an extension of
PUMA [8], proposes heterogeneous bit-slicing (HBS) scheme,
but it is meant for optimizing weight update operations and not
for VMM. Moreover, this scheme is susceptible to accuracy
degradation due to non-zero Gmin error as it uses the same
weight encoding and underlying crossbar arithmetic as that
of PUMA [8]. Current subtraction technique [11] can reduce
Gmin impact on these accelerators but cannot provide good
accuracy when conductance variation is considered. It also
introduces additional analog components like opamps, resis-
tors which contribute more noise and variations making the
computations even more error-prone. Hence, there is a strong
need for an effective solution to non-zero Gmin error.

This paper proposes an unbalanced bit-slicing (UBS)
scheme for RRAM-based CIM to mitigate the impact of non-
zero Gmin error and conductance variation on VMM. UBS
provides higher sensing margin for more important bits; i.e.
most significant bits (MSBs) to reduce the impact of non-zero
Gmin error and conductance variation. This suffices for good
accuracy due to the robustness of neural networks to minor
computational fluctuations. In addition, UBS is supported with
2’s complement arithmetic whose inherent differential nature
further suppresses the impact of non-zero Gmin error and
conductance variation. The key contributions of this paper are:

• An unbalanced bit-slicing scheme which provisions extra
sensing margin for more important bits.

• A method to find unbalanced bit-slice sizes for optimal
accuracy in presence of non-zero Gmin error for given
resource constraints and system specifications.

• A holistic solution consisting of unbalanced bit-slicing
and 2’s complement arithmetic which mitigates non-zero
Gmin error as well as conductance variation impact.

The proposed UBS scheme is evaluated with MNIST and
Fashion-MNIST datasets. It achieves up to 8.8× accuracy
compared to state-of-the-art with negligible energy overhead
for 1 bit per slice. For 2 bits per slice, it provides up to 1.8×
accuracy compared to state-of-the-art at an energy overhead
of no more than 14.4%.

The rest of this paper is organized as follows. Section II
presents the fundamentals of CIM and motivation for the prob-

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works



Fig. 1. CIM-based vector-matrix multiplication using RRAM devices.

lem statement. Section III provides details of the proposed bit-
slicing scheme, followed by experimental results in Section IV.
Finally, Section V concludes the paper.

II. BACKGROUND

Data storage in the form of RRAM conductance allows
leveraging circuit laws (Ohm’s law and Kirchhoff’s current
law) to perform computing within the memory itself. Fig. 1
shows mapping of VMM operation in a neural network onto
a CIM architecture. Elimination of data movement and highly
parallel analog computation enable CIM to achieve high
computational and energy efficiency.

However, RRAM devices in CIM architecture typically have
less bit-precision than that demanded by neural networks.
To overcome this problem, bit-slicing is utilized in CIM
architectures as shown in Fig. 2 [7], [8]. Neural weights and
inputs are divided into smaller chunks called slices, which are
mapped to conductances and voltages respectively. Column
currents resulting from time-multiplexed voltage inputs are
converted to digital, shifted and added to get the final output.

As a zero weight in RRAM-based neural network is rep-
resented by a non-zero Gmin conductance, a non-zero output
current is produced. This is called non-zero Gmin error which
leads to accuracy degradation of up to 88.7% for 1 bit/slice
and 45.4% for 2 bits/slice with respect to fixed-point baseline
in bit-slicing architectures [7], [8], as will also be shown in
Section IV. Avoiding the use of bit-slicing is not possible as
single memristor cannot hold 8 or 16 bit neural weight [7].
Hence, non-zero Gmin error remains a pressing concern.

III. PROPOSED UNBALANCED BIT-SLICING SCHEME

A. Overview

A bit-slicing scheme consists of two fundamental compo-
nents: 1) bit-slicing logic which determines how the slices are
created, and 2) arithmetic which determines how the partial
outputs from sliced columns are combined. Fig. 3 shows
the overview of conventional [7], [8] and the proposed bit-
slicing schemes. For conventional scheme, balanced bit-slicing

Fig. 2. RRAM-based CIM architecture with bit-slicing.

Fig. 3. Overview of conventional and proposed bit-slicing schemes.

(BBS) logic provides low sensing margin resulting in high
susceptibility to non-zero Gmin errors while unsigned binary
arithmetic leads to high accumulative error after combining the
partial outputs. In the proposed scheme, unbalanced bit-slicing
(UBS) logic provides higher sensing margin to more important
bits, while 2’s complement arithmetic leads to reduction in
accumulative error after combining the partial outputs; both
these effects minimize the impact of non-zero Gmin error and
improve the neural network accuracy.

B. Unbalanced Bit-slicing (UBS) Logic

Using a memristor with n-bit maximum capacity as an m-bit
memory-cell (slice) such that m<n results in higher sensing
margin and makes the crossbar column output immune to non-
zero Gmin error as shown in Fig. 4. As neural networks can
inherently tolerate small deviation from ideal computation,
error-free MSBs suffice for high accuracy. Hence, UBS uses
less bits (<n) for slices corresponding to MSBs for providing
high sensing margin and reducing the impact of non-zero Gmin
error compared to conventional bit-slicing.

Different UBS configurations can be obtained based on
how many MSBs are provided with high sensing margin.
For instance, using 2 bits/RRAM for 8 bit weight, [1,1,2,2,2]
bits/slice (5 slices) and [1,1,1,1,2,2] bits/slice (6 slices) are
some of the possible configurations. A configuration with more
number of slices leads to better accuracy due to more error-free
MSBs. However, it needs more area and energy due to more
crossbar columns and analog to digital conversion operations.
For minimum possible area and energy requirement, an UBS
configuration should have: 1) Minimum number of slices with
highest sensing margin for MSBs. 2) First MSB slice of 1 bit
for 2’s complement arithmetic (details in Section III-C). Such
configuration is called fundamental slice configuration (FSC)
which is obtained for m-bits/RRAM as follows: 1 bit for MSB
slice, m-1 bits for next slice, and m bits for the remaining

Fig. 4. Impact of sensing margin on bit-slicing schemes.



Algorithm 1: Optimal slice size computation
input : System architecture A, RRAM maximum

bit-capacity R, area and energy budget Bmax
output: Slice configuration S

1 F ← fundamental slice config(A, R);
2 M ← compute resource req(A, F);
3 S ← F;
4 if M < Bmax then
5 while M < Bmax do
6 J ← list possible next MSB configs(A, R);
7 T ← list configs within budget(A, J, Bmax);
8 S ← maximum accuracy config(T);
9 M ← compute resource req(A, S);

10 end
11 end
12 return S

slices. E.g., with 8-bit weights and m=2 bits/RRAM, FSC =
[1,m-1,m,m,m]=[1,1,2,2,2] bits/slice; this is used in Fig. 4.

UBS scheme provides better accuracy at the cost of addi-
tional area and energy. Algorithm 1 gives UBS slice sizes for
optimal accuracy in presence of non-zero Gmin error subjected
to area and energy budgets. It starts with FSC having minimum
area and energy requirement and progressively assigns smaller
slices to next MSBs. Finally, the UBS slice configuration with
highest accuracy (highest number of slices), but within the
specified area and energy budgets, is selected.

C. Crossbar Arithmetic

Conventional BBS cannot work with 2’s complement arith-
metic due to the difficulty in isolating the contribution of
MSB from a multi-bit slice in 2’s complement format [7]; it
converts signed weights to positive weights using an offset and
utilizes unsigned binary arithmetic to combine partial outputs.
However, UBS can use 2’s complement arithmetic as it can
isolate MSB contribution by forcing MSB slice to be 1 bit only.
Fig. 5 shows the accumulation of partial digital outputs (Di’s)
for 8 bit weights with maximum 2 bits/RRAM using both
conventional BBS and proposed UBS. Conductance subscripts
indicate binary slice value. Let Di=Ti + Ei, where Ti is the
ideal value and Ei the error due to non-zero Gmin. Similarly,
Df=Tf + Ef for final output. Eq. 1a below gives Ef for
conventional BBS, while Eq. 1b gives it for the proposed UBS.

Ef = 64·E1 + 16·E2 + 4·E3 + E4 (1a)
Ef = (−128)·E1 + 64·E2 + 16·E3 + 4·E4 + E5 (1b)

Clearly, unsigned binary arithmetic leads to higher output error
due to weighted sum of errors while 2’s complement arithmetic
reduces output error due to weighted subtraction of errors.

D. Error Analysis for Different Bit-slicing Schemes

Non-zero Gmin error at the output of ith crossbar column
such as that of Fig. 5 can be expressed as:

Ei =
N i·δ
S

(2)

where N i is the number of RRAMs (in the ith column) having
Gmin conductance, δ is the error due to a single Gmin conduc-
tance and S is the sensing margin for such an architecture
design. Integrating these column-wise errors Ei’s results in

(a) BBS. (b) UBS.
Fig. 5. Accumulation of partial digital outputs in a crossbar.

final error Ef as per Eq. 1a and Eq. 1b for BBS and UBS,
respectively. UBS intends to reduce the error Ei compared to
BBS by providing larger S (see Eq. 2) using smaller slice sizes
for some important columns like MSBs as shown in Fig 4.
However, this also leads to higher Ni for some UBS columns
compared to their BBS counterparts as smaller slice sizes
produce more digital zero chunks which get mapped to Gmin,
contributing towards increase in Ei. Nevertheless, weighted
sum in Eq. 1a can lead to high accumulated Ef for BBS
despite having smaller Ni’s. On the other hand, the impact of
higher Ni’s on Ef in UBS can be severely diminished thanks
to weighted subtraction (due to 2’s complement arithmetic) as
shown in Eq. 1b. The higher MSB sensing margin in UBS
can further suppress the impact of residual Ef that remains
after the weighted subtraction, potentially leading to much less
resultant Ef in UBS than BBS and subsequently resulting
in better neural network accuracy. This also shows that if
2’s complement arithmetic and large sensing margin are not
present together in UBS, either increase in Ni’s or residual
Ef will remain uncompensated leading to poor neural network
accuracy. Even though HBS [10] also provides a larger sensing
margin S for some slices like UBS, increase in Ni’s coupled
with weighted accumulation of errors (see Eq. 1a) due to its
unsigned binary arithmetic can potentially lead to poor neural
network accuracy compared to both BBS and UBS.

IV. SIMULATION RESULTS

A. Simulation Setup

We have developed a Python-based simulation framework
using in-situ multiply-accumulate (IMA) unit similar to [7]
(shown in Fig. 2) which is compatible with UBS, BBS and
HBS. Table I shows the simulation setup details. We consider
two scenarios for our simulation: a) maximum 1 bit/slice for
which we use [1,1,1,1,1,1,1,1] bits/slice for each of the three
configurations UBS, BBS and HBS; b) maximum 2 bits/slice
for which we use [1,1,2,2,2] bits/slice (FSC) for UBS, [2,2,2,2]
bits/slice for BBS [7], [8] and [1,1,2,2,1,1,] bits/slice for
HBS [10]. Note that relative accuracy is computed using ideal

TABLE I
SIMULATION SETUP DETAILS.

Network Fully-Connected Network, 2 Hidden Layers
No. of Neurons 784-100-50-10
Datasets MNIST [12], Fashion-MNIST (FMNIST) [13]
Training Software: Floating Point (Gradient Descent)

Inference Crossbar: Fixed point
Weights:8-bit (6 fraction), Inputs:16-bit (10 fraction)



Fig. 6. Neural network accuracy for conductance on/off ratio 40.

fixed-point accuracy of 97.73% and 88.34% for MNIST and
FMNIST datasets, respectively.

B. Impact of Bit-slicing Schemes

Fig. 6 shows the simulation results for the three designs
under consideration; UBS achieves up to 8.8× and 1.8× accu-
racy compared to BBS for 1 bit/slice and 2 bits/slice scenarios,
respectively. HBS achieves poor accuracy compared to BBS
for 2 bits/slice indicating that the increase in Ni’s dominates
the increase in S for HBS (discussed in Section III-D). HBS
and BBS both end up with identical accuracy for 1-bit/slice
due to same arithmetic and slice size. Fig. 7 confirms the
necessity of combining 2’s complement arithmetic with high
sensing margin to realize the best accuracy for UBS.

C. Impact of Conductance On/off Ratio

UBS outperforms BBS and HBS across different conduc-
tance on/off ratios as shown Fig. 8. For FMNIST dataset and
conductance on/off ratio 30, UBS recovers 96.6% while BBS
recovers only 46.8% of baseline accuracy. For the simpler
MNIST dataset, accuracy benefits are even higher.

D. Impact of Conductance Variation

Current subtraction technique (CST) [11] reduces the impact
of non-zero Gmin error on BBS and HBS but becomes less
effective at higher variation. As shown in Fig. 9, UBS provides
better accuracy at higher variation due to greater MSB sensing
margin and 2’s complement weighted subtraction reducing
errors due to both variation and non-zero Gmin. High variation
tolerance of UBS can also reduce the number of write-verify
cycles due to wider permissible target current range resulting
in energy saving for memristor programming.

E. Hardware Performance Evaluation

Table II shows IMA performance for BBS [7], [8] and
proposed UBS. For 1 bit/slice, energy overhead for UBS is
negligible as it needs only a few 2’s complement circuits
and shift-and-add operations which are inexpensive in hard-
ware [7]. For 2 bits/slice, UBS achieves 80.1% higher accuracy
at 14.4% more energy than BBS, resulting in 57.5% higher
Figure-of-Merit (FoM) which emphasizes its effectiveness.

Fig. 7. Accuracy with [1,1,2,2,2] bits/slice for UBS.

(a) MNIST dataset. (b) FMNIST dataset.

Fig. 8. Impact of conductance on/off ratio.

(a) MNIST dataset (b) FMNIST dataset

Fig. 9. Impact of conductance variation.

TABLE II
IMA PERFORMANCE METRICS.

Metric State-of-the-Art [7], [8] Proposed Unbalanced Bit-slicing
Area 13120 µm2 12640 µm2

Power 24.1 mW 23.5 mW
FoM* 205.1 GOPS/W 323.1 GOPS/W

* Figure-of-Merit (FoM) = Accuracy×Energy efficiency, where energy effi-
ciency is expressed in giga operations per second per watt (GOPS/W).

V. CONCLUSION

This work has shown that by integrating some smart features
in the micro-architecture (e.g., unbalanced bit slicing) of
memristor based neural networks, one can deal with accuracy
degradation and non-idealities (e.g., variability) of the used
device technologies. Exploring these mechanisms in combi-
nation with others related to the way the mapping is done
on the crossbar (e.g., calculation) and the way the design
of peripheral circuits is performed could provide significant
accuracy improvement even in the presence of non-idealities.

REFERENCES

[1] C. Szegedy et al., “Going Deeper with Convolutions,” in CVPR, 2015.
[2] R. Collobert et al., “Natural Language Processing (Almost) from

Scratch,” JMLR, 2011.
[3] S. Hamdioui et al., “Memristor For Computing: Myth or Reality?” in

DATE, 2017.
[4] S. Hamdioui et al., “Memristor Based Computation-in-Memory Archi-

tecture for Data-Intensive Applications,” in DATE, 2015.
[5] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired

computing,” Nature Materials, 2019.
[6] A. Sebastian et al., “Memory devices and applications for in-memory

computing,” Nature Nanotechnology, 2020.
[7] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.
[8] A. Ankit et al., “PUMA: A Programmable Ultra-efficient Memristor-

based Accelerator for Machine Learning Inference,” in ASPLOS, 2019.
[9] P. Chen and S. Yu, “Technological Benchmark of Analog Synaptic

Devices for Neuroinspired Architectures,” IEEE Design and Test, 2019.
[10] A. Ankit et al., “PANTHER: A Programmable Architecture for Neural

Network Training Harnessing Energy-Efficient ReRAM,” TC, 2020.
[11] P. Chen et al., “Mitigating Effects of Non-ideal Synaptic Device Char-

acteristics for On-chip Learning,” in ICCAD, 2015.
[12] Y. Lecun et al., “Gradient-Based Learning Applied to Document Recog-

nition,” Proceedings of the IEEE, 1998.
[13] H. Xiao et al., “Fashion-MNIST: a Novel Image Dataset for Bench-

marking Machine Learning Algorithms,” arXiv, 2017.


