

Delft University of Technology

An algorithm for reconstructing level-2 phylogenetic networks from trinets

van Iersel, Leo; Kole, Sjors; Moulton, Vincent; Nipius, Leonie

DOI
10.1016/j.ipl.2022.106300
Publication date
2022
Document Version
Final published version
Published in
Information Processing Letters

Citation (APA)
van Iersel, L., Kole, S., Moulton, V., & Nipius, L. (2022). An algorithm for reconstructing level-2 phylogenetic
networks from trinets. Information Processing Letters, 178, Article 106300.
https://doi.org/10.1016/j.ipl.2022.106300

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ipl.2022.106300
https://doi.org/10.1016/j.ipl.2022.106300

Information Processing Letters 178 (2022) 106300

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An algorithm for reconstructing level-2 phylogenetic networks

from trinets

Leo van Iersel a,∗,1, Sjors Kole a, Vincent Moulton b, Leonie Nipius a

a Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, Delft, 2628 CD, the Netherlands
b School of Computing Sciences, University of East Anglia, NR4 7TJ, Norwich, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 September 2021
Received in revised form 1 February 2022
Accepted 28 June 2022
Available online 5 July 2022
Communicated by Leah Epstein

Keywords:
Directed graph
Phylogenetic network
Polynomial-time algorithm
Subnetworks
Graph algorithms

Evolutionary histories for species that cross with one another or exchange genetic material
can be represented by leaf-labelled, directed graphs called phylogenetic networks. A major
challenge in the burgeoning area of phylogenetic networks is to develop algorithms for
building such networks by amalgamating small networks into a single large network.
The level of a phylogenetic network is a measure of its deviation from being a tree; the
higher the level of a network, the less treelike it becomes. Various algorithms have been
developed for building level-1 networks from small networks. However, level-1 networks
may not be able to capture the complexity of some data sets. In this paper, we present a
polynomial-time algorithm for constructing a rooted binary level-2 phylogenetic network
from a collection of 3-leaf networks or trinets. Moreover, we prove that the algorithm will
correctly reconstruct such a network if it is given all of the trinets in the network as input.
The algorithm runs in time O (t · n + n4) with t the number of input trinets and n the
number of leaves. We also show that there is a fundamental obstruction to constructing
level-3 networks from trinets, and so new approaches will need to be developed for
constructing level-3 and higher level-networks.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Phylogenetic networks are a generalization of phyloge-
netic trees that are commonly used to represent the evo-
lutionary histories of species that cross with one another
or exchange genetic material, such as plants and viruses.
There are several classes of phylogenetic networks and var-
ious ways have been devised to build them – see e.g. [2,15]
for recent surveys. Mathematically speaking, a phylogenetic
network on a set of species X is basically a directed acyclic
graph, with a single source or root, such that every sink or
leaf has indegree 1 and the set of leaves is equal to X . In

* Corresponding author.
E-mail address: V.Moulton@uea.ac.uk (V. Moulton).

1 Research funded in part by the Netherlands Organisation for Scientific
Research (NWO) Vidi grant 639.072.602.
https://doi.org/10.1016/j.ipl.2022.106300
0020-0190/© 2022 The Author(s). Published by Elsevier B.V. This is an open acce
(http://creativecommons.org/licenses/by/4.0/).
this paper, we shall only consider recoverable, binary phy-
logenetic networks, which we call networks for short. See
Section 2 for formal definitions and Fig. 1 for examples.

Recently, there has been growing interest in the prob-
lem of building a network with leaf-set X from a col-
lection of networks each of which having leaf-set equal
to some subset of X in such a way that the input net-
works are each contained in the final network. Early work
on this so-called supernetwork problem focused on building
up networks from phylogenetic trees, that is, phylogenetic
networks whose underlying graph is a tree. Several results
have been presented for this problem, including algorithms
for constructing networks from triplets, which are 3-leaved
phylogenetic trees, (e.g. [6]) and from collections of phy-
logenetic trees all on leaf-set X (e.g. [17]) – for a recent
summary of these approaches see [14]. However, an im-
portant issue with this strategy is that phylogenetic trees
ss article under the CC BY license

https://doi.org/10.1016/j.ipl.2022.106300
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2022.106300&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:V.Moulton@uea.ac.uk
https://doi.org/10.1016/j.ipl.2022.106300
http://creativecommons.org/licenses/by/4.0/

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300

Fig. 1. Left: Two distinct level-3 networks N1 and N2 on the set X = {a,b, c,d}. Right: The set of trinets T that is contained in both N1 and N2.
do not necessarily encode phylogenetic networks, i.e., there
are examples of distinct (non-isomorphic) networks that
contain the same set of phylogenetic trees (see e.g. [3]),
making it impossible to uniquely reconstruct such net-
works from their trees.

Motivated by this issue, in [4] it was proposed to build
networks from collections of 3-leaved networks, or trinets.
In that paper, the authors focused on building level-1 net-
works2 where, in general, level-k networks are networks
that can be converted into a tree by deleting at most k
arcs from each biconnected component. In particular, they
showed that level-1 networks are encoded by the trinets
that they contain, and gave an algorithm for constructing a
level-1 network on X from its trinets that is polynomial in
|X | (see also [13] for a more general algorithm). In [9] the
encoding result was extended to the more general class of
level-2 networks, and also to the distinct and quite broad
class of so-called tree-child networks. Recently, in [14] it
was also shown that orchard networks, which generalise
tree-child networks, are encoded by their trinets, and an
algorithm was given for constructing an orchard network
from its trinets that is polynomial in the size of the vertex
set of the network (whose size is not necessarily polyno-
mial in |X |).

Intriguingly, in [8] it was shown that, as with trees,
trinets do not encode networks in general. Indeed, in [14,
p. 28] it was shown that even level-4 networks are not
encoded by their trinets and, since level-2 networks are
encoded by their trinets (see above), it was asked whether
or not level-3 networks are encoded by their trinets (see
also [1]). In the first result of this paper we answer this
question – in particular, the two networks N1 and N2 in
Fig. 1 are level-3 and are easily seen to be distinct and to
contain the same set of trinets (see [12]). Hence, level-k
networks are encoded by their trinets only if k ≤ 2. As
the algorithm in [4] can be used to uniquely reconstruct
a level-1 network from its trinets, this leaves open the
question of finding a polynomial algorithm for building a
level-2 network from its trinets, which is the purpose of
the rest of this paper. In particular, we shall present an
algorithm which constructs a level-2 network on X from
any set of trinets T whose leaf-set union is X that runs
in O (|T ||X | + |X |4) time (Algorithm 1) and that is guaran-
teed to reconstruct a level-2 network from its set of trinets
(Theorem 3). We now proceed by presenting some prelimi-
naries, after which we shall describe our level-2 algorithm.
We will conclude with a brief discussion of our results.

2 In fact they considered the somewhat more general class of 1-nested
networks.
2

2. Preliminaries

We refer the reader to [15, Chapter 10] for more infor-
mation on the terminology and basic results on phyloge-
netic networks that we summarise in this section.

Definition 1. Let X be some finite set (corresponding to a
set of species, say). A binary phylogenetic network (on X) is a
directed acyclic graph with the following types of vertices:
a single root with indegree 0 and outdegree 2; tree-vertices
with indegree 1 and outdegree 2; reticulations with inde-
gree 2 and outdegree 1; and leaves with indegree 1 and
outdegree 0, where the leaves are in one-to-one correspon-
dence with the elements of X .

Let N be a binary phylogenetic network on X , and sup-
pose that u, v are two vertices in the vertex set of N . If
there is a directed path from u to v (including the case
that u = v), then we say that u is an ancestor of v and
that v is a descendant of u. When (u, v) is an arc, we say
that u is a parent of v and that v is a child of u. We say
that (u, v) is a cut-arc if deleting (u, v) disconnects N . A
set A ⊆ X is called a cut-arc set in N if A = X or A is the
set of descendant leaves of v for some cut-arc (u, v). A
cut-arc set A is minimal if |A| > 1 and there is no cut-arc
set B with |B| > 1 and B � A. A network is simple if it has
no minimal cut-arc set except for X .

Now, suppose A ⊆ X . A lowest stable ancestor (LSA) of A
in N is a vertex v such that, for all a ∈ A, all paths from
the root to a contain v , and such that there is no descen-
dant u of v with u �= v that satisfies this property. It is
not difficult to see that the lowest stable ancestor is al-
ways unique for any A ⊆ X [15, p. 263]. We say that N
is recoverable if L S A(X) is the root of X . In this paper, for
simplicity, we shall call a recoverable, binary phylogenetic
network on X a network. Only in statements of theorems
we will mention these restrictions explicitly.

A biconnected component of a network is a maximal sub-
graph not containing any cut-arcs. A network is level-k if
each biconnected component contains at most k reticula-
tions. A level-k network is strictly level-k if it is not level-k′
for any k′ < k. This paper will mainly focus on level-2 net-
works; see Fig. 3 for an example.

A network on A is a trinet if |A| = 3 and a binet if |A| =
2. If T is a trinet or binet on A then we also use L(T) to
denote the set A. Furthermore, for a set of trinets and/or
binets T , we define L(T) = ∪T ∈T L(T). We will now define
the restriction of a network to a subset of X , which will be
used to define the set of trinets contained in a network.

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300
Definition 2. Let N be a network on X and A ⊆ X . The
restriction of N to A, denoted N|A, is the network on A
obtained from N by deleting all vertices that are not on a
path from L S A(A) to an element of A and subsequently
replacing parallel arcs by single arcs and suppresssing
indegree-1 outdegree-1 vertices, until neither of these op-
erations is applicable.

The set of trinets T (N) of a network N on X is de-
fined as {N|A | A ⊆ X, |A| = 3}. The set of binets and
trinets T (N) of a network N on X is defined as {N|A |
A ⊆ X, 2 ≤ |A| ≤ 3}. Observe that T (N) can be obtained
from T (N).

We say that two networks N, N ′ on X are equal and
write N = N ′ if there is an isomorphism f : V (N) → V (N ′)
such that, for all x ∈ X , f (x) has the same label as x.

The following theorem forms the basis for our new
level-2 algorithm.

Theorem 1 ([9]). Let N be a recoverable, binary level-2 net-
work on X with |X | ≥ 3. Then there exists no recoverable net-
work N ′ �= N with T (N) = T (N ′).

2.1. Generators

Our algorithm will make heavy use of the underlying
structure of biconnected components, which is called a
“generator” (introduced in [16]) and defined as follows.

Definition 3. Let N be a simple network. The underly-
ing generator of N is the directed multigraph G obtained
from N by deleting all leaves and suppressing all indegree-
1 outdegree-1 vertices. The arcs and indegree-2 outdegree-
0 vertices of G are called sides. The arcs are also called arc
sides and the indegree-2 outdegree-0 vertices also reticu-
lation sides. We say that leaf x is on side S (or that side S
contains x) if either

• S is a reticulation side of G and the parent of x in N ,
or

• S is an arc side of G obtained by suppressing indegree-
1 outdegree-1 vertices of a path P in N and the parent
of x lies on path P .

See Fig. 2 for all underlying generators of simple level-1
and level-2 networks.

To attach leaf x to a reticulation side S means adding x
with an arc from S to x. To attach a list (x1, . . . , xl)

of leaves to an arc side S means subdividing S to a
path with l internal vertices p1, . . . , pl and adding leaves
x1, . . . , xl with arcs (p1, x1), . . . , (pl, xl).

A trinet T ∈ T (N) is called a crucial trinet of a simple
network N if it contains a leaf on each reticulation side
of the underlying generator G of N and, for each pair of
parallel arcs in G , a leaf on at least one of these two sides.
Crucial trinets are of special interest because they have the
same underlying generator as the network N .

Two reticulation sides u, v of a generator G = (V , A)

are symmetric if there exists an automorphism f : V → V
3

Fig. 2. The only underlying generator of a simple level-1 network and
the four underlying generators of simple level-2 networks [9]. Generator
2c has three sets of symmetric arc sides {L1, R1}, {L2, R2}, {L3, R3} while
generators 1 and 2d have one set of symmetric arc sides {L, R}. Genera-
tor 2c is the only level-2 generator with symmetric reticulation sides.

of G with f (u) = v . The equivalence classes under this no-
tion of symmetry are called sets of symmetric reticulation
sides.

Two arc sides (u, v), (u′, v ′) of a generator G = (V , A)

are symmetric if there exists an automorphism f : V → V
of G with f (r) = r for each reticulation side r and such
that u′ = f (u) and v ′ = f (v). The equivalence classes un-
der this notion of symmetry are called sets of symmetric arc
sides, see Fig. 2. The idea behind this definition is that the
reticulation sides of G are parents of leaves in N . In our al-
gorithm, we will make heavy use of crucial trinets, which
contain those leaves. Since they are labelled, we can dis-
tinguish them.

3. Algorithm

3.1. Outline

We work with multisets of trinets and binets because
these may arise when collapsing or restricting trinet sets.
Hence, let T be a multiset of binets and trinets. The high-
level idea of the algorithm is to first find a minimal cut-arc
set A. Then we construct T ∗ by collapsing A to a single
leaf a∗ and find a network N∗ for T ∗ recursively. The next
step is to construct T ′ from T by restricting to the taxa
in A and to find a simple network N ′ for T ′ . Finally, we
construct N from N∗ and N ′ by replacing a∗ by N ′ . The
pseudo code is in Algorithm 1.

Within our explanation of the algorithm we will also
explain why in case the underlying set of T is T (N) for
some recoverable level-2 network N , the algorithm cor-
rectly reconstructs N .

3.2. Finding a minimal cut-arc set

We first find a minimal cut-arc set of the level-2 net-
work that we are constructing from T . We find these sets
using the following digraphs �i(T) (see Fig. 3), which
were introduced in [13] for level-1 networks.

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300

Fig. 3. A level-2 network N , its set of trinets T = T (N) and the digraph �0(T) = D(T). The set {c, d} is the only minimal sink set in �0(T) and the only
minimal cut-arc set in N .
Algorithm 1: Constructing level-2 networks from
trinets.

Data: Multiset T of level-2 trinets and (possibly) binets on taxon
set X .

Result: Level-2 phylogenetic network N on X .
1 Find a cut-arc set A using Algorithm 2;
//Find network N∗ with A collapsed

2 Initialize T ∗ = ∅ and let a∗ /∈ X be a new taxon;
3 for T ∈ T with L(T) \ A �= ∅ do
4 if L(T) ∩ A = ∅ then Add T to T ∗;
5 else
6 Pick a ∈ L(T) ∩ A;
7 Construct T |(L(T) \ A ∪ {a});
8 Relabel a to a∗ and add the resulting trinet or binet

to T ∗;

9 Construct N∗ from T ∗ by recursively running Algorithm 1;
//Find simple network N ′ on A

10 T ′ = {T |(L(T) ∩ A) | T ∈ T , |L(T) ∩ A| ≥ 2};
11 Construct a simple network N ′ for T ′ using Algorithm 3;

//Combine N ′ and N∗
12 if A �= X then
13 return the network constructed from N∗ and N ′ by identifying a∗

with the root of N ′

14 else return N ′ ;

Definition 4. Given a multiset T of binets and trinets
and i ≥ 0, �i(T) is the digraph with vertex set L(T) and
an arc (x, y) if at most i trinets T ∈ T with x, y ∈ L(T)

have a minimal cut-arc set not containing y.

A sink set in a digraph D = (V , A) is a set U ⊆ V such
that there is no arc (u, v) ∈ A with u ∈ U and v /∈ U . A
sink set U is minimal if |U | > 1 and there is no sink set W
with |W | > 1 and W � U . A strongly connected component
of a digraph is a maximal subgraph D ′ = (V ′, A′) contain-
ing, for any u, v ∈ V ′ , a directed path from u to v and
from v to u.

If N is a level-1 network, minimal sink sets in �i(T (N))

correspond to minimal cut-arc sets in N [13]. To extend
this result to level-2 networks, we will use the following
theorem, which is a special case of [5, Theorem 7.3]. It uses
the closure digraph D(T) of a set T of trinets, which was
introduced in [13] and is defined as follows. Its vertex set
is X = ∪T ∈T L(T) and it has an arc (x, y) if, for all z ∈
X \ {x, y}, there exists a trinet on {x, y, z} in T in which y
is a descendant of L S A(x, z).
4

Theorem 2. [5] Let N be a binary level-2 network on X and A ⊆
X. Then A is minimal cut-arc set of N if and only if A is a mini-
mal sink set of the closure digraph D(T (N)).

The next lemma shows that the closure digraph D(T)

is equal to �0(T) if T is the set of trinets of some net-
work.

Lemma 1. If T = T (N) for some network N on X, then �0(T)

=D(T).

Proof. First let (x, y) be an arc of �i(T). Assume that (x,
y) is not an arc of D(T). Then there exists a z ∈ X \ {x, y}
such that y is not a descendant of L S A(x, z) in the trinet T
on {x, y, z}. We now claim that the arc entering L S A(x, z)
is a cut-arc of T . If it is not, then there is some arc (u, v)

of T with v �= L S A(x, z) such that u is not a descen-
dant of L S A(x, z) and v is a descendant of L S A(x, z). This
arc (u, v) must lie on a path from the root to at least one
of x, y, z. However, it cannot be on a path from the root
to x or z because each such path passes through L S A(x, z).
Also, it cannot be on a path from the root to y because
such a path does not contain any descendants of L S A(x, z).
Hence, we can conclude that {x, z} is a cut-arc set, which
contradicts the assumption that (x, y) is an arc of �i(T).

Now let (x, y) be an arc of D(T) and let z ∈ X \
{x, y}. Then y is a descendant of L S A(x, z) in the trinet
on {x, y, z} in T . Hence, {x, z} is not a cut-arc set. Since a
minimal cut-arc set contains at least two leaves, it follows
that T has no minimal cut-arc set not containing y. It now
follows that (x, y) is an arc of �0(T). �

Since we consider trinet sets that are not necessarily
exactly the trinet set of some network, we cannot always
simply use the digraph �0(T) = D(T). In particular, it
may happen that �0(T) has no arcs. We therefore use the
strategy described in Algorithm 2, based on [13], which
finds a minimal sink set in the digraph �i(T) for the
smallest i for which �i(T) contains at least one arc.

From Theorem 2 and Lemma 1 follows that Algorithm 2
produces a minimal cut-arc set if the input set is equal
to T (N) for some level-2 network N . Since �0(T) is not
affected by binets or multiple copies of trinets, the same
holds when T is a multiset of binets and trinets with un-
derlying set T (N).

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300
Algorithm 2: Finding a cut-arc set.
Data: Multiset T of level-2 trinets and (possibly) binets on taxon

set X .
Result: Set A ⊆ X .

1 for i = 0, . . . , |X | − 2 do
2 Construct �i(T) (see Definition 4);
3 if �i(T) has at least one arc then
4 Let S be the set of strongly connected components of

�i(T);
5 if S contains a minimal sink set then return a smallest

such set ;
6 else
7 For S ∈ S , let ν(S) be the set of vertices of �i(T)

that are a descendant of a vertex in S;
8 return a smallest such set ν(S) containing at least two

elements

For a general input multiset of binets and trinets, the
output of Algorithm 2 is a minimal cut-arc set of the net-
work that will be constructed (by Algorithm 1).

3.3. Constructing a simple network

Once we have found a minimal cut-arc set A, we need
to construct the part of the network below this cut-arc.
To do this, we restrict T to T ′ = {T |(L(T) ∩ A) | T ∈
T , |L(T) ∩ A| ≥ 2} and find a simple network for T ′ .

If the underlying set of T is T (N) with N a level-2
network and A is a minimal cut-arc set of N , then the
underlying set of T ′ is T (N ′) with N ′ either a tree with
two leaves or a simple network.

3.3.1. The number of reticulations
Let T ′′ be the set containing all trinets from T ′ and

let p2 be the fraction of the trinets in T ′′ that are strictly
level-2 and let n = |L(T ′)|. If n = 2, we construct a net-
work equal to a binet with maximum multiplicity in T ′ .
Otherwise, if p2 < n−2

2(n
3)

, we set the number of reticula-

tions k to 1, else we set k to 2.
Suppose T ′ has underlying set T (N ′) with N ′ either

a tree with two leaves or a level-2 network that is simple
(note that it may also be level-1). If N ′ has two leaves then
all binets in T ′ are equal to N ′ and the algorithm correctly
constructs N ′ . This holds in particular when N ′ is a tree
with two leaves. Now assume n ≥ 3. If N ′ is a simple level-
1 network, then p2 = 0, so the algorithm correctly sets the
number of reticulations to 1. Finally, suppose N ′ is a sim-
ple strictly level-2 network. Then, |T ′′| = (n

3

)
. Furthermore,

observe that in a level-2 generator the number of reticu-
lation sides plus the number of parallel arcs is at most 2.
Hence, there are at least n − 2 crucial trinets because there
are n −2 choices for the third leaf. Since each crucial trinet
is strictly level-2, at least n − 2 trinets in T ′′ are strictly
level-2. Therefore, we have p2 ≥ n−2

(n
3)

≥ n−2
2(n

3)
and the algo-

rithm correctly sets the number of reticulations to 2.

3.3.2. Leaves on reticulation sides
Let k be the number of reticulations determined in

the previous subsection. Let G be a generator that is the
underlying generator of the maximum number of strictly
5

level-k trinets in T ′ . Let TG be the set of trinets in T ′ that
have underlying generator G .

For each x ∈ L(TG) and for each set of symmetric retic-
ulation sides C of G , let px,C denote the fraction of trinets
in TG that have leaf x on a side in C . We proceed greed-
ily as follows. Pick x, C maximizing px,C over all leaves x
that have not been assigned to a side yet and over all C
containing at least one side that has not been assigned a
leaf yet. Assign x to an arbitrary side in C . Repeat until all
reticulation sides have been assigned a leaf. Attach each
leaf assigned to a reticulation side to this side.

Let T r
G be the set of trinets in T ′ that have underly-

ing generator G and that have an automorphism such that
each reticulation side of G contains its assigned leaf. From
now on, we assume that each reticulation side of the gen-
erator of each trinet in T r

G contains its assigned leaf.
Suppose the underlying set of T ′ is T (N) for some

simple, strictly level-k, network N . Then all strictly level-k
trinets have the same underlying generator as N . Moreover,
for each set C of symmetric reticulation sides, px,C = 1 for
all leaves x that are on a side in C in N and px,C = 0 other-
wise. Hence, the algorithm correctly assigns leaves to sets
of symmetric reticulation sides. It can assign leaves to an
arbitrary side within this set since level-2 generators have
at most one set of symmetric reticulation sides (see Fig. 2),
and those are symmetric.

3.3.3. Leaves per set of symmetric arc sides
For each leaf x ∈ L(T r

G) that has not been assigned to a
reticulation side, assign x to a set of symmetric arc sides C
of G , maximizing the fraction of trinets in T r

G that have
leaf x on a side in C .

Suppose the underlying set of T ′ is T (N) for some sim-
ple level-2 network N . Then it can be argued as in the
previous subsection that the algorithm assigns each leaf to
the set of symmetric arc sides corresponding to its location
in N .

3.3.4. Leaves per arc side
Consider a set of symmetric arc sides C and the set of

leaves XC assigned to C . For x, y ∈ XC , let Txy denote the
set of simple trinets in T ′ containing both x and y, and
let qxy denote the fraction of trinets in Txy in which x
and y are on the same side of the underlying generator,
with qxx = 1. We define the following score for x �= y:

rxy = 3
∑

z∈XC

min{qxz,qyz} −
∑

z∈XC

qxz −
∑

z∈XC

qyz.

The main idea of this score function is that, assuming
the trinets come from some level-2 network, rxy ≥ 0 if and
only if x and y are on the same side.

The algorithm proceeds as follows. Create a parti-
tion PC of XC , initially consisting of only singletons.
While |PC | > |C | or there exist x �= y with rxy > 0, pick
a pair X, Y ∈PC maximizing

rXY = 1

|X ||Y |
∑

x∈X,y∈Y

rxy . (1)

Merge sets X and Y in PC .

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300
Finally, assign, injectively at random, the parts of PC to
the sides in C .

Suppose the underlying set of T ′ is T (N) for some sim-
ple level-2 network N . The only level-2 generators with
symmetric arc sides (see Fig. 2) are 1 and 2d with C =
{L, R} and 2c with C = {Li, Ri}, i ∈ {1, 2, 3}. If x, y are on
the same side then qxy = 1 and otherwise we have qxy = 0.
We can now see that if x, y are on the same side then
rxy is equal to the number of leaves on that side (since
each of the three sums is equal to the number of leaves
on that side) which is at least 2. If, on the other hand, x, y
are on different sides, then rxy ≤ −2 (since the first sum
is 0 and the other two sums are at least 1). Hence, the
algorithm correctly splits the leaves in XC into two sets
corresponding to the leaves on side Li and Ri (or L and R).
For generators 1 and 2d it does not matter which set is as-
signed to which side, by symmetry. For generator 2c, this
does matter. It is done randomly here and corrected if nec-
essary in the next subsection.

3.3.5. Side alignment
The following is only necessary when the underlying

generator G is generator 2c, see Fig. 2, since it contains
more than one set of symmetric arc sides. Call its sets of
symmetric arc sides C1 = {L1, R1}, C2 = {L2, R2} and C3 =
{L3, R3}. We have to consider swapping sides L2, R2 and/or
L3, R3 (i.e., assign the leaves assigned to L2 to R2 and vice
versa and/or assign the leaves assigned to L3 to R3 and
vice versa). From the four possibilities, we choose the one
maximizing the following score:

uL1,L2 + uL1,L3 + uL2,L3 + uR1,R2 + uR1,R3 + uR2,R3 (2)

with

uS,T =
∑

x∈X S y∈XT

qxy − |XS ||XT |, (3)

and XU the set of leaves assigned to side U .
Suppose the underlying set of T ′ is T (N) for some sim-

ple level-2 network N with underlying generator 2c. Then
we have that qxy = 1 if x ∈ Li, y ∈ L j or x ∈ Ri, y ∈ R j ,
and qxy = 0 if x ∈ Li, y ∈ R j or vice versa. Hence, uLi L j =
uRi R j = 0 and uLi R j , uRi L j < 0. Therefore, choosing the as-
signment maximizing (2), out of all possible assignments,
chooses the assignment corresponding to N .

3.3.6. Ordering the leaves on the arc sides
Consider an arc side S and the set of leaves X S assigned

to side S . Let T s
xy denote the set of simple trinets in T

containing both x and y and both on the same side of the
underlying generator. Let axy denote the fraction of trinets
in T s

xy in which the parent of x is an ancestor of y. Let π

be an ordered list of leaves, which is initially empty. Find
a leaf x ∈ X S \ π maximizing

∑

y∈X S\π
axy − ayx. (4)

Append leaf x to π and continue until π is a permutation
of X S . The permutation π then describes the ordering of
the leaves on side S . Attach the list of leaves π to side S .
6

Suppose the underlying set of T ′ is T (N) for some sim-
ple level-2 network N . For two leaves x, y on the same arc
side S of N , we have that axy = 1 if the parent of x is an
ancestor of y and axy = 0 otherwise. Hence, (4) is equal
to the number of leaves that have not been added to the
permutation π yet and are below x on side S , minus the
number of leaves that have not been added to the per-
mutation π yet and are above x on side S . Therefore, the
algorithm constructs the ordering π of leaves on side S
in N .

The pseudo code for constructing a simple network is
in Algorithm 3.

Algorithm 3: Constructing a simple level-2 net-
work.

Data: Multiset T ′ of level-2 trinets and (possibly) binets on taxon
set X .

Result: Simple level-2 network N ′ on X .
//Determine the level k

1 n = |L(T ′)|;
2 T ′′ = the set of trinets contained in T ′;
3 p2 = the fraction of trinets in T ′′ that are strictly level-2;
4 if n = 2 then
5 return an arbitrary network with maximum multiplicity in T ′

6 if p2 < n−2
2(n

3)
then

7 k = 1

8 else
9 k = 2

//Determine the generator
10 G = the underlying generator of the maximum number of strictly

level-k trinets in T ′;
11 N ′ = G;

//Assign leaves to reticulation sides
12 TG = the set of trinets in T ′ that have underlying generator G;
13 while there is a reticulation side of G that has not been assigned a leaf

do
14 Let px,C be the fraction of trinets in TG that have leaf x on a

side in set C ;
15 Find x ∈ L(TG) that has not been assigned to a side and a set

of symmetric reticulation sides C that have not all been
assigned a leaf, maximizing px,C ;

16 Assign x to an arbitrary side in C and attach x to this side
in N ′;

17 T r
G = the set of trinets in T ′ that have underlying generator G
and that have an automorphism such that each reticulation side
of G contains its assigned leaf;

18 Relabel the sides of the generators of the trinets in T r
G such that

each reticulation side contains its assigned leaf;
//Assign leaves to sets of symmetric arc sides

19 for each leaf x that has not been assigned to a reticulation side do
20 Assign x to a set of symmetric arc sides C maximizing the

fraction of trinets in T r
G that have leaf x on a side in C ;

//Continued on Page 7

3.4. Theoretical result

The following theorem shows that the algorithm is
guaranteed to reconstruct a level-2 network from its set
of trinets.

Theorem 3. If N is a recoverable, binary level-2 network on X
with |X | ≥ 3, then Algorithm 1 will output N when applied to
input T = T (N).

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300
//Assign leaves to arc sides
21 for each set of symmetric arc sides C do
22 PC = partition of XC containing only singletons;
23 qxy = the fraction of simple trinets containing x, y in

which x, y are on the same side of the underlying generator;

24 rxy = 3
∑

z∈XC

min{qxz, qyz} −
∑

z∈XC

qxz −
∑

z∈XC

qyz ;

25 rXY = 1

|X ||Y |
∑

x∈X,y∈Y

rxy ;

26 while there exist X, Y ∈ PC with rXY > 0, or |PC | > |C | do
27 Find a pair X, Y ∈ P maximizing rXY ;
28 Merge sets X and Y in PC ; update rXY ;

29 while there is a leaf in XC that has not been assigned to a side do
30 Pick a set Z ∈ PC containing a leaf that has not been

assigned to a side;
31 Pick a side S ∈ C that has not been assigned any leaves;
32 Assign the leaves from Z to side S;

//Align sides
33 if G is generator 2c from Fig. 2 then
34 Find bijections f : {L2, R2} → {L2, R2} and

g : {L3, R3} → {L3, R3} maximizing uL1, f (L2) + uL1,g(L3) +
u f (L2),g(L3) + uR1, f (R2) + uR1,g(R3) + u f (R2),g(R3);

35 with uS,T =
∑

x∈XS ,y∈XT

qxy − |X S ||XT |;

36 Assign the leaves assigned to L2, R2, L3, R3 to
f (L2), f (R2), g(L3), g(R3), respectively;

//Order leaves on arc sides
37 for each arc side S with set X S of assigned leaves do
38 T s

xy = the set of simple trinets in T ′ containing x and y on
the same side of the underlying generator;

39 axy = the fraction of trinets in T s
xy in which the parent of x is

an ancestor of y;
40 π = ();
41 while π is not a permutation of X S do
42 Find a leaf x ∈ X S \ π maximizing ∑y∈XS \π axy − ayx and

append x to π ;

43 Attach the list of leaves π to side S in N ′;
44 return N ′

Proof. We use induction on the number of vertices of N .
The base case is that N is a tree with 3 leaves and 5 ver-
tices, say X = {x, y, z} and {x, y} is the minimal cut-arc set.
The algorithm will generate A = {x, y} (see Section 3.2).
The set T ′ contains only the tree on {x, y} and hence this
is constructed as N ′ (see Section 3.3.1). The set T ∗ con-
tains only the tree on {a∗, z} and hence N∗ is this tree.
Combining N ′ and N∗ gives N (Section 3.1).

If N has at least 6 vertices, the algorithm finds a mini-
mal cut-arc set A of N by Section 3.2. If A �= X , let (u, v)

be the corresponding cut-arc of N and let N ′ be the sub-
network of N rooted at v . If A = X , let N ′ = N . In either
case, the underlying set of T ′ is T (N ′). By Section 3.3, the
algorithm constructs N ′ (which is either a tree with two
leaves or a simple network) from T ′ . If A = X then this
completes the proof. Otherwise, let N∗ be the network ob-
tained from N by deleting all vertices of N ′ except for v
and labelling v by a∗ . The underlying set of T ∗ is T (N∗)
and N∗ contains fewer vertices than N . If N∗ has at least
three leaves, the algorithm constructs N∗ from T ∗ by in-
duction. If N∗ has two leaves, then T ∗ only contains N∗
and hence the algorithm constructs N∗ (see Section 3.3.1).
In both cases, combining N ′ and N∗ gives N (see Sec-
tion 3.1). �
7

Algorithm 2 can be implemented efficiently to run
in O (|T | + |X |2) time (similarly to [13] for level-1). The
main idea here is to first compute φ(x, y), the number of
trinets containing x and y that have a minimal cut-arc set
not containing y. This can be done in O (|T | + |X |2) time
since we need to loop through the set of trinets only once
and update the values φ(x, y) affected by this trinet T , i.e.,
with x, y ∈ L(T). Finding a minimal cut-arc set in a trinet
can be done in constant time as the size of each trinet
is bounded by a constant (as any trinet that is not recov-
erable can be ignored). After that, the digraph �i can be
constructed in O (|X |2) time, and this only needs to be
done for the smallest i for which φ(x, y) ≤ i for at least
one pair x, y. The condensed digraph can be found with
Tarjan’s algorithm for computing strongly connected com-
ponents in O (|X |2) time. Since the number of generators,
and the number of sides of each generator, is bounded
by a constant, the bottleneck of Algorithm 3 is Line 26.
The values qxy can be computed in O (|T | + |X |2) time
and the values rxy in O (|X |3) time. The values rXY can
be computed in O (|X |2) time by looping through all x, y
and updating the values of rXY with x ∈ X and y ∈ Y .
This last step has to be repeated O (|X |) times. So Algo-
rithm 3 takes O (|T | + |X |3) time. Computing T ′ and T ∗
can be done in O (|T | + |X |) time since the size of the
trinets is bounded by a constant. All of this has to be re-
peated O (|X |) times. Hence, the algorithm runs in time
O (|T ||X | + |X |4).

4. Discussion

We have presented an algorithm that, for an input set
T of trinets (and possibly binets) with leaf-set X , outputs a
level-2 network on X with run time O (|T ||X | + |X |4) and
that is guaranteed to reconstruct a level-2 network from
its set of trinets. Note that a variant of this algorithm is
presented in [11]. It should also be noted that our level-
2 algorithm cannot be used to decide whether or not an
arbitrary set of trinets is contained in some level-2 net-
work or not. Indeed, if a set of level-1 trinets is input into
the algorithm, then it will output a level-1 network. But
it is known that deciding whether or not an arbitrary set
of level-1 trinets is contained in a level-1 network is NP-
complete [7].

In addition, our algorithm can be used to build level-1
networks for more general inputs than the level-1 TriLoNet
algorithm described in [13], since TriLoNet’s input is re-
stricted to collections in which there is a trinet on every
3-subset of the leaf-set. The main innovation in our algo-
rithm lies in Algorithm 3. The high-level idea is to split
the process up in different stages: determine the level, de-
termine the generator, assign leaves to reticulation sides,
assign leaves to sets of symmetric arc sides, assign leaves
to arc sides, align sides and order leaves on arc sides. Most
of these steps are not necessary for the level-1 case, or are
much simpler.

In terms of potential applications of our level-2 algo-
rithm, in [13] a method is presented to derive collections
of level-1 trinets from molecular sequence data; it would
be interesting to see if this approach could be extended to
derive level-2 trinets as well. We expect that this could be

L. van Iersel, S. Kole, V. Moulton et al. Information Processing Letters 178 (2022) 106300
quite complicated, and so it may be necessary to restrict
the level-1/level-2 building blocks to some subset of the
list of potential 3-leaved networks.

In another direction, in this paper we have shown
that level-3 networks are not necessarily encoded by their
trinets. However, Fig. 1 is essentially the only case in which
a level-3 network is not encoded [12], and so it would
be interesting to investigate if there is a polynomial-time
algorithm for constructing level-3 networks from trinets
modulo this symmetry. Alternatively, it can be shown that
the collection of 4-leaved networks (or quarnets) contained
in a level-3 network encode the network [12], and so
new algorithms could be potentially developed to build
level-3 networks from quarnets. Another interesting open
question is whether a level-k network is always encoded
by its (k + 1)-nets. Some partial results are presented
in [10].

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

References

[1] Magnus Bordewich, Britta Dorn, Simone Linz, Rolf Niedermeier, Al-
gorithms and Complexity in Phylogenetics, Dagstuhl Reports, vol. 9,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020.

[2] R.A. Leo Elworth, Huw A. Ogilvie, Jiafan Zhu, Luay Nakhleh, Advances
in Computational Methods for Phylogenetic Networks in the Pres-
ence of Hybridization, Springer International Publishing, Cham, 2019,
pp. 317–360.

[3] Philippe Gambette, Katharina T. Huber, On encodings of phylogenetic
networks of bounded level, J. Math. Biol. 65 (1) (2012) 157–180.

[4] Katharina T. Huber, Vincent Moulton, Encoding and constructing
1-nested phylogenetic networks with trinets, Algorithmica 66 (3)
(2013) 714–738.

[5] Katharina T. Huber, Vincent Moulton, Taoyang Wu, Hierarchies from
lowest stable ancestors in nonbinary phylogenetic networks, J. Clas-
sif. 36 (2) (2019) 200–231.

[6] Katharina T. Huber, Leo van Iersel, Steven Kelk, Radoslaw Suchecki, A
practical algorithm for reconstructing level-1 phylogenetic networks,
IEEE/ACM Trans. Comput. Biol. Bioinform. 8 (3) (2010) 635–649.

[7] Katharina T. Huber, Leo van Iersel, Vincent Moulton, Celine Scor-
navacca, Taoyang Wu, Reconstructing phylogenetic level-1 networks
from nondense binet and trinet sets, Algorithmica 77 (1) (2017)
173–200.

[8] Katharina T. Huber, Leo van Iersel, Vincent Moulton, Taoyang Wu,
How much information is needed to infer reticulate evolutionary his-
tories?, Syst. Biol. 64 (1) (2015) 102–111.

[9] Leo van Iersel, Vincent Moulton, Trinets encode tree-child and level-
2 phylogenetic networks, J. Math. Biol. 68 (7) (2014) 1707–1729.

[10] Frank Janisse, Encoding level-k phylogenetic networks, MSc thesis,
TU Delft, 2021, http://resolver.tudelft .nl /uuid :11939b58 -b834 -4073 -
8de8 -b61d9a5f9a81.

[11] Sjors Kole, Constructing level-2 phylogenetic networks from trinets,
MSc thesis, TU Delft, 2020, http://resolver.tudelft .nl /uuid :c699ea63 -
f8c8 -40f7 -8f07 -11ac055c42e0.

[12] Leonie Nipius, Rooted binary level-3 phylogenetic networks are en-
coded by quarnets, BSc thesis, TU Delft, 2020, http://resolver.tudelft .
nl /uuid :a9c5a8d4 -bc8b -4d15 -bdbb -3ed35a9fb75d.

[13] James Oldman, Taoyang Wu, Leo van Iersel, Vincent Moulton,
TriLoNet: piecing together small networks to reconstruct reticulate
evolutionary histories, Mol. Biol. Evol. 33 (8) (2016) 2151–2162.

[14] Charles Semple, Gerry Toft, Trinets encode orchard phylogenetic net-
works, J. Math. Biol. 83 (3) (2021) 1–20.

[15] Mike Steel, Phylogeny: Discrete and Random Processes in Evolution,
SIAM, 2016.

[16] Leo van Iersel, Judith Keijsper, Steven Kelk, Leen Stougie, Ferry
Hagen, Teun Boekhout, Constructing level-2 phylogenetic networks
from triplets, IEEE/ACM Trans. Comput. Biol. Bioinform. 6 (4) (2009)
667–681.

[17] Stephen Willson, Regular networks can be uniquely constructed from
their trees, IEEE/ACM Trans. Comput. Biol. Bioinform. 8 (3) (2010)
785–796.
8

http://refhub.elsevier.com/S0020-0190(22)00057-6/bibA2595A61AEFC585184E3DEF8B1016399s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibA2595A61AEFC585184E3DEF8B1016399s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibA2595A61AEFC585184E3DEF8B1016399s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib38F81A676905D0B91804C6769AE3E9CAs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib38F81A676905D0B91804C6769AE3E9CAs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib38F81A676905D0B91804C6769AE3E9CAs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib38F81A676905D0B91804C6769AE3E9CAs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib6E532CDF1DEA7C96F42BFF7C8B972A62s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib6E532CDF1DEA7C96F42BFF7C8B972A62s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib517A8122EEF7BA3DC623A5BA9E425CF4s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib517A8122EEF7BA3DC623A5BA9E425CF4s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib517A8122EEF7BA3DC623A5BA9E425CF4s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibDF3E0A697ADA7B8E6AC5DBC93A61DED0s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibDF3E0A697ADA7B8E6AC5DBC93A61DED0s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibDF3E0A697ADA7B8E6AC5DBC93A61DED0s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib0DCA8F1DA419A5B2F580FB3CF696D375s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib0DCA8F1DA419A5B2F580FB3CF696D375s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib0DCA8F1DA419A5B2F580FB3CF696D375s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib7EE269985FE17B02965DF5BEAFF86E40s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib7EE269985FE17B02965DF5BEAFF86E40s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib7EE269985FE17B02965DF5BEAFF86E40s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib7EE269985FE17B02965DF5BEAFF86E40s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib3CA4877D83A70DF9CB7407F8A19D7341s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib3CA4877D83A70DF9CB7407F8A19D7341s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib3CA4877D83A70DF9CB7407F8A19D7341s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibC1E6E0E8D9DC8AECFE35ED17B6C38553s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibC1E6E0E8D9DC8AECFE35ED17B6C38553s1
http://resolver.tudelft.nl/uuid:11939b58-b834-4073-8de8-b61d9a5f9a81
http://resolver.tudelft.nl/uuid:11939b58-b834-4073-8de8-b61d9a5f9a81
http://resolver.tudelft.nl/uuid:c699ea63-f8c8-40f7-8f07-11ac055c42e0
http://resolver.tudelft.nl/uuid:c699ea63-f8c8-40f7-8f07-11ac055c42e0
http://resolver.tudelft.nl/uuid:a9c5a8d4-bc8b-4d15-bdbb-3ed35a9fb75d
http://resolver.tudelft.nl/uuid:a9c5a8d4-bc8b-4d15-bdbb-3ed35a9fb75d
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib075B7595DA321B82C0DD4D81D372051Bs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib075B7595DA321B82C0DD4D81D372051Bs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bib075B7595DA321B82C0DD4D81D372051Bs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibBB1FED231481C9F302A8364F9328CBCFs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibBB1FED231481C9F302A8364F9328CBCFs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibDFE56550EBD0E5ECBA7CFA9D483D5CF8s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibDFE56550EBD0E5ECBA7CFA9D483D5CF8s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibFE1A45DE59884238F7FFE041AAFAE03Fs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibFE1A45DE59884238F7FFE041AAFAE03Fs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibFE1A45DE59884238F7FFE041AAFAE03Fs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibFE1A45DE59884238F7FFE041AAFAE03Fs1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibF58190B3CE4D5CE8E54BB3846F67CED8s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibF58190B3CE4D5CE8E54BB3846F67CED8s1
http://refhub.elsevier.com/S0020-0190(22)00057-6/bibF58190B3CE4D5CE8E54BB3846F67CED8s1

	An algorithm for reconstructing level-2 phylogenetic networks from trinets
	1 Introduction
	2 Preliminaries
	2.1 Generators

	3 Algorithm
	3.1 Outline
	3.2 Finding a minimal cut-arc set
	3.3 Constructing a simple network
	3.3.1 The number of reticulations
	3.3.2 Leaves on reticulation sides
	3.3.3 Leaves per set of symmetric arc sides
	3.3.4 Leaves per arc side
	3.3.5 Side alignment
	3.3.6 Ordering the leaves on the arc sides

	3.4 Theoretical result

	4 Discussion
	Declaration of competing interest
	References

