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 A B S T R A C T

The effective prediction of dynamic cable ratings (DCR) in the HVDC cable is pivotal for enhancing transmission 
efficiency and maximizing electricity sales in offshore wind farms. Due to complex wind conditions, traditional 
machine learning methods, such as support vector machines, struggle to provide accurate long-term DCR 
predictions and express prediction uncertainties. To address these challenges, this article proposes a novel 
deep learning framework for dynamic cable rating prediction based on encoder–decoder networks, in which the 
encoder utilizes Bidirectional extended-long Short-Term Memory networks to encode contextual information 
from the input data. The decoder introduces an additive attention mechanism, which allows the network to 
focus on relevant features in the input sequence. In addition, to capture the uncertainty for DCR prediction, 
a Bayesian neural network approximation method based on the Monte Carlo dropout method is introduced. 
Finally, this paper introduces a thermal risk estimation method by considering both the maximum conductor 
temperature limit and the temperature gradient limit. Results demonstrate that the proposed method not only 
improves electric field distribution but also achieves superior economic benefits.
1. Introduction

The integration of offshore wind farms into electrical grids has 
grown significantly due to global renewable energy initiatives. A cru-
cial aspect of effectively harnessing this energy is efficient electricity 
transmission [1]. Therefore, underground cables are vital, particularly 
in high-voltage direct current (HVDC) transmission systems widely used 
to connect offshore wind farms to the power grid. The conventional 
rated capacity of HVDC underground cables often based on worst-
case assumptions, is no longer sufficient to support the continuous 
growth of wind farms [2]. To address this challenge, there is a growing 
emphasis on better utilization of cable capacities and optimal use of the 
cable connection to ensure maximum efficiency and reliability in power 
transmission.

A promising solution is the dynamic thermal ratings (DTR) method, 
which is used to fully exploit the available capacity of a device without 
sacrificing safety and reliability. DTR technology was initially applied 
to equipment such as transmission lines [3,4] and transformers [5]. 
Daminov et al. [5] conducted an in-depth study on the DTR of trans-
formers, pointing out that while traditional rating methods generally 
use fixed limit temperatures or typical load curves for estimation, 
DTR can combine real-time and predictive load and environmental 
information to accurately portray the load-bearing capacity of the 
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equipment. The work emphasizes the importance of considering mul-
tiple thermal limitations of the equipment when determining the DTR, 
and balancing the temperature and current limitations in a feasible 
region, and maximizing the equipment utilization while meeting the 
thermal safety boundaries. Meanwhile, Dynamic Cable Rating (DCR) 
has been widely researched in recent years as a method to evaluate the 
real-time current-carrying capacity of cables [6]. So far, research has 
focused on the DCR of AC cables [7], exploration of the DCR of HVDC 
cables remains relatively uncharted. Juan et al. introduced a method for 
optimal sizing of high voltage AC export cables in offshore wind farms 
by integrating wind power generation and seabed temperature data 
into a thermo-electrical model, coupled with a probabilistic lifetime 
analysis. However, applying similar strategies to HVDC cables remains 
an open area of research. Calculating the DCR of HVDC cable systems 
is not as simple as that of AC cables. The reason for this is that AC 
cables are always subject to a maximum temperature limit, whereas 
the DCR of HVDC cables should combine the maximum temperature 
limit and the temperature gradient limit [8] as the temperature gradient 
will increase hetero-charge density, which will cause local electric field 
distortion. Therefore, it is necessary to detect the internal temperature 
of insulation to prevent the temperature from being too high [9].

Moreover, DCR is not sufficient to optimize curtailment decisions 
in offshore wind farms as information on future load current scenarios 
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and conductor temperatures is needed hours in advance. Therefore, the 
implementation of advanced predictive modeling techniques becomes 
crucial. Currently, the existing DCR prediction methods are mainly 
conventional probabilistic methodologies such as Markov Chain (MC) 
model [10,11], regression analysis models such as the Support Vector 
Machine (SVM) algorithm [12–14], and the Autonomous Integrated 
Moving Average (ARIMA) model [15]. In these models, the MC method 
is heavily based on state transition probabilities to predict future states. 
For long-term forecasting, this approach may struggle to accurately 
capture complex dynamic behavior. Although the application of the 
regression analysis algorithm in the prediction of DCR has demon-
strated considerable predictive effectiveness in offshore distribution 
grids, for offshore wind farms, it is difficult to accurately capture and 
predict cable load demands. Therefore, existing models cannot properly 
interrelate input and output data by extracting deep-level features 
without specialized feature engineering. In this regard, deep learning 
models are capable of modeling a non-linear relationship between input 
and output data with flexible network structures to provide data-driven 
solutions.

Recently, machine learning techniques have been extensively ap-
plied to different engineering fields [16–19], especially Long Short-
Term Memory Networks (LSTMs), have made significant progress in 
the field of wind power prediction [20–23], but a single LSTM model 
usually does not adequately account for the uncertainty of wind en-
ergy when dealing with wind power prediction [21,22]. To overcome 
this limitation, a model that can generate probability distributions is 
needed. Liu et al. [23] proposed a data-driven energy storage manage-
ment strategy by combining a deep reinforcement learning framework 
with an LSTM-LUBE-based interval prediction method. This approach 
unifies wind power interval forecasting with dynamic decision-making 
to optimize storage charge/discharge operations under fluctuating wind 
power and load conditions. Beside, the use of Bayesian methods can 
incorporate uncertainty considerations into the forecasts, resulting in 
confidence intervals for the forecasts [24–26]. Although Bayesian neu-
ral network (BNN) models have been previously reported for wind 
energy forecasting, most of them are based on conventional fully 
connected NN models, such as single-layer perceptron [24], multi-
layer perceptron (MLP) in [25] or convolutional gated repeat units 
(GRU) [26]. These models often struggle with the complexity of wind 
energy data, inadequately model long-term temporal dynamics, and 
may oversimplify the inherent uncertainties in forecasting.

The above literature provides valuable information for studying ca-
ble rating and wind power generation prediction. However, for offshore 
wind farms, wind speed variation is quite uncertain, so the accuracy of 
existing methods of predicting cable rating values is not high enough, 
and traditional models cannot balance the need to account for wind 
energy uncertainty while capturing the long-term dependence of wind 
energy. Therefore, this paper proposes a novel multi-feature and mul-
tistep prediction model to predict the DCR of HVDC cables in offshore 
wind farms, and our main contributions are summarized as follows.

• A novel prediction model (Attention-BNN-S2S) is proposed based 
on an encoder–decoder structure, in which the encoder uses the 
Bi-sLSTM networks to capture long-term dependence, while the 
decoder introduces the additive attention mechanism to focus on 
relevant features in the input sequence. In addition, to consider 
DCR prediction uncertainty and obtain probabilistic predictions, 
we also utilize the MC-dropout method to approximate BNN. 
The superiority of the Attention-BNN-S2S prediction model is 
demonstrated by comparing various machine learning methods.

• The cable temperature calculation model is built based on the 
thermoelectric equivalent (TEE) method, and the fourth-order 
Runge–Kutta method (RK4) was used to solve the difference 
equation to obtain the cable temperature. Then it was compared 
with the FEM model built in COMSOL in terms of steady-state 
and transient to verify the TEE model. The modified DCR pre-
diction model is established by combining the Attention-BNN-S2S 
prediction model with the TEE model.
2 
Fig. 1. Introduction to Attention-BNN-S2S-DCR prediction model.

• Considering the maximum conductor temperature limit and the 
temperature gradient limit, this paper proposes a thermal risk 
assessment method for HVDC cables. The thermal overload risk 
of HVDC cables in offshore wind farms is evaluated by compar-
ing different ML methods, reflecting the superiority of the DCR 
prediction model in this paper.

The paper is structured as follows. Section 2 describes the proposed 
methodology followed by parameter setting and verification. Section 3 
describes the definition of the study case. Section 4 presents and dis-
cusses the experimental results. Finally, Section 5 provides meaningful 
conclusions.

2. Proposed model

2.1. Overview of the proposed DCR prediction framework

The schematic of the Attention-BNN-S2S-DCR model is shown in 
Fig.  1. The DCR prediction process is as follows:

2.1.1. Feature engineering and wind power generation prediction
Feature Engineering is a crucial step in machine learning and data 

mining, as it transforms raw data into meaningful inputs for predictive 
models. Drawing on domain knowledge about wind power generation, 
this study refines both feature construction and selection to capture the 
temporal and physical dynamics of the system. In this work, historical 
wind power generation is used as a primary input feature, while 
future wind power generation is designated as the main output to be 
predicted. As wind power generation exhibits strong autocorrelation, 
meaning that present output is often closely related to recent past 
values. By including historical wind power in the input set, the model 
exploits these temporal patterns, leading to more accurate forecasts of 
short-term power fluctuations.

To accommodate directional variability, the wind speed is decom-
posed into two perpendicular components. The horizontal component 
𝑋component is derived by multiplying the measured wind speed by the 
cosine of the wind direction (in radians), while the vertical component, 
𝑌component, is found by multiplying the wind speed by the sine of the 
wind direction: 
𝑋component = Windspeed × cos

(

WindDirection×𝜋
180

)

, (1)

𝑌 = Windspeed × sin
(

WindDirection×𝜋
)

. (2)
component 180
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Fig. 2. Correlation matrix.

These features provide a clearer physical interpretation of wind flow, 
where different orientations may affect turbine performance in distinct 
ways.

Since wind power often exhibits significant temporal dependence, 
one-period lag wind power (denoted by 𝑇 1) is introduced to model 
autocorrelative effects. Analysis of the autocorrelation function (ACF) 
and partial autocorrelation function (PACF) reveals that a single-step 
lag is the most influential, although additional lags may also be relevant 
if extended dependence is evident. For a stationary time series {𝑦𝑡} with 
mean 𝜇 and variance 𝜎2, the ACF at lag 𝑘 is defined as: 

𝜌(𝑘) =
Cov(𝑦𝑡, 𝑦𝑡−𝑘)

Var(𝑦𝑡)
=
𝐸[(𝑦𝑡 − 𝜇)(𝑦𝑡−𝑘 − 𝜇)]

𝜎2
. (3)

The PACF measures the correlation between 𝑦𝑡 and 𝑦𝑡−𝑘 after removing 
the effects of the intermediate lags 1, 2,… , 𝑘 − 1. This can be obtained 
by fitting an autoregressive model of order 𝑘, 

𝑦𝑡 = 𝜙1,𝑘 𝑦𝑡−1 + 𝜙2,𝑘 𝑦𝑡−2 +⋯ + 𝜙𝑘,𝑘 𝑦𝑡−𝑘 + 𝜖𝑡. (4)

The PACF at lag 𝑘 is then given by the last coefficient in this model: 

𝛼(𝑘) = 𝜙𝑘,𝑘. (5)

Fig.  2 shows that windspeed maintains a strong positive correlation 
(0.93) with Power, underscoring the well-known physical relationship 
between wind velocity and energy output. Meanwhile, the lagged 
power feature (𝑇1) demonstrates an even higher correlation (0.98) 
with Power, highlighting the importance of temporal dependence in 
wind power generation. By contrast, Wind Direction remains largely 
independent of other variables apart from moderate correlation with 
the vertical wind-speed component v100 (0.65). The forecast surface 
roughness (fsr) feature also exhibits moderate to high correlation with 
windspeed (0.77) and Power (0.62), indicating a non-negligible sea 
level roughness influence on overall system conditions.

Fig.  3 illustrates the time-series properties of wind power. The ACF 
exhibits a gradual decline, suggesting that current power output is 
provided by multiple preceding time steps, while the PACF emphasizes 
the dominant contribution of the first lag. This pattern corroborates the 
decision to include 𝑇1 in the feature set, as it directly captures the pri-
mary autoregressive effect. After evaluating correlations, stationarity, 
and predictive importance, the following features are retained in the 
final model: 𝑋component, 𝑌component, Lagged wind power: 𝑇1, historical 
real wind power and fsr.
3 
Fig. 3. Determining derivative indicators via ACF/PACF.

The wind power is converted to a current time series by using: 

𝐼(𝑡) =
𝑃 (𝑡)
𝑉𝑟𝑒𝑓

(6)

where 𝐼(𝑡) is the load current (A). 𝑃 (𝑡) is the power output (W). In this 
paper, the bipolar DC transmission system is used. 𝑉𝑟𝑒𝑓  represents the 
reference voltage (V) of each exported cable. Consequently, the total 
voltage of the system is 𝑉𝑟𝑒𝑓 .

Fig.  4 shows the core functionality of the Attention-BNN-S2S model. 
The model first encodes the input sequence into a series of hidden states 
using Bi-sLSTM, then decodes the sequence into an output sequence, 
with each step of the decoder utilizing an attention mechanism to focus 
on different parts of the input sequence. Finally, it passes through the 
MC-Dropout layer, where multiple forward passes are made during 
the inference process, each time randomly shutting down neurons to 
generate distributions of possible outcomes.

2.1.2. Cable rating calculation
The predicted interval current loads and, the cable and soil param-

eters are entered into the thermoelectric equivalent (TEE) model to 
calculate conductor temperatures and temperature gradients.

2.1.3. Thermal risk estimation and power curtailment
The thermal risk estimation is calculated at each time step t con-

sidering the probabilistic distribution of the obtained conductor tem-
perature. The realistic thermal risk 𝑟𝑟𝑖𝑠𝑘 and predicted thermal 𝑝𝑟𝑖𝑠𝑘 are 
calculated by: 

𝑟risk =

⎧

⎪

⎨

⎪

⎩

∑ℎ
𝑖=1 I(𝑇 (𝑡+𝑖)≥𝑇limit)

ℎ
∑ℎ
𝑖=1 I(𝐺(𝑡+𝑖)≥𝐺limit)

ℎ

(7)

𝑝risk =

⎧

⎪

⎨

⎪

⎩

∑ℎ
𝑖=1 I(𝑇

′(𝑡+𝑖)≥𝑇limit)
ℎ

∑ℎ
𝑖=1 I(𝐺

′(𝑡+𝑖)≥𝐺limit)
ℎ

(8)

where:

• 𝑇 (𝑡 + 𝑖): Actual conductor temperature at future time step 𝑡 + 𝑖,
• 𝑇limit: Maximum allowable conductor temperature,
• 𝐺(𝑡 + 𝑖): Actual power generation at time step 𝑡 + 𝑖,
• 𝐺limit: Maximum allowable power generation,
• 𝑇 ′(𝑡 + 𝑖), 𝐺′(𝑡 + 𝑖): Predicted temperature and power generation, 
respectively,

• ℎ: Prediction horizon,
• I: Indicator function, returning 1 if the condition inside is true, 
otherwise 0.

The Eqs. (7), (8) reflect the number of times the cable temperature 
exceeded 70 ◦C or the temperature gradient exceeded 20 ◦C. Power 
curtailment is activated when one of two conditions is met. The whole 
process continues in a loop until the end of the entire test set.

To assess the thermal aging of the cable insulation material, the 
Arrhenius equation is applied to estimate the fraction of loss of life over 
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Fig. 4. Structure of the Attention-BNN-S2S Model.
time. The index of thermal cable aging (𝐴𝑡ℎ𝑒𝑟𝑚𝑎𝑙) at a temperature of 
70 ◦C is described by Eqs. (9)–(11). The loss-of-life fraction is defined 
as: 
𝐿𝐶 = 𝛥𝑡

𝐿0 ⋅ exp
(

−𝛥𝑊
𝑘𝐵

𝑐𝑇
)(

𝐸
𝐸0

)−
(

𝑛0−𝑏 𝑐𝑇
) , (9)

𝑐𝑇 = 1
𝜃𝑜

− 1
𝜃𝐶
, (10)

𝐴𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) =
𝐿𝐶
𝐿70

= exp(𝛥𝑊
𝑘𝐵

( 1
343

− 1
𝜃𝐶

))( 𝐸
𝐸0

)
−
(

𝑏( 1
343−

1
𝜃𝐶

)
)

(11)

Here 𝜃𝑜 is the reference operation temperature, 𝛥𝑊  is the insulation 
material’s activation energy, 𝑘𝐵 is Boltzmann’s constant, and 𝐿𝑜 is the 
expected cable lifetime when it operates at 𝜃𝑜. This cable circuit is 
designed with a nominal life of 30 years [15]. In this study, the DC 
electric field is calculated by [27]: 

𝐸(𝑟) =
𝑈0
𝑟𝑜
𝛿

[

1 −
(

𝑟𝑖
𝑟𝑜

)𝛿
]

(

𝑟
𝑟𝑜

)𝛿−1
, (12)

where 𝑟𝑖 and 𝑟𝑜 are the inner and outer insulation radii, respectively, 
𝑟 is a generic radius, and 𝛿 is the field inversion coefficient, calculated 
as follows: 

𝛿 =
𝑎𝑤𝑒 + 𝑏𝐸𝑚
1 + 𝑏𝐸𝑚

=
𝑎 𝛥𝑇𝑖

(

𝑟𝑜
𝑟𝑖

)

+ 𝑏𝑈0
(

𝑟𝑜 − 𝑟𝑖
)

1 + 𝑏𝑈0
(

𝑟𝑜 − 𝑟𝑖
) , (13)

Here, 𝛥𝑇𝑖 is the temperature drop between the inner insulation (𝑟𝑖) and 
outer insulation (𝑟𝑜) (in K), and 𝐸𝑚 is the mean value of the electric 
field (in kV/mm). The parameters 𝑎 and 𝑏 are the temperature and field 
coefficients of the electrical conductivity 𝜎, given by: 
𝜎
(

𝑟, 𝑡
)

= 𝜎0 exp
[

𝑎 𝑇
(

𝑟, 𝑡
)

+ 𝑏𝐸
(

𝑟, 𝑡
)]

. (14)

The Weibull distribution is applied to model the probability of cable 
failure due to thermal aging. The cumulative thermal aging 𝐴𝑐𝑢𝑚 is 
computed annually as the sum of the equivalent cable aging over the 
operational year: 

𝐴𝑐𝑢𝑚 =
𝑛
∑

𝑦=1

𝐴𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑦)
8760

(15)

where n is the cable’s operational year, and 8760 represents the total 
hours in a year. The failure probability at a given cumulative aging, 
𝑃𝑓𝑎𝑖𝑙(𝐴𝑐𝑢𝑚), is defined as: 

𝑃𝑓𝑎𝑖𝑙(𝐴𝑐𝑢𝑚) = 1 − exp

(

−
(

𝐴𝑐𝑢𝑚
𝑇𝑡ℎ𝑟𝑒𝑠ℎ

)𝛽
)

(16)

Here, 𝛽 is the shape parameter of the Weibull distribution, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ is 
the aging threshold. The hazard rate 𝐻𝑟𝑎𝑡𝑒(𝐴𝑐𝑢𝑚) which represents the 
instantaneous failure risk, is derived as follows: 

𝐻𝑟𝑎𝑡𝑒(𝐴𝑐𝑢𝑚) =
𝑑(𝑃𝑓𝑎𝑖𝑙(𝐴𝑐𝑢𝑚))

⋅
1 (17)
𝑑(𝐴𝑐𝑢𝑚) 1 − 𝑃𝑓𝑎𝑖𝑙(𝐴𝑐𝑢𝑚)

4 
The annual economic evaluation accounts for maintenance, replace-
ment, interruption costs, and opportunity costs from lost generation. 
The total economic benefit (𝐵𝑡𝑜𝑡𝑎𝑙) is calculated as: 

𝐵total =
𝑛
∑

𝑦=1

(

𝑅op −
(

𝐶maint + 𝐶replace

+𝐶interrupt + 𝐿𝑅curtail
))

(18)

where 𝐶𝑚𝑎𝑖𝑛𝑡, 𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒, and 𝐶𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 represent the maintenance, replace-
ment, and interruption costs, respectively, while 𝑅𝑜𝑝 is the operating 
revenue, and 𝐿𝑅𝑐𝑢𝑟𝑡𝑎𝑖𝑙 is the lost revenue due to curtailed energy 
generation. The values for these costs are based on Ref. [15]. The 
energy is priced at e95/MWh for offshore energy. The capital cost of 
the cable is assumed to be 1 million e per kilometer [28], with a total 
cable length of 135 km.

2.2. Bidirectional extended long short-term memory network

This paper introduces the extended long short-term memory net-
work (xLSTM) to address the limitations of standard LSTM networks in 
capturing the complex temporal dependencies and long-range patterns 
required for DCR predictions. The xLSTM architecture incorporates a 
softmax-based gating mechanism to balance the contributions of input 
and forget gates at each time step. This adjustment helps to control 
the data transfer over time, further refining the prediction of conductor 
temperature and overload risk. Additionally, Softplus activation at the 
output layer ensures non-negative predictions, favoring slight overes-
timation, which is critical for safety in thermal overload scenarios. 
By adopting this method, the model is not only better equipped to 
handle noise and interference in time series signals, and to enhance 
its resilient ability. One of the xLSTM model, called scalar lstm (slstm), 
adds a scalar update mechanism to the traditional LSTM [29], which 
is shown in Fig.  5(a). This design optimizes the gating mechanism by 
providing fine-grained control of the internal memory cells, making it 
more suitable for processing sequence data with small time variations. 
xLSTM usually uses exponential gating and normalization techniques 
to improve the stability and accuracy of the model in processing long 
sequence data: 
𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑧𝑡 (19)

𝑛𝑡 = 𝑓𝑡 ⋅ 𝑛𝑡−1 + 𝑖𝑡 (20)

ℎ𝑡 = 𝑜𝑡ℎ̃𝑡, ℎ̃𝑡 = 𝑐𝑡∕𝑛𝑡 (21)

𝑧𝑡 = 𝑡𝑎𝑛ℎ(�̃�𝑡), �̃�𝑡 = 𝑤⊤𝑧 𝑥𝑡 + 𝑟𝑧ℎ𝑡−1 + 𝑏𝑧 (22)

in which tanh and 𝜎 are the nonlinear activation functions. ⊙ de-
notes pointwise multiplication. The gating mechanisms are adapted as 
follows, with the option to stabilize using additional states: 
𝑖 = exp(𝑖 ), 𝑖 = 𝑤⊤𝑥 + 𝑟 ℎ + 𝑏 (23)
𝑡 𝑡 𝑡 𝑖 𝑡 𝑖 𝑡−1 𝑖
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Fig. 5. Bi-sLSTM model. (a) sLSTM unit structure. (b) Bi-sLSTM flowchart.
𝑓𝑡 = 𝜎(𝑓𝑡)or exp(𝑓𝑡), 𝑓𝑡 = 𝑤⊤𝑓𝑥𝑡 + 𝑟𝑓ℎ𝑡−1 + 𝑏𝑓 (24)

𝑜𝑡 = 𝜎(�̃�𝑡), �̃�𝑡 = 𝑤⊤𝑜 𝑥𝑡 + 𝑟𝑜ℎ𝑡−1 + 𝑏𝑜 (25)

The variables are defined as follows: 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 are the input gate, forget 
gate, and output gate respectively. 𝑐𝑡, ℎ𝑡, and 𝑧𝑡 are the cell state, 
hidden state, and intermediate state respectively. Stabilize gates with 
an additional state 𝑚𝑡: 

𝑚𝑡 = max(log(𝑓𝑡) + 𝑚𝑡−1, log(𝑖𝑡)) (26)

𝑖′𝑡 = exp(log(𝑖𝑡) − 𝑚𝑡) = exp(𝑖𝑡 − 𝑚𝑡) (27)

𝑓 ′
𝑡 = exp(log(𝑓𝑡) + 𝑚𝑡−1 − 𝑚𝑡) (28)

Inspired by the outstanding performance of Bidirectional LSTM (Bi-
LSTM) to encode the necessary information in a sequence [30], it is 
selected as an encoder for taking the temporal relation of wind power 
generation into account. Traditional unidirectional LSTM-based models 
process temporal data in a single forward direction, which can overlook 
important contextual information from future time steps. In contrast, 
Bi-LSTM introduces a backward pass—processing the data sequence 
in reverse. By leveraging both forward and backward dependencies, 
Bi-sLSTM captures more comprehensive temporal patterns, including 
subtle correlations and recurring trends that may appear before and 
after each time step. The principle of Bi-sLSTM is to split the neu-
rons of a regular sLSTM into two directions, one for positive time 
direction (forward states), and the other for negative time direction 
(backward states). By utilizing two-time directions, the sequential in-
formation from the past and future of the current frame can be used. 
The flowchart of Bi-sLSTM is shown in the encoder part of Fig.  5(b).

2.3. Additive attention mechanism

The additive attention mechanism is introduced, and at each decod-
ing step, the attention score 𝑒𝑖𝑡 is computed to represent the importance 
of each element in the input sequence to the current decoder output. 
The attention score can be expressed as: 
𝑒𝑖𝑡 = 𝑊 ⋅ tanh(𝑉𝑡ℎ𝑡 + 𝑉𝑖ℎ𝑖 + 𝑏) (29)

where 𝑊 , 𝑉𝑡, 𝑉𝑖 and 𝑏 are the weights and biases for linear layers. 
All four tensors are initialized with Xavier-uniform (Glorot) initial-
ization and are updated together with the rest of the network by 
back-propagation using the Adam optimizer. ℎ𝑡 is the hidden state of 
the decoder. ℎ𝑖 is the hidden state of the encoder. The scores were 
normalized using the softmax function to obtain the attention weights 
𝛼𝑖𝑡 : 

𝛼𝑖𝑡 =
exp(𝑒𝑖𝑡)

∑𝑇 𝑘
(30)
𝑘=1 exp(𝑒𝑡 )

5 
in which indicates the degree of attention of the decoder to the encoder 
output ℎ𝑖 at time step t. 𝑇  is the time step of the encoder output. The 
computed attentional weights are used to generate a weighted average 
context vector 𝑐𝑡, which is a weighted representation of the input data 
with weights determined by the current decoder: 

𝑐𝑡 =
𝑇
∑

𝑖=1
𝛼𝑖𝑡ℎ𝑖 (31)

2.4. Encoder and decoder

The input sequence is fed into the encoder, which encodes it into 
a context vector by learning the input representation. This vector 
is then passed to the decoder, which learns to generate the output 
sequence. The advantage of the Seq2Seq (S2S) architecture is its ability 
to handle variable input and output sequence lengths [30]. In this 
paper, the encoder processes the input sequence 𝑋 = 𝑥1, 𝑥2,… , 𝑥𝑡 into 
a representation vector 𝑣 = 𝑣1, 𝑣2,… , 𝑣𝑡 using a Bi-sLSTM: 
[

𝑣𝑡
𝐻𝑡

]

= 𝜑(𝑥𝑡) (32)

where 𝐻𝑡 ∈ R𝑛 is the hidden state at time 𝑡, which is shown in Fig.  5(b). 
𝜙 represents the architecture of an encoder. The decoder 𝜓 generates 
the output sequence 𝑌 = {𝑦1,… , 𝑦𝑚} based on the representation vector 
𝑣 by using a unidirectional sLSTM: 
[

𝑝(𝑦𝑡||{𝑦𝑡|𝑖 < 𝑡 }, 𝑣 )
𝑠𝑡

]

= 𝜓(𝑠𝑡−1, 𝑦𝑡−1, 𝑣) (33)

in which 𝑝(𝑦𝑡|{𝑦𝑡|𝑖 < 𝑡}, 𝑣) represents the probability of predicting the 
output 𝑦𝑡 at the current time step t, given the known historical output 
{𝑦𝑡 ∣ 𝑖 < 𝑡} and the information provided by the encoder 𝑣. To focus 
more on those historical data that are most critical to the current 
prediction, this paper introduces an additive attention mechanism, thus 
Eq. (33) can be changed as: 
[

𝑝(𝑦𝑡||{𝑦𝑡|𝑖 < 𝑡 }, 𝑐𝑡 )
𝑠𝑡

]

= 𝜓(𝑠𝑡−1, 𝑦𝑡−1, 𝑐𝑡) (34)

The overall process of the encoder–decoder is shown in Fig.  6. The 
decoder output 𝑦𝑡 at each time step is determined by calculating a 
relevance score 𝑒𝑡 between the encoder output 𝑣𝑖 and the decoder’s 
last hidden state 𝑠𝑡−1. This score is then normalized to form attention 
weights 𝛼𝑖𝑡 to create a context vector through a weighted sum of encoder 
outputs.

2.5. MC dropout-based Bayesian neural network

The Dropout variational inference, known as the Monte Carlo (MC) 
Dropout method, was introduced to perform approximate Bayesian 
inference without requiring significant changes to the standard ar-
chitecture of artificial neural networks (ANNs) [31]. Specifically, this 
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Fig. 6. The proposed attention mechanism in the sLSTM.

approach treats dropout masks as a means of sampling from an approx-
imate posterior over the network weights. By doing so, MC Dropout 
can be used to estimate both the predictive mean and the predictive 
uncertainty of a model’s output, effectively approximating a Bayesian 
Neural Network (BNN).

The Bayes’ theorem, which states that: 

𝑃 (𝜔 ∣ 𝑋, 𝑌 ) =
𝑃 (𝑌 ∣ 𝑋,𝜔)𝑃 (𝜔)

𝑃 (𝑌 ∣ 𝑋)
, (35)

where 𝑃 (𝜔 ∣ 𝑋, 𝑌 ) is the posterior distribution of weights 𝜔 given the 
training data 𝑋 and labels 𝑌 . The term 𝑃 (𝜔) is the prior distribution 
of the weights, while 𝑃 (𝑌 ∣ 𝑋,𝜔) represents the likelihood function, 
i.e., the probability of observing 𝑌  given 𝜔 and 𝑋. The denominator 
𝑃 (𝑌 ∣ 𝑋) is the marginal likelihood (or evidence) that serves as a 
normalizing constant. In practice, directly computing 𝑃 (𝜔 ∣ 𝑋, 𝑌 )
is intractable for large-scale neural networks. Consequently, various 
approximation strategies have been proposed to tackle this problem.

MC Dropout [31] leverages the standard dropout technique—often 
used to reduce overfitting—by keeping the dropout layer active dur-
ing training and testing. For conventional training, dropout randomly 
‘‘drops’’ units (neurons) in each layer according to a Bernoulli mask 
with probability 𝑝. In MC Dropout, we continue to apply the same 
random dropout masks at test time, effectively generating different 
‘‘thinned’’ versions of the network. Mathematically, one can interpret 
these thinned networks as samples from an approximate posterior 𝑞(𝜔 ∣
𝜃), where 𝜃 encapsulates the dropout parameters.

When performing inference with MC Dropout, each forward pass 
corresponds to a sample 𝜔𝑡 drawn from this approximate posterior 
distribution of weights. By running 𝑇  stochastic forward passes, we 
obtain: 

𝑃 (𝜔 ∣ 𝐷) ≈ 1
𝑇

𝑇
∑

𝑡=1
𝑃
(

𝑌 ∣ 𝑋,𝜔𝑡
)

, (36)

where 𝐷 = {(𝑋, 𝑌 )} is the training dataset, and {𝜔𝑡}𝑇𝑡=1 are drawn 
through different dropout masks. Instead of a single deterministic 
output, the network’s prediction is then given by averaging the outputs 
of these sampled networks: 

𝑌 = 1
𝑇

𝑇
∑

𝑡=1
𝑓
(

𝑋,𝜔𝑡
)

, (37)

where 𝑓 (𝑋,𝜔𝑡) denotes the output of the neural network at the 𝑡th 
forward pass. Hence, multiple runs with different dropout masks yield 
both a mean prediction and an empirical variance that can serve as an 
estimate of predictive uncertainty.

In addition to the predictive mean in Eq. (37), the variance across 
the 𝑇  sampled outputs can quantify the epistemic uncertainty: 

Var[𝑌 ] = 1
𝑇

𝑇
∑

𝑡=1

(

𝑓 (𝑋,𝜔𝑡) − 𝑌
)2
. (38)

A higher variance indicates that the model is less certain about its pre-
diction. This insight is particularly important in applications requiring 
robust decision-making under uncertainty.
6 
Among various Bayesian methods for uncertainty quantification, 
such as Markov Chain Monte Carlo (MCMC) and variational inference, 
MC Dropout remains particularly attractive due to its practical advan-
tages. First, MC Dropout offers a simple and scalable approach: unlike 
MCMC, which often incurs significant computational overhead, MC 
Dropout requires only multiple stochastic forward passes at inference 
time. Second, it can be easily integrated into existing deep learning 
architectures with minimal modifications. Moreover, the theoretical 
connection between dropout and approximate variational inference in 
deep Gaussian processes, established by Gal and Ghahramani [31], 
provides a solid Bayesian justification for its use. Finally, MC Dropout 
effectively captures epistemic uncertainty, making it highly valuable in 
applications where prediction confidence is critical.

Therefore, MC Dropout-based BNNs strike a favorable balance be-
tween computational cost, ease of deployment, and theoretical rigor, 
making them a common choice for uncertainty quantification in deep 
neural networks.

2.6. Cable thermo-electric equivalent model

The finite difference method (FDM) was selected to solve the ther-
mal model of the cable as it allows the inclusion of variable load current 
and ambient parameters at every time step during the evaluation 
process. The schematic diagram of the thermal equivalent is shown in 
Fig.  7 [31,32].

Specifically, 𝐶1 = 𝑄𝑐 , 𝐶2 = 𝑝𝑄𝑖𝑛𝑠, 𝐶3 = (1 − 𝑝)𝑄𝑖𝑛𝑠, 𝐶4 = 𝑄𝑠𝑐𝑟𝑒𝑒𝑛, 
𝐶5 = 𝑄𝑠ℎ𝑒𝑎𝑡ℎ, 𝐶6 = 𝑝2𝑄𝑜, 𝐶7 = (1 − 𝑝2)𝑄𝑜, 𝐶8 = 𝑄𝑠𝑜𝑖𝑙 represent the 
thermal capacity of conductor, insulation, insulation screen, metallic 
sheath, outer sheath, soil respectively. 𝑇1, 𝑇2, and 𝑇3 represent the 
thermal resistance between one conductor and the metallic sheath, 
and the thermal resistance of the outer sheath. Because the region 
between the metallic and the outer sheath is usually quite thin, and 
the materials used often have relatively high thermal conductivity, the 
value of 𝑇2 is much smaller compared to 𝑇1 and 𝑇3. Consequently, it is 
often negligible in practice and can be omitted to simplify the thermal 
model. The set of partial differential equations obtained from the cable 
circuit for the calculation of cable temperatures at nodes 𝜃𝑐 , 𝜃𝑖𝑛, 𝜃𝑤, 𝜃𝑠, 
𝜃𝑠𝑜𝑖𝑙, 𝜃𝑎𝑚𝑏 where the subscripts c, in, w, s, soil, amb correspond to the 
conductor, insulation, water-blocking tape, sheath, soil, and external 
environment are shown below: 
𝑑
𝑑𝑡
𝜃𝑐 (𝐶1 + 𝐶2) = 𝑊𝐶 (𝑡) −

𝜃𝑐 − 𝜃𝑖𝑛
𝑇1

(39)

𝑑
𝑑𝑡
𝜃𝑖𝑛 (𝐶3 + 𝐶4 + 𝐶5 + 𝐶6 + 𝐶7) =

𝜃𝑐 − 𝜃𝑖𝑛
𝑇1

−
𝜃𝑖𝑛 − 𝜃𝑠
𝑇3

(40)

𝑑
𝑑𝑡
𝜃𝑠 𝐶8 =

𝜃𝑖𝑛 − 𝜃𝑠
𝑇3

−
𝜃𝑠 − 𝜃𝑠𝑜𝑖𝑙
𝑇4𝑎

(41)

𝑑
𝑑𝑡
𝜃𝑠𝑜𝑖𝑙 𝐶9 =

𝜃𝑠 − 𝜃𝑠𝑜𝑖𝑙
𝑇4𝑎

−
𝜃𝑠𝑜𝑖𝑙 − 𝜃𝑎𝑚𝑏

𝑇4𝑏
(42)

 in which 𝑇1 and 𝑇3 are defined as: 

𝑇1 =
𝜌𝑖𝑛𝑠
2𝜋

ln
(

𝐷screen
𝐷cond

)

(43)

𝑇3 =
𝜌𝑜
2𝜋

ln
(

1 +
2 ⋅ 𝐸o
𝐷𝑜

)

(44)

where 𝜌𝑖𝑛𝑠 is the thermal resistivity of the insulation, 𝐷𝑠𝑐𝑟𝑒𝑒𝑛 is the 
mean diameter of the screen, 𝐷𝑐𝑜𝑛𝑑 is the conductor diameter, 𝜌𝑜 is the 
thermal resistivity of the outer sheath, 𝐸𝑜 is the thickness of the outer 
sheath, 𝐷𝑜 is the outer diameter of the metallic sheath. The IEC 60287 
thermal resistance model for the thermal environment of underground 
cables divides the total thermal resistance into the cladding impedance 
T4a and the external environment impedance T4b, defined as follows: 

𝑇4𝑎 =
𝜌soil
2𝜋

ln
(

1 + 0.5𝐿
𝐷𝑐𝑜𝑛𝑑

)

, (45)

𝑇 =
𝜌soil ln

(

𝑢 +
√

𝑢2 − 1
)

, (46)
4𝑏 2𝜋
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Fig. 7. Thermal equivalent of the HVDC power cable and soil layered thermal resistance modeling.
𝑢 = 2𝐿
𝐷𝑐𝑜𝑛𝑑 + 0.5𝐿

(47)

where 𝜌soil is the thermal resistivity of the soil (𝛺 ⋅ m), 𝐿 is the 
burial depth of the cable centerline below the ground surface (m), 
𝑢 is a dimensionless geometry factor used in the external resistance 
calculation. Define the matrix form of differential equations: 

𝐴 ⋅
𝑑
𝑑𝑡
𝛩(𝑡) = 𝐵(𝑡) (48)

The coefficient matrix 𝐴 and 𝛩(𝑡): 

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1 + 𝐶2 0 0 0
0 𝐶3 + 𝐶4 + 𝐶5 + 𝐶6 + 𝐶7 0 0
0 0 𝐶8 0
0 0 0 𝐶9

⎤

⎥

⎥

⎥

⎥

⎦

(49)

𝛩(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜃𝑐 (𝑡)

𝜃𝑖𝑛(𝑡)

𝜃𝑠(𝑡)

𝜃𝑠𝑜𝑖𝑙(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(50)

Forcing term vector 𝐵(𝑡): 

𝐵(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊𝐶 (𝑡) −
𝜃𝑐 (𝑡) − 𝜃𝑖𝑛(𝑡)

𝑇1
𝜃𝑐 (𝑡) − 𝜃𝑖𝑛(𝑡)

𝑇1
−

𝜃𝑖𝑛(𝑡) − 𝜃𝑠(𝑡)
𝑇3

𝜃𝑖𝑛(𝑡) − 𝜃𝑠(𝑡)
𝑇3

−
𝜃𝑠(𝑡) − 𝜃𝑠𝑜𝑖𝑙(𝑡)

𝑇4𝑎
𝜃𝑠(𝑡) − 𝜃𝑠𝑜𝑖𝑙(𝑡)

𝑇4𝑎
−

𝜃𝑠𝑜𝑖𝑙(𝑡) − 𝜃𝑎𝑚𝑏(𝑡)
𝑇4𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

In the steady state case, the cable temperature 𝜃𝑐 can be expressed as: 
𝜃𝑐 (𝑡) ≈ 𝜃soil(𝑡) +𝑊𝑐𝑇1 + 𝑇soil(𝑊𝑐 +𝑊𝑠)

+
𝑇3(𝜃soil(𝑡) − 𝜃𝑎𝑚𝑏(𝑡))

𝑇soil

(52)

where 𝑊𝑐 (𝑡) represent the conductor loss: 

𝑊𝑐 (𝑡) = 𝑅𝐷𝐶 ⋅ 𝐼(𝑡)2 (53)

At the reference temperature of 20 ◦C, the DC resistance 𝑅DC,20 is 
known. Because the resistance varies with conductor temperature, it 
must be corrected using the aluminum temperature coefficient 𝛼Al. The 
general expression reads 

𝑅DC = 𝑅DC,20 ×
[

1 + 𝛼Al (𝑇𝑐 − 20)
]

. (54)

The above equation are solved by using the 4th Runge–Kutta (RK4) 
method for cable temperature. Transform this equation to solve for 𝛩(𝑡)
in standard form: 
𝑑
𝑑𝑡
𝛩(𝑡) = 𝐴−1𝐵(𝑡) (55)

Let: 
𝑓 (𝑡, 𝛩(𝑡)) = 𝐴−1𝐵(𝑡) (56)
7 
Four slopes 𝑘1, 𝑘2, 𝑘3, 𝑘4 are computed as: 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘1 = 𝛥𝑡 ⋅ 𝑓 (𝑡, 𝛩(𝑡)) = 𝛥𝑡 ⋅ 𝐴−1𝐵(𝑡)

𝑘2 = 𝛥𝑡 ⋅ 𝑓
(

𝑡 + 𝛥𝑡
2
, 𝛩(𝑡) +

𝑘1
2

)

= 𝛥𝑡 ⋅ 𝐴−1𝐵
(

𝑡 + 𝛥𝑡
2

)

𝑘3 = 𝛥𝑡 ⋅ 𝑓
(

𝑡 + 𝛥𝑡
2
, 𝛩(𝑡) +

𝑘2
2

)

= 𝛥𝑡 ⋅ 𝐴−1𝐵
(

𝑡 + 𝛥𝑡
2

)

𝑘4 = 𝛥𝑡 ⋅ 𝑓 (𝑡 + 𝛥𝑡, 𝛩(𝑡) + 𝑘3) = 𝛥𝑡 ⋅ 𝐴−1𝐵(𝑡 + 𝛥𝑡)

(57)

Finally, the conductor temperature is updated as the value of the next 
time step: 

𝛩(𝑡 + 𝛥𝑡) = 𝛩(𝑡) + 1
6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (58)

3. Datasets and parameters setting

3.1. Datasets and feature engineering

The proposed methodology is applied to an actual 914 MW DolWin2 
project in the North Sea, which contains Gode (1&2) wind farm (582 
MW) and Nordsee1 wind farm (332 MW). The illustration of the test 
network is shown in Fig.  8. For simplicity, we model the connection 
between the offshore and onshore converter stations as a single 90 
km ± 320 kV HVDC underground cable circuit. The distance between 
the two poles of the cable is 0.5 m. The cables are installed in ducts at 
1.0 m depth.

The hourly wind speeds and synthetic hourly power generation 
of the Gode (1&2) wind farm comes from the publicly available 
dataset [33]. For the Nordsee1 wind farm, we extract ERA5 data for 
wind farm location from the Copernicus Climate Change Service (C3S) 
Climate Data Store (CDS) [34], and convert the wind speed data into 
synthetic power output using the turbines (Senvion 6M126)’ power 
curves [35]. The combined dataset is divided into training, validation, 
and test sets, with 60% of the data used for training, 10% for validation, 
and the remaining 30% for testing. The pseudocode for the overall 
training and testing process of Attention-BNN-S2S-DCR prediction is 
shown as Algorithm 1 and Algorithm 2, respectively.

3.2. Evaluation metrics

The methodology is evaluated considering wind farm over-planting 
(WFO) scenarios. Four key performance metrics were assessed: root 
mean square error (RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and coefficient of determination (𝑅2), which 
are calculated by: 

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑝𝑖)

2 (59)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑝𝑖| (60)

𝑀𝐴𝑃𝐸 = 1 |

|

|

𝑦𝑖 − 𝑝𝑖 |
|

|

(61)

𝑛
|

𝑦𝑖 |
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Fig. 8. Diagram for the test network.
Algorithm 1 Prediction Process
1: Input: Training dataset (𝑋𝑡𝑟, 𝑌𝑡𝑟), validation dataset (𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙), test 
dataset (𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡)

2: Output: Predictions for test dataset, performance metrics
3: for each training epoch do
4:  Encoder output 𝑂𝑡 = Bi-sLSTM based encoder(𝑋𝑡𝑟)
5:  Initialize decoder input 𝐼𝑡, decoder hidden state 𝑠𝑡 from 
encoder’s final hidden state 𝐻𝑡

6:  for each prediction step do
7:  Compute attention weights 𝑒 from 𝑠𝑡 and 𝑂𝑡
8:  Generate context vector 𝑣𝑡 using 𝑒 and 𝑂𝑡
9:  Decoder output 𝑦𝑡 = Decoder(𝐼𝑡, 𝑣𝑡)
10:  Update 𝐼𝑡 with last step 𝑦𝑡−1
11:  end for
12:  Compute loss and backpropagate
13:  Evaluate model performance on (𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙)
14: end for
15: Perform multiple predictions using (𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡) to generate a 

distribution of outcomes
16: Return: Predictions, evaluation metrics

Algorithm 2 Thermal Risk Estimation
1: Input: Basic wind farm current 𝐼𝐵𝑊 𝐹 (𝑡), wind farm overplanting 
current 𝐼𝑊𝐹𝑂(𝑡), soil parameters

2: Output: Cable temperature 𝑇𝑐𝑎𝑏𝑙𝑒(𝑡), temperature gradient 𝐺𝑐𝑎𝑏𝑙𝑒(𝑡), 
predicted overload probability 𝑝𝑟𝑖𝑠𝑘(𝑡), and realistic overload 
probability 𝑟𝑟𝑖𝑠𝑘(𝑡)

3: for 𝑡 = 0 to 8760 do
4:  Calculate 𝑇𝑐𝑎𝑏𝑙𝑒(𝑡) and 𝐺𝑐𝑎𝑏𝑙𝑒(𝑡)
5:  if 𝑇𝑐𝑎𝑏𝑙𝑒(𝑡) ≥ 70◦𝐶 or 𝐺𝑐𝑎𝑏𝑙𝑒(𝑡) ≥ 20◦𝐶 then
6:  Trigger power curtailment: 𝐼(𝑡) = 𝐼𝐵𝑊 𝐹 (𝑡)
7:  else
8:  𝐼(𝑡) = 𝐼𝑊𝐹𝑂(𝑡)
9:  end if
10:  Calculate 𝑝𝑟𝑖𝑠𝑘(𝑡) and 𝑟𝑟𝑖𝑠𝑘(𝑡)
11: end for
12: Return: 𝑇𝑐𝑎𝑏𝑙𝑒(𝑡), 𝐺𝑐𝑎𝑏𝑙𝑒(𝑡), 𝑝𝑟𝑖𝑠𝑘(𝑡), 𝑟𝑟𝑖𝑠𝑘(𝑡)
8 
𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑝𝑖)

2

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑝𝑖)

2
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in which 𝑦𝑖 and 𝑝𝑖 are the normalized original value and predicted 
value, and n is the total length of the time series. The model’s perfor-
mance in predicting cable temperature exceeding 70 ◦C is evaluated 
using standard classification metrics. These metrics are defined as 
follows: The thermal overload performance of the model is evaluated 
using standard classification metrics. These metrics are defined as 
follows: True Positive (TP):both the real and predicted temperatures 
exceed 70 ◦C. False Positive (FP): the predicted temperature exceeds 
70 ◦C, but the real temperature does not. True Negative (TN):neither 
the real nor predicted temperatures exceed 70 ◦C. False Negative 
(FN):the real temperature exceeds 70 ◦C, but the predicted temperature 
does not.

Accuracy measures the general correctness of the model, including 
positive and negative classifications. It is defined: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(63)

The true positive accuracy (ATP) measures the proportion of true 
positives relative to all predictions (both positive and negative). It is 
calculated as: 
𝐴𝑇𝑃 = 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(64)

The true negative accuracy (ATN) represents the proportion of true 
negatives relative to all predictions: 

𝐴𝑇𝑁 = 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(65)

The false positive rate (FPR) represents the proportion of negative 
instances that are incorrectly classified as positive: 

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(66)

We have introduced the following quantitative indicators to mea-
sure the predictive uncertainty of our model. Specifically, we focus on 
the Coverage and Mean Interval Width (MIW). These two metrics are 
straightforward however, yet informative for interval-based uncertainty 
estimation. Coverage measures the proportion (or probability) of each 
true value within the predicted intervals across all samples. It shows 
how frequently the model’s predicted intervals actually contain the 
ground-truth values. Let 𝑁 be the total number of data points. For the 
𝑖th sample, let Lower  and Upper  be the lower and upper bounds of 
𝑖 𝑖
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Fig. 9. Sensitive analysis of hyperparameters.
the predictive interval, respectively, and let Real𝑖 be the true observed 
value. Then the Coverage is defined as: 

Coverage = 1
𝑁

𝑁
∑

𝑖=1
𝟏
{

Lower𝑖 ≤ Real𝑖 ≤ Upper𝑖
}

, (67)

where 𝟏{⋅} is the indicator function, which takes value 1 if the condition 
inside is satisfied, and 0 otherwise.

MIW quantifies the average width of the predictive intervals. It 
directly measures how ‘‘wide’’ these intervals are on average. Using the 
same notation as above, define: 

MIW = 1
𝑁

𝑁
∑

𝑖=1

(

Upper𝑖 − Lower𝑖
)

. (68)

3.3. Parameters setting and hyperparameter optimization

The 320 kV HVDC offshore cable is used, and the geometry and 
thermal properties of the cable components are presented in Table 
1. This article develops the model of finite differences of the cable 
in MATLAB R2021b and the model of finite elements of the cable in 
COMSOL Multiphysics 5.6. The prediction algorithm was developed 
using PyCharm software in the SURF research cloud server with two 
NVIDIA A10 GPUs, 22 Cores and 176 GB RAM. The code is written 
in Python 3.9, and the framework is PyTorch. Many researchers have 
demonstrated the importance of selecting hyperparameters for deep 
learning models. By adjusting the appropriate hyperparameters, the 
performance of the models can be improved. Furthermore, overfitting 
can be prevented, and the training process can be accelerated. To 
validate the impact of hyperparameters in neural networks on the 
results, this research adopts the same dataset and uses different com-
binations of hyperparameters for wind power prediction. The modified 
hyperparameters include learning rate, hidden state, dropout rate, and 
lookback window while keeping other hyperparameters consistent. The 
results of the hyperparameter tuning are presented in Fig.  9.

(1) Dropout Rate. Adjusting the dropout rate helps to decide be-
tween overfitting and underfitting. Lower dropout (0.05) may fail to 
regularize sufficiently (RMSE = 75.77 MW), while higher dropout 
(0.30) can overly diminish the network’s capacity (RMSE = 84.76 MW). 
An intermediate value (e.g., 0.10 or 0.15) yields smaller RMSE/MAE 
9 
and thus better performance. The best balance in our dataset appears 
at 0.10 with RMSE = 72.18 MW and 𝑅2 = 0.97.

(2) Learning Rate. Choosing an appropriate learning rate is crucial 
for stable and efficient training. Extremely small rates (e.g., 0.0001) 
converge too slowly, often resulting in higher final errors (RMSE = 
95.03 MW), while excessively large rates (0.004 or 0.006) can lead 
to unstable updates or divergence (RMSE = 115.26/158.74 MW). A 
moderate rate (e.g., 0.002) achieves the lowest RMSE = 72.18 MW and 
highest 𝑅2 = 0.97.

(3) Hidden State. The number of hidden units dictates the model’s 
representational power. Fewer units (e.g., 8 or 16) may underfit and 
yield high RMSE (98.46/88.37 MW), whereas excessive units (e.g., 128
or 256) can risk overfitting or increased complexity (RMSE around 
71.12–73.90 MW). A moderately sized hidden state (64) produced the 
best trade-off (RMSE = 72.18 MW, 𝑅2 = 0.97).

(4) Lookback Window. This parameter controls how many past time 
steps are fed into the model. A short window (e.g., 6 or 12) may 
miss essential seasonal or diurnal patterns (RMSE > 85 MW), whereas 
an overly long window (e.g., 96) might introduce noise or redundant 
information (RMSE = 76.11 MW). Our experiments show a sweet spot 
at 48 time steps, resulting in RMSE = 71.18 MW and 𝑅2 = 0.97.

Generally, these results underscore the importance of hyperparam-
eter tuning in neural network-based forecasting. Each hyperparameter 
(dropout rate, learning rate, hidden state, and lookback window) exerts 
a tangible impact on predictive accuracy (RMSE, MAE, MAPE) and 
model fit (𝑅2). Thus, the hyperparameters are determined according 
to the improved whale optimization algorithm, the IWOA optimization 
algorithm. The core idea of the algorithm is to adjust the search paths 
of solutions to find the global optimum in the search space. This 
paper introduces adaptive parameters and multiple search strategies 
to improve global exploration and local exploitation capabilities. The 
steps of the IWOA are summarized as follows:

4. Results and analysis

4.1. TEE model validation

To verify the accuracy of the Thermal–Electrical Equivalent (TEE) 
model, we first note that its core principle is to approximate the cable’s 



S. Yan et al. International Journal of Electrical Power and Energy Systems 170 (2025) 110802 
Table 1
Cable parameters [36–40].
 Structures Diameter [mm] Thermal conductivity [W/m K] Heat capacity [J/kg K] Density [kg/m3] 
 Copper conductor 50 450 393 8700  
 Conductor screen 55.1 0.23 2603 922  
 XLPE insulation 107.1 0.286 2603 922  
 Insulation screen 109.5 0.286 2603 922  
 Water-blocking tape 121.5 0.167 2182 1100  
 Aluminum sheath 138.5 236 900 2700  
 PE sheath 148 0.286 2532 948  
 Soil – 1.0 855 1500  
Algorithm 3 IWOA for Hyperparameter Optimization
1: Input: Training dataset (𝑋𝑡𝑟, 𝑌𝑡𝑟), validation dataset (𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙), test 
dataset (𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡)

2: Output: Optimized hyperparameters
3: Initialize population 𝑃  with random hyperparameters
4: Evaluate fitness for each individual in 𝑃
5: Select the leader 𝐿 from 𝑃  with the best fitness
6: while stopping criteria not met do
7:  for each individual 𝑖 in 𝑃  do
8:  Generate a random probability 𝑝
9:  if 𝑝 < 0.5 then
10:  Update 𝑖 using humpback whale’s approach

behavior towards 𝐿
11:  else
12:  Update 𝑖 using spiral path mimicking whale’s

hunting behavior 
13:  end if
14:  Evaluate fitness of the updated position of 𝑖
15:  end for
16:  Update the leader 𝐿 with the best fitness from

the updated population
17:  Perform roulette wheel selection to select parents
18:  Generate offspring through crossover and mutation
19:  Replace the worst individuals with the new offspring
20: end while
21: Return the optimized hyperparameters from the final 𝐿

heat transfer paths using a network of thermal resistances and capac-
itances, thereby reducing the computational complexity significantly. 
In this framework, complex 3D or 2D domains are often reduced to 
a simpler thermal circuit where material properties such as thermal 
conductivity, density, and specific heat are treated as constants over 
the temperature range of interest. The external environment is repre-
sented by equivalent boundary conditions, which can be modeled as 
isothermal or convective boundaries, depending on the specific setup. 
Heat capacity terms are included to capture the transient temperature 
rise in both the conductor and its surroundings. Consequently, the 
TEE model allows for fast calculation of conductor temperature under 
various loading scenarios, making it well-suited for real-time or online 
monitoring applications.

A two-dimensional finite element (FEM) model was then built in 
COMSOL Multiphysics to validate the TEE predictions. Fig.  10 illus-
trates the 2D temperature distribution from the FEM simulation, where 
the cable’s cross-section is explicitly defined with the conductor, insula-
tion, outer jacket, and surrounding medium. The material parameters 
(thermal conductivity, density, and specific heat) match those of the 
TEE model, ensuring comparable conditions. Sufficient mesh refine-
ment was performed to consider steep temperature gradients near the 
conductor region, and mesh independence tests confirmed that further 
refinement did not noticeably alter the temperature field. For a steady-
state current of 1470A, the conductor temperature reached 70 ◦C, as 
shown by the contour plot. To replicate the same conditions in the TEE 
model, a uniform volumetric heat generation (𝑄 = 𝐼2𝑅) was imposed 
10 
in the conductor region, and the outer boundaries were defined either 
as fixed or convective/radiative conditions identical to those assumed 
by the TEE approach.

Fig.  11 shows the comparison of the results for which TEE model 
predictions are plotted against FEM solutions for transient and steady-
state conditions. The agreement is notable: for the final steady-state 
condition, the difference in conductor temperature remains within 
±1 ◦C, while throughout the transient heating phase, the maximum de-
viation also stays within the same range. This close match underscores 
the TEE model’s capability to effectively capture heat conduction and 
thermal inertia effects that govern the temperature rise. Furthermore, 
the TEE method runs in approximately 3 s, making it about 600 times 
faster than the FEM simulation under the same computational environ-
ment. Such a significant reduction in computation time is critical for 
practical cable monitoring scenarios or real-time temperature regula-
tion, where an online tool must rapidly process and deliver accurate 
temperature estimates.

Despite these advantages, a few simplifying assumptions in the TEE 
framework should be noted. Thermal properties are assumed constant, 
so changes in soil moisture or complex cable-layer compositions can 
affect accuracy if not updated accordingly. Furthermore, the TEE ap-
proach mainly relies on a one-dimensional or lumped approximation of 
radial heat conduction, which may not capture lateral or asymmetric 
effects in more intricate installations. Real-world conditions such as 
wind, rainfall, or intermittent solar heating are continuously mod-
eled as fixed ambient or convective boundaries, introducing further 
approximation if these external factors vary significantly over time. 
Nevertheless, for many engineering applications requiring near real-
time or online temperature estimation, the TEE model offers a good 
balance between computational efficiency and accuracy, as evidenced 
by the close alignment with the COMSOL results.

4.2. Prediction results and evaluation

A comparative study is conducted to analyze the wind-power fore-
cast performance of five models—SVM, RNN, GRU, LSTM, and the 
proposed Attention-BNN-S2S over four forecast horizons: 6 h, 12 h, 
24 h, and 48 h. In Fig.  12, the forecast horizon (6–48 h ahead) refers 
to how far in the future each curve predicts, and the horizontal axis 
shows a 250-h display window (𝑡 = 8500–8750h) that is excerpted 
from the 8760 h test set purely for visual clarity. The same perfor-
mance trend holds across the entire test span. In the short term (6 h), 
all models, including the conventional SVM, RNN, GRU, and LSTM, 
achieve comparable accuracy. The forecast horizon extends to 12 h 
and beyond, however, these baselines fail to capture the rapid peaks 
and troughs of wind-power output, and their root-mean-square error 
rises sharply. By contrast, Attention-BNN-S2S remains closely aligned 
with the measured data even for 24 h and 48 h. This robustness is 
attributed to its bi-sLSTM encoder with an attention mechanism, which 
extracts and preserves salient temporal features, and to its unidirec-
tional sLSTM decoder, which excels at generating coherent long-range 
trajectories. Moreover, the 95% predictive interval of Attention-BNN-
S2S is consistently narrow, highlighting its accuracy and well-calibrated 
uncertainty, especially on long horizons where conventional models 
struggle.
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Fig. 10. Conductor temperature results of the COMSOL model.
Fig. 11. Comparison of conductor temperature between the TEE and COMSOL model 
for transient and steady-state situations.

Converting the predicted wind power into current and then embed-
ding it into the thermal model of the cable gives the predicted cable 
temperature as in Fig.  13. After considering the power curtailment, the 
improved model predicts both the conductor temperature and the tem-
perature gradient to be more in line with the actual results. It should be 
noted that when t = 8500–8550, there is a lot of variation in the load 
current, the cable temperature, and the temperature gradient. This is 
due to the high temperature of the cable in this interval, resulting in 
a power cut. The 1-hour load current curtailment period considered in 
this paper is conservative, thus, the load current is curtailed hourly and 
varies widely.
11 
In addition, a comprehensive evaluation was conducted on these 
five distinct predictive models. Fig.  14 shows the comparison of four 
error metrics for different models in wind power generation prediction. 
Attention-BNN-S2S consistently outperformed other models in all four 
key performance metrics, indicating a superior capability for short- and 
long-term predictions.

Table  2 presents a comprehensive view of predictive uncertainty 
for three targets: wind power generation (𝑃𝑤

)

, conductor tempera-
ture (𝑇cable

)

, and temperature gradient (∇𝑇 ) across four prediction 
horizons. A higher coverage (close to 1.0) indicates that most real 
values are within the predicted intervals, providing a reliable capture 
of uncertainty. Notably, shorter horizons (6 h, 12 h) often have higher 
coverage (e.g., 0.88 for 𝑃𝑤 and 0.895 for 𝑇cable), while longer horizons 
may drop in coverage as forecast uncertainty increases (e.g., 24 h and 
48 h for 𝑃𝑤). A narrow interval width with high coverage typically 
reflects strong confidence in the model’s predictions. We see that 𝑇cable
has relatively small widths (ranging from 6.92 to 11.538) compared to 
those of 𝑃𝑤, which can go as high as 317.326 at 48 h. This indicates that 
wind power forecasting carries more inherent variability (larger inter-
vals) over extended horizons. Meanwhile, ∇𝑇  (temperature gradient) 
exhibits the smallest absolute MIWs, though it also shows an increase 
in interval width for longer horizons (from 1.21 at 6 h to 3.415 at 48 h).

The results of the performance evaluation of different models for 
conductor temperature and temperature gradient are shown in Tables 
3 and 4, respectively. The proposed model achieves the lowest RMSE, 
indicating the smallest average prediction error, which remains impres-
sively low even at 48 h (1.79 compared to the next best, GRU at 3.18). 
In the context of temperature-gradient predictions, the proposed model 
again demonstrates its robustness. It consistently shows the lowest 
RMSE and MAE across all forecast horizons, outshining other models.

Fig.  15 demonstrates the scatterplot of the predicted- and actual 
conductor temperature for all five comparison models. R2 measures the 
number of variations in the data, a higher value close to 1 indicates the 
perfect fit. It is observed that the best-performing forecasting model 
based on R2 values is a modified model.

4.3. Comparison of computational efficiency

To assess the computational overhead of our proposed method, we 
compare the training times of all benchmark and ablation models at 
various forecast horizons (6 h, 12 h, 24 h, 48 h), as detailed in Table 
5. The results indicate that although the proposed model achieves the 
highest accuracy, it also requires the longest training time, ranging 
from 49 m 42 s to 56 m 26 s. In contrast, simpler models such as 
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Fig. 12. Probabilistic results for wind power prediction on different predict horizons. (a) 6 h, (b) 12 h, (c) 24 h, (d) 48 h.
Table 2
Predictive interval uncertainty quantification.
 Target Coverage Mean interval width
 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h  
 𝑃𝑤 0.88 0.86 0.74 0.824 230.69 255.84 282.72 317.326 
 𝑇𝑐𝑎𝑏𝑙𝑒 0.869 0.895 0.904 0.968 6.92 8.14 9.49 11.538  
 ∇𝑇 0.75 0.78 0.791 0.918 1.21 1.51 1.939 3.415  
Table 3
Conductor temperature predict performance evaluation.
 Models RMSE MAE MAPE R2

 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 
 SVM [12–14] 3.84 6.63 10.60 14.11 2.52 4.35 7.43 10.54 0.07 0.13 0.24 0.37 0.94 0.81 0.42 0.37 
 RNN 3.64 5.90 5.24 5.54 2.44 4.15 3.67 3.86 0.07 0.13 0.11 0.12 0.94 0.82 0.87 0.87 
 GRU 1.67 1.96 2.37 3.18 0.94 1.12 1.32 1.88 0.02 0.03 0.03 0.05 0.99 0.99 0.98 0.96 
 LSTM 2.10 2.06 3.25 3.15 1.06 1.16 1.64 1.85 0.03 0.03 0.05 0.05 0.98 0.98 0.96 0.96 
 BiLSTM 1.98 2.00 3.10 3.05 1.04 1.12 1.55 1.83 0.02 0.03 0.04 0.05 0.98 0.98 0.96 0.96 
 BisLSTM 1.92 1.95 3.05 3.00 1.02 1.08 1.48 1.80 0.02 0.02 0.04 0.05 0.98 0.98 0.96 0.96 
 BisLSTM(S2S) 1.65 1.79 2.65 2.80 0.92 1.00 1.42 1.60 0.02 0.03 0.04 0.04 0.99 0.99 0.97 0.97 
 Attention-BisLSTM(S2S) 1.15 1.40 1.90 2.25 0.65 0.85 1.10 1.40 0.01 0.02 0.03 0.03 0.99 0.99 0.98 0.98 
 Proposed 0.74 0.96 1.35 1.79 0.42 0.57 0.77 1.05 0.01 0.02 0.02 0.03 0.99 0.99 0.99 0.99 
Table 4
Temperature gradient predict performance evaluation.
 Models RMSE MAE MAPE R2

 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 
 SVM [12–14] 2.33 3.80 5.57 7.10 1.43 2.37 3.78 5.22 0.43 0.86 1.63 3.33 0.89 0.70 0.18 0.10 
 RNN 2.11 3.11 2.81 3.00 1.33 2.12 1.90 2.01 0.35 0.66 0.62 0.86 0.90 0.74 0.81 0.80 
 GRU 1.01 1.18 1.39 1.83 0.52 0.62 0.72 1.00 0.15 0.17 0.21 0.32 0.98 0.98 0.97 0.94 
 LSTM 1.19 1.17 1.81 1.81 0.55 0.62 0.88 0.99 0.14 0.19 0.26 0.32 0.98 0.98 0.94 0.94 
 BiLSTM 1.15 1.14 1.75 1.76 0.54 0.59 0.84 0.93 0.13 0.18 0.24 0.31 0.98 0.98 0.95 0.95 
 BisLSTM 1.08 1.10 1.68 1.72 0.53 0.58 0.80 0.92 0.12 0.17 0.23 0.30 0.98 0.98 0.95 0.95 
 BisLSTM(S2S) 0.95 1.00 1.45 1.57 0.47 0.54 0.76 0.86 0.10 0.14 0.20 0.27 0.99 0.99 0.96 0.95 
 Attention-BisLSTM(S2S) 0.79 0.88 1.25 1.36 0.42 0.50 0.68 0.81 0.08 0.12 0.19 0.25 0.99 0.99 0.97 0.96 
 Proposed 0.47 0.60 0.84 1.10 0.24 0.33 0.44 0.60 0.06 0.08 0.12 0.16 0.99 0.99 0.98 0.98 
12 
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Fig. 13. Load Current, cable temperature, and temperature gradient prediction results under different models in the test data comprising 300 h.
Fig. 14. Comparison of four error metrics for different models.
SVM can be trained in as little as 10–14 min, and RNN requires around 
15–20 min. This additional time consumption mainly stems from the 
integrated multi-stage feature extraction and more complex network 
components, which substantially improve predictive performance at 
the cost of increased computational effort. These training durations 
13 
remain practical compared to the relatively large forecast horizons 
(6–48 h), ensuring that the approach remains feasible for real-world 
wind power applications. Future work will focus on optimizing the 
proposed architecture to reduce training time while maintaining high 
predictive accuracy.
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Fig. 15. 48 h ahead Scatterplot of forecast versus actual cable temperature for different models.
Table 5
Training time comparison.
 Models Training time
 6 h 12 h 24 h 48 h  
 SVM 14 m 21 s 12 m 58 s 11 m 47 s 10 m 33 s 
 RNN 20 m 08 s 17 m 45 s 16 m 44 s 15 m 51 s 
 GRU 24 m 01 s 21 m 35 s 22 m 10 s 20 m 20 s 
 LSTM 23 m 35 s 21 m 17 s 21 m 00 s 19 m 37 s 
 BiLSTM 28 m 05 s 26 m 14 s 25 m 36 s 24 m 55 s 
 BisLSTM 31 m 43 s 29 m 12 s 28 m 08 s 27 m 16 s 
 BisLSTM(S2S) 35 m 21 s 33 m 02 s 32 m 10 s 30 m 49 s 
 Attention-BisLSTM(S2S) 41 m 12 s 38 m 55 s 37 m 33 s 36 m 21 s 
 Proposed 49 m 42 s 50 m 52 s 51 m 34 s 56 m 26 s 

We observe a clear trade-off between accuracy and computational 
overhead: our proposed method significantly reduces errors (in RMSE, 
MAE) compared to its simpler counterparts. Given that an exact wind 
power forecast can substantially aid operational decision-making, we 
consider this extra computational investment justified. In practical 
settings where shorter training cycles are imperative, one could employ 
techniques such as model pruning, early stopping, or lighter architec-
tures. However, even with the more demanding nature, the proposed 
model remains feasible for real-world deployment because it trains 
well within time frames typically allocated for operational wind power 
forecasts. Hence, it can be concluded that the proposed framework 
strikes a worthwhile balance: higher computational cost in exchange 
for significantly improved predictive performance.

4.4. Thermal overload risk estimation test

Finally, the thermal overload risk (TOR) estimate of different mod-
els is evaluated and summarized in Table  6. The models tested include 
14 
SVM, RNN, GRU, LSTM, and the proposed method, with prediction 
horizons ranging from 6 to 48 h.

The analysis of the results reveals that, as the prediction horizon 
increases, a slight decrease in accuracy is observed across all mod-
els. However, the proposed model consistently outperforms traditional 
methods (SVM, RNN, GRU, and LSTM) in terms of accuracy and FPR. 
For the 6-hour prediction horizon, the proposed model achieves an 
accuracy of 0.99, outperforming the GRU (0.98) and the LSTM (0.97). 
Furthermore, the false positive rate (FPR) of the proposed model is the 
lowest across all horizons, reaching 0.0046 for the 6-hour prediction 
horizon, which is substantially better than the 0.031 of LSTM and the 
0.020 of GRU for the same horizon. This suggests that the proposed 
method is particularly effective in reducing false alarms in short-term 
risk prediction.

As the horizon extends to 48 h, the performance of all models 
slightly degrades, as expected due to the increasing uncertainty in long-
term predictions. However, the proposed model maintains superior 
performance with an accuracy of 0.98 and an FPR of 0.012, compared 
to the other models, such as LSTM, which show a decline to 0.968 
accuracy and 0.04 FPR. The ATP values, which represent the average 
ability of the models to identify the overload events correctly, also 
indicate the robustness of the proposed method. Across all horizons, 
the proposed model achieves consistently high ATP values of around 
0.19, comparable to other deep learning models like LSTM and GRU, 
which also achieve ATP values of around 0.19 to 0.20. However, 
the SVM model shows significantly lower ATP values, particularly 
at shorter horizons, indicating its weaker performance in capturing 
overload conditions accurately.

In conclusion, the proposed model demonstrates significant im-
provements in both accuracy and false positive rates across all time 
horizons compared to traditional machine learning models (SVM) and 
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Table 6
Thermal overload risk estimation of different models.
 Models Horizon Acc. ATP ATN FPR  
 6 h 0.92 0.10 0.82 0.008 
 SVM [12–14] 12 h 0.91 0.11 0.81 0.009 
 24 h 0.90 0.12 0.80 0.011 
 48 h 0.89 0.13 0.79 0.015 
 6 h 0.95 0.14 0.81 0.006 
 RNN 12 h 0.91 0.086 0.82 0.007 
 24 h 0.91 0.096 0.81 0.010 
 48 h 0.93 0.13 0.80 0.020 
 6 h 0.98 0.20 0.79 0.020 
 GRU 12 h 0.978 0.195 0.78 0.020 
 24 h 0.98 0.20 0.78 0.030 
 48 h 0.97 0.19 0.77 0.030 
 6 h 0.97 0.020 0.77 0.031 
 LSTM 12 h 0.978 0.198 0.78 0.027 
 24 h 0.97 0.19 0.78 0.030 
 48 h 0.968 0.20 0.77 0.040 
 6 h 0.975 0.021 0.78 0.028 
 BiLSTM 12 h 0.980 0.19 0.79 0.026 
 24 h 0.975 0.19 0.78 0.029 
 48 h 0.970 0.20 0.78 0.035 
 6 h 0.978 0.022 0.79 0.026 
 BisLSTM 12 h 0.982 0.193 0.79 0.024 
 24 h 0.978 0.192 0.79 0.028 
 48 h 0.972 0.20 0.79 0.033 
 6 h 0.982 0.023 0.79 0.024 
 BisLSTM(S2S) 12 h 0.985 0.195 0.80 0.022 
 24 h 0.982 0.195 0.79 0.026 
 48 h 0.975 0.20 0.79 0.030 
 6 h 0.988 0.024 0.80 0.015 
 Attention-BisLSTM(S2S) 12 h 0.989 0.198 0.80 0.012 
 24 h 0.985 0.196 0.80 0.018 
 48 h 0.980 0.20 0.80 0.025 
 6 h 0.99 0.19 0.80 0.005 
 Proposed 12 h 0.99 0.19 0.80 0.006 
 24 h 0.98 0.19 0.79 0.010 
 48 h 0.98 0.18 0.80 0.012 

advanced deep learning models (RNN, GRU, LSTM). These results val-
idate the effectiveness of the proposed method for estimating thermal 
overload risk, particularly in scenarios that require high precision in 
both short- and long-term predictions.

4.5. DCR economic beneficial analysis considering temperature and temper-
ature gradient limitation

This section deals with the necessity of the introduced temperature 
gradient limitation and elaborates on the economic benefits and aging 
implications of two DTR power curtailment strategies: one considering 
only the temperature limitation (DTR1), and the other considering both 
temperature and temperature gradient limitations (DTR2). Firstly, the 
‘electric field distortion rate’ 𝜅 is defined: 

𝜅(𝑟, 𝑡) =
𝐸max(𝑟, 𝑡) − 𝐸min(𝑟)

𝐸max(𝑟)
. (69)

In the absence of high temperature or conductivity gradients, 𝜅 re-
mains close to zero; large positive or negative swings indicate a strong 
distortion or even a local polarity reversal of the DC field.

Comparing the blue (DTR1) and green (DTR2) curves in Fig.  16 
shows that including the temperature gradient constraint cuts the peak-
to-peak spread of 𝜅 by roughly a factor of two, thus more than halving 
the range of field distortion. DTR2 also reduces the incidence of nega-
tive excursions (which may correspond to localized polarity reversal). 
This improvement arises directly from suppressing large temperature 
gradients over the cable’s cross-section, which in return limits large 
local changes in conductivity 𝜎(𝑟, 𝑡) and prevents sharp electric field 
intensification.
15 
Fig. 16. Electric field distortion rate variation.

Fig. 17. Economic beneficial analysis of different overplanting rates.

From a modeling standpoint, the key parameter is the field inversion 
coefficient 𝛿 in Eqs.  (12) and (13), which depends on both the tempera-
ture drop 𝛥𝑇𝑖 and the mean-field 𝐸𝑚. By limiting 𝛥𝑇𝑖 in real time, DTR2 
effectively constrains the growth of 𝛿 in localized regions, by mitigating 
the ‘‘field inversion’’ phenomenon that triggers very high local electric 
fields. Furthermore, the exponential dependence of 𝜎 on temperature 
[see Eq. (14)] is less pronounced under the smoother thermal distri-
butions enforced by DTR2. The uniform conductivity profile results in 
fewer electric field spikes and better insulation reliability bolstering 
overall system stability, prolonging cable lifespan, and reducing the 
likelihood of thermally driven polarity reversals in the DC field.

Then, the economic benefits were analyzed, as shown in Fig.  17. 
As illustrated in Fig.  17, both DTR1 and DTR2 yield the same eco-
nomic benefits (approximately 180–230Me) when the overplanting 
rate is below 1.2 p.u., as no power curtailment thresholds are triggered. 
In the intermediate range of 1.2–1.6 p.u., the extra thermal-gradient 
constraints in DTR2 lead to minor power curtailments, reducing eco-
nomic returns compared to DTR1 (e.g., at 1.5 p.u. the DTR2 revenue 
is about 3Me lower). However, when the overplanting rate exceeds 
1.6 p.u., the benefits of mitigating extreme temperature gradients and 
consequent insulation aging begin to outweigh these curtailment losses. 
As a result, at 2.0 p.u. DTR2 yields approximately 2Me higher rev-
enue than DTR1, reflecting improved long-term reliability and reduced 
electric-field distortion.

From a practical engineering perspective, selecting an optimal over-
planting rate requires balancing short-term gains against potential ther-
mal stress on the cable. For moderate overplanting (below 1.6 p.u.), 
DTR1 offers slightly higher revenue without additional complexity. 
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However, for higher rates, adopting DTR2 provides more robust tem-
perature distribution control, and reduces the risk of insulation degra-
dation and outage costs. Generally, operators should estimate the life-
time impact of thermal gradients particularly at the higher end of over-
planting rates. Regular monitoring of conductor temperature and insu-
lation integrity is needed for the full leverage of benefits of advanced 
DTR strategies.

4.6. Discussion

4.6.1. Advantage of the model
While conventional recurrent architectures (e.g., GRU, standard 

LSTM) are widely used for time series forecasting, they face limitations 
when dealing with highly volatile and long-range dependent signals, 
as commonly observed in offshore wind farms. In particular, GRUs 
and basic LSTMs struggle to capture intricate temporal dependencies 
over extended horizons, leading to suboptimal multi-step predictions. 
Our proposed Attention-BNN-S2S framework, incorporating the xLSTM 
design, addresses these shortcomings through the following features:

(1) Enhanced Gating via xLSTM. Unlike standard LSTM cells that 
rely on static sigmoid or tanh gates, the xLSTM module introduces 
exponential or softmax-based gating and scalar states. This refinement 
promotes robust control over long-range information flow, mitigat-
ing vanishing or exploding gradients. As a result, the model takes 
into account the nuanced diurnal and seasonal patterns characterizing 
offshore wind.

(2) Seq2Seq Architecture with Additive Attention. Traditional GRU/
LSTM models often rely on a fixed-length internal representation, 
which can cause information loss over long sequences. By contrast, 
the Sequence-to-Sequence (S2S) framework encodes variable-length 
input into a context vector, and the additive attention mechanism 
selectively ‘‘highlights’’ the most relevant historical steps for each 
decoding moment. This targeted focus is especially crucial for offshore 
wind datasets, which can exhibit rapid and nonlinear fluctuations under 
changing weather fronts.

(3) Bayesian Inference via MC Dropout. One key advantage over 
deterministic GRU/LSTM models is our approximate Bayesian compo-
nent, which leverages Monte Carlo Dropout. Beyond providing a single 
mean prediction, the model quantifies epistemic uncertainty through 
repeated stochastic forward passes. This is invaluable in offshore set-
tings, where prediction confidence can be as important as the point 
forecast.

(4) Scalability and Ease of Integration. Unlike more complex
Bayesian methods (full Markov chain Monte Carlo), MC Dropout re-
quires minimal changes to training procedures, making it practical 
to deploy. Combined with additive attention and sLSTM cells, the 
overall structure remains modular, simplifying adaptation to large-scale 
offshore wind datasets.

4.6.2. Limitation of the model
While the proposed Attention-BNN-S2S-DCR model provides a sys-

tematic framework for predicting wind power generation, determining 
cable ratings, and estimating thermal risk, it also has certain limitations 
that must be acknowledged.

(1) The accuracy of the wind power generation predictions is highly 
reliant on the availability of high-quality historical data for features 
such as wind speed components, wind direction, and sea surface rough-
ness. For scenarios where these measurements are noisy, sparse, or 
unavailable, the model’s performance may significantly deteriorate.

(2) Power curtailment is triggered when the predicted conductor 
temperature or temperature gradient exceeds predefined thresholds. 
Real-world operation might involve additional constraints, for instance, 
market demands, contractual obligations, or dynamic ramp-rate limits 
that this simplified curtailment strategy does not address.

(3) The thermoelectric equivalent model that is used for cable rating 
and temperature estimation simplifies real-world thermal dynamics 
16 
such as uneven soil layers and transient ambient conditions. In reality, 
these factors can vary over time and space, potentially causing dis-
crepancies between the predicted and actual conductor temperatures. 
By design, the Attention-BNN-S2S framework employs MC Dropout to 
approximate Bayesian inference. While this approach quantifies uncer-
tainty, it requires multiple stochastic forward passes during inference, 
which can increase computational costs—particularly for large-scale 
deployments or systems demanding real-time responses.

4.6.3. Potential future applications for other renewable energy systems
The proposed framework lays a foundation for dynamic cable rat-

ing in offshore wind farms by proactively predicting power genera-
tion, estimating thermal loads, and enabling timely power curtailment 
when thermal risks are high. Its underlying principles, particularly the 
sequence-to-sequence structure with the probabilistic inference layer 
can be adapted for other renewable energy domains:

(1) Solar power integration: The sequence-to-sequence approach 
could be extended to forecast solar irradiation and power output in 
photovoltaic (PV) systems. Just like wind power forecast, solar power 
forecasts will enable dynamic cable rating and proactive risk mitiga-
tion, especially in regions where overcurrent or conductor overheating 
may be a concern.

(2) Hybrid renewable grids: In multi-source grids combining wind, 
solar, and other renewables, an enhanced version of this model could 
simultaneously learn from multiple environmental variables such as 
cloud cover, humidity, and wind conditions to produce a comprehen-
sive load forecast. The TEE model would then incorporate varying 
load profiles from these sources to better estimate thermal risks and 
coordinate power curtailment across different generation assets.

(3) Battery storage and demand response: Future work could explore 
how to integrate energy storage systems or demand response strategies 
into the cable rating decision loop. By accurate generation and load pre-
diction, operators can schedule charging/discharging or load-shifting 
measures to keep conductor temperatures within secure limits.

5. Conclusion

This paper proposed a novel algorithm: Attention-BNN-S2S-DCR 
model to predict DCR of HVDC cables. The analysis and contribution 
of this paper draw the following conclusions:

(1) The Attention-BNN-S2S model utilizes an encoder–decoder struc-
ture with a Bi-sLSTM network. This model incorporates BNN to produce 
probabilistic forecasts and an additive attention mechanism to capture 
long-term dependencies. The superiority of the proposed model is es-
tablished through comparative analyses with various machine learning 
techniques.

(2) A computational model of cable temperature is developed based 
on the TEE method. Then, the accuracy of the TEE model was validated 
by applying the steady-state and transient conditions of the COMSOL 
model.

(3) Finally, this paper proposes a novel method for estimating 
the thermal overload risk for HVDC cables, which considers not only 
the limits of the conductor temperature but also the limits of the 
temperature gradient. Simulation results using real wind profiles and 
varying overplanting rates (from 1.2 p.u. to 2.0 p.u.) show that stricter 
controls of the temperature gradient, initially cause slight revenue 
decreases due to curtailments. However, for higher overplanting rates 
(above 1.6 p.u.), the long-term benefits, such as mitigating insulation 
degradation and reducing outage risk, ultimately provide improved 
reliability and higher net income compared with strategies without 
gradient constraints.
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