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Abstract: Isothermal ageing of Al–Mg–Si alloys, stored at room temperature for more than 5 months,
is associated with an unexpected significant increase in the overall electrical resistivity. This
unexpected anomalous increase is not observed in alloys with shorter storage (natural ageing) times.
This phenomenon is explained with a scenario, based on the evolution of the size distribution
of Guinier–Preston (GP) zones during natural ageing and during subsequent artificial ageing.
The proposed scenario can explain the contribution of natural ageing atomic clusters to this anomalous
increase in the electrical resistivity. A physically based combined precipitation–electrical resistivity
model, with the former being based on simultaneous nucleation-growth-coarsening reactions and
the latter based on the Bragg scattering of electrons from atomic clusters, has been used to explain
the electrical resistivity evolution. It is shown that the proposed model is capable of reproducing the
experimental data in both short natural ageing (less than 5 months) and long natural ageing (more
than 5 months) regimes.

Keywords: natural ageing; electrical resistivity; Al–Mg–Si alloys; modeling

1. Introduction

The heat treatable Al–Mg–Si alloys are widely used in structural, automotive, and aerospace
industries, since they show an optimum combination of weldability, formability, corrosion resistance,
and mechanical properties [1]. The mechanical properties of Al–Mg–Si alloys are very sensitive to
the precipitation hardening and precipitation sequence. The precipitation sequence in these alloys is
generally believed [2–4] to be:

SSS→Atomic Clusters→(GP-I zones)→GP (GP-II) zones→β′ ′→β′→β,

where SSS is the supersaturated solid solution, GP-I zones are very tiny (less than 2 nm [5]) spherical
co-clusters of both Mg and Si atoms with disordered crystal structures and uncertain compositions [6].
Guinier–Preston (GP)-II zones, on the other hand, are atomic clusters with a structure similar to β′ ′

but with, to some extent, different positions for Mg atoms along the <100>Al direction [5]. These
precipitates have needle-shaped morphologies with the composition of Mg2+xSi2+yAl7-x-y [7]. β′ ′,
the most influential precipitate when it comes to the strengthening, is also a needle-shaped precipitate,
elongated in the <100>Al direction with a monoclinic structure [3]. β′ and β (Mg2Si) are precipitates,
which are formed after peak-age, when the coarsening reaction is prevailing. The former is a metastable
species and the latter is a stable one [6]. The main point of controversy about the precipitation sequence
in the literature is related to the formation and transformation of GP-I to GP-II zones. For a long time,
it was conventionally believed that this transformation is successive [8]. Yet, recent theories [9–11]
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show that the formations of GP-I and/or GP-II zones are competitive and parallel. Saga et al. [10]
showed that temperatures below 67 ◦C are more favorable for precipitation of GP-I while above
67 ◦C GP-II precipitates are more likely to form. In real industrial production routes, sometimes it is
practical to perform peak-ageing (T6) treatment on Al–Mg–Si samples immediately after the solution
treatment. In many factories, the samples are commonly stored at room temperature a couple of hours
up to several months. It is also a common practice to buy profiles after a few months of storage and
transportation and do an immediate artificial ageing (without any extra solutionizing in between).
Natural ageing obviously results in the formation of very small GP-I zones. The effect of these GP-I
zones on the hardness and formability evolution of Al–Mg–Si alloys during subsequent isothermal
ageing or during paint bake-heat treatment has been comprehensively investigated [12–15], while
the influence of these early-stage precipitates on the electrical resistivity evolution in these alloys has
rarely been studied. In the present investigation, the effects of initial GP-I zones, precipitated during
natural ageing, on the subsequent precipitation behavior and on the evolution of electrical resistivity
was studied using electrical resistivity and hardness measurements. A modeling approach was also
used to predict the evolution of electrical resistivity in these alloys.

2. Modeling Approach

2.1. Multi-Component Model for the Formation/Dissolution of GP Zones

The MatCalc software [16–19] was used to calculate the number density and size of GP zones,
formed during natural ageing. MatCalc, a modeling package developed at the University of Vienna in
Austria, has the ability to simulate precipitation in different domains, meaning that different precipitate
phases can be defined in a matrix, each of which having its own interfacial energy, preferred nucleation
sites, and nucleus composition. In this case, only GP zone was of interest. This software is based on
the finite difference method (FDM) in which an array of size classes is defined and assigned to each
precipitate type. Each precipitate size class consists of a number of precipitates of the same radius.
The total number of precipitates in each size class changes during ageing due to nucleation, growth,
coarsening, and dissolution. In every time step, and for each precipitate phase, the nucleation rate
is evaluated, and newly formed precipitates are added to the relevant size class. In the meantime,
the growth/dissolution kinetics and the change in composition/numbers of precipitates in all existing
size classes are evaluated. In aged Al–Mg–Si alloys, the system is a matrix in which precipitates of
various chemical compositions, sizes, and crystallographic structures are in contact with the matrix.
Assume that there are S alloying elements in the system and Ni (i = 1, . . . ,S) is the molar concentration
of alloying element i. There are m spherical precipitates in the system, each of which having a different
radius rk (k = 1, . . . ,m). In such a system with S components and m precipitates, the total Gibbs energy
is expressed as [19]:

Gtotal =
S

∑
i=1

Niµi +
4
3

π
m

∑
k=1

r3
k(λk +

S

∑
i=1

ckiµki) + 4π
m

∑
k=1

r2
kγk, (1)

where cki is the concentration of the alloying element i in the precipitate k, µi is the chemical potential
of the alloying element in the matrix, µki is the chemical potential of the alloying element in the
precipitate, λk is the strain energy, and γk is the precipitate/matrix interface energy (it was chosen to
be 0.1 J/m2 [20]). In the abovementioned total Gibbs free energy equation, the first term describes the
Gibbs energy of the matrix by summing up the contributions from alloying elements in the matrix.
The second energy term is due to the precipitates, where the specific quantities for the mechanical
free energy contribution, λk, are also included. The third term takes into account the increase in the
energy of the system due to the formation of precipitate–matrix interfaces. Essentially there are three
different possibilities for Gibbs free energy dissipation during precipitation. Table 1 summarizes these
three mechanisms for dissipation rates. Based on the Onsager’s thermodynamic extremal principle,
a thermodynamic system will evolve toward equilibrium in such a way that it produces maximum
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entropy or the maximum Gibbs free energy dissipation rate [19]. The numerical way to use these
equations to calculate the total Gibbs free energy of the system is explained in [17].

Q1 =
m

∑
k=1

4π r2
k

Mk
(

drk
dt

)
2

(2)

Mk: the mobility of the interface

Q2 =
m

∑
k=1

S

∑
i=1

4π RTr5
k

45ckiDki
(

dcki
dt

)

2

(3)

Dki is the diffusion rate of alloying element i in the precipitate k

Q3 =
m

∑
k=1

S

∑
i=1

4π RTr5
k

45ciDi

(
drk
dt

(ci − cki) +
rk
3

dcki
dt

)2

(4)

ci and Di being the concentration and diffusion rate of alloying element i in the matrix

Table 1. Dissipation rate mechanism [18].

Gibbs Free Energy Dissipation Rate Equation Number

Dissipation by the precipitate-matrix interface
movement during growth-dissolution of

precipitates
(2)

Dissipation by diffusion of alloying elements
inside the precipitate (3)

Dissipation by diffusion of alloying elements
inside the matrix (4)

The nucleation rate of precipitates in the model was calculated from:

J = Zβ∗Nc exp(
−∆G∗

kBT
) exp(

−1
2Z2β∗t

) (5)

with the second exponential term being due to the transient nucleation rate, Z being the Zeldovich
factor, β the atomic attachment rate for the critical nucleus, NC is the number of available nucleation
sites, kB is the Boltzmann constant, and ∆G* is the nucleation energy barrier given by [18]:

drk
dt

=
Fk −

(
2γk
rk

)
RTrk

[
n

∑
i=1

(cki − ci)
2

ciDi

]−1

(6)

The factor Fk −
(

2γk
rk

)
represents the balance between the driving force (obtained from the

thermodynamic database of the software) and the surface tension. The growth kinetics was assumed to
be diffusion-controlled. Bulk diffusion coefficients of Mg and Si in the aluminum matrix were given by:{

DMg = (5.7× 10−5 m2/s) exp(−112.5 kJ/mol
RT )

DSi = (1.4× 10−5 m2/s) exp(−126.7 kJ/mol
RT )

(7)

There is a term in MatCalc which accounts for the faster diffusion of elements due to the presence
of quenched-in vacancies. This parameter is called the matrix diffusion enhancement factor (MDEF).
The diffusion coefficient is multiplied by the MDEF parameter (this was chosen as 100 [20]). In this
model, the stoichiometry of GP zones was assumed to be Mg2Si3Al6 [20].
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2.2. Modeling Electrical Resistivity

Knowing that the relaxation time for scattering from atomic clusters of the size R is τR(k), then
the electrical resistivity due to these atomic clusters was given by [21]:

ρR =
m

n e2(NτR)
(8)

where m is the electron mass, n is the electron density, e is electron charge, and N is the number density
of atomic clusters. Taking into account the anisotropy of Bragg scattering rate modeled by two values
in the k-space, the elementary transport theory of free electrons yields [22]:

ρR ∝
∫

(1− cos θkk′)
∣∣w(k− k′)

∣∣2SR(k− k′) (9)

where w is the potential function and S(k− k′) is the structure factor given by [23,24]:

S(k− k′)R =
1

10R ∑
solute atoms

e−i(k−k′)ri =
3

∏
j=1

[
sin (10R)1/3

2 (k− k′).dj

sin 1
2 (k− k′).dj

]2 (if R is nm) (10)

where ri is the position of solute atom in the atomic cluster and dj is the primitive translation vectors
of the atomic clusters structure. Integration of Equation (9) with some simplifications yields [22]:

ρR = α.N.R4/3 (α is proportionality constant) (11)

For atomic clusters of the size of R, if scattering occurs over a fraction fR of Fermi surface, then
the total resistivity is given by [21]:

ρ =

 1−
(
1 + R

5

)− 2
3

ρ0 + ∑
j=Fe,Cu,Mn

cjρj + ∑
i=Mg,Si

(ci − N
6 π R3Cpi)ρi

+

(
1 + R

5

)− 2
3

ρ0 + ∑
j=Fe,Cu,Mn

cjρj + ∑
i=Mg,Si

(ci − N
6 π R3Cpi)ρi + ρR


−1

(12)

where Ci is the initial concentration of alloying element, Cp is the concentration of alloying element in
the matrix, and ρ0 = 2.6, ρSi = 1.02, ρMg = 0.54, and ρCu = 0.344 µΩ.cm/wt% [25].

3. Materials and Methods

The alloy used for this study was 1-mm thick AA6061 (Al–0.6wt%Si–0.95wt%Mg–0.2wt%Cu)
sheet, solutionized at 560 ◦C for 20 min, naturally aged at room temperature for periods up to one
year, and re-aged at temperatures between 170 to 190 ◦C for various times. The electrical resistivity
measurements were performed by the eddy currents technique using a Sigmatest D 2.068® (Foerster
Instruments, Reutlingen, Germany) at room temperature at a rate of 60 Hz. The evolution of hardness
was monitored by Vickers hardness measurements (KB Prüftechnik, Hochdorf-Assenheim, Germany)
using a 300-gr load, with a measurement error of ±4 VHN.

4. Results and Discussion

The hardness and resistivity evolutions of the as-solutionized samples during ageing at 170 and
190 ◦C are shown in Figure 1. The evolutions of hardness and resistivity could be divided into four
distinct stages which are explained as follows:

A→ B: In this stage, both hardness and resistivity slightly increased. This slight increase in both
hardness and resistivity was due to the nucleation of GP-II zones [9–11]. In the beginning, GP-II
zones were still very small and coherent. Therefore, they could not have a significant contribution
to the mechanical properties. A few minutes after nucleation of GP-II zones, their sizes were in the
range of the wavelength of conduction electrons at the Fermi level. In this condition, small nuclei of
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GP-II zones caused strong scattering of free electrons, which resulted in the observed increase in the
resistivity [26,27].

B→ C: During this stage, the hardness increased considerably from 80 VHN to around 110 VHN.
This fast increase in the hardness of Al–Mg–Si alloy during ageing was related to the growth of GP-II
precipitates [7]. During their growth in the <100> direction, GP-II precipitates caused a distortion in
the surrounding matrix, and therefore they could obviously inhibit the movement of dislocations and
consequently enhanced the mechanical strength. The growth of GP-II zones was associated with the
depletion of alloying elements from the matrix which resulted in a drop of resistivity.

C→ D: After the initial fast increase in the hardness, the hardness increased with a slower kinetic up to
the formation of β′ ′ precipitates. The transformation of GP-II zone to β′ ′ precipitate was a process in
which the Si/Mg ratio increased. The increase in the Si/Mg ratio of GP-II zones was associated with
the dissolution of some of the existing particles. As a result, the hardening rate during transition of
GP-II zones to β′ ′ precipitates decreased [7]. The decrease of resistivity in this stage indicates that the
solute depletion was the governing phenomenon.

D→ E: During this stage, both hardness and resistivity decreased. It is conventionally believed [2]
that after peak hardness, the transformation of β′ ′ to β′ and β is the main reaction. These reactions
are accompanied with the coarsening of precipitates. During coarsening, smaller precipitates dissolve
while the larger ones grow. The coarsening results in a decrease in the number density of precipitates,
which is deleterious for mechanical properties. Figure 1 shows that the resistivity kept decreasing
after peak aging. This means that even after peak aging, there was the possibility of growth and
alloy depletion.
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Figure 1. The hardness and resistivity evolutions of as-solutionized samples during ageing at (a) 170 ◦C
and (b) 190 ◦C.

Figure 2 shows the effects of natural-ageing time on the evolution of hardness and resistivity in
the alloy AA6061 aged at 170 ◦C. It is seen that the hardness and resistivity evolutions of samples
naturally aged for 5 months and more were different compared to those of samples naturally aged
for 24 h and 1 month. For example, it is seen that there were two hardness peaks and one anomalous
resistivity peak during subsequent ageing of samples naturally aged for 5 months and three years.
In this paper, the main objective is to provide an explanation for the anomalous behavior of samples
naturally aged for more than 5 months. The evolution of resistivity and hardness of the alloy AA6061,
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naturally aged for almost 3 years during ageing at 170 and 190 ◦C, is shown Figure 3. For the sake
of comparison, the evolution of resistivity and hardness of the as-solutionized alloy is also given.
Obviously, the presence of natural-ageing GP-I zones at the beginning of isothermal ageing has
some general consequences as compared to the as-solutionized samples, i.e., decreasing the peak-age
hardness, decreasing the hardening kinetics, and increasing the overall resistivity. From Figure 3 it is
seen that at the beginning of ageing, both hardness and resistivity levels of naturally aged alloy were
higher than those of as-solutionized ones. It was mainly due to the fact that a high density of small
GP-I zones had formed during the holding time at room temperature after the solution treatment [27].
Small GP-I zones had a positive contribution to the resistivity. The fact that small initial GP-I zones
increased the resistivity is very well described by the Bragg scattering of free electrons by coherent
clusters and small GP zones [26]. During the initial 30 min of artificial ageing of the naturally pre-aged
alloy at 170 ◦C and 190 ◦C, the hardness and resistivity slightly decreased. There has been a long
discussion about the stability and the kinetics of transformation of natural-ageing GP-I zones during
the initial stage of subsequent ageing [28–32]. It is more likely to assume that a part of natural-ageing
GP-I zones act as nucleation sites for the precipitation of other phases, while other GP-I zones dissolve
during subsequent artificial ageing. That the resistivity decreased during the initial stage of ageing
(shown in Figure 3) could be attributed to the partial dissolution of initial GP-I zones at relatively
high-ageing temperature. It is also worth noting that the rates of resistivity and hardness decrease were
extremely slow indicating the slow dissolution kinetics of GP-I zones. Initial GP-I zones significantly
decreased the level of supersaturation, the concentration of quenched-in vacancies, and consequently
the driving force for nucleation [33]. The partial dissolution of subcritical initial GP-I zones at the
beginning of subsequent ageing releases some alloying elements and vacancies, and therefore increases
the driving force for nucleation and growth of GP-II zones [6]. Formation of GP-II zones is associated
with a fast increase in hardness [7] and a drop in resistivity in such a way that the hardness reaches a
peak and the resistivity reaches a trough. During their growth, GP-II zones consume alloying elements
provided by the matrix and the initial dissolution of pre-existing GP-I zones. This solute depletion was
the main reason for the resistivity drop. It is seen from Figure 3 that the increase in the hardness of
naturally aged alloy due to the formation of GP-II zones was nearly half of that in the as-solutionized
alloy. Therefore, one can conclude that the number density and volume fraction of GP-II zones in the
naturally aged alloy was lower than in the as-solutionized sample. This conclusion is in accordance
with the observation of Esmaeili et al. [33]. They showed that the volume fraction of β′ ′ precipitates,
formed at peak age, was lower for the naturally aged material. This was due to the fact that the
concentration of quenched-in vacancies in the supersaturated condition and the driving force for
nucleation was lower in the naturally aged alloy. At the end of this stage, the hardness drops and
resistivity increases unexpectedly. This stage is associated with the transformation of GP-II zones
to β′ ′. In principle, this transformation should lead to an increase in hardness and a decrease in
resistivity. This opposite behavior could be very well explained by the following scenario: GP-II zones,
present in the microstructure, have a tendency to transform to β′ ′. During this transformation, the Si
content of GP-II zones should increase. Yet, most of the alloying elements and vacancies have been
consumed by the nuclei of GP-II zones and the pre-existing GP-I zones. One way that system can
provide new a Si source for this transformation is the dissolution of pre-existing GP-I zones. At this
stage, the dissolution of GP-I zones initially decreases the hardness temporarily. Yet, as soon as there is
enough supersaturation for GP-II→β′ ′ transformation, the hardness again starts increasing.
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of as-solutionized alloys.
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Regarding the anomalous increasing of resistivity after the trough, there is a proposed theory
according to which the maximum resistivity is reached when the atomic cluster size attains a critical
and definite value which is equal to the wavelength of conduction electrons at the Fermi level so as
to maximize the Bragg scattering [34,35]. Panseri and Federighi [36] reported that the critical size of
clusters in Al–Mg–Si alloys is around 10 Å. Figure 4 shows that natural ageing for more than 5 months
(dashed line in Figure 4 represents 5 months ageing) results in the formation of GP-I zones bigger than
this critical size. It seems that in these alloys during artificial ageing up to peak-hardness (around
100 min), the average size of remaining natural ageing GP-I zones is higher than the critical value.
At this point, GP-I zones do not have their strongest positive contribution to the resistivity and the
resistivity evolution is mainly controlled by solute depletion due to the growth of GP-II zones. Yet, due
to the intermediate dissolution of GP-I zones (needed to provide Si), the average size of GP-I zones
becomes equal to the critical value, which results in a strong scattering and the anomalous resistivity
peak. Obviously, when the dissolution of GP-I goes on, the average size of GP-I zones goes below the
critical value and the resistivity starts decreasing again. This has been shown in Figure 5 in which the
size distribution of GP-I zones after 10 h and 6 months of natural ageing are compared.

It is also interesting to note that the resistivity level of the naturally aged alloy even in the overaged
condition is still higher than that of the as-solutionized one, meaning that a small part of the initial GP-I
zones remains stable even after peak ageing and during over-ageing. Figure 6 shows the prediction of
the proposed combined precipitation–electrical resistivity model for two cases; the artificial ageing of
the alloy aged for 24 h and the one aged for 5 months. Clearly the model is capable of reproducing
both normal and anomalous electrical resistivity evolution.Metals 2019, 9, x FOR PEER REVIEW 8 of 11 
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5. Conclusions

From the results of this study, the following conclusions could be drawn:

- Isothermal ageing of Al–Mg–Si alloys, naturally aged for more than 5 months, was associated
with an unexpected significant increase in the overall electrical resistivity.

- Natural ageing in initial GP-I zones decreased the hardening kinetics, decreased the peak-age
hardness, and increased the overall resistivity of the alloy during subsequent ageing.

- The initial stage of ageing in the as-solutionized alloy was associated with the nucleation and
growth of GP-II zones, while in the naturally aged alloy it was associated with the initial partial
dissolution of GP-I zones and then the formation of GP-II zones. During subsequent ageing of
the naturally aged alloy, the supersaturation needed for the further growth of GP-II zones and
the transformation of GP-II zones to other precipitates was partially provided by the dissolution
of smaller GP-I zones. The intermediate dissolution of GP-I zones temporarily decreased the
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hardness. Yet, as soon as the dissolution of GP-I zones provided enough supersaturation for
further growth of GP-II zones, the hardness started increasing again.

- The intermediate dissolution of GP-I zones resulted in an anomalous resistivity peak. It seems
that during ageing, there was a moment that the average size of GP-I zones was nearly equal
to a critical value in which GP-I zones can strongly scatter free electrons which leads to the
appearance of the anomalous resistivity peak.
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