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 A B S T R A C T

This article investigates the methodology and applicability of the statistical linearization (SL) method to 
incorporating multi-variate non-differentiable nonlinearities, with a focus on floating renewable energy devices. 
The SL method serves as a highly competitive approach for analyzing floating renewable energy structures, such 
as wave energy converters (WECs) and floating wind energy turbines, because it inherently combines adequate 
accuracy and high computational efficiency. The origin of high accuracy comes from its incorporation of 
nonlinear effects through statistically linearized representations. Yet, the statistically linearized solutions have 
only been derived and verified for a limited number of nonlinearities of floating renewable energy devices, 
mostly simply-formed and differentiable in their mathematical expressions. However, floating renewable energy 
devices usually exhibit a complex dynamic mechanism, in which the relevant nonlinear effects could appear 
to be highly complex for linearization process to describe. These nonlinear effects could make a significant 
impact on the system dynamics, exemplified by external machinery force saturation and nonlinear hydrostatics 
of floaters with a non-uniform geometry. To push forward the boundary of the SL method, it is crucial to 
demonstrate how it applies to nonlinearities of different features.

In this paper, the existing SL method is extended to address the nonlinear effects expressed as multi-
variate non-differentiable functions. Several case studies are carried out to exemplify the application of the 
extended SL approach to the concerned nonlinearities in floating renewable energy devices. The accuracy and 
computational efficiency of the extended SL approach are evaluated by verifying against the corresponding 
nonlinear time-domain (TD) and linear frequency-domain (FD) models. Despite the complexity of the given 
nonlinearities, the relative errors of the SL approach are no more than 6 % while its computational time is 
comparable to the FD model, being thousands of times faster than the TD model. Comparatively, the FD model 
leads to a relative error of over 70% in some cases.
1. Introduction

Ocean renewable energy holds immense potential towards the en-
ergy transition. These include offshore wind energy turbines, wave 
energy converters (WECs), ocean thermal energy plants and tidal tur-
bines [1,2]. Over the past decades, ocean renewable energy sector has 
made significant achievements, marked by the increasing installation 
capacities [3]. In the pursuit of larger energy production, the sector 
has been heading to deeper water or larger support structures [4]. 
However, the ocean environmental complexity poses many challenges 
in further developing offshore renewable energy, especially the floating 
structures [5]. Hence, the sector has been continuing working hard to 
offer more reliable and robust designs of offshore renewable energy 
systems.

∗ Corresponding author.
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Numerical modeling has been widely recognized as a useful tool for 
advancing floating renewable energy systems, offering a resource- and 
time-efficient alternative to experimental and sea trial approaches [6]. 
It enables the analysis of dynamic behavior and power performance 
across various WEC designs, facilitating the characterization of design-
performance relationships and driving iterative improvements towards 
cost-effective and efficient technologies. Common numerical modeling 
approaches include linear frequency-domain (FD), Cummins equation-
based time-domain (TD), and Navier–Stokes equation-based Computa-
tional Fluid Dynamics (CFD) modeling [7]. CFD provides high-fidelity 
simulations of fully nonlinear phenomena but is computationally inten-
sive, making it suitable for short-duration, extreme-condition simula-
tions such as survivability examination [8]. The TD modeling approach, 
based on the Cummins equation [9], offers a balance between fidelity 
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Fig. 1. Flowchart of implementing numerical simulation with using the SL method.
and efficiency by incorporating relevant nonlinear functions. In con-
trast, FD modeling relies on harmonic analysis, representing system 
responses as frequency-dependent components. Despite its high com-
putational efficiency, the FD modeling is limited by its assumption of 
full linearity [10]. 

The computational efficiency of numerical models is crucial for the 
design and optimization of offshore renewable energy devices. These 
devices must withstand complex and ever-changing environmental con-
ditions during their service. To ensure reliable and efficient designs, 
it is essential to accurately identify the loads and power production 
over a tremendous number of environmental inputs. For instance, the 
dynamic responses of floating devices are highly dependent on the 
properties of ocean waves, including wave heights and periods. As a 
result of the strong variability of ocean waves, the dynamics of the 
floating structures has to be estimated over a range of individual sea 
states to reveal the overall power performance or fatigue loads. The 
variability of ocean waves has two implications in the evaluation of the 
dynamics of floating energy devices. First, it is the long-term variability, 
which means the statistical characteristics of sea states are by no means 
constant. To describe the occurrence of numerous sea states of varied 
properties, the wave resource is normally characterized as a form of 
joint probability distribution of wave heights and periods based on 
long-term hind-cast statistics. Hence, to achieve a reasonable assess-
ment, all the described sea states need to be addressed in the prediction 
of loads and power of floating renewable energy systems. The latter 
implies the short-term variability, in which each sea state needs to be 
represented by irregular waves. To reflect the randomness of irregular 
waves, the predefined wave train, in numerical simulation, is supposed 
to cover a sufficient time duration and consist of a wide range of wave 
frequency components [11]. As a consequence of these two factors, the 
computational-efficiency of numerical models is commonly highlighted 
in the simulation of offshore renewable energy systems.

Compared to TD modeling, FD modeling offers high computational 
efficiency but is limited to fully linear harmonic analysis. In contrast, 
the statistical linearization (SL) approach has emerged as a promis-
ing alternative in floating renewable energy systems, integrating high 
computational-efficiency with the ability to address nonlinear effects 
via linearized representations. Initial applications of the SL method 
to floating renewable energy systems focused on quadratic damping 
exerted on floaters and the excitation force decoupling in oscillating 
surge WECs [12], showing good agreement with nonlinear TD models 
2 
in power capture and response spectra. Subsequent studies expanded 
the SL approach to include nonlinear effects such as damping [13], end-
stop mechanisms [14], mooring stiffness [15], Coulomb damping [16,
17], and machinery force capping [18]. Recent advancements [19,20] 
have further developed the SL approach to cover the nonlinearities 
across the full wave-to-wire process of WECs, incorporating both hy-
drodynamic and power conversion phases. More recently, the role of 
control tuning of WECs was investigated in [21], exemplifying the gen-
eralization of the SL method in floating renewable energy systems. The 
above-mentioned research has demonstrated the huge potential of the 
SL approach in estimating the dynamics of floating renewable energy 
systems. However, these works are predominantly limited to single-
variate nonlinearities. The continued advancement of ocean renewable 
energy systems inevitably induces the demand of incorporating more 
realistic representations of complex mechanisms experienced by float-
ing renewable energy devices. This inherently reflects the necessity of 
developing the SL approach to handle more complex nonlinear effects. 
Few studies have been recently conducted to account for multi-variate 
nonlinear functions by the SL method. For instance, in [17], the viscous 
drag term in the Morison equation was incorporated by the SL ap-
proach. However, as the Morison drag term depends on the difference 
between the wave velocity and the floater velocity, the linearization 
was accomplished by introducing an intermediate variable, namely the 
relative velocity between the two variables. Then, the linearization 
followed the procedures for the single-variate SL method. However, 
this exhibits limitations to complex multi-variate nonlinearities, in 
which multiple relative variables cannot be completely replaced by 
an intermediate variable. In [22], the SL approach was applied to 
address the bi-variate hydrostatic effect, in which the multi-variate 
stochastic linearization method was utilized. These pieces of initial 
work demonstrated the significance and feasibility of expanding the 
coverage of the SL method to multi-variate nonlinearities in floating 
renewable energy devices.

On the other hand, the differentiability could also distinguish the 
nonlinear functions into two types: differentiable nonlinearities and 
non-differentiable nonlinearities. Although the fundamental principle 
remains the same in the statistical linearization, the mathematical 
operation and derivation differ for addressing the differentiable non-
linearities and the non-differentiable nonlinearities. A widely applied 
equation, as systematically demonstrated in [23], to derive the lin-
earized solution of a differentiable nonlinear term is: 𝐾 = 𝐄[ 𝜕𝐹𝑛𝑜𝑛(𝑥) ]. 
𝑠𝑙 𝜕𝑥
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Fig. 2. Illustration of machinery force saturation.
𝐾𝑠𝑙 is the statistically linearized coefficient, 𝐹𝑛𝑜𝑛(𝑥) is a nonlinear 
function of the variable 𝑥, and 𝐄(⋅) denotes the expected value. This 
formulation has been widely adopted in recent studies to implement the 
SL procedure in numerical simulations. However, this equation is not 
applicable to non-differentiable nonlinear functions, which inherently 
restricts the SL approach from addressing a broader range of nonlin-
earities, as acknowledged in [12]. Hence, the existing SL method needs 
to be further developed to address the non-differentiability. In recent 
years, successful attempts were made to incorporate non-differentiable 
nonlinearities, such as Coulomb damping [14], external machinery 
force/torque saturation [18,19] by the SL approach. Nevertheless, these 
attempts are all limited to the single-variate nonlinear functions. Ad-
ditionally, a recent study reported in  [24] employed the formulation 
𝐾𝑠𝑙 = 𝐄

[

𝜕𝐹𝑛𝑜𝑛(𝑥)
𝜕𝑥

]

 as described above, to address multivariate non-
differentiable effects, namely power and torque saturation in WECs. 
The authors linearized the system by splitting the integration regions 
of different variables when addressing non-differentiable nonlinearities. 
This approach introduces a novel method for handling multivariate 
non-differentiable nonlinearities within the context of the SL method. 
However, the derivation process to arrive at this formulation fun-
damentally relies on the differentiability of the nonlinear functions. 
Therefore, the robustness of the method proposed in [24], which in-
volves splitting the integration domain to ensure local differentiability 
and fit the form of the formulation 𝐾𝑠𝑙 = 𝐄

[

𝜕𝐹𝑛𝑜𝑛(𝑥)
𝜕𝑥

]

 requires further 
investigation. Yet, the applicability of the SL approach to multi-variate non-
differentiable nonlinearities has not been examined. To push forward the 
boundary of the SL approach to a wider range, it is of huge significance 
to explore this aspect.

The present work is devoted to pushing forward the boundary 
of the SL approach to more complex nonlinear effects in modeling 
offshore renewable energy systems. Particularly, the extension moves 
towards the multi-variate non-differentiable nonlinearities. To achieve 
this primary goal, the mathematical derivation of the SL method is 
thoroughly revisited and modified to align with the addition of multi-
variate non-differentiable nonlinearities. To generalize the derived so-
lutions of the SL method, the discussion in this work expands from 
the existing widely-used SL method for single-variate differentiable 
nonlinearities to single-variate non-differentiable nonlinearities, then 
to multi-variate differentiable nonlinearities and finally up to multi-
variate non-differentiable nonlinearities. For better applicability and 
clarity, the multi-variate non-differentiable nonlinearities are further 
classified into the type of correlated variables and uncorrelated vari-
ables to be discussed respectively. Subsequently, the three case studies 
3 
in the offshore renewable energy systems are employed to verify the 
modified SL approach. The case studies start with the application 
of the SL method in handling multi-variate differentiable nonlinear 
effects. The Morison drag force on the cylindrical floating structure is 
demonstrated. The second case study exemplifies a non-differentiable 
nonlinear effect of multiple uncorrelated variables in WECs, namely 
PTO machinery force saturation with considering both the buoy veloc-
ity and displacement of the floater. In the second case, the nonlinear 
hydrostatic force exerted on a spar-buoy foundation with a non-uniform 
cross-sectional area is considered, representing the multi-variate non-
differentiable nonlinear effects involving correlated variables. The re-
liability and computational efficiency of the extended SL approach 
are demonstrated in these case studies by being compared to the 
corresponding nonlinear TD model and linear FD model.

2. Overview of the statistical linearization approach

2.1. Equation of motion

The equation of motion is the foundation of building models for 
marine renewable energy devices. This subsection is intended to intro-
duce the general form of the equation of motion when applying the SL 
method. To better distinguish the SL approach from other alternative 
approaches, the descriptions of the equation of motion in the TD 
modeling and the FD modeling are provided for comparison.

2.1.1. Nonlinear time-domain modeling
The equation of motion of floating structures is constructed based 

on the Cummins equation [9]: 

[𝑀+𝑀𝑟(∞)]�̈�(𝑡) = 𝐹𝑒(𝑡)+𝐹𝑒𝑥𝑡(𝑡)+𝐹ℎ𝑠(𝑡)+𝐹𝑛𝑜𝑛(𝑡)+∫

𝑡

−∞
𝐾𝑟𝑎𝑑 (𝑡−𝜏)�̇�(𝜏)𝑑𝜏 (1)

where
𝑀 : mass of the floating structure;
𝑀𝑟(∞): added mass at the infinite frequency;
𝑧, �̇� and z̈: displacement, the velocity and the acceleration of the 

floater;
𝑡: time;
𝐹𝑒: wave excitation force;
𝐹ℎ𝑠: hydrostatic force;
𝐹𝑒𝑥𝑡: external force;
𝐾𝑟𝑎𝑑 : radiation impulse function;
𝜏: intermediate variable used in the convolution;
𝐹 : a generic nonlinear correction term.
𝑛𝑜𝑛



J. Tan et al. Renewable Energy 256 (2026) 123964 
Fig. 3. Illustration of a floating cylindrical buoy with viscous drag effect [25].
Fig. 4. Instantaneous motion velocity of the floater with and without considering the Morison drag force, 𝐻𝑠 = 3.0 m and 𝑇𝑝 = 8.0 s.
It should be noted that 𝐹𝑛𝑜𝑛 is only intended to represent the weakly 
nonlinear hydrodynamic forces or external nonlinear forces which are 
added to the Cummins equation for corrections, while it cannot accu-
rately describe highly nonlinear fluid–structure effects, such as vortex 
shedding. As the dynamics of a floater is deterministically computed at 
each time step, it is feasible to include the nonlinear component 𝐹𝑛𝑜𝑛
in the process of the TD modeling.

2.1.2. Linear frequency-domain modeling
Assuming a linear system, the equation of motion of the floating 

structures can be described in the frequency domain as 

𝐹𝑒(𝜔) = �̂�(𝜔)
{

−𝜔2
[

𝑀+𝑀𝑟(𝜔)
]

+𝐾𝑒𝑥𝑡(𝜔)+𝐾ℎ𝑠+i𝜔
[

𝑅𝑟(𝜔)+𝑅𝑒𝑥𝑡(𝜔)
]

}

(2)

where
𝐹 : complex amplitude of excitation force;
𝑒

4 
𝜔: angular frequency of the oscillation;
�̂� : complex amplitude of the displacement of the floater;
𝐾𝑒𝑥𝑡: external stiffness force coefficient;
𝐾ℎ𝑠: hydrostatic stiffness coefficient;
𝑅𝑒𝑥𝑡: external damping force coefficient;
𝑅𝑟: radiation damping coefficient.
The conventional FD modeling approach is widely employed to 

estimate the dynamic behavior of linear systems. However, it is not 
inclusive to nonlinear components since it is built upon harmonic 
analysis. In this sense, there exists no nonlinear term in (2).

2.1.3. Statistical linearization approach
When applying the SL approach, the utilized equation of motion is 

built upon the framework of FD modeling. Comparatively, the contribu-
tions of nonlinear effects can be incorporated as additional terms into 
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Fig. 5. Comparison of standard deviation of the floater velocity predicted by different models along various peak period, 𝐻𝑠 = 3.0 m.
the equation of motion as described in the frequency domain. These 
linearized terms are commonly derived using the SL method [23], 
which will be discussed in detail in Section 3.

𝐹𝑒(𝜔) = �̂�(𝜔)
{

−𝜔2
[

𝑀 +𝑀𝑟(𝜔)
]

+𝐾𝑒𝑥𝑡(𝜔) +𝐾ℎ𝑠 +𝐾𝑒𝑞 + i𝜔
[

𝑅𝑟(𝜔)

+ 𝑅𝑒𝑥𝑡(𝜔) + 𝑅𝑒𝑞

]

}

(3)

where
𝐾𝑒𝑞 : linearized equivalent stiffness coefficient of the nonlinear

forces;
𝑅𝑒𝑞 : linearized equivalent damping coefficient of the nonlinear 

forces.
It should be noted that 𝐾𝑒𝑞 and 𝑅𝑒𝑞 are not frequency-dependent. 

They are related to the statistical estimates of the system responses in 
the frequency domain.

2.2. Workflow of the statistical linearization approach

The SL approach is regarded as an extension of the FD modeling 
approach. Specifically, when applying this approach, the equation of 
5 
motion is constructed in the frequency domain, but nonlinear effects 
can be included by equivalent linear terms. The derivation of the 
equivalent linear terms is carried out based on the SL method. Given 
that the derived equivalent linear terms are inevitably related to the 
standard deviation of the responses 𝜎𝑧 or 𝜎�̇� which are to be solved, it 
is necessary to implement an iterative process to find a solution to the 
equation of motion. The flowchart depicted in Fig.  1 exemplifies how 
to apply the SL method to solving dynamic responses of structures.

3. Mathematical derivation of statistical linearization

The mathematical derivation of SL for random vibration is pre-
sented in this section. The handling of various types of nonlinearities 
is discussed respectively. The discussion covers single-variate differen-
tiable nonlinear functions, single-variate non-differentiable nonlinear 
functions, multi-variate differentiable nonlinear functions and multi-
variate non-differentiable nonlinear functions. This part is intended to 
provide a comprehensive guideline of generalization of the SL method 
to complex multi-variate non-differentiable cases.
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Fig. 6. Schematic of the spherical heaving point absorber with a bottom founded PTO system. Source by CorPower LTD.
3.1. Single-variate differentiable nonlinearities

Although the SL method for random vibration has been system-
atically demonstrated in [23], the applicability to non-differentiable 
nonlinearities, particularly multi-variate functions, has not been specif-
ically demonstrated. A single-variate nonlinear function 𝐹𝑛𝑜𝑛 can be 
expressed as 
𝐹𝑛𝑜𝑛 = 𝑓 (𝑢) (4)

where 𝑢 is a zero-mean random variable and 𝑓 (𝑢) embodies a general 
nonlinear function with respect to 𝑢. Let its linear approximation 
function, denoted as 𝑓𝑒𝑞(𝑢), be expressed as 

𝑓𝑒𝑞(𝑢) = 𝑁𝑢 +𝑄 (5)

here, 𝑁 corresponds to the linearized coefficients which can be 𝐾𝑒𝑞
or 𝑅𝑒𝑞 in (3); 𝑄 is the mean part of the nonlinear function 𝐹𝑛𝑜𝑛. The 
resulting error in the linearization is given by 
𝜖 = 𝑓 (𝑢) −𝑁𝑢 −𝑄 (6)

Statistically, the expected value of the error squared, denoted by 𝐄 [

𝜖2
]

, 
is calculated as 
𝐄
(

𝜖2
)

= 𝐄
[

(𝑓 (𝑢) −𝑁𝑢 −𝑄)2
]

(7)

where 𝐄(⋅) denotes the expected value of a function. Minimizing the 
squared error requires 𝑁 and 𝑄 to satisfy the following conditions: 
d
d𝑁 𝐄

(

𝜖2
)

= 0 and d
d𝑄𝐄

(

𝜖2
)

= 0 (8)

This gives 

𝑁 =
𝐄 [𝑢𝑓 (𝑢)]
𝐄
(

𝑢2
) (9)

A property of a variable ℎ following the Gaussian process can be 
expressed as 

𝐄 [𝑓 (ℎ)ℎ] = 𝐄
[

ℎ2
]

𝐄
[

d𝑓 (ℎ)
dℎ

]

(10)
6 
Therefore, the numerator in the right-hand side of (9) can be 
rewritten as 

𝐄 [𝑢𝑓 (𝑢)] = 𝐄
(

𝑢2
)

𝐄
[

d𝑓 (𝑢)
d𝑢

]

(11)

Then, combining (11) and (9) leads to 

𝑁 = 𝐄
[

d𝑓 (𝑢)
d𝑢

]

(12)

where the expected value at the right-hand side of the equation can be 
calculated as 

𝐄
[

d𝑓 (𝑢)
d𝑢

]

= ∫

∞

−∞

d𝑓 (𝑢)
d𝑢 𝑝(𝑢)d𝑢 (13)

where 𝑝(𝑢) is the probability density function of the variable 𝑢. Assum-
ing that the variable 𝑢 follows Gaussian distribution, the probability 
density function is then expressed as 

𝑝(𝑢) = 1

𝜎𝑢
√

2𝜋
exp(− 𝑢2

2𝜎2𝑢
) (14)

where 𝜎𝑢 is the standard deviation of the variable 𝑢.
To derive the mean-part contribution 𝑄, d

d𝑄𝐄
(

𝜖2
) is expanded as 

follows 
d
d𝑄𝐄

(

𝜖2
)

= 𝐸
{

d
d𝑄 [𝑓 (𝐮(𝑡)) −𝑁𝑢(𝑡) −𝑄]2

}

= 𝐄 {2 [−𝑓 (𝑢(𝑡)) +𝑁𝑢(𝑡) +𝑄]}

= −2𝐄[𝑓 (𝑢(𝑡))] + 2𝐄 [𝑁𝑢(𝑡)] + 2𝐄[𝑄]

(15)

It is noted that 𝑁 and 𝑄 are scalar for single-variate linearization 
cases, while they will be expressed in the form of vectors in the later 
extension for multi-variate linearization applications. As the variable 𝑢
adheres to a zero-mean Gaussian distribution, (15) can be rewritten as 

d
d𝑄𝐄

(

𝜖2
)

= −2𝐄[𝑓 (𝐮(𝑡))] + 2𝑄
(16)
= 2{𝑄 − 𝐄[𝑓 (𝐮(𝑡))]}
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Fig. 7. Instantaneous PTO force and PTO power of the WEC with different PTO force limits. The simulation conditions are 𝐻𝑠 = 4 m; 𝑇𝑝 = 10 s; 𝐵𝑝𝑡𝑜 = 100 kNs∕m and 𝐾𝑝𝑡𝑜 = 40 kN∕m.
As depicted in (8), to satisfy dd𝑄𝐄
(

𝜖2
)

= 0, 𝑄 can therefore be calculated 
as 

𝑄 = 𝐄[𝑓 (𝑢(𝑡))] (17)

where the expected value can be further derived, given the Gaussian 
process, as 
𝑄 = 𝐄[𝑓 (𝑢(𝑡))]

= ∫

∞

−∞
𝑓 (𝑢)𝑝(𝑢)d𝑢

(18)

3.2. Single-variate non-differentiable nonlinearities

The principle of SL for non-differentiable functions remains iden-
tical, that is to minimize the relative error shown in (7). However, 
the non-differentiability of the function would violate the property 
expressed in (10). In this sense, the linearized solution has to be derived 
following (9) rather than (12).
7 
A typical non-differentiable case is the machinery force saturation. 
The illustration of machinery force saturation is as depicted in Fig.  2. 
A short elaboration with regard to the linearization of machinery force 
saturation is given below. The expected energy dissipation of a force 
saturation function 𝐹𝑠𝑎 is given as 
𝐽 = 𝐄(𝐹𝑠𝑎𝑢)

= 𝐄[(𝐹𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 + 𝐹𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 )𝑢]

= 𝐄[𝐹𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑢] + 𝐄[𝐹𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑢]

(19)

If (12) is by mistake applied to non-differentiable nonlinear functions, 
the derivative of the saturated part of the function 𝐹𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 in (19) 
would be simply zero. As mentioned, the linearized solution is expected 
to make the same energy or power dissipation. However, in this way, 
the contribution of the saturated part would be dismissed, which in-
evitably leads to inaccuracy in the linearized solutions. Other similar 
nonlinear effects can refer to the end-stop mechanism and Coulomb 
damping in wave energy conversion [26].
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Fig. 8. Instantaneous PTO force and PTO power of the WEC with different PTO force limits. The simulation conditions are 𝐻𝑠 = 4 m; 𝑇𝑝 = 10 s; 𝐵𝑝𝑡𝑜 = 80 kNs∕m and 𝐾𝑝𝑡𝑜 = −20 kN∕m.
3.3. Multi-variate differentiable nonlinearities

The SL approach for multivariate nonlinearities, as derived in [27], 
assumes that the nonlinear effects are inherently non-differentiable. For 
context, a brief overview of the derivation is provided below.

A nonlinear function 𝐹𝑛𝑜𝑛 of 𝑛 variables can be expressed in a generic 
form as 

𝐹𝑛𝑜𝑛 = 𝑓 (𝑢1, 𝑢2,… , 𝑢𝑛) (20)

in which 𝑓 (⋅) stands for a nonlinear function; and 𝑢1(𝑡), 𝑢2,… , 𝑢𝑛(𝑡) rep-
resent the random zero-mean input variables to the function. The vari-
ables can be expressed in the form of a vector as 𝐮(𝑡) = [𝑢1(𝑡) 𝑢2(𝑡) ⋯
𝑢𝑛]T. statistical linearization could give an approximation to the non-
linear function as 

𝐹𝑛𝑜𝑛(𝐮) ≈ 𝐍𝐮 +𝑄 (21)

where 𝐍 represents the vector of the linearized coefficients, and 𝐍 =
[𝑁 𝑁 ⋯ 𝑁 ], and 𝑄 is a constant corresponding to the mean part of 
1 2 𝑛

8 
the nonlinear function. In this sense, the squared error of the linearized 
solution is expressed as 

𝜖(𝐍, 𝑄) = 𝐄
{

[

𝑓 (𝐮(𝑡)) − 𝐍𝐓𝐮(𝑡) −𝑄
]2} (22)

To minimize the squared error, the vector of the linearized coefficients 
should satisfy 
𝜕𝜖(𝐍, 𝑄)

𝜕𝐍
= 0 (23)

(23) can be further derived as 

𝜕𝜖(𝐍, 𝑄)
𝜕𝐍

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜖(𝐍,𝑄)
𝜕𝑁1

𝜕𝜖(𝐍,𝑄)
𝜕𝑁2
⋮

𝜕𝜖(𝐍,𝑄)
𝜕𝑁𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= − 2𝐄

⎛

⎜

⎜

⎜

⎜

⎡

⎢

⎢

⎢

⎢

𝑢1(𝑡)𝑓 (𝐮(𝑡))
𝑢2(𝑡)𝑓 (𝐮(𝑡))

⋮

⎤

⎥

⎥

⎥

⎥

⎞

⎟

⎟

⎟

⎟

+ 2𝐜𝐨𝐯 [𝐮(𝑡)]

⎡

⎢

⎢

⎢

⎢

𝑁1
𝑁2
⋮

⎤

⎥

⎥

⎥

⎥

(24)
⎝⎣

𝑢𝑛(𝑡)𝑓 (𝐮(𝑡))⎦⎠ ⎣

𝑁𝑛⎦
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where 𝐜𝐨𝐯 [𝐮(𝑡)] represents the covariance of vector 𝐮(𝑡).
For multi-variate input vector 𝐇 following the Gaussian process, the 

property described in (10) can be extended as 
𝐄 [𝑓 (𝐇)𝐇] = 𝐄

[

𝐇𝐇𝑇 ]𝐄 [∇𝑓 (𝐇)] (25)

where 𝛁 means the gradient operator, and it is given as 

𝛁 =
[

𝜕
𝜕𝐻1

, 𝜕
𝜕𝐻2

, ⋯ , 𝜕
𝜕𝐻𝑛

]T
(26)

Besides, the covariance matrix of the input variables is calculated as 
𝐜𝐨𝐯 [𝐮(𝑡)] = 𝐄

{

𝐮(𝑡)𝐮(𝑡)𝐓
}

(27)

Then, applying (25) and (27) to (24) gives 
𝜕𝜖(𝐍, 𝑄)

𝜕𝐍
= − 2𝐄

{

𝐮(𝑡)𝐮𝐓(𝑡)
}

𝐸 {𝛁𝑓 (𝐮(𝑡))} + 2𝐜𝐨𝐯 [𝐮(𝑡)]𝐍

=2𝐜𝐨𝐯 [𝐮(𝑡)] {𝐍 − 𝐄[𝛁𝑓 (𝐮(𝑡))]}
(28)

Let 𝜕𝜖(𝐍,𝑄)
𝜕𝐍 = 0, the vector of the linearized coefficients can be given as 

𝐍 = 𝐄[𝛁𝑓 (𝐮(𝑡))] (29)

where the calculation of the 𝑖𝑡ℎ element of the expected value in (29) 
can be done as 

𝑁𝑖 = 𝐄[ 𝜕𝑓 (𝐮)
𝜕𝑢𝑖

]

= ∫

∞

−∞ ∫

∞

−∞
⋯∫

∞

−∞

𝜕𝑓 (𝐮)
𝜕𝑢𝑖

𝑝(𝐮) 𝑑𝑢𝑛 ⋯ 𝑑𝑢2 𝑑𝑢1
(30)

where 𝑝(𝐮) denotes the multivariate probability density function. As the 
vector 𝐮 is zero-mean and adheres to the multivariate Gaussian distri-
bution, the multivariate probability density function can be expressed 
as 
𝑝(𝐮) = 1

(2𝜋)𝑛∕2|𝐜𝐨𝐯(𝐮)|1∕2
exp

(

−1
2
𝐮T[𝐜𝐨𝐯(𝐮(𝑡))]−1𝐮

)

(31)

where |𝐜𝐨𝐯(𝐮)| and [𝐜𝐨𝐯(𝐮(𝑡))]−1 represents the determinant and the 
inverse of the covariance matrix.

3.4. Multi-variate non-differentiable nonlinearities

3.4.1. Correlated input variables
The property of Gaussian variables which is described as in (25) 

is not applicable to multi-variate non-differentiable functions. In this 
sense, let (24) to be zero gives 

𝜕𝜖(𝐍, 𝑄)
𝜕𝐍

= −2𝐄

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

𝑢1(𝑡)𝑓 (𝐮(𝑡))
𝑢2(𝑡)𝑓 (𝐮(𝑡))

⋮
𝑢𝑛(𝑡)𝑓 (𝐮(𝑡))

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

+ 2𝐜𝐨𝐯 [𝐮(𝑡)]

⎡

⎢

⎢

⎢

⎢

⎣

𝑁1
𝑁2
⋮
𝑁𝑛

⎤

⎥

⎥

⎥

⎥

⎦

= 0 (32)

Therefore, the vector of linearized coefficients 𝐍 can be derived as 

𝐍 = [𝐜𝐨𝐯(𝐮(𝑡))]−1𝐄

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

𝑢1(𝑡)𝑓 (𝐮(𝑡))
𝑢2(𝑡)𝑓 (𝐮(𝑡))

⋮
𝑢𝑛(𝑡)𝑓 (𝐮(𝑡))

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

(33)

The covariance matrix is expressed as 

𝐜𝐨𝐯(𝐮(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎2𝑢1 𝜎𝑢1𝑢2 ⋯ 𝜎𝑢1𝑢𝑛
𝜎𝑢2𝑢1 𝜎2𝑢2 ⋯ 𝜎𝑢2𝑢𝑛
⋮ ⋮ ⋱ ⋮

𝜎𝑢𝑛𝑢1 𝜎𝑢𝑛𝑢2 ⋯ 𝜎2𝑢𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(34)

where diagonal terms represent the variances of the variables, and the 
expected values in (33) can be derived as 

𝐄[𝑢𝑖𝑓 (𝐮)] = ∫

∞

∫

∞
⋯∫

∞
𝑢𝑖𝑓 (𝐮)𝑝(𝐮) 𝑑𝑢𝑛 ⋯ 𝑑𝑢2 𝑑𝑢1 (35)
−∞ −∞ −∞

9 
3.4.2. Uncorrelated input variables
In particular cases, the input variables are uncorrelated. Then, all 

the off-diagonal terms appear to be zero on the covariance matrix. 
Hence, the inverse of the covariance matrix can be expressed as 

[𝐜𝐨𝐯(𝐮(𝑡))]−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝜎2𝑢1

0 ⋯ 0

0 1
𝜎2𝑢2

⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

𝜎2𝑢𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(36)

Substituting (36) into (37) gives the solution of the vector of the 
linearized coefficients: 

𝐍 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐄
[

𝑢1(𝑡)𝑓 (𝐮(𝑡))
]

𝜎2𝑢1
𝐄
[

𝑢2(𝑡)𝑓 (𝐮(𝑡))
]

𝜎2𝑢2
⋮

𝐄
[

𝑢𝑛(𝑡)𝑓 (𝐮(𝑡))
]

𝜎2𝑢𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(37)

4. Case studies

The application of the SL approach to single-variate nonlinearities 
have been thoroughly demonstrated in previous work. These nonlin-
earities include quartic damping terms, second-order stiffness, cosine 
function, etc. More details can be referred to the work reviewed in 
Introduction of this work. In this sense, the following case studies 
are only aiming to exemplify the application of the SL method to 
incorporating more complex nonlinearities in floating renewable en-
ergy devices. This work presents three case studies involving both 
multivariate differentiable and non-differentiable nonlinearities. Case 
Study 1 focuses on the Morison drag term, a widely used formulation 
in offshore engineering for considering viscous effects. Although the 
Morison drag term is inherently a multivariate differentiable function, 
it is included here to provide a basis for comparison with that used to 
handle non-differentiable nonlinearities. In the context of multivariate 
non-differentiable nonlinearities, two distinct examples are presented 
to illustrate cases involving uncorrelated and correlated variables. Case 
Study 2 examines the saturation of the PTO force in WECs under 
reactive control, representing a non-differentiable function of uncorre-
lated variables. Case Study 3 addresses the nonlinear hydrostatic forces 
acting on a non-uniform spar buoy, exemplifying a non-differentiable 
function of correlated variables. Furthermore, it is important to ac-
knowledge that additional complex nonlinear effects exist in floating 
renewable energy systems beyond those addressed in the three case 
studies presented. Notable examples include the combined power and 
force saturation in WECs [24], nonlinear mooring dynamics [29], and 
nonlinear aerodynamic effects in floating wind turbines [30]. There-
fore, the application of the extended SL method to these examples 
merits further investigation in future research.

The hydrodynamic coefficients of all floating structures involved 
in the following case studies are numerically computed using the 
open-source Boundary Element Method (BEM) solver Nemoh [31]. The 
linear wave theory is considered throughout all the case studies, and 
the JONSWAP spectrum is employed to describe the irregular wave 
conditions [32] in all simulation approaches presented in this work. 
Each irregular wave train is generated by the superposition of 1000 
individual harmonic wave components with random phases. In the SL 
approach, the calculation of statistically-linearized coefficients requires 
the derivation of the mathematical exception of the nonlinear functions. 
The closed-form solution is difficult to be explicitly expressed given the 
multi-layer integral in multivariate cases, as (30) and (35). Hence, the 
integral is derived using the numerical integration scheme in this study. 
As the linearized coefficients are related to standard deviations of the 
responses which are to be solved, an iterative solver is needed in the 
SL approach as discussed earlier. Throughout all the simulation cases 
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Fig. 9. Comparison of the power absorption of the WEC predicted by different models along various PTO force limits. The simulation conditions are 𝐻𝑠 = 4 m; 𝑇𝑝 = 10 s; 
𝐵𝑝𝑡𝑜 = 100 kNs∕m and 𝐾𝑝𝑡𝑜 = 40 kN∕m.
in this study, the convergence criterion for the iterative solution of the 
standard deviation of the unknown dynamic responses is consistently 
set to 0.01% [13,16]. The derived linearized coefficients can be referred 
to Appendix.

For all the case studies, the corresponding nonlinear TD model 
and linear FD model are also executed to provide comparative results. 
The TD model is considered the reference solution due to its higher 
fidelity. It is formulated based on Cummins’ equation, as shown in 
(1), where the convolution term is approximated using a state-space 
representation following the approach described in [33], for the sake 
of reducing computational burden. The ODE45 solver in the MATLAB 
environment is used to derive the differential equation in the TD model, 
with a time step set to 0.01 times the peak period of the considered sea 
state. For a specific sea state, the peak period is defined as the wave 
period of the most energetic waves in a sea state [26]. To minimize 
random errors, each TD simulation is repeated 30 times, with different 
random phase sets assigned to the harmonic wave components for each 
irregular wave train. The simulation duration is defined as 125 times 
the peak period of the considered sea state. The initial 25 peak periods 
10 
serve as a ramp time to mitigate strong system transients at the start 
of the simulation [11]; however, this ramp period is excluded from the 
post-processed results of the TD model.

4.1. Multi-variate differentiable nonlinearity: Morison drag force (case 
study 1)

The viscous drag force has a significant influence on the dynamics 
of floating structures [34]. Incorporating the drag effect into the as-
sessment of floating support structures can improve the understanding 
of the power performance and load conditions of marine renewable 
energy systems. As commonly used floating foundations, cylinder-type 
buoys have been applied in various applications, such as floating pho-
tovoltaic (PV) systems [25] and floating wind turbines [35]. Therefore, 
the current case study is dedicated to modeling of the viscous drag 
effect on a heaving cylindrical buoy, as illustrated in Fig.  3.

The Morison equation is widely utilized to estimate the viscous drag 
force exerted on floating structures [32]. The study of using the SL 
method in to address Morison equation has been performed in previous 
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Fig. 10. Comparison of the power absorption of the WEC predicted by different models along various PTO force limits. The simulation conditions are 𝐻𝑠 = 4 m; 𝑇𝑝 = 10 s; 
𝐵𝑝𝑡𝑜 = 80 kNs∕m and 𝐾𝑝𝑡𝑜 = −20 kN∕m.
work [12] to incorporate nonlinear drag force. However, to ease the 
linearization procedure, the multi-variate function was simplified to be 
a single-variate case where the term was assumed to be only related to 
fluid velocity or structure velocity. Only recently in [17], the influence 
of the wave field and the floater motion was both considered in the 
SL approach by introducing a relative variable, which highlighted the 
importance of including both variables. In the current case study, a 
more general and straightforward approach, namely the multi-variate 
linearization method, within the SL framework. In this method, the 
introduction of a relative variable is not required.

Based on the Morison equation, the viscous drag force is expressed 
as 

𝐹𝑣𝑖𝑠 = −1
2
𝐶𝑑𝜌𝐴𝑠(𝑣𝑏 − 𝑣𝑤)|(𝑣𝑏 − 𝑣𝑤)| (38)

where 𝐹𝑣𝑖𝑠 is the viscous drag force; 𝐶𝑑 is the drag coefficient; 𝐴𝑠
is the area of the body projected to the moving direction; 𝜌 is the 
water density; 𝑣𝑏 and 𝑣𝑤 are the body velocity and the wave velocity 
respectively. In the frequency domain, the linearized representation of 
11 
the Morison term can be given as 

𝐹𝑣𝑖𝑠(𝜔) = 𝑅𝑒𝑞,𝑏�̂�𝑏(𝜔) + 𝑅𝑒𝑞,𝑤�̂�𝑤(𝜔) (39)

where �̂�𝑏 and �̂�𝑤 are the complex amplitude of the buoy velocity and 
the wave velocity respectively; 𝑅𝑒𝑞,𝑏 and 𝑅𝑒𝑞,𝑤 are the statistically 
linearized viscous damping coefficients of the buoy velocity and the 
wave velocity. Besides, it is noted that the function (38) is differentiable 
to both variables, 𝑣𝑏 and 𝑣𝑤. Then, following (29), the vector of the 
linearized coefficients can be obtained as 
[

𝑅𝑒𝑞,𝑏
𝑅𝑒𝑞,𝑤

]

= 𝐄
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝜕𝐹𝑣𝑖𝑠(𝑣𝑏 ,𝑣𝑤)
𝜕𝑣𝑏

𝜕𝐹𝑣𝑖𝑠(𝑣𝑏 ,𝑣𝑤)
𝜕𝑣𝑤

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

(40)

Thus, the equation of motion of the SL approach can be rewritten as

𝐹𝑒,𝑐𝑦(𝜔) − 𝑅𝑒𝑞,𝑤�̂�𝑤(𝜔) = �̂�𝑏(𝜔)
{

−𝜔2
[

𝑀𝑐𝑦 +𝑀𝑟,𝑐𝑦(𝜔)
]

+𝐾ℎ𝑠,𝑐𝑦

+ i𝜔
[

𝑅𝑟,𝑐𝑦(𝜔) + 𝑅𝑒𝑞,𝑏

]

}

(41)
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Fig. 11. The representation of the exact buoyancy force of a spar buoy with a non-uniform cross-sectional area. ‘MWL’ embodies the mean water level [28].
where �̂�𝑏 is the complex amplitude of the buoy displacement; 𝐹𝑒,𝑐𝑦
stands for the excitation force of the cylindrical buoy; 𝑀𝑐𝑦 and 𝑀𝑟,𝑐𝑦
are the mass and the added mass of the buoy; 𝐾ℎ𝑠,𝑐𝑦 embodies the 
linear hydrostatic coefficient of the buoy; and 𝑅𝑟,𝑐𝑦 denotes the ra-
diation damping of the cylindrical buoy. Note that 𝐾𝑒𝑥𝑡 and 𝑅𝑒𝑥𝑡 are 
dismissed from the general form of the equation of motion (3) since no 
other external force components are considered in this case study. The 
relevant parameters of the floater are given in Table  1.

To illustrate the effect of the Morison drag force on the dynamics 
of the floater, TD simulation is performed initially for both cases with 
and without the drag effect as a comparison. The time-dependent 
responses are shown and compared in Fig.  4. It can be seen that the 
motion velocity is clearly overestimated in the case without the drag 
force, which suggests the importance of implementing it in numerical 
modeling.
12 
Table 1
Simulation parameters of the case study of Morison drag effect.
 Parameters Quantities  
 Cylinder radius 5 m  
 Cylinder height 10 m  
 Cylinder mass: 𝑀𝑐𝑦 402520 kg  
 Projected area: 𝐴𝑠 78.5 m2  
 Buoy draft 5 m  
 Water depth 100 m  
 Drag coefficient: 𝐶𝑑 1  
 Water density: 𝜌 1025 kg∕m3 

The simulation results obtained from the SL approach are presented 
in Fig.  5, alongside the results of the corresponding nonlinear TD model 
and linear FD model for comparison. Specifically, the nonlinear viscous 
drag force is included in the TD model, as expressed in (38). In contrast, 
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Fig. 12. Instantaneous heave displacement of the spar buoy with considering the linear hydrostatic force and nonlinear hydrostatic force. The simulation conditions are 𝐻𝑠 = 5 m; 
𝑇𝑝 = 10 s; 𝐵𝑣𝑖𝑠 = 30 kNs∕m and 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 = 50 kN∕m.
the drag effect is omitted in the FD model due to its inherent limitation 
to fully linear analyses. It is known that a linear constant damping 
coefficient can be added to represent the viscous drag effect in the 
linear FD method [36]. However, the accuracy of this approximation is 
highly sensitive to the selection of the viscous damping constant, which 
does not align with the inherently nonlinear nature of the Morison drag 
formulation. To avoid introducing additional sources of uncertainty in 
the comparison, the viscous drag effect is deliberately excluded in the 
FD approach here, considering the primary objective here to verifying 
the extended SL approach.

The results show that the proposed SL approach exhibits good agree-
ment with the nonlinear TD model across a range of peak periods. Even 
under relatively high sea states, with a significant wave height of 3 m, 
the relative error of the SL approach compared to the TD model remains 
below 5%. In comparison, the FD model shows a notable discrepancy 
relative to the TD model at lower peak periods. In particular, the FD 
model’s relative error reaches approximately 58% at a peak period 
of 6 s. At higher peak periods, however, all three models present 
comparable results. This is attributed to the reduced wave velocity at 
longer periods, where the omission of the wave velocity term has a 
limited effect on the calculation of the Morison drag force. Conversely, 
at lower peak periods, wave velocity becomes more significant, leading 
to greater discrepancies when it is neglected.

4.2. Multi-variate non-differentiable nonlinearity

4.2.1. Uncorrelated variables: PTO force saturation in WECs (case study 
2)

This case study is focused on the wave energy conversion. The ma-
chinery force saturation in the PTO system of a heaving point absorber 
WEC is addressed. The schematic of the WEC system is presented in 
Fig.  6.

The PTO system plays an important role in energy absorption 
in wave energy conversion [37,38]. It absorbs the kinetic energy of 
oscillating floater as a form of mechanical energy and then converts 
the energy to usable electrical power. Due to the randomness of ocean 
waves, the wave loads can be highly fluctuated even in relatively mild 
sea states [39,40]. In this sense, PTO systems are commonly equipped 
with force or torque saturation mechanism to protect themselves from 
being overloaded and even damaged. The SL method has been adopted 
to address the single-variate PTO force saturation function, reported 
in [18], where the PTO mechanism was simplified as a resistive damper 
and then the PTO force function was only related to the velocity of the 
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WEC’s moving floater. Towards a more realistic representation of PTO 
systems, the reactive control strategy is considered in this work [41]. 
Then, the description of the PTO force is given as a bi-variate function 
related to both the displacement and velocity of the floater [42,43]. 
Considering the saturation mechanism, the PTO force can be expressed 
as

𝐹𝑝𝑡𝑜(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑅𝑝𝑡𝑜𝑣𝑤𝑒𝑐 (𝑡) +𝐾𝑝𝑡𝑜𝑧𝑤𝑒𝑐 (𝑡), 𝑓𝑜𝑟 |𝑅𝑝𝑡𝑜𝑣𝑤𝑒𝑐 (𝑡) +𝐾𝑝𝑡𝑜𝑧𝑤𝑒𝑐 (𝑡)| ≤ 𝐹𝑚

sign[𝑅𝑝𝑡𝑜𝑣𝑤𝑒𝑐 (𝑡) +𝐾𝑝𝑡𝑜𝑧𝑤𝑒𝑐 (𝑡)]𝐹𝑚, 𝑓𝑜𝑟 |𝑅𝑝𝑡𝑜𝑣𝑤𝑒𝑐 (𝑡) +𝐾𝑝𝑡𝑜𝑧𝑤𝑒𝑐 (𝑡)| > 𝐹𝑚

(42)

where 𝑧𝑤𝑒𝑐 and 𝑣𝑤𝑒𝑐 embody the displacement and velocity of the 
WEC floater. Given a stationary process, the displacement of the floater 
and its derivative, namely the velocity, are uncorrelated. This has 
been mathematically proven in [23]. Thus, the linearization of the 
multi-variate PTO force saturation falls into the procedure presented 
in subsection 3.4.2. Referring to (37), the vector of the linearized 
coefficients for the multi-variate PTO force saturation can therefore be 
derived as 
[

𝑅𝑒𝑞,𝑝𝑡𝑜
𝐾𝑒𝑞,𝑝𝑡𝑜

]

= 𝐄
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝑣𝑤𝑒𝑐𝐹𝑝𝑡𝑜(𝑣𝑤𝑒𝑐 ,𝑧𝑤𝑒𝑐 )
𝜎2𝑣𝑤𝑒𝑐

𝑧𝑤𝑒𝑐𝐹𝑝𝑡𝑜(𝑣𝑤𝑒𝑐 ,𝑧𝑤𝑒𝑐 )
𝜎2𝑧𝑤𝑒𝑐

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

(43)

Hence, the statistically linearized PTO force can be expressed as 

𝐹𝑝𝑡𝑜(𝜔) = 𝑅𝑒𝑞,𝑝𝑡𝑜�̂�𝑤𝑒𝑐 (𝜔) +𝐾𝑒𝑞,𝑝𝑡𝑜�̂�𝑤𝑒𝑐 (𝜔) (44)

where �̂�𝑤𝑒𝑐 and �̂�𝑤𝑒𝑐 are the complex amplitude of the velocity and the 
displacement of the WEC respectively; 𝑅𝑒𝑞,𝑝𝑡𝑜 and 𝐾𝑒𝑞,𝑝𝑡𝑜 represent the 
equivalent PTO damping coefficient and the equivalent PTO stiffness 
coefficient.

Subsequently, incorporating the linearized representation of the 
nonlinear PTO force into (3) gives the equation of motion of this case:

𝐹𝑒,𝑤𝑒𝑐 (𝜔) = �̂�𝑤𝑒𝑐 (𝜔)
{

−𝜔2
[

𝑀𝑤𝑒𝑐 +𝑀𝑟,𝑤𝑒𝑐 (𝜔)
]

+𝐾ℎ𝑠,𝑤𝑒𝑐 +𝐾𝑒𝑞,𝑝𝑡𝑜

+ i𝜔
[

𝑅𝑟,𝑤𝑒𝑐 (𝜔) + 𝑅𝑒𝑞,𝑝𝑡𝑜

]

}

(45)

where 𝐹𝑒,𝑤𝑒𝑐 stands for the excitation force of the WEC; 𝑀𝑤𝑒𝑐 and 
𝑀𝑟,𝑤𝑒𝑐 are the mass and the added mass of the WEC; 𝐾ℎ𝑠,𝑤𝑒𝑐 embodies 
the linear hydrostatic coefficient of the WEC; and 𝑅𝑟,𝑤𝑒𝑐 denotes the 
radiation damping of the WEC.
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Fig. 13. The standard deviation of the displacement of the spar buoy at various significant wave heights, predicted by the linear FD model, the SL approach and the nonlinear 
TD model. The simulation conditions are 𝑇𝑝 = 10 s; 𝐵𝑣𝑖𝑠 = 30 kNs∕m and 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 = 50 kN∕m.
As one of the most important performance indicator, the absorbed 
power of the WEC can be calculated based on the derived solution of 
the dynamic responses as 

𝑃 𝑎𝑏 = 𝑅𝑒𝑞,𝑝𝑡𝑜𝜎
2
𝑣𝑤𝑒𝑐

(46)

where 𝜎𝑣𝑤𝑒𝑐
 denotes the standard deviation of the velocity of the WEC 

buoy.
The relevant parameters of the WEC simulated in this case are given 

in Table  2. The SL approach is applied to evaluate the power absorption 
of the WEC under various operation conditions, with the corresponding 
nonlinear TD model and linear FD model implemented for comparison. 
In the nonlinear TD model, the PTO force saturation is described using 
the expression (42). Comparatively, a linear representation of the PTO 
force without the saturation effect is applied in the FD model as 

𝐹𝑝𝑡𝑜,𝑙𝑖𝑛𝑒𝑎𝑟(𝜔) = 𝑅𝑝𝑡𝑜�̂�𝑤𝑒𝑐 (𝜔) +𝐾𝑝𝑡𝑜�̂�𝑤𝑒𝑐 (𝜔) (47)
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Table 2
Simulation parameters of the case study of PTO force limit.
 Parameters Quantities  
 Sphere radius 2.5 m  
 Sphere draft 2.5 m  
 Sphere mass: 𝑀𝑤𝑒𝑐 33543 kg  
 Water depth 100 m  
 Water density: 𝜌 1025 kg∕m3 

For comparison, the PTO power and PTO force are initially com-
puted using the TD model under different PTO force limits, as shown 
in Figs.  7 and 8. These figures correspond to simulation cases with 
positive and negative spring stiffness, respectively. It is evident from 
both figures that the imposed PTO force limit significantly affects 
the time-dependent profiles of both PTO force and PTO power. The 
saturation of the PTO force occurs more frequently in cases with a lower 
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force limit, thereby intensifying the system’s nonlinearity. Additionally, 
it is observed that the instantaneous PTO power tends to be lower when 
a stricter PTO force limit is applied.

The simulation results of the linear FD, SL and nonlinear TD ap-
proaches are presented in Figs.  9 and 10, where various PTO force 
limits are considered. In Fig.  9, a positive PTO spring stiffness is 
applied. It is evident that the PTO force limit has a significant impact 
on the power absorption of the WEC. For instance, when the PTO force 
limit is defined as 50 kN, the absorbed power estimated by the TD 
model is around 20 kW. However, the estimated power rises to nearly 
28 kW by lifting the PTO force limit to 150 kN. Compared to the TD 
model, the linear FD model fails to provide a reliable estimation under 
strict PTO force limits. Specifically, the relative error of the FD model 
to the TD model even reaches 41% when the PTO force limit is 50 kN. 
Comparatively, the SL approach demonstrates satisfactory accuracy, 
with the maximum relative error remaining below 4% across all PTO 
force limits considered in this case.

The application of reactive PTO control strategies to improve the 
power production has been emphasized in several studies within the 
field of WECs [44,45]. However, depending on the specific WEC design, 
negative PTO spring stiffness is often required to implement such 
control strategies [46]. To further demonstrate the applicability and 
robustness of the proposed method for handling multivariate non-
differentiable nonlinearities, negative PTO stiffness is considered in 
this case, and the corresponding simulation results are presented in 
Fig.  10. By comparing Figs.  10 and 9, it is observed that the power 
absorbed by the WEC with negative PTO stiffness is higher than that 
with positive PTO stiffness. For example, the highest absorbed power 
estimated by the TD model is approximately 43 kW with negative 
PTO stiffness and, however, 28 kW with positive PTO stiffness. It is 
acknowledged that this observation is specific to the conditions of this 
particular case study. Nevertheless, regarding the modeling accuracy, 
the discrepancy between the FD model and the TD model appears even 
more notable in the case of negative PTO stiffness. Specifically, at a 
PTO force limit of 50 kN, the FD model exhibits a relative error as 
high as 75%, compared to 42% in the case of positive PTO stiffness. 
Comparatively, the proposed SL approach continues to produce highly 
accurate results, as shown in Fig.  10, with the maximum relative 
error remaining below 6%. These results suggest the reliability and 
robustness of the proposed method in accurately capturing the effects 
of multivariate non-differentiable nonlinearities in the SL approach.

4.2.2. Correlated variables: Nonlinear hydrostatics of a spar buoy (case 
study 3)

Floating wind energy has emerged as a main pillar of future marine 
renewable energy utilization [47,48]. Among a few of the conceptual 
designs, spar-buoy foundations are widely considered supporting sub-
structure to accommodate floating wind turbines in deep water [49,50]. 
The nonlinear hydrostatic effect of a spar buoy is addressed in this case 
study. The schematic of the spar buoy is shown in Fig.  11. The cross-
sectional area of the spar buoy is non-uniform, and it can be divided 
into three regions as rendered in Fig.  11.

Different from the linear hydrostatic representation, the instanta-
neous variations of the free surface and the wetted surface of the 
floater are included in the calculation of the nonlinear hydrostatic 
restoring force. Referring to [22,51], the hydrostatic restoring force can 
be computed by integrating the static pressure over the floater’s wetted 
surface and minus the gravity force: 

𝐹ℎ𝑠(𝑡) = −∬𝑆𝑤(𝑡)
𝑃𝑠𝑡𝐧𝑑𝑆𝑤 − 𝑚𝑔 (48)

where 𝑆𝑤(𝑡) represents the wetted surface, 𝑃𝑠𝑡 denotes the static pres-
sure at a specific point, and 𝐧 is the unit normal vector. Based on the 
Gaussian divergence theorem, (48) can be simplified to: 

𝐹 (𝑡) = 𝜌𝑔𝑉 (𝑡) − 𝜌𝑔𝛥𝑧𝐴 (𝑡) − 𝑚𝑔 (49)
ℎ𝑠 𝑠𝑢𝑏 𝑤𝑝
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The instantaneous submerged volume 𝑉𝑠𝑢𝑏 and water-plane area 𝐴𝑤𝑝
depend on the wave elevation 𝜂 and the buoy’s heaving displacement 
𝑧, while 𝜌 and 𝑔 represent the water density and gravitational accelera-
tion. The vertical offset 𝛥𝑧 between 𝐴𝑤𝑝 and the reference level 𝑧 = 0 is 
typically approximated by 𝜂. As a result, the hydrostatic restoring force 
can be formulated in terms of 𝜂 and 𝑧, as given in (50). 
𝐹ℎ𝑠(𝑧, 𝜂) = 𝜌𝑔𝑉𝑠𝑢𝑏(𝑧, 𝜂) − 𝜌𝑔𝜂𝐴𝑤𝑝(𝑧, 𝜂) − 𝑚𝑔 (50)

Regarding the geometry of the considered spar buoy, the hydrostatic 
restoring force can be further derived as

𝐹ℎ𝑠(𝑧, 𝜂) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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(51)

It can be deduced that (51) is not differentiable at the intersection point 
between every two regions of the buoy geometry as depicted in Fig. 
11. Additionally, as the wave elevation is inherently correlated to the 
buoy’s motion, the vector of the linearized coefficients can be derived 
referring to (37) as 
[

𝐾𝑒𝑞,𝜂
𝐾𝑒𝑞,𝑧

]

=
[

𝜎2𝜂 𝜎𝜂𝑧
𝜎𝑧𝜂 𝜎2𝑧

]−1

𝐄
([

𝜂𝐹ℎ𝑠(𝜂, 𝑧)
𝑧𝐹ℎ𝑠(𝜂, 𝑧)

])

(52)

Therefore, the linearized hydrostatic restoring force in the spectral 
domain can be derived as 
𝐹ℎ𝑠 = 𝐾𝑒𝑞,𝜂 �̂�(𝜔) +𝐾𝑒𝑞,𝑧�̂�(𝜔) (53)

where 𝐾𝑒𝑞,𝜂 and 𝐾𝑒𝑞,𝑧 are the linearized equivalent hydrostatic stiffness 
coefficients related to the wave elevation and the displacement of the 
spar buoy.

It is assumed that the buoy is connected to mooring lines with 
pretension and only the heave motion is considered in this case. The 
mooring effect can therefore be modeled as a linear spring. In this 
sense, the equation of motion can be given as

𝐹𝑒,𝑠(𝜔) +𝐾𝑒𝑞,𝜂 �̂�(𝜔) = �̂�(𝜔)
{

−𝜔2(𝑀𝑠 +𝑀𝑟,𝑠(𝜔)
)

+𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 −𝐾𝑒𝑞,𝑧

+ i𝜔
(

𝑅𝑟,𝑠(𝜔) + 𝑅𝑣𝑖𝑠
)

}

(54)

where 𝐹𝑒,𝑠 stands for the excitation force of the spar buoy; 𝑀𝑠 and 𝑀𝑟,𝑠
are the mass and the added mass of the spar buoy; and 𝑅𝑟,𝑠 denotes the 
radiation damping of the spar buoy. where 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 and 𝑅𝑣𝑖𝑠 denote 
the mooring stiffness and the viscous damping. They are assumed to 
be constant coefficients in this case since the focus of this case study is 
located on the nonlinear hydrostatic effect.

The specification of the spar buoy dimension and relevant simula-
tion parameters are provided in Table  3. In this case, the nonlinear TD 
model employs the complete expression (51) to include the nonlinear 
hydrostatic force. While a linear hydrostatic stiffness coefficient is used 



J. Tan et al. Renewable Energy 256 (2026) 123964 
Table 3
Simulation parameters of the case study of hydrostatics of the spar buoy.
 Parameters Quantities  
 Diameter of Region 1: 𝐷1 4 m  
 Diameter of Region 2: 𝐷2 8 m  
 Diameter of mean water plane: 𝐷𝑚𝑒𝑎𝑛 6 m  
 Height of Region 2: 𝐻1 4 m  
 Height of Region 3: 𝐻2 8 m  
 Buoy mass: 𝑀𝑠 487900 kg  
 Water density 𝜌 1025 kg∕m3 
 Water depth 200 m  
 Constant vicious drag damping: 𝑅𝑣𝑖𝑠 30 kNs∕m  
 Mooring line tension in heave: 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 50 kN∕m  

Table 4
Computational time of different numerical modeling approaches for one simulation
case.
 Case studies Numerical methods Computational time 
 Case study 1 FD 1.9 × 10−2 s  
 (𝑇𝑝 = 10 s) TD 123.5 s (30-runs)  
 SL 3.9 × 10−1 s  
 Case study 2 FD 4.1 × 10−2 s  
 (PTO force limit of 90 kN, TD 155.2 s (30-runs)  
 positive PTO stiffness ) SL 2.8 × 10−1 s  
 Case study 3 FD 3.9 × 10−2 s  
 (𝐻𝑆 = 3 m) TD 161.7 s (30-runs)  
 SL 4.9 × 10−1 s  

in the FD model, given as 

𝐹ℎ𝑠,𝑙𝑖𝑛𝑒𝑎𝑟 = −𝜌𝑔𝜋(
𝐷𝑚𝑒𝑎𝑛
2

)2 (55)

where 𝐷𝑚𝑒𝑎𝑛 is the diameter of the water-plane area of the spar buoy 
at the still water level.

To illustrate the difference, TD simulations are conducted for the 
spar buoy using both linear and nonlinear representations of the hy-
drostatic force. The resulting instantaneous displacement of the spar 
buoy is shown in Fig.  12. It is observed that the linear hydrostatic 
representation generally results in significantly higher displacement 
values compared to the nonlinear case. This implies the importance 
of incorporating the nonlinear hydrostatic force for a more realistic 
estimation of the system response.

The simulation results obtained by the linear FD modeling, non-
linear TD modeling and the SL approaches are presented in Fig.  13, 
where the standard deviation of the vertical displacement of the spar 
buoy is estimated under varying significant wave heights. At relatively 
low significant wave heights, the FD, SL, and TD approaches produce 
similar results. However, as the significant wave height increases, the 
accuracy of the FD model declines, with a relative error exceeding 
10% compared to the TD model when the significant wave height 
surpasses 3.5 m. This discrepancy arises from the amplification of 
the nonlinear hydrostatic effect at higher wave heights, which leads 
to larger motions and wave elevations. In contrast, the proposed SL 
approach maintains high accuracy across all considered conditions, 
with the relative error consistently remaining below 4%, even at larger 
significant wave heights.

4.3. Identification of computational efficiency

The most significant advantage of the SL approach is its high 
computational efficiency while accounting for nonlinear effects. The 
computational time required to complete a single simulation using 
different numerical modeling approaches is presented in Table  4. All 
simulations are performed on the same machine, equipped with an Intel 
i7/2.80 GHz processor. For a fair comparison, the simulation conditions 
are kept identical and are specified in the table. It is important to 
16 
Fig. A.14. Linearized damping coefficients utilized in case study 1, 𝐻𝑠 = 3.0 m.

note that the total computational time reported for the TD model 
accounts for 30 simulation runs, as the TD model must be repeated 
multiple times in each case to average the results and reduce random
errors [7].

As shown in Table  4, the SL approach requires approximately 10–20 
times more computational effort than the FD model. However, the 
computational time of the SL approach remains three orders of mag-
nitude lower than that of the TD model. This suggests the significant 
advantage of applying the SL approach to scenarios where a large 
number of simulations are in demand, such as early-stage design itera-
tions, systematic optimizations, and large-scale configuration planning 
of marine renewable energy plants. Furthermore, the SL approach could 
also significantly accelerate the control design and control parameter 
optimizations of floating renewable energy devices, such as WECs.

5. Conclusion

This study has described the methodology and demonstrated the 
applicability of the SL method for incorporating multivariate non-
differentiable nonlinear effects, focusing on the typical complex nonlin-
earities encountered in floating renewable energy devices. To address 
the challenges posed by the non-differentiability of multivariate nonlin-
ear functions, the existing SL method has been further developed. The 
mathematical derivation for handling multivariate non-differentiable 
nonlinearities is presented in detail.

Three case studies, representing various applications in floating re-
newable energy systems, have been conducted in this work. These case 
studies address multivariate differentiable nonlinearities, multivari-
ate non-differentiable nonlinearities involving uncorrelated variables, 
and multivariate non-differentiable nonlinearities involving correlated 
variables, respectively. The accuracy of the extended SL method was 
verified against the higher-fidelity nonlinear TD model across these 
cases. The results show that, despite the complexity of the nonlin-
ear effects considered, the extended SL method maintained relative 
errors below 6%, while achieving computational times only slightly 
higher than the FD model and several orders of magnitude faster 
than the TD model. The primary source of errors of the SL method 
arises from the Gaussian assumption of the system, which has been 
demonstrated in [12]. Comparatively, the FD model exhibited relative 
errors exceeding 70% in certain cases.

These findings confirm that the SL approach provides an effective 
balance between accuracy and computational efficiency. Moreover, 
the limitations previously associated with applying the SL method to 
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Fig. B.15. The linearized coefficients utilized in case study 2. The simulation conditions are 𝐻𝑠 = 4 m; 𝑇𝑝 = 10 s; 𝐵𝑝𝑡𝑜 = 100 kNs∕m and 𝐾𝑝𝑡𝑜 = 40 kN∕m.
Fig. B.16. The linearized coefficients utilized in case study 2. The simulation conditions are 𝐻𝑠 = 4 m; 𝑇𝑝 = 10 s; 𝐵𝑝𝑡𝑜 = 80 kNs∕m and 𝐾𝑝𝑡𝑜 = −20 kN∕m.
Fig. C.17. The linearized coefficients utilized in case study 3. The simulation conditions are 𝑇𝑝 = 10 s; 𝐵𝑣𝑖𝑠 = 30 kNs∕m and 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔 = 50 kN∕m.
complex nonlinearities in floating renewable energy systems have been 
successfully lifted.
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Appendix A. Derived linearized coefficients in case study 1

See Fig.  A.14.

Appendix B. Derived linearized coefficients in case study 2

See Figs.  B.15 and B.16.

Appendix C. Derived linearized coefficients in case study 3

See Fig.  C.17.
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