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Abstract

Formal verification is a stricter way of ensuring correctness of a program, but sitting down
and writing the proof yourself is often time-consuming. SMT solvers try to automate parts of this
process. This paper aims to explore Dafny, a programming language and verifier that uses an SMT
solver underneath to do this verification. This paper will go over its logical foundations, and how
it can be used to verify an in-place selection sort algorithm as well as a key-value store. It will
also explore a feature of Dafny that allows the user to compile to other languages, and will discuss
its usefulness in the industry. Verifying the sorting algorithm was very straightforward while the
key-value store posed some problems. However, Dafny itself seems to be very straightforward
to program in. Its ability to compile to other languages leaves a lot to be desired. While the
compiled code is fully functional, the code is barely readable and less than ideal to work with. A
further study discussing Dafny’s ease of use compared to other tools could be conducted to see if
the lacking compiler could outweigh having a native verifier specifically designed for a high-level
programming language.
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1 Introduction
Ensuring correctness of failure sensitive software such as security, automotive, control, and aerospace
systems is crucial. There are many ways to check the validity of written code, with writing tests being
the most widely used practice. However, “program testing can be used to show the presence of bugs,
but never to show their absence!” [1, pg.7], as Edsger W. Dijkstra said. This is why writing tests is
not strict enough to ensure total correctness of software. One such stricter form is formal verification,
which is the mathematical approach to checking if a program satisfies given properties, through a
formal model of the program with Hoare logic as its basis [2].

However, one major disadvantage of formal verification is that it had to be done by hand. Satis-
fiability modulo theories (SMT) solvers try to partially solve this problem by automating parts of this
formal verification. This is done by operating on first-order logic and reasoning on the negation of a
given premise. With this, they try to find a model that satisfies a given set of clauses. Examples of
these type of SMT solvers are Z3 [3] and Alt-Ergo [4].

Over the years, many different programs have been created using these SMT solvers as their un-
derlying foundation to help with formal verification of written software such as Spec# [5], KeY [6],
VCC [7] and Dafny [8]. This paper will focus on Dafny, a programming language designed with formal
verification in mind, exploring its logical foundations. This paper will also show how Dafny can be
used to verify an in-place selection sort algorithm, as well as a key-value store using a custom hashmap.
The latter is to my knowledge never done before. Furthermore, Dafny allows for compilation of its
written code to other languages such as C#, Java, Rust, and Python. This paper will also explore
the usefulness of using this feature as part of the programming pipeline to verify certain aspects of a
program. While a lot of research is done surrounding Dafny, we found lacking information regarding
why this language has low usage in the industry considering its ability to compile to other languages.
By exploring this ability we hope to find out as to why this may be the case.

The structure of this paper is as follows. Section 2 will go over the background of Dafny as well
as a simple explanation on how Dafny can be used for verification. Section 3 will go over the formal
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problem description of the in-place selection sort and key value store. Section 4 will give a structured
overview of how these were verified using Dafny. It will also go over the outcome of compiling the
verified code to C#. Section 5 will discuss the results, go over future recommendations for research,
and conclude the paper. Finally, Section 6 will be about reproducibility and LLM usage.

2 Background
This section will consists of three parts. A brief introduction of the Dafny language itself, an overview
of basic Dafny constructs, and finally a look at the verification pipeline of Dafny.

2.1 What is Dafny?
Dafny is a programming language and verifier made by the Research in Software Engineering group
at Microsoft Research in 2009 under the lead of K. Rustan M. Leino [8], [9]. Dafny is built on top of
Boogie, which is an intermediate language created to design program verifiers [10]. Boogie has already
been used before to build various program verifiers for different languages such as Spec# for C#, and
VCC for C. Unlike those, Dafny offers its own unique language called Dafny. Because Dafny has its
own unique language it could fully be made with formal verification in mind. This means verifying
and implementing the software are more integrated with each other.

VS code extension vs binary There is more than one way of getting started with Dafny. The
easiest one by far is using the Dafny Visual Studio Code extension1. This extension acts like an IDE
for Dafny. It automatically checks the syntax and compiles to Boogie. It makes the Dafny coding
experience a lot easier to manage.

Dafny can also be used in the command line, by installing a binary2. While less convenient when
it comes to writing code, it allows for more freedom when compiling code to other languages.

related works Work on Dafny has been consistently active, with the most recent paper published in
2025 about improving axioms in Dafny [11]. Dafny is primarily used for teaching in academic settings
but that is not the only place where it has been used over the years. Usage of Dafny in industry has
been increasing ever since its release. It was used by Amazon to model both the authorization engine
and the validator of Cedar which is a authorisation-policy language [12]. Microsoft has also used Dafny
for verification in their IronFleet project [13]. Dafny has also been used for Qafny, which is a verifier
for quantum-programs using Dafny as a backend. Qafny has been used to verify notable quantum
algorithms like quantum-walk algorithms, Grover’s algorithm and Shor’s algorithm [14].

2.2 Dafny basics
Classes Dafny allows for the construction of classes, which in return allows for the creation of objects.

Methods These are imperative executable pieces of code. They are allowed to modify the heap.
They are allowed to be defined recursively but their termination has to be proving using a decreases
clause.

1https://marketplace.visualstudio.com/items?itemName=dafny-lang.ide-vscode
2https://dafny.org/latest/Installation#windows-binary
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Functions A function in Dafny is different from a method. They must be pure (so no side effects),
total (must be defined for all inputs of their domain) and must always terminate. While termination
still has to be proving, Dafny can more often figure this itself when it comes to functions. Because
functions must be pure they are not allowed to modify the heap, but in return are allowed for reasoning
in clauses.

Clauses Requires describe what must hold at the input of a method or function. On the opposite
end, ensures are the clauses that describe what must hold at the end of a function or method. They
are the proof goals. Invariants are the clauses used for loops. They must hold at every iteration of
the loop.

Imagine you want to take a positive integer a, multiply this integer by 3 and then take the modulo
of a positive integer b of the result. One could use a Dafny function, using requires and ensures
clauses, to verify the correctness of said function. That by ensuring that the output is always between
0 and b:

Figure 1: example function in Dafny

Datatypes Dafny has your standard types that you would expect of a language like integers,
booleans, strings, etc. Next to that Dafny also has arrays, which is an immutable object in memory
consisting of a sequence of mutable locations. This is different from Dafny sequences, which are
not objects by themselves, but rather a collection of heap allocated objects. Other collection types of
Dafny are sets, multisets, and maps.

Reads, Modifies Dafny allows functions and methods to access memory and allows methods to
mutate. To ensure that all of this works out, everything in memory is off the table unless told to. To
accomplish this Dafny uses Dynamic frames [15]. Dynamic frames in dafny model the heap as a map
of object references and their fields. You then frame, using the object itself or a collection of objects,
what parts of it can be accessed (reads) and even what parts can be modified (modifies). This is
checked by the Dafny language itself.

Predicates A predicate in Dafny is simply put a function that returns a boolean. While they
don’t add anything new in that sense, they are a great way of taking large clauses and condensing
them into a single function taking an input.

Lemmas A lemma in Dafny is basically a part of a proof. When going beyond toy examples Dafny
often has a hard time proving something from just the pre- and postconditions. Lemmas are a great
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way of breaking up this proof into smaller blocks to guide Dafny in the right direction. Because of
this, lemmas are purely intermediate steps rather than a goal unlike predicates which can be either
a pre- or postcondition.

Asserts Asserts in Dafny are rarely something needed for actual verification. They are however a
great way of debugging your proof. When an assert is encountered it tells Dafny to verify it right now
with everything that it knows thus far. With this you can break up your proofs into smaller chunks
to see what Dafny is and is not able to verify allowing you to find the core issue.

Dafny has much more beyond the basics given here, which you can find in their reference manual [16].
However, these are all the constructs that we will need to verify the in-place selection sort algorithm
and the key-value store. Dafny is capable of a lot more than what will be shown here. M. Leino has
created a website with several papers outlining many advanced features of Dafny [17].

2.3 The verification pipeline
To verify your programs, Dafny takes all written code and all
written clauses (requires, ensures, invariant, decreases,
asserts) and translates these to the Boogie language. The
Boogie program that is created from this conversion is checked
by the Boogie language. This check creates verification con-
ditions (VC), which are logical formulae generated from all
the clauses Boogie finds that must hold. Depending on the
type of clause, it generates a different type of VC. These gen-
erated VCs are then sent to Z3 [3], which is the default SMT
solver Boogie uses. Z3 then tries to verify all these VCs. If
there are one or more VCs it cannot verify, it will send that
to Dafny.

Figure 2: The verification
pipeline of Danfy

3 Formal problem description
The following versions were used for the different tools used in the research:

Tool Version
Dafny Visual Studio Code Extension 3.4.4
dotnet3 9.0.203
Dafny Binary 4.10.0
C# Dev Kit Visual Studio Code Extension4 1.20.35

Table 1: Tools used and their version

It should be noted that the Dafny visual studio code extension uses Dafny 4.10.0.0 which is the
same version as the binary. When it comes to the Binary, the hash of the commit for the version we
used is f24efae13647804624723de981bb5c95ea83e177.

3https://dotnet.microsoft.com/en-us/download/dotnet/9.0
4https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
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3.1 In-place selection sort
The selection sort we will be implementing, visible in Listing 1, consists of 3 main parts each needing
its own axioms for verification. We will make use of a pivot which is a position in the array that divides
the sorted part of the array from the unsorted part.

minimum value This needs to ensure that the minimum value is found in the unsorted part of the
array. We can implement this using a while-loop, for which i is the loop index. With an invariant
for each iteration, we ensure that the current minimum value is indeed the smallest in the already
explored part:

∀j ∈ [pivot, i) : v[min_index] ≤ v[j]

swap This must ensure that the pivot and previously obtained minimum value are swapped correctly.
That means that at the end of the swap everything up until the pivot needs to be smaller than
everything after the pivot:

∀i ∈ [0, pivot),∀j ∈ [pivot, len) : v[i] ≤ v[j]

main loop This needs to combine the two previous parts in such a way that in the end the list is
fully sorted. For every iteration, the sorted part of the array must be sorted incrementally. len here
denotes the length of the array itself:

∀j ∈ [0, len),∀i ∈ [0, j) : v[i] ≤ v[j]

method selectionSort(v: array<int>) {
// for convience we give the length of the array a name: len
var len := v.Length;
var pivot := 0;
while pivot < len { | main loop

var min_index := pivot;
var i := pivot + 1;
while i < len { |

if v[i] < v[min_index] { |
min_index := i | minimum value

} |
i := i + 1; |

}
var temp = := v[pivot]; |
v[pivot] := v[min_index]; | swap
v[min_index] := temp; |
pivot := pivot + 1;

}
}

Listing 1: Implemenaton of selection sort in Dafny. Note that the sectioning on the right is not part
of the language

5



3.2 Key-value store
The key-value store is implemented using a custom-built hash map. It consists of the following com-
ponents:

• Fixed-size array: The main storage is an array named table of size SIZE, which is set to 512.

• Hashing and Collisions: A hash function, which is passed as a lambda of type K → int, maps
each key of generic type K to an index in the array. When multiple keys hash to the same index,
the corresponding values are stored in a collision chain.

• Collision chains: These chains are implemented as Dafny sequences, allowing dynamic,
ordered storage at each array slot.

• Entry storage: Each element in a sequence is an instance of the Entry<K, V> class, which
encapsulates a key and its corresponding value of type V.

0 [Entry<K,V>, ...]

1 [Entry<K,V>, ...]

...
...

SIZE−1 [Entry<K,V>, ...]

Figure 3: Structure of the custom hash map. Each array index stores a sequence of entries.

Key uniqueness It is important that all keys contained in the map are unique. The easiest way to
define this is using set notation. Let Map be this set containing all key-value pairs contained in the
hash map. Then we define a function keysOfMap(Map):

keysOfMap(Map) = {k | (k, v) ∈ Map}

Uniqueness is something inherent of sets so uniqueness of keys would be defined as the length of
keysOfMap(Map) being equal to the length of Map:

|keysOfMap(Map)| = |Map|

Within the class structure of the hash map we define 3 methods, all ensuring key uniqueness at its
in- and output:

Get(key) This takes in a key. If the key exists within table, it returns the value attached to this key.
If not then nothing is returned. For this method we need to prove that if the key indeed exists within
the map, a value is returned. This value then must be what was attached to the key. If the key does
not exist in the map, we need to prove that nothing is returned.
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Delete(key) This takes in a key. If the key exists within table, it deletes this key value pair and
returns the value that was attached to this key. If not then nothing is returned and table remains as
is. We need to prove the same here as Get(key) in addition to making sure that the key no longer
exists in table.

Put(key, value) This takes in a key and value. If the key exists within table, it replaces the value
of that key with the one given. If the key does not exist in table, it is added at the end of the chain.
Here we need to prove that at the end of the method the key exists in table and the value attached to
it is what was given at the input.

In order to return this nothing we use a Dafny datatype to construct Option<T>. This can either
be of type Some which will have a value in it or of type None which contains nothing:

datatype Option<T> = Some(value: T) | None

Listing 2: implementation of the Option<T> datatype in Dafny

3.3 Compiling to C#
We are very limited regarding testing the correctness of the compiled code. The main issue is that just
writing tests to check for functionality is not enough to ensure correctness. To make sure the compiled
code is correct we would need to verify the Dafny compiler to C# itself, as well as verifying the C#
compiler. This is way beyond the scope of this research. So for this case we will test on how easy
it is to use the compiled code, the quality of the compiled code. This will be tested by taking what
has been compiled and then taking that code and check its functionalities against a few toy examples.
These toy examples will be simple if-else statements that check the obtained output is correct given
an input.

4 Implementation
Most of this section will focus on the verification of two problems rather than diving into how they
were implemented. However, for the key-value store several aspects of the methods were extracted into
separate functions for easier verification. Which parts got extracted will be mentioned in Section 4.2.

4.1 Sorting Algorithm
All core components were verified very closely to what was described in Section 3.1. Nothing needed
to be changed about the implementation.

minimum value The syntax for actually writing down these clauses is very similar to what you
would have for a mathematical definition. The axiom we set out to verify here can then also be
translated as follows to a Dafny invariant for verifying finding the minimum value in the unsorted
part of the array:

∀j ∈ [pivot, i) : v[min_index] ≤ v[j]

invariant forall j :: pivot <= j < i ==> v[min_index] <= v[j]

One extra thing Dafny in this case needs is confirmation that what we are indexing over is indeed
in bounds. In this case, we need to check this for both i and min_index.
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swap Similarly, we can do a pretty direct translation to Dafny code. However, instead of defining
the two domains separately, they are defined in one loop:

∀i ∈ [0,pivot) , ∀j ∈ [pivot, len) : v[i] ≤ v[j]

invariant forall i, j :: 0 <= i < pivot <= j < len ==> v[i] <= v[j]

Main loop This algorithm modifies the contents of the input array. Besides giving a reads clause
so that Dafny allows us to do this, we also need to verify that the content of the array only ever gets
moved around within the array and not removed. This is very important when modifying content
within the heap. To ensure this, we will construct a predicate. This predicate makes use of Dafny’s
multisets. Specifically, we will be converting the contents of the array to a Dafny sequence. This
allows us to convert it directly to a Dafny multiset, since arrays in Dafny are objects. A multiset in
Dafny keeps track of all unique elements and how many times they occur. This means if two multisets
are the same, the contents of those sequences are the same. And since we took all the items of the
array into a sequence, that also means that the two arrays have the same content. We will call this
predicate sameContent(arr1, arr2) and construct it as follows:

Figure 4: predicate to ensure the content stays the same

We call this predicate in the main loop using an invariant. In order to call the previous state of
the array we can make use of Dafny’s old() function. old() in Dafny is a reference to the previous
state of the input, which can be either the beginning of a method/function or a previous step of a loop
iteration.

With that the only thing left to do is construct the clause defined earlier into something Dafny can
understand. This to prove that at every iteration of the loop, the sorted part of the array is sorted in
ascending order:

∀j ∈ [0, len) , ∀i ∈ [0, j) : v[i] ≤ v[j]

invariant forall i, j :: 0 <= i < j < pivot ==> v[i] <= v[j]

4.2 Key-Value store
Verifying this key value store ended up deviating in a lot of places. Extracting parts of the methods
into functions instead was done for convenience. This made proving these methods a lot easier, as
reasoning about recursion is often more straightforward than having to define loop invariants that
must always hold. By far the biggest deviation was in verifying the correctness of unique keys.
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Key Uniqueness The main reason why we cannot define uniqueness the way we did in Section 3.2,
is that Dafny cannot reason backwards from it. Showing Dafny two sets are of equal length does
not give it any information about what this means for the elements inside the sets. If none of our
other proofs relied on keys being unique, this would not have been a problem. Unfortunately, all three
methods require this uniqueness for other clauses to work. Otherwise, Dafny is unsure that only one
possible output exists. So we need to come to a definition that Dafny can use to reason backwards.

Updating Key Uniqueness Since we need a definition that reasons about the content of the map,
we can first define the following expression for what it means for a single chain to be unique:

∀i, j ∈ [0, |chain|) : i ̸= j ⇒ chain[i].key ̸= chain[j].key

forall i, j :: 0 <= i < |chain| && 0 <= j < |chain| && i != j ==>

chain[i].key != chain[j].key

We define this as a predicate under the name of keyUniquenessChain(chain). Since our map,
which we named table, is just an array containing all chains, we can ensure uniqueness of all chains in
the map as follows:

∀chain ∈ table : keyUniqueness(chain)

Of course, this is not enough to ensure uniqueness over the entire map since we don’t know if the same
key exists in different maps. However, we are only ever operating on a single chain with any given
method. Every other chain is never explored. In order for our future proofs to function Dafny only
ever needs to be aware that keys within a chain are unique. Keys over the whole map being unique
can be a separate concept of its own. This makes proving the reset easier. Instead of matching each
chain to check if they have no overlapping keys we are going to prove that any given key will also end
up in the same chain. We can do this because Dafny functions must be pure, total and must always
terminate. This means they are deterministic. Determinism meaning that if two inputs, x1 and x2,
are the same, the output of a function F (x) is always the same:

x1 = x2 ⇒ F (x1) = F (x2)

Since the hash function we defined is a Dafny lambda, which have to adhere to the same rules as
functions, we now know that all keys in a chain being unique means all the keys in the full map are
unique.

Updating the methods This notion however allows for more than just proving uniqueness over
the entire map. It also allows us to reconstruct the methods. Since we know a key can only ever be
in one chain we can directly go this chain and ignore all the other chains. This allows us to create the
following template that all methods will use:
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Figure 5: Formal for all three methods, get, delete and put

However, using it like this means we now have to make Dafny aware of it. This can be done by
telling Dafny all keys within a chain have as output of the getIndex(key) function the position of the
chain in the map.

∀i ∈ [0, |table|) , ∀e ∈ table[i] : getIndex(e.key) == i

forall i :: 0 <= i < SIZE ==> forall e :: e in table[i] ==>

getIndex(e.key) == i

We model this as another predicate under the name of keyMapsToHashedIndex(table). Nothing
else has to be proven to Dafny for this to work properly.

Creating a helper function Before moving on to the three main methods we first create a function
to quickly collect all keys of a chain and all keys of the entire map. This to more easily reason about
just keys. All we will then need to do is call this function instead of creating a full loop again. We call
these functions keysOfChain(chain) and keysOfMap(table). Let’s say we want to make sure a key
exists within a chain. Instead of having to write:

∀i ∈ [0, |chain|) : ∃e ∈ chain . e.key = key

We can simplify these statements to:

key ∈ keysOfChain(chain)

For both of these functions, we need to tell Dafny what they actually return in the form of two
ensures clauses. In the case of keysOfChain(chain) we tell Dafny that all keys of the input are in
the output and that all keys of the output are in the input:

∀e ∈ chain : e.key ∈ keysOfChain(chain)

∀k ∈ keysOfChain(chain) : ∃e ∈ chain . e.key = k

ensures ensures forall k :: k in keysOfChain(chain) ==> exists e :: e in chain

&& e.key == k
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We use almost the exact same approach for keysOfMap(table). Instead of reasoning over the
individual entries of the map however we reason over the chains. We then take what we already know
about the chains.

get(key) This function is very straightforward. Since nothing is modified, we also do not need to
check that everything has remained unchanged. The part that was extracted here into its own function
is when the key is inside of the chain. In this case, we need to find the key and return its value. We
call this function getEntryChain(chain, key). The most important thing this function has to prove,
is that what we return is actually the value attached to our key.

∀e ∈ chain : e.key = key ⇒ getEntryKeyChain(chain, key) = e.value

ensures forall e :: e in chain && e.key == key ==>

getEntryChain(chain, key) == e.value

The value returned from this method is then wrapped in Some. We also give this function two
preconditions. One tells it that the key exists in the chain. The other is that the chain has unique
keys. This tells Dafny that we will always return something and that something can only be from one
key. This means that our previous clause is verified without need of further support.

Forcing Dafny to reason backwards That just leaves us with the two cases that return what we
want. If the key is in the table, we return Some with the correct value inside:

key ∈ keysOfMap(table) ⇒ out = Some(getEntryChain(chain, key))

Or when it is not we return None:

key /∈ keysOfMap(table) ⇒ out = None

Dafny has a problem with the former. This is due to the way Dafny handles goals (ensures claues).
It does not try to reason backwards from them by unfolding unless told to. This is to save runtime
in case it does not need to. This is when a post condition is constructed in the same manner as the
function or method. If what you are trying to prove is A ⇒ B and your function/method is created
going from A to B, Dafny has no problem. We encounter this problem here with keysOfMap(table).
In order to use the function getEntryChain(chain, key), the key we give it must be inside of the
chain. So Dafny needs to go from B and then reason backwards to A. This requires unfolding which
Dafny does not do unless told to.

Normally, this can be solved with a lemma or assert inside of the function or method. This is not
going to work here. The reason for this because getEntryChain(chain, key) wants this information
to already be known when this goal is constructed. In this case, we will have to put an extra ensures
clause telling Dafny what is going on:

key ∈ keysOfMap(table) ⇒ key ∈ keysOfChain(table[getIndex(key)])

ensures key in keysOfMap(table[..]) ==> key in keysOfChain(table[getIndex(key)])

This clause also fails to verify for the same reason, but this time we can use a lemma in-
side of the get(key) method. Dafny already knows the keys inside of a chain always has as out-
put of getIndex(key) the index of this chain. It also knows that the key does not exist inside
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of the chain where it is supposed to be. We give this information to a lemma which we call
keyNotInHashedChainNotInTable(key). We then construct the following ensures clauses to tell
Dafny that this also means the key cannot be anywhere else. From keyMapsToHashedIndex(table) it
knows that:

∀i ∈ [0, SIZE) : i ̸= getIndex(key) ⇒ key /∈ table[i]

Combine this with the information we gave this lemma and we now know that the key is not in a
chain:

∀c ∈ table : key /∈ keysOfChain(c)

A sum over all keys within every chain is the definition of keysOfMap(table). We can directly create
the following goal:

key /∈ keysOfMap(table)

Then we call this lemma inside of the case our key is not inside of the chain. Dafny now links what
it knows from the lemma and figures out that a key inside of a map means it is always inside of the
chain where it is supposed to be.

delete(key) With get(key) verified, the biggest obstacles are gone. Everything we do after that is
just a different combination of what we have already done. In the case of delete(key), we extract
removing the key into its own function. Since this method modifies our table we also need to proof
that everything but the changed key gets touched. We can split this between the method and function.
The method only has to proof that everything but the chain at getIndex(key) is untouched:

∀i ∈ [0, SIZE) : i ̸= getIndex(key) ⇒ table[i] = old(table[i])

ensures forall i :: 0 <= i < SIZE && i != getIndex(key) ==>

old(table[i]) == table[i]

The function then verifies that all but the deleted key are still there. Checking that this function
returns the value attached to this deleted key is done in the same way as we did for get(key).

put(key, value) The only difference here is that we now need a function for both cases. One for
adding a new entry and one for replacing an existing entry. Similarly to getKeysOfChain(chain) we
verify that all keys are still there at the end. This function does not return anything. In both cases
it also ensures the key to be present in the end. That means we can use the same ensures clauses
for both cases. Namely that the key is present in the end and that its value is the value passed in the
method definition:

key ∈ keysOfMap(table)

getEntryChain(table[getIndex[key]], key) = value

4.3 compiled to C# code
All code was successfully compiled to C# code using the built-in feature that the Dafny VS code
extension has. Each produced about 6000 lines of code. Not all of these 6000 lines are the actual
code written in Dafny. The majority of it is stuff that is always there, but that you cannot see when
programming in Dafny. About 200 of these 6000 lines of code are what was actually written in Dafny.

The code was tested on basic functionality. For the sorting algorithm, it was sorting an array of
ten integers correctly, which it did. For the key-value store an instance was created with int as key

12



and string as value. Then using the put(key) method, we added the following key-value pairs: <0,
":)">, <512, ":(">, <10, "byebye">. Then from this the following was tested:

Test Description Passing Condition Result
Using get(key) on key 15 which
does not currently exist in the
map.

None is returned. Passed

Using get(key) on key 10 which
has the value "byebye" attached
to it.

Some("byebye") is returned. Passed

Using delete(key) on key 10
and checking if get(10) returns
None afterwards.

None is returned. Passed

Using get(key) on both key 0
and 512, which share the same
chain.

Some(":)") is returned for get(0) and
Some(":(") is returned for get(512).

Passed

Table 2: Key-value map test cases and results

5 Conclusions and Future Work
Dafny is a programming language built on Boogie which is an intermediate tool used to build program
verifiers. Boogie uses the SMT solver Z3 underneath to verify everything written in Dafny. Dafny
offers numerous amount of built-in tools to make verification of written software within the language
as straightforward as possible. That being said, that doesn’t make the verification process easy enough
to be used everywhere. The larger a piece of software gets, the more complex the verification gets.
When verifying software does not go as planned it isn’t always clear if the problem lies with the written
program or how it has been verified. Sufficient knowledge of formal verification is still required to fully
verify anything beyond some toy examples. Dafny offers a way to generate counter examples, however,
this has been near useless for the algorithms verified here. It seems to be able to find the clauses it
has issues with but often fails to generate counterexamples for it. While this process is not nearly as
straightforward as simply writing tests, once something is verified the stronger guarantee of correctness
is very valuable. Hence with how these tools are right now if total correctness is really important like
in security systems, tools like Dafny offer a great solution to this problem.

Verifying the sorting algorithm was very straightforward. The many built-in tools of Dafny helped
a lot here since they reduced the complexity of what had to be proven. This was less of a case when
it came to the key-value store. Here you really felt that you really need to be explicit. This was most
noticeable when trying to verify the uniqueness of keys. Something that would be sufficient for proving
key uniqueness was in this case not good enough, because Dafny could not reason backwards from it.
Beyond toy examples like the selection sort, verifying software in Dafny requires a good understanding
of formal verification.

Dafny also allows for compilation to other languages. This paper aimed to explore the process of
compiling the verified written Dafny code into C#. Although the compiled code is functional, it is
not easy to read. Using the code is also less clean than what you would typically write, and trying to
integrate it into an already existing project is less than ideal. That being said, it is fully functional
and there have been companies (mainly Amazon and Microsoft) willing to put these inconveniences to
the side to verify aspects of their programs.
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Dafny’s deep integration of formal verification tools in its language is a great way however of
learning formal verification. Simple to understand errors (albeit lacking in guidance at times) make
finding mistakes somewhat easy. Dafny’s assert statements are a great way of breaking up the proof by
yourself which can then also be used to debug the code. However, when it comes to actual industrial
usage, a comparison between Dafny and a verifier like KeY would be interesting to see how useful
Dafny’s compilation to other languages really is. Would Dafny’s ease of use over other tools outweigh
having to compile to another language? And how would that compare to a verifier that already works
with that language where cleaner code could be written?

This language is still actively being worked on trying to improve several aspects of the language,
but what we find lacking is a way of trying to integrate formal verification into more programming
pipelines where possible. Dafny is as it stands a nice bridge, but as a stand-alone language it leaves
a lot to be desired when other more mainstream programming languages are used like C++, Java
and Python. Some future work could be to look at ways of improving Dafny’s integration into other
languages, rather than simply compiling to that language. In addition, a case study could be conducted
in finding to what degree a tool like Dafny is worth using before the complexity of the program becomes
too much or too big to completely verify. Right now, the sorting algorithm and key-value store were
manageable enough and did not require too much, but there will be a point where the tool needs too
much guidance so that verification becomes the bottleneck rather than the implementation.

6 Responsible Research
All written code and all generated code is available on my GitHub5. Next to that, Section 3 already
outlined all the different versions of the tools that were used. It also offers a full explanation of the
implementation of these algorithms. All this combined results in this research being reproducible.

Grammarly and the build-in grammar checker of Overleaf were primarily used for checking grammar
and spelling of this paper. Large Language Models (LLMs), of which only ChatGPT 3.0 was used,
were primarily used for help with writing Latex code for the figures and code blocks (see Appendix A).
A few questions regarding the Dafny syntax were asked to ChatGPT 3.0 as well. However, the answers
obtained were far from helpful as ChatGPT failed to write functional Dafny code, often mixing in
syntax of other languages. Because of this, none of the Dafny code ChatGPT wrote was used.

5https://github.com/jeroenkoel/Research-Project-Dafny.git
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Appendix A LLM prompts used
For Table 1 the following prompt was used:

For Table 2 the following prompt was used:
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When it comes to creating the syntax highlighting the following prompts were used to generate the
needed Listing variables:

Finally, for the creation of the colour coded comparison between math notation and Dafny syntax
there isn’t really one prompt that brought me to this situation. The prompt that ended up giving
what I needed was the following:
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However, before this I tried to make the colour highlight work on the Listing code blocks which
ended up not working properly. Below all the prompt that came before this:
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