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Abstract
This report outlines the design and implementation of a subsystem within the automated e-nose pro-
totype, which is based on a CMOS Pixelated Capacitive Sensor (PCS) array. The objective of the
e-nose prototype is to detect the presence and identify the type of volatile organic compounds (VOCs).
A potential use case is to accommodate greenhouses with these e-noses to detect infestations in plants.

The subsystem presented in this report is tasked with programming the FRDM-MCXN947 develop-
ment board to enable and improve communication and control between the PCS array and the micro-
controller unit (MCU). In addition, the development board is also explored to investigate the feasibility
of replacing currently used external modules with on-board peripherals. To achieve this, the CTIMER
and SCTIMER are analyzed and implemented with the MCUXpresso IDE. The results showed that both
of these peripherals have difficulties in simultaneously generating clock signals of different frequencies
required for the communication protocol between the sensor and the MCU. However, the SCTIMER
is capable of generating a differential clock, currently produced by the AD9552 external clock, though
with lower signal quality.

i



Preface
This thesis was written as part of the Bachelor’s program in Electrical Engineering at TU Delft. It re-
ports on the software development conducted within the project “Building a Fully Automated E-nose
Prototype Based on a CMOS Pixelated Capacitive Sensor Array.” The intended audience of this thesis
includes fellow students participating in the Electrical Engineering Bachelor. Therefore, it is assumed
that the reader possesses the knowledge acquired from all courses within the program.

This project is divided into three subgroups, each responsible for a specific component of the fully
automated e-nose prototype. To gain a complete understanding of the system’s overall development,
the reader is encouraged to consult the theses written by the other two subgroups [1][2].

We would like to express our gratitude to Prof. Dr. Ir. F. P. Widdershoven and Mr. T. Shen for
proposing such an intriguing project. Their guidance over the past eight weeks has been both edu-
cational and encouraging. Working on this project has given us valuable insights into how academic
research and engineering practice are integrated within an educational setting.

We also thank Delft University of Technology, especially the staff at the Tellegen Hall, for providing
the necessary materials and a safe, supportive working environment. Finally, we want to thank our
fellow students Yousri Machtane, Pieter Olyslaegers, Chantal Chen and Feifei Lin for their collaboration
and for making this project an enjoyable and rewarding experience.

J. K. Pang
W. H. Y. Rong

Delft, June 2025

ii



Contents

1 Introduction 1

2 Background Information 3
2.1 Current Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Current External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Program of Requirements 6
3.1 Mandatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Trade-off Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Tasks 8
4.1 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Peripheral Analysis 9
5.1 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Replacement of External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Implementation and Results 11
6.1 Testing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Differential Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Discussion 20
7.1 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Differential Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Conclusion 23
8.1 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A Figures 25
A.1 Testing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B Code 26
B.1 CTIMER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.2 SCTIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.3 Differential Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.4 Enhanced DMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Extended Research CTIMER 58

iii



1
Introduction

Humans and animals rely heavily on their sense of smell for flavor perception, hazard detection, and so-
cial communication, yet replicating this sensory capability in machines remains a complex and ongoing
challenge. Various electronic nose (e-nose) systems have been developed using different techniques
such as gas chromatography and mass spectrometry [3]. However, the type of e-nose system that
forms the basis for this project, utilizes complementary metal oxide semiconductor (CMOS) technology
in combination with microcapacitors arranged in a 2-D array, referred to as “Pixelated Capacitive Sen-
sor (PCS)” arrays [4]. This existing e-nose system uses the LPC1769 microcontroller [5] and several
external components like amplifiers, ADCs and a differential clock generator.

While the hardware of the e-nose is crucial for olfactory capabilities, the functionality of the system
heavily depends on the embedded software that controls various processes. This thesis focuses on
the development and implementation of the software layer, specifically the software running on the
microcontroller (MCU), which controls sensor readout, data acquisition, data transfer, preprocessing,
and communication with external systems.

Objectives
Before diving into the embedded software and MCU, a global understanding of the e-nose system is
required. In Figure 1.1 a strongly simplified block diagram of the e-nose system is shown.

PCHardware &
Sensor

Micro-
controller

Figure 1.1: Simplified overview of the e-nose system

The Hardware & Sensor block consists of the hardware to facilitate signal acquisition from the
PCS array to the MCU. The PC block represents the computer to which data is sent from the MCU,
furthermore, the PC allows for configuring theMCU. This thesis concerns theMicrocontroller block. The
centerpiece of this block is the FRDM-MCXN947 board, detailed information about this MCU board is
provided in [6]–[8]. This board houses numerous peripherals, such as direct memory access (DMA)
modules, Digital-to-Analog Converters (DAC), Analog-to-Digital Converters (ADC), a neural processing
unit (NPU), and timer modules. This extensive choice of peripherals along with the presence of an NPU
are the largest motivators for utilizing the FRDM-MCXN947 board. The objectives of the software group
are:

• to program the FRDM-MCXN947 board to facilitate and improve communication and control be-
tween the Hardware & Sensor block and the Microcontroller block in Figure 1.1.
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2

• to explore the FRDM-MCXN947 board in search of peripherals that are able to replace external
components ”in the existing sensor board”.

Lastly, the NPU allows for machine learning (ML) purposes in the future. The ultimate goal is to
have on-board machine learning, however a good starting point is to have a TinyML model trained on
the PC and then mapped onto the FRDM-MCXN947. This TinyML algorithm will then run in inference
mode on the MCU. That said, use of the NPU and TinyML algorithms is beyond the scope of this thesis.

State of the Art
Microcontrollers are compact integrated circuits designed to perform and control specific operations in
embedded systems. They integrate a processor core (CPU), memory, and programmable input/output
peripherals on a single chip, enabling efficient control of electronic devices [9]. The evolution of MCUs
has seen a transition from simple 4-bit processors to complex 32-bit and 64-bit systems, accommo-
dating the growing demands of modern applications [10]. However, these improvements in processing
power are not unbounded; they are constrained by physical limitations (e.g., Moore’s Law) and eco-
nomic constraints [11]. As MCUs are increasingly tasked with handling real-time signal processing,
controlling peripherals, and moving data, relying only on the processor core becomes inefficient and
may lead to performance bottlenecks. Consequently, specialized hardware and parallel processing
techniques to offload the CPU have become the focus for continuation of performance scaling [12].

One such specialized hardware module to offload the CPU is a direct memory access (DMA) con-
troller [13]. The main purpose of the DMA is to regulate the exchange of a large volume of data between
the memory and peripherals at high speed without CPU intervention [14]. In particular, the decoupled
DMA described in [15] and [16] are interesting for this project because of the split between the CPU
data and the I/O data. A programmable logic unit (PLU) may also be used to offload the CPU and may
even increase throughput [17].

Another technique to offload the CPU and improve performance is multicore processing [18]. Mul-
ticore processing may be implemented for handling the signals between the three blocks in Figure 1.1,
as multicore capabilities can enhance performance in multitasking environments, where a number of
foreground applications, such as virus protection, wireless management, compression, encryption, and
synchronization, run concurrently with background processes [19].

Finally, in the scope of this project, the aforementioned techniques, PLU, and DMA module can
be implemented on the FRDM-MCXN947, as this board has two cores and also DMA modules [7].
However, this board is relatively new, having been released in 2024 [20], thus very few projects have
been conducted yet on this board. Nonetheless, [21] provides example code for setting up the PLU on
the FRDM-MCXN947. Furthermore, [22] contains numerous examples of code for implementing the
DMA and [23] shows projects from the NXP Software Development Kit (SDK).

Thesis Outline
After this chapter, background information will be provided in chapter 2, which outlines the current
software and the differential clock implementation of the existing e-nose system. Following that, the
project’s program of requirements will be presented in chapter 3. Tasks outlined in chapter 4 are defined
based on these requirements. In chapter 5, the FRDM-MCXN947 will be examined to identify suitable
peripherals for completing the tasks. The implementation and results with these peripherals are shown
in chapter 6 and discussed in chapter 7. Finally, the thesis will conclude with a summary of this thesis
and recommendations for future work in chapter 8.



2
Background Information

This chapter presents the essential background information and foundational concepts necessary to
understand the steps outlined in the subsequent chapters. By establishing this context, the reader is
better prepared to follow the upcoming tasks, methodology, analyses, and conclusions. The current
software implementation of the e-nose system is discussed in detail in section 2.1. Furthermore, the
currently used external clock is outlined in section 2.2. These subsections provide a foundation for
understanding the remainder of this thesis.

2.1. Current Software Implementation
The current software is programmed on a board based on an LPC1769 microcontroller of NXP. It is an
ARM Cortex-M3-based MCU for embedded applications featuring a high level of integration and low
power consumption.
The software configures the MCU to manage communication between the MCU and the computer, as
well as between the MCU and the PCS arrays (Hardware & Sensor block), as shown in Figure 1.1. The
communication between the MCU and the computer uses a standard USB protocol, which requires no
additional implementation. Hence, the focus will be on the software implementation for the connection
between the Hardware & Sensor and Microcontroller blocks.
The MCU is connected to 3 PCS arrays via 3 ADCs, allowing the MCU to read the analog output signals
of the PCS arrays. Furthermore, the MCU also has the ability to write to the PCS arrays to select a
specific sensor readout line and sensor input clock. The MCU handles read and write operations in
a systematic manner with precise timing. Figure 2.1 shows the communication process for a single
capacitive sense pixel transfer from the PCS array to the MCU via one ADC, while simultaneously
sending the sensor configuration bits.

Figure 2.1: Communication process between PCS array and MCU
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2.1. Current Software Implementation 4

Below, the signals and registers from Figure 2.1 are described:

• CSS_CS: Chip select signal outputted by the MCU. This signal initiates the data transfer
between the ADC and the MCU.

• SET: Register to set general-purpose input/output (GPIO) pin high.

• clock: The internal clock on which the MCU runs. The clock cycles are numbered in
Figure 2.1.

• CLR: Register to set general-purpose input/output (GPIO) pin low.

• ADC_SCK: The clock signal for the ADCs. It is generated by the MCU. The ADC clock
signal controls the timing of the the successive approximation analog-to-digital conver-
sion process and the serial output of the generated bits.

• SDATA: These are the successive bits generated by the successive approximation reg-
ister (SAR) ADC. The MSB is generated first (B11), then the MSB-1 bit (B10) etc. The
leading 3 zero bits are the sample-and-hold phase of the ADC. During this phase the
ADC samples the analog input signal.

• DMA2: Refers to the peripheral: the Direct Memory Access controller, channel 2. It
transfers the ADC data from the SDATA line to memory in sync with the ADC clock. For
the first 3 bits, the DMA2 is in high impedance/inactive mode (z), as the first 3 bits are
always invalid because of the ADC setup time. After the first 3 bits, DMA2 enters active
mode (S).

• CSS_SCK: The serial clock signal from the MCU that provides the clock signal for syn-
chronizing the transmission of pixel configuration bits (B2, B1, B0) from the MCU to the
PCS array.

• CSS_MOSI: The pixel configuration bits generated by the MCU. These bits go via a
flipflop chain with 3 flip flops per pixel to the PCS array, which selects the readout line
and the clock source for the PCS array.

All output signals from the MCU that are necessary for the communication process shown in Fig-
ure 2.1 are generated by writing to the SET and CLR registers on multiple GPIO pins. As mentioned
above, the read and write operations are precisely timed. Figure 2.1 shows that the output and input sig-
nals follow a specific sequence and exhibit defined logic levels at designated clock cycles. Therefore,
controlling the timing of the write operations in the SET and CLR registers is crucial for the communica-
tion process between the PCS array and the MCU.

The current software implementation that controls this process is called ”scatter-gather DMA”. This
approach utilizes the DMA to transfer the set and clear instructions directly from memory to the GPIO
pins’ SET and CLR registers. Additionally, it uses the DMA to transfer input data (SDATA in Figure 2.1)
from the GPIO pin to the memory. These operations are stored in the memory as an array with data
transfer descriptors. These descriptors contain information about the source, destination, size, and
next descriptor address, enabling autonomous execution of a sequence of memory-to-peripheral or
peripheral-to-memory transfer operations.
To control the timing of these operations, Counter Timer (CTIMER) modules are used. These modules
contain match registers, which can hold specific predefined values. When the timer value matches the
value in the match register, an interrupt will be generated, which initiates a DMA transfer. Hence, the
match values essentially determine the timing of the operations stored in the memory and the speed
at which the scatter-gather DMA operates.



2.2. Current External Clock 5

2.2. Current External Clock
The current implementation relies on external modules. Since this thesis focuses specifically on re-
placing the external clock module, this section provides background information on that module.

Apart from the signals shown in section 2.1, a differential clock signal is generated. This differential
clock signal is used in the Hardware & Sensor block in Figure 1.1. The differential clock is a pair of
signals that have the same frequency, duty cycle, and are complementary to each other. They are
used for charging and discharging the capacitors in the PCS array. In Figure 2.2 the waveform of a
differential clock is shown. The external clock module that is currently used to generate this differential
clock signal is the AD9552 Oscillator Frequency Upconverter [24].

Figure 2.2: Differential Clock

Within the scope of this thesis, the reader is expected to be familiar with the structure and behavior
of a differential clock signal, as well as some specifications of the AD9552 module. For further details,
the reader is referred to [1].

The following specifications of the AD9552 are relevant:

• The rise/fall time (20% to 80%) in Low Voltage Positive Emitter-Coupled Logic (LVPECL) mode
is typically 255 ps and at most 305 ps. In CMOS mode, it is typically 500 ps and at most 745 ps.

• The jitter in the frequency range of 4 MHz to 80 MHz is 0.11 ps rms.

These specifications will serve as a reference for assessing the differential clock signal produced in
chapter 6, ultimately eliminating the need for the AD9552 module.

In summary, the current implementation uses the scatter-gather DMA together with the CTIMERs
to perform the communication process shown in Figure 2.1 without CPU involvement. Furthermore,
the external clock module that is to be replaced is the AD9552, for which the rise/fall time and jitter
specifications are known.



3
Program of Requirements

This chapter outlines the project requirements, which are divided into mandatory and trade-off require-
ments. The mandatory requirements serve as constraints which should not be violated under any
circumstances. These requirements are proposed by the project supervisors or stem from the current
implementation described in section 2.1. The trade-off requirements describe the objectives for the
new implementation, derived from the limitations of the current implementation from section 2.1. The
new implementation aims to fulfill these objectives.

3.1. Mandatory Requirements
Functional Requirements

• The software must be programmed on the FRDM-MCXN947 development board from NXP.

• The MCUXpresso IDE must be used to develop the software for the FRDM-MCXN947 develop-
ment board from NXP.

• The software must replicate the process of the current implementation shown in Figure 2.1 on
the FRDM-MCXN947 development board from NXP.

• The software must perform the communication process, shown in Figure 2.1, without CPU in-
volvement.

• The input data from the MCU must ultimately be transferred to the main computer.

System Requirements
• The MCU must communicate with 3 ADCs simultaneously.

• The system must generate 1 CSS_CS chip select signals.

• The system must generate 1 ADC_SCK clock signals.

• The system must have 3 inputs for 3 SDATA input data signals from 3 ADCs. These inputs must
be from the same GPIO port.

• The system must generate 1 CSS_SCK clock signal.

• The CSS_SCK active clock edge should overlap with the data-valid period of the CSS_MOSI signal.

• The CSS_SCK signal must stay high for 1 pulse width of the ADC_SCK signal.

• The system must be capable of transmitting 3 configuration bits.

• The replacements for the external clock must meet or exceed the original specifications.

6



3.2. Trade-off Requirements 7

3.2. Trade-off Requirements
• The new software implementation should be able to react on interventions during runtime.

• The new software implementation should utilize the memory on the FRDM-MCXN947 develop-
ment board more efficiently than the current scatter-gather DMA approach.

• The use of an external clock module should be eliminated.



4
Tasks

This chapter summarizes the tasks that need to be completed in order to achieve the objectives of this
project. These tasks should take the mandatory requirements into account while aiming to fulfill the
trade-off requirements.

4.1. Signal Generation
The proposed tasks specified in this section focus on modifying the current implementation to make it
responsive to interventions while running. Additionally, these tasks aim to reduce memory usage com-
pared to the current scatter-gather DMA approach described in section 2.1. Therefore, the main task is
to search for peripherals on the FRDM-MCXN947 development board that can generate the CSS_CS,
ADC_SCK, CSS_SCK and CSS_MOSI without using an array with data transfer descriptors stored in
memory. To determine whether a peripheral is capable of generating these signals, the following im-
plementation steps are carried out:

1. Generate a single clock signal at a fixed frequency.

2. Generate two synchronized clock signals with equal fixed frequency.

3. Generate two synchronized clock signals with different fixed frequencies.

4. Generate the ADC_SCK signal in combination with the CSS_CS, CSS_SCK or CSS_MOSI signal
identical to Figure 2.1.

The proposed steps mainly require the generation of two signals only.

4.2. External Clock
The proposed tasks specified in this section focus on the replacement of the external clock mentioned
in section 2.2. The following tasks will be executed:

1. Search for peripherals on the FRDM-MCXN947 board that can generate the waveform shown in
Figure 2.2.

2. Investigate the feasibility of a differential clock with a variable frequency output.

3. Investigate the feasibility of a differential clock with an input-controlled variable frequency output.
’Input-controlled’ means that the differential clock is able to change frequencies based on an input
signal.

4. Assess the generated differential clock signal by comparing its performance to the specifications
mentioned in section 2.2.

The subsequent chapters will discuss the approaches and considerations for completing these
tasks. The results will then be presented and thoroughly discussed.
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5
Peripheral Analysis

This chapter analyzes all the peripherals on the FRDM-MCXN947 board that have been considered
for the tasks stated in chapter 4. The analyses are conducted with the mandatory requirements from
section 3.1 in mind and aim to meet the trade-off requirements from section 3.2. The chapter begins by
examining peripherals that could automate signal generation, followed by an investigation into potential
replacements for the external clock. The goal of this chapter is to provide a basis for chapter 6, where
the implementation using these peripherals is outlined along with their results.

5.1. Signal Generation
5.1.1. CTIMER
The CTIMER is designed to count cycles from either an internal clock or an external clock that drives the
peripheral. At specified counter values stored in match registers, the CTIMER is capable of performing
various actions, such as generating an interrupt. There are five instances of the CTIMER peripheral
on the FRDM-MCXN947 board, each with 5 outputs. Therefore, a single CTIMER contains a sufficient
number of outputs for the signals that must be generated as stated in section 3.1. Furthermore, the
CTIMER includes features that can automate signal generation. The key features are:

• The Pulse Width Modulation (PWM) mode. Read Section 48.2 of [6] for a detailed description of
the PWM mode.

• DMA linkage, DMA request can be generated when the counter value matches with the match
values stored in match registers. Read section 48.3.7 of [6] for a detailed description of DMA
requests via the CTIMER module.

The PWM mode allows for PWM outputs from the CTIMER. By configuring the PWM signal with
a 50% duty cycle, a clock signal appropriate for the communication process illustrated in Figure 2.1
can be generated. Additionally, the CTIMER’s ability to trigger DMA requests on match events allows
data transfers to occur at precise time instants. These functionalities operate without requiring CPU
intervention or memory usage. The features of the CTIMER appear to align with the functional re-
quirements stated in section 3.1. Hence, the CTIMER peripheral on the FRDM-MCXN947 serves as a
suitable option to make the communication process autonomous and more memory efficient.

5.1.2. SCTIMER
The State Controlled Timer or SCTIMER (SCT) is a powerful and flexible timer module capable of
creating complex PWM waveforms with minimal or no CPU intervention [6]. It functions similarly to
the CTIMER described in subsection 5.1.1, except that its outputs may be determined by states. This
means that the SCT can implement state machines, whereas the CTIMER cannot. On the FRDM-
MCXN947 board there is one SCT module with 10 outputs. This means that this module also has
enough outputs for the signals mentioned in section 3.1. Furthermore, as with most timers, the SCT
has a selection of match registers, the ability to generate interrupts, act on events and send DMA
requests. The most important features are:

9



5.2. Replacement of External Clock 10

• Ability to use counters with match registers to toggle outputs and create time-proportioned PWM
signals (PWM waveforms can change based on current state) [6].

• Ability for selected events to limit, halt, start, or stop a counter or change direction [6].

• Event creation for DMA requests [6].

• Ability for events to trigger state changes, output transitions, timer captures, interrupts, and DMA
transactions [6].

• Ability to transition into another state as a result of an event [6].

The aforementioned features are useful for making the software implementation non-autonomous,
as mentioned in section 3.2. Furthermore, the ability to work with DMA requests and to create events
to trigger DMA transactions allows for a CPU-less process. Thus, complying with the functional re-
quirements mentioned in section 3.1. Hence, the SCT is deemed suitable for implementing the com-
munication process from section 2.1. This suitability in combination with the ability to implement state
machines made the SCT module an interesting peripheral to investigate further and to execute the
tasks stated in chapter 4 with.

5.2. Replacement of External Clock
From subsection 5.1.1 and subsection 5.1.2, it is known that these peripherals can produce PWM sig-
nals without CPU overhead. Both of these may be suitable to produce the differential clock shown
in Figure 2.2. However, the SCTIMER is considered more preferable because of its extended func-
tionalities compared to the CTIMER, particularly its support for state machines. This feature can be
leveraged to generate a differential clock with a variable frequency output as stated in task 2 in sec-
tion 4.2. Additionally, the SCTIMER features eight input channels, allowing state transitions triggered
by external signals, which can be utilized to implement task 3 in section 4.2. Therefore, the SCTIMER
is being evaluated as a potential replacement for the AD9552 module.



6
Implementation and Results

This chapter contains the implementation and results of the peripherals mentioned in chapter 5 with the
aim of completing the tasks from chapter 4. The code used to configure the peripherals can be found
in Appendix B. The outline of this chapter is as follows: section 6.1 introduces the testing setup used to
obtain the results presented in this chapter, while section 6.2 and section 6.3 discuss the implementation
and results of the relevant peripherals. In section 6.2 and section 6.3, the implementations are proposed
and the results are shown immediately after. This structure makes it clear which implementation was
used to obtain each result. Furthermore, this chapter only contains observations and in chapter 7 these
observations are explained.

6.1. Testing Setup
The testing setup shown in Figure 6.1 was used to obtain all the waveforms shown in this chapter.

Figure 6.1: Testing setup

The tools used in this testing setup are:

• Oscilloscope: Tektronix TDS 2022B [25].

• Two BNC oscilloscope probes (10x).

• Tinned copper wires.

• USB Type-C cable.

The connections in the testing setup are as follows: a USB Type-C cable is used to connect the
computer to the MCU, allowing the MCU to be programmed with the developed software. The MCU’s
output signals are available through its GPIO pins, which are extended using tinned copper wires to

11



6.2. Signal Generation 12

connect BNC oscilloscope probes to the oscilloscope. This testing setup enables visual inspection of
the clock signals. The signals are displayed as voltage (y-axis) versus time in seconds (x-axis).
Images of the testing setup can be found in section A.1. All accomplished tasks from chapter 4 have
been validated using this measurement setup.

6.2. Signal Generation
6.2.1. CTIMER
The CTIMER peripheral on the MCU is configured using the code shown in section B.1, where a de-
tailed explanation of the code implementation is also provided.

For task 1, the code in subsection B.1.1 was developed to generate a single clock signal. The result
is shown in Figure 6.2.
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Figure 6.2: CTIMER single signal

The blue waveform from Figure 6.2 shows the single clock signal. The clock signal appears to have
a consistent period and pulse width.

For task 2, two implementations have been developed to generate two synchronized clock signals.
The first implementation uses a single CTIMER instance as shown in subsection B.1.2, while the second
implementation uses two CTIMER instances as shown in subsection B.1.3. The result of the first
implementation is shown in Figure 6.3.
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Figure 6.3: One CTIMER with equal frequency outputs

The blue and orange waveforms from Figure 6.3 represent the clock signals from a single CTIMER
instance. The clock signals appears to be synchronized with consistent periods and pulse widths.
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The result of the second implementation is shown in Figure 6.4.
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Figure 6.4: Two CTIMERs with equal frequency outputs

The blue and orangewaveforms from Figure 6.4 show the clock signals generated from twoCTIMER
instances. The clock signal at the top appears to be stable with consistent periods and pulse widths.
The clock signal at the bottom appears noisy and has low voltage levels. Moreover, the square wave-
form is distorted and lacks consistency.

For task 3, two implementations have been developed, similarly to task 2. The first implementation
uses a single CTIMER and drives different output frequencies to separate channels as shown in sub-
section B.1.4. The second implementation uses two CTIMERS to output two clock signals of different
frequency as shown in subsection B.1.5. The result of the first implementation is shown in Figure 6.5.
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Figure 6.5: One CTIMER with different frequency outputs

The blue and orange waveforms from Figure 6.5 show the clock signals generated from a single
CTIMER instance. The clock signal at the top has a duty cycle greater than 50% and the rising edges
of the clock signals are not synchronized.

The result of the second implementation is shown in Figure 6.6.
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Figure 6.6: Two CTIMERs with different frequency outputs

The blue and orange waveforms from Figure 6.6 display the clock signals generated from two dif-
ferent CTIMER instances. The clock signal at the bottom also appears to be noisy and has low voltage
levels. Furthermore, the output frequency does not match its configuration in subsection B.1.5 and the
square waveform is inconsistent. The waveforms from both Figure 6.5 and Figure 6.6 deviate from
the expected waveforms. Specifically, it was expected to observe two synchronized clock signals with
different frequencies.

6.2.2. SCTIMER
For the implementation of the SCT module, the tasks from chapter 4 have been further divided into
the paragraphs Without States and With States. This is because, for tasks 1 and 2 in section 4.1,
no state machines are needed, while task 3 is implemented both with and without states. On the other
hand, task 4 is only implemented with states. All code related to the SCT can be found in section B.2,
where the code is also explained thoroughly.

Without States
For task 1, the code in subsection B.2.1 was developed for generating a single clock signal. The result
is shown in Figure 6.7.
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Figure 6.7: SCT single signal

The blue waveform from Figure 6.7 shows the clock signal from the SCTIMER peripheral. The clock
signal appears to have a consistent period and regular pulse width.

For task 2, the code in subsection B.2.2 was developed for generating two clock signals of the same
frequency. The result is shown Figure 6.8.
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Figure 6.8: SCT with equal frequency outputs

The blue and orange waveforms from Figure 6.8 show the two generated clock signals from the
SCTIMER. The clock signals appear stable and well synchronized with consistent periods and pulse
widths. Furthermore, at some rising edges overshoot is observed.

For task 3, the code in subsection B.2.3 was developed for generating two synchronized clock
signals with different frequencies. The result is shown in Figure 6.9.
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Figure 6.9: SCT with different frequency outputs

The blue and orange waveforms from Figure 6.9 show the output of the SCT when configured for
different output frequencies. It can be observed that only the blue waveform has the expected output.
The orange waveform on the other hand, has no clock signal.

With States
As mentioned before, task 3 was also implemented with states. For the implementation with states,
the finite state diagram (FSD) in Figure 6.10 was designed. In Figure 6.10, ’RE’ stands for Rising Edge
and sct_out4 and sct_out5 are the output signals. This FSD works as follows: sct_out4 is the
signal on which the state transitions are triggered. This signal is a periodic clock signal. After two rising
edges of the sct_out4 signal, sct_out5 turns high. The sct_out5 signal goes back to low after
two rising edges of the sct_out4.
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Figure 6.10: FSD for sct_out4 and sct_out5

The implementation shown in Figure 6.10 thus generates two signals with different frequencies,
namely the frequency of sct_out4 is four times that of sct_out5. This relation stems from the fact
that the signal sct_out4 was used as the state transition trigger signal/reference signal.

The FSD from Figure 6.10 was implemented in the code shown in subsection B.2.4. The result is
shown in Figure 6.11.
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Figure 6.11: sct_out4 and sct_out5 obtained with Figure 6.10

The blue and orange waveforms from Figure 6.11 represent the signals sct_out4 and sct_out5.
It can also be observed that sct_out5 has a period that is four times that of sct_out4, which was
expected. Furthermore, both signals appear to be synchronized and stable.

For task 4, the signals ADC_SCK and CSS_SCK were chosen for implementation. This decision
was based on the similarity between the CSS_SCK and the CSS_MOSI signal, as well as the simplicity
of the CSS_CS signal shown in Figure 2.1. Simplicity here refers to the fact that the CSS_CS signal
remains constantly low during the bit transfer. Therefore, the FSD was designed based on ADC_SCK
and CSS_SCK. The FSD is shown in Figure 6.12, where ”FE” stands for falling edge.
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Figure 6.12: FSD for ADC_SCK and CSS_SCK

This FSD works as follows: ADC_SCK is the signal on which the state transitions are triggered. This
signal is a periodic clock signal. After one rising edge of the ADC_SCK signal, CSS_SCK turns high.
Then at the rising edge of the ADC_SCK signal, the CSS_SCK signal turns low. It stays low for two
periods of ADC_SCK, after which the process starts over. This effectively creates the behavior of the
CSS_SCK signal as shown in Figure 2.1.

The FSD from Figure 6.12 was thus implemented, however in order to implement this FSD, the
CSS_SCK should be able to react on the falling edge of ADC_SCK. When programming this functionality
as shown in line 131 in subsection B.2.5, triggering on the falling edge of ADC_SCK did not result in any
output. Therefore, it was decided to still implement this FSD with rising edge triggering to verify the
design and feasibility of the FSD. This implementation in code is also found in subsection B.2.5. The
resulting output is shown in Figure 6.13.
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Figure 6.13: ADC_SCK and CSS_SCK realized with Figure 6.12

The blue and orange waveforms from Figure 6.13 display the clock signals ADC_SCK and CSS_SCK.
The clock signals appear to be stable and well synchronized with consistent periods and pulse widths.
As expected, the Rising edge of the CSS_SCK aligns with the rising edge of the ADC_SCK rather than
with the falling edge of the ADC_SCK.

6.3. Differential Clock
The implemented code for the differential clock with SCTIMER is shown in section B.3, where a de-
tailed explanation of the code is also given. Two implementations of the differential clock have been
successfully achieved: one with a manually adjustable frequency output shown in subsection B.3.1 and
the other with an input-controlled frequency output shown in subsection B.3.2. Both implementations
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generate the same differential clock signal but are based on different underlying logic. The differential
clock signal is wired to the pins on port 2 of the FRDM-MCXN947 board. These pins belong to the fast
I/O pins. Their resulting differential clock signal is shown in Figure 6.14.
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Figure 6.14: Differential clock generation with the SCT

The blue and orange waveforms in Figure 6.14 display the differential clock signals generated by
the SCTIMER. The differential clock appears to be stable and quite synchronized with consistent peri-
ods and a 50% duty cycle.

To further examine the performance of the generated differential clock, it was decided to zoom in
on the rising and falling edges of Figure 6.14 to inspect the rise and fall times. The close-up figures are
shown in Figure 6.15 and Figure 6.16. In these figures, red dashed lines have also been plotted at the
20% and 80% values of the clock signal to determine the fall/rise times more easily.
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Figure 6.15: Close-up rising edge of the differential clock
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Figure 6.16: Close-up falling edge of the differential clock

From the blue waveform in Figure 6.15, it can be observed that the rise time is around 2 ns and
that there is some overshoot after which the signal settles around 3.3 V. As for the blue waveform in
Figure 6.16, it can be derived that the fall time is also around 2 ns. This is in line with the general
switching specifications of the fast I/O pins as shown in Table 28 in [7].Overshoot is also present at the
falling edge, however, this overshoot is less than the overshoot present at the rising edge.



7
Discussion

This chapter discusses the obtained results from chapter 6. The chapter has been split into two parts.
In section 7.1 the results from section 6.2 are discussed and in section 7.2 the results from section 6.3
are discussed.

7.1. Signal Generation
The CTIMER and SCT peripherals are tested to investigate their ability to perform tasks 1-4 listed in
section 4.1. Accomplishing these tasks are important steps in achieving the trade-off requirement: ”The
new software implementation should make the current implementation non-autonomous i.e. it should
be able to act on external input signals during runtime”, while maintaining the current functionality of
the communication process explained in section 2.1. This section will discuss and evaluate the results
in section 6.2.

Figure 6.2 and Figure 6.7 show that the waveforms are clear PWM signals with the intended 50%
duty cycle needed for clock generation. The result confirms that both peripherals can successfully gen-
erate a single continuous clock signal, thus fulfilling task 1.

For task 2, the CTIMERs were used in two different ways: 1) using a single CTIMER instance and
2) using multiple CTIMER instances. Figure 6.3 shows the result of generating two synchronized clock
signals with a single CTIMER instance. The waveforms are synchronized as the rising and falling edges
of both clocks are aligned. Furthermore, the output waveforms are consistent square waves, meeting
the expected behavior. The result of the second implementation depicted in Figure 6.4 reveals that
the clock signals generated by two separate CTIMER instances demonstrate irregular behavior. The
clock signal at the bottom appears to be noisy and has low voltage levels close to zero, while a voltage
of 3.3 volts is expected for logic highs. Therefore, the output shown in Figure 6.4 does not match the
configuration programmed in subsection B.1.3.
This unexpected behavior is suspected to be caused by measuring the wrong GPIO pin. Further re-
search has confirmed this suspicion. In Appendix C it can be seen that the correct clock signal is
directed to a different GPIO pin than the one configured. In this appendix this finding is described in
more detail. After reviewing the chip design files of the FRDM-MCXN947 and the data sheet [7], it can
be concluded that there is a high possibility that the board contains some wiring errors. This would
explain for the resulting bottom clock signal in Figure 6.4.
As opposed to the CTIMERs, which were present in multiple, there was only one SCT on the FRDM-
MCXN947 board, which meant that it was only possible to perform task 2 using that single module.
The result for task 2 of the SCT is shown in Figure 6.8. It can be seen that the results closely resemble
that of the implementation with a single CTIMER. Thus, both the CTIMER and SCT are able to perform
task 2.

For task 3, the CTIMER was used in the same way as in task 2, namely using two implementa-
tions, but with different output frequencies. The result of generating two clock signals with unmatched

20
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frequencies from a single CTIMER instance is depicted in Figure 6.5. This figure displays behavior
that was not expected. The top clock signal shows a duty cycle greater than 50%, despite being pro-
grammed to 50% as shown in subsection B.1.4. This is because of the fact that each CTIMER instance
only contains a single counter shared by all the outputs. The counter resets every time it matches a
value in a match register. This poses a problem for generating multiple base frequencies simultane-
ously, because the counter can only count for one specific period at a time before resetting. As a result,
only the output with the shortest period will be timed correctly. In fact, this is the case in Figure 6.5. In
subsection B.1.4, the bottom clock signal is programmed to operate at 20 kHz, while the top one is set
to 10 kHz. Therefore, the top clock signal exhibits an incorrect waveform.
The result of generating two clock signals with different frequencies from two separate CTIMER in-
stances is shown in Figure 6.6. The result is similar to the implementation with multiple CTIMERs for
task 2. It can be observed that the bottom clock signal also appears noisy and has low voltage levels
resembling the bottom clock signal in Figure 6.4. Using the same explanation for the result of the imple-
mentation with multiple CTIMERs for task 2, the result for the implementation with multiple CTIMERs
for task 3 can be explained.

The SCT is implemented with and without the state feature to create different frequency outputs.
The stateless implementation encounters the same problem as utilizing a single CTIMER for multiple
frequency outputs. From Figure 6.9, it can be observed that the bottom does not show any signal. In
subsection B.2.3, the bottom signal is programmed to output a clock signal at 12 kHz and the top one
at 24 kHz. The discrepancy between the configuration and the actual output can also be explained by
the use of a single counter within the SCT peripheral.
The result of the SCT implementation with states is shown in Figure 6.11. It can be observed that both
clock signals have clear square waveforms with 50% duty cycle. The rising edges of the bottom clock
signal are well synchronized with those of the top clock signal.
In conclusion, the implementation with states of the SCT is a viable solution to output clock signals at
different frequencies, thereby fulfilling task 3.

For task 4, the SCT in combination with states was implemented to generate the ADC_SCK and
CSS_SCK signals. Although the resulting CSS_SCK waveform from Figure 6.13 differ from the desired
CSS_SCK. This difference lies in the fact that the SCT did not output any waveform when configured to
react on the rising and falling edges. It is suspected that the nonfunctioning falling edge triggering is
caused by incorrect or incomplete initialization of the SCT. However, this result did confirm the feasibility
of the proposed FSD design. It is clear that, with this design, the CSS_SCK is able to achieve the
waveform from Figure 2.1. Namely, a periodic clock signal with highs that are a pulse width of the
ADC_SCK and lows that are multiple periods of the ADC_SCK.

7.2. Differential Clock
This section discusses the results obtained in section 6.3. In section 6.3 differential clocks with a
manually adjustable frequency and an input-controlled frequency were generated with the SCT module
on the FRDM-MCXN947 board. The resulting differential clock was shown in Figure 6.14.

Taking into account the program of requirements from chapter 3 and the current external clock
module from section 2.2, then it can be said that both the manually adjustable and the input-controlled
frequency differential clocks generated a differential clock waveform similar to the waveform shown in
Figure 2.2. This means that task 1 from section 4.2 is fulfilled by the existence of the SCT. Further-
more, since both the manually adjustable and input-controlled frequency differential clocks are able
to produce more than one frequency, it is thus feasible to generate a differential clock with a variable
frequency output. Thereby, task 2 from section 4.2 is fulfilled. In fact, not only task 2, but also task 3
from section 4.2 was fulfilled by the use of manually adjustable and input-controlled frequency differ-
ential clocks. However, the input-controlled frequency differential clock has one flaw, which is that the
implementation utilizes the CPU since it uses the ”while(1)” loop to constantly check for the inputs as
shown in subsection B.3.2.

To fulfill task 4 from section 4.2, the performance and quality of the generated differential clock signal
was compared to that of the currently used external clock module AD9552 mentioned in section 2.2.
This was done by evaluating the fall/rise times and the jitter of both the SCT and the AD9552. From
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Figure 6.15 and Figure 6.16 it can be deduced that fall/rise time of the SCT is 2 ns. Compared to the
fall/rise time of the AD9552, which ranges from 255 ps to 745 ps as shown in section 2.2, the fall/rise
time of the SCT is 2.68 to 7.84 times larger. Though, the measured fall/rise times might be larger
because of the capacitive loading by the probes used in the testing setup.
The same comparison wasmade for the jitter. However, the jitters for both modules were not measured,
but taken from the data sheets [7] and [24]. According to [7] the jitter of the SCT is typically 200 ps rms,
whereas the jitter of the AD9552 is 0.11 ps rms as mentioned in section 2.2. This means that the jitter
of the SCT is approximately 1818 times larger than that of the AD9552.
From the comparison of fall/rise times and jitter of both the modules it can be concluded that the SCT
performs worse than the AD9552. Though, further research is needed to assess whether this decrease
in quality is significant enough to discard the SCT for generating the differential clock. Furthermore,
the SCT is an on-board peripheral as opposed to the external AD9552 module. This also comes into
the equation when making the choice between both.



8
Conclusion

This thesis extended the current implementation of the e-nose system by introducing a newMCU board:
the FRDM-MCXN947. Building on the existing implementation, a set of tasks was defined to evaluate
the capabilities of this new board. To support these tasks, a peripheral analysis was conducted, result-
ing in the selection of the CTIMER and the SCTIMER as the most suitable peripherals.
Based on the results from task 1 through 3, it can be concluded that the CTIMER peripheral is capa-
ble of generating single clock signals and two clock signals with equal frequency when using a single
CTIMER instance. However, the use of multiple CTIMER peripherals resulted in unexpected waveform
inconsistencies. This is likely caused by an architectural error in the MCU, which resulted in the correct
clock signal being wired to a different output pin than the one specified in the code. Furthermore, a
single CTIMER failed to generate clock signals of different frequencies due to the constraint of a single
shared counter. Thus the CTIMER on its own is not suitable for generating the CSS_CS, ADC_SCK, and
CSS_SCK stated in the program of requirements, as this would require the peripheral to output multiple
frequencies at once.
As for the SCT, this peripheral is also able to generate single clock signals as well as two clock signals
with equal frequency. Although the stateless implementation of task 3, where two signals of different
frequencies was the desired output, suffered from the same limitations as the CTIMER because of a
single shared counter. The implementation with states via a finite state machine solved this issue.
Furthermore, the state-based implementation proved to be successful for generating the ADC_SCK and
CSS_SCK. Though, the falling edge-triggering mechanism did not work as expected, the finite state ma-
chine design was feasible and flexible enough to replicate the intended behavior. Ultimately, the unre-
sponsive falling edge-triggering mechanism disqualified the SCT since it failed to generate a CSS_SCK
that stays high for one pulse width of the ADC_SCK signal as mentioned in the program of requirements.

The SCT was also investigated as a potential replacement for the external clock AD9552 that served as
a differential clock. The results showed that the SCT produced a correct waveform and had the desired
frequency control. Though, the input-controlled version relied on the CPU, which is not in line with the
functional requirements mentioned in chapter 3. On top of that, the signal fall/rise times and jitter of
the differential clock generated with the SCT is worse than that of the AD9552. This means that not
all system requirements are met and thus it can be concluded that the SCT may not be suitable for re-
placing the AD9552. Despite this, the SCT offers better integration benefits as an on-board peripheral.
Its suitability is ultimately dependent on how well the signal quality should be for the application.

8.1. Future Work
This thesis reviewed the CTIMER and SCT thoroughly to accomplish the tasks in chapter 4 and ulti-
mately their suitability to perform the communication process in Figure 2.1. The SCTIMER implemen-
tation using states has demonstrated promising results in generating the clock signals needed for the
communication process. Further development is recommended to address the falling edge-triggering
mechanism.

23
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An alternative peripheral of interest is the enhanced DMA (eDMA) on the FRDM-MCXN947. The eDMA
is amore extensive version of the current usedDMAon the LPC1769 board and is capable of performing
the scatter gather DMA, but uses a different application. The initial steps to perform a single transfer
using the eDMA have been taken; see section B.4. For future work, it is advisable to build upon the code
implementation in section B.4 and resolve the issue to develop a new scatter-gather DMA approach
on the FRDM-MCXN947 board.
Lastly, it would be advised to do further research on the impact of fall/rise times and jitter specifications
of the differential clock on PCS array chip. The impact of the limits set by these specifications are yet
to be discovered.
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Figures

A.1. Testing Setup

Figure A.1: Testing setup front view

Figure A.2: Testing setup top view
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B
Code

The code in this appendix is written in C using the MCUXpresso IDE. All of the code originates from
source files, therefore the code will not function on its own. To run this code, the peripheral drivers from
MCUXpresso must be imported into the project.

B.1. CTIMER
B.1.1. CTIMER Single Signal
This code shows how the CTIMER is programmed to execute task 1 in section 4.1. The CTIMER3
instance is used to generate a single clock signal and output it through Match Output 0. The macros for
these are defined in definitions (lines 16-25) alongside the macro for the internal clock frequency. The
internal clock frequency is used in the function ”CTIMER_GetPwmPeriodValue” (lines 42-51), which
calculates for the match values of the pulse width and the period length. Themain function first declares
the temporary variables (lines 58-60), followed by the initialization of the FRDM-MCXN947 development
board (line 64) and the CTIMER3 peripheral with default configurations (line 70). Consequently, the
PWM is configured (line 77) and the CTIMER3 module is activated (line 79).

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 /*******************************************************************************
7 * Includes
8 ******************************************************************************/
9

10 #include ”fsl_debug_console.h”
11 #include ”board.h”
12 #include ”app.h”
13 #include ”fsl_ctimer.h”
14

15 /*******************************************************************************
16 * Definitions
17 ******************************************************************************/
18 #ifndef CTIMER_MAT_PWM_PERIOD_CHANNEL
19 #define CTIMER_MAT_PWM_PERIOD_CHANNEL kCTIMER_Match_3
20 #endif
21

22 /*${macro:start}*/
23 #define CTIMER CTIMER3 /* Timer 3 */
24 #define CTIMER_MAT_OUT kCTIMER_Match_0 /* Match output 0 */
25 #define CTIMER_CLK_FREQ CLOCK_GetCTimerClkFreq(2U) /*return Frequency of CTimer

functional Clock*/
26

26
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27 /*${macro:end}*/
28

29 /*******************************************************************************
30 * Prototypes
31 ******************************************************************************/
32

33 /*******************************************************************************
34 * Variables
35 ******************************************************************************/
36 volatile uint32_t g_pwmPeriod = 0U;
37 volatile uint32_t g_pulsePeriod = 0U;
38

39 /*******************************************************************************
40 * Code
41 ******************************************************************************/
42 status_t CTIMER_GetPwmPeriodValue(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,

uint32_t timerClock_Hz)
43 {
44 /* Calculate PWM period match value */
45 g_pwmPeriod = (timerClock_Hz / pwmFreqHz) - 1U;
46

47 /* Calculate pulse width match value */
48 g_pulsePeriod = (g_pwmPeriod + 1U) * (100 - dutyCyclePercent) / 100;
49

50 return kStatus_Success;
51 }
52

53 /*!
54 * @brief Main function
55 */
56 int main(void)
57 {
58 ctimer_config_t config;
59 uint32_t srcClock_Hz;
60 uint32_t timerClock;
61

62

63 /* Init hardware*/
64 BOARD_InitHardware();
65

66 /* CTimer0 counter uses the AHB clock, some CTimer1 modules use the Aysnc
clock */

67 srcClock_Hz = CTIMER_CLK_FREQ;
68

69

70 CTIMER_GetDefaultConfig(&config);
71

72 timerClock = srcClock_Hz / (config.prescale + 1)
73 CTIMER_Init(CTIMER, &config);
74

75

76 /* Get the PWM period match value and pulse width match value of 20Khz PWM
signal with 50% dutycycle */

77 CTIMER_GetPwmPeriodValue(20000, 50, timerClock);
78 CTIMER_SetupPwmPeriod(CTIMER, CTIMER_MAT_PWM_PERIOD_CHANNEL, CTIMER_MAT_OUT,

g_pwmPeriod, g_pulsePeriod, false);
79 CTIMER_StartTimer(CTIMER);
80

81

82 while (1)
83 {
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84 }
85 }

B.1.2. One CTIMER with Equal Frequency Outputs
This code is an extended version of subsection B.1.1. It programs a single CTIMER to execute task
2 in section 4.1. The CTIMER3 instance is used to generate two synchronized clock signals with the
same frequencies. These will be output through Match Output 0 and Match Output 1. This code is
extended with an extra macro for match output 1 (line 25) and a second PWM wave (line 82) is added.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 /*******************************************************************************
7 * Includes
8 ******************************************************************************/
9

10 #include ”fsl_debug_console.h”
11 #include ”board.h”
12 #include ”app.h”
13 #include ”fsl_ctimer.h”
14

15 /*******************************************************************************
16 * Definitions
17 ******************************************************************************/
18 #ifndef CTIMER_MAT_PWM_PERIOD_CHANNEL
19 #define CTIMER_MAT_PWM_PERIOD_CHANNEL kCTIMER_Match_3
20 #endif
21

22 /*${macro:start}*/
23 #define CTIMER CTIMER3 /* Timer 3 */
24 #define CTIMER_MAT_OUT kCTIMER_Match_0 /* Match output 0 */
25 #define CTIMER_MAT_OUT_2 kCTIMER_Match_1 /* Match output 1 */
26 #define CTIMER_CLK_FREQ CLOCK_GetCTimerClkFreq(2U) /*return Frequency of CTimer

functional Clock*/
27 /*${macro:end}*/
28

29 /*******************************************************************************
30 * Prototypes
31 ******************************************************************************/
32

33 /*******************************************************************************
34 * Variables
35 ******************************************************************************/
36

37

38 volatile uint32_t g_pwmPeriod = 0U;
39 volatile uint32_t g_pulsePeriod = 0U;
40

41 /*******************************************************************************
42 * Code
43 ******************************************************************************/
44 status_t CTIMER_GetPwmPeriodValue(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,

uint32_t timerClock_Hz)
45 {
46 /* Calculate PWM period match value */
47 g_pwmPeriod = (timerClock_Hz / pwmFreqHz) - 1U;
48

49 /* Calculate pulse width match value */
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50 g_pulsePeriod = (g_pwmPeriod + 1U) * (100 - dutyCyclePercent) / 100;
51

52 return kStatus_Success;
53 }
54

55

56 /*!
57 * @brief Main function
58 */
59 int main(void)
60 {
61 ctimer_config_t config;
62 uint32_t srcClock_Hz;
63 uint32_t timerClock;
64

65

66

67 /* Init hardware*/
68 BOARD_InitHardware();
69

70 /* CTimer0 counter uses the AHB clock, some CTimer1 modules use the Aysnc
clock */

71 srcClock_Hz = CTIMER_CLK_FREQ;
72

73 CTIMER_GetDefaultConfig(&config);
74 timerClock = srcClock_Hz / (config.prescale + 1);
75

76

77 CTIMER_Init(CTIMER, &config);
78

79 /* Get the PWM period match value and pulse width match value of 20Khz PWM
signal with 20% dutycycle */

80 CTIMER_GetPwmPeriodValue(20000, 50, timerClock);
81 CTIMER_SetupPwmPeriod(CTIMER, CTIMER_MAT_PWM_PERIOD_CHANNEL, CTIMER_MAT_OUT,

g_pwmPeriod, g_pulsePeriod, false);
82 CTIMER_SetupPwmPeriod(CTIMER_2, CTIMER_MAT_PWM_PERIOD_CHANNEL,

CTIMER_MAT_OUT_2, g_pwmPeriod, g_pulsePeriod, false);
83

84 /* start the timers */
85 CTIMER_StartTimer(CTIMER);
86

87

88

89 while (1)
90 {
91 }
92 }

B.1.3. Two CTIMERs with Equal Frequency Outputs
This code is an extended version of subsection B.1.2. It programs two CTIMERs to execute task 2
in section 4.1. The CTIMER2 and CTIMER3 instances are used to generate two synchronized clock
signals with the same frequencies. Thesewill be output throughmatch output 0 of both CTIMERs. In the
definitions, extra macros for CTIMER2 and match output 0 (lines 23 and 24) are added. Furthermore,
”CTIMER_GetPwmPeriodValue” function is duplicated (lines 60-69) to store the match values for two
PWM waves. The main function now initializes two CTIMERs, CTIMER2 and CTIMER3 (lines 95 and
96), and configures two PWM waves (lines 99 and 100) in those CTIMERs.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
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4 */
5

6 /*******************************************************************************
7 * Includes
8 ******************************************************************************/
9

10 #include ”fsl_debug_console.h”
11 #include ”board.h”
12 #include ”app.h”
13 #include ”fsl_ctimer.h”
14

15 /*******************************************************************************
16 * Definitions
17 ******************************************************************************/
18 #ifndef CTIMER_MAT_PWM_PERIOD_CHANNEL
19 #define CTIMER_MAT_PWM_PERIOD_CHANNEL kCTIMER_Match_3
20 #endif
21

22 /*${macro:start}*/
23 #define CTIMER CTIMER2 /* Timer 0 */
24 #define CTIMER_MAT_OUT kCTIMER_Match_0 /* Match output 0 */
25

26

27 #define CTIMER_2 CTIMER3 /* Timer 0 */
28 #define CTIMER_MAT_OUT_2 kCTIMER_Match_0 /* Match output 0 */
29 #define CTIMER_CLK_FREQ CLOCK_GetCTimerClkFreq(2U) /*return Frequency of CTimer

functional Clock*/
30 /*${macro:end}*/
31

32 /*******************************************************************************
33 * Prototypes
34 ******************************************************************************/
35

36 /*******************************************************************************
37 * Variables
38 ******************************************************************************/
39 volatile uint32_t g_pwmPeriod = 0U;
40 volatile uint32_t g_pulsePeriod = 0U;
41

42 volatile uint32_t g_pwmPeriod2 = 0U;
43 volatile uint32_t g_pulsePeriod2 = 0U;
44

45

46 /*******************************************************************************
47 * Code
48 ******************************************************************************/
49 status_t CTIMER_GetPwmPeriodValue(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,

uint32_t timerClock_Hz)
50 {
51 /* Calculate PWM period match value */
52 g_pwmPeriod = (timerClock_Hz / pwmFreqHz) - 1U;
53

54 /* Calculate pulse width match value */
55 g_pulsePeriod = (g_pwmPeriod + 1U) * (100 - dutyCyclePercent) / 100;
56

57 return kStatus_Success;
58 }
59

60 status_t CTIMER_GetPwmPeriodValue2(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,
uint32_t timerClock_Hz)

61 {
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62 /* Calculate PWM period match value */
63 g_pwmPeriod2 = (timerClock_Hz / pwmFreqHz) - 1U;
64

65 /* Calculate pulse width match value */
66 g_pulsePeriod2 = (g_pwmPeriod2 + 1U) * (100 - dutyCyclePercent) / 100;
67

68 return kStatus_Success;
69 }
70

71 /*!
72 * @brief Main function
73 */
74 int main(void)
75 {
76 ctimer_config_t config;
77 ctimer_config_t config2;
78 uint32_t srcClock_Hz;
79 uint32_t timerClock;
80

81

82

83 /* Init hardware*/
84 BOARD_InitHardware();
85

86 /* CTimer0 counter uses the AHB clock, some CTimer1 modules use the Aysnc
clock */

87 srcClock_Hz = CTIMER_CLK_FREQ;
88 srcClock_Hz2 = CTIMER_CLK_FREQ_2;
89

90 CTIMER_GetDefaultConfig(&config);
91 CTIMER_GetDefaultConfig(&config2);
92 timerClock = srcClock_Hz / (config.prescale + 1);
93

94

95 CTIMER_Init(CTIMER, &config);
96 CTIMER_Init(CTIMER_2, &config2);
97

98 /* Get the PWM period match value and pulse width match value of 20Khz PWM
signal with 20% dutycycle */

99 CTIMER_GetPwmPeriodValue(20000, 50, timerClock);
100 CTIMER_GetPwmPeriodValue2(20000, 50, timerClock);
101 CTIMER_SetupPwmPeriod(CTIMER, CTIMER_MAT_PWM_PERIOD_CHANNEL, CTIMER_MAT_OUT,

g_pwmPeriod, g_pulsePeriod, false);
102 CTIMER_SetupPwmPeriod(CTIMER_2, CTIMER_MAT_PWM_PERIOD_CHANNEL,

CTIMER_MAT_OUT_2, g_pwmPeriod2, g_pulsePeriod2, false);
103

104 /* start the timers */
105 CTIMER_StartTimer(CTIMER);
106 CTIMER_StartTimer(CTIMER_2);
107

108

109 while (1)
110 {
111 }
112 }

B.1.4. One CTIMER with Different Frequency Outputs
This code is largely the same as the code in subsection B.1.2 . It programs a single CTIMER to
execute task 3 in section 4.1. The CTIMER3 instance is used to generate two synchronized clock
signals with different frequencies. These will be output through match output 0 and match output 1.
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The function ”CTIMER_GetPwmPeriodValue” is duplicated (lines 58-67) to store the match values for
two PWM waves of different frequencies. Furthermore, two PWM waves are configured (lines 95-96)
with unequal frequency in the main function.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 /*******************************************************************************
7 * Includes
8 ******************************************************************************/
9

10 #include ”fsl_debug_console.h”
11 #include ”board.h”
12 #include ”app.h”
13 #include ”fsl_ctimer.h”
14

15 /*******************************************************************************
16 * Definitions
17 ******************************************************************************/
18 #ifndef CTIMER_MAT_PWM_PERIOD_CHANNEL
19 #define CTIMER_MAT_PWM_PERIOD_CHANNEL kCTIMER_Match_3
20 #endif
21

22 /*${macro:start}*/
23 #define CTIMER CTIMER3 /* Timer 3 */
24 #define CTIMER_MAT_OUT kCTIMER_Match_0 /* Match output 0 */
25 #define CTIMER_MAT_OUT_2 kCTIMER_Match_1 /* Match output 1 */
26 #define CTIMER_CLK_FREQ CLOCK_GetCTimerClkFreq(2U) /*return Frequency of CTimer

functional Clock*/
27

28 /*${macro:end}*/
29

30 /*******************************************************************************
31 * Prototypes
32 ******************************************************************************/
33

34 /*******************************************************************************
35 * Variables
36 ******************************************************************************/
37 volatile uint32_t g_pwmPeriod = 0U;
38 volatile uint32_t g_pulsePeriod = 0U;
39

40 volatile uint32_t g_pwmPeriod2 = 0U;
41 volatile uint32_t g_pulsePeriod2 = 0U;
42

43

44 /*******************************************************************************
45 * Code
46 ******************************************************************************/
47 status_t CTIMER_GetPwmPeriodValue(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,

uint32_t timerClock_Hz)
48 {
49 /* Calculate PWM period match value */
50 g_pwmPeriod = (timerClock_Hz / pwmFreqHz) - 1U;
51

52 /* Calculate pulse width match value */
53 g_pulsePeriod = (g_pwmPeriod + 1U) * (100 - dutyCyclePercent) / 100;
54

55 return kStatus_Success;
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56 }
57

58 status_t CTIMER_GetPwmPeriodValue2(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,
uint32_t timerClock_Hz)

59 {
60 /* Calculate PWM period match value */
61 g_pwmPeriod2 = (timerClock_Hz / pwmFreqHz) - 1U;
62

63 /* Calculate pulse width match value */
64 g_pulsePeriod2 = (g_pwmPeriod2 + 1U) * (100 - dutyCyclePercent) / 100;
65

66 return kStatus_Success;
67 }
68

69 /*!
70 * @brief Main function
71 */
72 int main(void)
73 {
74 ctimer_config_t config;
75 uint32_t srcClock_Hz;
76 uint32_t timerClock;
77

78

79 /* Init hardware*/
80 BOARD_InitHardware();
81

82 /* CTimer0 counter uses the AHB clock, some CTimer1 modules use the Aysnc
clock */

83 srcClock_Hz = CTIMER_CLK_FREQ;
84

85

86 CTIMER_GetDefaultConfig(&config);
87

88 timerClock = srcClock_Hz / (config.prescale + 1);
89

90

91 CTIMER_Init(CTIMER, &config);
92

93

94 /* Get the PWM period match value and pulse width match value of 20Khz PWM
signal with 20% dutycycle */

95 CTIMER_GetPwmPeriodValue(10000, 50, timerClock);
96 CTIMER_GetPwmPeriodValue2(20000, 50, timerClock);
97 CTIMER_SetupPwmPeriod(CTIMER, CTIMER_MAT_PWM_PERIOD_CHANNEL, CTIMER_MAT_OUT,

g_pwmPeriod, g_pulsePeriod, false);
98 CTIMER_SetupPwmPeriod(CTIMER, CTIMER_MAT_PWM_PERIOD_CHANNEL, CTIMER_MAT_OUT_2,

g_pwmPeriod2, g_pulsePeriod2, false);
99

100 /* start the timers */
101 CTIMER_StartTimer(CTIMER);
102

103

104

105 while (1)
106 {
107 }
108 }
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B.1.5. Two CTIMERs with Different Frequency Outputs
This code is nearly identical to the one in subsection B.1.3. It programs two CTIMERs to execute task
3 in section 4.1. The CTIMER2 and CTIMER3 instances are used to generate two synchronized clock
signals with different frequencies. These will be output through match output 0 of both CTIMERs. Com-
pared to the code in subsection B.1.3, the PWMs are now configured to have two unequal frequency
outputs (lines 99 and 100).

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 /*******************************************************************************
7 * Includes
8 ******************************************************************************/
9

10 #include ”fsl_debug_console.h”
11 #include ”board.h”
12 #include ”app.h”
13 #include ”fsl_ctimer.h”
14

15 /*******************************************************************************
16 * Definitions
17 ******************************************************************************/
18 #ifndef CTIMER_MAT_PWM_PERIOD_CHANNEL
19 #define CTIMER_MAT_PWM_PERIOD_CHANNEL kCTIMER_Match_3
20 #endif
21

22 /*${macro:start}*/
23 #define CTIMER CTIMER2 /* Timer 2 */
24 #define CTIMER_MAT_OUT kCTIMER_Match_0 /* Match output 0 */
25

26

27 #define CTIMER_2 CTIMER3 /* Timer 3*/
28 #define CTIMER_MAT_OUT_2 kCTIMER_Match_0 /* Match output 0 */
29 #define CTIMER_CLK_FREQ CLOCK_GetCTimerClkFreq(2U) /*return Frequency of CTimer

functional Clock*/
30 /*${macro:end}*/
31

32 /*******************************************************************************
33 * Prototypes
34 ******************************************************************************/
35

36 /*******************************************************************************
37 * Variables
38 ******************************************************************************/
39 volatile uint32_t g_pwmPeriod = 0U;
40 volatile uint32_t g_pulsePeriod = 0U;
41

42 volatile uint32_t g_pwmPeriod2 = 0U;
43 volatile uint32_t g_pulsePeriod2 = 0U;
44

45

46 /*******************************************************************************
47 * Code
48 ******************************************************************************/
49 status_t CTIMER_GetPwmPeriodValue(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,

uint32_t timerClock_Hz)
50 {
51 /* Calculate PWM period match value */
52 g_pwmPeriod = (timerClock_Hz / pwmFreqHz) - 1U;
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53

54 /* Calculate pulse width match value */
55 g_pulsePeriod = (g_pwmPeriod + 1U) * (100 - dutyCyclePercent) / 100;
56

57 return kStatus_Success;
58 }
59

60 status_t CTIMER_GetPwmPeriodValue2(uint32_t pwmFreqHz, uint8_t dutyCyclePercent,
uint32_t timerClock_Hz)

61 {
62 /* Calculate PWM period match value */
63 g_pwmPeriod2 = (timerClock_Hz / pwmFreqHz) - 1U;
64

65 /* Calculate pulse width match value */
66 g_pulsePeriod2 = (g_pwmPeriod2 + 1U) * (100 - dutyCyclePercent) / 100;
67

68 return kStatus_Success;
69 }
70

71 /*!
72 * @brief Main function
73 */
74 int main(void)
75 {
76 ctimer_config_t config;
77 ctimer_config_t config2;
78 uint32_t srcClock_Hz;
79 uint32_t timerClock;
80

81

82

83 /* Init hardware*/
84 BOARD_InitHardware();
85

86 /* CTimer0 counter uses the AHB clock, some CTimer1 modules use the Aysnc
clock */

87 srcClock_Hz = CTIMER_CLK_FREQ;
88

89

90 CTIMER_GetDefaultConfig(&config);
91 CTIMER_GetDefaultConfig(&config2);
92 timerClock = srcClock_Hz / (config.prescale + 1);
93

94

95 CTIMER_Init(CTIMER, &config);
96 CTIMER_Init(CTIMER_2, &config2);
97

98 /* Get the PWM period match value and pulse width match value of 20Khz PWM
signal with 50% dutycycle */

99 CTIMER_GetPwmPeriodValue(10000, 50, timerClock);
100 CTIMER_GetPwmPeriodValue2(20000, 50, timerClock);
101 CTIMER_SetupPwmPeriod(CTIMER, CTIMER_MAT_PWM_PERIOD_CHANNEL, CTIMER_MAT_OUT,

g_pwmPeriod, g_pulsePeriod, false);
102 CTIMER_SetupPwmPeriod(CTIMER_2, CTIMER_MAT_PWM_PERIOD_CHANNEL,

CTIMER_MAT_OUT_2, g_pwmPeriod2, g_pulsePeriod2, false);
103

104 /* start the timers */
105 CTIMER_StartTimer(CTIMER);
106 CTIMER_StartTimer(CTIMER_2);
107

108
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109 while (1)
110 {
111 }
112 }

B.2. SCTIMER
B.2.1. SCT Single Signal
This code shows how the SCTIMER is programmed to execute task 1 in section 4.1. The SCTIMER
is used to generate a single clock signal and output it through SCTIMER output 4. In definitions (lines
12-15), the macros for the internal clock frequency and output 4 are defined. The main function first
declares the temporary variables (lines 29-32), followed by the initialization of the FRDM-MCXN947
development board (line 35) and the SCTIMER with default configurations (line 40). After that, the
PWM output, active level and duty cycle are set (lines 49-51). The if statement in line 54 configures the
SCTIMER to produce the single clock signal. Finally, the SCTIMER is activated by starting the timer
(line 61).

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
15 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
16

17 /*******************************************************************************
18 * Prototypes
19 ******************************************************************************/
20

21 /*******************************************************************************
22 * Code
23 ******************************************************************************/
24 /*!
25 * @brief Main function
26 */
27 int main(void)
28 {
29 sctimer_config_t sctimerInfo;
30 sctimer_pwm_signal_param_t pwmParam;
31 uint32_t eventFirstNumberOutput;
32 uint32_t sctimerClock;
33

34 /* Board pin, clock, debug console init */
35 BOARD_InitHardware();
36

37 sctimerClock = SCTIMER_CLK_FREQ;
38

39 /* Default configuration operates the counter in 32-bit mode */
40 SCTIMER_GetDefaultConfig(&sctimerInfo);
41

42 /* Initialize SCTimer module */
43 SCTIMER_Init(SCT0, &sctimerInfo);
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44

45 /////////////////* Schedule events in current state; State 0 *//////////////
46

47 /* Schedule events for generating a 24KHz PWM with 50% duty cycle from first
Out in the current state */

48 /* Configure PWM params with frequency 24kHZ from first output */
49 pwmParam.output = FIRST_SCTIMER_OUT;
50 pwmParam.level = kSCTIMER_HighTrue;
51 pwmParam.dutyCyclePercent = 50;
52

53

54 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,
sctimerClock, &eventFirstNumberOutput) ==

55 kStatus_Fail)
56 {
57 return -1;
58 }
59

60 /* Start the 32-bit unify timer */
61 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
62

63 while (1)
64 {
65 }
66 }

B.2.2. SCT with Equal Frequency Outputs
This code is an extended version of the code in subsection B.2.1. It programs the SCTIMER to execute
task 2 in section 4.1. The SCTIMER is used to generate two synchronized clock signals with the same
frequencies. These will be output through SCTIMER outputs 4 and 5. Therefore, an extra macro is
added in definitions for output 5 (line 16). Additionally, a second PWM is configured (line 69) with the
same active level, duty cycle and frequency as the first PWM (line 57) in the main function.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
15 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
16 #define SECOND_SCTIMER_OUT kSCTIMER_Out_5
17 /*******************************************************************************
18 * Prototypes
19 ******************************************************************************/
20

21 /*******************************************************************************
22 * Code
23 ******************************************************************************/
24 /*!
25 * @brief Main function
26 */
27 int main(void)
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28 {
29 sctimer_config_t sctimerInfo;
30 sctimer_pwm_signal_param_t pwmParam;
31 uint32_t stateNumber;
32 uint32_t eventFirstNumberOutput, eventSecondNumberOutput;
33 uint32_t sctimerClock;
34

35 /* Board pin, clock, debug console init */
36 BOARD_InitHardware();
37

38 sctimerClock = SCTIMER_CLK_FREQ;
39

40 /* Default configuration operates the counter in 32-bit mode */
41 SCTIMER_GetDefaultConfig(&sctimerInfo);
42

43 /* Initialize SCTimer module */
44 SCTIMER_Init(SCT0, &sctimerInfo);
45

46 stateNumber = SCTIMER_GetCurrentState(SCT0);
47

48 /////////////////* Schedule events in current state; State 0
*////////////////////

49

50 /* Schedule events for generating a 24KHz PWM with 50% duty cycle from first
Out in the current state */

51 /* Configure PWM params with frequency 24kHZ from first output */
52 pwmParam.output = FIRST_SCTIMER_OUT;
53 pwmParam.level = kSCTIMER_HighTrue;
54 pwmParam.dutyCyclePercent = 50;
55

56

57 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,
sctimerClock, &eventFirstNumberOutput) ==

58 kStatus_Fail)
59 {
60 return -1;
61 }
62

63

64 /* Configure PWM params with frequency 24kHZ from second output */
65 pwmParam.output = SECOND_SCTIMER_OUT;
66 pwmParam.level = kSCTIMER_HighTrue;
67 pwmParam.dutyCyclePercent = 50;
68

69 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,
sctimerClock, &eventSecondNumberOutput) ==

70 kStatus_Fail)
71 {
72 return -1;
73 }
74

75 /* Start the 32-bit unify timer */
76 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
77

78 while (1)
79 {
80 }
81 }
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B.2.3. SCT with Different Frequency Outputs
This code is nearly identical to the one in subsection B.2.2. It programs the SCTIMER to execute
task 3 in section 4.1. The SCTIMER is used to generate two synchronized clock signals with different
frequencies. These will be output through SCTIMER outputs 4 and 5. The PWMs configured (lines 57
and 69) in the main function are now set to two different frequencies.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
15 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
16 #define SECOND_SCTIMER_OUT kSCTIMER_Out_5
17 /*******************************************************************************
18 * Prototypes
19 ******************************************************************************/
20

21 /*******************************************************************************
22 * Code
23 ******************************************************************************/
24 /*!
25 * @brief Main function
26 */
27 int main(void)
28 {
29 sctimer_config_t sctimerInfo;
30 sctimer_pwm_signal_param_t pwmParam;
31 uint32_t stateNumber;
32 uint32_t eventFirstNumberOutput, eventSecondNumberOutput;
33 uint32_t sctimerClock;
34

35 /* Board pin, clock, debug console init */
36 BOARD_InitHardware();
37

38 sctimerClock = SCTIMER_CLK_FREQ;
39

40 /* Default configuration operates the counter in 32-bit mode */
41 SCTIMER_GetDefaultConfig(&sctimerInfo);
42

43 /* Initialize SCTimer module */
44 SCTIMER_Init(SCT0, &sctimerInfo);
45

46 stateNumber = SCTIMER_GetCurrentState(SCT0);
47

48 /////////////////* Schedule events in current state; State 0
*////////////////////

49

50 /* Schedule events for generating a 24KHz PWM with 50% duty cycle from first
Out in the current state */

51 /* Configure PWM params with frequency 24kHZ from first output */
52 pwmParam.output = FIRST_SCTIMER_OUT;
53 pwmParam.level = kSCTIMER_HighTrue;
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54 pwmParam.dutyCyclePercent = 50;
55

56

57 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,
sctimerClock, &eventFirstNumberOutput) ==

58 kStatus_Fail)
59 {
60 return -1;
61 }
62

63

64 /* Configure PWM params with frequency 12kHZ from second output */
65 pwmParam.output = SECOND_SCTIMER_OUT;
66 pwmParam.level = kSCTIMER_HighTrue;
67 pwmParam.dutyCyclePercent = 50;
68

69 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 12000U,
sctimerClock, &eventSecondNumberOutput) ==

70 kStatus_Fail)
71 {
72 return -1;
73 }
74

75 /* Start the 32-bit unify timer */
76 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
77

78 while (1)
79 {
80 }
81 }

B.2.4. SCT with Different Frequency Outputs Generated with States
This code shows how the SCTIMER is programmed to execute task 3 in section 4.1. The code imple-
mentation is in accordance with the finite state diagram in Figure 6.10. The SCTIMER utilizes the state
switching feature to generate two synchronized clock signals with different frequencies. These will be
output through SCTIMER outputs 4 and 5. Therefore, the macros in the definitions (lines 16-18) are
the same as in the previous SCTIMER code. The main function has 4 defined states. The first state
configures two PWM waves. The first one is produced on line 67, which is a 24 kHz clock. The second
is configured on line 76 as a 24 kHz PWM wave with a 0% duty cycle, effectively resulting in a constant
0 volts output. Accordingly, on line 86 a state switch condition is set to the rising edge of the first PWM
wave. When this condition is met, the program will continue in ”second low state” executing the code
from line 101-128.
The second state is used primarily to extend the PWM waveforms from the first state by one additional
period. Lines 111, 113, 120 and 122 allow for the continuation of the PWM waves configured in the
first state. The same state switch condition as state 0 is set on line 128. Satisfying the condition will
transition the program to the third state.
In the third state, the second PWM wave is reconfigured on line 150 to a 24 khz PWM wave with a
100% duty cycle which is essentially a constant 3.3-volt output. Furthermore, the first PWM waveform
is re-enabled on lines 161 and 163 to ensure its continuation in the second state. The same state
transition condition is applied on line 169 and allows the program to move to the fourth state when the
condition is met.
Lastly, the fourth state is used to extend the PWM waveforms from the third state by one additional
period. Lines 189, 191, 198 and 200 re-enable them. The final state switch condition is also the same
as the previous, but it will redirect the program back the first state. This enables the four states to
operate continuously.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
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3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 /*${macro:start}*/
15

16 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
17 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
18 #define SECOND_SCTIMER_OUT kSCTIMER_Out_5
19

20 /*${macro:end}*/
21 /*******************************************************************************
22 * Prototypes
23 ******************************************************************************/
24

25 /*******************************************************************************
26 * Code
27 ******************************************************************************/
28 /*!
29 * @brief Main function
30 */
31 int main(void)
32 {
33 sctimer_config_t sctimerInfo;
34 sctimer_pwm_signal_param_t pwmParam;
35 uint32_t stateNumber;
36 uint32_t eventFirstNumberOutput, eventSecondNumberOutput, eventNumberInput;
37 uint32_t sctimerClock;
38

39 /*these variables used to calculate Match value of period of First PWM on OUT4
*/

40 uint32_t period = 0;
41 uint32_t pwmFreq_Hz;
42 uint32_t period2= 0;
43 uint32_t pwmFreq_Hz2;
44 uint32_t sctClock;
45

46

47 /* Board pin, clock, debug console init */
48 BOARD_InitHardware();
49

50 sctimerClock = SCTIMER_CLK_FREQ;
51

52 sctClock = sctimerClock / (((SCT0->CTRL & SCT_CTRL_PRE_L_MASK) >>
SCT_CTRL_PRE_L_SHIFT) + 1U);

53

54 /* Default configuration operates the counter in 32-bit mode */
55 SCTIMER_GetDefaultConfig(&sctimerInfo);
56

57 /* Initialize SCTimer module */
58 SCTIMER_Init(SCT0, &sctimerInfo);
59

60 stateNumber = SCTIMER_GetCurrentState(SCT0);
61 /////////////////////////////////////////////////////////////////////////////////
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62 /* First STATE */
63 /////////////////////////////////////////////////////////////////////////////////
64 /* schedule events for STATE 0 */
65 /* Configure PWM params with frequency 24kHZ from first output */
66 pwmParam.output = FIRST_SCTIMER_OUT;
67 pwmParam.level = kSCTIMER_HighTrue;
68 pwmParam.dutyCyclePercent = 50;
69

70 /* Schedule events in current state; State 0 */
71 /* Schedule events for generating a 24KHz PWM with 50% duty cycle from first

Out in the current state */
72 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventFirstNumberOutput) ==
73 kStatus_Fail)
74 {
75 return -1;
76 }
77

78 /* Schedule events for generating a 24KHz PWM with 0% duty cycle from second
Out in this new state */

79 pwmParam.output = SECOND_SCTIMER_OUT;
80 pwmParam.dutyCyclePercent = 0;
81 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventSecondNumberOutput) ==
82 kStatus_Fail)
83 {
84 return -1;
85 }
86

87

88 pwmFreq_Hz = 24000U; /*input parameter of SCTIMER_SetupPwm 4th */
89 period = (sctClock / pwmFreq_Hz) - 1U;
90

91 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period,
kSCTIMER_Out_4, kSCTIMER_Counter_U,

92 &eventNumberInput) == kStatus_Fail)
93 {
94 return -1;
95 }
96

97

98

99 /* Transition to next state when a rising edge is detected on input 1 */
100 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber + 1,

eventNumberInput, true);
101

102 /* Go to next state; State 1 */
103 SCTIMER_IncreaseState(SCT0);
104

105 /////////////////////////////////////////////////////////////////////////////////
106 /* SECOND STATE */
107 /////////////////////////////////////////////////////////////////////////////////
108

109 /* Schedule events in State 1 */
110

111 /* Re-enable PWM coming out from Out 4 by scheduling the PWM events in
this new state */

112 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for
the pulse period and

113 * and 1 for the pulse, we need to schedule both events in this new state
114 */
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115 /* Schedule the period event for the PWM */
116 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput);
117 /* Schedule the pulse event for the PWM */
118 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput + 1);
119

120 /* Re-enable PWM coming out from Out 5 by scheduling the PWM events in
this new state */

121 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for
the pulse period and

122 * and 1 for the pulse, we need to schedule both events in this new state
123 */
124 /* Schedule the period event for the PWM */
125 SCTIMER_ScheduleEvent(SCT0, eventSecondNumberOutput);
126 /* Schedule the pulse event for the PWM */
127 SCTIMER_ScheduleEvent(SCT0, eventSecondNumberOutput + 1);
128

129 pwmFreq_Hz2 = 240000U; /*input parameter of SCTIMER_SetupPwm 4th */
130 period2 = 2 * ((sctClock / pwmFreq_Hz2) - 1U);
131

132 /*look for rising edge of first PWM*/
133 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period2

, kSCTIMER_Out_4, kSCTIMER_Counter_U, &eventNumberInput) ==
kStatus_Fail)

134 {
135 return -1;
136 }
137

138 /* Transition to next state when a rising edge is detected on input 1 */
139 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber + 2,

eventNumberInput, true);
140

141 /* Go to next state; State 2 */
142 SCTIMER_IncreaseState(SCT0);
143

144

145

146 /////////////////////////////////////////////////////////////////////////////////
147 /* THIRD STATE */
148 /////////////////////////////////////////////////////////////////////////////////
149

150 /* Schedule events in State 2 */
151 /* Schedule events for generating a 24KHz PWM with 100% duty cycle from second

Out in this new state */
152 pwmParam.output = SECOND_SCTIMER_OUT;
153 pwmParam.level = kSCTIMER_HighTrue;
154 pwmParam.dutyCyclePercent = 100;
155 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventSecondNumberOutput) ==
156 kStatus_Fail)
157 {
158 return -1;
159 }
160

161 /* Re-enable PWM coming out from Out 4 by scheduling the PWM events in this
new state */

162 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for the
pulse period and

163 * and 1 for the pulse, we need to schedule both events in this new state
164 */
165 /* Schedule the period event for the PWM */
166 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput);
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167 /* Schedule the pulse event for the PWM */
168 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput + 1);
169

170 pwmFreq_Hz2 = 240000U; /*input parameter of SCTIMER_SetupPwm 4th */
171 period2 = 2 * ((sctClock / pwmFreq_Hz2) - 1U);
172

173 /*look for rising edge of first PWM*/
174 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period2,

kSCTIMER_Out_4, kSCTIMER_Counter_U, &eventNumberInput) == kStatus_Fail)
175 {
176 return -1;
177 }
178

179 /* Transition to next state when a rising edge is detected on input 1 */
180 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber + 3,

eventNumberInput, true);
181

182 /* Go to next state; State 3 */
183 SCTIMER_IncreaseState(SCT0);
184 /////////////////////////////////////////////////////////////////////////////////
185 /* FOURTH STATE */
186 /////////////////////////////////////////////////////////////////////////////////
187 /* Schedule events in State 3 */
188

189 /* Re-enable PWM coming out from Out 4 by scheduling the PWM events in this
new state */

190 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for the
pulse period and

191 * and 1 for the pulse, we need to schedule both events in this new state
192 */
193 /* Schedule the period event for the PWM */
194 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput);
195 /* Schedule the pulse event for the PWM */
196 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput + 1);
197

198 /* Re-enable PWM coming out from Out 5 by scheduling the PWM events in this
new state */

199 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for the
pulse period and

200 * and 1 for the pulse, we need to schedule both events in this new state
201 */
202 /* Schedule the period event for the PWM */
203 SCTIMER_ScheduleEvent(SCT0, eventSecondNumberOutput);
204 /* Schedule the pulse event for the PWM */
205 SCTIMER_ScheduleEvent(SCT0, eventSecondNumberOutput + 1);
206

207 pwmFreq_Hz2 = 24000U; /*input parameter of SCTIMER_SetupPwm 4th */
208 period2 = 2 * ((sctClock / pwmFreq_Hz2) - 1U);
209

210 /*look for rising edge of first PWM*/
211 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period2,

kSCTIMER_Out_4, kSCTIMER_Counter_U,
212 &eventNumberInput) == kStatus_Fail)
213 {
214 return -1;
215 }
216

217 /* Transition back to State 0 when a rising edge is detected on input 1 */
218 /* State 0 has only 1 PWM active, there will be no PWM from Out 2 */
219 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber, eventNumberInput,

true);
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220

221 /* Start the 32-bit unify timer */
222 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
223

224 while (1)
225 {
226 }
227 }

B.2.5. ADC_SCK and CSS_SCK generation with SCT
This code is a modified version of the code in subsection B.2.4. The code implementation is in accor-
dance with the finite state diagram in Figure 6.12. The SCTIMER utilizes the state switching feature to
generate the ADC_SCK and CSS_SCK clock similar as in Figure 2.1. However, this code implementation
configures an active-high clock for ADC_SCK, instead of the active-low clock shown in Figure 2.1. The
clock signals are output through SCTIMER outputs 4 and 5. Therefore, the macros in definitions (lines
16-18) are identical to the previous SCTIMER code. The main function consists of three states. The
first state configures the ADC_SCK on line 71 and will be re-enabled in the other states to run contin-
uously. On line 80, the CSS_SCK is programmed to stay at 0 volts for a single period of the ADC_SCK
until the rising edge of the ADC_SCK is detected. This condition is defined on line 90.
In the second state, CSS_SCK is set high to 3.3 volts on line 112. Ideally, the transition from the sec-
ond state to the third state should occur at the first falling edge of ADC_SCK, ensuring that CSS_SCK is
pulled down to 0 volts at the correct moment. However, this state transition condition did not function
as intended. For review purposes, the condition on line 131 is configured to trigger on the rising edge
of ADC_SCK.
The third state mirrors the first state. On line 153, CSS_SCK is pulled low. The state transition condi-
tion, defined on line 174, is set to trigger on the rising edge of ADC_SCK. Once this condition is met,
the program transitions back to the first state, enabling the three states to operate continuously.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 /*${macro:start}*/
15

16 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
17 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
18 #define SECOND_SCTIMER_OUT kSCTIMER_Out_5
19 /*${macro:end}*/
20 /*******************************************************************************
21 * Prototypes
22 ******************************************************************************/
23

24 /*******************************************************************************
25 * Code
26 ******************************************************************************/
27 /*!
28 * @brief Main function
29 */
30 int main(void)
31 {
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32 sctimer_config_t sctimerInfo;
33 sctimer_pwm_signal_param_t pwmParam;
34 uint32_t stateNumber;
35 uint32_t eventFirstNumberOutput, eventSecondNumberOutput, eventNumberInput;
36 uint32_t sctimerClock;
37

38 /*these variables used to calculate Match value of period of First PWM on OUT4
*/

39 uint32_t period = 0;
40 uint32_t pwmFreq_Hz;
41 uint32_t period2= 0;
42 uint32_t pwmFreq_Hz2;
43 uint32_t sctClock;
44

45

46 /* Board pin, clock, debug console init */
47 BOARD_InitHardware();
48

49 sctimerClock = SCTIMER_CLK_FREQ;
50

51 sctClock = sctimerClock / (((SCT0->CTRL & SCT_CTRL_PRE_L_MASK) >>
SCT_CTRL_PRE_L_SHIFT) + 1U);

52

53 /* Default configuration operates the counter in 32-bit mode */
54 SCTIMER_GetDefaultConfig(&sctimerInfo);
55

56 /* Initialize SCTimer module */
57 SCTIMER_Init(SCT0, &sctimerInfo);
58

59 stateNumber = SCTIMER_GetCurrentState(SCT0);
60 /////////////////////////////////////////////////////////////////////////////////
61 /* FIRST STATE */
62 /////////////////////////////////////////////////////////////////////////////////
63 /* schedule events for STATE 0 */
64 /* Configure PWM params with frequency 24kHZ from first output */
65 pwmParam.output = FIRST_SCTIMER_OUT;
66 pwmParam.level = kSCTIMER_HighTrue;
67 pwmParam.dutyCyclePercent = 50;
68

69 /* Schedule events in current state; State 0 */
70 /* Schedule events for generating a 24KHz PWM with 50% duty cycle from first

Out in the current state */
71 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventFirstNumberOutput) ==
72 kStatus_Fail)
73 {
74 return -1;
75 }
76

77 /* Schedule events for generating a 24KHz PWM with 0% duty cycle from second
Out in this new state */

78 pwmParam.output = SECOND_SCTIMER_OUT;
79 pwmParam.dutyCyclePercent = 0;
80 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventSecondNumberOutput) ==
81 kStatus_Fail)
82 {
83 return -1;
84 }
85

86



B.2. SCTIMER 47

87 pwmFreq_Hz = 24000U; /*input parameter of SCTIMER_SetupPwm 4th */
88 period = (sctClock / pwmFreq_Hz) - 1U;
89

90 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period,
kSCTIMER_Out_4, kSCTIMER_Counter_U,

91 &eventNumberInput) == kStatus_Fail)
92 {
93 return -1;
94 }
95

96

97

98 /* Transition to next state when a rising edge is detected on input 1 */
99 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber + 1,

eventNumberInput, true);
100

101 /* Go to next state; State 1 */
102 SCTIMER_IncreaseState(SCT0);
103

104 ////////////////////////////////////////////////////////////////////////////////
105 /* SECOND STATE */
106 ////////////////////////////////////////////////////////////////////////////////
107 /* Schedule events in State 1 */
108

109 /* Schedule events for generating a 24KHz PWM with 100% duty cycle from
second Out in this new state */

110 pwmParam.output = SECOND_SCTIMER_OUT;
111 pwmParam.dutyCyclePercent = 100;
112 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventSecondNumberOutput) ==
113 kStatus_Fail)
114 {
115 return -1;
116 }
117

118 /* Re-enable PWM coming out from Out 4 by scheduling the PWM events in
this new state */

119 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for
the pulse period and

120 * and 1 for the pulse, we need to schedule both events in this new state
121 */
122 /* Schedule the period event for the PWM */
123 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput);
124 /* Schedule the pulse event for the PWM */
125 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput + 1);
126

127 pwmFreq_Hz2 = 240000U; /*input parameter of SCTIMER_SetupPwm 4th */
128 period2 = 2 * ((sctClock / pwmFreq_Hz2) - 1U);
129

130 /*look for rising edge of first PWM*/
131 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period,

kSCTIMER_Out_4, kSCTIMER_Counter_U,&eventNumberInput) == kStatus_Fail)
132 {
133 return -1;
134 }
135

136 /* Transition to next state when a rising edge is detected on input 1 */
137 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber + 2,

eventNumberInput, true);
138

139 /* Go to next state; State 2 */
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140 SCTIMER_IncreaseState(SCT0);
141

142

143

144 /////////////////////////////////////////////////////////////////////////////////
145 /* THIRD STATE */
146 /////////////////////////////////////////////////////////////////////////////////
147

148 /* Schedule events in State 2 */
149 /* Schedule events for generating a 24KHz PWM with 0% duty cycle from second

Out in this new state */
150 pwmParam.output = SECOND_SCTIMER_OUT;
151 pwmParam.level = kSCTIMER_HighTrue;
152 pwmParam.dutyCyclePercent = 0;
153 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm, 24000U,

sctimerClock, &eventSecondNumberOutput) ==
154 kStatus_Fail)
155 {
156 return -1;
157 }
158

159 /* Re-enable PWM coming out from Out 4 by scheduling the PWM events in this
new state */

160 /* To get a PWM, the SCTIMER_SetupPwm() function creates 2 events; 1 for the
pulse period and

161 * and 1 for the pulse, we need to schedule both events in this new state
162 */
163 /* Schedule the period event for the PWM */
164 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput);
165 /* Schedule the pulse event for the PWM */
166 SCTIMER_ScheduleEvent(SCT0, eventFirstNumberOutput + 1);
167

168

169

170 pwmFreq_Hz2 = 240000U; /*input parameter of SCTIMER_SetupPwm 4th */
171 period2 = 2 * ((sctClock / pwmFreq_Hz2) - 1U);
172

173 /*look for rising edge of first PWM*/
174 if (SCTIMER_CreateAndScheduleEvent(SCT0, kSCTIMER_OutputRiseEvent, period,

kSCTIMER_Out_4, kSCTIMER_Counter_U,
175 &eventNumberInput) == kStatus_Fail)
176 {
177 return -1;
178 }
179

180 /* Transition to next state when a rising edge is detected on input 1 */
181 SCTIMER_SetupNextStateActionwithLdMethod(SCT0, stateNumber, eventNumberInput,

true);
182

183 /* Start the 32-bit unify timer */
184 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
185

186 while (1)
187 {
188 }
189 }
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B.3. Differential Clock
B.3.1. Manually Adjustable Differential Clock with SCT
This code shows how the manually adjustable differential clock is implemented to execute task 2 in
section 4.2. The SCTIMER is utilized to generate a differential clock signal with a fixed, predefined
frequency. The two clock signals are output through SCTIMER output 4 and 5. In definitions (lines 14-
16), the macros for these outputs and the internal clock frequency are defined. The main function first
declares the temporary variables (lines 33-36), followed by the initialization of the FRDM-MCXN947
development board (line 41) and the SCTIMER with default configurations (line 51). The function
”ConfigDifferentialClock” (line 54) sets up the differential clock, with its input parameter specifying the
desired frequency. The clocks are configured (lines 62-77) to operate at the same frequency but with
opposite active levels. The ”Start” function starts the timer of the SCTIMER, initiating the operation
of the differential clock. These functions are called in the ”while(1)” loop to continuously generate the
differential clock.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
15 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
16 #define SECOND_SCTIMER_OUT kSCTIMER_Out_5
17 /*******************************************************************************
18 * Define the PORT/PINS to read the command from *
19 ******************************************************************************/
20

21 /*******************************************************************************
22 * Prototypes
23 ******************************************************************************/
24

25 /*******************************************************************************
26 * Code
27 ******************************************************************************/
28 /*!
29 * @brief Main function
30 */
31 int main(void)
32 {
33 sctimer_config_t sctimerInfo;
34 sctimer_pwm_signal_param_t pwmParam;
35 uint32_t eventFirstNumberOutput, eventSecondNumberOutput;
36 uint32_t sctimerClock;
37

38

39

40 /* Board pin, clock, debug console init */
41 BOARD_InitHardware();
42

43

44 sctimerClock = SCTIMER_CLK_FREQ;
45

46
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47 /* Default configuration operates the counter in 32-bit mode */
48 SCTIMER_GetDefaultConfig(&sctimerInfo);
49

50 /* Initialize SCTimer module */
51 SCTIMER_Init(SCT0, &sctimerInfo);
52

53 /* function to initialize and configure the differential clock */
54 void ConfigDifferentialClock(uint8_t frequency)
55 {
56

57 // Disable/Reset SCTimer before reconfiguring
58 SCTIMER_StopTimer(SCT0, kSCTIMER_Counter_U);
59

60

61 /* Configure PWM params for first clock output */
62 pwmParam.output = FIRST_SCTIMER_OUT;
63 pwmParam.level = kSCTIMER_HighTrue;
64 pwmParam.dutyCyclePercent = 50;
65

66

67 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm,
frequency, sctimerClock, &eventFirstNumberOutput) ==

68 kStatus_Fail)
69 {
70

71 }
72

73 /* Configure PWM params for second clock output */
74 pwmParam.output = SECOND_SCTIMER_OUT;
75 pwmParam.level = kSCTIMER_LowTrue;
76 pwmParam.dutyCyclePercent = 50;
77 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm,

frequency, sctimerClock, &eventSecondNumberOutput) ==
78 kStatus_Fail)
79 {
80

81 }
82 }
83

84 /* function to kick start the SCTIME for differential clock output */
85 void Start(void){
86 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
87 }
88

89 while (1)
90 {
91 ConfigDifferentialClock(24000);
92 Start();
93

94

95 }
96 }

B.3.2. Input-based Adjustable Differential Clock with SCT
This code is an extended version of the code in subsection B.3.1. It programs the SCTIMER to execute
task 3 in section 4.2.The SCTIMER is used to generate a differential clock, with its frequency deter-
mined by the inputs of three GPIO pins. The two clock signals are output through SCTIMER output
4 and 5. In definitions (lines 14-16), the macros for these outputs and the internal clock frequency
are defined. Additionally, the macros defined on lines 24–31 specify which pin corresponds to each
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input bit for clarity. The main function first declares the temporary variables (lines 44-46), followed by
the initialization of the FRDM-MCXN947 development board (line 50) and the SCTIMER with default
configurations (line 58). The array ”frequencyTable” (line 61) stores some values for the frequency of
the differential clock. The function ”UpdateDifferentialClock” (line 72) is similar to the ”ConfigDifferen-
tialClock” function in subsection B.3.1, but modified to read a 3-bit input parameter. The 3-bit input is
constructed in the function ”Read3BitCommandFromGPIO” (line 117). The logic level at port 1 pin 2
defines the most significant bit (MSB), port 1 pin 13 defines the center bit and port 1 pin 12 defines
the least significant bit (LSB). The function ”StartDifferentialClock” (line 126) starts the timer of the SC-
TIMER, initiating the operation of the differential clock.
All these functions are used in the ”while(1)” (line 133) loop to provide a continuous input controlled
differential clock. First, the logic levels of the input pins are polled. If a change in logic level in the
pins are detected, then the frequency of the differential clock will be updated accordingly to one of the
values in the ”frequencyTable” array.

1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”fsl_debug_console.h”
7 #include ”board.h”
8 #include ”app.h”
9 #include ”fsl_sctimer.h”

10

11 /*******************************************************************************
12 * Definitions
13 ******************************************************************************/
14 /*${macro:start}*/
15

16 #define SCTIMER_CLK_FREQ CLOCK_GetFreq(kCLOCK_BusClk)
17 #define FIRST_SCTIMER_OUT kSCTIMER_Out_4
18 #define SECOND_SCTIMER_OUT kSCTIMER_Out_5
19 /*${macro:end}*/
20

21 /*******************************************************************************
22 * Define the PORT/PINS to read the command from *
23 ******************************************************************************/
24 #define CMD_BIT0_PORT 1U
25 #define CMD_BIT0_PIN 12U // e.g. P1_12
26

27 #define CMD_BIT1_PORT 1U
28 #define CMD_BIT1_PIN 13U // e.g. P1_13
29

30 #define CMD_BIT2_PORT 1U
31 #define CMD_BIT2_PIN 2U // e.g. P1_2
32 /*******************************************************************************
33 * Prototypes
34 ******************************************************************************/
35

36 /*******************************************************************************
37 * Code
38 ******************************************************************************/
39 /*!
40 * @brief Main function
41 */
42 int main(void)
43 {
44 sctimer_config_t sctimerInfo;
45 uint32_t eventFirstNumberOutput, eventSecondNumberOutput;
46 uint32_t sctimerClock;



B.3. Differential Clock 52

47

48

49 /* Board pin, clock, debug console init */
50 BOARD_InitHardware();
51

52 sctimerClock = SCTIMER_CLK_FREQ;
53

54 /* Default configuration operates the counter in 32-bit mode */
55 SCTIMER_GetDefaultConfig(&sctimerInfo);
56

57 /* Initialize SCTimer module */
58 SCTIMER_Init(SCT0, &sctimerInfo);
59

60 /* An array to store some frequency values for the differential clock */
61 const uint32_t frequencyTable[8] = {
62 24000, // 1 kHz
63 2000000, // 2 MHz
64 4000000, // 4 MHz
65 8000000, // 8 MHz
66 10000000, // 10 MHz
67 12000000, // 12 MHz
68 16000000, // 16 MHz
69 20000000 // 20 MHz
70 };
71 /* function to initialize and configure the differential clock */
72 void UpdateDifferentialClock(uint8_t freqIndex)
73 {
74 if (freqIndex >= 8) return; // invalid input
75

76 uint32_t frequency = frequencyTable[freqIndex];
77

78 // Disable/Reset SCTimer before reconfiguring
79 SCTIMER_StopTimer(SCT0, kSCTIMER_Counter_U);
80

81 /* Default reconfiguration operates the counter in 32-bit mode */
82 SCTIMER_GetDefaultConfig(&sctimerInfo);
83

84 /* Reinitialize SCTimer module */
85 SCTIMER_Init(SCT0, &sctimerInfo);
86

87 sctimer_pwm_signal_param_t pwmParam;
88 /* Configure PWM params for first clock output */
89 pwmParam.output = FIRST_SCTIMER_OUT;
90 pwmParam.level = kSCTIMER_HighTrue;
91 pwmParam.dutyCyclePercent = 50;
92

93 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm,
frequency, sctimerClock, &eventFirstNumberOutput) ==

94 kStatus_Fail)
95 {
96

97 }
98 /* Configure PWM params for second clock output */
99 pwmParam.output = SECOND_SCTIMER_OUT;

100 pwmParam.level = kSCTIMER_LowTrue;
101 pwmParam.dutyCyclePercent = 50;
102 if (SCTIMER_SetupPwm(SCT0, &pwmParam, kSCTIMER_EdgeAlignedPwm,

frequency, sctimerClock, &eventSecondNumberOutput) ==
103 kStatus_Fail)
104 {
105
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106 }
107 }
108

109 /* function to read logic levels of GPIO pins P1_2, P1_13 and P1_12*/
110 /* The 3 bit input is used to select the frequency in the frequency table

array */
111 /* The 3 bit input is read in the sketch shown below */
112 /*
113 * MSB ----------> lSB
114 * Bit2 | Bit1| Bit0 |
115 * P1_2 |P1_13| P1_12|
116 */
117 uint8_t Read3BitCommandFromGPIO(void)
118 {
119 uint8_t bit0 = GPIO_PinRead(GPIO1, CMD_BIT0_PIN) ? 1U : 0U;
120 uint8_t bit1 = GPIO_PinRead(GPIO1, CMD_BIT1_PIN) ? 1U : 0U;
121 uint8_t bit2 = GPIO_PinRead(GPIO1, CMD_BIT2_PIN) ? 1U : 0U;
122 return (bit2 << 2) | (bit1 << 1) | bit0;
123 }
124

125 /* function to kick start the SCTIME for differential clock output */
126 void StartDifferentialClock(void) {
127

128 SCTIMER_StartTimer(SCT0, kSCTIMER_Counter_U);
129 }
130

131

132

133 while (1)
134 {
135

136 uint8_t cmd = Read3BitCommandFromGPIO();
137 if (cmd != lastCommand)
138 {
139 UpdateDifferentialClock(cmd);
140 StartDifferentialClock();
141 lastCommand = cmd;
142 }
143

144 }
145 }

B.4. Enhanced DMA
This unfinished code was developed to perform a single memory to GPIO pin transfer. The code
would serve as an initial step for programming the scatter-gather DMA 2.1 on the FRDM-MCXN947
development board. Unfortunately, the code is non-functional because the program remains stuck in
the first while loop (line 201), continuously waiting for the transfer done flag.
The code starts by defining a few macros. Lines 17-19 define some macros for some values. The
macros on lines 21-75 are used for direct register access to configure the security and privilege modes
of the DMA. A detailed explanation about these modes can be found in section 23.1.4 of [6]. Lines 89
and 91 define lists in some memory space. Afterward, on lines 96-100, the TCD pointer is initialized.
The function ”EDMA_Callback” acts as a callback for the EDMA transfer; it sets a flag when a transfer
is completed. The main function is composed of several tasks. First, the DMA is configured in secure
and privileged mode on lines 136-143. Second, GPIO2 pin 0 is configured as an output with a default
output logic set to low on lines 145-150. Lastly, the EDMA is initialized and configured for a DMA
transfer from memory to GPIO2 PTOR register on lines 157-197. These steps originate from some
example projects from the NXP Software Development Kit (SDK). It is recommended to read ”DMA:
Direct Memory Access Controller Driver” in [23] to understand the functions and procedures.
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1 /*
2 * Authors: Kevin Pang, Wilson Rong
3 * Date: June 2025
4 */
5

6 #include ”board.h”
7 #include ”app.h”
8 #include ”fsl_debug_console.h”
9 #include ”fsl_edma.h”

10 #include ”pin_mux.h”
11 #include ”fsl_inputmux_connections.h”
12 #include <stdlib.h>
13

14 /*******************************************************************************
15 * Definitions
16 ******************************************************************************/
17 #define BUFF_LENGTH 8U
18 #define HALF_BUFF_LENGTH (BUFF_LENGTH / 2U)
19 #define TCD_QUEUE_SIZE 2U
20

21 #define DMA_MP_CSR_GMRC_MASK (0x80U)
22 #define DMA_MP_CSR_GMRC_SHIFT (7U)
23 /*! GMRC - Global Master ID Replication Control
24 * 0b0..Master ID replication disabled for all channels
25 * 0b1..Master ID replication available and controlled by each channel’s CHn_SBR[

EMI] setting
26 */
27 #define DMA_MP_CSR_GMRC(x) (((uint32_t)(((uint32_t)(x)) <<

DMA_MP_CSR_GMRC_SHIFT)) & DMA_MP_CSR_GMRC_MASK)
28

29

30 #define AHBSC_MASTER_SEC_LEVEL_EDMA0_MASK (0xC0U)
31 #define AHBSC_MASTER_SEC_LEVEL_EDMA0_SHIFT (6U)
32 /*! eDMA0 - eDMA0
33 * 0b00..Non-secure and non-privileged Master
34 * 0b01..Non-secure and privileged Master
35 * 0b10..Secure and non-privileged Master
36 * 0b11..Secure and privileged Master
37 */
38 #define AHBSC_MASTER_SEC_LEVEL_EDMA0(x) (((uint32_t)(((uint32_t)(x)) <<

AHBSC_MASTER_SEC_LEVEL_EDMA0_SHIFT)) & AHBSC_MASTER_SEC_LEVEL_EDMA0_MASK)
39

40

41

42 #define AHBSC_MASTER_SEC_ANTI_POL_REG_EDMA0_MASK (0xC0U)
43 #define AHBSC_MASTER_SEC_ANTI_POL_REG_EDMA0_SHIFT (6U)
44 /*! eDMA0 - eDMA0
45 * 0b00..Secure and privileged Master
46 * 0b01..Secure and non-privileged Master
47 * 0b10..Non-secure and privileged Master
48 * 0b11..Non-secure and non-privileged Master
49 */
50 #define AHBSC_MASTER_SEC_ANTI_POL_REG_EDMA0(x) (((uint32_t)(((uint32_t)(x)) <<

AHBSC_MASTER_SEC_ANTI_POL_REG_EDMA0_SHIFT)) &
AHBSC_MASTER_SEC_ANTI_POL_REG_EDMA0_MASK)

51

52 #define DMA_CH_SBR_PAL_MASK (0x8000U)
53 #define DMA_CH_SBR_PAL_SHIFT (15U)
54 /*! PAL - Privileged Access Level
55 * 0b0..User protection level for DMA transfers
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56 * 0b1..Privileged protection level for DMA transfers
57 */
58 #define DMA_CH_SBR_PAL(x) (((uint32_t)(((uint32_t)(x)) <<

DMA_CH_SBR_PAL_SHIFT)) & DMA_CH_SBR_PAL_MASK)
59

60 #define DMA_CH_SBR_SEC_MASK (0x4000U)
61 #define DMA_CH_SBR_SEC_SHIFT (14U)
62 /*! SEC - Security Level
63 * 0b0..Nonsecure protection level for DMA transfers
64 * 0b1..Secure protection level for DMA transfers
65 */
66 #define DMA_CH_SBR_SEC(x) (((uint32_t)(((uint32_t)(x)) <<

DMA_CH_SBR_SEC_SHIFT)) & DMA_CH_SBR_SEC_MASK)
67

68

69 #define DMA_CH_SBR_EMI_MASK (0x10000U)
70 #define DMA_CH_SBR_EMI_SHIFT (16U)
71 /*! EMI - Enable Master ID Replication
72 * 0b0..Master ID replication is disabled
73 * 0b1..Master ID replication is enabled
74 */
75 #define DMA_CH_SBR_EMI(x) (((uint32_t)(((uint32_t)(x)) <<

DMA_CH_SBR_EMI_SHIFT)) & DMA_CH_SBR_EMI_MASK)
76 /*******************************************************************************
77 * Prototypes
78 ******************************************************************************/
79

80 /*******************************************************************************
81 * Variables
82 ******************************************************************************/
83

84

85 edma_handle_t g_EDMA_Handle;
86 volatile bool g_Transfer_Done = false;
87

88 /* defining memory space in secure memory element */
89 __attribute__((at(0x30000000))) uint32_t myData[4] = {0x01};
90 /* example SDK memory space definition for the source */
91 AT_NONCACHEABLE_SECTION_INIT(uint32_t srcAddr[1U]) = {0x00000001U};
92 /* example SDK memory space definition for the destination */
93 //AT_NONCACHEABLE_SECTION_INIT(uint32_t destAddr[BUFF_LENGTH]) = {0x00U, 0x00U, 0

x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U};
94

95 /* Allocate TCD memory poll */
96 #if defined(DEMO_QUICKACCESS_SECTION_CACHEABLE) &&

DEMO_QUICKACCESS_SECTION_CACHEABLE
97 AT_NONCACHEABLE_SECTION_ALIGN(edma_tcd_t tcdMemoryPoolPtr[TCD_QUEUE_SIZE], sizeof(

edma_tcd_t));
98 #else
99 AT_QUICKACCESS_SECTION_DATA_ALIGN(edma_tcd_t tcdMemoryPoolPtr[TCD_QUEUE_SIZE],

sizeof(edma_tcd_t));
100 #endif
101

102 /*******************************************************************************
103 * Code
104 ******************************************************************************/
105

106 /* User callback function for EDMA transfer. */
107 void EDMA_Callback(edma_handle_t *handle, void *param, bool transferDone, uint32_t

tcds)
108 {
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109 if (transferDone)
110 {
111 g_Transfer_Done = true;
112 }
113 }
114

115 /* POINTERS Pointing to the address of the PTOR register of GPIO2 */
116 #define setadd GPIO2->PTOR
117 uint32_t *setaddr= &setadd;
118 uint32_t *P2_0_PTOR = &((GPIO_Type *)GPIO2)->PTOR;
119

120 /*!
121 * @brief Main function
122 */
123 int main(void)
124 {
125 edma_transfer_config_t transferConfig;
126 edma_config_t userConfig;
127 edma_channel_config_t channelconfig;
128 edma_tcd_t tcd;
129 uint32_t *PTOR_P2_0 = &((GPIO_Type *)GPIO2)->PTOR; /*address of PTOR register

for GPIO2 pin0*/
130

131 BOARD_InitHardware();
132

133 /******** steps accordingly to section 23.1.4 reference manual security
considerations eDMA***/

134 /****all steps are done specifically for DMA0 channel 0****/
135

136 AHBSC_MASTER_SEC_LEVEL_EDMA0(0b01);
137 AHBSC_MASTER_SEC_ANTI_POL_REG_EDMA0(0b10);
138

139 DMA_MP_CSR_GMRC(0b1);
140

141 DMA_CH_SBR_EMI(0b1);
142 DMA_CH_SBR_PAL(0b0);
143 DMA_CH_SBR_SEC(0b0);
144 /************************** CONFIGURE PIN P2_0*****************************/
145 gpio_pin_config_t P2_0_config = {
146 .pinDirection = kGPIO_DigitalOutput,
147 .outputLogic = 0U
148 };
149

150 GPIO_PinInit(BOARD_INITPINS_P2_0_GPIO, BOARD_INITPINS_P2_0_PIN, &P2_0_config);
151

152 /**************************************************************************/
153

154 /**************************************************************************/
155 /* EDMA initializations */
156 /* initializations steps 1-3 of reference manual */
157 EDMA_GetDefaultConfig(&userConfig);
158 /* here internal clock enabled of the DMA module en initilizations of steps

1-3 are configured to the registers */
159 EDMA_Init(EXAMPLE_DMA_BASEADDR, &userConfig);
160 EDMA_InitChannel(EXAMPLE_DMA_BASEADDR, EXAMPLE_DMA_CHANNEL, &channelconfig);
161 EDMA_SetChannelMux(EXAMPLE_DMA_BASEADDR, EXAMPLE_DMA_CHANNEL,

kDma0RequestMuxGpio2PinEventRequest0);
162

163 EDMA_CreateHandle(&g_EDMA_Handle, EXAMPLE_DMA_BASEADDR, EXAMPLE_DMA_CHANNEL);
164 EDMA_SetCallback(&g_EDMA_Handle, EDMA_Callback, NULL);
165 EDMA_ResetChannel(g_EDMA_Handle.base, g_EDMA_Handle.channel);
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166

167 /* Configure and submit transfer structure using TCD functions shown in fsl.
edma.c */

168 EDMA_InstallTCDMemory(&g_EDMA_Handle, tcdMemoryPoolPtr, TCD_QUEUE_SIZE);
169 EDMA_PrepareTransferTCD(&g_EDMA_Handle, tcdMemoryPoolPtr, srcAddr, sizeof(

uint32_t), 0, PTOR_P2_0, sizeof(uint32_t), 0, 4U, 4U, NULL);
170 EDMA_InstallTCD(EXAMPLE_DMA_BASEADDR, EXAMPLE_DMA_CHANNEL, tcdMemoryPoolPtr);
171 EDMA_SubmitTransferTCD(&g_EDMA_Handle, tcdMemoryPoolPtr);
172 EDMA_StartTransfer(&g_EDMA_Handle);
173

174 /******************************************************************************/
175 /* Configure and submit transfer structure from SDK: memory to peripheral*/
176

177 // EDMA_InstallTCDMemory(&g_EDMA_Handle, tcdMemoryPoolPtr, TCD_QUEUE_SIZE);
178 // /* Configure and submit transfer structure 1 */
179 // EDMA_PrepareTransfer(&transferConfig, myData, 4, PTOR_P2_0, 4, 4, 4,

kEDMA_MemoryToPeripheral);
180 // EDMA_SubmitTransfer(&g_EDMA_Handle, &transferConfig);
181 // EDMA_StartTransfer(&g_EDMA_Handle);
182

183 /******************************************************************************/
184

185 /******************************************************************************/
186 /* Configure and submit transfer structure 2 from example sdk */
187

188 // EDMA_PrepareTransfer(&transferConfig, &srcAddr[4], sizeof(srcAddr[0]), &
destAddr[4], sizeof(destAddr[0]),

189 // sizeof(srcAddr[0]) * HALF_BUFF_LENGTH, sizeof(srcAddr
[0]) * HALF_BUFF_LENGTH,

190 // kEDMA_MemoryToPeripheral);
191 // EDMA_SubmitTransfer(&g_EDMA_Handle, &transferConfig);
192

193 /******************************************************************************/
194

195

196 /* Trigger transfer start */
197 EDMA_TriggerChannelStart(EXAMPLE_DMA_BASEADDR, EXAMPLE_DMA_CHANNEL);
198

199

200 /* Wait for the first TCD finished */
201 while (g_Transfer_Done != true)
202 {
203 }
204

205

206 while (1)
207 {
208 }
209 }



C
Extended Research CTIMER

This appendix entails the further research on the possible cause of the distorted second signal when
configuring two CTIMERs. As mentioned in chapter 7, it is considered very strange that multiple
CTIMERs were not able to run simultaneously. Another attempt was made in which every GPIO pin
on the board was checked. Indeed, the second (orange) signal from Figure 6.4 and Figure 6.6 was
not outputted at the configured pin P1_10 as shown in Configuration Tool of the MCUXpresso IDE in
Figure C.2 (the red rectangle). However, this signal was wired to pin P1_16. This is a very remarkable
finding, since output signals from the CTIMER instances cannot be multiplexed to pin P1_16 according
to the data sheet, see Figure C.4.

A photo of the position of the probes when measuring, is shown in Figure C.5. In this figure, the red
rectangles highlight the pin numbers P1_16, P1_18 and P1_10. The resulting waveforms are shown
in Figure C.1.

Thus, it can be concluded that the CTIMERs are capable of being configured simultaneously. Fur-
thermore, there is an inconsistency between the data sheet, MCUXpresso, and the FRDM-MCXN947
board.

0.0

0.1

0.2

0.3

Vo
lta

ge
 (V

)

Signal 1

0.0002 0.0001 0.0000 0.0001 0.0002
Time (s)

0

1

2

3

Vo
lta

ge
 (V

)

Signal 2

Figure C.1: P1_18 (blue) and P1_16 (orange) output
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Figure C.2: Pin configuration tools in MCUXpresso IDE
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Figure C.3: Table 93 on page 100 in [7]
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Figure C.4: Table 93 on page 102 in [7]
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Figure C.5: Probe attachment on pins P1_16 and P1_18
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