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An autonomous guided vehicle can be used 
for the delivery of goods. To deliver these 
goods to your home, the mobile robot will 
be driving in pedestrian rich environments. 
In these environments the robot will need to 
socially navigate itself in a way which is both 
pleasant for the pedestrians and progressive 
for the robot.

During its drive, the robots behavior should 
be adapted to the situation it finds itself in. 
The underlying theory for this is the Social, 
Technology and Service triangle. This triangle 
dictates the balance between three aspects. 
The technology aspect focuses on power 
consumption and efficiency. The service 
aspect is all about delivery time and location. 
The social aspect is all about minimizing social 
disruption and facilitating intuitive behavior.

The behavior of pedestrians can be modelled 
with the Social Force Model. In this model 
the objects and pedestrians apply social 
forces onto each other which determine their 
movements. The robot can use this SFM for its 
own social navigation.

Multi-Policy Decision Making (MPDM) can 
be added onto the Social Force Model. This 
allows for switching between three basic 
policies: go-solo, follow and stop. Through 
forward simulations the robot can predict and 
decide which of the three policies brings the 
most progress and the least social disruption.

However, SFM-MPDM on its own does not 
cope well with passing and crossing; thus 
methods were designed to handle these 
situations. In passing the robot looks ahead 
and makes room, often keeping right. In 
crossing the robot slows down and deviates 
to cross behind the pedestrian. 

The Social Force Model, the Multi-Policy 
Decision Making and the passing and 

crossing all combined form the social 
navigational model. This model consist 
of the many different parameters which 
govern the behavior and is part of the overall 
computational mechanism. This mechanism 
takes in the environment through sensors 
such as LiDAR. It preprocesses these inputs 
and sends them to the model. The output of 
this model is what determines the locomotion 
and behavior of the robot. To find the behavior 
and its underlying parameters an Evolutionary 
Algorithm was employed.
The learnt behavioral parameter sets 
were tested with participants (n=42) and a 
physical ROSbot. They were asked to rate the 
robots behavioral performance on comfort, 
predictability and communication of intent.

From these results, it became clear that the 
robots behavior influences the experience 
of the pedestrians, but it is unclear which 
parameter exactly influences which part of 
the behavior. There are certain expectations 
to what impact a parameter or group of 
parameters has, but at which times and to 
what effect this controls parts of the behavior 
is difficult to identify. 

Nevertheless a good foundation has been 
laid down for future projects through a 
social navigational model and a way to learn 
parameters for the many different situations 
an autonomous delivery robot can encounter. 
A recommendation is to improve the 
Evolutionary Algorithm in order to facilitate 
parameter learning which better matches the 
desired behavior in the STS-triangle. 

Executive summary
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Context
As the number of ‘home delivered goods’ is 
experiencing a strong growth which is not 
expected to halt soon, it is interesting to look 
into new ways of delivering these goods 
to the customer. One of these new ways is 
autonomous delivery. If the autonomous 
vehicle is to help with the delivery of these 
goods in a similar manner to a delivery man; 
then it needs to be able to navigate on the 
sidewalk. As not all residences are directly 
adjacent to streets suitable to larger vehicles. 

The advantage of autonomous (self-driving) 
vehicles on the public streets is that they are 
guided by set (traffic) rules. This is not the case 
within the context of autonomous navigation 
on the sidewalk. While one is navigating on the 
sidewalk, you need to deal with pedestrians 
and thus deal with the dynamic rules which 
apply in these pedestrian rich environments.

The challenge
An autonomous guided vehicle (AGV) in 
pedestrian rich environments should be 
designed in such a way as to perform on 
technological, human interaction (social) and 
payload delivery (product service) aspects. 
The AGV should be able to deal with a range 
of situations and be able to pick the optimal* 
approach for a given situation.

*Optimal can be defined as a trade-off between 
the factors from the three above mentioned 
aspects, these factors can be: distance, time, 
energy, social disruption, communication of 
intentions, intuitive interaction, etc.

The project challenges include, but are not 
limited to:
• Autonomous guided vehicles might be 

experienced as obtrusive and provoke a 
response from pedestrians.

• The AGV should be optimally guided 
in the given situation, this requires a 
computational mechanism build from 
one or a combination of machine learning 
methods.

• The computational mechanism cannot 
be developed on the technology, social 
and (product) service aspects without 
prototyping and testing.

Introduction
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The assignment
The assignment is defined as such: 

“Research and design a computational 
mechanism for an autonomous guided vehicle 
based on the social, technology and product 
service needs by utilizing a machine learning 
method to deal with a variety of situations while 
expressing its (change of) intention�”

The computational mechanism’s goal is 
to optimally navigate the AGV through the 
pedestrian rich environments while taking 
into account the technology, social and 
product service aspects. The computational 
mechanism should encompass a variety 
of trained models/parameters for specific 
situations. Some examples of situations are: 
near-empty streets, high density pedestrian 
areas, passing, overtaking, narrow or (partially) 
obstructed paths, etc. The performance of the 
robot (and thus its computational mechanism) 
should be tested which users and evaluated 
to use as input for iterations.

Approach
The project is divided into two main phases; 
the Research and Exploration phase and the 
Development and Testing phase. In the first 
phase the literature will be studied and the 
context of autonomous guided vehicles will 
be explored. This will include, among other 
things, looking into pedestrian traffic, social 
navigational methods, intent communication, 
parameters which impact vehicle 
performance and defining the product service. 
The Research and Exploration phase will be 
concluded with a Program of Requirements 
and Wishes and a scope and design goal. The 
second phase will, as the name suggests, 
be about the development and the testing 
of the computational mechanism. This will 
include various kinds of digital simulations 
and a physically driving robot based on the 
customized computational mechanism. 
These simulations and the physical robot 
will be combined with user tests to evaluate 
performance on the three aspects (Social, 
Technology and Product Service).



In this phase an overview of the literature will be 
given and the context of AGVs will be explored. The 
Research and exploration phase will be concluded 
with a Program of Requirements and Wishes and a 

scope and design goal.

Research and exploration
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Pedestrians encounter many situations during their navigation from A to B. These situations 
can be as simple as walking along an empty sidewalk, or as complex as navigating through 
a crowded shopping street. At the same time the pedestrian has to take into account the 
obstacles on its route, the generally accepted but unwritten rules of pedestrian traffic and 
any unexpected situations emerging from the dynamic environment.
In this chapter, a range of situations is laid out and a selection is made from this range 
which are coined the ‘core situations’. Next, the question is discussed if an AGV should 
adapt its behavior dependent upon the core situation it finds itself in.

What situations can the AGV 
encouter?

A brainstorm on the situations an AGV can 
be in while it’s navigating through pedestrian 
traffic, resulted in an ever growing mindmap 
of situations and conditions. A few examples 
are:

• Navigating around obstacles on the road
• Using a pedestrian crossing
• Taking traffic lights into account
• Overtaking relatively slow moving 

pedestrians
• Crossing a busy flow of pedestrians
• Dealing with a playing child or group of 

children
• Driving on/off a curb or ramp

The full mindmap with 40+ situations can 
be found in Appendix ‘B. Mindmap of  AGV 
situations’. To make this project and the many 
different situations more manageable, a 
selection of eight core situations was made. 
These core situations are the basis of what 
the AGV should be able to handle and some 
of which on their own will already pose quite a 
challenge for the AGV.

The eight core situations, ranked based on 
relative expected difficulty, are defined as:

1. Empty street.
2. Obstacles in path.
3. Single pedestrian.
4. Normal street situations (a few pedestrians 

passing and some behind and ahead).
5. Slow moving (group of) pedestrians ahead.
6. Crossing a bi-directional flow of 

pedestrians with regular gaps.
7. Crossing a busy bi-directional flow of 

pedestrians without gaps.
8. Omni directional pedestrian traffic (such as 

a busy shopping street).

An illustrative overview of these eight core 
situations can be found on the next page in  
Figure 1 through Figure 8.

Situations in pedestrian traffic
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Figure 1� Empty street�

Figure 5� Slow moving (group of) pedestrians�

Figure 3� Single pedestrian�

Figure 6� Crossing bi-directional flow (regular).

Figure 2� Obstacle in path�

Figure 7� Crossing bi-directional flow (busy).

Figure 4� Normal street situation�

Figure 8� Omni-directional pedestrian traffic.
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Should the AGV adapt its behavior 
based on the situation?

As a human walking among other pedestrians, 
one adapts its behavior to the situation. 
When the streets are near empty, you look 
further ahead, your maximum comfortable 
velocity increases and you follow a more 
straightforward trajectory. 
When the crowd is dense, you slow down to 
cope with the number of people, the radius 
of your personal sphere shrinks and you 
weave through the traffic, possibly following 
someone ahead, to reach the goal you’re 
aiming for.

Imagine a robot employing just one behavior 
for all situations. If this behavior is fine tuned 
for dense pedestrian environments, the AGV 
might invade the relatively larger personal 
sphere in less crowded environments and 
drive too slow. Vice versa it will cause a social 
disruption if it tries to navigate through the 
dense crowd at relatively high speeds while 
trying to maintain a straightforward trajectory. 
You might think to solve this issue by taking 
a kind of average of all core situations 
appropriate behavior and applying that 
everywhere. This will result in a robot which 
will just perform at mediocre levels at best. 

Instead what you want is a robot which can 
be interacted with intuitively (predictable) and 
which is experienced as comfortable (ease of 
use). As de Groot, S. (2019) states, 

“Pedestrians should be able to use their current 
mental models about sidewalk behavior and 
technology interaction, to interact with the 
robot�” 

Or in other words; pedestrians should be able 
to interact with the robot in a way they are used 
to with other pedestrians. The robot should 
behave in the way a pedestrian would while 
within the bounds of its own technological 
ability.

By changing its behavior to the situation the 
AGV finds itself in, it navigates in a social 
manner. To further the perception of a 
socially aware robot, the AGV should occupy 
intuitive and comfortable behavior. It should 
thus express its intentions, take into account 
personal space and try minimize social 
disruption in general (de Groot, 2019).

This is but one aspect however. As the AGV 
is also a product with a purpose, delivering 
its parcels, the product service aspect 
should also be included. And finally there are 
technological aspects that come into play 
when using an autonomous vehicle. These 
three aspects together form the triangle from 
which the behavior of the robot should arise, 
see chapter ‘Social, Technology and Service 
triangle’.
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Social
When talking about the social aspect, one 
can think of underlying factors such as social 
disruption, predictability, expression of intent, 
intuitiveness of the interaction and personal 
space. These underlying factors belong to 
two categories, social navigational methods 
and communication of intent. These two 
categories form the main chapters of the 
social subdivision.

As the AGV makes its way through pedestrian traffic, it has to adjust its behavior to suit the 
situation. The underlying principle of the AGVs behavior comes from the Social, Technology 
and (Product) Service triangle, as shown in Figure 9. The triangle illustrates that when a 
situation demands a more social behavior, this will be on the expense of one or both of 
the other aspects. The exact balance is dependent on the specific situation and should be 
identified autonomously by the robot. Each aspect contains underlying factors which are 
inherent to that aspect and which govern the AGV behavior. The three aspects are used as 
an overarching framework in which the research and exploration findings are subdivided. 
Each subdivision concludes with a discussion and set of requirements derived from these 
findings.

Technology
When looking at the technological aspect, 
the underlying factors are for example; 
battery life, acceleration, velocity, suspension, 
turning radius and mass. In this subdivision 
the physical appearance and behavior of the 
AGV are discussed alongside with how they 
impact the technological performance. Next 
to this, the capabilities and the limitations of 
the AGV test platform, the Husarion ROSbot 
2.0 Pro, are presented. Lastly, the theory 
and limitations of a common AGV machine 
learning method is discussed alongside the 
cost function buildup.

Social, Technology and Service triangle
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Product service
In the third subdivision of the framework 
the product service aspect is discussed. 
This aspects has underlying factors such 
as delivery time, delivery location, effective 
delivery range and parcel compartment size. 
The desired service is provided by the AGV 
to the end user (the owner of the parcel that 
is being delivered) and in turn presents its 
own requirements. The AGV might be socially 
and technologically sound, but if it is unable 
to deliver parcels it will be useless as an 
autonomous parcel delivery robot.

Figure 9� Social, Technology and (Product) Service triangle with accompanying example factors 
for each aspect�
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Social Force Model
Pedestrians have certain desires and 
characteristics while navigating among other 
pedestrians. These desires and characteristics 
govern their behavior, but their behavior 
also depends on the complexity they find 
themselves in. Helbing and Molnár (1995) 
have made the distinction of two complexities: 
‘simple or standard situations’ and ‘complex 
or new situations’. When complexity is low, 
the reaction is automatic, well predictable 
and can be modeled by a social force model. 
When complexity is high, the reaction is a 
result of evaluations and part of a decision 
process, it is probabilistic and can be modeled 
by a decision theoretical model. They argue 
however, that as pedestrians are normally 
used to the situations they are confronted with, 
their reaction can be described as automatic. 
They thus reason that it is possible to put 
rules to pedestrian behavior and model their 
motion. The following rules can be extracted 
from their paper (personal comments have 
been written in italic):

1. A pedestrian desires to reach a destination 
with as much comfort as possible, 
meaning they wish to follow the shortest 
path possible. It is assumed here that the 
shortest path possible equals the most 
comfortable, but it doesn’t take the state 
of the path into account� A longer path 
might be more comfortable if it means the 

According to Laffey & Amelung (2010) social navigation is defined as, “A construct that 
represents being aware of what others are doing as a primary guide for one’s own actions.” 
A social navigational method can then be defined as a tool or approach which is utilized 
in order to navigate while being aware of where others are and what they are doing. This 
chapter first discusses pedestrian wants and needs and how this can be simulated through 
a Social Force Model (Helbing & Molnár, 1995). Next it presents the findings of de Groot 
(2019) on Robot Acceptance within the context of pedestrian traffic and his simulations 
of the Social Force Model. Finally it presents two alternative socially aware navigational 
methods with their theory and underlying socially aware rules.

pedestrian can avoid having to cross a 
rough surfaced road or can stay covered 
from undesired weather conditions� 

2. A pedestrian wishes to maintain its desired 
velocity and will accelerate to this desired 
velocity after a deceleration was required 
to, for example, avoid a collision. This 
hints at a desired velocity for pedestrians, 
see also point 8, but it does not take the 
situation the pedestrian is in into account� 
The more crowded a place is, the lower 
the (desired) velocity� Similarly, one would 
increase the maximum desired velocity 
when the street is near empty� Another 
factor here that is overlooked is whether 
the pedestrian is in a hurry, or the opposite; 
enjoying the view of the city as a tourist�  

3. Pedestrians want to keep their distance 
to other pedestrians, depending on 
the pedestrian density and speed, 
this is called the private sphere. The 
closer another pedestrian is, the more 
uncomfortable they become. The distance 
towards other pedestrians is important� 
Another factor might be the dominance 
and/or approachability of the other 
pedestrian� The angle between the two 
should also plays a role, see point 6� 

4. A pedestrian tries to maintain distance 
to borders such as walls, streets and 

Social navigational methods

SOCIAL
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other obstacles. Their discomfort will 
increase when the distance to the border 
decreases as they will have to pay closer 
attention to avoid this border and prevent 
harm. The distance towards said border 
is important� I suspect that the repulsive 
force range should be short but intense 
once within range� Repulsive force is also 
dependent upon the kind of border� You will 
stay further from a row of thorn bushes than 
from a row of common laurel bushes� The 
trajectory angle also is an important factor 
here, see point 6� 

5. Pedestrians can be distracted and 
become temporarily attracted to another 
pedestrian (e.g. a friend) or obstacle 
(e.g. a statue). Helbing & Molnár also 
state that the strength of this attraction 
decreases over time� It is not mentioned if 
this decreases gradually or, what I would 
find more realistic, hyperbolic (steady at first 
but then dropping off rather quickly). It also 
doesn’t mention the frequency at which this 
‘distraction’ should occur�  

6. Situations behind a pedestrian have a 
weaker attractive and repulsive effect. 
This does not include pedestrians on ones 
sides� People can walk side by side and 
not experience much sideways force� The 

forward direction should be full force, but it 
should rapidly decrease towards a fraction 
behind. What the specific value of that 
fraction is, is yet to be determined� 

7. The direction and velocity of the 
pedestrian are governed by the sum of 
all attractive and repulsive forces. A side 
note here is; what happens when the sum 
of forces rapidly rotates 180 degrees? In 
real life the pedestrian might do a step 
backwards, but certainly wouldn’t start 
walking backwards� Similarly, a pedestrian 
in motion won’t do a 180 degree turn in a 
split second, especially not when in forward 
motion�  

8. The desired maximum velocity of a 
pedestrian is Gaussian distributed around 
a mean of 1.34 m/s with a standard 
deviation of 0.26 m/s. This translates to 
~4�8 km/h, which can suit as a starting 
point for the maximum velocity of the robot 
in situations where pedestrians are involved� 
But, as mentioned before, velocity should 
decrease as pedestrian density increases� 

The rules as stated above might seem 
abstract, de Groot (2019) helps us here with 
an illustration of a pedestrian situation with it’s 
the social force vectors, see Figure 10.

Figure 10� Social Force Model illustration by de Groot, S� (2019): “Example of a pedestrian 
situation and its social force vectors�”
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By using these rules to build a mathematical 
model, Helbing and Molnár were able 
simulate pedestrian traffic in a range of 
different scenarios such as walkways scaling 
from 2 to 20 meters, and the scenario of 
two larger groups trying to pass a narrow 
door in opposite directions. In the walkway 
scenario, pedestrians started forming lanes 
which number scaled linearly with the 
walkway width. In the narrow door scenario, 
pedestrians alternated passing in groups 
based on the balance of both sides and how 
easily on could follow the other ahead of them 
‘pushing through’ the narrow gap. From these 
simulations and their results they conclude 
that individual pedestrian motion can be 
described by a simple social force model.

It should be noted that although the ‘simple 
social force model’ simulations could describe 
individual pedestrian motions, there are 
limitations as it is a simplified representation 
of the real world. Maximum desired velocity 
wasn’t altered based on pedestrian density, 
pedestrians were allowed to make an instant 
180 turn (during motion) or walk backwards 
for several meters. All border types were 
assumed equal, same for all pedestrians; 
approachability was not taken into account. 
All floors were considered ideal and desired 
as opposed to for example pavement being 
preferred over grass or sand. Lastly, the SFM 
does, by design, not implement any social 
conventions such as keeping to the right. 
It is understandable that (some of) these 
simplifications had to be made, but this 
leaves us with the question of how accurately 
the model can be used to simulate pedestrian 
behavior for robots in the real world.

Pedestrian behavior
Through direct observations of real life 
pedestrian situations, video material of 
pedestrian traffic and interviews with 

pedestrians, an understanding of the 
conventions in pedestrian dynamics can be 
created, see also Appendix ‘C. Pedestrian 
observations’ and Appendix ‘D. Pedestrian 
interview and data’.  The investigated situations 
are normal walking, passing, overtaking and 
crossing.

In a normal walking situation, the Dutch 
convention is that people remain to their 
right half of the walkway, analogous to 
vehicular traffic. The same ‘right hand rule’ 
analogy applies, to an extent, to passing and 
overtaking, see Figure 11 and Figure 12. For 

Figure 11� Passing�

Figure 12� Overtaking�
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Figure 13� Crossing�

the robot to behave as a pedestrian would, it 
would be wise to integrate a feature such as a 
right keeping bias into the social force model 
as to fit to (Dutch) social convention.
While passing, the phrase “people are 
supposed to stay on the right” is supported by 
all interviewees. Generally, people pass on the 
side they are mostly already on with regard to 
the ‘to be passed’ pedestrian. In most cases, 
when keeping right, this means you will pass 
each other on the right, having the other on 
your left. If a pedestrian keeps to the left even 
though they should keep to the right (according 
to convention), the opposite pedestrian will 
instead pass the left-keeping pedestrian on 
their own left. Against convention but forced 
by the opposite pedestrian. The exceptional 
scenario here where the strong headed 
pedestrian remains to their left could prove to 
be interesting to deal with later on when found 
in the social force model. The robot should 
‘see’ that abandoning convention is preferred 
over blocking the strong headed pedestrian.

While overtaking, people speed up and 
alter their heading to their left (having the 
pedestrian they are overtaking on their right). 
This is again analogous to vehicular traffic rules. 
In rare situations pedestrians may choose 
to overtake on the right, against convention, 
when the balance of available space is shifted 
to such a degree that against convention 
is the preferred, more comfortable option. 
The exact value of this balance depends 
on the person itself and the situation that 
person resides in. Whether or not the robot is 
capable of deciding upon this balance is yet 
to be seen. An option might be to determine 
the most comfortable side to overtake based 
on available distance, conventional bias 
and visual clues, determined by an image 
classification neural net.

In the situation where the pedestrian is 
crossing another pedestrian, the vehicular 
traffic analogy falls short. Contrary to what 
the ‘right hand rule’ would dictate, there is 

no priority in crossing based on the relative 
position of the pedestrians. While crossing, 
pedestrians try to maintain their heading 
and speed unless this would bring them 
uncomfortably close. In that case they alter 
their speed and/or heading slightly to cross. 
Usually the one that alters the most is the one 
that crosses behind, see Figure 13. If a collision 
is nearly certain, speed and/or heading are 
greatly altered to avoid the collision. Again the 
one that alters the most is usually the one that 
crosses behind. Interviewees mention they do 
not give priority to the pedestrian on their right, 
or left for that matter. The decision is based 
on a more personal evaluation of the situation 
taking into account the others velocity, timing 
to crossing point, the empathy the other 
evokes and/or the level of dominance the 
other radiates. When the situation is exactly 
equal they will, “engage in a short, mostly 
non-verbal communication with the other.” in 
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an attempt to solve the issue.
In the case of a pedestrian crossing the robot’s 
path, the crossing must be comfortable for the 
pedestrian. This leads me to believe the robot 
should be submissive to the pedestrian; the 
robot should deviate more and pass behind, 
allowing the pedestrian to comfortably 
keep his heading and velocity. There are of 
course nuances to this. A pedestrian might 
be considerably slower in which situation it 
would be more comfortable for the pedestrian 
if the robot would cross (at a comfortable 
distance) in front. The reason for this is that 
the substantial deviation the robot would 
otherwise have to make could in itself also be 
considered uncomfortable by the pedestrian 
due to unpredictability or possibly a form of 
‘guilt’.

Robot Acceptance 
According to de Groot (2019), “... pedestrian 
interaction should be low effort and intuitive. 
Pedestrians are not the customer and do not 
want to adapt their behavior dramatically 
to cope with tens of delivery robots on their 
sidewalk stroll”. His tests show that favorable 
interactions could arise from a design in which 
the behavior of the robot is modeled after 
standardized pedestrian behavior. He states 
that pedestrians will feel in control when the 
delivery robot merges into the natural flow of 
pedestrian traffic and behaves predictable. 
Cues such as the orientation of the body and 
wheels, the leaning of the body as a reaction 
to acceleration and deceleration, and the 
path the robot is following are all assigned 
to making the robot interaction intuitive and 
lower the effort on the side of the pedestrian.

The social force model simulations as 
performed by de Groot in a virtual reality 
environment showed that the SFM is a first 
step towards desirable robot behavior, see 
Figure 14. 



19 

He concluded that his delivery robot should 
behave less dynamically then pedestrians 
do; steering slower, and moving with less 
changes of speed. It should communicate 
its intentions early, for example a few meters 
before encountering a pedestrian. De 
Groot’s conclusion strongly reminds me of 
the way people operate mobility scooters 
through pedestrian traffic; is the concluded 
desired behavior similar to what you expect 
from someone who is controlling a mobility 
scooter?
De Groot added a few notes to take into 
account when looking at his implementation 
of the SFM;

• Overtaking was not tested
• Crossing was not tested
• The robot did not try to predict pedestrian 

behavior and the impact of available 
decision options was not taken into 
account.

• Communication can be seen as late, 
e.g. when the sidewalk is mostly 
empty pedestrians can already be 
communicating at a distance of ~10 
meters.

Figure 14� VR simulations by de Groot, S� (2019)

Especially the last two notes are worthy of 
interest, the social force model is typically a 
model which operates on shorter distances 
and doesn’t take pedestrian density into 
account. It also does not predict pedestrian 
behavior or analyze past pedestrian 
trajectories to determine their heading. The 
additions of looking ahead in time (predictions) 
and in space (low density long distance 
communication) could be very valuable in 
achieving a more intuitive and comfortable 
pedestrian-robot interaction.
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Socially aware navigation with MPDM
Besides the SFM as implemented by de 
Groot, other alternatives are available. Mehta, 
Ferrer & Olson (2016) propose a method for 
socially aware navigation where the trajectory 
of the robot is not statically planned, but 
dynamically adapted based on a set of 
closed-loop behaviors in which the behavior 
with minimal ‘cost’ is selected; Multi-Policy 
Decision Making (MPDM).

In their setup, they allow the robot to choose 
from a set of policies which is formed by ‘go-
solo’, ‘stop’ or ‘follow other’, in which the other 
can be any of the surrounding pedestrians. 
This results in a domain which ranges from 2 
to 2+N possible policies where N is the number 
of available pedestrians to be followed. In the 
paper by Mehta et al. the people behind the 
robot are also considered as candidates ‘to be 

followed’. I think it would be wise to exclude 
them from the domain in order to decrease 
calculation time. Anyone behind and moving 
in the opposite direction of the robots goal is 
not a viable candidate for progressing towards 
the goal.

In short, go-solo-policy applies the Social 
Force Model as described above where 
the robot is moving towards its goal while 
avoiding pedestrians and obstacles based 
on the ‘social forces’ exerted on the robot. 
The follow-policy uses the same Social 
Force Model, but here the goal is temporarily 
interchanged with another pedestrian. In case 
of the stop-policy, the SFM is ignored and 
the robot will decelerate to a stop applying a 
prescribed maximum deceleration force, see 
also Figure 15, Figure 16 and Figure 17.

Figure 15� MPDM, Go-Solo policy� Figure 16� MPDM, Follow policy�
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Figure 17� MPDM, Stop policy�

In order for the robot to know which policy 
to choose, the environment is sampled and 
used as an input to the MPDM. The MPDM 
repeatedly calculates and predicts the 
trajectories in a receding horizon fashion. A 
policy is chosen from available policies by an 
objective function which returns the policy 
with the minimal cost for all sampled agents. 
The objective function, or cost function, is build 
up from two parts: the potential disturbance 
the robot causes in the environment (Force) 
and the potential progress made towards the 
goal (Progress).

Progress is calculated as the ‘distance-made-
good’ during the planning horizon. This means 
the difference between the position vector at 
the start towards the goal minus the position 
vector at the planned horizon towards the 
goal.

Force is the sum of all the maximum repulsive 
forces exerted on other agents (except the 
leader if in follow mode). Note: You could 
state that using the maximum force is not the 
best solution to find the policy with the most 
disturbance caused in the environment� Instead I 
would propose to integrate the exerted repulsive 
forces over time and sum these up to calculate 
disturbance� This would help with picking a 
policy with mostly low disturbance and one 
short high peak over another where there is a 
constant and high amount of disturbance, but 
slightly lower than the aforementioned peak�

The cost function is given as:

C(state, policy) = -alpha * PG(state, policy) + 
F(state, policy)

Where the state is the agent’s/robot’s 
combined position, velocity and goal vectors. 
Alpha is a weighing factor for the progress 
made.

By adding Multi-Policy Decision Making on to 
the SFM, Mehta, Ferrer & Olson (2016) have 
attempted to improve the robots performance 
of completing its navigational task of reaching 
the goal, while at the same time minimizing 
the inconvenience caused by its presence in 
the dynamic pedestrian environment.

Something to take into account is that the 
addition of MPDM to the SFM will strongly 
increase the number of calculations, especially 
in situations where many pedestrians are 
observed. Other factors which influence the 
number of calculations is the observation 
range, the frequency of deciding upon a 
policy and the length of the forward simulated 
horizon in seconds. It is to be seen what the 
hardware of the delivery robot can handle 
and what the optimal balance is between 
additional calculations (and thus the need 
for higher spec hardware) and improvement 
in the robot’s socially aware navigational 
behavior.
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Socially aware navigation with deep 
reinforcement learning
There is another common approach for social 
navigation, instead of using the Social Force 
Model. A robot can also be trained using 
socially aware deep reinforcement learning 
(Chen, Everett, Liu, & How. 2017b), see Figure 
18. In socially aware deep reinforcement 
learning, an objective function is set up which 
evaluates the state the robot is in based on a 
set of rules. By stating what not to do based 
on social norms, a robot can be taught to 
avoid collision and navigate in a socially aware 
manner.

Figure 18� Socially Aware - Collision Avoidance 
with Deep Reinforcement Learning (SA-
CADRL)� 

Figure 19� Right-handed social norms and 
their penalty areas� Illustration by Chen et al� 
(2017b)�

They formulate the collision avoidance 
problem as a ‘sequential decision making 
problem’ in a reinforcement learning 
framework. Where the agent’s state st and 
the agent’s action ut at time t are taken into 
account alongside with the state of a nearby 
agent, s~

t. The nearby agent state consist of 
an observable part so (position, velocity and 
radius) and a hidden part sh (goal position, 
preferred speed and orientation). The agents 
action is set equal to the agents velocity, ut = vt. 
The goal is to develop a policy π: (st, s

~
t
o) -> ut, 

that minimizes the expected time to goal E[tg] 
while avoiding collisions with nearby agents.

The right-handed social norms are induced 
through penalty areas for passing on the left, 
overtaking on the right and crossing with 

someone in front, see Figure 19.

The image is translated to mathematical 
formulas describing the conditions, personal 
comments are written in italics:

The overtaking penalty area (blue) comes 
into effect when the agent is within 1 meter 
sideways (left), within 3 meters in front, the 
heading is within an angle difference of π / 
4, the speed of the robot is greater than the 
speed of the agent and the goal is at least a 
distance of 3 meters ahead. Although this is 
a solid method for teaching the robot to not 
have pedestrians on its left while overtaking, 
this also means the robot will never overtake 
or pass someone on the right like a pedestrian 
would in the case the aforementioned balance 
favors this as the more comfortable option (see 
chapter ‘Pedestrian behavior’)� The only time 
the robot would ‘overtake’ on the right is when 
the other pedestrian will be fully outside the 
blue penalty area, resulting in the robot making 
a wide path around the pedestrian�

The passing penalty area (green) comes into 
effect when the agent is within 1 to 4 meters 
ahead, the agent is within 2 meters sideways 
(right), the angle difference is greater than 
3π / 4 and the goal is at least a distance of 
3 meters ahead. Similarly to the previous note, 
this teaches the robot to follow pedestrian 
navigational conventions but penalizes in the 
scenario where a strong headed pedestrian 
keeps to the right of the robot while passing 
(against convention)� The robot will thus make 
a stronger deviation than necessary in order to 
satisfy the learned rules�
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The crossing penalty area (gray) comes into 
effect when the agent is within 2 meters of the 
robot, the relative rotation angle between the 
agent and robot is greater than 0, the angle 
difference is between -3π / 4 and - π / 4 and 
the goal is at least a distance of 3 meters ahead. 
A note here is that the robot will deviate from its 
trajectory to achieve the lowest penalty, even 
though realistically the robot should not have 
to deviate as the pedestrian is moving left and 
already to the left of the robots intended path� 
By the time the robot will arrive at the position 
the pedestrian was, he/she will already have 
moved on� The robot should of course respect 
the pedestrian’s personal space, and thus not 
come too close or collide with the pedestrian�

A deep neural network is fed the state of 
the robot and the observed states of three 
of the surrounding agents. It then uses a 
reward function based on the penalty areas 
as described above. An addition to the reward 
function are the additional rules of being 
rewarded for reaching the goal and being 
penalized for being too close to or colliding 
with other agents, as defined in the preceding 
paper by Chen, Liu, Everett, & How. (2017a).

After simulation training and validation of the 
trained model on test cases, the robot model 
is then loaded onto a real robot with LiDAR 

and four color cameras and physically tested 
in an indoor environment. The robot navigates 
according to social norms, overtaking on 
the left, passing on the right and waiting 
for others to cross before continuing while 
maintaining a maximum velocity of 1.2 m/s. 
Despite the shortcomings as mentioned with 
the set up penalty rules, the robot appears to 
competently navigate through the pedestrian 
environments, as seen in their video� In this 
video, a new shortcoming becomes apparent; 
the robot is cutting corners, leaving no room for 
potential oncoming traffic, see Figure 20� This is 
due to one of the rules which was not taught 
to the robot; the default behavior of maintain 
mostly to the right of a walkway as per social 
convention�

Deep reinforcement learning in pedestrian 
rich context is a sound method of social 
navigation, as proven by the results of Chen 
et al. The above description, however, only 
scratches the surface of the underlying 
mathematical models and the deep neural 
network setup for reinforcement learning. It is 
important to note that their work is a complex 
whole which builds upon their previous and 
equally complex work. Despite the complexity 
of their work, the robot still shows flaws in its 
behavior, as noted above in italics.

Figure 20� The robot is following right hand rules, but is not keeping to the right; resulting in the 
robot cutting corners and possibly running into someone hidden behind the corner�
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Why communicate intent?
The communication of intent is inseparably 
connected to an intuitive and comfortable 
human-robot interaction. According to Risto, 
Emmenegger, Vinkhuyzen, Cefkin, & Hollan 
(2017), pedestrians experienced discomfort 
when confronted with a vehicle which did 
not communicate awareness nor intent. 
Pedestrians use the robot’s communicated 
intent to make predictions of the robot’s 
planning and as an input to their own planning.

Awareness and intent in autnomous 
vehicle-pedestrian interaction

In regular vehicle-pedestrian interaction, 
the driver can communicate its awareness 
of- and the intent to the pedestrian through 
facial expression, eye gaze, eye contact, 
hand gestures, body movement, light signals, 
vehicle speed, vehicle position and audio. In 
the case of autonomous (and thus driverless) 
delivery robots, many of the communication 
methods are not available. This means that 
an AGV navigating on the sidewalk must have 
additional interfaces and/or stronger vehicular 
movement cues in order to compensate for 
the lack of driver related communication. 
The paper of Mahadevan et al. looks into 
the usefulness of interfaces (besides the 
vehicle movement) which are designed to 
communicate awareness and intent. The 
scenario the paper focused on was between 

As mentioned earlier, the robot should occupy intuitive and comfortable behavior for 
human-robot interactions. Part of this behavior is the expression of its intentions. This 
chapter first discusses the awareness and intent communication in autonomous vehicle-
pedestrian interactions (Mahadevan, Somanath, & Sharlin. 2018). Next it looks into the 
usage of movement in intent communication as applied with Assistive Free Flyers (Szafir, 
Mutlu, & Fong. 2014). After which an overview is given of existing autonomous delivery robots 
and their methods of intent communication. Finally the findings of an investigation in robot 
predictability are discussed as presented by de Groot (2019).

an autonomous car and a crossing pedestrian 
on a crosswalk.

According to Risto et al. additions to 
autonomous vehicles for vehicle-to-human 
communication are insufficient due to 
shortcomings in visibility and understandability 
(light conditions and on vehicle positioning, 
non-intuitiveness and complexity). Instead, 
they argue that “movement in context is 
a central method of communication for 
coordination among drivers and pedestrians�” 
Drivers purposefully communicate their 
intentions through vehicular position, speed 
and acceleration. They suggest that (interface) 
designers should take into account that 
human drivers and pedestrians communicate 
via vehicle movement.

Mahadevan et al. expand onto and oppose 
this suggestion by stating that designers 
should not rely on the vehicle movement 
alone but should also include interfaces to 
help communicate awareness and intent; 
“Designers should consider autonomous 
vehicle movement patterns as a key layer of 
interaction with pedestrians, providing baseline 
information that should be reinforced by other 
explicit communication cues�”

The literature shows a disagreement on 
whether the additions of interfaces is a must 
(Mahadevan et al.) or if they will be insufficient 
due to the shortcomings in visibility and 
understandability. It is clear however that 

Communication of intent
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vehicle movement such as vehicle position, 
speed and acceleration is key in the 
communication of intent and awareness.

Usage of movement in Assistive Free 
Flyers

Within the context of Assistive Free Flyers 
(AFFs), Szafir, Mutlu & Fong, (2014) have 
investigated the impact of the alteration 
of an aerial drone’s movements on the 
communication of its intent. One of those 
alterations was the ease in - cruise - ease out, 
which meant the drone would slowly ramp up 
the speed to cruising and slowly decelerate 
in advance before reaching the goal. This was 
seen as predictable and comfortable and has 
potential to be translated from aerial drone 
to AGV. Other alterations where the use of 
arcs instead of straight paths and the use of 
‘anticipation’ where the drone would first fly 
a short distance in the opposite direction of 
its goal before moving towards it, see Figure 
21. The ‘easing in and out’ is an interesting 
mechanic which might be achieved in ground 
based AGV by limiting the acceleration, 
deceleration as well as the jerk (change of 
acceleration).

Figure 21� Movement manipulations in Assistive Free Flyers�
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Existing robots and their intent 
communication methods
There are already quite a number of AGVs 
in development and on the road. The intent 
communication methods of these AGVs 
can be looked into in order to get a grasp 
of the communication approaches already 
implemented.

Starting with the AGV that was most preferred 
according to de Groot’s user benchmarking; 
the Starship delivery robot (Starship 
Technologies, 2018), see Figure 22. 

Figure 22� Starship Technologies delivery robot�
Figure 23� Marble delivery robot�

The Starship robot utilizes:

• Red LED strips for tail lights, always on.
• Orange flag on a pole with orange 

LEDs for increased visibility (the robot is 
relatively short).

• White headlights, low down and in front.
• On the spot turning due to its wheel 

configuration and individually controlled 
wheels.

• It indicates the storage area can be 
opened by a green LED strip on the back 
in between the red tail lights.

• Slows down with pedestrians and/or 
obstacles nearby.

• Angles itself towards the direction it wants 
to go to with its body, but its wheels do 
not ‘steer’ by angling themselves.

• When it’s blocked in its path by a 
pedestrian for longer than 6 seconds, it 

might politely ask “Excuse me, would you 
please let me pass?” through speakers.

The Starship robot thus uses the core vehicle 
movement method of intent communication 
in combination with visual cues such as brake 
lights and auditory cues such as playing pre-
recorded audio messages.

Next is the Marble delivery robot (Marble, 
2018), see Figure 23.

The Marble robot utilizes:

• Red tail lights, always on.
• Front white LED strip as headlights, always 

on.
• Slows down with pedestrians and/or 

obstacles nearby
• Front wheels turn in the direction of 

movement.

The Marble robot is simpler in its intent 
communication compared to the Starship 
robot. It uses the core vehicle movement 
mechanics, but does not use visual signaling 
or auditory messages. What is interesting 
here is the front wheels which turn in the 
direction of desired movement in order steer, 
similar to a car. This provides extra cues to 
the pedestrian such as the turning radius 
and if the robot will continue to turn/steer. 
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Figure 24� Domino’s Robotic Unit, DRU�

Figure 26� Kiwibot, on campus delivery robot�

Figure 27� FedEx Sameday bot�

Figure 28� Postmates Delivery Robot�Figure 25� Amazon Scout delivery robot�

There are two more robots with similar intent 
communication setups. There is the Domino’s 
Robotic Unit, DRU (Domino’s, 2016) and the 
Amazon Scout delivery robot (Amazon, 2019), 
Figure 24 and Figure 25. These also employ 
core vehicle movement as their method 
of communicating intent. In addition they 
have head and tail lights for communicating 
braking, but no other additional interfaces for 
communicating, for example, steering intent. 
These robots also steer through differential 
drive instead of angling the wheels. On one 
hand this is useful for minimizing the turning 
radius which in turns allows the robot to turn 
on the spot and maneuver in cramped areas. 
On the other hand it can be seen as less 
predictable by the surrounding pedestrians 
as there is no use cue for how strong and for 
what duration the robot might be turning.

On the other side of the spectrum are the 
delivery robots employing (touch) screen 
interfaces to symbolically or literally 
communicate what their intentions are. The 
robots which use screens are the Kiwibot 
(Kiwi Campus, 2018), the FedEx Sameday bot 
(FedEx, 2019a) and the Postmates Delivery 
Robot (Postmates, 2019), see Figure 26, Figure 
27 and Figure 28. The screens are not used 
to communicate steering intent however. 
They are mainly used as a way to ‘greet’ users 
and, in the case of the FedEx Sameday bot, 
indicate driving or stopping.
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There are only two delivery robots which 
indicate steering with more than just core 
vehicle movement. These are the earlier 
mentioned Postmates Delivery Robot and the 
ZMP CarriRo (zeropointmoment, 2019). The 
Postmates robot has two eyes which function 
as headlights but which will also look in the 
direction of (imminent) steering. The same 
applies for the CarriRo, which, in addition to 
eyes, also uses side-mounted orange blinking 
indicator lights and voice to communicate 
corner taking, see Figure 29.

Figure 29� zeropointmoment CarriRo�

Out of all the aforementioned robots, the 
ZMP CarriRo is the one which communicates 
intent in the most expressive way (eyes, head 
and tail lights, orange indicating light, core 
vehicle movement). It also audibly greets 
pedestrians, has very dynamic eyes which 
look around, wink and change expression. 
The communication behavior of the CarriRo 
can be seen as obtrusive and annoying, but 
can perhaps be explained as a difference in 
culture; the CarriRo is designed to operate 
within a Japanese context. Within a more 
western context the employment of such 
an extrovert robot might prove to be unwise 
considering its task is to deliver goods and 
limit social disruption, not socialize and create 
it. 

To sum up the overview of present intent 
communication methods; all robots natively 
use core vehicle movement. Some of them 
use just the main body movement, while 
others also have the cue of angling steering 
wheels added to their communication through 
vehicle movement. Many utilize red braking 
lights, though it could not be confirmed with 
all robots if these would light up when actually 
braking. A few robots have added eyes and/
or screens. Two use auditory messages, of 
which one only when blocked, while the other 
uses them haphazardly.

It has become apparent that core vehicle 
movement is vital as a basis for communication 
of intent. A nuance within the vehicle 
movement is whether or not the wheels angle 
themselves or if a differential drive is used 
for steering. Angling wheels seem to provide 
additional cues, but also technically limits 
the robot by introducing a turning radius. 
Furthermore, it is interesting to see is if vehicle 
movement is enough to communicate intent 
or whether something should be added. And 
what this ‘something’ might be. One of the 
first additions could be white head and red 
tail lights for visibility and the communication 
of (imminent) braking. Lastly, it is noteworthy 
that none of the aforementioned robots 
seem to use self-induced leaning or pivoting 
to communicate an (imminent) change in 
movement.
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Robot predictability through special 
indicators
According to de Groot’s research on the 
influence of special indicators on the 
predictability of the delivery robot, the use 
of red braking lights was easily associated 
with the robot slowing down. After only a few 
encounters with the robot in the virtual reality 
environment, pedestrians were able to predict 
that the robot was about to stop. However, on 
a few occasions, a double meaning was given 
to the red lights. Sometimes pedestrians 
interpreted them as emergency lights due 
to the unexpected position (lighting up the 
floor underneath the robot) and the intensity 
of the lights, see Figure 30. I think it would be 
wise to keep the head and tail lights as similar 
as possible to the way they are arranged 
and used in cars. This should help prevent 
confusion and make the interaction as intuitive 
as possible.

Figure 30� Floor lighting of the de Groot delivery robot (in this case white), left image� And the 
similar situation with the DRU delivery robot, right image�
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Finally, de Groot also employed orange 
blinking indicator lights in his (virtual) design. 
The main purpose of these lights was not 
to signal every bit of steering, but only to 
communicate large changes. I think it is wise 
to not use the indicator lights for smaller 
movements, additionally; you might even 
think to not use them at all, as pedestrians 
also do not communicate large changes of 
direction in such a way. An aspect which is 
mostly under lit in all of the above sections 
is the aspect of sound. One could expect a 
clear association between a pitch shifting 
up with an increase in velocity and a pitch 
shifting down with a decrease in velocity. 
The usage of audio in a pitch-shifting way is 
another promising method of communicating 
intent, but care should be taken as sound 
is something which can quickly become 
obnoxious as well. A note here is that many 
of the methods for communicating intent are 
not analogues to those of pedestrians, but 
instead are more derived from (autonomous) 
cars. This connects back to two more overall 
questions; to what extent should pedestrian 
behavior be mimicked and is there a point 
where the pedestrian like behavior becomes 
too human or too limiting and starts producing 
counteractive effects?

Figure 31� Pivoting movement of the AGV when accelerating and braking�

Next to lighting as a method of communicating 
intent, de Groot also investigated pivoting. 
Before accelerating, decelerating or corning 
taking, the body of the robot would lean in the 
direction of imminent movement as a way of 
communicating near actions, see Figure 31. 
The pivot was experienced as too dramatic 
however. The artificial pivot was performed 
early, after which the natural pivot happened 
due to the movement. The resulting pivot, as 
the sum of the two, was seen as too intense. 
De Groot suggests to keep the early artificial 
pivot and make it a little more subtle, after 
which the natural pivot should be artificially 
countered in order to limit the overall 
experienced intensity. Whether or not the 
use of leaning is something which effectively 
communicates intent, and how it impacts 
the social perception of the robot, should be 
further investigated in this project.
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In this chapter the discussion points of the previous chapters are discussed and requirements 
and/or wishes are presented from these discussion points. The requirements and wishes 
can be found in chapter ‘Program of Requirements and Wishes’. In this discussion they are 
referred to with R. SX for a requirement and W. SX for a wish where the X is replaced with its 
index number.

From the ‘Situations in pedestrian traffic’ 
chapter it became clear that the robot should 
change its behavior based on the situations it 
finds itself in; R. S1. This is closely tied together 
with the finding that the robot should occupy 
intuitive (predictable) and comfortable (ease 
of use) behavior; R. S2. It should thus express 
intentions, take personal space into account 
and minimize social disruption; R. S4, R. S11 
and R. S12. De Groot’s tests show that favorable 
interactions could arise from a design in which 
the behavior of the robot is modeled after 
pedestrian behavior; R. S3, R. S5, R. S6, R. S7.

It also became apparent that there are certain 
shortcomings in the social force model. For 
example, the shortest path isn’t always the 
most comfortable path, this also depends on 
the path’s surface and other environmental 
factors such as weather; R. S13. Additionally, 
it does not model the effect of the dominance 
or approachability of a pedestrian on the 
strength of the repulsive force. It assumes all 
borders are equal, not taking into account the 
nature of the border (e.g. a row of thorn bushes 
versus common laurel bushes). Both of these 
are reflected in W. S1. Another shortcoming is 
that of pedestrian turning speed; a pedestrian 
in motion won’t do a 180 degree turn in a split 
second; W. S2.

From the ‘Multi-Policy Decision Making’ and 
‘Robot acceptance’ chapters it became clear 
that the robot should take pedestrian density 
into account in order to adjust parameters 
such as maximum desired velocity and the 
size of the pedestrians’ personal spheres; R. 
S1. The robot should look ahead in time by 
predicting pedestrian trajectories in order to 
find the most comfortable but at the same 
time most progressive trajectory for itself; 

R. S8. The robot should also look ahead in 
distance, especially when pedestrian density 
is low, in order to timely adjust its trajectory, 
which could achieve a more intuitive and 
comfortable pedestrian-robot interaction; W. 
S5. While following, the robot should respect 
the pedestrians comfort by not tailing the 
pedestrian too closely or for too long to forego 
the uncomfortable feeling of being followed; 
R. S9 and R. S10.

As mentioned before, the robot should be 
able to communicate its intentions. The core 
of which is the vehicle movement itself; R. S11 
and R. T2. In addition to this, it was found that 
less abrupt movements (which can be seen 
as chaotic) and thus smoother movements 
have a positive effect on robot predictability 
and pedestrian comfort. It is theorized 
that this could be achieved by limiting the 
acceleration, deceleration as well as the jerk 
(change of acceleration); W. S3 and W. S2. 
The ZPM CarriRo robot demonstrated a large 
amount of self-initiated social interaction. In a 
more western context this self-initiated social 
behavior is undesirable, especially when 
considering its task is to deliver goods and 
limit social disruption, not socialize and create 
it; R. S12. Lastly, it is interesting to see is if 
vehicle movement is enough to communicate 
intent or whether something should be 
added. I think it would be wise to keep the 
head and tail lights as similar as possible to 
the way they are arranged and used in cars. 
This should help prevent confusion and make 
the interaction as intuitive as possible. One 
of the first additions should thus be white 
head and red tail lights for visibility and the 
communication of (imminent) braking; W. S4 
and R. T1.

Discussion and requirements
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The first and foremost parameter that should 
be controlled is AGV mass. A lightweight robot 
driving at the same velocity as a heavyweight 
robot has much less kinetic energy. The larger 
the mass of the AGV, the more energy it costs 
to attain a certain velocity and this energy has 
to come from the batteries. It is therefore vital 
to keep the AGV lightweight. 
Another way to express this is, is that the 
‘energy capacity over mass’ is a ratio which 
should be kept high. The rate of energy 
consumption will be directly noticeable in 
the effective range of the AGV. If one desires 
a considerable range, they should have a 
lightweight AGV with a high capacity over 
mass ratio. This reasoning can also be flipped 
around; the desired range can also be used to 
determine the battery capacity and AGV mass 
combination. Exact values are dependent 
upon the individual setups and wishes but the 
above mentioned rules should be used as a 
guideline. 

A more specific mass related parameter is that 
of the wheels. Larger wheel mass is tied with 
larger wheel inertia which in turn results in 
more work for the motors to accelerate those 
wheels. This could be especially noticeable 
when taking corners while using a four wheel 
differential steering (skid and steer) over an 
Ackerman steering approach. At the start of 
taking a corner, the inner wheels have to slow 
down while the outer wheels have to speed 
up. Similarly, at the end of the corner, the 
outer wheels must slow down while the inner 
wheels have to speed up, see Figure 32. This 
speeding up of the wheels in corner taking 
costs more energy compared to driving in a 
straight line. Additionally, the driven path of a 

The most important operational aspect of the AGV is energy. Energy capacity and energy 
consumption govern the effective delivery range and the operational duration (on time) of 
the robot. In this chapter, the physical and dynamical parameters and how they impact the 
AGV’s performance are investigated.

weaving robot is longer than that of a robot 
driving in a straight line, further increasing 
energy costs.

Figure 32� Corner taking with a differential drive 
(skid and steer)� 

Physical (and dynamical) parameters and their 
impact

TECHNOLOGY
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Figure 33� Constant velocity - energy 
consumption, Besselink et al� (2013)�

Figure 34� Constant velocity - range, Besselink 
et al� (2013)�

Figure 35� Battery capacity and voltage at 
different temperatures.

Besselink, Wang, & Nijmeijer (2013) and Wang 
(2016) showed that the driving velocity in 
a battery electric vehicle (BEV) has a large 
impact on energy consumption. It was shown 
that energy consumption grows exponentially 
and range decreases with driving velocity in 
BEVs, see Figure 33 and Figure 34. Interesting 
to note here is the asymptotic behavior of the 
graphs at very low speeds. These effects were 
explained by Besselink et al. due to higher 
rolling resistance at low speeds and lower 
drive train efficiency at reduced power levels. 
Whether the general plot holds true when 
translated to the low speeds of delivery robots 
in pedestrian rich environments is uncertain, 
but for sure it can be said that operating on 
higher speeds drains the battery more rapidly.

The road conditions are also mentioned 
by Wang (2016). The coarser the roads, the 
higher the rolling friction and thus the larger 
the energy consumption at equal speeds. The 
same applies for driving up slopes, except 
here the added force comes from the force 
of gravity on the car in combination with the 
angle of the slope.

The ambient temperature has a strong effect 
on the performance of batteries. Battery 
University (2019) mentions that a battery 
functions best near room temperature. 
Increasing battery temperature improves 
acute performance but prolonged exposure 
will shorten overall battery life. They state 
that “Cold temperature increases the internal 
resistance and lowers the capacity� A battery 
that provides 100 percent capacity at 27°C 
(80°F) will typically deliver only 50 percent at 
–18°C (0°F)� The momentary capacity-decrease 
differs with battery chemistry.” This implies 
that the effective range of the delivery robots 
will decrease as temperature drops, see also 
Figure 35. It also hints at more permanent 
decrease in battery performance when 
exposed to higher temperatures, which in turn 
also impacts effective range and operational 
duration.

TECHNOLOGY
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Another important factor is that of motor 
efficiency and internal friction inside the AGV. 
These affect the chemical to mechanical 
energy efficiency ratio which can be seen 
as a hard percentagewise reduction of the 
AGV range and operational time. Greater 
internal losses, e.g. due to axle friction, motor 
efficiency and internal resistance, results in a 
lower overall efficiency. In addition, in an ideal 
world the wheels would have zero slippage 
with the ground. Realistically, some slippage 
will always occur and this again subtracts 
from the AGV range.

Finally there are the intent communication 
actuators, main functional sensors and the 
controller to consider. Actuators such as an 
animated suspension and head and tail lights, 
sensors such as LiDAR and RGB-D, and the 
controller as required for operation all require 
electricity to operate. The usage of the main 
functional sensors and the controller are 
unavoidable, but can be picked out or set up 
in such a way as to limit energy consumption 
and in turn increase range and/or operational 
time. The energy consumption of the intent 
communication actuators is something which 
is mostly unknown and depends strongly 
on which intent communication methods 
turn out to be successful. However, one can 
expect that suspension actuators will cost 
more energy to use than lights and sounds 
might cost.

In short, the battery drains faster when energy 
consumption is high, with a more rapidly 
draining battery comes a decreased effective 
delivery range and a decreased operational 
time. The AGV’s range and durational 
performance is decreased in cases where:

• The robot is not optimized for low mass.
• A fast driving speed is to be maintained.
• A very slow driving speed is to be 

maintained (due to relative high roll 
resistance and reduced efficiency in lower 
power levels).

• The robot decelerates and accelerates 
regularly.

• The robot is driving up slopes.
• The robot is steering a lot:

• By lengthening its path more energy 
used.

• In case of a differential drive; the 
motors have to slow and speed of the 
wheels each turn, here wheel mass 
also comes into play.

• The surface on which the robot is driving is 
rough (gravel, sand, potholes).

• The wheels of the robot have a large 
amount of slippage.

• The ambient temperature is lower than 
the ideal battery temperature (such as ~20 
degrees Celsius).

• Sensors and actuators require a large 
share of the power.

Some of the above mentioned conditionals 
can already be tackled in the physical 
design phase, such as robot mass, wheel 
slippage and sensor and actuator power 
consumption. Others can be seen as part of 
the robot (designed) behavior, such as driving 
speed, steering and regular deceleration 
and acceleration. And finally there are some 
environmental conditionals which you cannot 
chance, but which you can try to deal with, 
such as slopes, road surface roughness and 
ambient temperature.
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As the ROSbot 2.0 Pro (see Figure 36) will be the physical platform for this project, it is 
important to know its capabilities and limitations. This chapter first lists the specifications of 
the ROSbot and then discusses them with their respective impact.

Figure 36� The Husarion ROSbot 2�0 Pro, front view (left) and back view (right)�

ROSbot specifications
The Husarion ROSbot 2.0 Pro has the following specifications:

Dimensions with camera and LiDAR:
Weight with camera and LiDAR:
Wheel diameter / Clearance / Wheelbase:
Maximum translational velocity:
Maximum rotational velocity:
Maximum load capacity:
Battery life:

200 x 235 x 220 mm [L x W x H]
2.84 kg
85 mm / 22 mm / 105 mm
1.25 m/s
420 deg/s (7.33 rad/s)
10 kg
1.5h - 5h

• CORE2-ROS controller with UP Board 
• Intel® Atom™ x5-Z8350 64-bit processor with 4 GB of RAM, 1.92 GHz, 32GB eMMC
• Intel® HD 400 Graphics
• Orbbec Astra RGBD camera
• RPLIDAR A3 laser scanner (max 25 meters, 16000 samples per second, specialized indoor 

and outdoor modes).
• MPU 9250 inertial sensor (accelerometer, gyro and compass)
• 4x VL53L0X time-of-flight distance sensor
• 3 x 3500 mAh Li-Ion batteries with protection circuits

Capabilities and limitations of the ROSbot 2.0
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Discussion of the specifications
One of the foremost limitations of the ROSbot 
are its small dimensions. They are nowhere 
near the dimensions of what the delivery robot 
should be and this in turn influences the way 
the robot is perceived. This means either the 
robot’s body should be customized to match 
that of the delivery robot or any physical test 
conclusions taken, should be taken with the 
disparity into mind.

A second limitation is that of wheel clearance. 
The robot only has a wheel clearance of 22 
millimeters from the bottom of the coach 
work to the floor. This, in combination with 
the strong recommendation to not use the 
ROSbot in outside weather conditions results 
in a test setup which will mostly partake 
indoors.

The maximum translational velocity of 1.25 
m/s is actually quite on point with regard 
to simulating walking speed. A limitation is 
that the robot will not be able to perform a 
short print of increased velocity to overtake a 
pedestrian which walks just slightly slower.

The maximum rotational velocity easily 
accommodates desired turning speed. In 
fact, care should be taken to not turn the 
robot too quickly for this could have negative 
consequences for any nearby pedestrians’ 
comfort.

The maximum load capacity of 10 kg allows 
for physical expansion onto the robot, such as 
building a to-scale foam-board representation 
of the designed delivery AGV on top of the 
ROSbot.

The 4 GB RAM, 1.92 GHz CPU should suffice 
for running the SFM, but care should be taken 
when using MPDM as well as to not overload 
the hardware. Aspects which influence this are 
the number of observed pedestrians (which is 
also tied with observation range), simulation 

frequency and the length of the simulation 
horizon.

A similar situation comes from the Intel® HD 
400 graphics card, it is to be seen whether the 
(tiny) Yolo v3 object classification algorithm 
can be run on the graphics card alone or if part 
of the CPU should be shared for this, further 
limiting other parts of the software. One option 
for both aforementioned limitations might be 
to use the ROSbot purely as an ‘sensor’ and 
‘actuator’ while the full computations are 
performed remotely on a capable PC where 
information is then communicated to and 
from using the ROS master-node network.

The Orbbec RGB-D camera and RPLIDAR 
A3 are both fully capable of viewing the 
surroundings and detecting objects. A point 
of attention is that the RGB-D camera is 
forward facing, and thus aid in the localization 
of objects and pedestrians on the sides and 
behind the robot might be required. Secondly, 
the RPLIDAR only scans in a horizontal plane, 
anything below (or above) this plane is cannot 
be scanned and is thus not ‘seen’.

Finally, the additional infrared ToF distance 
sensors and the MPU inertial sensor might 
prove to be nice additions but as of yet are 
not planned to be used.
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Reward and penalty parameters
As explained before in the chapter ‘Social 
navigational methods’ a certain cost or 
objective function has to be set up for certain 
machine learning (ML) algorithms in order to 
evaluate themselves. The cost functions are 
divided up in penalties and rewards.

A penalty is there to penalize the ML 
algorithm for negative occurrences. The goal 
is to have as few penalties as possible and 
thus to minimize cost. Examples of negative 
occurrences within the context of a socially 
navigating AGV are:

• Social force exerted on pedestrians (social 
aspect); this is the amount of discomfort 
the pedestrians feel by the presence of 
the robot.

• Collisions with pedestrians (social aspect); 
any actual physical contact should be 
heavily penalized.

• Delivery time (product service aspect); the 
longer the delivery time, the larger the 
penalty.

• Driven path distance minus direct path 
distance (product service aspect); any 
additional distance driven takes away from 
the pre-calculated range.

• Amount of time spent accelerating and 
decelerating (technology aspect); as 
mentioned in the previous chapter, braking 
and speeding up costs more energy than 
driving with a consistent speed.

In machine learning it is often the case that an algorithm tries to find the best action or best 
solution for a given state or task. From this arises the question of how to determine what is 
‘best’. This is discussed in the first chapter, ‘Reward and penalty parameters’. The second 
chapter, ‘Evolutionary algorithms’, concerns itself with a machine learning method which 
tries to emulate genetics and Darwinian evolution to find an optimal solution. It discusses 
the theory behind that particular machine learning approach along with the many options 
within evolutionary algorithms.

A reward is the opposite of a penalty and 
thus is considered as negative cost. Rewards 
are given for positive occurrences. The goal 
here is to have as much rewards as possible 
to again minimize cost. Examples of positive 
occurrences within the context are:

• Reaching the goal (product service 
aspect); the robot gets rewarded for 
reaching its end goal. 

• Progress (technology aspect); the distance 
made good between time intervals

Each reward and penalty also has a factor with 
which it is multiplied. This factor or weight 
signifies the importance of that reward/
penalty. The weight of each penalty is to be 
determined dependent upon the situation 
the robot is in and can be linked to the social, 
technology and product service triangle.

In an empty street, the robot should go 
all out on product service and technology 
aspects and ignore social aspects. When 
people are involved, the robot should include 
social aspects and lower the importance of 
technology and product service aspects. 
What these values should be is yet to be 
investigated, but a good approach would be 
to use a machine learning method for this; 
evolutionary algorithms.

Machine learning with AGVs
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Evolutionary algorithms
According to Shiffman (2015) in ‘The Nature 
of Code’ one can find a 1D array of floating 
point values between 0 and 1 at the basis 
of a traditional genetic algorithm (as part 
of evolutionary computing). Each entry 
in the array can be seen as an individual 
trait that the simulated agent possess. The 
floating point values (traits) can be mapped 
to another value which corresponds to an 
agents parameters. Another way to look at it 
is to visualize the array as the string of DNA 
from which selection, crossover and mutation 
can be performed, see Figure 37. Within the 
context of the delivery robot and a Social 
Force Model, the traits could correspond to 
a desired velocity, pedestrian force strength, 
pedestrian range, obstacle force strength, 
obstacle range, base anisotropic factor value, 
maximum acceleration, forward simulation 
horizon, forward simulation range, etc. 

Figure 37� 1D array of floating point values from 0 to 1, representing the traits of an agent ‘DNA’.

The selection process is a process in which 
the agents are selected according to their 
fitness. Fitness is defined as ‘how well did the 
agent accomplish his task?’ An example of 
this could be a single measure; ‘how far did 
the agent get?’ or a combination of measures 
such as progress, collisions and discomfort. 
The fitness function should be defined in 
such a way that it suits the objective the most. 
It is thus closely related to cost / objective 

functions with their rewards and penalties as 
discussed before.

The probability of an agent being selected 
is based on the fitness of that agent. Those 
who did better have a higher chance of being 
selected for crossover and mutation. In the 
case the probability is directly proportional to 
the fitness of an agent, the selection method 
is called Roulette Wheel Selection (Jebari 
& Madiafi, 2013). One known drawback of 
this method however, is the tendency to 
prematurely converge to a local optimum. 
A different way to select, which tries to 
counteract this tendency, is Linear Rank 
Selection. As the name suggest the selection 
is based on the rank of an agent, which is 
derived from the agent’s fitness relative to the 
others. Worst scoring agent gets the first rank, 
best scoring agent the nth rank. In this way 
the probability of an agent being selected is 

not directly proportional to its fitness value. 
Thus the likelihood of converging on a 
singular out performing agent, which might 
be outperforming due to a local minimum, is 
counteracted.
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In some cases the fitness of the Linear Rank 
Selection is scaled exponentially in order for 
the best agents to have a higher chance of 
being selected to promote convergence, this 
is called Exponential Rank Selection.

A fourth method of selection is the Tournament 
Selection. In this method a random subset 
of agents is taken and the best agent within 
the subset is selected for reproduction. This 
is repeated n times where n is the population 
size. This method generally converges quicker 
but because of that risks having a low genetic 
diversity.

The above mentioned selection methods all 
try to balance exploration and exploitation. 
Those with a faster convergence are prone 
to exploitation; finding a (local) optimum 
solution quickly, but at the cost of exploring 
other solutions. Other methods are slower 
and explorer more in an attempt to find a 
better (global) optimum. It is found that it is 
often favorable to use a selection method 
which at first favors exploration and gradually 
increases convergence pressure to favor 
exploitation (Saini, 2017). In the context of the 
SFM-MPDM delivery robot, one way this might 
be done is to increase the exponential factor 
in the Exponential Rank Selection method 
based on the generation number relative to 
the maximum number of generations.

After successful selection comes crossover. 
Crossover can be seen as taking the two 
arrays of the selected parent agents and 
building a new array for the child agent. This 
is done by, for each index in the array, picking 

the value of the array from either the first or 
the second parent. In this way you end up with 
a new array that is a mixture of both selected 
‘parent’ arrays (Shiffman, 2015).

After crossover comes mutation. Mutation 
means with a small probability alter each value 
of the resulting array to a either a completely 
new value generated between 0-1 or instead 
pick a new value based on the old value 
with a standard deviation (Eiben, Hinterding, 
Michalewicz, 1999). Mutation generally has a 
small probability (1~2%). With a mutation rate 
that is too high, the model does not converge. 
And without mutation it could be that the 
optimal solution is never found because it 
happened to not be part of the initial random 
weights (Shiffman, 2015).

In essence the idea of fitness, selection, 
crossover and breeding is not a complex 
whole. What makes it complex is the range 
of different methods and different parameter 
values which come with evolutionary 
algorithms. Eiben et al. state: “The values of 
these parameters greatly determine whether 
the algorithm will find a near-optimum 
solution and whether it will find such a 
solution efficiently.” Parameter values can 
either be tuned or controlled. Tuning means 
to find good values by hand and use these 
fixed values during the run. Control means to 
start with initial parameter values which then 
change during the run.
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Is it common practice in evolutionary 
computation to tune the parameters by hand, 
but this is known to have drawbacks. Instead 
it is suggested to use parameter values that 
change over time, e.g. the mutation rate starts 
high and goes lower each generation. First to 
explore (large mutation rate) later to fine tune 
(small mutation rate), which seems similar to 
increasing selection pressure over time, as 
mentioned before, see also Figure 38.
Some important insights were gathered from 
studying the evolutionary algorithm literature:

• There are many parameters to tune 
(mutation rate, population size, selection 
size, selection strategy, maximum number 
of generations, convergence pressure, 
etc.).

• Tuning parameter values by hand is 
common practice, but can be time 
consuming and does not guarantee good 
values.

• Evolutionary algorithms do not guarantee 
the optimal solution to a given problem, 
instead it gives the ‘best solution it could 
find’. It is therefore important to first give 
the algorithm the chance to explore the 
solution space before converging.

• Mutation rate should start small and 
decrease even further over time while 
selection pressure should start low and 
increase over time. Both help to first 
promote exploration and then promote 
convergence.

• The fitness function which evaluates the 
agent’s performance should be set up 
in such a way that it reflects the rewards 
and penalties as discussed in the previous 
chapter.

• As the floating point values in the ‘DNA 
array’ need to be mapped to actual SFM-
MPDM parameters, a minimum and 
maximum of these parameters needs to 
be defined before optimization can take 
place.

Figure 38� Change of mutation probability and covergence pressure over time�
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In this chapter the discussion points of the previous technology chapters are discussed and 
requirements and wishes are presented from these discussion points. The requirements and 
wishes can be found in chapter ‘Program of Requirements and Wishes’. Besides the S, a T is 
now also included to indicate a Technology requirement or wish, e.g. R. T1.

In the ‘Physical and dynamical parameters 
and their impact’ chapter it became clear 
that the battery drains faster when energy 
consumption is high, with a more rapidly 
draining battery comes a decreased effective 
delivery range and a decreased operational 
time. Listed below are conditionals which 
would decrease an AGV’s range and durational 
performance, coupled with requirements 
and/or wishes. AGV range and durational 
performance is decreased when:

• The robot is not optimized for low mass; W. 
T2. 

• A fast driving speed is to be maintained; R. 
T5

• A very slow driving speed is to be 
maintained (due to relative high roll 
resistance and reduced efficiency in lower 
power levels); R. T5

• The robot decelerates and accelerates 
regularly; R. T5. 

• The robot is driving up slopes; R. T4.
• The robot is steering a lot:

• By lengthening its path more energy 
used; W. T4

• In case of a differential drive; the 
motors have to slow and speed of the 
wheels each turn, here wheel mass 
also comes into play; W. T3

• The surface on which the robot is driving 
is rough (gravel, sand, potholes); R. T3 and 
R. T4. 

• The wheels of the robot have a large 
amount of slippage; W. T5

• The ambient temperature is lower than 
the ideal battery temperature (such as ~20 
degrees Celsius); R. T6

• Sensors, actuators and logical processing 
require a large share of the power; W. T1

The chapter ‘Capabilities and limitations of 
the ROSbot 2.0’ is first and foremost a chapter 
written for this project in order to gain insights 
into the research’s robotic platform. It was 
found that care should be taken with the robot’s 
small size and the effect this has on any user 
test results. A way to deal with this downside 
is yet to be found, but one could think about 
resizing the test scenarios to match the scale 
of the robot or vice versa scale the robots 
perceived size by building onto it to mimic the 
delivery robots measurements. Next to this it 
became clear that the robot is not suited for 
outdoor environments. This is due to the small 
wheel clearance and because of the fact 
that the platform is not designed to operate 
in weather conditions; R. T8 and R. T9. The 
robot’s translational and rotational velocities 
were found to be adequate for driving among 
pedestrians. The onboard RGB-D and LiDAR 
sensors were also found to be fully capable 
of viewing the surroundings and detecting 
objects, but a point of attention is that the 
RGB-D camera is only looking forward and the 
LiDAR only ‘sees’ a in horizontal plane. There 
is no vision on the sides or behind the ROSbot. 
Care should also be taken when trying to run 
intensive programs such as SFM-MPDM on 
the ROSbot 2.0 Pro hardware. Aspects which 
influence the programs intensity are the 
number of observed pedestrians (which is 
also tied with observation range), simulation 
frequency and the length of the simulation 
horizon; R. T7 and W. T1.

In the chapter ‘Machine learning with AGVs’ the 
reward and penalty parameters are discussed 
alongside evolutionary algorithms. From this 
it became clear that the algorithm which is 
to control the AGV should receive feedback 
on what positive and negative occurrences 
are. The preferred method for this is setting 

Discussion and requirements
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up a cost or objective function with rewards 
and penalties. Many of the identified penalties 
are already captured by the requirements 
and wishes of the aforementioned physical 
and dynamical parameters. As well as from 
the requirements and wishes of the Social 
chapter; R. S2, R. S4, R. S5, R. S7, R. S8, R. S9, R. 
S10 and W. S4.

When looking at evolutionary algorithms, 
it became apparent that many selection 
methods are available. Each tries to balance 
exploration and exploitation, where those 
with a faster convergence are prone to 
exploitation and those which explore more 
in an attempt to cover the solution space are 
found to be slower. It was thus discussed that 
convergence pressure should start low to 
favor exploration and gradually increase to 
favor exploitation. 
Another method which promotes exploration, 
in an attempt to cover the solution space, is 
mutation. In general, mutation probability 
should be kept low (1~2%). It can, however, 
start out slightly higher at first (exploration) 
and decrease over time to then promote 
convergence (exploitation). 

Additional insights that were gathered from 
studying the evolutionary algorithm literature 
are listed below:

• There are many core E.A. parameters 
to tune (mutation rate, population 
size, selection size, selection strategy, 
maximum number of generations, 
convergence pressure, etc.).

• Tuning parameter values by hand is 
common practice, but can be time 
consuming and does not guarantee good 
values.

• Evolutionary algorithms do not guarantee 
the optimal solution to a given problem, 
instead it gives the ‘best solution it could 
find’. It is therefore important to first give 
the algorithm the chance to explore the 

solution space before converging.
• Mutation rate should start small and 

decrease even further over time while 
selection pressure should start low and 
increase over time. Both help to first 
promote exploration and then promote 
convergence.

• The fitness function which evaluates the 
agents performance should be set up in 
such a way that it reflects the rewards and 
penalties as discussed in the ‘Reward and 
penalty parameters’ chapter.

• As the floating point values in the ‘DNA 
array’ need to be mapped to actual SFM-
MPDM parameters, a minimum and 
maximum of these parameters needs to 
be defined before optimization can take 
place.
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In this chapter the goals, tasks and services the delivery robot should provide are explored as 
found within the product-service combination. Similarities are drawn between the intensively 
tested Starship Technologies product-service robot and the to-be-designed AGV.

The core service the robot provides is the 
(autonomous) delivery of goods. For this to be 
possible, to robot needs to be able to reach 
its delivery goal. That is to say, the goal should 
be within the possible bounds of where the 
AGV is able to go. Whether or not the AGV 
can reach the goal should thus be mapped 
in advance by a global motion planner, 
combined with the metrics of the robots 
capabilities and effective range as discussed 
in the ‘Technology’ section of the research 
and exploration phase.

Through experimentation with the Starship 
Deliveries robot delivery application, it was 
found that if the goal cannot be reached by 
a Starship robot, the service proposes an 
alternative which can be reached (Starship 
Technologies, 2018b), see also Figure 39. The 

Figure 39� Starship delivery application. Left: User chosen location. Middle: Notification of pickup  
point adjustment� Right: Adjusted pickup point shown on the map�

user is then allowed to accept or propose 
their own solution. This process repeats until 
a valid delivery location is found and agreed 
upon. It might seem convoluted or tedious to 
keep repeating the few steps, but in general 
a delivery location is quickly found due to the 
service application helping the user in the 
process. The use of such a system would be 
wise addition to any service concerning itself 
with the autonomous delivery of packages or 
payloads with robots.

Service as provided by the AGV

PRODUCT SERVICE



44 

When an agreement is reached upon a delivery 
location, the expected delivery time or time 
frame is communicated, see Figure 40. This, 
combined with real time tracking of the robots 
position, or real time updates of the robots 
estimated time of arrival, should provide the 
user with enough information to prepare for 
the reception of the payload. Upon arrival the 
user should be notified and should provide 
an option to unlock the specific compartment 
containing the user’s payload.

The internal compartment size governs 
the maximum payload measurements 
which can still be transported by the robot. 
The compartment size and number of 
compartments is dependent upon the items 
which the robot is meant to deliver, e.g. a large 
range of medium sized parcel addressed 
to a range of recipients or two full bags of 
groceries for just a single user. It thus depends 
on the implementation of the robot. To give an 
indication, the Starship delivery robot provides 

service to only a single user at a time and thus 
utilizes only a single compartment. It delivers 
anything from pizzas and burgers to groceries 
and postal parcels. The Starship robot, for 
example, has an internal compartment size 
of 402 x 344 x 330 mm (Swiss Post, 2017). As 
another example, if one wishes to stack mail 
parcel boxes or pizza boxes on top of each 
other, the minimal internal width and depth 
should be 400 mm by 340 mm, while the 
height would mostly depend on the amount 
of boxes one wishes to stack; PostNL (2018), 
DHL (2019) & Premium Disposables (2019).

Along with payload dimensions comes 
payload weight. According to the Dutch 
occupational health and safety legislation 
for lifting and carrying objects, the maximum 
weight is allowed to be 23 kg during ideal 
working conditions (ministerie van Sociale 
Zaken en Werkgelegenheid, 2019). With 
a delivery robot such as Starship’s, the 
vertical and horizontal distance to the ideal 

Figure 40� Starship delivery application. Left: User chosen location. Middle: Notification of pickup  
point adjustment� Right: Adjusted pickup point shown on the map�
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position should be taken into account. With 
estimated values of 0.7 m vertical offset 
and 0.4 m horizontal offset, the maximum 
weight is roughly halved to 11.9 kg (Federatie 
Nederlandse Vakbeweging, 2011). Although 
this is still plenty for most applications. In the 
case of, for example, a large amount heavy 
groceries, it would be wise to split this up 
into several bags, see Figure 41. This should 
be beneficial for the end user, but also for the 
person who has the job of loading the payload 
into the delivery robot.

Figure 41� The splitting up of heavy payloads into smaller parts�

Figure 42� Themal insulation as can be found in a Starship ‘hot meal’ delivery robot�

It can be the case that the item which is to 
be delivered should be kept hot or cold 
during transportation, e.g. a hot meal or a 
cold beverage. In these cases the service 
should provide thermal insulation to maintain 
payload temperatures in order for it to be 
within acceptable levels upon delivery, see 
Figure 42. This again strongly depends on the 
context in which the payload is to be delivered.
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A final concern is that of social sabotage. 
Although Starship Technologies has been 
testing their robotic delivery fleet since 
early 2018, no known cases of severe social 
sabotage have come up. The senior VP of 
Business Development at Starship even 
mentioned: “Many people believe that robots 
will be stolen but the reality is very different 
from this. In tens of thousands of autonomous 
deliveries, we’ve not had any robots stolen.” 
(The Spoon, 2019). Despite this, the service 
should be able to deal with potential social 
sabotage and the robot should be able to 
withstand it.

One can think of situations where the delivery 
robot is intentionally blocked or closed in, 
situations where one would try to pry open 
the payload compartment or try to vandalize 
or steal the robot itself. In these cases it is 
important to provide protection to the payload 
and to take steps to prevent escalation. The 
payload compartment(s) should always be 
locked, only the service provider and the end 
user should be able to open the compartment 
which holds the end users item. A logical way 
to do this is to, at the delivery location, interact 
with the robot through the application or 
interface with which the robot was requested, 
see Figure 43. Another would be to, upon 
robot delivery request, provide the user with a 
unique and temporary (digital) key which they 
can input into the robot upon arrival.

Figure 43� The user as he unlocks the 
delivery robot (in this case a Kiwibot) with his 
smartphone�

When the robot is physically attacked by 
an assailant, the first step to take would be 
to try and deter the assailant. This could be 
done through visibly and audibly sounding an 
alarm on the robot itself, as well as in a control 
room. If this does not work, the robot should 
try to use its cameras to capture an image 
of the assailant and inform authorities of the 
issue. Authorities in this case would be the 
delivery robot company. In the case the robot 
is being taken, it could suggest to the delivery 
company to contact law enforcement. Next a 
second dissuasion attempt should be made 
towards the assailant by informing him/her 
of the alerted authorities. This could be done 
through a pre-recorded message or with an 
employee speaking through the robot. Finally, 
if all else fails, the robot should continuously 
send out its GPS location to keep track of 
where it is being taken.
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In this chapter the discussion points of the product service aspect are discussed and 
requirements and wishes are presented that arose from these points. The full list of 
requirements and wishes can be found in chapter ‘Program of Requirements and Wishes’. 
Alongside the S for Social and T for Technology, a P has been added to indicate Product 
service; e.g. R. P1.

In the product service analysis section 
it has become apparent that the service 
should allow the user the ability to choose 
a delivery location and should provide the 
user with updated information of the delivery 
status. First of all delivery location should be 
negotiated; R. P1 and R. P2. After agreement 
of location the user should be presented with 
an estimated time of arrival; R. P3. This time of 
arrival estimate should be regularly updated 
and the arrival should be communicated to 
allow the user to prepare for the arrival of their 
goods; R. P12 & R. P4. Upon arrival the user 
should be able to retrieve his/her goods; R. 
P6.

It was found that the goods themselves 
should be presented in such a way that 
both the payload loader and the end user 
can retrieve them without risking health and 
safety. If the weight goods exceed the proper 
limits, they should be split up in such a way 
that they can be separately retrieved from the 
compartment(s); R. P5.

The compartment size should accommodate 
for the dimensions of the goods which are to 
be delivered. For the sake of example, if one 
wishes to transport food (such as pizzas) or 
parcels a good minimum dimension would 
be a width of at least 340 mm and a depth 
of at least 400 mm; R. P7. A note here is that 
the height fully depends on the use case; 
if one user is to be served a single large 
compartment will suffice, possibly split up by 
dividers if so required. However in the case of 
a parcel delivery robot such as imaged by de 
Groot, multiple compartments are preferred 
to accommodate a larger amount of users, 
the height of the compartments should be 
chosen to then accommodate the heights of 

standardized parcel boxes. In the case where 
the temperature of the goods matter, the 
service should provide thermal insulation for 
the goods to be able to present them near the 
desired temperature upon arrival; W. P1.

Although in practice it seems to be going 
alright, it was discussed that the product 
service should be able to deal with social 
sabotage. The first step to this is to secure 
the payload in a locked compartment which 
only the delivery company and the end user 
can open; R. P8. Next, it was theorized that 
the robot should try to limit damage to the 
goods inside; W. P2. It was suggested that the 
robot should try to dissuade the assailant, for 
example by visually and audibly sounding an 
alarm; R. P9. The next step would be to try and 
capture imagery of the assailant which could 
prove useful in the case the aggressor needs 
to be identified; R. P10. It was then theorized 
that the robot should inform the authorities 
such as the delivery company and, in severe 
cases, indicate to the delivery company that 
they should inform law enforcement; R. P11. 
In the meantime the robot should continue 
to try and deter the assailant by informing 
him/her of the alerted authorities. And lastly, 
it was theorized that in the case the robot is 
being taken, the real time tracking should 
continuously update its position so authorities 
can locate it; R. P12.

Discussion and requirements
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Product requirements and wishes can be derived from the discussions of the three main 
aspects. The requirements (R) and wishes (W) are divided up into the three aspects with 
which they are mostly related; social, technology or product service, this is denoted with an 
S, T or P. All requirements and wishes are stated such that they apply to the autonomous 
delivery robot as if fully implemented and operational within the pedestrian context.

Social
R. S1. The robot should adjust its behavior to 
the situation it finds itself in (adjust algorithm 
parameters based on the identified situation).

R. S2. The robot should occupy intuitive 
(predictable) and comfortable (ease of use) 
behavior.

R. S3. The robot should by default keep to the 
right half of the walkway; when no pedestrians 
or obstacles are nearby, the robot should stay 
within a 20% margin of the ideal line, where 
the ideal line is positioned at a distance of 25% 
of the walkway width as measured from the 
right boundary of the walkway.

R. S4. The robot should maintain comfortable 
distance to other pedestrians while driving
a. Overall minimal distance of 50 

centimeters.
b. Minimal distance in front of a pedestrian of 

100 centimeters.

R. S5. The robot should avoid physical contact 
with pedestrians and obstacles.

R. S8. The robot should be able to determine 
the most comfortable and progressive 
trajectory.

R. S9. The robot should follow with a 
respectable distance as to not make the 
human uncomfortable and not give the 
feeling of being tailed; a minimum of 2 meters 
distance while following must be held. 

R. S10. The robot is allowed to follow the same 
person for a maximum of 7 seconds to avoid 
the uncomfortable feeling of being followed.

R. S11. The robot should, at minimum, 
communicate its intent through core vehicle 
movements such as vehicle position, speed 
and acceleration.

R. S12. The robot should not cause social 
disruption by ‘socializing’ with pedestrians.

R. S13. The robot should take the path 
conditions into account when predicting 
pedestrian trajectories.

R. S6. The robot should behave as expected 
of one using social navigation, in default 
scenarios:
a. Overtake on the left.
b. Pass on the right.
c. Cross behind.
d. Adjust its speed based on environmental 

factors such as pedestrian density.

R. S7. The robot should be able to go against 
pedestrian traffic convention if this is 10+% more 
comfortable for the surrounding pedestrians.

Program of requirements and wishes
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W. S1. The robot should take the effect 
into account that the approachability of 
a pedestrian and/or obstacle has on the 
repulsive force.

W. S2. The robot should exhibit a turning 
radius proportional to its translational velocity.

W. S3. The robot should ease-in and ease-out 
when accelerating and decelerating.

W. S4. The robot should avoid others colliding 
with it by timely communicating imminent 
changes of movement.

W. S5. The robot should adjust its trajectory at 
a distance, based on pedestrian density. 

Technology
R. T1. The robot should be visible in low light 
circumstances.

R. T2. The robot should have minimal height of 
80 centimeters as to not be overlooked and/
or tripped over.

R. T3. The robot should be able to turn on the 
spot to prevent it from getting stuck.

R. T4. The robot should be able to identify 
local path conditions. 

R. T5. The robot should attempt to find and 
maintain an energy-efficient driving velocity.

R. T6. The robot’s batteries should be protected 
to allow for optimal operation within the range 
of 10 to 30 degrees Celsius.

R. T7. The robot should be able to adjust its 
forward simulation parameters in order to 
facilitate successful and timely predictions of 
pedestrian trajectories. 

R. T8. The robot should have a wheel clearance 

of at least 70 mm. 

R. T9. The robot should be able to withstand 
ingress of dust and water; IP53,

W. T1. The robot’s hardware should be able to 
support the intensive calculations that come 
with forward simulations.

W. T2. The robot should be optimized for a low 
mass.

W. T3. The moment of inertia of the robot’s 
wheels should be a low as possible.

W. T4. The robot should follow a straight path 
if conditions allow it.

W. T5. The robot’s traction efficiency should be 
as high as possible. 
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Product service
R. P1. The service should be able to determine 
if a location is reachable by the delivery robot.

R. P2. The service should provide the closest 
viable delivery location to the user’s proposed 
location.

R. P3. The service should communicate the 
estimated time of arrival with an error margin 
of 5 minutes. 

R. P4. The service should notify the user of the 
successful arrival of the delivery robot.

R. P5. The maximum weight of individually 
packed loads should be compliant with Dutch 
occupational health and safety legislation. 

R. P6. The robot should provide a secure 
compartment for the payload.

R. P7. The service should provide a means 
of interaction for the user to allow the user’s 
payload compartment to be opened within 
30 seconds of reaching the robot at delivery 
location. 

R. P8. The internal compartment width and 
depth should at least be 340 mm by 400 mm.

R. P9. The robot should try to deter assailants.

R. P10. The robot should try to capture imagery 
of the assailant(s).

R. P11. The robot should inform authorities 
(company) of the attempt of sabotage. 

R. P12. The robot should provide real time 
location tracking.

W. P1. In case of a hot or cold item, the service 
should provide thermal insulation to keep the 

item near the desired temperature. 

W. P2. The robot should limit damage to the 
payload during social sabotage attempts.

Within the bounds of this project’s time, not 
all requirements and wishes can realistically 
be taken into account. They are formulated in 
such a way to guide and aid the development 
of an autonomous delivery robot while 
thinking about the robot as fully operational 
within the appropriate context. The scope of 
this project does not extend to such a degree 
and instead a scope will thus be defined 
which will include a selection of requirements 
and wishes most appropriate for the available 
means of the project. This scope, along with 
a definition of the design goal of the project, 
can be found in the next chapter ‘Scope and 
design goal’.
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As aforementioned, not all requirements and wishes can realistically be followed up in this 
project. A scope needs to be defined which should serve as a clear boundary of what is part 
and what is not part of the remaining weeks of the project. In this chapter this scope and a 
design goal will be defined to serve that purpose.

The original design goal of the assignment as 
defined in the project brief (see Appendix ‘A. 
Design Brief’) was stated as:

“Research and design a computational 
mechanism for an autonomous guided vehicle 
based on the social, technology and (product)
service needs by utilizing a machine learning 
method to deal with a variety of situations while 
expressing its (change of) intention�”

This has not changed and is still the design 
goal of the project, but it can be further defined 
now that knowledge has been gathered on 
the topic through research and exploration.

With the midterm meeting comes the official 
start of the Development and Testing phase. 
Any development beforehand, such as the 
development of the Social Force Model with 
MPDM in Python will be introduced as part of 
this phase. In the development and testing 
phase, the behavior and intent communication 
methods of the autonomous robot will be 
prototyped, tested and iterated. The steps in 

this phase will be explained below, but can 
also be found as a visual representation in 
Figure 45 on the next page. 

As a first step, a user study should be 
performed with the custom developed SFM-
MPDM, see Figure 44. The goal of which is to 
identify the accuracy and unexpectedness of 
the behavior of robot as it navigates through 
a set of top down view scenarios. The ‘robot’, 
as represented by a circle with a colored 
ring, will not use any intent communication 
methods other than those which come with 
core movement.

In parallel to this, the physical robot platform 
must be gotten ready for its own user testing. 
This means getting familiar with working 
in ROS and with the ROSbot 2.0 Pro. The 
first step to this is to make a virtual ROSbot 
drive around based on script generated 
commands. Next, the custom build Python 
script with SFM-MPDM should be adjusted 
and ported to work in a ROS environment. 
At first pedestrians and obstacles could be 

Figure 44� The Social Force Model with Multi-Policy Decision Making (SFM-MPDM) as made with 
Python� 

Scope and design goal
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Figure 45� Development and Testing phjase milestones planning�
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simulated through a ‘Wizard of Oz’ method, 
but later on they should be identified in the 
virtual Gazebo world through the use of LiDAR 
and/or the RGB-D camera. If everything is 
functional inside the virtual world, it should in 
theory all be 1:1 with the physical world and 
thus it can be implemented with the physical 
ROSbot.

After the ROSbot is functionally operational 
(either virtual or physical), the model can 
be ‘trained’ to adapt the robots behavior in 
different scenarios. The first step to this is to 
program an evolutionary algorithm (EA) to 
use as the machine learning method. The 
EA should find the optimal behavior of the 
robot for a core situation. As a start, the first 
three of the eight core situations should be 
simulated and their parameters learned. After 
those have been successfully simulated the 
‘Normal street’ situation will be simulated 
and its parameters will be learned. After 
which a decision should be made if further 
simulating is worth the time spent or if it is 
wiser to move on. One of the aspects is if the 
set amount of time is depleted, another is if 
the simulation limits have been reached and 
a third is determining how much is gained 
by simulating and learning the additional of 
the eight core situations. See chapter ‘What 
situations can the AGV encounter?’ for a 
more detailed description of the eight core 
situations. 

While training the models and finding the 
right parameters for the situations, the input 
of the obstacles and pedestrians (such as 
position and size) should be simulated and do 
not necessarily have to come from LiDAR or 
RGB-D.

The EA will determine behavioral fitness 
through a fitness function with the identified 
reward and penalty parameters (see also 
chapter ‘Machine learning with AGVs). At first 
the solution space should be explored by 

the EA with low convergence pressure and 
relatively large mutation probability, after 
which convergence should be promoted 
with higher pressures and lower mutation 
probabilities.

The goal of all of this is to be able to test 
and evaluate the robots performance with 
users and obstacles in core situations. An 
important note here is the identification of 
the situations and the number of tested core 
situations. For the user tests the situation 
identification is assumed to be manually 
controlled using ‘Wizard of Oz’ techniques. 
If it is viable within the workload and time 
bounds however, to have autonomous 
detection and identification of the situation, 
then this is preferred. The same applies for 
the number of core situations which is to be 
tested. The empty street, obstacle in path, 
single pedestrian and normal street situations 
should provide an adequate range of test 
situations. If any additional core situations can 
be tested then this again is preferred, but will 
depend on available resources and whether 
the parameters for these situations could be 
learned with the evolutionary algorithm. The 
user tests will allow evaluation of the robot’s 
social performance; intuitive (predictable) and 
comfortable (ease of use) behavior, part if 
which is the communication of intent by core 
vehicle movements. Next to this the result 
will allow for reflection with regard to the 
technology and product service performance.

The requirements and wishes which are 
included in the scope and which will thus be 
reflected upon are: R. S1,  R. S2,  R. S4,  R. S5,  
R. S6,  R. S7,  R. S8,  R. S11,  W. S2,  W. S5,  R. T7,   
W. T1   and  W. T4.

The results of the tests and evaluations 
will be used as inputs for a discussion, the 
conclusion and recommendations for any 
further development of the AGV.



In this phase the research and exploration will be put into 
practice through the development and testing of the AGV. 

First the computational mechanism is explained, after 
which the Social Force Model with Multi-Policy Decision 

Making is developed, described and tested with users. 
After adjustments based on the test results, the model 
is ported to the ROS environment and the Evolutionary 

Algorithm comes into view. The learned parameters are 
tested in another user test and the results are discussed. 

Development and testing
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In this chapter the architecture of the computational mechanism will be discussed, starting 
with the inputs at the top and moving down the architecture through the input processing, 
situation and model parameter selection, the social navigational model and finally the 
outputs. An illustration of the architecture of the computational mechanism can be found 
in Figure 46. 

Figure 46� Architecture of the computational mechanism with SFM-MPDM�

Computational mechanism architecture
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Inputs
The computational mechanism has several 
inputs, most of which deal with perceiving the 
robot’s surroundings. The first and foremost 
of these is the LiDAR. The LiDAR continuously 
performs a 360 degree planar scan of its 
surroundings. The environment is scanned 
and mapped to a point cloud format on which 
further processing can be performed.
The second perception method is RGB-D, a 
color and depth camera. Although not applied 
within this project, the camera is envisioned 
to help with identifying people and obstacles 
and help with the mapping of the robots 
surroundings. The camera’s imagery can be 
used to run through an object classification 
network such as Yolo v3 or OpenCV which in 
turn can identify people and objects within 
view and match these to the LiDAR scan data.
The third perceptual input consists of four 
time of flight (ToF) range sensors. These four 
sensors are strategically placed on the front 
and rear of the robot and scan for objects 
which the LiDAR might have missed.

Next to these three perceptual inputs is a 
fourth input; the higher level planner. The 
planner’s goal is to plan the robots sub goals 
in such a way that it can socially navigate itself 
to these sub goals without getting stuck. The 
higher level planner will take the starting point 
and end point of the run and maps a route 
with many different waypoints for the robot to 
follow. The high level planners direct output is 
thus a sub goal/waypoint which is part of the 
larger mapped route.

Pedestrian and object detection
Before the social navigational model can use 
the supplied point cloud data for calculations, 
it first needs to be translated into objects and 
pedestrians. The system of nodes takes in the 
point cloud data as input and outputs a list of 
wall segments, objects and moving objects 
(pedestrians). Each item in the lists gets 

assigned a position, size and velocity. This is 
enough information to output to the social 
navigational model. For more information on 
the obstacle detection see chapter ‘Porting to 
ROS’ on page 64.

Situation identification
The situation identification algorithm is 
envisioned to take in the data as produced 
by the obstacle detection setup and 
determines the situation the robot finds itself 
in. It is envisioned to does so by looking at the 
pedestrian density, the distance to the nearest 
obstacles (thus the available space) and the 
speed at which the pedestrians move. Based 
on those parameters the logical algorithm 
should be able to determine the situation such 
as ‘empty street’, ‘obstacle in path’, ‘normal 
street situation’, etc. It then outputs it’s finding 
towards the model parameter selection script.
Note that the development of the situation 
identification was not included as part of 
the project. Interesting options are to use 
a classical algorithm of conditionals and 
effects, or to train a neural net to take in the 
parameters and output a likelihood score for 
all of the situations.

Model parameters
Based on the input as provided by the 
situation identification, the script selects 
a set of model parameters for the social 
navigational model to use. These model 
parameters are predetermined values which 
were learned through simulations with an 
evolutionary algorithm. Each set of model 
parameters contains the appropriate values 
for a specific situation, which are send to the 
social navigational model upon selection. See 
also chapter ‘Learning parameters through 
an Evolutionary Algorithm’ on page 67 for 
more information on the model parameters. 
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Social navigational model
The social navigational model is the core of the 
computational mechanism. It receives data 
from many different points and inputs these 
into the SFM-MPDM; the Social Force Model 
with Multi-Policy Decision Making. It is what 
makes the actual calculations based on the 
detected obstacles and pedestrians with the 
selected model parameters and the provided 
sub goal. With the result of the calculations 
it determines where to drive to and at which 
velocity. It continuously outputs steering 
and velocity control as well as expression of 
intent. Within the scope of this project the 
expression of intent will be limited to the core 
vehicular movement and thus is analogues 
to the steering and velocity control. For more 
information on the SFM-MPDM, see chapter 
‘SFM-MPDM in Python’ on page 58.

Outputs
Finally there are the outputs of the 
computational mechanism. There are two 
outputs; the steering/velocity controls and 
the expression of intent. As aforementioned, 
within the scope of this project the intent will be 
expressed through core vehicular movement 
such as position, angle, rotational velocity, 
translational velocity and acceleration. As 
these are inherent to the robot itself and are 
controlled by the steering and velocity outputs 
of the social navigational model, there will be 
no separate output for expression of intent 
within this project.

The steering/velocity controls are part of the 
scope, as they make the robot drive around. 
The direct output of the models calculations is 
a vector with a magnitude (velocity) and angle 
(heading). This vector is then transformed 
into a translational velocity and a rotational 
velocity before being sent to the robots motor 
controller.

With this walkthrough of the architecture, 
a global overview of the computational 
mechanism is given. A more detailed 
description of some of the parts within the 
computational mechanism can be found in 
the upcoming chapters, starting off with the 
core itself; the SFM-MPDM.
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In the previous chapter, the overall structure of the computational mechanism has been 
discussed. A vital part of this structure is the actual computational model itself; SFM-MPDM. 
This chapter discusses the model and the changes and additions made to it. Following 
this, a user test is presented with its setup and results. These are then used to evaluate the 
fidelity of the computational model and present possible changes to it. It closes off with the 
adjustments made to the model in order to finalize and prepare it for porting to the ROS 
environment. 

Social Force Model
The Social Force Model as discussed in 
the chapter ‘Social navigational methods’ 
is imagined to serve as the core part of the 
computational model for the robot. In order 
to determine the viability of the SFM, it has 
been implemented in a Python pygame 
environment. This environment consists of 
obstacles and agents. The agents are given 
the tasks of moving between waypoints 
while avoiding obstacles and other agents 
by utilizing the SFM. A note here is that the 
implemented model is based on all of the 
extracted rules from the literature of Helbing 
and Molnár (1995) except for one; the rule 
of temporal distraction is excluded from the 
model. This rule was left out in an attempt 
to keep complexity at a manageable level 
and because it did not suit the desired robot 
behavior if implemented as part of the robots 
computational model. The SFM was found 
to be quite a solid foundation for basic social 
navigation. In some areas however, it was 
found to be lacking. By observing the behavior 
of the agents in the SFM, it became apparent 
that passing and crossing were not in line 
with pedestrian behavior as determined in 
chapter ‘Pedestrian behavior’. Both in passing 
and crossing situations, agent’s reactions 
were late and they often seemed to bump 
into one another. The third issue was the 
instant 180 degree turn, which is unrealistic 
for real pedestrians. For these reasons some 
customizations have been made to the SFM.

Customizations
During passing, no conventions were applied 

and this resulted in inconsistent behavior, 
especially when the two agent’s trajectories 
were lined up to meet one another head on. 
The Dutch convention for passing is to apply 
the right hand rule; passing each other on the 
right, having the other on your left. It of course 
does not make sense to always force this rule 
if the agents are already aligned in such a way 
that passing on the left is more comfortable. 
This means that agents should pass on the 
side they are mostly already on and a bias 
should be included to slightly favor the right 
hand rule. Additionally, as reactions were 
found to be late the agents should look further 
ahead and identify other agents with which 
passing is likely. To achieve this, a long but 
narrow viewing cone was envisioned, where 
whoever was inside the cone was checked 
for likely passing, and if so, compensate the 
agent’s own trajectory, see also Figure 47. 
To implement this in the SFM, the following 
pseudo code was applied:

[Passing pseude code]
for all agents in the environment:
-if not the agent itself:
--if the other agent is within the passing cone of 
   the agent:
---if the other agent is moving towards the
     agent:
----set bias threshold angle to the goal angle
       rotated slightly counter clockwise�
----if other is left of the bias:
-----add a force perpendicular to the goal 
        angle to the right� 
----if other is right of the bias:
-----add a force perpendicular to the goal 
        angle to the left�

SFM-MPDM in Python
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The passing forces were added to a list, and in 
the end summed up into one resultant force 
alongside all other forces.

Figure 47� Passing cone in orange (and later 
passing rectangle in blue)�

Figure 48� Crossing cone�

During crossing, it was found that reactions 
were very late, and agents would often bump 
into one another or even block each other for 
several seconds. 
As discussed in the pedestrian behavior 
chapter, there is no right hand rule convention 
for crossing. Instead, pedestrians try to 
maintain their trajectory and speed unless this 
will bring them uncomfortably close. They will 
then alter their heading and/or speed slightly 
to cross comfortably. The one who alters the 
most is usually also the one crossing behind. 
The decision of how to cross depends on the 
relative positions, timing and crossing point. 
In real life dominance and empathy also 
play a role in the evaluation, but this does 
not apply to identical agents. To implement 

crossing in the SFM, the decision will be 
based on the relative positions and headings 
of the two involved agents. To achieve the 
desired crossing behavior a viewing cone 
similar to that of passing was implemented, 
however this time it was shorter ranged but 
with a much wider angle. Any agent within this 
viewing cone was checked for their heading 
and position and if it was found that crossing 
was likely the agent would compensate for 
this in its trajectory, see also Figure 48. The 
pseudo code for this is as follows:
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[Crossing pseudo code]
for all agents in the environment:
-if not the agent itself:
--if the other agent is within the crossing cone 
   of the agent:
---if the other agent’s heading is within crossing 
     margins:
----if the other agent is on the right and moving 
      left:
-----add a slowing force and a force to the right�
----if the other agent is on the left and moving 
      right:
-----add a slowing force and a force to the left�

Again the calculated forces were added to 
a list, and in the end summed up into one 
resultant force alongside all other forces. For 
the actual passing and crossing Python code, 
see Appendix ‘E. SFM-MPDM Passing and 
Crossing in Python’.

A third addition was the prevention of an instant 
180 degree turn by introducing a rotational 
velocity to the agents. Before this addition, 
if the forces on the agent would rapidly flip, 
the agent would do so as well. If this would 
be translated to the real world, a pedestrian 
would either be walking backwards for a long 
duration or instantly turn, both of these are 
unrealistic and thus a rotational velocity was 
added which interpolates the current agent 
heading towards the desired heading as 
resulting from the resultant force.

With the addition of these customizations, the 
agents now exhibit behavior which is more in 
line with the pedestrian behavior as found in 
the chapter ‘Pedestrian behavior’.

Multi-Policy Decision Making
As mentioned in the ‘Social navigational 
methods’ chapter, the addition of looking 
ahead in time could be very valuable. By 
trying to predict pedestrian behavior and 
future interactions, a more intuitive and 
comfortable pedestrian-robot interaction 

might be achieved. For this reason, Multi-
Policy Decision Making (MPDM) has been 
added on top of the SFM for the robot to 
utilize. All agents will use SFM for their social 
navigation, but the robot will also use MPDM 
to find the best policy for the current situation. 
The model has been implemented as defined 
by Mehta, Ferrer & Olson (2016) with one slight 
change. When selecting possible leaders for 
the follow policy, all agents which headings 
do not, within a margin, match with the robot’s 
goal heading are ignored. The underlying 
reason for this is to filter the amount of nearby 
agents in an attempt of lowering the number 
of calculations. 

The addition of the Multi-Policy Decision 
Making part to the customized Social Force 
Model base, makes the computational model 
ready for evaluation with users through user 
testing. 

User test
The model is supposed to simulate pedestrian 
agents navigating amongst each other in an 
environment representing a small square 
with connected alleys. A robot agent is also 
present in the environment and tries to move 
through this pedestrian rich environment with 
socially acceptable behavior, see Figure 49. 
The goal of the user test is to evaluate the model 
on any shortcomings in pedestrian behavior 
and to evaluate the behavior of the robot by 
ranking the shown behavior on intuitiveness, 
comfortableness and predictability, as indicated 
by the participants� This goal is reflected in the 
following research questions:

1. What shortcomings are present in the 
pedestrian simulation model?

2. How human like is the behavior of the robot?
3. How comfortable is the behavior of the robot?
4. How predictable is the behavior of the robot?
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Setup
In order to evaluate the fidelity of the 
simulation in both the human behavior and 
the robot behavior, a user test was performed 
with participants (n=13). The participants were 
shown two scenarios. First scenario A was 
shown with just people walking around in 
an environment, after which scenario B was 
shown in which the robot was added among 
the pedestrians. The participants were asked 
to think out loud while watching the simulation 
and to then answer the questions in the form. 

The insights resulting from the user test 
are to be used as an input for adjustments 
to the model before transfer to the ROS 
development environment, which in turn is to 
be implemented in a physical robot that can 

be tested in real world environments. The full 
user test setup, form and results can be found 
in Appendix ‘F. User test setup of Python SFM-
MPDM’, Appendix ‘G. User test form of Python 
SFM-MPDM’ and Appendix ‘H. User test 
results of Python SFM-MPDM’ 

Results
The results of the forms and the notes made 
during the user tests are used to answer the 
research questions, starting with the first.

In general the model was found to be 
quite representative of the way real people 
would behave (n=9), although the abstract 
representation does make it more difficult for 
some to image the circles as people (n=3). 

Figure 49� User test; pedestrian rich (Python) environment with hallways, a small square and 
some tables with chairs�
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The most commonly mentioned note was 
the late ‘anticipation’ of the pedestrians (n=5). 
Another interesting note is that the simulated 
people never stop to ‘talk’ or ‘think’, which 
some participants mentioned would increase 
realism (n=4). The ‘random attraction force’ was 
also part of the original Social Force Model 
as defined by Helbing and Molnár (1995) but 
was something which was chosen to be left 
out of the adjusted SFM in an attempt to keep 
the complexity of the base social navigational 
model at a manageable level. Other notes 
which were mentioned by more than one 
participant are: 

• “People can walk in groups, which they 
don’t in this case.”

• “People went through walls.”
• “People would cut corners.”
• “People are quite random, which is 

realistic.”
• “People don’t collide, which is good.”
• “People could stay to the right a bit more.”

The three other research questions concern 
themselves with the robot behavior in terms 
of human likeness, comfortableness and 
predictability.

The robot was found to be quite human like 
(n=9), comfortable (n=8) and predictable 
(n=9), but improvements can be made. The 
most common improvement participants 
suggested is to increase the distance between 
the robot and the humans (n=6) and to make 
the robot slow down or stop to let others 
have priority (n=5). Another improvement 
mentioned is to alter the following behavior 
(n=4); the robot is seen as following too closely 
and/or for too long. One participant added to 
this by mentioning that the robot should, after 
a while, either slow down to increase distance 
or overtake the other in order to avoid the 
uncomfortable feeling of being followed.

Other aspects mentioned more than once 
mostly support the current behavior of the 

robot:

• “Is it good that the robot sometimes stops 
to let people pass or cross (especially 
near the right most corner after the open 
space).”

• “The robot follows straight lines when 
it can, this makes it more predictable; it 
doesn’t turn suddenly or randomly.”

• “The speed is good compared to the other 
people (similar speed).”

• “The robot doesn’t necessarily show 
human behavior, but this can be good as 
humans can sometimes be egoistic or 
uncomfortable. Less human also makes it 
more predictable.”

• “The robot (and people) stay quite far from 
the walls.”

Discussion
The above mentioned notes should be taken 
as a main guideline for the improvements and 
adjustments of the SFM-MPDM model. The 
two main adjustments are:
• Increase the anticipatory behavior of the 

artificial humans.
• Increase the minimal distance the robot 

keeps towards artificial humans.

The issue of insufficient anticipatory behavior 
is most likely caused by the (late) detection 
of the other agents. This in turn is caused by 
a: the relatively short ranges of the passing 
and crossing cones and b: in the case of the 
passing cone, people are anticipating and 
moving aside, but the closer they get, the less 
side distance they keep due to the shape of 
the cone.

Increasing the anticipatory behavior can be 
achieved by altering the passing and crossing 
algorithms by for example increasing the 
maximum range or adapting from a viewing 
cone to an ‘effective area’, see also Figure 47.
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The minimal distance is more complicated as 
there is no single measure to tune. The distance 
kept depends on the way the robot calculates 
the cost of social forces applied to others and 
the progress made, which need to be tuned 
together in a balanced way. Another option 
would be to add a sharply increasing cost 
factor for entering another’s ‘personal zone’. 
This should encourage distance keeping and 
decrease the number of collisions. Keeping a 
bigger distance in theory should also help with 
the perceived ‘politeness’ and ‘giving others 
priority’. It could also help with the discomfort 
people imagine experiencing when the robot 
is following a person too closely. It is yet to be 
seen how an increase in follow distance affects 
the ‘comfortably allowed’ follow duration; but 
logic would dictate that an increased follow 
duration is to be expected.

Other possible adjustments to further 
improve the model can be made, such as 
making people randomly slow down or stop 
to improve the realism of the simulated 
pedestrians. Another option is to re-introduce 
pedestrians with corner cutting behavior by 
decreasing the amount of guiding waypoints 
in the scenario. A third option is decreasing 
wall force range (but increasing strength on 
short range) to not force the pedestrians and 
robot to the center of a hallway or alley. And 
a final adjustment could be to slow people 
down if they are about to walk ‘through a 
wall’ and let them turn on the spot if they are 
slowed down.

Conclusion
Several changes have been made to the SFM-
MPDM based on user test results. The first of 
which is the selection of ‘passing’ agents. The 
viewing cone for passing has been changed 
into a viewing rectangular area which rotates 
with the pedestrian’s ‘angle to goal’. This 
change promotes a more consistent distance 
keeping when agents are nearing one another. 

Due to the narrow shape of the cone close to 
the agent, other nearby agents could have 
been incorrectly excluded from the ‘passing 
agents’ list. The rectangular area solves this 
issue, see Figure 47 on page 59.

A second change is the implementation of 
a minimum following distance to the leader. 
This measure has been added to the robot 
agent and only activates when using the 
follow policy. It should help with decreasing 
the possible discomfort people experience 
when being followed. 

A third change is the adjustment of the SFM 
obstacle parameters. The range of obstacles 
has been decreased, but obstacle strength 
has been increased. This should help in 
hallways (width of ~2-3m) to not force the 
agents too much to the center of the hallway 
and thus makes wall distance keeping more 
realistic. 

The fourth change that was made applies 
to the crossing algorithm. The crossing cone 
range has been increased by 50% to promote 
looking ahead more. This should help in 
creating a more realistic pedestrian crossing 
behavior as it was found to be ‘short sighted’ 
by the participants. 

As a fifth change the walls have been made 
more “solid” to prevent agents from walking 
through them. This has been achieved by 
slowing down the agent when they are about 
to go through the walls. 

A final, and only visual, addition were lines 
which show the heading of the pedestrians 
for better comprehension of pedestrian 
movements. With these adjustments, the 
SFM-MPDM model is ready to be ported the 
ROS environment, see chapter ‘Porting to 
ROS’. 
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As mentioned in the previous chapter, after the adjustments based on the user test results, 
the SFM-MPDM model is ready to be ported to the ROS environment. In the Python version, 
everything was set up to be contained in a single python script and the world was perfectly 
known. This changes when moving to ROS. The world is now based on what the robot can 
perceive, which brings with it some necessary adjustments and additions. 

Additions and adjustments
One of the most important additions to the 
system is the addition of obstacle detection. 
The robot perceives its world with a planar 
LiDAR, which produces a 2D laser scan 
point cloud. From these dots, obstacles and 
pedestrians should be detected. The first step 
in this is the addition of a ROS based obstacle 
detector package by Przybyla, M. (2018). The 
obstacle detection node structure takes in 
the 2D laser scan and transforms it into wall 
segments and circular obstacles, see also 
Figure 50 and Figure 51.

The obstacle detector, however, does not 
detect any pedestrians yet. This is where 
the custom written obstacle filter comes in. 
It takes in the obstacle data as published by 
the obstacle detector package and unpacks 
the data into wall segments and obstacles. 
The walls and obstacles are first filtered on 
a range of 5 meters. Anything outside this 
range is not needed for the SFM-MPDM to 
deal with. The range filter is followed up by an 
obstacle filter; the obstacles are differentiated 
based on their velocity and if their velocity is 
above a threshold of 0.1 m/s, they are marked 
as moving objects (agents). It visualizes this 
using pygame (see Figure 52) and then packs 
the three separate list types together which it 
publishes to the /sfmmpdm_obstacles topic 
with the custom SFMObstacles.msg format 
for the SFM-MPDM node to subscribe to. 
The SFM-MPDM node can now perceive its 
environment is a way of wall segments, static 
obstacles and moving obstacles, the last of 
which it treats as pedestrians (agents), see 
Figure 53. 

Figure 50� Laserscan data in RViz; input for the 
obstacle detector�

Figure 51� Obstacles and wall segments in 
RViz; outputs from the obstacle detector� Figure 52� Obstacle filter with moving agents.

Porting to ROS
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Figure 53� ROSbot perceived environment (left) and actual virual gazebo environment, (right)�

Next to these additions, the SFM-MPDM 
code also required adjustments to deal with 
the change from the earlier circular ‘robot’ 
to a physics (simulated) ROSbot 2.0 and the 
new physics environment. This meant a 
recalibration of the parameter values such 
as the SFM obstacle range and strength, 
pedestrian range and strength, angular 
velocity, etc. And the inclusion of the front and 
rear Time of Flight distance sensors to slow 
and/or stop the robot when it’s near walls or 
objects not detected by the LiDAR in order to 
prevent collisions.
The SFM-MPDM node could also no longer 
directly control the robot’s x and y position. 

Instead, it needs to transform the results of 
the SFM-MPDM calculations into a message, 
after which is publishes this message on the 
/cmd_vel topic the ROSbot is subscribed to. 

In the case of the simulated environment in 
Gazebo, pedestrians should also be present 
in the environment for the LiDAR to detect. 
This means the addition of a node dedicated 
to controlling pedestrian ‘pawns’ in the 
Gazebo world according to SFM rules. These 
pawns traverse the virtual world according to 
a waypoint system, where the Social Force 
Model applies to each individual pedestrian 
for the locomotion between each waypoint, 
see also Figure 54.

Figure 54� SFM Pedestrian controller (left) and gazebo environment with pedestrian pawns right)�
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Disparity issues between virtual and 
physical worlds
Switching from the virtual environment to 
the physical environment brings in some 
additional challenges. The real world isn’t 
as ‘clean’ as the virtual world. Many smaller 
objects can be found which increase the noise 
of the perceived world. An object’s height 
doesn’t always rise above the plane which the 
LiDAR scans, which means it’s undetected. 
Furthermore, the odometry (localization 
based on wheel displacement and inertia 
measurements) isn’t perfect like it is in the 
virtual world. This results in a positional and 
angular drift. Lastly, due to the movement 
of the robot itself, static obstacles can 
sometimes be marked as moving obstacles, 
meaning they are treated as pedestrians.

Some of these issues can be solved. 
The ‘cleanliness’ of the virtual world can 
be reproduced by building a (user) test 
environment which is closed in and clear of 
clutter and low objects. The odometry drift 
issue in theory can be addressed with the 
use of SLAM (Simultaneous localization and 
mapping), but within the scope of this project 
will not be too big an issue as between each 
test run the odometry can be reset and drift 
won’t be too noticeable between runs.

The last issue is more difficult to address. 
As the robot moves (due to translation, but 
especially rotation), static obstacles can be 
perceived as dynamic. One way to address 
the issue would be to take the robot’s own 
movements into account and compensate for 
this movement in the differentiation between 
static and moving obstacles. For example 
by dynamically setting the threshold for this 
differentiation.

Nevertheless, a test with the physical ROSbot 
and basic (unlearned) parameters in a small 
closed of environment showed promise 
for the ROSbot’s future social navigational 

abilities, see Figure 55. Furthermore, the 
virtual SFM-MPDM system is functional and 
without the above mentioned issues. It can 
thus be used for the parameter learning 
with the evolutionary algorithm, see chapter 
‘Learning parameters through an Evolutionary 
Algorithm’.

Figure 55� ROSbot 2�0 Pro in the real world with 
basic parameters applying SFM-MPDM�
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Figure 56� Evolutionary Algorithm loop�

Figure 57� Generation with chromosomes and 
parameters�

Method
The idea behind an evolutionary algorithm 
is to emulate genetics and Darwinian 
evolution in order to find a solution to a given 
problem. It does so by first creating the initial 
generation of individuals (chromosomes) 
where each chromosome consists of a list 
of parameter values. Next it runs simulations 
in which the chromosomes are employed 
in an environment. When all chromosomes 
of the first generation have completed their 
run, their fitness is evaluated using a fitness 
function. Next it selects individuals from the 
population, taking the fitness into account, and 
it builds new children from these individuals 
through parameter crossover and parameter 
mutation. Once a new generation is populated 
with chromosomes, the loop starts anew with 
simulating them in the environment. This 
continues until the maximum generation 
number has been met and at this point, in 
theory, the individuals should have gained 
parameters which are suited to the simulated 
environment, see also Figure 56.

As mentioned above, the evolutionary 
algorithm goes through a number of 
generations. Each generation consists 
of a number of chromosomes equal to 
the population size, see also Figure 57. In 
this case the population size is 60. Every 
chromosome in a generation is build up out of 
parameters such as maximum velocity, goal 
force strength, forward simulation horizon, 
crossing cone length, etc. There is a total of 
22 such parameters in each chromosome, 
see also Appendix ‘I. Evolutionary Algorithm 
parameters and their range and impact’.

In the previous phase in the chapter ‘Evolutionary algorithms’, an introduction was given to the 
concept of using an evolutionary algorithm for learning the robot’s behavioral parameters. 
In the following chapters the method, limitations and the implementation of the evolutionary 
algorithm with its reward, penalties and fitness function, selection method, mutation and 
crossover are discussed. These are followed up by the results of the simulations and a 
discussion.

Learning parameters through an Evolutionary 
Algorithm
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Each parameter is part of the robots methods 
which together form the computational model 
of the robot. Thus altering a parameters 
value also alters the robots behavior and/
or performance in the virtual physics 
environment.

The physics environment consists of a 
rectangular arena of 8 by 6 meters, see Figure 
58. Several obstacles and walls are positioned 
in this arena in such a way that the robot will 
have to navigate around them. The walls 
also create a choke point through which the 
robot must navigate, which can be especially 
challenging when many pedestrians are 
also trying to get through this area. The 
environment can simulate 5 SFM pedestrians 
simultaneously, these are the tall green 
cylinders in Figure 58. These pedestrians 
patrol between their start and end points as 
indicated by the letters A through E and ‘A 
through ‘E. The robot, which is a virtual replica 
of the physical ROSbot 2.0, starts on the left 
and finishes its run when it reaches the red 

circled area on the right or when the maximum 
run time of 55 seconds has been reached.

In order to run the evolutionary algorithm and 
the required simulations in ROS, a structure 
of existing and additional nodes had to be set 
up. The existing nodes consist of the virtual 
physics environment with the ROSbot 2.0 in 
Gazebo and the earlier introduced obstacle 
detection node structure, see chapter ‘Porting 
to ROS’. Next to these, three new nodes 
have been created, all dealing with a part 
of the evolutionary algorithm. There are two 
executing nodes and one controller node 
which houses the evolutionary algorithm 
itself. A graph of the node structure and their 
connections can be found in Appendix ‘K. RQT 
Graphs of the ROS node structures’.

The simplest node of the three is the ‘sfm_
pedestrians_ea’ node. The sole purpose of 
this node is to control the pedestrians (green 
cylinders) in the virtual environment. To be able 
to do this, the node needs to read from a csv 

Figure 58� The arena in the virtual Gazebo world with circled indicators for the robot’s and the 
pedestrian’s start and end points� 
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file which contains the (shuffled) coordinates 
of each start position, the waypoints and end 
position for each pedestrian. It also requires 
a copy of the virtual world and the current 
position and angle of the virtual ROSbot. 
From these inputs it can then simulate the 
pedestrians and publish their positions to the 
Gazebo node.

The second node is the ‘sfm_mpdm_ea’ node. 
This node directly controls the virtual ROSbot’s 
linear and angular velocities. Upon the start of 
each run, it reads out the parameter values of 
the current chromosome from a csv file and 
loads these into the robot object to use with 
SFM-MPDM. During the run it keeps track of 
the scores and saves these scores at the end 
of the run in the generation’s csv file.

The third and most important node is the 
‘ea_controller’ node. This node houses the 
evolutionary algorithm and performs most of 
the E.A. related work:

• It creates the initial population with their 
parameters and stores this into a csv file 
for each generation.

• It generates the waypoints for the SFM 
pedestrians.

• It tracks the run time for each 
chromosome.

• It controls whether or not the other E.A. 
nodes are active or standby.

• It reads out the chromosome scores and 
evaluates their fitness.

• It adjusts mutation probability and 
convergence pressure over time.

• It performs selection, crossover and 
mutation.

• It populates the next generation.
• And finally, it keeps track of the best 

chromosomes per generation and saves 
these in another csv file. 

Limitations
Unfortunately there are also limitations to 
using an evolutionary algorithm for learning 
parameters. Some of the most important 
limitations come from time, parameter tuning 
and the lack of guarantee of finding the 
optimal solution. Due to the sequential setup, 
the time required to learn the parameter set 
for a single situations is equal to the time 
per run times the population size times the 
generation amount. In the case of roughly a 
minute per chromosome run, a population 
size of 60 chromosomes per generation and 
30 generations, this equals 30 hours for just 
one situation, assuming the right behavior is 
learned at the first 30-hour simulation. This is a 
lot of time for learning one set of parameters. 
With this comes another time consuming 
task, the tuning of the parameters used by 
the E.A. itself, such as mutation probability, 
convergence pressure, population size, 
generation amount and fitness function 
weights. 

Secondly, there is the lack of a guarantee of 
finding the optimal solution for a given problem. 
As mentioned in the previous phase ‘Research 
and Exploration’, an evolutionary algorithm can 
only give the ‘best solution it could find’. This 
is where exploration versus exploitation is key. 
If the algorithm doesn’t explore first, it might 
converge too quickly to a local optimum and 
thus miss the overall optimum. To make sure 
the algorithm first explorers and then exploits, 
a variable selection method probability and 
mutation probability were defined. See also 
paragraph ‘Selection method’ and ‘Crossover 
and mutation’. 

Finally, the functions as used in the E.A. such 
as fitness, selection, crossover and mutation 
on their own can also introduce unintended 
limitations by the way they are implemented. 
It is important to be aware of this and must 
be kept in the back of the mind while defining 
them.
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Reward, penalty and the fitness 
function
In order for a fitness function to be able to 
evaluate the performance of an individual, 
it requires scores as in input. The scores are 
divided up in penalties and rewards, where 
each score belongs to one or more aspect(s) 
from the Social, Technology and Service 
triangle. They are defined as such:

Penalties:
• Social forces (Social aspect): The sum of 

the forces in the Social Force Model which 
the robot exerts onto the pedestrians for the 
duration of the run� In the calculation of the 
social force score, the sum of all pedestrian 
forces is first multiplied with a Sigmoid 
function; at larger distances the social 
force shouldn’t be taken into account too 
strictly, while at closer distances it should 
take stronger effect. The result of this is then 
added to the running total which at the end 
of the run is the social forces score� 

• Number of collisions (Social aspect): 
While the robot is in collision with a 
pedestrian, this counter will increment, 
thus longer collisions while have a greater 
effect. A collision is defined as ‘when the 
distance between the robots center and the 
pedestrians center is smaller than the radii 
of both combined’�  

• Runtime (Service aspect): The amount of 
time the run takes, measured in seconds� 
Maximum runtime is defined as 55 seconds. 
A run can be completed before this 
maximum time if the robot reaches the end 
goal� 

• Distance to goal (Service aspect): The 
distance in meters to the end goal, taken 
from the robots center in a direct line to the 
end goal center�  

• Path length (Service and Technology 
aspect): The total length of the path the 
robot has driven during the simulation run, 
as measured in meters�  

• Number of stops (Technology aspect): 
The number of stops is incremented with 1 
each time the robot slows down to below 0�1 
m/s and then speeds up again to above 0�2 
m/s. This score should reflect the negative 
consequences from accelerating and 
decelerating repeatedly� 

Reward:
• Goal reached (Service aspect): A boolean, 

either 0 if the robot did not reach the goal, 
or 1 if it did reach the end goal�

The fitness function is a delicate function 
to define. The function takes in the scores 
of each chromosome, multiplies them by 
certain weights and sums them up to a total 
fitness value. The delicate part of this function 
comes from the weights and factors. Different 
weights will result in a different kind of fitness 
evaluation, which in turn means evaluating 
for a different problem. It thus is vital that the 
scores and weights together define a fitness 
which is evaluating the situational problem. 
In a situation where the social aspect of the 
STS-triangle is of greater importance than 
(product) service or technology, the setup of 
the fitness function should reflect this. 

In order to have a baseline from which the 
neutral weights can be determined, 20 runs 
were performed with the parameter values as 
found in the chapter ‘Porting to ROS’. 
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The scores of these runs were taken, averaged 
and rounded, see also Appendix ‘J. Baseline 
for the fitness function weights’. 

In the neutral case where each aspect is 
equally important, the baseline scores for each 
aspect should also have an equal impact. This 
results in the following weights, see Figure 59.

The fitness function is built up from the three 
aspects and their respective values:

The overall fitness is then defined as the sum 
of the separate fitnesses. In the fitness formula 
for each aspect, one can find the ‘importance’ 
factor. The values of the three aspect 
importance factors are directly related to the 
Social, Technology and Service triangle. The 
sum of the three importance factors should 
always be 1. The position of the marker within 
the triangle determines the value of each 
importance factor. 
Considering an equilateral triangle with a 
height of 1, the value of an aspect’s factor is 
equal to the distance from the marked point to 
the opposite side of that aspect’s angle in the 

Figure 59� Baseline weights for the fitness 
function�

triangle. Having the marked point in the center 
of the triangle results in equal importance to 
all aspects; each aspects is then ⅓, Figure 60 
(left). Moving the marked point towards, for 
example, the social aspect results in shifting 
values for the importance factor, Figure 60 
(right). As mentioned above, the definition of 
the fitness function is a delicate procedure, 
and the position of the marker within the STS-
triangle is part of this procedure. Before a 
simulation for a specific situation is started, the 
marked point’s position should be considered 
carefully, thinking about the situation at hand 
and the desired robot behavior. 

Figure 60� STS-Triangle with example marker for the aspect importance factors�
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Selection method
Looking back at the chapter ‘Evolutionary 
algorithms’, four different selection methods 
were identified. Selection probability has a 
large influence on the convergence rate of 
an evolutionary algorithm. If the probability 
distribution is shifted towards favoring the 
fittest too much and too early, exploitation 
wins from exploration and instead of the 
global optimum, the algorithm converges to 
a local optimum. As mentioned before, the 
convergence pressure should increase over 
time. The traditional Roulette Wheel Selection 
and the Tournament Selection methods do 
not lent themselves well to this. Thus Linear 
Ranking Selection (LRS) and Exponential 
Ranking Selection (ERS) remain. In both 
Linear and Exponential Ranking Selection, 
the chromosomes are ranked based on their 
fitness; worst first, best last. Based on their 
rank (1 through 60), the generation size (60) 
and the convergence factor, they get assigned 
a probability. 

The difference between LRS and ERS comes 
from the way the selection probability is 
calculated. LRS uses the following formula  
for this (Eiben, A. E., & Smith, J. E.,  2003).

Where P is the probability, i the rank of the 
chromosome, s is the convergence factor 
(a value between 1 and 2) and N is the 

population size. Depending upon the value 
of the convergence factor s, the distribution 
changes, as shown in Figure 61. 

For ERS the formula is as follows (Thiele, L., & 
Blickle, T., 1995).

P is the probability, i the chromosome rank, c 
is the convergence factor (a value between 
0 and 1) and N is the population size. Again 
the distribution changes depending on the 
convergence factor, in this case c, as shown 
in Figure 62.

While both selection methods can start out 
with an equal probability for all chromosomes, 
the exponential method can reach much 
higher probabilities and thus a much higher 
convergence pressure near the end. The linear 
method is limited in this by the population 
size. As LRS is limited, ERS is chosen, but care 
should be taken to not increase convergence 
pressure too quickly otherwise room for 
exploration will be limited.
After assigning the probabilities to all 
chromosomes, the sum of their probabilities 
should equal to 1. A uniform random value 
between 0 and 1 is then picked. Next, for 
each chromosome, the running sum of its 
and all previous chromosomes’ probabilities 
is checked. If it is larger than the randomly 
picked value, that chromosomes is selected. 

Figure 61� LRS-probabilites for 1 ≤ s ≤ 2. Figure 62� ERS-probabilites for 0.9 ≤ c ≤ 1.
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Crossover and mutation
After the selection of the parents, crossover 
can take place to create the child’s parameter 
values. Crossover is a rather simple process; 
for each parameter of the child, a coin is 
flipped and the parameter from either parent 
one or parent two is chosen based on that, see 
Figure 64. This creates a child which has traits 
from both parents, but without mutation new 
parameter values will never be introduced. 
Thus mutation takes places on the child’s 
parameters. The probability that a fully new 
value for the parameter is chosen is based 
on the ‘mutation probability’ of the algorithm. 
As with the convergence pressure, this value 
changes over time. At first the mutation 
probability should start ‘high’, such as 3~5%, 
near the end it should be 0%.

There are many ways to move between 
these values. For example, one way is to use 
percentages, another way is to decrease it 
linearly and a third way is to use a sigmoid 
function. At first the mutation rate shouldn’t 
decrease too much, then it should decrease 
gradually and near the end it should again not 
decrease too much anymore. In theory, in this 
way exploration is promoted for a while, then 

Figure 64� Crossover of two parents to create a 
child chromosome�

Figure 63� Different methods of moving through the mutation 
probabilites over the course of the genertions� Note; ‘Percentage’ stays 
level for the first 5 generations, then drops with 15% each step. 

convergence can gradually take over and near 
the end exploitation should be nearly all there 
is. Looking at Figure 63, the sigmoid function 
corresponds best with this theory and is thus 
used to change the mutation probability over 
the course of the generations. 

After crossover and mutation, the children’s 
chromosomes for the next generation are 
ready and thus the next generation gets 
populated. At which point the simulation 
process starts anew.
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Results
Over the course of 2 weeks, the evolutionary 
algorithm was put to work and managed 
to complete six full runs on an Intel Nuc 
(NUC8i3BEH) with 16 GB of RAM� Each time, 
based on the results of the previous run, some 
adjustments were made on for example the 
E�A� weights and/or importance factors in 
order to explore their effects. The results of 
these runs will be presented in this paragraph� 
The implications of the results will be discussed 
in the next paragraph; ‘Discussion’� For the 
full results overview of each run, including 
used weights and values, graphed averages, 
chromosome diversity and learned parameters; 
see Appendix ‘N� Results of the Evolutionary 
Algorithm runs’ 

The E.A. weights and parameter values as 
used for the six runs can be found in Figure 65. 
Most fitness function weights remained fixed, 
only the goal weight was increased when 
it became apparent that the chromosomes 
were ignoring the goal altogether upon the 
completion of the first run. Instead of learning 
to reach the goal, the chromosomes learnt to 

Figure 65� Table with the evolutionary algorithm’s weights and parameter values as used for the 
six runs� *Run 3 did not have any pedestrians included during the simulations�

avoid people and drive as little as possible 
to lower social forces, collision count, path 
length and stops; it would find a nearby spot 
with low chance of increasing the social 
forces and stay there until the end of the run, 
see Figure 66.

Figure 66� The spot where the chromosomes 
would stay to minimize the penalties�

In between runs, the values of the importance 
factors for each of the three aspects of the 
STS-triangle was adjusted. The exact values 
can be found in the figure below.
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Figure 67� STS-triangle with the set STS-markers and the observed STS-
behavior markers for all 6 runs�

In general the runs converge, but do so 
with fluctuations in the fitness values. 
These fluctuations can be observed when 
pedestrians were included in the runs. Part 
of this is caused by the random nature of 
the SFM navigation used by the pedestrians. 
Small deviations near the beginning result in 
large changes over time, comparable to the 
phenomenon of a double pendulum. These 
large changes also determine whether the 
robot can drive smoothly through the test 
environment or if it is often blocked by the 
pedestrians. The starting position, which 
is randomized at the beginning of each 
generation, also influences the generations 
starting ‘luck’. If the pedestrians happen to 
start close to the robot or always meet the 
robot at the narrow middle area, the social 
forces penalty of that whole generation will 

be increased. These factors combined can 
explain the fluctuations in the fitness values 
when pedestrians were included in the runs.

In order to judge the learnt behavior of the 
runs, each top scoring chromosome of the 
final generation was employed multiple times 
(n=10) in their situation and observed. Based on 
these observations a marker can be placed in 
the STS-triangle, representing the observed 
behavior which can in turn be compared to the 
original marker which governs the importance 
factors of each aspect, see Figure 67. 

Note, as the observations are interpretations of 
behavior, they are influenced by the subjectivity 
of the observer�
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of the STS-triangle unexplored and still open 
for investigation in future projects. 

A decision had to be made on how to 
determine when an E.A. run would be finished. 
One way is to look at the rate of change of 
the convergence, if the convergence flattens 
out, this means that most likely an optimum 
has been reached and the E.A. is done. The 
other option, which was the one applied in 
this project, is to give a maximum number of 
generations. At the end of the last generation, 
the best scoring chromosome is then the 
result of the E.A. run. This might seem like the 
less logical option of the two, but convergence 
isn’t the only factor to consider. As time is 
limited and a number of learnt parameter 
sets (completed runs) is required for the 
user test, the decision was made to limit the 
amount of generations and thus the time per 
run. A possible issue which was unknowingly 
dodged by this choice was that of the fitness 
fluctuations. The fluctuations caused by the 
SFM pedestrians and their random starting 
positions over the generations would have 
complicated the accurate detection of a 
converged run. 

With the six runs completed (of which five 
in the ‘normal street’ situation) a selection 
of three parameter sets was made to use in 
the user test. By picking run 2, 5 and 6, the 
placed STS-markers are spread furthest apart 
from one another in the STS triangle, giving 
the best chance to identify the effect of the 
social marker on the behavioral performance 
through the user test. The marker position of 
run 2 is neutral for all importance aspects. The 
marker of run 5 has a value of 0 for the social 
importance factor and the marker for run 6 has 
the highest value for the social importance 
factor (0.6) out of the three. 

Excluding the third run where no pedestrians 
were present, all runs are judged as more 
social than where their marker was placed. A 
logical explanation for this could be the built 
in safety features. As the time of flight sensors 
detect anything closer than 20 cm, the robot 
will slow down, anything closer than 10 cm and 
the robot will stop, independent of the learnt 
parameters. A robot slowing and/or stopping 
to avoid a collision can be seen as behaving 
more social than its learnt parameters would 
suggest. 

There is one run which is difficult to position 
in the STS-triangle; run 6. Due to the 
exaggerated behavior of the robot; making 
wide turns, keeping an illogically large 
distance to pedestrians at one moment while 
nearly colliding with one the next. It also does 
not always reach the goal, and when it does 
its path is inefficient and it took almost twice 
the amount of time compared to other runs. 
Because of this, run 6 scores very poorly on 
the technology and service aspects, and 
dependent upon the interpretation, it is either 
asocial or too social. The behavior of run 6 can 
best be described as socially chaotic. 

Discussion
All STS marker positions and thus the 
importance factors of the three aspects were 
placed along the ‘social line’; the line where the 
social value is picked and as such governs the 
other two aspects. On this line the technology 
and service aspects are equally important. 
As such, there have been no runs where 
the marker was placed in a position where 
technology and service weren’t equal. 
The user test with the physical ROSbot is 
focused around evaluating the behavioral 
performance, and it thus made sense to stick 
to the social line in order to see the effect of 
mainly the social aspect upon the behavior of 
the robot. This however leaves large portions 
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With the newly learned parameters and the addition of passing and crossing forces, the 
developed computational SFM-MPDM model can now be tested with users in pedestrian 
rich environments. During the tests, the physical robot will have to navigate said environment 
and will have the Go-Solo, Follow and Stop policies available.

The goal of the user test is to evaluate the 
physical robot’s behavioral performance on 
the aspects of comfort (intuitiveness) and 
predictability (ease of use) and to evaluate the 
communication of intent through core vehicular 
movements� 

During the study, the robot will be tested 
in the ‘normal street’ situation, which 
includes passing, following and crossing. 
For this, multiple participants are required 
at once. Based on the results a discussion 
and conclusion with recommendations for 
improvements of the robot’s computational 
model will be written. These will also include 
reflections on the performance in the 
technological and product service aspects. 
For this study, the following research questions 
have been defined:

• How comfortable is the behavior of the 
robot?

• How predictable is the behavior of the 
robot?

• How do participants perceive the 
communicated intent?

• What improvements are to be made to the 
computational model of the robot?

User test setup
From prior experiments it became apparent 
that a walled in test area is required to 
keep noise levels and clutter to a minimum. 
The walls of the test environment can be 
low due to the low viewpoint of the LiDAR. 
Additionally, some obstacles are needed 
inside the test environment for the robot to 
drive around and to obscure direct vision of 
all pedestrians. The test environment should 
be of a size and layout similar to the EA digital 

learning environment (roughly 6 meters 
wide and 8 meters long) to facilitate longer 
ranged interactions, see Figure 68. Similarly, 
participants need this space for them to 
familiarize themselves with ‘walking down 
the test environment’ as immediate contact 
with the robot could influence the perceived 
comfort and predictability.

Figure 68� Floorplan for the user test, ‘normal 
street’ situation�

User test setup with the physical ROSbot

EVALUATING THE BEHAVIOR
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Before participation in the study, the 
participant will be asked to read and sign the 
‘HREC Informed consent’ form, see Appendix 
‘L. HREC informed consent form’. No names, 
age or other personal information will be 
stored of the participants, only the written 
responses to the questions. Video-recordings 
will be anonymized through facial blurring 
before publication.

The participants will be asked to operate in 
a group of roughly 5 persons (minimum of 
3, maximum of 6, preferred 5). Each group 
is asked to peform 6 runs. During those 
runs, three sets of learnt parameters will be 
employed by the robot, thus each set is tested 
twice per group of participant. The order of the 
parameter sets is switched around between 
groups and the groups are not told that the 
robot will be using different sets during the 6 
runs.

The participants will get assigned a number or 
color, this will help with linking their responses 
in the form with the video-recordings. In the 
digital form the participants will first be asked 
to state the current run number, their assigned 
number/color and starting position. Next 
they are asked to rank the robot’s behavior 
on comfort and predictability. Following 
this, they are asked how they perceived the 
communication of intent and to rank their 
experience of the robot’s behavior in that run 
on a scale from negative to positive. In case 
of their final run, the participant is asked to 
supply any improvements for the robot and 
its behavior. For an example of the form, see 
Appendix ‘M. User test digital form’. 

During each run, the robot will log data. The 
logged data includes: active policy, run time, 
amount of stops, path length and the sum of 
the social forces for each interval. The data 
will be logged at the policy election cycle.

After all data is gathered, both from the 
robot’s data logging as from the participants’ 

responses; the robot behavior can be evaluated 
on comfort (intuitiveness), predictability (ease 
of use), and the communication of intent 
through core vehicular movements. The results 
will be processed by linking the participants’ 
responses to the events in the runs, by 
studying the participants’ experiences and by 
reflecting on the points of improvements as 
directly suggested by the participants. From 
these results, new guidelines and pointers 
can be set up and recommendations can be 
made for future work. 
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The participants (n=42), divided over nine 
groups, all performed six runs totaling 54 
completed user test runs with the ROSbot 2.0 
Pro. After each run the participants filled in 
the digital form, totaling 252 digital forms and 
resulting in 84 forms per parameter set. An 
important note before presenting the results; 
many participants stated that the question 
about ‘positive influence’ was difficult to 
interpret and answer. Interpretations between 
participants varied and on occasion were 
completely opposite to one another. Therefore 
the results for this particular question cannot 
be used. The full results can be found in 
Appendix ‘O. User test results’.

The results for parameter set 1 and set 2 are 
not significantly different from one another 
for comfort (p=.181), predictability (p=.251) or 
communication of intent (p=.646). Participants 
mostly agree with the statement “The behavior 
of the robot feels comfortable to me” for both 
set 1 and 2. Predictability is scored neutral, 
albeit slightly leaning towards to positive side. 
Intent communication shows similar results, 
mostly neutral but leaning slightly towards 
the positive side. This is surprising when 
one considers the importance factors for 
both runs as used during the E.A. parameter 
learning. For set 1, the social, technology and 
service importance factors were all neutral 
and equal to one another (0.333). For set 2, the 
social importance factor was set to 0, while 
technology and service were both set to 0.5. 
For these sets to show the same behavior with 
such different factors (and thus different fitness 
functions) is unexpected and suggests taking 
a look at the parameter sets themselves.

Set 3 clearly scores lower; there is a significant 
difference between set 3 and set 1 and 2 

Over the course of several days the learnt parameter sets were tested with participants in 
the described environment. The results of these tests are presented in this chapter; first the 
parameter sets and their rated behavior as a whole are presented. After which a closer look 
is taken at the individual parameters and their impact.

on comfort (p=.000 and .007), predictability 
(p=.000 and .001) and communication of intent 
(p=.000 and .004). Its behavior was described 
as chaotic and confusing by observers and 
participants alike. This is again unexpected 
when looking at the importance factors for 
this set. During parameter learning, the social 
importance was 0.6, which is the most social 
of the three sets. Technology and service 
were both set to 0.2. When looking at just the 
technology and service aspects, the behavior 
seems to make sense; the robot did not always 
reach its goal, it was slow and inefficient to 
get there and it frequently decelerated and 
accelerated. This all corresponds with a low 
importance value for technology and service. 
The chaotic social behavior on the other 
hand is surprising, scoring low on comfort, 
predictability and intent communication. This 
again suggest taking a look at the parameter 
set itself. 

User test results



80 

Figure 69 shows the parameters for run 2 (set 
1), run 5 (set 2) and run 6 (set 3). Looking at 
the parameter sets shows some interesting 
values. Parameter set 1 has a passing length of 
near 0 meters. This results in the robot never 
employing the passing behavior and renders 
any other passing parameters useless for this 
set. Parameter set 2 shows a similar though 
less extremely short pass length of 1.2 meters. 
This can be considered as rather short sighted 
for a passing situation. Parameter set 3 shows 
an acceptable passing length of 2.65 meters. 
Similar parameter values can be found for 
the crossing lengths of all three sets; set 1, 2 
and 3 have a crossing length of 0.45, 0.82 and 
1.15 meters respectively. This can again be 
considered short sighted. Moreover, set 1 and 
2 show a low crossing side strength, meaning 
that even if the crossing is employed at these 
short ranges the sideways avoidance is weak. 
Another notable parameter is the alpha value 
used during the MPDM. There is a large 
difference between the alpha values of set 1, 
2 and 3 which corresponds to what one would 

expect from the importance factors. A higher 
social importance and thus lower technology 
and service importance should result in 
the alpha parameter (which signifies the 
importance factor of progress in the MPDM 
cost function) to be lower. The high level of 
importance for progress in set 2 is expected 
as social importance was set to 0. What is 
interesting here is the extremely low alpha 
value for set 3. Although a low alpha value 
is expected for a social importance value of 
0.6, the learnt value is too low; 0.0037. This 
means the robot nearly does not care about 
making progress during the policy election. 
Combining this with the short time step, low 
policy election cycle and short minimum 
follow distance values it can explain the 
chaotic behavior of the robot. 

And then there are the values which govern 
the core SFM itself. The maximum velocity, 
goal and pedestrian strengths are similar for 
all sets. The first difference can be found in 
the pedestrian range. Set 1 and 2 show similar 

Figure 69� Learnt parameter values for run 2 (set 1), run 5 (set 2) and run 6 (set 3)� 
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values, but the range for set 3 is clearly shorter. 
This means the presence of pedestrians 
won’t have any effect until very close (<1m) 
to the robot. The obstacle strengths and 
ranges for set 1 and 2 are rather different. Set 
1 has a below average strength but above 
average range, which balances each other 
out. In set 2, however, the obstacle strength 
is far above average and its range is far below 
average (<0.2m), this results in the robot not 
caring about obstacles until almost colliding 
with them, at this point, the general safety 
measures have already taken over. The most 
notable is again set 3. The obstacle strength 
and range values are well above average for 
both (range of ~3.4m). This results in the robot 
trying to keep an illogically large distance 
towards objects. Combining this with the large 
lambda value, causing the robot to consider 
objects and pedestrians behind it to be only 
slightly less important, adds onto the chaotic 
behavior. 

Finally there is the communication of intent. 
When asked to what extend the participants 
agreed with the statements “The behavior of 
the robot feels predictable to me” and “It was 
clear to me what the robot’s intentions were”, 
they scored them rather neutral. This leaves 
room for improvement on the communication 
of intent through core vehicular movements. 
Especially the passing and crossing, which 
should communicate intent, were lacking due 
to the short ranges. Additionally, about 29% of 
participants stated they would have liked to 
see other methods of intent communication, 
e.g. “Some visual indication, like an LED strip 
indicating the current direction of motion can 
help the pedestrians understand the intent of 
the robot”�
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The analyzed learnt parameter values of the 
sets gave some insights into why performance 
was not optimal. To solve the behavioral 
issues caused by the parameters, first the 
parameter learning must be improved. As a 
first suggestion for improvement the amount 
of parameters should be decreased and 
default values should be used for those which 
are not learnt. For example, in passing and 
crossing, if any of the length, width, strength 
or margin values was low, the method was 
very likely to not be employed. As such these 
5 passing and 5 crossing parameters should 
be excluded from parameter learning and 
instead should be replaced with just two; one 
parameter for each method which determines 
the effective strength of the resulting forces 
through a value between 0 and 1. Similarly, 
parameters which govern the policy election 
and horizon length of the MPDM should also 
be set to a default value. This should prevent 
excessive forward simulation on one hand 
and infrequent (<2 Hz) policy changes on the 
other.

A second alteration, which can be applied 
if time is not an issue, is to increase the 
population size. In this way a larger solution 
space can be explored, increasing the chances 
of finding the overall optimum. In addition to 
this, one might include ‘elitism’ to the E.A. With 
elitism you ensure that the best chromosome 
of the generation always survives into the 
next. This is especially useful in cases where a 
solution close to the optimum is found in early 
generations, when mutation rate is still high 
and selection pressure is low. Finally, there 
is the possibility to change from stopping at 
a fixed maximum number of generations to 
stopping by looking at the rate of change of 
the convergence. If the convergence flattens 
out, this means the run has found its optimum 
and as such the run can be stopped.

The results show that no significant difference 
could be found between parameter set 1 
and 2. Their behaviors during the user test 
were similar and so are their rated comfort, 
predictability and communication of intent. 
Between set 3 and set 1 and 2 there is a 
significant difference. The behavior was 
described as socially chaotic or confusing. 
This is reflected in the ratings for comfort, 
predictability and communication of intent. 
Different behavior does result in different 
ratings on these aspects. Some notes should 
be made however on possible external 
influences on the user test. First of all, the 
ROSbot is rather small. The difference in 
size between the ROSbot and an actual 
autonomous delivery vehicle could impact 
the way the AGV is perceived. Secondly, the 
user test environment was set up in such 
a way as to promote both crossing and 
passing as well as obstacle avoidance. The 
setup included a bottleneck near the center 
of the environment to promote interaction. 
However, due to the nature of the bottleneck 
and the relatively short distances before and 
after this bottleneck, the effect of passing 
could not be tested on longer ranges. Thirdly, 
there is the possible demographic impact of 
the participants. Nearly all participants were 
Industrial Design Engineering students from 
the TU Delft, aged 18~28. It is unclear if and how 
this limited demographic spread influences 
the results, but for future tests a wider spread 
demographic sample set is advisable. 

Looking back at the research questions on 
comfort, predictability and communication 
of intent the robots behavior isn’t perceived 
negatively, but it does leave room for 
improvement. The passing and crossing wasn’t 
employed optimally. The robot collided with 
participants on several occasions (n=9, 16.7%) 
and the intent was not communicated clearly. 

In this chapter the user test results of the previous chapter are discussed and conclusions 
are presented. Suggestions are given for alterations in the parameter learning method. 

User test discussion and conclusion
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Looking back at the user test runs, we can 
also reflect on the performance of the robot in 
the technology and (product) service aspects. 
Service wise, set 1 and 2 performed very well; 
the runtime was short, the goal was always 
reached and the path length was close to 
optimal. Technology wise, set 1 and 2 could 
improve by decreasing the amount of stops; 
the robot could sometimes be seen to stop 
in order to rotate towards its (sub)goal on the 
spot. Set 3 doesn’t score well on technology 
nor service. It often did not reach the end 
goal, drove inefficiently, stopped often and 
sometimes ended at a large distance away 
from the goal. These results for the 3rd set 
were caused by its socially chaotic behavior 
as discussed before.



In these final chapters the results of the project 
are discussed, conclusions are drawn and 

recommendations are given for future projects.

To conclude
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Over the course of this graduation project a 
computational mechanism was designed for 
an autonomous guided vehicle in pedestrian 
rich environments. The original design goal 
was stated as such: 

“Research and design a computational 
mechanism for an autonomous guided vehicle 
based on the social, technology and product 
service needs by utilizing a machine learning 
method to deal with a variety of situations while 
expressing its (change of) intention�”

As such, the context of pedestrian behavior 
and mobile (delivery) robots was researched 
on three aspects; social, technology and 
(product) service. These three aspects 
combined formed the STS-triangle, which 
served as the overarching framework for the 
research and exploration phase. In this phase 
the foundation for the social navigational 
model was presented; the Social Force Model. 
The SFM was expanded upon by Multi-
Policy Decision Making, which adds forward 
simulation and the option to choose between 
three policies: go-solo, follow and stop. By 
utilizing MPDM, the (virtual) robot can predict 
and decide which policy will bring the most 
progress and the least social disruption. And 
although this addition helped in making the 
robot behave more polite, it was still found to 
be lacking in passing and crossing situations.

Passing and crossing
From pedestrian observations it became clear 
that pedestrians, in the Dutch context, follow 
the right hand rule during passing. They look 
ahead and adjust their paths to their right, if 
possible, to timely communicate their intent 
of passing and to prevent collisions. During 
crossing pedestrians judge the situation and, 
if so required, adjust their speed and heading. 
Usually the one which alters the most is 
the one which crosses behind the other. 
The robot, while utilizing SFM-MPDM, did 
not show these anticipating and correcting 

behaviors in passing or crossing situations. As 
such, methods were designed and added to 
the social navigational model which checked 
for possible passing and crossing pedestrians. 
If found, the methods would add sideways 
and/or slowing forces to the robots core SFM, 
which in turn made the robot anticipate the 
situation and adjust its trajectory accordingly. 

The SFM-MPDM with passing and crossing 
was tested with users in a digital environment. 
From the user test it became apparent that 
the robots behavioral performance was 
judged as quite human like, comfortable and 
predictable, but the social navigational model 
still required some adjustments and tuning. 
The viewing cone for passing was changed 
to a rectangular area which rotates with the 
agents heading. This change helped promote 
a more consistent distance keeping during 
passing. The viewing cone for crossing was 
also adjusted. Its range was increased by 50% 
to better promote looking ahead. Participants 
also mentioned that the robot should maintain 
a larger minimal distance towards people, as 
it was sometimes found to be following and 
driving too closely. 

Learnt behaviors
During the research and exploration phase 
eight core situations were identified. The 
behavior of the robot should be adapted 
based on the situation it finds itself in and 
as such, behaviors for different situations 
had to be found. The behaviors of the robot 
are governed by their parameter sets. To 
find these parameter sets an evolutionary 
algorithm was employed. The evolutionary 
algorithm emulated Darwinian evolution 
through fitness, selection, crossover and 
mutation in the Gazebo virtual physics world. 
The learnt behavior sets were put to the test 
with participants (n=42) and a physical robot in 
an environment which represented a normal 
street situation with obstacles, pedestrians, 
passing and crossing. The robot showed 

Discussion
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some unexpected behavior however. The 
parameter set which used a neutral position 
for all three aspects in the STS-triangle was 
judged as no different from a parameter set 
which had no social aspect during parameter 
learning. Moreover, the parameter set which 
should have produced the most social 
behavior towards pedestrians was found to 
be socially chaotic and was scored lowest on 
comfort, predictability and communication 
of intent. The suspected underlying reasons 
for these surprising results were the 
underlying parameters of each set. Some 
counterproductive parameter values were 
learnt and linking (groups of) parameters 
to exact parts of the behaviors was found 
to be difficult. It is thus apparent that the 
evolutionary algorithm requires adjusting in 
order to learn parameter sets which better 
match the intended behavior as marked in the 
STS-triangle. More on this can be found in the 
chapter ‘Recommendations’ on page 88.

Requirements and wishes
At the end of the research and exploration 
phase a program of requirements and wishes 
was set up. These requirements and wishes 
were stated in a way such that they apply 
to the autonomous delivery robot as if fully 
implemented and operational within the 
pedestrian context. A short-list was made on 
which the end result was to be reflected. Even 
though the state of the project is far from 
‘fully implemented and operational in the 
pedestrian context’ same valuable comments 
can be made. 

To a certain extend the robot adjusts its 
behavior to the situation through the use of 
MPDM. The on the fly parameter set changing 
however, was not yet implemented in this 
project (R. S1). A good start was made on 
finding the right behavior which is seen as 
intuitive (predictable) and comfortable (ease 
of use). Room for improvement is clearly 
present, but parameter set 1 and 2 weren’t 

negatively perceived (R. S2).

The robot tries to maintain a comfortable 
distance towards pedestrians, but at times 
the pedestrian is not detected and a collision 
could occur. Similarly, if the pedestrian comes 
too close on purpose, the robot does not have 
an option to drive backwards and maintain 
the distance (R. S4 & R. S5). The virtual robot 
can be seen to exhibit the Dutch pedestrian 
conventions of passing on the right, crossing 
behind and slowing and waiting for others. 
The learnt parameters for the physical robot 
however, upon closer inspection, were found 
to be lacking in passing and crossing. As 
such these are to be tested again with more 
profound parameter values (R. S6 & R. S7).

Through the use of MPDM, the robot can look 
ahead, predict and decide upon the policy 
which is both progressive and which results 
in the least social disruption (R. S8, W. S5 & R. 
T7). During the development and testing with 
the ROSbot 2.0 Pro, the intensive calculations 
were performed on a ROS connected laptop 
(Ubuntu 16.04 virtual machine with quad core 
and 8GB RAM). The robot itself only served as 
the sensor and actuator. It was not tested if 
the ROSbot could run the calculations on its 
own hardware (W. T1).

The robot can be seen following a straight path 
if no other agents or obstacles are nearby (W. 
T4). For smaller angular adjustments the robot 
exhibits a turning radius which is proportional 
to its translational velocity, but for larger 
adjustments the robot prefers to stop and 
turn on the spot instead (W. S2).

The communication of intent through core 
vehicular movements alone was judged to 
be neutral. A number of participants (n=12) 
mentioned they would have liked to see other 
methods of intent communication such as 
visual indicators and LED lights (R. S11).
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Looking back at the design goal, it can be 
said that during this project, a large part of 
the computational mechanism was achieved. 
A social navigational framework was 
developed based on the Social Force Model 
with the addition of Multi-Policy Decision 
Making. Walls, static obstacles and dynamic 
obstacles (pedestrians) could be detected 
through the use of LiDAR and an adjusted 
obstacle detector structure of ROS nodes. 
New additions were the Social, Technology 
and Service triangle method, the passing 
and crossing to the SFM and the use of an 
evolutionary algorithm to learn parameters 
for the SFM-MPDM, see Figure 70.

Through the user test it became clear that the 
robots behavior influences the experience 
of the pedestrians, but it is unclear which 
(group of) parameter(s) exactly influences 
which part of the behavior. There are certain 
expectations to what impact a parameter or 
group of parameters has, but at which times 
and to what effect this controls parts of the 
behavior is difficult to identify. Nevertheless 
a good foundation has been laid down for 
future (graduation) projects through the 
development of the social navigational model 
and a way to learn parameters for the many 
different situations an autonomous delivery 
robot can encounter.

Figure 70� The computational mechanism, 
implemented parts are marked green�

Conclusion
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Within the time that was available for this 
graduation project, choices had to be 
made on which parts should be left out and 
which parts should be focused on. As such, 
recommendations are in order for those parts 
which were left out of scope, but also for 
those parts which were addressed but which 
can be improved upon. 

First of all, in the chapter ‘Disparity issues 
between virtual and physical worlds’ on page 
66 the issue of drift was discussed. As the 
robot moves around, it tries to keep track of 
where it is through odometry. This odometry 
isn’t perfect however and as such a positional 
and angular drift occurs. Another issue which 
occurs when the robot is moving is the invalid 
detection of static obstacles as dynamic.
For both these issues it is advisable to include 
Simultaneous Localization and Mapping 
(SLAM), which can help with correcting the 
odometry and excluding static obstacles from 
being marked as dynamic. 

Computational mechanism
As mentioned in the discussion, the robot 
does not identify the situation nor alters its 
parameter set to the situation. The situation 
identification is an important next step in the 
further development of the computational 
mechanism. Interesting options for the 
development of the situation identification 
are a classical algorithm of conditionals and 
effects, or instead to build and train a neural 
network which takes in the sensor data 
and outputs a likelihood score for all of the 
situations, upon which a decision can then be 
made. 

Other improvements to the computational 
mechanism are the inclusion of the RGB-D 
camera. Through image recognition a 
pedestrian standing in front of the robot 
can be detected, which can augment the 
detection through LiDAR. The depth sensing 

of the camera can also augment the mapping 
of the environment and detect obstacles in 
front which the LiDAR might have missed. 

Social navigational model
The choice of switching from a narrow viewing 
cone for passing to a rectangular detection 
area was made without first exploring other 
options and shapes. The change had a positive 
effect on the detection and behavior of agents 
during passing, but it could be interesting to 
explore other shapes, such as an elongated 
trapezoid with a base positioned slightly 
behind the agent. 

Another interesting area of improvement 
are the policies of the Multi-Policy Decision 
Making. The core policies of MPDM (go-solo, 
follow and stop) were used, but no additional 
policies were developed. One such additional 
policy could be to allow the robot to drive 
backwards. These could be valuable in 
situations where a, the robot is stuck because 
of an obstacle and b, a stalemate with a 
pedestrian was reached where the robot 
cannot go forward but the pedestrian does 
not make way. 

Size of the robot
The user tests with the physical robot 
were performed with the ROSbot 2.0 Pro. 
This robot served as an ideal platform for 
the development of the computational 
mechanism, but its size might have had an 
influence on the user test results, especially 
in regard to the rated comfort. It can be 
hypothesized that an actual, more sizeable 
delivery robot will not be seen as equally 
comfortable with the same behavior, but this 
is yet to be tested.

Evolutionary algorithm and the STS-triangle
As mentioned in the discussion, the resulting 
learnt parameter sets do not always match 
the intended behavior as set by the marker in 

Recommendations
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the STS-triangle. As such it is recommended 
to first improve the EA framework. One such 
recommendation is to decrease the number 
of parameters which can be influenced in an 
attempt to decrease complexity and help 
with better linking parameter values to learnt 
behavior. Another recommendation would 
be to increase the population size of the 
generations. This should help with exploring 
a larger solution space which increases the 
chances of finding the overall optimum. In 
addition to this, elitism could be included to 
the evolutionary algorithm. Through elitism 
one can ensure that the best performing 
chromosome always survives into the next 
generation. This should help with keeping 
those chromosomes which are performing 
well in the early stages, where selection 
pressure is low and mutation rates are high.

A final recommendation is to explore outside 
of the ‘social line’ in the STS-triangle. During 
parameter learning, markers were positioned 
inside the triangle which always balanced 
the technology and service aspects. As such 
it was not investigated what the effects are 
on the learnt behavior when one shifts the 
balance to increase the importance of the 
technology or service aspect.
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B. Mindmap of  AGV situations 
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In this crossing situation, the female with the 
backpack in the middle of the picture can be 
seen to want to cross in front (left), notice this 

In this passing situation, the male in the blue 
t-shirt (left) keeps to the right while passing 
(middle and right), despite his his initial left 

In this passing situation, the male in black 
and white is not paying attention and looking 
at his phone (left), he notices the oncoming 

will result in a collision and adjust (middle) 
and cross behind instead (right).

biased position (left).

group (middle) and passes the group on the 
right (right).

Adjust and cross behind

Right hand rule during passing #1

Adjust while passing

C. Pedestrian observations
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In this passing situation, the female in black 
sees the oncoming duo and decides to 
neglect the right hand rule in (left) in favor 

In this passing situation, the two males are 
faing eachother mostly head-on. The male 
on the left notices the other is looking at his 

of passing 2 groups on the left (middle and 
right).

phone (left) and decides to adjust a bit more 
and pass on the right (middle and right).

Passing on the left side

Right hand rule during passing #2
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Goal of the interview
Discover pedestrian behavior during passing and crossing for implementing in MPDM-SFM.
Discover pedestrian expectations of the robot, identify differences. 
Gain insights and pointers for AGV communication and investigate leaning.

Before interview
Ask:
If the participant understands all data will be handled anonymously.
Permission to record with a voice recorder
If the participant wants their voice recording deleted after project finishes.
Permission to publish the processed and anonymous data in my graduation thesis.
To fill in their age category (0-14, 15-24, 25-39, 40-64, 65+).
To fill in male, female or other.

Pedestrian natural behavior
Passeren
• Stel u loopt in een voetgangersgebied (bijv. een winkelstraat, voetpad of een stoep) en er 

komt een voetganger u tegemoet, wat doet u?
• Welke kant gaat u op om de ander te laten passeren?
• Wanneer zou u de ander aan de andere kant passeren?
• Zit er een verschil tussen uw gedrag en het type voetgangersgebied?

Kruisen
• Stel u loopt weer over de stoep en er komt een voetganger vanaf de zijkant aanlopen, 

jullie paden kruisen, wat doet u? (Eventueel voordoen)
• (Welke manier van aanpassen doet u om een botsing te voorkomen? Inhouden, versneller 

of bijsturen?)
• Maakt het uit van welke kant de persoon u kruist?
• Bij het besturen van een voertuig gaat rechts voor, past u dit ook toe als voetganger?
• Waarom wel of niet?
• Hoe bepaald u anders wie er voorlangs gaat en wie achterlangs kruist?
• Wat voor invloed heeft de hoek waarmee jullie elkaar kruisen? (Bijv. loodrecht, kleine hoek 

in dezelfde richting, kleine hoek tegenover gestelde richting)
• Expected autonomous robot vehicle behavior.

Algemeen
• Wat voor gedrag verwacht u van een autonoom voertuig, zoals hierboven zichtbaar, die 

zich door voetgangersgebieden verplaatst?
• Waarom?

Passeren
• Wat voor gedrag zou u willen zien van een autonoom voertuig als hij u gaat passeren?
• Moet hij standaard rechts aanhouden?

D. Pedestrian interview and data
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• Hoe is dit vergelijkbaar met wat u van een tegemoetkomende voetganger verwacht? En 
hoe is het verschillend?

Kruisen
• Wat voor gedrag zou u willen zien van een autonoom voertuig als hij u gaat kruisen?
• Zijn er regels waar het voertuig zich aan moet houden?
• Hoe is dit vergelijkbaar met wat u van een kruisende voetganger verwacht? En hoe is het 

verschillend?

Robot intent communication
• Communicatie van verandering in snelheid en richting
• Zou u het prettig vinden als de robot u laat zien wat hij doet en/of van plan is om te doen? 

Denk aan van richting veranderen, vertragen, versnellen, stoppen.
• Hoe zou willen dat de robot dit aan u communiceert?
• Wat vindt u van verlichting als communicatiemiddel? (remlichten aan achterkant, 

koplampen voorop, oranje knipperlicht aan zijkanten)
• Wat vindt u van geluid als communicatiemiddel? (spreken / nabootsen van een 

elektrische motor waarin toonhoogte snelheid aangeeft / signalen)
• Zou u het zien van een kleine verandering in snelheid of richting als hint gebruiken dat de 

robot daarna een grotere verandering zal gaan doen?
• Wat vindt u ervan als de robot kort van te voren leunt in de richting van sturen (zoals een 

motorrijder of fietser) als communicatiemiddel van sturen?
• Zou dit ook werken bij versnellen of vertragen? Hoe moet de robot dan leunen?
• Welk middel of combinatie van middelen zou voor u het prettigst in gebruik zijn?
• Heeft u zelf nog een communicatiemiddel die niet genoemd is maar welke u toe zou 

willen voegen?

Thank the interviewee for their participation.
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Pedestrian
Passing 
on the right; “You’re supposed to stay on the right�”
Only left when: “The other is very much on my right, doesn’t pay attention and I cannot go further 
right then the other�”
Overtaking is by default in the left.
A city (shopping street) is very chaotic, then I would just zigzag to overtake, but most certainly 
not touch / cause a collision. I think the robot should avoid these busy streets.

Crossing
“I always try to quickly pass in front of the other, whether they come from the right or the left� I 
might let somebody cross in front of me (and thus I go behind them) when they are older, less 
mobile, a woman/man with a child e�g� if they ask for empathy�”

Pedestrians do not have priority rules like cars, bicycles and other vehicles have. Those don’t 
apply to people on foot among other people on foot.

I will also cross behind when the other is just slightly earlier than I am or if something is sticking 
out in front (like a baby buggy).

When you’re exactly equal you engage in a short, mostly non-verbal communication with the 
other.

Crossing with shallow angles (heading similar), I will always try to go behind then. 
Crossing with shallow angles (heading opposite), I will pass in front. Left or right doesn’t matter.

Robot
“A robot should respect the people around him, he is not a person with feelings thus he should 
move around the people and slowdown(stop) if he cannot� The people shouldn’t need to deviate 
for him, but he needs to deviate for the people�”

He shouldn’t be a nuisance / annoying thus he shouldn’t:
• Drive on your toes
• Cause people to trip
• Shock people / surprise people
• Irritate (such as cause to much noise, and most definitely not honk all the time.)
• Lights are fine, especially with eyes. It’s ok to have interactions.

As the robot is smaller and faster than a human, the robot should be the one to deviate from 
its path the most. The robot should keep to his right when driving on the sidewalks / streets, 
he should not ‘look for the challenge’

“When it’s a busy street, he should zigzag between the crowd and honk/beep� If he can only go 5 
km/h (~1�4 m/s) then what is the point of having this delivery robot?
He should go 15 km/h and instead use the bicycle lanes�”

I expect the robot to deviate well ahead when passing (5 meters preferred, minimally 3 meters).
I don’t want him to have orange indicator lights, those aren’t required on the sidewalk.
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Crossing
Independent of which side the robot crosses, he must give priority to the other pedestrians.
“With a pedestrian you have a small ‘negotiation’ and ‘feel’ who should go first through eye 
contact and empathy� This happens really quickly� Less than a second� A robot should adapt to 
my behavior�”

Robot communication
He should have a brake light. He should have brake lights and go as fast as a mobility scooter.

“You notice a small deviation, the change of angle gives enough information when he is weaving/
passing/overtaking on the sidewalk, it doesn’t require indicator lights to signal to where he is 
turning then�”
“With big corners (taking a side-street) he should slow down a bit and check before going�”
“He should adjust his speed to go with the flow of the pedestrians.”
“It’s ok if he follows me, just not too long (maximum 20 meters or the like) and with an appropriate 
following distance, thus not too closely behind (2-3 meters distance)�”
“I do want to hear something, it’s very annoying when it’s very silent, then it can negatively surprise 
you like these e-bikes can�”

The amplitude of the sound should adjust to its surrounding noise level.
The pitch of the sound should adjust to its speed, faster means higher pitched, slower is lower 
pitched. 

“He is allowed to beep but definitely no talking, it’s not a social robot and people should treat it 
as such, I don’t want people stopping and starting a conversation with it� Using beeps makes it 
international too�”
“The robot should, when taking a corner; slow down, turn, adjust/respond when situation asks for 
it�”
“I don’t want it to lean, this makes it weird and too lively, it’s a robot not an animal�”
“Just keep it uniform and don’t add any strange movements, don’t make it too lively�”

As minimal communication as possible, headlights, brake lights, one sound for everything 
(beep beep, same tune), don’t add a display. 

All other communication should be through the application, not through a display on the robot.

“It should drive and behave like a pedestrian, but shouldn’t start acting social�”

Appearance
It should have a sleek design, very rectangular in essence but rounded off so no sharp corner/
pointy edges. It should be two tone: wheels and bottom black, top a color (white, yellow, blue, 
red, orange etc. as long as it very noticable).

The headlights should be higher up (not at the wheel level).
Wheels shouldn’t protrude from the body.

height: 70 ~ 100 cm
width: 50 ~ 60 cm
depth: 70 ~ 100 cm  (like a coffee trolley or aircraft trolley)
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Python code for calculating passing forces in SFM-MPDM

E. SFM-MPDM Passing and Crossing in Python
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Python code for calculating crossing forces in SFM-MPDM
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Goal of the user test
During the Research and Exploration phase a python simulation model has been built based 
on the Social Force Model with Multi-Policy Decision Making. Some additions have been 
made to this model after identification of possible shortcomings. These additions are: longer 
distance/earlier communication in passing, improved behavior on short distance crossing and 
the prevention of the ‘instant 180 degree turn’ by introducing a rotational velocity for the agents. 
The model is supposed to simulate pedestrian agents navigating amongst each other in an 
environment representing a small square with connected alleys. A robot agent is also present 
in the environment and tries to move through this pedestrian rich environment with socially 
acceptable behavior. The goal of the user test is to evaluate the model on any shortcomings in 
pedestrian behavior and to evaluate the behavior of the robot by ranking the shown behavior 
on intuitiveness, comfortableness and predictability, as indicated by the participants. The 
insights resulting from the user test are to be used as an input for adjustments to the model 
before transfer to the ROS development environment, which in turn is to be implemented in a 
physical robot that can be tested in real world environments. 

Research questions
What shortcomings are present in the pedestrian simulation model?
How human like is the behavior of the robot?
How comfortable is the behavior of the robot?
How predictable is the behavior of the robot?

Test setup
There are two scenarios which are to be tested:

1. Scenario with just pedestrians walking about in the environment.
2. Scenario with both pedestrians and the robot in the environment.

The first is to evaluate the quality / shortcomings in the behavior of the simulated pedestrians. 
The second is to evaluate the behavioral performance of the robot on intuitiveness, 
comfortableness and predictability. 

All participants will be shown both scenarios, but half of the participants will be shown scenario 
1 first, the other half will be shown scenario 2 first.

The environment in which the scenarios are tested looks as such:

F. User test setup of Python SFM-MPDM
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This environment includes a large open space, several corridors and a decision on two paths 
for the same destination. A note here, crossing will most likely not happen, but can be included 
in the large open space.

The force vectors acting upon the pedestrians and robots will not be shown. All pedestrians 
will be of the same color; light gray.

The goal of the robot and the active policy will not be shown, the robot will be light gray with 
a cyan ring to distinguish it from pedestrians.

The participants will be asked to think out loud while watching both scenarios and to comment 
on anything they might find noteworthy. 

After the questions have been answered I will go through the questions with the participant to 
further detail the reasons for their answers.

Questions
Please think out loud while watching the simulation and comment on anything you find 
relevant. 
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G. User test form of Python SFM-MPDM
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Scenario A

The behavior of the pedestrians is similar to what I expect from real people�

1. (Agree) The dots seem to follow the social ‘rules’ of navigating, hold back when necessary 
and pass each other in acceptable ways.

2. (Agree) I would not walk so straight in the middle as the dots do. Take a longer distance to 
others in some situations. 

3. (Agree) I would change my direction a bit earlier to not get too close to anyone. Also I 
would probably stay more to the right side. 

4. (Agree) People would avoid each other sooner and walk in groups more often.
5. (Disagree) I expect more groups of walking pedestrians such as 2 or 3 walking side by side. 

I expect people to stand still sometimes.
6. (Undecided) People cut corners. The will anticipate more when they see someone coming. 
7. (Disagree) In real life people would cut corners more. The ‘dance’ if you’re facing each 

other head on instead of passing each other so easily. 
8. (Agree) The think the ‘randomness’ is good, but the predictive capabilities of the people 

in the simulation can be improved, with regards to the predicting / anticipating how other 
people would walk.

9. (Agree) Passing goes well in most cases, people don’t bump into each other. Chosen 
‘routes’ look random which matches reality. Do take pedestrian density into account.

10. (Agree) In the middle of the room it seems natural, but at the turning points it becomes 
weird (at the dead ends people are walking while turning around instead of stopping and 
turning). I found it difficult to imagine the dots as people. 

11. (Undecided) Human: the people don’t touch each other and walk in different directions 
which is human. Not human: The people do not stop (for example to talk with one 
another). 

12. (Agree) There should also be people who are talking and standing still in the scenario. The 
difference between fast and slow people wasn’t that clear.

13. (Agree) Sometimes I would observe in advance and turn a bit earlier than what the people 
do on the screen.

Scenario B

The behavior of the robot  seems human like to me�

1. (Undecided) In general the robot moves human like, but there are some minor things 
noticeable in giving priority in a socially acceptable way. (Does not hold back sometimes).

2. (Agree) Feels like a bit too close to the humans
3. (Agree) Soft turns, waits before corner. But feels like people move away from the robot 

more than the robot moves away from people. 
4. (Agree) The behavior is comparable to the behaviors of the humans in this scenario, too 

much so. A robot should have a lower priority in overtaking and shouldn’t be in the way of 
humans.

5. (Strongly agree) As far as the model is concerned the robot acts like the humans.

H. User test results of Python SFM-MPDM
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6. (Agree) The robot maneuvers through the people naturally. It is good that he stops 
sometimes to let people pass.

7. (Undecided) It avoid people and finds the shortest path.
8. (Undecided) People look ahead more, but this robot seems to make the decision at the 

last moment. 
9. (Agree) Robot can sense accurately when someone is in his routes but might be better if 

he keeps a bit more distance from the people near him. Also think about the behavior of 
the robot when it is being overtaken. 

10. (Disagree, positive in some areas) Nice how it lets people first. But it can follow behind 
someone for too long -> weird / uncomfortable. The robot needs ‘knowledge’ of how 
uncomfortable following feels. Too long behind someone -> slow down or pass.

11. (Agree) If it’s from the supermarket towards a home; yes very human. The robot moves out 
of the way of people and politely waits. It also goes straight for its target. 

12. (Strongly agree) He stops at places where required and ‘walks’ just about the same speed 
as others do. In busy places he moves like the others do. 

13. (Agree) It looks very similar to the human beings in the simulation, except for appearance.

The behavior of the robot feels comfortable to me.

1. (Agree) It has a speed comparable to the humans and keeps enough distance while 
passing.

2. (Agree) Feels like it needs longer distance, not following me. Speeds seems good as long 
as a human walks faster if it follows you. 

3. (Undecided) I think the robot should be the one to take responsibility of not hitting anyone. 
And not walk straight behind anyone.

4. (Disagree) See answer above. 
5. (Disagree) I think the robot should not be treated as a equal to humans and should give 

way. Not force humans to alter or slow their movement. 
6. (Strongly agree) It is respecting the people in his way and stops when he needs to. He 

goes with the stream. 
7. (Agree) Sufficient distance, same speed as the humans, stops at critical moments. Deviates 

from the route to let people pass.
8. (Disagree) The space between people, speeds and decisions at the last moment can 

come across as undesired.
9. (Agree) It knows its route well, the speed is good and adjusts itself to the situation. Do 

think about a minimum distance between the robot and the nearby people.
10. (Strongly agree) The robot moves out of the way for the people
11. (Agree) He waits politely, doesn’t do anything unexpected. But a bit more space between 

him and the humans would be more comfortable. 
12. (Strongly agree) He blends in with the others speed wise, which is good. He also lets 

others pass.
13. (Undecided) I would prefer it to stop for a while and let me go first.

The behavior of the robot feels predictable to me.

1. (Agree) It holds its line and doesn’t make sudden turns where not expected. As I told 
earlier it does sometimes not hold in where a human possibly would. 
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2. (Undecided) It feels safe but a bit unpredictable.
3. (Disagree) I think it’s difficult to predict behaviors both for people and the robot. Maybe 

short term but not for the future.
4. (Strongly agree) Just as predictable as humans.
5. (Agree) The pathing is relatively simple, where I know all entities continue straight until 

they encounter something in the way that is close.
6. (Agree) It has a clear route and only deviates if someone is close.
7. (Agree) Follows a straight line as much as possible, only deviates when there is an 

obstacle, nearly no collisions.
8. (Undecided) The ideal line is predictable, but the way it passes someone is not. 
9. (Agree) On basis of the simulation I can predict that the robot will deviate when a person is 

nearby. 
10. (Strongly agree) Doesn’t turn harshly or randomly. So would easily avoid him.
11. (Strongly agree) Always waits in the same way, usually the same distance between robot 

and human, except when it’s narrow due to walls.
12. (Agree) Sometimes you see the robot doubt a bit (which also happens with humans in 

reality) but this does not make it predictable. But I think that that doesn’t matter.
13. (Undecided) I am not really sure about its routine in a bigger picture. 

Were there moments in the simulation that surprised you?

1. No
2. Yes; Robot went through a human once.
3. Yes; People walking through the wall, Robot hitting a person.
4. No (but actually yes); Sometimes when a human and the robot meet, the robot takes the 

priority, which you wouldn’t expect from a robot.
5. No
6. No
7. No
8. Yes; When the robot nearly pushed someone into a wall.
9. No
10. Yes; people got locked out of the simulation (went through the walls)
11. Yes; It wasn’t completely clear what kind of scenario I was looking at. Also, people 

sometimes went through walls. 
12. Yes; But in a good way, because he stopped for others.
13. Yes; I expect a fixed routine for the robot.
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Common themes

Scenario A (just people):
• People would anticipate earlier, the reaction is late (crossing and passing)
• People would sometimes just stop or slow down.
• People can walk in groups which they don’t in this case.
• People went through walls
• Stay to the right a bit more
• People would cut corners (bottom center in environment)
• People are quite random, which is realistic 
• People don’t collide, which is good
• I sometimes find it difficult to imagine the dots as people.

Scenario B (with robot):
• More distance between people and robot.
• Robot sometimes takes priority which you wouldn’t expect or want, robot should be 

better behaved.
• Is it good that the robot sometimes stops to let people pass or cross (especially near the 

right most corner after the open space).
• Robot follows straight lines when it can, this makes it more predictable; it doesn’t turn 

suddenly or randomly.
• The robot can follow people for too long / too closely, this isn’t comfortable.
• The speed is good compared to the other people (similar speed).
• The robot (and people) stay quite far from the walls. 
• The robot doesn’t necessarily shows human behavior, but this can be good as humans 

can sometimes be egoistic or uncomfortable, less human makes it more predictable.
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range and impact
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J. Baseline for the fitness function weights
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RQT Graph of the node structure for the parameter learning with the evolutionary algorithm.

RQT Graph of the node structure for the driving of the physical ROSbot 2.0 Pro.

K. RQT Graphs of the ROS node structures



125 



126 

Information Sheet for ‘ROSbot behavior test’
Date: 04/02/2020

The goal of the study is to evaluate the behavioral performance of an autonomous guided 
vehicle (AGV) called the ROSbot 2.0 Pro. 

In this study, the computational model controlling the AGV has been developed for autonomous 
driving in pedestrian rich environments. The user test involves performing multiple runs with 
other participants and the AGV inside the closed off test environment. The AGV will be driving 
based on its perception of its surroundings. After each run, you are asked to fill in a short digital 
form reflecting your experiences and opinions of that run. 

Any information provided will be handled anonymously, the digital form requires no name, age 
or gender. Any video-recordings will be anonymised post-study through facial blur in the case 
of a publication.

Gathered data will be part of the graduation work; the master thesis and public presentation, 
and thus will be deposited, after anonymisation, in the TU Delft Education repository.

L. HREC informed consent form
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M. User test digital form
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N. Results of the Evolutionary Algorithm runs

Notes

Behavior
Did not learn to reach the goal. Instead it learnt to avoid people and drive as little as possible 
to lower social forces, collision count, path length and stops.  
 
Adjustment for next time� 
Increase w_goal_reached from 250 to 1000 to compensate/counteract the other scores 
combined effect of making the reaching of the goal undesirable.

Run 1. ‘normal street’ situation.

Evolutionary Algorithm parameters Learned SFM-MPDM parameters
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Notes

Behavior
Learned how to reach the goal quite consistently. Even managed to get a number of fitness 
scores above 0. Seems to have converged nicely towards 1 kind of behavior. Theory is that 
the random pedestrians greatly influence the fluctuations of the fitness scores.  
 
 
Adjustment for next time 
Get rid of the sfm pedestrians and perform a ‘empty street’ run. 

Run 2. ‘normal street’ situation.

Evolutionary Algorithm parameters Learned SFM-MPDM parameters
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Notes

Behavior 
No pedestrians, empty street with obstacles. 
Learned how to reach the goal very consistently. Final fitness scores are very close, all 
around 200. It has converged the most compared to the other runs. The theory that the 
random pedestrians greatly influences the fluctuations of the fitness scores is supported by 
the lack of large fluctuations in the fitness scores with the absence of the pedestrians.  
 
 
Adjustment for next time 
Try with pedestrians, different importance values. 

Run 3. ‘empty street with obstacles’ situation.

Evolutionary Algorithm parameters Learned SFM-MPDM parameters
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Notes

Behavior 
Reintroduced pedestrians but altered the importance values from all neutral (0.333333) to 
instead favor social (0.42, 0.29, 0.29). The resulting behavior is that most of the time the end 
goal is reached, but fitness values fluctuate a lot. 
 
 
 
Adjustment for next time (if there is one) 
Instead decrease social importance, increase service and technology importance. 

Run 4. ‘normal street’ situation.

Evolutionary Algorithm parameters Learned SFM-MPDM parameters
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Notes

Behavior 
Social importance factor was set to 0, other two aspect are 0.5 each. This resulted in behavior 
which always reaches the end goal, which does not keep a distance to the pedestrians but 
which does stop before colliding.  
 
 
Adjustment for next time 
Increase social importance, and decrease service and technology importance to explore the 
other side of the (near) extreme. 

Run 5. ‘normal street’ situation.

Evolutionary Algorithm parameters Learned SFM-MPDM parameters
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Notes

Behavior 
Social importance factor was set to 0.6, other two aspect are 0.2 each. This resulted in 
behavior which can best be described as socially chaotic. The goal was reached 9 out of 10 
times, inefficient driving, comes across as insecure. 
 
Adjustment for next time 
Alter the set up of the evolutionary algorithm to better reflect the marked STS-triangle 
position. 

Run 6. ‘normal street’ situation.

Evolutionary Algorithm parameters Learned SFM-MPDM parameters
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O. User test results

Left page, results of the Repeated Measures Anova test. Right page, histograms and means.
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Comments as submitted by the participants in the digital form of the user test

1. Misschien kan ‘ie een stukje achter uitrijden nadat je gebotst bent (of wanneer hij bijna botst)
2. Maybe it would feel more comfortable for the pedestrians as it moves a bit slower and less 

‘schokkerig’ when it turns in a different direction. 
3. Robot should give signals, be more interactive so it’s more predictable
4. This was great� 
5. In the first run I am too focus looking at the ground. I am notice that there a robot. I still have 

no suggestion at this moment
6. I saw a guy almost hit the robot� I am afraid it will broken� Use handicap maybe
7. “Last questions I’d tricky. Positively influenced comparative to which situation? 

A large braeking area� Lights indicating stops and direction”
8. Als robot is gestopt en begint opeens te bewegen als je vlakbij bent is meest wat onzeker 

gevoel geeft� Wat gaat ie opeens doen� Il denk dat voor soepel gedrag grote mate van 
voorspelbaarheid belangeijkste is

9. Some visual indication, like an LED strip indicating the current direction of motion can help 
the pedestrians understand the intent of the robot�

10. It is best when it goes quite straight so as a human you can take care if it not bumpingin 
there� Instead of moving  unpredictabilly around

11. It can give a visual or auditory feedback to signal that it has noticed you
12. “It could drive backwards when it comes too close� Now it only stops when you get too close� 

This way it could feel more like it notices you� 
Maybe it could keep a larger distance� “

13. Looking at the behavior of the robot I did not feel like it was searching for a way, that made its 
behavior unpredictable

14. At run 46 i figured out that the robot was going from c* to c, that changed my perception 
of its intention and how I looked at him� Afterwards I could better evaluate how it felt to me 
because I was aware of its goals� 

15. I think the robot need to be more noticeable(lights to indicate its direction)� I noticed that most 
of us looked down and try to avoid the robot� In fact, pedestrians are not really predictable�

16. What is the use of this robot? Im very curious
17. As i said, maybe color but also sound (typical robot sound, maybe you could use another 

sound if thats’s possible to make it more natural)
18. It does not always see people and can get stuck� Also it is nicer if it moves more continuesly 

or fluent. 
19. The robot sometimes stops when I walk behind it
20. Light, so you will see the robot better
21. Aside from the audio feedback (the sound of the robot) it was very small and could be 

unnoticed. I could tell it gets to point B from A faster with less traffic infront of it but that may 
not be the case in real life� The movements of the robot caused chaos with the pedestrians 
actively trying to avoid it (sometimes people would assume theyll collide with it but it stops 
and theres a jam in the street)

22. Quickly accelerating, not at our pace of walking, so more unpredictable�
23. Standing still close to other people feels safe�
24. Parkour veranderen Miss geheugen van mens en robot
25. Maybe instead of stopping that it slows down but continues to move 
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26. Maybe also add a backwards feature
27. Proberen het geluid van de robot te verminderen want hij is wel aanwezig nu
28. Nope it is good
29. The sound the robot makes makes it easier tk predict its behaviour, which i think is a good 

thing
30. It seems stuck in between the chair. But it is nice robot because it let people go first
31. The robot is able to identify me but rather late. That means it will definitely identify me but at 

a point where it has already come in contact with me (accident)� 
32. Minder snel rijden
33. Valt nu niet echt op, zou misschien helpen als hij een andere kleur zou hebben (zodat je er 

niet op gaat staan bijvoorbeeld)
34. Robot makes small turns quite close to you�
35. When you walk behind the robot I would expect it accelerates forward to make space for 

your walk
36. I dont really understand the purpose of the robot� From the orher people I know for instance 

that they are walking from one point to another� The robot is randomly driving around it 
seems�

37. The robot is going too fast and feels like it is intruding in my personal space� I would suggest 
a more evasive and patient behaviour, and it would be best for it to follow people briefly in 
their tracks� 

38. Robots also appears to stop when someone is behind it. Would be better/more fluent if the 
robot would continue in this case� Sometimes long time at rest without doing anything

39. Hard to fill in the answers because the robot was stuck sometimes
40. Last question in the survey kind of confusing, the things after the ‘note’ seem to contradict 

and make me confused as to what answer to give 
41. Sometimes the distance the robot took, especially when going towards each other was within 

a person’s personal zone / made me feel like avoiding the robot at that moment
42. Misschien parkoer veranderen
43. The last 3 runs, the robot was a bit confused and disturbed my pathway of walking� Also, it 

would be nice if it could indicate when it will drive and how fast in a visual or sound way� 
44. The noise is very present and not very comforting�
45. Since there are no indications on the robot in which direction it goes (Like lights on cars)it is 

hard to define my own route. 
46. The behaviour was not really predictable, therefore maybe something like lights could help 

for example or something you can trust. There was a lot of fluctuations in the runs 
47. Its hard to know were the robot is when you look ahead when you walk maybe a flag like on 

bikes of kids would help but maybe it is needed to be small, i dont know� But i would be more 
comfortable with walking besides it if i have better understamding of where it is

48. I did not really meet the robot at this time� 
49. Dmv licht signalen aangeven wat de robot gaat doen
50. Deze ronde was chaotisch, hij blijft vaak hangen bij een muur
51. Maybe try to see if you can twist right and left when robot stands still for a wall
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The floorplan for the user test and photos of the actual user test arena as built.
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