
Maximal Flexibility and Optimal
Decoupling in Task Scheduling

Problems

Master’s thesis

Leon Endhoven

Maximal Flexibility and Optimal
Decoupling in Task Scheduling

Problems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

by

Leon Endhoven
born in Poeldijk, the Netherlands

Algorithmics Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2012 Leon Endhoven.

Maximal Flexibility and Optimal
Decoupling in Task Scheduling

Problems

Author: Leon Endhoven
Student id: 1275917
Email: leon.end@gmail.com

Abstract

This thesis focuses on the properties of (multi-agent) task scheduling instances
represented as Simple Temporal Problems (STP). By defining a subclass STP≺ of STPs
that contain these task scheduling instances, existing algorithms for arbitrary STPs
can be improved if applied to task scheduling STPs, allowing arbitrary schedules and
temporal decouplings to be created more efficiently.

With the introduction of a new flexibility metric in this thesis, a Linear Program-
ming (LP) formulation as well as an alternative Maximum Flexibility Algorithm is
given to create maximally flexible open schedules from which an optimal temporal
decoupling can be derived. This thesis also contains a proof that in task scheduling
instances, contrary to intuition, an optimal temporal decoupling does not reduce the
flexibility of the system.

In order to ensure fair decouplings or open schedules for either the tasks or the
agents, three types of egalitarian flexibility problem formulations are presented includ-
ing LP formulations to solve these problems.

Thesis Committee:

Chair: Prof. Dr. ir. K.I. Aardal, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. C. Witteveen, Faculty EEMCS, TU Delft
Committee Member: Dr. T.B. Klos, Faculty EEMCS, TU Delft

Contents

Contents 1

1 Introduction 3

2 Task Scheduling 9

3 Simple Temporal Problem 13
3.1 Complexity of calculating solutions for STPs 15
3.2 Task scheduling instances in STP≺ . 16

4 Temporal Decoupling 21

5 Optimal Temporal Decoupling 25
5.1 Flexibility . 25
5.2 Maximum flexibility . 32
5.3 Computing optimal decouplings with a new alternative algorithm 36
5.4 Maximum Flexibility Algorithm Complexity 50

6 Egalitarian flexibility 53
6.1 Egalitarian task flexibility . 54
6.2 Egalitarian agent flexibility . 57
6.3 Egalitarian average agent flexibility . 58

7 Conclusion and Discussion 61

Bibliography 63

1

Chapter 1

Introduction

We are confronted with it every day: tasks that have to be completed at a specific time or in
a predetermined order. Some tasks we perform on the fly, while other, possibly larger, tasks
require some more planning in advance. Such a task scheduling problem can be solved
by creating a schedule, which assigns a starting time and/or a completion time to a task.
Since scheduling problems occur in many domains, its applications are widely used and
are therefore an important area of research. In this thesis we will focus on task scheduling
problems which are a subclass of the class of scheduling problems and have some distinct
properties including a specific ordering of the tasks. Combined with the time-constraints
placed on each task, this allows us to assign starting times to each task and thereby create a
schedule solving the task scheduling problem.

Our task scheduling problems will in contrast to most scheduling problems feature mul-
tiple parties that are involved in the scheduling and execution of their specific set of tasks.
An important case where such a distributed scheduling problem is featured, is the case of
NedTrain, a Dutch company.

NedTrain Case. The Dutch company NedTrain has several locations in the Netherlands
where they have stationed there maintenance centers, which are used to perform the main-
tenance on the rolling stock units of the Dutch railway company NS. In every maintenance
center there is a fixed amount of time available for the maintenance of each rolling stock
unit, since there is an agreed upon arrival and departure time of the train scheduled for
maintenance. During this time, multiple tasks have to be completed, where some are in
a specific order, meaning that a task t has to be completed before task t ′ is allowed to
start. Each task has to be completed by a specialized workcrew, from which there are three
present.

Once a task is started, it takes a certain time to be completed, which is referred to as the
processing time of the task. Some tasks have additional constraints placed on them, which
can occur due to some resource limitations. These constraints involve a specific time after
which the task is allowed to be executed, which is referred to as a release date. Due to the
agreed upon departure time, all tasks have a fixed due date, which functions as a deadline
for each task. A workplan can be created that represents all release dates, due dates (or
deadline of the total plan), processing times and relations between the tasks, as is shown in

3

Introduction

30

15

10

20

20

20

15

15

10

10

10

5

5

r=0

d=100

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

r=40

r=50

Figure 1.1: Workplan, where each node represents a task i that is labeled with ti, each node
contains its processing time, may have a release date r or due date d attached and every edge
between two nodes denotes that the task at the beginning of the edge has to be completed
before the task at the end is allowed to start

Figure 1.1. With this workplan alone however, the NedTrain management has no working
schedule to present to its employees. Since its employees at the site where this workplan
is used are divided into three different specialized workcrews, as is shown in Figure 1.2,
they do not yet know when to start their tasks, as some tasks depend on preceeding tasks
that have to be executed by one of the other two workcrews. Starting tasks on the fly for
each workcrew is not an option, since this may lead to workcrews waiting for each other of
starting a task that is not allowed to start yet. Furthermore, it gives no guarantee that all
tasks are completed before the deadline of the project. NedTrain is however also interested
in another approach: Apart from giving the workcrews a single schedule to work with, they
are interested to see if the workcrews benefit from creating their own schedules and how
this affects the entire process. They however want to maintain a fair working environment,
which is why the management wants to ensure that created schedules do not favor a specific
workcrew.

From this NedTrain case, we can see that several problems are encountered by the NedTrain

4

Introduction

30

15

10

20

20

20

15

15

10

10

10

5

5

r=0

d=100

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

r=40

r=50

A1

A2

A3

Figure 1.2: Workplan with workcrews Ai

management. The main problem is that with only the two presented workplans in Figure
1.1 and Figure 1.2, they find themselves at a loss on how to create suitable schedules for
their employees. If they were able to create schedules based on these workplans, then they
would like to know if they can leave the scheduling to the workcrews, in order to give them
more freedom or adapt to any unforseen changes. They fear however that this freedom
could cause one or more workcrews to be favored over the others, which is why they are
interested in ‘fair’ schedules.

This leads to three main questions:

1. How can a schedule be created efficiently based on the two provided workplans?

2. Is it possible to allow the workcrews to create their own schedules and what is the
effect of this on the entire process?

3. Is it possible to allow the workcrews to create their own schedules, such that their
schedules are considered equally fair with respect to the freedom they have?

In order to answer the first question, we first have to know if it is possible to use the two
workplans to at least create a schedule. If we know this to be true, then we can investigate
on the reachable efficiency of creating such a schedule.

5

Introduction

The second question is even more complex than it looks, since the workplans already
show us that a lot of tasks are related to each other in some way. Such relations can make
it hard to let each workcrew create its own independent schedule, without conflicting with
the schedules created by the other two workcrews. We assume that all workcrews want to
have as much freedom in their own schedules as possible, and to determine this effect on
the entire process, we have to investigate how to create a schedule that contains as much
freedomn as possible, i.e., a schedule that is maximally adaptable to unforseen influences. If
we want to research the effect on the entire process even more, we also have to look into the
relation between the total freedom in the created schedules by the workcrews based on the
added restrictions, and the maximum freedom in a schedule created for all the workcrews
together. Is there a difference in total freedom between these two approaches and if so, is
there a bound on this difference?

The third question is based on the second question, with relation to the creation of
schedules by the workcrews, but in this case we have an added constraint that these sched-
ules have to contain an equal amount of freedom.

The result is that we can answer the three main questions by answering the more detailed
questions given above. This leads to the following six research questions:

1. How can we use a workplan in order to create a schedule?

2. How can we efficiently create an arbitrary schedule?

3. Which restrictions do we have to add in order to allow each workcrew to create their
own schedules without conflicting with the other schedules?

4. How can we determine a schedule that can maximally adapt to any unforseen influ-
ences?

5. Is there a trade-off between creating restrictions for independent schedules and creat-
ing maximally adaptable schedules?

6. How can we add independency restrictions to each workcrew such that their schedules
are just as adaptable as the schedules of the other workcrews?

As we can see, the first main question is answered by answering research question 1 and 2.
The second main question is anwered by research questions 3, 4 and 5, while the third main
question is answered by research questions 3 and 4, but mainly by 6.

Let us review the six research questions one at a time and see if an answer can be found
in the literature. The answer to the first research question can be found in [6] and [9].
They show that, based on the given processing times, release dates and due dates in the
workplans, that it is possible to create a Simple Temporal Problem with a corresponding
Simple Temporal Network to represent the scheduling problem. We will discuss this in
Chapters 2 and 3. From this representation, an arbitrary schedule can be derived in O(n3)
if there are n tasks present. This also somewhat answers the second research question, but
we will prove in Chapter 3 that an arbitrary schedule for this type of problem can be created
more efficiently, namely in O(n2) time, which we also showed in our paper [7].

6

Introduction

The third research question is answered in [8] and [9], where it is shown that the tem-
poral decoupling problem is equivalent to the problem stated in this research question. In
Chapter 4 we will go into the temporal decoupling problem in more detail and show the
approaches known in literature. We will also show that the currently known approaches
are not as efficient as is possible in the case of this problem, since the known approached
take O(n3) time, with n tasks present, but we will show a way to solve this problem in only
O(n2) time, as we also did in our paper [7].

The fourth question is one that in our opinion is not adequately answered in the lit-
erature. Attempts have been made to define metrics that can measure the ‘freedom’ in a
network, see [1], [2] and [8], but none of them give an exact and accurate amount of, how
we define, freedom in a schedule. We will therefore introduce our own flexibility metric,
that can measure exact and accurately the total freedom, or total flexibility as we will call it,
in a schedule. We will show and prove in Chapter 5 that there exist multiple procedures to
determine a schedule with maximal flexibility in polynomial time.

The fifth research question requires the answer to the third and fourth research questions
and therefore also its related literature sources. However, we already stated that the answer
to the fourth question cannot yet be found to our satisfaction in the literature, which is
why we will evaluate this problem in Chapter 5. We will show there that, contrary to what
intuition may say, the mentioned restrictions can be added to the constraints of the problem
without limiting the total flexibility in a maximally flexible or adaptable schedule.

The last research question has to the best of our knowledge not yet been answered in the
literature in relation to our current type of problem, which is why we will explain in detail
three different problem formulations, all based on a different interpretation of ‘fairness’,
that can be derived from it in Chapter 6. For all these problem formulations we will present
solution methods in order to create the necessary restrictions to create fair schedules for the
workcrews.

7

Chapter 2

Task Scheduling

While some people just use a rough outline of a schedule for the coming day, others plan
their day almost to the minute. This first group probably prefers a more loose scheduling,
which allows tasks to start or finish a bit later than anticipated. Both groups have something
in common however, and that is that some tasks have to be executed in a specific order.

Apart from the specific ordering, tasks can also have a specific time at which they have
to be completed. If we look at the NedTrain case presented in the introduction, we can
see that the final task, labeled with the number 13 has to be completed within 100 time-
units from the start of the first task, which is the due date of this task and also of the entire
schedule. We can see in Figure 1.1 that this task has multiple predecessors, i.e., tasks that
have to be completed before this task is allowed to start. Vice versa, we can denote task
13 to be the successor of the tasks preceeding this task, meaning that all preceeding tasks
have to be completed before their successor is allowed to start. Apart from these precedence
relations, we can also see that task 11 and 12 have a specified minimum starting time, which
is the corresponding release date of these tasks.

What we see from this case is that tasks can have their own constraints on allowed
starting times and completion times and can also influence each other. The NedTrain case is
a specific type of a task scheduling problem, where each task t has to be assigned a specific
starting time or time-interval.

Definition 1. A multi-agent task scheduling problem S = (T,A ,r,d, p,≺) consists of:

• a set of n tasks T = {t1, t2, . . . , tn}

• a set of k controlling agents A = {A1,A2, . . . ,Ak}, where each agent Ai is assigned a
disjoint set Ti ⊆ T , such that

⋃k
i=1 Ti = T and ∀i, j with i 6= j it holds that Ti∩Tj = /0

• a set of n release dates ri, denoting the earliest allowed starting time for a task ti ∈ T

• a set of n due dates di, denoting the latest allowed completion time for a task ti ∈ T

• a set of n processing times pi, denoting the required time between starting and com-
pleting a task ti ∈ T

9

Task Scheduling

• a set of precedence relations ≺ between two tasks ti, t j ∈ T , indicating that if ti ≺ t j

then ti has to be completed before t j is allowed to start, inducing a partial ordering
on T .

Remark. Throughout this thesis we will not always specify the set of agents A or their
corresponding disjoint tasksets {Ti}k

i=1, but only specify them if they are of importance to
the problem that is currently treated, since some task scheduling problems do not have
multiple agents involved.

In Definition 1 we formalized a number of new notions, which included the set of agents A .
An agent Ai can be a person or a group of people that is tasked with either the scheduling of
the tasks Ti they control or also the execution of this set of tasks. It is important to note that
a task t can only be controlled by exactly one agent, i.e., all sets Ti,Tj are disjoint, because
if multiple agents would be in control of this task, it could result in a conflict of preferences,
where one agent wants to schedule it early and another agent wants to schedule it at a later
time.

Every task ti ∈ T receives a non-negative release date ri, even if it is not specified, in
which case ri = 0, i.e., the start of the time-horizon. Apart from a release date, a due date
di can be assigned to a task ti ∈ T . In case a due date di is absent for a certain task ti ∈ T ,
we take di equal to the due date of the schedule. It is important to note that a due date di

is always considered to be strict, indicating that a task ti has to be completed before its due
date. Furthermore, a processing time pi is specified for each task, and we allow an agent Al
to execute multiple tasks ti, t j ∈ Tl in parallel.

The set of precedence relations≺ contains the transitive precedence relations, indicating
that if we have ti ≺ t j and also t j ≺ tk, then also ti ≺ tk. Note that these precedence relations
are all strict, which means that if ti ≺ t j, t j is not allowed to start earlier than ti is completed.

Example 1. In the NedTrain case, maintenance for a rolling stock unit has to be performed
by three different workcrews, where each crew has its own set of tasks to complete. Each
workcrew is specialized in a certain type of maintenance, which gives them a specific set
of tasks that can only be completed by them. If we revisit Figure 1.2, we see that each
workcrew is represented by an agent Ai, resulting in T1 = {t2, t5, t6, t7}, T2 = {t1, t3, t8, t11}
and T3 = {t4, t9, t10, t12, t13}.

The schedule starts with release date r = 0, which basically means that the first task t1
has r1 = 0. All other tasks without a specified release date will get ri = 0, but two other
release dates are specified, namely r11 = 40 and r12 = 50. With respect to the due dates, we
only have a final due date for the entire schedule, meaning that the last task t13 has a due
date of d13 = 100. All other tasks without a specified due date will also receive di = 100.

Definition 2. We say that ti directly precedes t j, which is denoted by ti� t j, if ti ≺ t j, but
there exists no tk ∈ T such that ti ≺ tk and tk ≺ t j. We denote the set of predecessors of ti
by pre(ti) = {t j | t j ≺ ti}, while the set of direct predecessors of ti is denoted by pre�(ti) =
{t j | t j� ti}. The set of successors of ti ∈ T is denoted by suc(ti) = {t j | ti ≺ t j} and the set
of direct successors is denoted by the set suc�(ti) = {t j | ti� t j}.

As we can see, the�-relation is stronger than the ≺-relation, since if ti� t j, then certainly
ti ≺ t j, but if ti ≺ t j, then ti� t j does not have to hold. From the above definition we can see

10

Task Scheduling

that for all ti ∈ T we have pre�(ti)⊆ pre(ti) and suc�(ti)⊆ suc(ti), due to the�-relation
being stronger than the ≺-relation.

Example 2. Apart from the assignment of the tasks over the three workcrews, there is
also a relation between a number of tasks. The combining of the different modules in the
rolling stock unit can only be done once all the other maintenance has been completed, just
as painting can only be done once certain damage has been repaired. These precedence
relations are taken into account in the workplan in Figure 1.2. We can see that for example
t2≺ t5 and t2≺ t6, i.e., t2 has to be completed before t5 and t6 are allowed to start. There can
also be inter-agent precedence relations, we see in the same figure for example that t1 ≺ t2,
which means that agent A1 has to wait with task t2 for A2 to finish t1.

Definition 3. Given a multi-agent task scheduling problem S = (T,A ,r,d, p,≺), we define
a solution or schedule σi for agent Ai in S to be an assignment σi : Ti→R which assigns to
every t j ∈ Ti a starting time, such that all constraints are satisfied, that is ∀t j ∈ Ti we have
σi(t j)≥ r j, σi(t j)+ p j ≤ d j and ∀t j, tk ∈ Ti it holds that if t j ≺ tk then σi(t j)+ p j ≤ σi(tk).

Furthermore, we define a joint schedule σ=
⋃k

i=1 σi for S to be an assignment σ : T→R
if every σi is a solution for Ai and for all ti, t j ∈ T with ti ≺ t j we have σ(ti)+ pi ≤ σ(t j).

Remark. Note that at this point we will only allow single starting times to be assigned
to tasks. Later in this thesis we will also consider open schedules, which allow starting
time-intervals to be assigned to tasks.

If agents are of lower importance or there is only one agent present in the task schedul-
ing problem, we will refer to a joint solution σ as a solution without specifying if it is a
combination of multiple solutions σi.

The precedence relation constraints do not have to be stated for all ti ≺ t j, because we can
reduce this number of constraints by only stating them for all ti� t j. The transitive property
of this�-relation translates it to the ≺-relation, which can significantly reduce the number
of constraints.

Example 3. NedTrain is interested in a schedule for which all workcrews can perform their
tasks within the time-limit. Since we have seen that the precedence constraints have to
be satisfied, we will state some of them, again based on Figure 1.2. We see that t1 ≺ t2,
which means that we have σ(t1) + p1 ≤ σ(t2). Since we also have t2 ≺ t5, we can also
state σ(t2) + p2 ≤ σ(t5). It is also possible to now state the relation t1 ≺ t5, but due to
the transitive relation, this constraint can be derived from the previous two precedence
constraints and will always be satisfied if these other two constraints are satisfied.

With respect to the release dates, this would result in σ(ti)≥ 0 for all i 6= 11 and i 6= 12,
since we have σ(t11)≥ 40 and σ(t12)≥ 50. The due dates are for all tasks the same, since
there is only a final due date specified for the entire schedule: di = 100, i.e. σ(ti)+ pi ≤ 100
for all ti ∈ T .

We have seen so far that from Figure 1.2 of the NedTrain case, we can extract a lot of use-
ful information, but the graphical representation still lacks a convenient way to represent
release dates, due dates and time-relations between tasks. Apart from the graphical repre-
sentation, it can also be convenient if we can represent the variables and their solutions in a

11

Task Scheduling

more simple manner. In the next chapter we will use the definitions of our task scheduling
problem to search for mechanisms that allow us to (efficiently) create solutions.

12

Chapter 3

Simple Temporal Problem

With the definition of a task scheduling problem given in the previous chapter, we can now
expand on this and enhance our representation of the problem. As was shown in [6] and [9],
we can represent our task scheduling problem as a Simple Temporal Problem (STP), which
gives us a tool to find suitable schedules. For a task scheduling problem, we represented a
schedule σ by assigning a starting time to every task t ∈ T , which we represented by σ(t). It
is also possible to represent each task t by a corresponding time-point variable which is also
indicated by t. A schedule would then be an assignment of starting times to these time-point
variables which satisfies the constraints that can now be represented even more simple.

Definition 4. A Simple Temporal Problem S is a pair (T,C), where T = {t0, t1, . . . , tn} is
a set of time-point variables and C is a finite set of binary linear constraints on T , each
constraint having the form t j− ti ≤ δ, for some constant δ. The time-point t0 represents an
arbitrary, fixed, reference point on the timeline. A solution σ to an STP S is an assignment
σ of values (time-points) to the time-point variables in T , such that all constraints in C are
satisfied.

We can see that one of the differences with the task scheduling problem is that we introduce
a time-point variable t0, which can also be represented by the symbol z and is usually set
equal to 0. Since each constraint is now of the form t j − ti ≤ δ, we have to adapt some
of the task scheduling constraints to fit this new framework. With respect to release dates
and due dates, the constraints for a task ti transform to: z− ti ≤ −ri and ti− z ≤ di− pi.
Although this may at first sight seem more complicated, this fixed type of constraints gives
us a solid structure which allows for an easier way to solve the problem. With respect to the
precedence relations, we can add for every set of tasks ti, t j ∈ T with ti ≺ t j a constraint ti−
t j ≤−pi, but that would give us a large number of constraints. It would be less complicated
to include only the constraints where ti � t j. In all other situations the constraints can be
considered unbounded, i.e., ti− t j ≤ ∞, since there is either no relation between the two
tasks or a combination of other constraints already imply a constraint between these tasks
due to transitivity.

With the new symbolical representation, we can also introduce a new graphical repre-
sentation, which is in case of an STP a directed labeled graph. More formally, we represent
an STP S = (T,C) by a directed labeled graph Gs = (T,E, l), where the labels l are attached

13

Simple Temporal Problem

to the edges (ti, t j) in such a way that l(ti, t j) = [a,b], where a ≤ t j− ti ≤ b are constraints
in C, i.e., t j− ti ≤ b and ti− t j ≤−a are both in C. This graph is called a Simple Temporal
Network (STN), which in our case will always be a transitive graph, since we will only rep-
resent the relevant constraints by excluding directed edges (ti, t j) if ti 6� t j for all ti, t j ∈ T
with i 6= j and ti, t j 6= t0.

Example 4. We have seen in Figure 1.2 that there exists a workplan with corresponding
crews that can represent our task scheduling problem. We will however create an STN rep-
resenting the problem in our newly described representation, with the result in Figure 3.1.
As we can see in Figure 3.1, we have replaced the tasks by circles with their corresponding

t
0

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
1

[50,∞][40,∞][0,90]

[0,∞]

[20,∞]
[20,∞][20,∞]

[10,∞] [10,∞]

[5,∞]

[5,∞]

[5,∞]

[15,∞]

[10,∞]

[15,∞]

[20,∞]

[20,∞]

[20,∞]

[10,∞]

[15,∞][30,∞]

Figure 3.1: STN representing the NedTrain case

task number. The edges have been labeled with an interval [a,b], which is derived from
the constraints a ≤ t j− ti ≤ b if ti� t j. We however also have to include the two specific
noted release dates of tasks t11 and t12, which is represented respectively by the constraints
t0− t11 ≤−40 and t0− t12 ≤−50, where 40 and 50 form the a in both intervals. The upper
bound b is ∞, since there is no due date specified. Both constraints are added as an arc
(t0, t11) and (t0, t12). The due date of the complete schedule, which is equal to 100, is in
fact only directly applicable to t13, which results in the constraint t13− t0 ≤ d13− p13, i.e.,

14

Simple Temporal Problem 3.1 Complexity of calculating solutions for STPs

t13− t0 ≤ 90. Just like the release dates, this adds a new edge from t0 to t13 representing in
this case the interval [0,90].

This way of representing a task scheduling problem as an STP or STN has also as an advan-
tage that we know that there are methods to achieve an abritrary schedule. If we consider
an arbitrary STP, i.e., an STP that is not necessarily a task scheduling instance, it is possible
to find an abritrary schedule in O(n3) time , see [5] and [6], if n is the number of time-point
variables present.

3.1 Complexity of calculating solutions for STPs

So far we have only shown a task scheduling instance that was converted to an STP and
STN, but the class of STPs is much larger than just task scheduling instances. We will
discuss a general method to acquire an arbitrary schedule in O(n3) time, as shown by [5]
and [6], before we again focus on task scheduling instances due to the special properties
these instances hold which allows us to compute an arbitrary schedule in only O(m+ n)
time.

Acquiring an arbitrary schedule in O(n3) is based on the following idea: Suppose we
have an arbitrary STP S = (T,C) that is represented by an STN. Based on the constraint
set C, we can construct a distance matrix D of size (n+1)× (n+1), in which every entry
D(i, j) holds the ‘temporal distance’ between ti and t j, i.e., the value in the constraint t j−ti≤
D(i, j). Based on these constraints, we can find the (implicit) constraints in the first row and
column of D, which contains all constraints involving t0.

The first row in D, which contains the n+ 1 entries D(t0, ti), where i = 0,1, . . . ,n, rep-
resent the earliest starting times of the tasks t1 up to tn. The earliest starting time of a task
ti, denoted by est(ti), represents the first point in time at which this task can be scheduled,
such that it does not violate any constraints. The entries in the first row are implied by
the constraints in C and can also be found in the corresponding STN through the use of a
longest path calculation from t0 to ti.

The first column in D, also containing n+1 entries D(ti, t0), with i = 0,1, . . . ,n, repre-
sents in this case the opposite of the est() values, namely the latest starting times, which
we denote by lst(), and represents the latest point in time at which a task is allowed to be
scheduled, such that it does not violate any constraints and again allows for the creation of
a feasible schedule. Like in the est() case, the entries in this row are also implied by other
constraints in C.

An arbitrary schedule can then be created in O(n3) time by fixing a certain ti ∈ T at a
certain time σ(ti), such that est(ti)≤ σ(ti)≤ lst(ti), then recalculate D based on the chosen
σ(ti). Then the next task t j ∈ T can be fixed, again with est(t j) ≤ σ(t j) ≤ lst(t j) based on
the updated matrix D. Since an update of D requires O(n2) time and there are n iterations,
an arbitrary schedule is found in O(n3).

This however gives rise to a question: Can we do better in case of a task scheduling
instance?

15

3.2 Task scheduling instances in STP≺ Simple Temporal Problem

3.2 Task scheduling instances in STP≺
Before we answer the question from the previous section, we first have to state some im-
portant properties of a task scheduling STP. These properties define the special subclass of
task scheduling STPs when compared to the class of STPs.

Definition 5. The class of task scheduling STPs is denoted by STP≺ and contains all task
scheduling problems represented as an STP. A task scheduling instance S = (T,C), with
S ∈ STP≺ has as properties that it contains a partial ordering of the tasks in T , rendering
its corresponding STN acyclic. Furthermore it does not contain constraints of the form
t j− ti ≤ b with b 6= ∞ if i 6= 0 and ti− t j ≤−a with a≥ pi if i 6= 0. Therefore, STP≺ ⊂ STP.

The partial ordering that is present in the taskset T of an S ∈ STP≺ is induced by the
precedence relations that are present in C. A schedule σ can only be constructed if the
constraints match certain criteria, which include that the precedence constraints do not give
rise to a cycle in the corresponding STN, which works both ways, resulting also in the
statement that if there is a partial ordering present in T , then the corresponding STN is
acyclic.

Representing a task scheduling problem S as a task scheduling STP S = (T,C) can be
done by comparing Definition 1 with Definition 5 and as the reader can also verify, we see
that they both contain a set T containing n tasks, where T can be divided into k disjoint1

sets Ti, one for each agent Ai such that
⋃k

i=1 Ti = T . The remaining properties of tasks can
be represented in the constraint set C, where we add z− ti ≤ −ri to satisfy the release date
ri of task ti, and ti− z ≤ di− pi to satisfy the due date di of ti by also using its processing
time pi. The final precedence relation property between two tasks ti, t j ∈ T can be satisfied
by adding the constraint ti− t j ≤−pi to C if ti ≺ t j.

In an arbitrary STP S = (T,C) however, precedence relations do not have to be present,
which means that it is possible that t j− ti < pi for any ti, t j ∈ T , indicating that task t j starts
before ti has finished.

Definition 6. A solution σ for an STP S = (T,C) is called feasible if it satisfies all con-
straints in C. An STP S = (T,C) is called consistent if at least one feasible solution σ

exists.

Remark. From here we will assume that all STPs we refer to are consistent and if we refer
to a schedule σ we will assume that it is feasible, unless stated otherwise.

The precedence relation property of task scheduling STPs can be exploited in multiple ways
in order to reduce the complexity of calculations.

Due to the resemblance in notation and properties, we can apply and use the properties
of Definition 2 also in the case of task scheduling STPs. Using this notation and the proper-
ties of task scheduling STPs, we can create a less complex way to compute the first row and
column of the temporal distance matrix D, by no longer using the remaining n2 entries in
the matrix. Due to the precedence relations, a task t j ∈ T can only start once all of its direct
predecessors ti� t j have been completed.

1For simplicity reasons, we neglect here the presence of t0 in the sets Ti in an STP, since t0 does not
represent an actual task.

16

Simple Temporal Problem 3.2 Task scheduling instances in STP≺

Observation 1. In a task scheduling STP S = (T,C), if for a ti ∈ T a feasible solution is
fixed at σ(ti) = s, then the following inequalities hold:

1. for all t j ∈ suc(ti), σ(t j)≥ s+ p j,

2. for all t j ∈ pre(ti), σ(t j)≤ s− p j.

This observation follows from the fact that in a feasible solution σ, every assignment σ(ti)
has to satisfy all related constraints, which include the precedence relations, release dates
and due dates, i.e., σ(t j) ≥ σ(ti)+ p j if ti� t j, σ(t j)+ p j ≤ σ(ti) if t j � ti, σ(ti) ≥ ri and
σ(ti)+ pi ≤ di. From this we can see that the earliest starting time of a task ti, est(ti), is
only depending on its release date and its direct predecessors in a task scheduling STP. This
gives us the following relation:

est(ti) = max({est(t j)+ p j | t j ∈ pre�(ti)}∪ ri) (3.1)

Since the release dates are known for all ti ∈ T , the only requirement for computing est(ti)
is knowing every est(t j) for all t j ∈ pre�(ti). Based on the partial ordering of the set T , we
can compute every est() value in that order, which requires us to traverse every arc and node
in the corresponding STN exactly once, resulting in a O(m+n) computation complexity if
m represents the number of arcs and n the number of tasks/nodes.

Example 5. Since the NedTrain case is a classical example of a task scheduling prob-
lem, which we have already represented as an STP and STN in Figure 3.1, we can use
our given est() calculation to determine the earliest starting time for all tasks. Since
t0 can be considered to be a dummy task without a processing time, the earliest start-
ing time of t1 is equal to its release date, i.e., est(t1) = 0. From here, we can move on
to t2, which only depends on est(t1) (in the abscence of an explicit release date), result-
ing in est(t2) = est(t1)+ p1 = 0+ 20 = 20. We can continue these calculations and see
that est(t3) = est(t4) = 20, est(t5) = est(t6) = 40, est(t7) = 50, est(t8) = 30, est(t9) = 35,
est(t10) = 30, est(t11) = 40 due to its explicit release date being greater than the effect
of its direct predecessors, est(t12) = 50 where again the release date is responsible, and
est(t13) = 70.

From this example we can derive the answer to the first research question: How can we
use a workplan in order to create a schedule? By using the workplan to construct an STP
S = (T,C) such that S ∈ STP≺ and matches Definitions 4 and 5 and subsequently creating
the corresponding STN, we have converted a task scheduling problem to a task scheduling
Simple Temporal Problem with corresponding STN. By then using the calculated est() val-
ues as fixed starting times for each task ti ∈ T , we get a schedule σ where for each task
ti ∈ T we have σ(ti) = est(ti).

We can also use the second inequality of Observation 1 to likewise create a more effi-
cient calculation method for the latest starting time of a task ti ∈ T . This second inequality
shows us that for a latest starting time, we only have to consider the precedence constraints
and a corresponding due date, if present. This results in the following relation:

lst(ti) = min({lst(t j)− pi | t j ∈ suc�(ti)}∪di− pi) (3.2)

17

3.2 Task scheduling instances in STP≺ Simple Temporal Problem

Again, the partial ordering can be used to compute all lst() values effectively, although in
this case we will apply them in a reverse order, since the latest starting times of all direct
successors of a task ti ∈ T have to be known before we can start to determine lst(ti). In the
corresponding STN this can be seen as a ‘top-to-bottom’ calculation of the lst() values, in
which we again have to traverse each arc and node exactly once. This results, like in the
est()-case, in a O(m+n) computation complexity.

Example 6. As in example 5 we can also determine the latest starting times for all tasks
t1, t2, . . . , t13. We can begin with t13, since this task has no successors and is therefore only
bounded by its due date: lst(t13) = 100−10 = 90. We can work our way down the STN by
calculating lst(t12) = 90−10 = 80 and lst(t11) = 90−20 = 70. The remaining results are
shown in the following table, as can be checked by the reader:

task est lst
1 0 20
2 20 40
3 20 55
4 20 55
5 40 60
6 40 65
7 50 75
8 30 70
9 35 75
10 30 65
11 40 70
12 50 80
13 70 90

As we can see from this table, for every task the difference between the earliest and latest
starting time ranges from 20 to 40 time-units.

In Example 6 we have seen that in that case every task has a certain time-interval created
by the difference between the earliest and latest starting time of that task. Since est(ti)
represents the earliest time ti is allowed to start and lst(ti) is the latest time ti is allowed to
start in order to not break any constraints, we can derive the following:

Proposition 1. Let the STP S = (T,C) be a task scheduling instance. Then the following
holds:

1. for every feasible schedule σ of S and for every ti ∈ T : est(ti)≤ σ(ti)≤ lst(ti),

2. an arbitrary schedule σ of S can be computed in O(m+n) time.

Proof. Suppose that we have a schedule σ where for some ti ∈ T : σ(ti) < est(ti). Then
by Equation 3.1 either σ(ti) < ri, which violates its release date, or σ(ti) < est(t j)+ p j for
some t j ∈ pre�(ti) and thereby violating the precedence constraints. By Equation 3.2, the

18

Simple Temporal Problem 3.2 Task scheduling instances in STP≺

same holds if for some ti ∈ T : σ(ti)> lst(ti), since then either σ(ti)> di− pi, which violates
its due date, or σ(ti) > lst(t j)− pi which violates the precedence constraint. From this we
conclude that the first statement must hold in every feasible schedule.

We have already found that the est() and lst() calculations for all tasks ti ∈ T can be
done in O(m+ n) time. Based on the equations 3.1 and 3.2, we can create an arbitrary
schedule by a ‘bottom-to-top’ procedure. The idea behind the ‘bottom-to-top’ procedures
is to first calculate for all tasks the lst() value. We then start in t0 which is fixed at 0 and,
by following the partial ordering in T , calculate for the next t j the value est(t j) based on
the previously assigned σ(ti) values to ti, where ti ∈ pre�(t j). We fix t j at some σ(t j)
where est(t j) ≤ σ(t j) ≤ lst(t j) and continue to the next tk, where k = j + 1, in the partial
ordering of T . Since for every fixed σ(t j) it holds that est(t j)≤ σ(t j)≤ lst(t j) and σ(t j)≥
σ(ti)+ pi with ti ∈ pre�(t j), this resulting schedule σ is feasible. Furthermore, every arc
and node is traversed exactly two times (once for the lst() calculations and once for the est()
calculations), this leads to an arbitrary schedule in O(m+n) time.

Remark. In a complete graph the relation between the number of arcs m and the nodes n is
that m < n2. Since the STN of a task scheduling STP contains at most one edge between two
task ti and t j, the same relation m < n2 will also hold in a task scheduling STN. This shows
us that an arbitrary schedule can be computed in O(m+ n) = O(n2) time. If we compare
that to the O(n3) time that is required for an arbitrary STP, we see that by considering
a special subclass STP≺ of STPs we can significantly improve the computation time of
arbitrary schedules. Furthermore, it shows us that we can rebuild the distance matrix D
also in O(n2) time by using our est() and lst() computations, instead of the O(n3) that is
required for arbitrary STPs, which we will prove with help of the following Proposition.

Proposition 2. Let S = (T,C) be a task scheduling instance. Then the temporal distance
matrix D can be computed using a partial ordering on T in O(n2) time.

Proof. As we already stated in the previous remark, we can rebuild the matrix D by using
our previously defined est() and lst() calculations from Equations 3.1 and 3.2. If ti � t j,
then the entries D(ti, t j) and D(t j, ti) are found directly by calculating respectively all est()
and lst() values. However, all values D(ti, t j) where ti ≺ t j can also be derived from the
est() calculations, since if ti ≺ t j, but not ti � t j, then D(ti, t j) = maxtk∈pre�(t j){D(ti, tk)+
D(tk, t j)}. The value D(t j, ti) can be derived once the lst() calculations are in progress in a
similar way as the D(ti, t j) calculations. Since all nodes and arcs only have to be examined
exactly twice, this can be done in O(n2) time.

We have seen in this chapter the answer to the second research question: How can we
efficiently create an arbitrary schedule? In Proposition 1 we have shown how to create a
schedule for a task scheduling STP S = (T,C) in O(m+n) time, based on the est() and lst()
computations.

However, so far we have not considered the workcrews that are present in our NedTrain
case and apart from that we have only assigned an arbitrary single time-point to each task
ti ∈ T . The workcrews may prefer some autonomy over the creation of their schedules, but
with a single person assigning time-points to tasks, they have none. In the next chapter we
will show how to add restrictions in order to give the workcrews more autonomy.

19

Chapter 4

Temporal Decoupling

Autonomy is something that many people prefer to have in most situations, since it gives
them a certain control over the current or coming situation. Problems may arise however if
multiple persons are involved in a single situation and all demand a certain level of auton-
omy. In a task scheduling instance, we have seen that there are precedence relations between
certain tasks, specifying a relation between both the tasks and the controlling agents. If we
give all agents full control over their tasks in such a situation, scheduling conflicts are almost
bound to happen.

Example 7. Let us review Example 6: we see that in the table of est() and lst() values, each
task has been assigned one of these values, based on the constraints. In Figure 1.2 we have
seen that agent A1 controls t2, t5, t6 and t7, A2 controls t1, t3, t8 and t11 and A3 is in control of
t4, t9, t10, t12 and t13. If A1 chooses to schedule his task t2 at σ(t2) = 25 and A2 schedules t1
at σ(t1) = 10, we can see that both chosen times fit the constraints such that 0≤ σ(t1)≤ 20
and 20≤ σ(t2)≤ 40, but there is one constraint that is not satisfied, namely the precedence
constraint t1 +20≤ t2.

The problem shown in Example 7 is a serious one, and shows us that we cannot give full
control to the agents over their tasks without placing some limitations on their possibilities.
A possibile way to overcome this situation is to somehow limit the available time-points for
A1 with respect to t2 and also for A2 with respect to t1.

Example 8. With the problem introduced in Example 7 we will add two new constraints to
C, in order to prevent a violation of the precedence relation between t1 and t2. By adding
t1 ≤ 10 and t2 ≥ 30, we can see that the precedence constraint t1 + 20 ≤ t2 will always be
satisfied for any t1 or t2 that also satisfy the two new constraints.

We solved the problem presented in Example 7 by adding a release date for t2 and a due
date for t1 in Example 8. By doing this, we have removed the direct relation between t1 and
t2, and have given A1 and A2 two sets of tasks that are now independent of each other. We
refer to this as a temporal decoupling, which was among others described in [8] and [11].

Definition 7. Let S = (T,C) be a task scheduling STP where T is a set {t0, t1, ..., tn} of time-
point variables and C is a finite set of binary constraints on those variables. Suppose that

21

Temporal Decoupling

T = {Ti}k
i=1 is partitioned in k subsets Ti. Then the temporal decoupling problem is to find

k subproblems Si = (Ti ∪{z},C′i), where C′i contains constraints relevant to Ti ∪{z}, such
that, whenever σ1, . . . ,σk are solutions of the individual STPs S1, . . . ,Sk, respectively, their
merge σ =

⋃k
i=1 σi is also a solution of the original STP S.

What is important to note in this definition is that in each subproblem Si controlled by agent
Ai, the corresponding constraint set Ci contains only constraints that contain tasks from Ti,
i.e., there will be no constraint present in Ci such that t j− tk ≤ δ with either t j, tk ∈ Tl with
i 6= l. We have seen in Example 8 how to begin to derive two independent subproblems S1
and S2 from a larger problem S, but the question that rises then is how many constraints do
we have to add in order to create independent subproblems?

Example 9. It is for example possible to also add two constraints between the tasks t2 and
t5 in the NedTrain case, but both tasks are already controlled by agent A1 and therefore
have to satisfy the precedence constraint t5− t2 ≤−p2. Adding two new constraints for this
relation would only over-constrain the problem without creating some independency for A1
from the other agents A2 and A3.

In order to create a partitioning of the original problem S into independent subproblems
S1, . . . ,Sk we only have to pay attention to the so-called inter-agent constraints, i.e., the
constraints concerning ti, t j ∈ T , such that ti� t j with ti ∈ Tk and t j ∈ Tl , where k 6= l. Based
on this observation, we will state a decoupling procedure:

Decoupling Procedure. Given a task scheduling STP S = (T,C), in order to create a tem-
poral decoupling, we have to:

1. choose a value δi j for every pair of tasks ti, t j belonging to different agents, with
ti� t j, and lst(ti)+ pi > est(t j), such that est(ti)+ pi ≤ δi j ≤ lst(ti)+ pi and est(t j)≤
δi j ≤ lst(t j).

2. add a constraint ti− z≤ δi j− pi to the set of constraints in Sl = (Tl,Cl) of agent Al if
ti ∈ Tl and add the constraint z− t j ≤−δi j to the set of constraints in Sm = (Tm,Cm)
of agent Am if t j ∈ Tm. Here, Cl and Cm denote the restriction of the total set of
constraints C to the set of constraints over Tl ∪{z} and Tm∪{z}, respectively.

The set {Sl}k
l=1, with Sl = (Tl,Cl) then forms a decoupling of S.

Proposition 3. The stated Decoupling Procedure gives a feasible temporal decoupling of a
task scheduling STP S = (T,C).

Proof. As Definition 7 states, the k subproblems Sl form a temporal decoupling of S if
σ1,σ2, . . . ,σk are feasible solutions of these k subproblems, respectively, and their merge
σ =

⋃k
l=1 σl is a feasible solution of the STP S.

The merge σ =
⋃k

l=1 σl can only be an infeasible schedule for S if one or more con-
straints in C are violated. Since all constraint sets Cl contain the relevant release and due
date constraints for Tl , all schedules σl will respect the release and due dates, i.e., a merge
of these schedules σ will also respect all release and due dates.

22

Temporal Decoupling

The remaining constraints are then the precedence constraints. Since they will be sat-
isfied for all ti, t j ∈ Tl in a feasible solution σl for all k subproblems Sl , the only remaining
precedence constraints are the inter-agent constraints. For any pair ti, t j ∈ T with ti � t j

such that ti ∈ Tl and t j ∈ Tm, with l 6= m and lst(ti)+ pi > est(t j), the Decoupling Procedure
chooses a value δi j such that est(ti)+ pi ≤ δi j ≤ lst(ti)+ pi and est(t j) ≤ δi j ≤ lst(t j) and
adds a constraint ti− z≤ δi j− pi to Cl and adds z− t j ≤−δi j to Cm. The result is then that
for any σl(ti) and σm(t j) it holds that σl(ti)+ pi ≤ δi j ≤ σm(t j), which shows that in the
merge σ this precedence relation is also satisfied.

From this we can conclude that for any feasible solutions σ1,σ2, . . . ,σk of the k subprob-
lems Sl , their merge σ =

⋃k
l=1 σl will always be a feasible solution of the STP S = (T,C),

since all constraints in C are satisfied.

Example 10. In the NedTrain case we can see (for example in Figure 1.2) that the inter-
agent constraints of A1 are between the following tasks: t1 and t2, t5 and t13, t7 and t13.
As we can see, both t5 and t7 are direct predecessors of t13, which means we only have
to add one constraint t13 ≥ δ to C2 of A2 in order to decouple S1. Adding two different
constraints would only leave one constraint redundant and possibly over-constraining the
problem. There are a lot of possibilities to decouple S1, one for example is: If we add1

t1 ≤ 10 to C2 and t2 ≥ 30 to C1, the inter-agent constraint between t1 and t2 can be removed.
By furthermore adding t5 ≤ 50 and t7 ≤ 65 to C1 and t13 ≥ 80 to C2 we have decoupled
S1 = (T1,C1) from the other agents.

Based on what we have seen before this example, we can create a temporal decoupling in
an efficient way. In an arbitrary STP S = (T,C) this would require the use of the com-
plete distance matrix D, which required O(n3) computation time (see [8]). The Decoupling
Procedure showed us that for a task scheduling STP this can be done more efficiently.

Proposition 4. Let S = (T,C) be a task scheduling STP where |T |= n and m is the number
of edges in the corresponding STN. Assume that each agent Ai has a disjoint subset of tasks
Ti. Then an arbitrary decoupling of S can be achieved in O(m+n) time.

Proof. In Proposition 3 we have shown that using the Decoupling Procedure we can con-
struct a feasible2 decoupling for a task scheduling STP S = (T,C) that satisfies Definition
7. Since this requires all the est() and lst() values to be known, these have to be calculated
first.

To construct a decoupling, we have to follow the partial ordering in T and update for
every task we encounter its est() value. By every task ti ∈ T we encounter by following the
partial ordering, we check if there exists a precedence relation ti� t j that matches 1) in the
Decoupling Procedure. If it exists, a value δi j is chosen that satisfies 1) and constraints are
added as described in 2). After this, the next task in the partial ordering is chosen and the
process repeats itself until there are no more tasks left in T .

1Note that for the sake of readability we have simplified the constraints here, but they can be easily con-
verted to constraints that match the standard STP formulation according to Definition 4.

2This means that the resulting problem is still consistent.

23

Temporal Decoupling

Since we start with all est() and lst() calculations and later we update in each step the
est() value, this takes a total of O(m+n) time. Since every edge is checked exactly once in
the decoupling steps, the total complexity of the algorithm remains O(m+n).

The Decoupling Procedure, Proposition 4 and its corresponding proof give the answer to
our third research question, Which restrictions do we have to add in order to allow each
workcrew to create their own schedules without conflicting with the other schedules?, since
it shows how to create a decoupling for any task scheduling STP. Every workcrew is repre-
sented by an agent and the added decoupling constraints for agent A1 for the NedTrain case
are shown in Example 10.

Proposition 4 and its related proof show us that we can establish an arbitrary decoupling
of a task scheduling STP S = (T,C) in only O(m+n) = O(n2) time, which is an improve-
ment over the O(n3) time required to create an arbitrary decoupling based on the temporal
distance matrix D when working with an arbitrary STP S.

However, an arbitrary decoupling may not be in the best interest of the agents involved,
since the chosen values δi j are chosen arbitrarily. Agents can have many preferences, for
example having a minimum makespan, meaning that the latest completion time of his tasks
is as small as possible, which can be achieved by choosing every δi j as small as possible.
The result however would be that every task is fixed at a single time-point, leaving no room
for any on the fly changes in the schedule at all. We can ask ourselves if that would result
in a workable situation, if every task has to start to the minute at a pre-determined point
in time. In the next chapter we will show how to create schedules that enable the agents
to have more freedom in choosing their starting times, by assigning not a single time-point
to a task, but by assigning a starting time-interval to a task. We will also investigate what
the result of this is with respect to the decoupling and if either the decoupling affects this
freedom or vice versa.

24

Chapter 5

Optimal Temporal Decoupling

In the previous chapter we have seen that we can create an arbitrary decoupling of a task
scheduling STP S = (T,C) in O(m+n) time. However, an abritrary decoupling also has its
disadvantages, since it may not live up to the preferences of the corresponding agents Ai.

Example 11. Let us revisit the NedTrain case and suppose that a decoupling has been
produced, such that δ5,13 = 90. The result would then be that est(t13) = 90 which equals
lst(t13) = 90. This means that exactly 90 minutes after the maintenance has started, task
t13 has to be started, and not a minute earlier or later, due to the precedence relations and
due date. The question then arises if this reflects a workable schedule and if it would not
be better if est(t13) was a bit smaller than 90. That would give the workcrew and agent A3
some room to correct any delay in the schedule caused by unforseen circumstances.

In Example 11 we can see that it may be preferable to not assign a single time-point as a
starting time to a certain task ti, but instead assign a starting time-interval, to accomodate any
unforseen delays or changes in the schedule. By assigning starting time-intervals to tasks,
we create flexibility in the schedule, and we refer to such schedules as open schedules.

We begin this chapter by giving a formal definition of flexibility and potential flexibility
and we will show to the best of our knowledge what research has been done by others on
this topic. We will present the relation between flexibility and open schedules after which
we will try to find open schedules that maximize flexibility. We will further investigate the
relation between open schedules and temporal decouplings and the effect a temporal decou-
pling has on the total flexibility that can be present in the schedule or decoupling. A Linear
Programming (LP) formulation will be presented that can determine an open schedule with
maximal flexibility and we will also present an alternative specialized algorithm that can
find an open schedule with maximal flexibility efficiently.

5.1 Flexibility

In Chapter 3 we have presented schedules σ : T →R for an STP S = (T,C), which assigned
a single time-point t to a task ti ∈ T , i.e., σ(ti) = t. If this is done for every task, we refer
to these schedules as fixed schedules, meaning that a controlling agent Ai of task ti is not

25

5.1 Flexibility Optimal Temporal Decoupling

allowed to choose his own starting time for this task ti, but is bound to use the fixed time-
point t. Since this removes any autonomy an agent Ai may have, a different approach may
be more preferable. We can ask ourselves for example how the schedule or ti is affected
should a task t j ≺ ti be delayed by a certain amount of time. We refer to this as the flexibility
of the STP, which allows the agents to have more freedom in the choice of their starting
times.

In order to formulate a suitable metric for our problem, we first investigate existing
metrics that are mentioned in the literature.

5.1.1 Existing flexibility metrics

What we are looking for in a flexibility metric for a task scheduling STP S = (T,C) is to get
a quantitative measure for the flexibility per task and the total flexibility in a schedule, in
such a way that if we assign a starting time to a certain task ti ∈ T , that for no other t j ∈ T
its measure of flexibility changes. In this chapter we will discuss several existing flexibility
metrics and determine if we can use them to our stated ends.

An important thesis has been written by Hunsberger [8] in which he defines many useful
properties and metrics related to STPs. He defined the relative flexibility of two tasks ti, t j ∈
T in an STP S = (T,C) by the temporal distance based on the temporal distance matrix D,
by:

f lexH(ti, t j) = D(ti, t j)+D(t j, ti) (5.1)

Since we are dealing with task scheduling STPs, and also try to determine decouplings, we
can simplify this to the relation between the time-points z and ti, i.e.,

f lexH(z, ti) = D(z, ti)+D(ti,z) (5.2)

Since the z will be a fixed time-point, we can translate this to

f lexH(ti) = D(z, ti)+D(ti,z) = lst(ti)− est(ti) (5.3)

This simplification is allowed, since in task scheduling STPs, we can relate all temporal
differences between ti and t j to the values est(ti), lst(ti), est(t j) and lst(t j) as we already
stated in Section 3.2.

We are however not only interested in the flexibility of a single task, but we would like
to determine the total flexibility of an STP S. Hunsberger did not explicitly mention how
to calculate the total flexibility in an STP S = (T,C), but he define a related formulation,
namely the rigidity of an STP. This rigidity of Hunsberger should denote the ‘inflexibility’
of the STP, which is denoted by a relative value and shows by which factor an STP can adapt
to changes. Before his definition of rigidity of an STP S, he also denoted relative rigidity of
a pair of tasks, resulting in:

Rig(ti, t j) =
1

1+D(ti, t j)+D(t j, ti)
(5.4)

26

Optimal Temporal Decoupling 5.1 Flexibility

which we again can translate to tasks related to the fixed time-point z since we are dealing
with a task scheduling STP:

Rig(z, ti) =
1

1+D(z, ti)+D(ti,z)
=

1
1+ lst(ti)− lst(ti)

(5.5)

Hunsberger then states that the (Root Mean-Square) rigidity of an STP S can be determined
by calculating:

Rig(S) =

√
2

N(N +1) ∑
i< j
|Rig(ti, t j)|2 =

√√√√ 2
N(N +1) ∑

i< j
| 1
1+ f lexH(ti, t j)

|
2

(5.6)

Corresponding from Equation 5.6, we can see that the rigidity of an STP S is equal to 1 if
none of the tasks contains any flexibility, i.e., f lexH(ti, t j) = 0 for all ti, t j ∈ T . If all tasks
ti ∈ T are completely unbounded, resulting in f lexH(ti, t j) = ∞, the result is that the rigidity
of the STP S is equal to 0.

The problem that rises with this rigidity metric is the summation over the individual
flex values. We have already shown in Equations 5.1 up to 5.3 that we can represent the
flexibility metric f lexH of Hunsberger by only using the est() and lst() values, since the
matrix D can be constructed by only using the est() and lst() values, resulting in the fact
that the flex metric of Hunsberger can be constructed by only these values. In order to
establish the rigidity of an STP S, Hunsberger then sums over all flex values f lexH(ti) with
ti ∈ T . We can ignore the root mean square and multiplication by a factor, since it is the
summation that causes some worry. By summing over all flex values f lexH(ti) for all ti ∈ T ,
we can derive from this a flexibility metric f lexH(S) to calculate the total flexibility in an
STP S, i.e.,

f lexH(S) =
n

∑
i=1

f lexH(ti) =
n

∑
i=1

(lst(ti)− est(ti)) (5.7)

What however is not taken into consideration here is that f lexH values can be depending on
each other. If we have a ti, t j ∈ T with ti ≺ t j, then f lexH(ti) may be related to f lexH(t j) and
can affect each other.

Example 12. Suppose we have two STPs S1 = (T1,C1) and S2 = (T1,C2), where T1 = {t1, t2}
and both processing times are 1 time-unit. Suppose that in S1 we have a deadline d = 4 and
ti� t2 and in S2 the deadline is d = 3, but a precedence relation is absent. See Figure 5.1
for the corresponding STNs.

If we compute f lexH(S1), we will get: f lexH(S1)= (2−0)+(3−1)= 4, while f lexH(S2)
gives us also: f lexH(S2) = (2−0)+(2−0) = 4. Let us see what happens if we fix one task
at a single time-point. If we have f lexH(t1) = 2, then we can choose to let t1 start at t = 2,
since we can choose any t ∈ [0,2]. But then task t2 is forced to start at t = 3, without being
able to choose another time-point, indicating that this task has no freedom in its choice of
starting time left. In S2 we can choose for task t1 to start at t = 2, while we still have the
same time-interval [0,2] for t2 we can choose from, as we also had for t1.

27

5.1 Flexibility Optimal Temporal Decoupling

t
0

t
2

t
1

[0,∞]

[1,∞]

[0,3]

t
0

t
2

t
1

[0,∞]

[0,2]

[0,∞]

[0,2]

Figure 5.1: STN of S1 and S2 in Example 12

What we can see in Example 12 is that the freedom of choosing starting times in an STP S
can depend on the presence of precedence relations. As we have seen in the example, by
fixing a task at a certain starting time, other tasks may have lost their freedom to choose
different starting times. As we stated at the beginning of this section, we are searching for a
flexibility metric that if we fix a task at a certain starting time, that the flexibility measures of
the other tasks remains unaffected. The f lexH metric however calculates a different kinds of
flexibility than we have in mind, which is why this metric is not suitable for our calculations.

In the literature, more flexibility metrics are defined, for example a flex metric specified
by Aloulou and Portmann [1], which we will denote as f lexA:

f lexA =
|{(ti, t j) | ti 6≺ t j ∧ t j 6≺ ti}|

n(n−1)
(5.8)

where {(ti, t j) | ti 6≺ t j ∧ t j 6≺ ti} is a set that contains all pairs of tasks (ti, t j) which have no
precedence relation ti ≺ t j or t j ≺ ti, i.e., are independent of each other. This is then divided
by the total number of pairs of tasks, namely n(n− 1) to present a relative value of how
many tasks ti ∈ T can be modified without affecting other tasks.

Like the rigidity metric presented by Hunsberger, this f lexA metric of Aloulou and
Portmann also gives a relative or qualitative measure of the flexiblity in an STP S.

Example 13. Suppose again that we have two STPs S1 = (T1,C1) and S2 = (T1,C2), with
T1 = {t1, t2}, where all tasks have a processing time of 1 time-unit and in both STPs we have
t1� t2. If S1 has a deadline of d = 2 and S2 has a deadline of d = 4, see Figure 5.2.

28

Optimal Temporal Decoupling 5.1 Flexibility

t
0

t
2

t
1

[0,∞]

[1,∞]

[0,1]

t
0

t
2

t
1

[0,∞]

[1,∞]

[0,3]

Figure 5.2: STN of S1 and S2 in Example 13

We can first determine the flexibility according to Hunsberger, i.e., f lexH(S1) = 0+0 =
0 and f lexH(S2) = (2−0)+(3−1) = 4. If we fix t1 in S2 at t = 2, we see, like in Example
12, that task t2 loses freedom due to the chosen starting time for t1.

If we apply f lexA to S1 and S2, we see the same outcome: f lexA(S1) = f lexA(S2) = 0.

Example 13 shows us that the f lexA metric of Aloulou and Portmann determines that to their
notion of flexibility, there is none in both STNs. Their metric is however not a quantitative
one, which we are looking for, which makes it unsuitable for our calculations.

A third flexibility metric is the fluidity metric of Cesta et al. [2] which is closely related
to the flexibility metrics we are investigating. The fluidity metric, which we will denote by
f lexC is like the f lexA metric a relative metric and therefore gives no information to the
quantitative amount of flexibility that is present in an STP S:

f lexC =
n

∑
i=1

n

∑
j=1∧ j 6=i

slack(ti, t j)

H×n× (n−1)
×100 (5.9)

where slack(ti, t j) denotes the allowed time between the end of task ti and the start of t j,
which in our case translates to: slack(ti, t j) = lst(t j)− est(ti)− pi. The value H is the
‘temporal horizon’, i.e., H = ∑

n
i=1 pi +∑∀(i, j) ri j and where ri j is the relative release date of

t j when compared to ti. Since we do not use relative release dates in task scheduling STPs,
we can consider every ri j to be equal to 0, leaving H to be the sum of all processing times.

Just like the f lexA metric, here we also divide by the number of pairs of tasks n(n−1)
but here afterward also multiply by 100, to receive a percentage. And just like the f lexH

metric, we sum over all the individual flexibility values if we determine the flexibility of an
STP S.

29

5.1 Flexibility Optimal Temporal Decoupling

Example 14. Suppose that we again have two STPs S1 = (T1,C1) and S2 = (T1,C2) with
T1 = {t1, t2} where both tasks have a processing time of 1. In C1 we assume that a prece-
dence relation is defined between t1 and t2 such that t1 � t2, but in C2 there is no such
relation. Suppose S1 has a deadline of d = 4 and S2 a deadline of d = 3, see Figure 5.3.

t
0

t
2

t
1

[0,∞]

[1,∞]

[0,3]

t
0

t
2

t
1

[0,∞]

[0,2]

[0,∞]

[0,2]

Figure 5.3: STN of S1 and S2 in Example 14

Then in S1: est(t1)= 0, lst(t1)= 2, est(t2)= 1 and lst(t2)= 3. This results in: f lexC(S1)=
(3−0−1)+(2−1−1)

2×2×1 ×100 = 50.
In S2 we have est(t1) = 0, lst(t1) = 2, est(t2) = 0 and lst(t2) = 2. This results in:

f lexC(S2) =
(2−0−1)+(2−0−1)

2×2×1 × 100 = 50, which shows us that according to this flexibil-
ity metric f lexC both STPs have the same flexibility. However, if we compare how both
tasks are affected, we can see that if we set in S1 σ(t1) = 2, then t2 will be fixed at σ(t2) = 3,
leaving only room for the 2 flexibility of t1. In S2 we can fix σ(t1) = 2, but we can also
choose to set σ(t2) = 2, where for both tasks we have a flexibility of 2, giving a total of 4,
indicating that S2 fixing a starting time in S2 does not have to affect the freedom of other
tasks, contrary to S1.

As we can see from Example 14, the fluidity metric of Cesta is not a quantitative measure
of flexibility, which is why it is not suitable to our calculations. We will therefore create our
own flexibility metric in the next section.

5.1.2 Open schedules and a new flexibility metric

In Section 5.1.1 we have already seen some existing flexibility metrics that are defined
in the literature, but as we already stated, none of these metrics completely fits our task

30

Optimal Temporal Decoupling 5.1 Flexibility

scheduling STPs, since they sometimes seem to state a flexibility value that does not suite
our requirements. We therefore want to create our own flexibility metric f lex which is based
on open schedules, is a quantitative metric, contrary to f lexA and f lexC, and also takes the
precedence relations and their effects into account, contrary to f lexH . We therefore state
three requirements of this flexibility metric:

1. The flexibility of a task ti consists of being able to choose any starting time t in an
interval σo(ti) = [mi,ni] as specified by some schedule σo.

2. The flexibility of a task ti with respect to the schedule σo is independent of the exact
time chosen for any t j ∈ T , where i 6= j.

3. Any combination of starting times of any task ti in the interval σo(ti) and any task t j

in σo(t j) gives a feasible schedule for S.

The first requirement is added to ensure that an assigned starting time-interval to a task ti
contains all feasible starting time-points of a task ti, indicating that the size of the interval
[mi,ni] determines the flexibility of task ti. The second requirement is based on our expe-
riences in Sectin 5.1.1, where in other metrics precedence relations between tasks ti and t j

would influence each others flexibility if a starting time was chosen for either ti or t j. The
third requirement is added to ensure feasibility based on this flexibility metric.

We will give a definition of an open schedule, in order to explain the notation σo:

Definition 8. Given a task scheduling STP S = (T,C) an open schedule σo for S is an
assignment σo : T → {[m,n] : 0 ≤ m ≤ n < ∞}1 such that for every ti ∈ T and every value
kti ∈ σo(ti) = [mi,ni], the assignment σ, where σ(ti) = kti is a fixed schedule2 for S.

From this definition we can see the difference between a fixed schedule as defined in Chapter
2 and an open schedule, where in a fixed schedule every task ti ∈ T will get a single time-
point σ(ti) assigned, and in an open schedule the assignment σo(ti) will be a time-interval,
which does not have to contain more than one time-point, indicating that an open schedule
can still be a fixed schedule if for all ti ∈ T we have that mi = ni.

An open schedule σo however allows us to determine the flexibility present in this sched-
ule, and we will define this as follows:

Definition 9. Given a task scheduling STP S = (T,C) and a corresponding open schedule
σo for S, the flexibility f lexσo(ti) of a task ti ∈ T w.r.t. σo is defined as f lexσo(ti) = ni−mi

where σo(ti) = [mi,ni]. The flexibility f lexσo(S) of S w.r.t. σo is defined as the sum of the
flexibilities of all the tasks occuring in S: f lexσo(S) = ∑ti∈T f lexσo(ti).

As the reader can check, this flexibility metric fits all our requirements stated earlier in this
section. This flexibility metric f lex allows us now to determine the quality of an open sched-
ule σo, i.e., the total flexibility f lex(S) of the task scheduling STP S that can be contained
in σo.

1This indicates that every σo(ti) is a closed interval in R+.
2Note that this definition of a fixed schedule was already presented in Chapter 2.

31

5.2 Maximum flexibility Optimal Temporal Decoupling

However, this flexibility f lex(S) or f lex(ti) for some ti ∈ T can only be determined once
an open schedule σo has been created. To get an indication of flexibility that is possible to
assign to a task ti ∈ T , we introduce a second notion of flexibility, namely the potential
flexibility of a task.

Definition 10. In a task scheduling STP S = (T,C) we define the potential flexibility f lexp

of a task ti ∈ T by f lexp(ti) = lst(ti)− est(ti).

We can see that this potential flexibility was in fact the flexibility metric that was introduced
by Hunsberger, but in our case is used in a different manner, since we will not use f lexp to
determine the total flexibility of an STP S, since this can result in an overestimation as we
already showed in Example 12. Since f lexp(ti) gives the maximum flexibility that can be
assigned to a task ti ∈ T , we have as a result that f lex(ti)≤ f lexp(ti).

Since f lexp(S) = ∑ti∈T f lexp(ti) will give us an upper bound on the total flexibility
that can be present in an open schedule σo of a task scheduling STP S = (T,C), we are
interested if we can use our new flexibility metric f lex to determine open schedules that
contain a maximal amount of flexibility.

5.2 Maximum flexibility

With our new flexibility metric f lex we can determine the flexibility that is present in an
open schedule σo of a task scheduling STP S = (T,C), but the question arises then if there
is not a ‘better’ open schedule σ′o for S that contains even more flexibility, i.e., f lexσ′o(S)>
f lexσo(S). To do this, we will introduce a new definition for f lex(S) to denote the maximal
flexibility in an STP S:

Definition 11. Given a task scheduling STP S = (T,C), the flexibility of S is defined as
f lex(S) = max{ f lexσo(S) | σo is an open schedule for S}.

From this definition we can see that if we know all possible open schedules σo of a task
scheduling STP S = (T,C), then we could select the one with the highest total flexibility
to know the flexibility f lex(S) of the STP S. This can however be a very time consum-
ing approach, since we may even have an infinite number of different open schedules σo,
depending on the time distribution.

There is an observation we can later use to efficiently solve this dilemma:

Proposition 5. An assignment σo, where for every ti ∈ T , σo(ti) = [mi,ni], is an open sched-
ule for a task scheduling STP S = (T,C) iff the following conditions hold:

1. for every ti, est(ti)≤ mi ≤ ni ≤ lst(ti);

2. ni + pi ≤ m j whenever ti ≺ t j.

Proof. Assume that σo is a flexible open schedule for S = (T,C) where σo(ti) = [mi,ni]. We
show that both conditions are satisfied. Choose two fixed schedules σ1 and σ2 such that for
all ti ∈ T , σ1(ti) = mi and σ2(ti) = ni. By Proposition 1, it follows that est(ti) ≤ mi ≤ ni ≤

32

Optimal Temporal Decoupling 5.2 Maximum flexibility

lst(ti) proving that Condition 1 is satisfied. To prove Condition 2, suppose, on the contrary,
that there exists a ti ≺ t j such that ni + pi > m j. Consider an assignment σ3 such that for all
ti 6= t j, σ3(ti) = σ2(ti) = ni, and σ3(t j) = m j. By Definition 8, σ3 is a fixed schedule for S,
in particular implying that ni + pi ≤ m j, contradicting the assumption.
Conversely, assume that we have an assignment ρo(ti) = [mi,ni] satisfying the conditions
stated above. We have to show that ρo(ti) is an open schedule. So take an arbitrary (fixed)
schedule ρ such that for every ti ∈ T , ρ(ti) takes a value vi in [mi,ni]. It suffices to prove
that ρ satisfies all constraints in C. Since for every such value vi we have est(ti) ≤ vi ≤
lst(ti), the release time and deadline conditions are satisfied. Let ti ≺ t j be an arbitrary
precedence constraint in C. Since ni + pi ≤ m j, we have vi + pi ≤ ni + pi ≤ m j ≤ v j, hence
the precedence constraint ti ≺ t j is satisfied, too. Therefore ρ satisfies C and ρo is an open
schedule for S.

Proposition 5 shows us that we have to find an assignment [mi,ni] for all tasks ti ∈ T that re-
spect the constraints in order to represent a feasible open schedule for a task scheduling STP
S = (T,C). As it turns out, it is possible to create a Linear Programming (LP) formulation
that represents the problem of creating a maximally flexible open schedule.

5.2.1 An LP formulation for determining the maximum flexibility

In Definition 4 we can see that all constraints of an STP S = (T,C) are linear. Furthermore,
the requirements that are stated in Proposition 5 are also linear. If we want to maximize the
flexibility in S, we have to maximize the sum of flexibility values of the individual tasks,
as we stated in Definition 11, which is maximizing a linear function. To summarize, we
have a linear objective function and only linear constraints, from which we can conclude
that we can create a Linear Program (LP) that represents the maximum flexibility problem
in an STP S = (T,C):

max ∑
ti∈T

(ni−mi)

s.t. ∀ti : mi ≤ ni

ni ≤ lst(ti) (5.10)

mi ≥ est(ti)

s.t. ∀ti� t j, ni + pi ≤ m j

Some constraints in this LP formulation can of course be rewritten in order to maintain a
≤-relation, but for the sake of simplicity, we have represented the constraints in the chosen
way. An advantage of this LP formulation and its corresponding flex metric is that it gives
us the exact flexibility of the STP S.

Example 15. We can also compute a maximally flexible open schedule in the NedTrain
case, by applying the LP formulation to the corresponding task scheduling STP. The result
of this is then an optimal solution:

33

5.2 Maximum flexibility Optimal Temporal Decoupling

task mi ni

1 0 0
2 20 20
3 20 55
4 20 20
5 40 60
6 40 65
7 75 75
8 30 30
9 35 75
10 30 65
11 70 70
12 80 80
13 90 90

The total flexibility of this open schedule is then f lex(S) = 155, which is the summation
over the size of the independent intervals. The total potential flexibility that was present
before computing a feasible open schedule was equal to 380, which in turn is equal to the
total Hunsberger-flexibility f lexH(S).

Another advantage of having an LP formulation of the maximum flexibility problem for a
task scheduling STP is that it gives us a guarantee that an optimal solution can be found
in polynomial time. This LP formulation in combination with the new flex metric also
directly answers our fourth research question, as to how we can determine a schedule that
can maximally adapt to any unforseen influences, i.e., determining an open schedule such
that the sum of flexibility values of all the tasks is maximal.

However, with an LP formulation that can construct open schedules with maximal flexi-
bility for task scheduling STPs, we still have not created a decoupling. The question is then
in what manner decoupling affects the total flexibility that can be present in an STP and
whether or not it is better to first create a decoupling and then a maximally flexible open
schedule based on this decoupling, or create a decoupling based on a maximally flexible
open schedule.

5.2.2 Maximally flexible decouplings

So far we have presented a manner in which to create arbitrary decouplings for task schedul-
ing STPs in Chapter 4, which we showed can be done in O(m+n) time. Arbitrary decou-
plings however, may affect the total flexibility that can be present in a task scheduling STP
S dramatically.

Example 16. Suppose that in the NedTrain case an arbitrary decoupling is created for
which among others the constraints t5 ≤ 40, t7 ≤ 50 and t11 ≤ 40 are added. As the reader
can check, there hardly remains any room for flexibility in an open schedule and the max-
imum flexibility of 155 from Example 15 is no longer reachable, since these added con-
straints severly limit the size of the intervals of t5, t7, t11 and their predecessors in any open
schedule.

34

Optimal Temporal Decoupling 5.2 Maximum flexibility

Example 16 raises the question if it is at all possible to construct a decoupling such that the
total flexibility in a maximally flexible open schedule without a decoupling is achieved. Is
there a loss in flexibility if we construct a decoupling and in which order do we have to do
this: decouple first, schedule second, or schedule first and decouple second?

Before we can answer this question, we first have to define what we consider to be an
optimal temporal decoupling of a task scheduling STP S = (T,C).

Definition 12. An optimal temporal decoupling {Si}k
i=1 of a task scheduling STP S = (T,C)

is a decoupling of S such that the sum ∑
k
i=1 f lex(Si) is maximal.

From Definition 11 we can see that f lex(S) is defined to be the maximum over the total
flexibility values of all of the feasible open schedules of S. Since a decoupling can only
limit the number of feasible open schedules, it follows that ∑

k
i=1 f lex(Si) ≤ f lex(S). The

question then is, does it hold that ∑
k
i=1 f lex(Si) = f lex(S)?

We will show in this section that it indeed holds that ∑
k
i=1 f lex(Si) = f lex(S) for any

task scheduling STP S = (T,C).

Proposition 6. Let {Si}k
i=1 be an optimal decoupling of S. Then ∑

k
i=1 flex(Si) = flex(S).

Proof. Consider the set of intervals {[m∗i ,n∗i] : ti ∈ T} occurring as solutions of the LP
formulation (5.10). Given the set A = {Al}k

l=1 of k agents, let Cinter ⊂ C be the set of all
inter-agent constraints. For every inter-agent constraint ti� t j, where ti occurs in Sk and t j

occurs in Sl , add a constraint ti ≤ n∗i (t) to Ck and add t j ≥ n∗j to Cl . We show the following.

Claim 1: The resulting systems {Sl}k
l=1 constitute a decoupling of S;

Claim 2: The sum of the flexibilities flex(Sl) of the systems Sl in the decoupling {Sl}k
l=1

equals flex(S).

Ad Claim 1. Suppose on the contrary that the merge σ of some combination of individual
schedules σk, where σk is a schedule for Sk, violates some constraints in C. Then σ must
violate some inter-agent constraint ti ≺ t j where ti occurs in Sk and t j occurs in Sl . Hence,
σk(ti)+ pi > σl(t j). Since σk(ti)≤ n∗i and σl(t j)≥m∗j , it follows that n∗i + pi > m∗j violating
the constraint that n∗i + pi ≤ m∗j , which is a contradiction.

Ad Claim 2. By definition, we have ∑
k
l=1 flex(Sl) ≤ flex(S). Let σo be an open schedule

for S realizing maximum flexibility where σo(t) = [m∗t ,n
∗
t]. For every Si = (Ti,Ci) consider

the assignment σi
o, being the restriction of σo to Ti. It is easy to see that each such an

assignment σi
o is an open schedule for Si. But then ∑

k
i=1 flex(σi

o) = flex(σo). Hence, there
exists a decoupling realizing flex(S).

The result of Proposition 6 is extremely important in our search for optimal decouplings,
since this shows us that by creating an optimal decoupling, we do not lose any flexibility
if we compare it to creating a maximally flexible open schedule. But from this, we imme-
diately receive a formulation to compute an optimal decoupling in polynomial time, since
an optimal decoupling can be derived from a maximally flexible open schedule. If we have
such a maximally flexible open schedule σo for a task scheduling STP S = (T,C), then for
any inter-agent constraint with ti � t j where ti ∈ Tk and t j ∈ Tl , we can add ti ≤ n∗i to Ck
and t j ≥ m∗j to Cl if these constraints are more strict than the constraints currently present

35

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

in respectively Ck and Cl . Since we already have shown in Section 5.2.1 that an LP formu-
lation can be used to solve the maximally flexible open schedule problem, we can use this
formulation to determine an optimal decoupling for a task scheduling STP.

Example 17. A maximally flexible decoupling in the NedTrain case can be created by
adding the following decoupling constraints to the already existing constraints:

σ(t1)≤ 0 σ(t8)≤ 30

σ(t4)≤ 20 σ(t13) ≥ 90

These constraints allow for an open schedule in which a total of 155 flexibility is present,
which equals the solution found by the LP program in Example 15.

Remark. As has been shown in [11], optimal decoupling in STPs can be achieved in poly-
nomial time if the objective is linear. The general construction in STPs however, requires
more than |T |3 + |T |+ |C| constraints and |T |2 variables in the underlying LP. Using task
scheduling instances, we are able to reduce the number of constraints in the LP to 3|T |+ |C|
and the number of variables to 2|T |.

The fifth research question stated to research if there was a trade-off between creating a
decoupling and creating a maximally flexible schedule. In this section we have shown that
by the use of the LP formulation 5.10 we can compute a maximally flexible open schedule
for a task scheduling STP and from this we can derive an optimal decoupling by adding
inter-agent constraints based on the time-intervals assigned to the corresponding tasks, since
Proposition 6 shows us that the total flexibility in a maximally flexible decoupling equals
that of a maximally flexible open schedule.

We now know that we can use an LP formulation to solve the optimal decoupling prob-
lem or the maximally flexible open schedule problem. Although it is proven to be solvable
in polynomial time, we can ask ourselves if it is not possible to exploit more properties of a
task scheduling STP. After all, among others the precedence constraints give a task schedul-
ing STP a unique edge over arbitrary STPs and although the LP formulation uses them as
constraints, it might be possible to exploit them even further. In the next section we will
present a newly developed alternative polynomial time algorithm that exploits the unique
properties of task scheduling STPs in order to compute a maximally flexible open schedule.

5.3 Computing optimal decouplings with a new alternative
algorithm

We have seen in Section 3.2 that task scheduling STPs distinguish themselves from arbitrary
STPs among others because of the existence of strict precedence relations, where a task
ti ∈ T has to be completed before a task t j ∈ T is allowed to start if ti � t j. And it is
specifically this relation that can be exploited if we want to determine a maximally flexible
open schedule. The strict precedence relation induces a number of special properties on the
STN that represents the task scheduling STP.

36

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

We will introduce the notion of critically connected STNs3 and show that in critically
connected STNs we can define a maximally flexible open schedule by determining a max-
imum independent set of tasks. We will then show that any task scheduling STN S can be
converted to one or more critically connected STNs Si and we will show that a merge of
the maximally flexible open schedules σo of all STNs Si is again a maximally flexible open
schedule of the original STN S. Since we can determine a maximum independent set in a
partially ordered transitive graph in polynomial time and the remaining steps also remain
polynomial, this results in an efficient polynomial time algorithm.

5.3.1 Critically connected STNs

Before we give a definition of critically connected STNS, we will introduce the notion of
critical paths in an STN:

Definition 13. A path P = {ti, t j, . . . , tk} is called an est-critical path if for every ti, t j ∈ P
with ti� t j we have that est(t j) = est(ti)+ pi. If for every ti, t j ∈ P with ti� t j we have that
lst(ti) = lst(t j)− pi this path is called an lst-critical path and traverses the directed edges in
an opposite direction.

When we calculate the est() value of all tasks ti ∈ T , we can use Equation 3.1, which shows
us that if t j � ti, then the est(ti) value depends on one or more t j ∈ pre�(ti) or ri. If it
depends on a certain t j ∈ pre�(ti), then (t j, ti) is (part of) an est-critical path to ti. Based on
Equation 3.2 this holds also in the case of lst-critical paths if ti� t j and lst(ti) = lst(t j)− pi,
since then (t j, ti) is (part of) an lst-critical path to t j.

Definition 14. An undirected graph G = (V,E) is said to be connected if it contains a path
from vi to v j for all vi,v j ∈ V . A directed graph G = (V,E) is said to be weakly connected
if replacing all of its directed edges by undirected edges produces a connected graph.

Since a task scheduling STP S = (T,C) is represented by an STN, we can denote an STN to
be weakly connected if it matches Definition 14 of a directed graph.

Definition 15. We define a task scheduling STN S = (T,C) to be critically connected if
it is weakly connected and every path P = {ti, . . . , t j} in the graph between any two task
ti, t j ∈ T\{z} is both an est-critical and lst-critical path4.

Example 18. Suppose that we have a task scheduling STN S= (T,C), with T = {t1, t2, t3, t4}
as shown in Figure 5.4, where all tasks have a processing time of 1 and we have a due date
d = 5. As the reader can verify, we have:

task est lst
1 0 2
2 1 3
3 1 3
4 2 4

3From this point we will use the notation S to represent both the STP and its corresponding STN.
4Note that in this lst-critical case we traverse the path in the opposite edge directions.

37

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

t
0

t
2

t
4

t
3

t
1

[0,∞]

[1,∞][1,∞]

[1,∞][1,∞]

[0,4]

Figure 5.4: STN of example 18

As the reader also can verify, the two paths P1 = {t1, t2, t4} and P2 = {t1, t3, t4} are both
est-critical and lst-critical, i.e., any path in S is est-critical and lst-critical, resulting in S
being critically connected.

A critically connected STN S = (T,C) has some special properties, since the est() value of
a task ti ∈ T depends on all t j� ti with t j ∈ T , because every path (t j, ti) is est-critical. The
same holds for every lst() value of ti, which shows us that we have the following relation
between the potential flexibility f lexp for three tasks ti� t j� tk:

Proposition 7. In a critically connected STN S = (T,C) it holds for all ti, t j ∈ T that
f lexp(ti) = f lexp(t j).

Proof. Since every path in S is both est-critical and lst-critical, it holds that for every ti, t j ∈
T with ti� t j that est(t j) = est(ti)+ pi and lst(ti) = lst(t j)− pi.

We then have:

f lexp(ti) = lst(ti)− est(ti) =

= lst(t j)− pi− est(ti) =

= lst(t j)− est(t j) =

= f lexp(t j)

Since this holds for any ti� t j, this also holds for all ti, tk ∈ P for any path P = {ti, . . . tk} in
S and due to S being critically connected, this holds for all ti, t j ∈ T .

Example 19. If we revisit Example 18, we can calculate that for every task ti ∈ T we have
that f lexp(ti) = 2

38

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

One might wonder what the advantage is of a critically connected nature of a task schedul-
ing STN compared to an arbitrary task scheduling STN. Proposition 7 shows us that in a
critically connected STN S = (T,C) all tasks ti, t j ∈ T have the same potential flexibility
f lexp. There is however another relation due to the critically connected relation in this
STN, which we will show after the following definitions:

Definition 16. In a task scheduling STN S=(T,C) we define a chain of tasks L= {z, ti, . . . , tk}
a partially ordered subset of T , which forms a path in S, in which each pair of tasks ti, t j ∈ L
has either ti ≺ t j or t j ≺ ti and tk is a task such that suc(tk) = /0. An antichain of tasks
A = {ti, . . . , tk} is a subset of T in which each pair of tasks ti, t j ∈ A has no precedence
relation, i.e., ti 6≺ t j and t j 6≺ ti.

Example 20. If we revisit Example 18, we can find a maximum antichain by selecting both
t2 and t3. It holds that t2 6≺ t3 and t3 6≺ t2, which proves that this is indeed an antichain. A
larger antichain is not possible, since there are only two chains to be found in S, namely
{t0, t1, t2, t4} and {t0, t2, t3, t4}.

A chain L of tasks in a task scheduling STN S = (T,C) contains only tasks that are all
related to each other due to one or more precedence constraints. If the STN S is critically
connected, then for any ti, t j ∈ L, we have that if we increase f lex(ti) we decrease the amount
of flexibility that can be given to any t j ∈ L, which we refer to as the remaining potential
flexibility.

Definition 17. In a critically connected task scheduling STN S = (T,C) we define the re-
maining potential flexibility f lexr of a task ti ∈T by f lexr(ti)= f lexp(ti)−∑L∈Li ∑t j∈L f lex(t j)

where Li here denotes the set of all chains L that contain ti, and where t j is unique5.

The notion of remaining potential flexibility f lexr is of major importance to the new iterative
algorithm we will describe, since it shows us how much flexibility a task ti can still receive
if other tasks t j ∈ T have already received some flexibility f lex(t j). From this definition,
we can immediately derive the following Corollary:

Corollary 1. Suppose we have a critically connected task scheduling STN S = (T,C) with
T = {z, t1, t2, . . . , tn}, then any chain L = {z, . . . , ti, . . . , tk} contains at most f lexp(ti) flexibil-
ity, i.e., ∑t j∈L f lex(t j)≤ f lexp(ti).

Proof. Suppose that we have an arbitrary chain L and we assign flexibility to its tasks, such
that L contains the maximum flexibility it can hold, i.e., ∑t j∈L f lex(t j) is maximal, then it
must hold that for all ti ∈ L we have f lexr(ti) = 0, otherwise the total flexibility would not
be maximal. If f lexr(ti) = 0, then according to Definition 17:

f lexp(ti)− ∑
L∈Li

∑
t j∈L

f lex(t j) = 0

i.e.,
∑

L∈Li

∑
t j∈L

f lex(t j) = f lexp(ti)

5We use the notion unique here to denote that t j is only used once in the summation, even if it occurs in
multiple chains Li that contain ti.

39

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

Since

∑
t j∈L

f lex(t j)≤ ∑
L∈Li

∑
t j∈L

f lex(t j)

we can conclude that:

∑
t j∈L

f lex(t j)≤ f lexp(ti)

We can go even further than the statement in Corollary 1 by showing that the inequality sign
can even be replaced by an equality sign, due to the use of antichains (see Definition 16).

Corollary 2. Suppose we have a critically connected task scheduling STN S = (T,C) with
T = {z, t1, t2, . . . , tn}, then any chain L = {z, . . . , ti, . . . , tk} contains exactly ∑t j∈L f lex(t j) =
f lexp(ti) flexibility and the flexibility in L can be concentrated in one task ti ∈ L, i.e.,
f lex(ti) = f lexp(ti).

Proof. Suppose that we have the set A∗ that is the largest set of antichains in S. Then any
chain L must have exactly one task ti ∈ L that is also in A∗, otherwise A∗ is not maximal.
Since all ti, t j ∈ A∗ are independent, i.e., ti 6≺ t j and t j 6≺ ti, we can take f lex(ti) = f lex(t j) =
f lexp(ti), resulting for every L in ∑t j∈L f lex(t j) = f lexp(ti).

Corollary 2 shows us that we can determine a maximally flexible open schedule in a criti-
cally connected task scheduling STN S by calculating a maximum antichain. Determining
a maximum antichain is equivalent to determining a maximum independent set in the STN
S.

Example 21. Let us again revisit Example 18. In order to find a maximally flexible open
schedule, we have to distribute as much flexibility in this network as possible. Should we
for example assign flexibility to t1, then by Definition 17 we can see that it would lower the
f lexr value of all other tasks. The same holds for giving flexibility to t4. However, if we
would select t2 and give flexibility to this task, then t3 remains unaffected and vice versa.

By determining a maximum antichain A∗, we can find the largest set of tasks that can
receive flexibility independently of each other, i.e., the f lexr value of any t j ∈ A∗ is not
lowered if for some ti ∈ A∗ the value f lex(ti) is increased. In Figure 5.4 we have that A∗ =
{t2, t3} resulting in a maximally flexible open schedule if f lex(t2) = f lex(t3) = f lexp(t2) =
2.

What remains now is to show how to convert an arbitrary task scheduling STN S to one
or more critically connected STNs Si, such that the merge of the maximally flexible open
schedules of the STNs Si again gives a maximally flexible open schedule of S.

5.3.2 The Maximum Flexibility Algorithm

An arbitrary task scheduling STN S=(T,C) does not have to have the property that f lexp(ti)=
f lexp(t j) for all ti, t j ∈ T , which is why we cannot simply define a maximum independent

40

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

set in S and create a maximally flexible open schedule by doing so. If the STN is not criti-
cally connected, we will have to find a way to convert it to one or more critically connected
STNs Si. But how do we do that? In order to answer this question we will first have to
investigate the parts of an STN that prevent it from being critically connected.

Let us start with an example of a simple task scheduling STN that is not critically con-
nected:

Example 22. Suppose we have a task scheduling STN S = (T,C) with T = {t1, t2, t3, t4}
where p1 = p3 = p4 = 1 and p2 = 2, d = 5 and precedence relations as can be seen in
Figure 5.5. From this we can calculate the est(), lst() and corresponding f lexp values.

t
0

t
2

t
4

t
3

t
1

[0,∞]

[1,∞][1,∞]

[1,∞][2,∞]

[0,4]

Figure 5.5: STN of example 22

task est lst f lexp

1 0 1 1
2 1 2 1
3 1 3 2
4 3 4 1

Since not all f lexp values are equal, we can conclude immediately that S is not critically
connected. If we look closer at the values, we see that the path P = {t1, t2, t4} is an est-
critical and lst-critical path, but that P′ = {t1, t3, t4} is neither. The cause of this is that t2
has a processing time p2 = 2, which results in t3 to have no effect on the est(t4) and lst(t1)
value.

If we evaluate the differences between t2 and t3, we can see that t3 is in both directions
1 short in processing time, which gives t3 some freedom. What we can do now is create two
seperate STNs. Suppose we take the original STN S and treat t3 as if it somehow makes

41

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

up for the lower processing time such that P′ as described earlier is now indeed both an
est-critical and lst-critical path, where we denote this new STN by S1. By doing this, we
have ‘stolen’ 1 unit of potential flexibility of t3, which should be compensated. In order to
compensate this, we can create a second STN S2 that contains only this task t3 and is only
allowed a potential flexibility f lexp(t3) of 1. We can see that S2 is critically connected, since
it contains only t0 and t3.

In S1 we have now for all ti ∈ T that f lexp(ti) = 1 and in S2 we see also that f lexp(t3) =
1. We can now determine in each STN S1 and S2 a maximum independent set (or maximum
antichain) and give these tasks ti their potential flexibility f lexp(ti). This results in S1 in
f lex(t2)= 1 and f lex(t3)= 1 and in S2 in f lex(t3)= 1. If we combine these values again, we
will get f lex(t2) = 1 and f lex(t3) = 2. The open schedule that follows from this combination
is then:
σo(t1)∈ [0,0], σ0(t2)∈ [1,2], σo(t3)∈ [1,3] and σo(t4)∈ [4,4], which is a maximally flexible
open schedule for S.

What we demonstrated in Example 22 is key in the approach of constructing maximally
flexible open schedules. During the calculations, we never had to use the [mi,ni] values
which would denote the starting time interval of ti, but were we able to reconstruct them by
simply using the assigned flexibility values f lex(ti). This shows us that during the iterative
solving of the separate critically connected STNs, that once we know how these STNs
are created, we only have to know the potential flexibility values f lexp of the tasks and
determine which tasks will receive their potential flexibility as true flexibility.

We will create an algorithm that iteratively increases the flexibility given to a certain set
of tasks in a task scheduling STN S = (T,C). The idea of this algorithm is the following:

1. Check if S is critically connected. If true, determine a maximum independent set and
give these tasks their f lexp value as f lex value. If false, see step 2)

2. If S is not critically connected, create in each iteration i a subproblem Si that is crit-
ically connected, such that the merge of all subproblems Si is S again and the merge
of the solutions σi is also a feasible solution σ for S

3. In each subproblem Si determine a maximum independent set and raise the f lex value
of these tasks by f lexp of this current Si. Repeat step 2) and 3) until for all tasks
f lexr = 0, resulting in a f lex assignment for all tasks

Example 22 gives us an example of how to convert certain task scheduling STNs S that are
not critically connected to the right form, but this does not work in all cases however. We
therefore have to find a universal approach that can convert any task scheduling STN S to
one or multiple critically connected task scheduling STNs. In Example 22 we have seen
that due to t3 on path P′, P′ was in both directions not est-critical or lst-critical. There are
however cases in which a path can be est-critical, but lacks its lst-critical counterpart or
vice versa. We will therefore introduce the notion of slack on an edge (ti, t j) in order to
determine if an edge is est-critical and/or lst-critical.

Definition 18. In a task scheduling STN S = (T,C), if the edge between two tasks ti � t j

with ti, t j ∈ T is not on a critical path from z to t j, we define the slack from ti to t j, denoted

42

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

by s(ti, t j) on this edge (ti, t j), to be equal to s(ti, t j) = est(t j)− est(ti)− pi− f lex(ti). The
slack from t j to ti is equal to s(t j, ti) = lst(t j)− lst(ti)− pi− f lex(t j).

Example 23. If we revisit Example 22 we can determine the slack values s for all edges.
Since path P = {t1, t2, t4} is both est-critical and lst-critical, there will be no slack s present
on any of the traversed edges in any direction. The remaining edges (t3, t4) and (t3, t1)
contain both 1 slack, due to: s(t3, t4) = 3−1−1 = 1 and s(t3, t1) = 3−1−1 = 1

Before we continue, we will have to update the est() and lst() calculations given in Equa-
tions 3.1 and 3.2. If we want to create an iterative algorithm, by raising f lex values in each
iteration, the est() values of tasks can be increased by this increase of flexibility. This has
to be taken into account, which can be done by the following equation:

est(ti) = max({est(t j)+ p j + f lex(t j) | t j ∈ pre�(ti)}∪ ri) (5.11)

And also for lst():

lst(ti) = min({lst(t j)− pi− f lex(t j) | t j ∈ suc�(ti)}∪di− pi) (5.12)

Since these equatiouns lead to a recursive calculation, in Equation 5.11 all flexibility given
to the predecessors of ti is taken into account, while the same holds also for Equation 5.12,
where all flexibility given to the successors of ti is used in the calculations. This is of
importance to the use of slack values during the iterations. Note that by only knowing the
release dates, due dates and f lex(ti) values of all ti, we can construct an open schedule σo

by using Equations 5.11 or 5.12
In order to deal with slack values to construct critically connected STNs Si, we can use

a similar approach as in Example 22. If we for example have s(ti, t j) = c, for some c ∈ R,
then this indicates that either ti or any of its predecessors can receive c flexibility without t j

being affected. Only once this c flexibility has been given to ti or any of its predecessors will
t j possibly be affected by a further increase of flexibility of ti or its predecessors. However,
if t j should receive any flexibility, then ti and its predecessors are directly affected should
s(t j, ti) = 0. Therefore ti is only independent for c flexibility of t j, but t j is not considered
independent of ti and its predecessors.

Example 24. Let us revisit Example 22 and the corresponding Figure 5.5. We have shown
in Example 23 that the slack values s(t3, t1) = 1 and s(t3, t4) = 1. Since the slack on (t3, t4) in
the direction of t4 is equal to 1, we can give 1 unit of flexibility to t3, such that f lex(t3) = 1.
We then see that both slack values decrease, i.e., s(t3, t1) = 0 and s(t3, t4) = 0, but for t1, t2
and t4 we still have f lexr = 1, which remained unchanged during the increase of f lex(t3).
This showed us that t3 was independent from all other tasks for a total of 1 flexibility, with
respect to the f lexr values.

If we however return to our begin situation, where all f lex values are 0, and we increase
f lex(t4) by one unit, then we see that for all tasks the f lexr value decreases by 1, even
f lexr(t3), which shows us that t3 is not independent from t4 should t4 receive an increase of
flexibility, which also follows from the fact that we had s(t4, t3) = 0.

43

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

If it holds that s(ti, t j) = c, with c > 0 being the smallest positive slack value on any edge in
S, and it also holds that s(t j, ti)≥ c, then ti and t j do not affect each other in both directions
if the distributed total flexibility between these two tasks or there respective predecessors
and successors is not greater than c. We can therefore create an STN Sl in which we allow
a potential flexibility f lexl

p(t j) for each task t j ∈ Tl not to be greater than c and remove the
edge (ti, t j).

Example 25. We can apply this approach to Figure 5.5 and see that the smallest positive
slack value is equal to 1, for both s(t3, t1) and s(t3, t4). We can therefore remove the cor-
responding edges (t1, t3) and (t3, t4) from the STN S. However, since S now no longer is
connected, we create a seperate STN that contains only t0 and t3.

By selecting the smallest positive value c > 0 in the original STN S, we can iteratively
create seperate ‘slack-free’ STNs Sl by removing any edge (ti, t j) which has s(ti, t j) ≥ c
and s(t j, ti) ≥ c from Sl . If this results in a task having no longer any predecessors and
successors, the task will be removed and placed in a separate new STN S′l . This results in
the new STNs being critically connected, since each remaining edge (ti, t j) will now have
s(ti, t j) = 0 and s(t j, ti) = 0, because if not, then either the value c was chosen too larger or
an edge has not yet been removed.

This approach will form the basis of our Maximum Flexibility Algorithm. We give a
more general pseudocode of the Maximum Flexibility Algorithm in Algorithm 1. We will
use the notation f lex∗p(ti) to denote the remaining potential flexibility of ti in S under the
current iterative total flexibility distributed. If S is already critically connected, then f lex∗p
equals f lexr for all ti ∈ T .
The first For-loop executes the same steps as taken in Example 22, by assigning already

some flexibility r∗ if for a task ti ∈ T with for all tk, t j ∈ T with tk � ti � t j it holds that
s(ti, t j)≥ r∗ and s(ti, tk)≥ r∗ until one of these slack values becomes equal to 0. If this loop
is completed, the algorithm starts to create seperate STNs S∗ based on the f lex∗p values of
all task ti ∈ T . In all these STNs S∗ a maximum independent set is defined, where all tasks
in this set receive the same raise in flexibility. After all f lex∗p values are updated, the next
iteration starts, and the algorithm stops when for every task ti ∈ T we have f lex∗p(ti) = 0
and it returns the total assigned flexibility.

Theorem 1. The Maximum Flexibility Algorithm correctly computes an optimal solution
for the maximum flexibility problem.

Proof. In order to prove Theorem 1, we have to show that every subproblem Sl created by
the Maximum Flexibility Algorithm in iteration l is critically connected, which allows us to
apply Corollary 2. Then we have to prove that the merge of all optimal solutions σ∗l to these
m subproblems Sl is again an optimal (and therefore also feasible) solution σ∗S of S.

We will use the following five claims to prove these statements:
Claim 1: Every seperate Sl created by the Maximum Flexibility Algorithm is a critically
connected STN and f lex(Sl) can be calculated by determining the maximum independent
set in Sl .
Claim 2: If ti 6∈ Tl for some subproblem Sl , then f lex∗p(ti) is not affected by any solution σl
for Sl

44

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

Algorithm 1 Maximum Flexibility Algorithm
Input: STN S = (T,C)
Output: ∑ti∈T f lex(ti)
Take T ∗ := /0, C∗ := /0, f lex∗p(ti) := f lexp(ti) and f lex(ti) := 0 ∀ti ∈ T
Calculate for every edge (ti, t j) both s(ti, t j) and s(t j, ti)
for all ti do

if for all t j, tk with tk� ti� t j: s(ti, t j)> 0 and s(ti, tk)> 0 then
r∗ = min{s(ti, t j),s(ti, tk)}
f lex(ti) = f lex(ti)+ r∗

f lex∗p(ti) = f lexp(ti)− r∗

end if
end for
while maxti∈T{ f lex∗p(ti)}> 0 do

T ∗ = {ti | f lex∗p(ti) = maxt j∈T{ f lex∗p(t j)}}∪{z}
C∗ = {(ti− t j ≤ δ) ∈C | ti, t j ∈ T ∗}
Create STN S∗ := (T ∗,C∗)
q := ∞

for all (ti, t j) with ti, t j ∈ T ∗ do
if s(ti, t j)> 0 and s(t j, ti)> 0 then

q = min{q, |s(ti, t j)− s(t j, ti)|}
Remove the edge (ti, t j) from S∗

end if
end for
r = min{q, f lex∗p(ti)−max{0, f lex∗p(t j) | t j 6∈ T ∗}} for a ti ∈ T ∗

Determine maximum independent set M of T ∗ and for all ti ∈ M set f lex(ti) :=
f lex(ti)+ r
Take f lex∗p(ti) := f lex∗p(ti)− r ∀ti ∈ T ∗

end while
Return: ∑ti∈T f lex(ti)

Claim 3: All subproblems Sk and Sl are independent for k 6= l, meaning that any chosen
solution σk does not affect some other σl
Claim 4: The union of solutions

⋃m
l=1 σl of all the subproblems S1,S2, . . . ,Sm is a feasible

solution σS for S
Claim 5: The union σ∗ =

⋃m
l=1 σ∗l of optimal solutions σ∗l for the subproblems Sl is again

an optimal solution for S

The first claim will prove that all subproblems are critically connected and that the Maxi-
mum Flexibility Algorithm will find an optimal solution for these subproblems. The second
claim is needed to prove the independency stated in Claim 3, which can then be used to
prove the feasibility stated in Claim 4. The proof of Claim 5 will be based on the inde-
pendency of the solutions for the subproblems and the feasibility of the merge of these
solutions.

45

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

Ad Claim 1: We will here represent the value r used in every iteration with f lexk
p, which

will denote the potential flexibility of each task in subproblem Sl .
In every such Sl , it holds for all ti, t j with ti� t j that s(ti, t j) and s(t j, ti) are equal to 0,

since if one of them is not 0, then f lexp(ti) 6= f lexp(t j) and if both of them are unequal to 0,
then the edge would have been removed. Therefore every path P in Sl is both est-critical and
lst-critical, which meets the requirements of a critically connected STN. As a consequence
of Corollary 2 we can determine a maximum independent set or maximum antichain to find
the f lex(Sl) value.

Ad Claim 2: If ti 6∈ Tl of subproblem Sl , then there exists no est-critical and lst-critical path
to any t j ∈ Tl , because due to the absence of ti in Tl it must hold that f lex∗p(ti) < f lex∗p(t j)
for all t j ∈ Tl . This means that for any path P = {ti, . . . , tx, ty, . . . , t j} we have an edge (tx, ty)
such that s(ty, tx)> f lexl

p, due to the definition of r6 in the Maximum Flexibility Algorithm,
i.e., all f lexl

p flexibility distributed to one or more t j ∈ Tl in Sl will be absorbed by all paths
P and not affect f lex∗p(ti).

Ad Claim 3: For any ti ∈ Tk and ti 6∈ Tl we have due to Claim 1 that f lex∗p(ti) is not influenced
by any solution σl of Sl . The same holds for any ti 6∈ Tk but with ti ∈ Tl , where f lex∗p(ti) will
not be influenced by any solution σk of Sk.

If ti ∈ Tk and ti ∈ Tl , then we have in the union Sk ∪Sl that f lexk∪l
p (ti) = f lexk

p + f lexl
p.

Since a solution σk at most subtracts f lexk
p from f lexk∪l

p (ti), due to Corollary 1, we have
that there remains at least f lexl

p for ti in Sl , indicating that σk does not affect σl by limiting
its value f lexl

p. Therefore all subproblems Sk and Sl and their respective solutions can be
considered independent.

Ad Claim 4: Due to the definition of r (or f lexl
p) in each iteration, it holds that ∑

m
l=1 f lexl

p(ti)=
f lexp(ti) for all ti ∈ T with S = (T,C). If we combine this with the result from Claim 1,
then we can see that for every ti ∈ T we have that after each iteration it must hold that
f lex∗p(ti)≥ 0, since due to Claim 1 f lex∗p(ti) remains unaffected if ti is not present in Sl , but
if it is present in some Sk, then there will be at most f lexp(ti) flexibility distributed in all
these subproblems together. Because f lex∗p(ti) is initially equal to f lexp(ti) at the beginning
of the algorithm, it holds that at the end we have f lex∗p(ti)≥ 0.

Therefore combining the solutions σl for all subproblems Sl , i.e.,
⋃m

l=1 σl , results for all
ti ∈ T that f lex∗p(ti)≥ 0, which proves feasibility of the solution7.

Ad Claim 5: From Claim 4 it follows that
⋃m

l=1 σl is a feasible solution for S, meaning that
∑

m
l=1 f lex(Si)≤ f lex(S). Since from Claim 3 it follows that all subproblems are independent

and all Sl are derived from S, we can take
⋃m

l=1 Sl = S. It then follows that, if we take σ∗(Sl)
to represent an optimal solution for Sl:

σ
∗(

m⋃
l=1

Sl) = σ
∗(S) (5.13)

6which we here represent as f lexl
p.

7Note that, as we already stated earlier, we can rebuild a solution σo, i.e., a time-interval assignment, of S
from all independent f lex(ti) values with ti ∈ T .

46

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

Due to the independence of Claim 3 of all Sk and Sl , it then follows that:

σ
∗(S1)+σ

∗(
m⋃

l=2

Sl) = σ
∗(S) (5.14)

and

σ
∗(S1)+σ

∗(S2)+σ
∗(

m⋃
l=3

Sl) = σ
∗(S) (5.15)

resulting in
σ
∗(S1)+ . . .+σ

∗(Sm) = σ
∗(S) (5.16)

This means that if f lex(Sl) represents the maximum flexibility in Sl , that:

f lex(S1)+ . . .+ f lex(Sm) = f lex(S) (5.17)

which we can rewrite to
m

∑
l=1

f lex(Sl) = f lex(S) (5.18)

which proves our claim.

In the Maximum Flexibility Algorithm, there is however one step in the final loop where a
maximum independent set is determined. In the next section we will show an approach on
how to determine maximum independent sets in polynomial time in task scheduling STNs.

5.3.3 Identifying a maximum independent set

While finding a maximum independent set of vertices is an NP-Hard problem if applied to
an undirected graph, the problem is polynomial solvable if applied to a directed, acyclic
(transitive) graph, as is shown by [10]. The algorithm as presented by [10] starts by creating
a minimum flow (see [3] and [4]) in the graph.

Definition 19. A task scheduling STN can represent a flow network if every edge (ti, t j) has
a non-negative, real valued capacity u(ti, t j) and a non-negative, real valued lower bound
l(ti, t j) and there are two nodes present that represent a source s which is connected to all ti
with pre(ti) = /0 by an edge (s, ti) and a sink t that is connected to all t j with suc(t j) = /0 by
an edge (t j, t). Furthermore it must hold for a flow function f : T ×T → R and all nodes
ti, t j ∈ T with ti� t j that:

1. l(ti, t j)≤ f (ti, t j)≤ u(ti, t j);

2. f (ti, t j) =− f (t j, ti);

3. ∑tk∈pre(ti) f (tk, ti) = ∑tl∈suc(t j) f (t j, tl)

47

5.3 Computing optimal decouplings with a new alternative algorithmOptimal Temporal Decoupling

In a task scheduling STN, we can use z as a source node, since it does not represent an actual
task and fits the requirements of the definition, but we will still have to add a sink node t.
The goal of this specific minimum flow is to identify a minimum number of flow paths as
specified by [10], i.e., positive flows of 1 from z to t, where each node is visited by at least
one flow path. These flow paths represent a minimum number of chains to cover the STN
S which we can use to identify a maximum antichain in S, because every chain contains at
least one node that forced this chain to be created, otherwise if this is not the case, the chain
would be redundant and we would not have a minimum number of chains to cover S.

The question is then how to ensure that every node receives at least one unit of flow,
since we only allow capacities on the edges. We can do this in the following way:
For a node ti if:

1. |pre(ti)|= 1, add a lower bound of 1 to the edge pointing to ti;

2. |suc(ti)|= 1, add a lower bound of 1 to the edge pointing from ti;

3. 1) and 2) do not hold, add a dummy node t ′i . Add an edge (ti, t ′i) with lower bound 1,
and add and remove edges such that suc(t ′i) = suc(ti) and suc(ti) = {t ′i}.

We can take for each edge (ti, t j) the upper bound u(ti, t j) = ∞, since we are only searching
for a minimum flow that satisfies the lower bounds.

We will present a minimum flow algorithm in which several notations are used that
require some clarification. We define d(ti) to be the exact distance label to a task ti, which
stands for the minimum number of tasks that have to be passed starting in z to reach ti. An
edge (ti, t j) is called admissable if it holds that d(t j) = d(ti)+ 1. We define e(ti) to be the
flow deficit in a node ti, indicating by how much the amount of outgoing flow exceeds the
incoming flow, i.e., e(ti) = ∑tk∈suc�(ti) f (ti, tk)−∑t j∈pre�(ti) f (t j, ti). A node is called active
if e(ti)< 0, i.e., more flow is entering the node ti than leaving it. L is the set of active nodes.

The following minimum flow algorithm was presented by [4]. It was shown by [4] that
this FIFO Preflow Minimum flow algorithm runs in O(n3) time and correctly computes a
minimum flow. The requirement of a feasible flow can also be satisfied, since a feasible
flow can be constructed within the complexity bound of this minimum flow algorithm of
O(n3).

We will now show how a maximum independent set can be created by using the found
minimum flow. We slightly adapt the algorithm of [10], since the networks we will be using
are of a somewhat less complex structure, because we do not use upper bounds u(ti, t j) on
an edge (ti, t j).
To show what happens in this algorithm, we will explain the steps taken: Suppose we have
a minimum flow f in our STN S, then | f | is the size of the maximum independent set. We
remove every edge without flow from S and we can start identifying flow paths carrying
1 flow, starting in z and ending in t. From z we choose an arbitrary edge and follow it to
the task ti at the end of this edge. We add ti to the current path P and lower the flow on
the edge(z, ti) by 1. If the flow is then equal to 0, we can remove this edge (z, ti) from the
graph. From ti we can again select an arbitrary edge going outward from ti to for example a
task t j. We again add t j to P and lower the flow on the edge (ti, t j) by 1 and remove it if its

48

Optimal Temporal Decoupling5.3 Computing optimal decouplings with a new alternative algorithm

Algorithm 2 FIFO Preflow Minimum flow algorithm
Input: A feasible flow f in the graph G = (V,E), with |V |= n and |E|= m
Create the residual network G f = (Vf ,E f) by removing every edge with f (ti, t j) := l(ti, t j)
Compute the exact distance labels d in G f

if t has no exact distance label then
f is a minimum flow

else
L := /0

for every edge (ti, t) do
Set f (ti, t) := l(ti, t)
if e(ti)< 0 and i 6= z then

add ti to the rear of L
end if

end for
d(t) := n
while L 6= /0 do

remove t j from front of queue L
slect the first edge (ti, t j) that enters t j

B := 1
repeat

if (ti, t j) is an admissable edge then
pull g = min{−e(t j),r(ti, t j)} units of flow from t j to ti
if ti 6∈ L and ti 6= z and ti 6= t then

add ti to the rear of L
end if

end if
if e(t j)< 0 then

if (ti, t j) is not the last arc that enters in t j then
select the next edge (ti, t j) that enters in t j

else
d(t j) = min{d(ti) | (ti, t j) ∈ E f }+1
B := 0

end if
end if

until e(t j)< 0 or B = 0
if e(t j)< 0 or B = 0 then

add t j to the rear of L
end if

end while
end if

49

5.4 Maximum Flexibility Algorithm Complexity Optimal Temporal Decoupling

Algorithm 3 Maximum independent set algorithm
Input: A minimum flow f in G = (V,E)
for j = 1 : | f | do

Set q := z
while ∃ f (q, ti)> 0 with ti ∈V do

Pj = Pj ∪{q} and set f (q, ti) = f (q, ti)−1
Set q := ti

end while
Set x j := q

end for
Remove all t j from all Pi if t j occurs in multiple Pi

while ∃xi,x j with xi ≺ x j do
Set xi equal to the latest previous node with f (xi) = 1 in Pi

end while
Output: Maximum independent set {x1,x2, . . . ,x| f |}

flow is equal to 0. This process can be repeated until we reach the sink node t. If there are
outgoing edges from z left in the network, we create a new path P in the same way until no
more paths can be created.

We can select the following task on the path arbitrarily, since in a feasible (minimum)
flow we have the guarantee that in every node there is a flow balance, i.e., the total incoming
flow equals the total outgoing flow.

Now that we have a collection of paths, we have to create a maximum independent set
from these paths. From every path one independent node has to be selected that does not
occur in any other path. We therefore can remove all t j that appear in more than one of the
created paths Pi. Creating the maximum independent set can be done by selecting for each
path the final node not equal to t. Check if there is a currently selected node ti that points in
the original network S to any other selected node t j in a different path. Deselect ti and select
the predecessor of ti in that path. Repeat until there are no conflicts remaining and the result
is a maximum selection of independent tasks.

5.4 Maximum Flexibility Algorithm Complexity

To determine the maximum flexibility in a directed, acyclic STN we can now apply all of
the algorithms presented in the previous section. We begin by applying our Maximum Flex-
ibility Algorithm to this STN, which takes at most n iterations in the while-loop (since there
are at most n different f lexp values), but applies the other algorithms in every iteration. The
while-loop starts with calculating the slack for each edge and giving flexibility if possible
and then continues with defining which tasks will receive flexibility, which is done by the
minimum flow and maximum independent set algorithm.

With the minimum flow algorithm applied to the current network, a minimum flow is
produced, which can be used to identify a maximum independent set. All tasks in this

50

Optimal Temporal Decoupling 5.4 Maximum Flexibility Algorithm Complexity

maximum independent set will receive flexibility r, which allows us to continue to the
next iteration of the Maximum Flexibility Algorithm. We first decide which edges can
be removed based on the present slack values, after which we can determine a maximum
independent set in the remaining network. We again add r flexibility to the tasks in this set
and repeat the process until the Maximum Flexibility Algorithm terminates. The result is
an iteratively calculated maximum flexibility solution.

Since the Maximum Flexibility Algorithm takes at most n iterations, the slack calcula-
tion in each iteration take O(m), the minimum flow algorithm runs in O(n3) and the max-
imum independent set algorithm runs in O(| f |m+ n2) = O(n3). If we combine all these
steps, we will get a polynomial running time of O(n)O(n3) = O(n4) to find the maximum
flexibility in a task scheduling STN, which is however not more efficient than the com-
plexity of the LP formulation. We can see that the critical parts of this algorithm are the
calculation of a minimum flow and then determining a maximum independent set, based on
this flow.

However, so far we have only tried to maximize the total flexibility in a task scheduling
STN, but we have not looked at the consequences of doing so. Depending on the STP,
the flexibility is distributed over the tasks, but we can ask ourselves if this distribution is
considered ‘fair’?

51

Chapter 6

Egalitarian flexibility

Determining maximally flexible open schedules has now been shown to be solvable in poly-
nomial time by either the LP formulation 5.10 or our new alternative Maximum Flexibility
Algorithm 1. In Example 15 we have seen that in this maximally flexible open schedule
only the tasks t3, t5, t6, t9 and t10 received flexibility, while the other tasks were forced to
start at a single time-point. Can we consider this to be a ‘fair’ distribution of flexibility?

The problem that arises here is that a ‘fair distribution’ can be related to a number of
factors. It could be fair to give each task the same flexibility as any other task, but then
again, some agents control more tasks than other agents, resulting in the agents with more
tasks than the others to be heavily favored in their total received flexibility.

If we want to create a ‘fair’ schedule, there are multiple options we have in this case,
all depending on our interpretation of a ‘fair’ schedule. The three main types of a ‘fair’
schedule we use are the following:

1. All tasks receive an equal amount of flexibility, regardless of their controlling agent

2. All agents receive an equal total amount of flexibility, regardless of their number of
tasks controlled

3. All agents receive an equal average amount of flexibility per task controlled

The first type ignores agents and treats all tasks in an equal way, resulting in for all i, j that
f lex(ti) = f lex(t j). We refer to this first option as egalitarian task flexibility (ETF). This
egalitarian task flexibility can be applied in cases where all tasks are considered to be of
equal importance and where all tasks have a certain degree of uncertainty regarding their
potential starting time. Agents are of no importance in this case.

The second option now focuses on the agents instead of the tasks. All agents are con-
sidered to be equals in this case, independent of how many tasks an agent controls. The
objective is to give all agents an equal portion of flexibility, which means that for all Ak,Al
it holds that ∑ti∈Tk

f lex(ti) = ∑t j∈Tl
f lex(t j). This type of egalitarian flexibility is referred

to as egalitarian agent flexibility (EAF). The difference between EAF and ETF is the im-
portance of agents and tasks, where ETF only considers tasks, EAF only takes agents into
account1. EAF is particularly usable in cases where all parties involved are considered equal

1Although of course precedence relations in the STN are still taken into account when creating an EAF.

53

6.1 Egalitarian task flexibility Egalitarian flexibility

and for this reason also have to receive exactly the same total flexibility.
The third option of a ‘fair’ schedule shows a lot of resemblance with the second option,

since again agents are considered to be more important than tasks. However, in this case, we
also consider tasks although, apart from the precedence relations, we only look at the size
of the set Ti of agents Ai. To achieve an average amount of flexibility for every agent based
on their number of tasks, we want for all agents Ak,Al that ∑ti∈Tk

f lex(ti)
|Tk| = ∑t j∈Tl

f lex(t j)
|Tl | . We

refer to this type of egalitarian flexibility as egalitarian average agent flexibility (EAAF),
which is applicable in cases where all parties involved measure their importance by com-
paring the number of tasks controlled by each party.

In the coming sections we will discuss the three mentioned types of egalitarian flexibility
in more detail and we will present solution methods to obtain optimal schedules in each
case.

6.1 Egalitarian task flexibility

We can formalize the egalitarian task flexibility problem by the following definition:

Definition 20. A solution σo of a task scheduling STN S = (T,C) is referred to as an egal-
itarian task flexibility solution (ETF) if ∑

n
i=1 f lex(ti) is maximal under the condition that

f lex(ti) = f lex(t j) for all ti, t j ∈ T .

An ETF solution of a task scheduling STN ignores the agents that are present in an STN and
only ensures that all tasks receive an equal portion of flexibility. This problem is solvable in
polynomial time, since we can construct an LP formulation due to the presence of a linear
objective function with linear constraints.

max ∑
ti∈T

(ni−mi)

s.t. ∀ti : mi ≤ ni

ni ≤ lst(ti) (6.1)

mi ≥ est(ti)

s.t. ∀ti� t j, ni + pi ≤ m j

s.t. ∀ti, t j ∈ T ni−mi = n j−m j

Since we are still trying to maximize the flexibility in the task scheduling STN S = (T,C),
we can use the same objective function as used in LP formulation 5.10. The only difference
is the addition of the last constraint, which ensures that for all ti, t j ∈ T we have f lex(ti) =
f lex(t j).

Example 26. If we review the NedTrain case, we can see that in a maximally flexible open
schedule, the total flexibility is equal to 155, as is shown in Example 15, which is divided
over 5 tasks. Since this is hardly a fair distribution if we pursue an ETF solution, we have to
apply the LP formulation 6.1, which results in each task ti receiving f lex(ti) = 5, since both
the chains {t1, t2, t5, t13} and {t1, t2, t6, t7, t13} are the limiting factors in this STN. Assigning

54

Egalitarian flexibility 6.1 Egalitarian task flexibility

any more flexibility than f lex(ti) = 5 to all tasks would result in either the precedence
relations being violated or due dates not met.

This results in the total flexibility f lex(S) = 65, which is considerably lower than the
155 total flexibility without the ETF constraint.

Although we have presented an LP formulation 6.1, the question arises if we can do better,
i.e., compute it with lower computational complexity?

The answer to this question is at the moment unfortunately no, however, we have cre-
ated an alternative O(n4) algorithm, which is based on iteratively increasing the flexibility
assigned to all tasks until for one or more tasks ti ∈ T we reach f lexr(ti) = 0. The idea
behind this algorithm is to determine in each iteration the effect of a very small raise r3 of
the flexibility f lex of all tasks on the present slack values s > 0 and f lexr values2. Once
we know the effect of this raise, we determine for all slack values s > 0 and f lexr values
which one reaches 0 first if we apply r3 a certain number of times, resulting in a raise of
q. We then apply this raise, i.e., for all ti ∈ T we take f lex(ti) = f lex(ti)+q and repeat the
whole procedure. If we analyse this algorithm, we can see we start with the est() and lst()
calculations, which can be done in O(m+n) time, including the f lexr determination. In the
while-loop we try to remove all slack values and in each iteration at least one is set equal to
0 and will never become positive again. We therefore have to do at most m iterations in this
while-loop. Calculating all slack values can be done in O(m) time which has to be done at
most 2 times, which includes the s∗ calculations. To determine q it takes O(m+n) values to
take the minimum of, which gives us a total of O(m+n) calculations in each iteration. The
total complexity then adds up to O(m)O(m+n) = O(m2 +mn) = O(n4).

Theorem 2. The ETF Algorithm computes a feasible maximal ETF solution.

Proof of correctness of the ETF Algorithm. Since we start with f lex(ti) = 0 for all tasks ti ∈
T (which is a feasible schedule) and increase for all tasks in each iteration their flexibility
by a value q, an egalitarian solution is ensured. The only thing remaining we have to prove
now is that the final solution is still feasible (i.e., does not violate any constraints) and is
maximal.
Claim 1: The solution found by the ETF algorithm with f lex(ti) = f lex(t j) for all ti, t j ∈ T
is feasible.
Claim 2: The ETF algorithm terminates after a finite number of iterations.
Claim 3: The ETF algorithm finds a maximally flexible solution with f lex(ti) = f lex(t j) for
all ti, t j ∈ T .
Ad Claim 1: The only way to break a constraint is after we add a value q flexibility to all
tasks which is too large, i.e., for some ti we get f lexr(ti)< 0.

We know that q ≤ f lexr(ti)
∆ f lex∗p(ti)

, where ∆ f lexr(ti) denotes the number of times q will be
subtracted from f lexr(ti) if the flexibility of each task is increased by q. This results in
∀ti ∈ T we have that if f lex(ti) = f lex(ti)+q, that

f lexr(ti) = f lexr(ti)−q×∆ f lex∗p(ti)

2In the context of this algorithm, we define f lexr(ti) to be the flexibility that can still be assigned to ti
without violating any constraint.

55

6.1 Egalitarian task flexibility Egalitarian flexibility

Algorithm 4 Egalitarian Task Flexibility Algorithm
Input: STN S = (T,C), where |T |= n
Output: f lex(ti) for some ti ∈ T
Calculate est(ti) and lst(ti) for all ti ∈ T
Calculate f lexr(ti) for all ti ∈ T
while minti∈T{ f lexr(ti)}> 0 do

Calculate s(ti, t j) and s(t j, ti) for all ti� t j with ti, t j ∈ T
r1 = minti∈T{ f lexr(ti)} and r2 = mins(ti,t j)>0{s(ti, t j)} and take r3 =

min{r1,r2}
n

∀ti ∈ T set f lex∗(ti) = f lex(ti)+ r3
Calculate est∗(ti) := max({est∗(t j)+ p j + f lex(t j) | t j ∈ pre�(ti)}∪ ri) ∀ti ∈ T
Calculate lst∗(ti) := min({lst∗(t j)− pi− f lex(t j) | t j ∈ suc�(ti)}∪di− pi) ∀ti ∈ T
Calculate f lex∗r (ti) for all ti ∈ T
if s(ti, t j)> 0 then

Calculate s∗(ti, t j) based on est∗(ti), lst∗(ti)
∆s(ti, t j) =

s(ti,t j)−s∗(ti,t j)
r3

end if
q := ∞

for all ti ∈ T do
∆ f lexr(ti) =

f lexr(ti)− f lex∗r (ti)
r3

q = min{q, f lexr(ti)
∆ f lexr(ti)

}
end for
for all ∆s(ti, t j)> 0 do

q = min{q, s(ti,t j)
∆s(ti,t j)

}
end for
∀ti ∈ T : f lex(ti) = f lex(ti)+q.
Calculate f lexr(ti) for all ti ∈ T

end while
Return: f lex(ti) for some ti ∈ T

where

q×∆ f lexr(ti)≤
f lexr(ti)

∆ f lexr(ti)
×∆ f lexr(ti) = f lexr(ti)

This combined gives then:

f lexr(ti) = f lexr(ti)−q×∆ f lexr(ti)≥ f lexr(ti)− f lexr(ti) = 0

i.e., f lexr(ti)≥ 0 if f lex(ti) = f lex(ti)+q, indicating that after every iteration the solution
will still be feasible.

Ad Claim 2: In every iteration the value q is chosen in such a way that after updating every
f lex, either f lexr(ti) = 0 for some ti ∈ T or some s(ti, t j) > 0 is converted to s(ti, t j) = 0.
Since a slack value s will never become positive again once it has been reduced to 0, at most
2m iterations can be used to reduce (if necessary) all the slack values to 0, which means

56

Egalitarian flexibility 6.2 Egalitarian agent flexibility

that in at most 2m+ 1 iterations at least one f lexr(ti) value will be 0, since q > 0 in each
iteration.

Ad Claim 3: The maximality of the solution follows from the fact that for all ti, t j ∈ T
we have in each iteration that f lex(ti) = f lex(t j) and the algorithm only terminates once
f lexr(ti) = 0 for some ti ∈ T , indicating that f lex(ti) has reached its maximum value. We
can conlude from this that the ETF Algorithm finds a maximal feasible solution.

An ETF solution can be a ‘fair’ solution if tasks are considered to be more important than
agents controlling them. But in the case that agents are more important, we need a different
approach in order to create schedules that are considered ‘fair’ under these circumstances,
which is why we will introduce egalitarian agent flexibility.

6.2 Egalitarian agent flexibility

In the case that agents are more important than tasks, and we want to equally distribute
flexibility over the tasks such that every agent gets the same total flexibility, we want to
solve the egalitarian agent flexibility (EAF) problem. The main difference between the
ETF and the EAF problem is that in the ETF problem we want to give all tasks the same
flexibility, while in the EAF problem we want to give all agents the same total flexibility.

Example 27. If we review Example 26, we see that if every task ti ∈ T has f lex(ti) = 5 we
have a (maximal) ETF solution, but if we compare the total flexibility given to each agent,
we see that A1 has a total of 20, A2 also has a total of 20 and A3 has a total of 25 flexibility,
which shows that A3 is somewhat favored over the other two agents.

To formalize the EAF problem, we state the following definition:

Definition 21. A solution σo of a task scheduling STN S = (T,C) is referred to as an egal-
itarian agent flexibility solution (EAF) if ∑

n
i=1 f lex(ti) is maximal under the condition that

∑ti∈Tk
f lex(ti) = ∑t j∈Tl

f lex(t j) for every Ak,Al ∈ A .

As we can see, we still have the same objective function as in the ETF problem, since we
still want to maximize the total flexibility in σo, but in this case the condition under which
this is done is changed, by comparing the total flexibility given to an agent Ak by summing
over the flexibility values of its tasks and comparing this sum to the sum of all other agents
Al ∈ A .

Since the objective function is linear, and the only constraint that is changed in compari-
son to the ETF formulation is also linear, we again can create an LP formulation to represent

57

6.3 Egalitarian average agent flexibility Egalitarian flexibility

the EAF problem:

max ∑
ti∈T

(ni−mi)

s.t. ∀ti : mi ≤ ni

ni ≤ lst(ti) (6.2)

mi ≥ est(ti)

s.t. ∀ti� t j, ni + pi ≤ m j

s.t. ∀Ak,Al ∈ A ∑
ti∈Tk

f lex(ti) = ∑
t j∈Tl

f lex(t j)

This LP formulation gives us the guarantee that the problem is solvable in polynomial time.

Example 28. We can create an EAF solution for the NedTrain case, by applying the LP
formulation 6.2 to the corresponding STN. As the reader can verify, an optimal EAF solution
is: f lex(t3) = 35, f lex(t5) = 20, f lex(t6) = 25, f lex(t8) = 10, f lex(t9) = 10 and f lex(t10) =
35, where all the other tasks have no flexibility. Summing the values over the agents shows
us that every agent receives a total of 45 flexibility, resulting in a schedule that contains
a total of 135 flexibility. If we compare this to the maximally flexible schedule created in
Example 15, we see that in this case the EAF solution does not lose a large amount of
flexibility due to the presence of the EAF added constraint.

If we however review the EAF solution found in Example 28, we can see that although each
agent received the same total flexibility, agent A3 has more tasks to control than the other
agents, leaving less flexibility to be distributed to each of his tasks. This difference can
become even larger when the differences in the number of controlled tasks become even
larger. This is what we will take into account in the next section.

6.3 Egalitarian average agent flexibility

An EAF solution is a good start to ensure that all agents are considered equals. However,
are two agents Ai and A j with for example |Ti| = 2 and |Tj| = 10 also equals, and should
they both receive the same total flexibility? If for example both agents receive a total of 10
flexibility, then Ai has 5 flexibility per task, while A j has only 1 flexibility for each task.
This could be considered to be ‘unfair’.

A problem formulation that deals with this type of problems is the egalitarian aver-
age agent flexibility (EAAF) problem, and ensures that all agents receive the same average
flexibility per task. More formal:

Definition 22. A solution σo of a task scheduling STN S=(T,C) is referred to as an egalitar-
ian average agent flexibility solution (EAAF) if ∑

n
i=1 f lex(ti) is maximal under the condition

that ∑ti∈Tk

f lex(ti)
|Tk| = ∑t j∈Tl

f lex(t j)
|Tl | for every Ak,Al ∈ A .

One might look at the type of solution we require the EAAF problem to produce and note
that in fact the ETF problem satisfies the added EAAF constraint. The EAAF and ETF

58

Egalitarian flexibility 6.3 Egalitarian average agent flexibility

problem are however not equivalent, since the solution space of the ETF problem can be
(much) smaller than that of the EAAF problem. Demanding that all tasks have the same
flexibility as in the ETF formulation automatically fulfills the EAAF requirement, but an
EAAF solution does not have to fulfill the ETF requirement. We therefore have, if we
denote the solution space by Sol, that: Sol(ET F)⊆ Sol(EAAF).

Like the former two egalitarian problem formulations, we can also formulate an LP
problem to represent the EAAF problem:

max ∑
ti∈T

(ni−mi)

s.t. ∀ti : mi ≤ ni

ni ≤ lst(ti) (6.3)

mi ≥ est(ti)

s.t. ∀ti� t j, ni + pi ≤ m j

s.t. ∀Ak,Al ∈ A ∑
ti∈Tk

f lex(ti)
|Tk|

= ∑
t j∈Tl

f lex(t j)

|Tl|

If we compare this LP formulation with the LP 6.2, we see that there is only a subtle, but
important, change made to the last contraint. By dividing over the size of the set Tk and Tl
of respectively the agents Ak and Al , we divide over the number of tasks they have, resulting
in equality of the average flexibility per task that is given. Note that although the average
flexibility values per task per agent are equal, this is not a guarantee that giving each task
this average flexibility always results in a feasible schedule. It is possible that in an EAAF
solution the majority of the total flexibility of an agent Al is concentrated in a task ti ∈ Tk,
where other tasks t j ∈ Tk can receive hardly any flexibility, but on an average basis, all agents
are now equals.

Example 29. If we review the EAF solution from Example 28, we see that with respect to the
average flexibility per agent, A1 has 11.25, A2 has also 11.25 and A3 has only 9. Since A3
is at a disadvantage when compared to the other agents, we can use the LP formulation 6.3
to create an EAAF solution. The result is then: f lex(t3) = 35, f lex(t5) = 20, f lex(t6) = 25,
f lex(t8) = 10, f lex(t9) = 21.25 and f lex(t10) = 35.

If we compare this to Example 28, we see that only t9 has an increase of flexibility, from
10 to 21.25. Calculating the average flexibility values results in every agent having 11.25
average flexibility. This results in a total of 146.25 flexibility, which is quite near the total
flexibility in Example 15.

With our three egalitarian flexibility formulations defined, we can also give an answer to the
last research question: How can we add independency restrictions to each workcrew such
that their schedules are just as adaptable as the schedules of the other workcrews?, i.e.,
how to create a decoupling such that there is egalitarian flexibility.

The global answer to this question would be to apply one of our egalitarian flexibility
(LP) formulations and from its solution derive a decoupling {Si}k

i=1. Since every egalitarian
flexibility problem under its current LP formulation delivers an optimal solution, the cor-
responding decoupling will automatically also be optimal, i.e., maximally flexible, as was

59

6.3 Egalitarian average agent flexibility Egalitarian flexibility

shown in Proposition 6. However, we cannot advise the use of one egalitarian problem for-
mulation over the other, since this entirely depends on the situation and preferences of the
controlling agents. All egalitarian problem formulations however are shown to be solvable
in polynomial time, either by the use of the LP formulations, or in the ETF case by the use
or our own new alternative ETF Algorithm 4.

60

Chapter 7

Conclusion and Discussion

In this thesis we have stated the special properties of a task scheduling Simple Temporal
Problem S = (T,C), i.e., S ∈STP≺, when compared to an arbitrary STP. We have shown
how to represent an STP S by a Simple Temporal Network and from this derive a schedule
based on the est() and lst() values, which answered the first research question. The special
properties of task scheduling STPs allowed us to compute arbitrary schedules σ for the task
scheduling STP in O(m+ n), by only using the first column and first row in the temporal
distance matrix D, which is a significant improvement over the O(n3) time required for
arbitrary STPs which require the computation of the entire matrix D. The second research
question was answered by this solution, resulting in the answer to the first main question.
The improvement was based on exploiting the strict precedence relations present in a task
scheduling STP, which allowed us to compute the earliest starting times est() and latest
starting times lst() more efficiently.

With the introduction of open schedules σo, a schedule representation has been intro-
duced to represent starting time-intervals for all tasks in T . Based on the open schedules,
temporal decouplings could be derived, which ensured that each agent would receive its own
independent STP to derive its schedule from, by adding some inter-agent constraints to the
constraint sets of the involved agents, which answers the third research question. However,
arbitrary (open) schedules or decouplings were shown not to be always in the best interest
of the agents, which is why we introduced a new flexibility metric f lex to give an exact
representation of the total flexibility present in a created open schedule, which allowed us
to create maximally flexible open schedules.

We have given an LP formulation that represents the maximum flexibility problem,
which can be solved in polynomial time. Apart from this, we have also formulated a new
alternative algorithm, the Maximum Flexibility Algorithm, which is able to calculate a max-
imally flexible open schedule in O(n4) time. The open schedules that can be derived from
the solutions of both the LP formulation and the Maximum Flexibility Algorithm contain
the maximum amount of flexibility that is possible according to our new flex-metric, which
answers our fourth research question, since we can apply any of these two methods to ac-
quire the required schedule.

Moreover, we have given a proof that a decoupling derived from a maximally flexible
open schedule is an optimal decoupling as well, based on our f lex metric, i.e., the sum of

61

Conclusion and Discussion

the flexibility values in the decoupled subproblems equal the sum of flexibility values in
the original STP. We have therefore shown that there is no loss of flexiblity if we create
a maximally flexible decoupling, when compared to a maximally flexible open schedule
without the optimal decoupling constraints, which answers our fifth research question.

Maximally flexible open schedules are schedules that contain as much total flexibility as
possible, however, this can be schedules that heavily favor some tasks or agents by assigning
a lot of flexibility to them and leaving only little flexibility for other tasks or agents. To pre-
vent this, we have introduced egalitarian flexibility schedules, which we divided into three
categories: egalitarian task flexibility, egalitarian agent flexibility and egalitarian average
agent flexibility. The first one ensures that all tasks receive the same amount of flexibility,
where in the second case all agents receive the same total flexibility and the third case ensure
that all agent receive an equal average amount of flexibility per task. In all cases we have
presented an LP formulation to represent the problem, which shows that these problems are
solvable in polynomial time, and in the ETF case we have also shown a new alternative
Egalitarian Task Flexibility Algorithm, which computes an optimal solution in O(n4) time.
By introducing LP formulations for all problems and also the ETF Algorithm in case of the
ETF problem, we have shown how to create egalitarian flexibility schedules for any of these
three problems, which answers the final research question and thereby also the third main
question, since from the resulting solutions, a decoupling can be derived.

Future research can be done in the area of online schedules, since it would be interesting
to see how schedules can be adapted once set in motion. If during the execution of a sched-
ule a task ti ∈ Tk does not ‘need’ its flexibility, then it may be possible that the flexibility of ti
can be transferred to a t j ∈ Tk with ti� t j. Further research in this area of online scheduling
could improve the flexibility that can be used during the execution of a schedule.

Other future work can be done by increasing the efficiency of the Maximum Flexibility
Algorithm or any of its sub-algorithms to improve the current computation time of O(n4),
by improving the critical parts of the algorithm, i.e., the minimum flow algorithm and the
maximum independent set determination.

Since our formulations allow for the inclusion of a relative release date (i.e., delays)
between two tasks, it would be interesting to see if this inclusion would affect the current
algorithms and if it is also possible to include relative due dates between two tasks. Exten-
sions can also be made by incorporating task weights related to the flexibility received, since
in [10] it was shown that node weights could be included in the calculations and should not
increase the complexity of the algorithm. Other research could be done in the direction of
the creation of more efficient algorithms for the EAF and the EAAF case.

62

Bibliography

[1] M Aloulou and M.C. Portmann. An efficient proactive-reactive scheduling approach
to hedge against shop floor disturbances. In Multidiscplinary scheduling: theory and
applications, pages 223–246, 2005.

[2] A. Cestal, A. Oddi, and S.F. Smith. Profile based algorithms to solve multiple capac-
itated metric scheduling problems. In In Proceedings of the 4th international confer-
ence on artificial intelligence planning systems, pages 214–223, 1998.

[3] Laura Ciupala and Eleonor Ciurea. About preflow algorithms for the minimum flow
problem. 2008.

[4] Eleonor Ciurea and Laura Ciupala. Algorithms for minimum flows. page ?, 2001.

[5] R. Dechter. Constraint processing. The Morgan Kaufmann Series in Artificial Intelli-
gence. Morgan Kaufmann Publishers, 2003.

[6] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

[7] Leon Endhoven, Tomas Klos, and Cees Witteveen. Maximal flexibility and optimal
decoupling in task scheduling problems. 2012.

[8] Luke Hunsberger. Algorithms for a temporal decoupling problem in multi-agent plan-
ning. In Proceedings AAAI, 2002.

[9] Luke Hunsberger. Group decision making and temporal reasoning. 2002.

[10] Dimitrios and Kagarisi. Maximum independent sets on transitive graphs and their
applications in testing and cad. page ?, 1997.

[11] Léon R. Planken, Mathijs de Weerdt, and Cees Witteveen. Optimal temporal decou-
pling in multiagent systems. In Proceedings AAMAS, pages 789–796, 2010.

63

