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SUMMARY 

A hydrological model is an abstraction of complex and non-linear physical 
processes that operates to predict the behaviour of time-varying streamflows in a 
catchment. The strength of such predictions depends on the presumed model structure, 
the described parameters, and the quality of data used. Generally, model predictions 
assume that data fed into hydrological model (conceptual lumped) and its overall 
structure are correct, and model prediction is deliberately presented based on 
measurement data using degree of knowledge by discovering the optimum parameter 
set (calibration). However, the model predictions need to consider subsequent 
uncertainty because calibration and uncertainty procedures are associated with each 
other. The confidence of model outputs cannot be dealt without evaluation of 
uncertainty that represent a prediction of hydrological responses.  

 
Often single hydrological models cannot equally describe the characteristics of 

hydrological processes for all ranges of model outputs (streamflows), due to the 
multiple hydrological responses and their value in different magnitudes. The multi 
modelling approach opens up possibilities for handling such difficulties and allows 
improve the predictive capability of models. One of multi modelling approaches called 
"committee modelling" is one of the topics in part of this study. In this approach, 
different individual models specialized on distinctive hydrological regimes that 
instantiated in same model structure are combined to produce a single new model 
where each individual model's strength is presented optimally and their weaknesses 
compensated by each other.  

 
Special attention is given to the so-called “fuzzy committee” approach to 

hydrological modelling (Solomatine, 2006; Fenicia et al. (2007). In it first different 
processes (range of catchment responses) are calibrate which fit to represent a 
particular process and merge them through a fuzzy weighing. Further tests using this 
approach have been carried out by Kayastha et al. (2013) with proposing several types 
of weighting schemes in objective functions to calibrate the specialized models, as 
well as different classes of membership functions to combine these models. The 
models are built for different components of flow hydrograph separately and then 
combined using appropriate methods to provide a more comprehensive and accurate 
prediction. Such models referred to "committee models" in this thesis. The weights 
assigned to each specialized model’s output are based on optimally designed fuzzy 
membership functions. The results of experiments are presented in this thesis. All the 
committee models have shown a good efficiency in model predictions compared to 
single hydrological (optimal) models, which are applied for prediction of conceptual 
hydrological model for the Alzette, Bagmati, Brue, and Leaf catchments.  In addition, 
the test results of these newly proposed committees models where weights are 
calculated based on model state variables (soil moisture, base flow, etc.), inputs 
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(precipitation and evapotranspiration) and outputs (simulated streamflows) are also 
reported here and these weights are different at every time depending on the current 
value of flow. 

 
The models specialized on low flows of the catchments have a relatively high error 

compared to high flows. One possible way to improve the performances of the overall 
committee model is using hybrid committee models. In this approach, a committee 
model is formed from two specialized models (conceptual model for high flows and 
the data-driven artificial neural networks model for low flows) using an appropriate 
combination method (fuzzy membership function). Hybrid committee models are 
tested in the Bagmati and Leaf catchments and their it has been found that they are the 
most accurate among all committee models. 

 
Another important theme addressed in this study is uncertainty analysis and 

prediction. Uncertainty analysis helps to enhance the reliability and credibility of 
model predictions in hydrological modelling. One aspect here relates to Monte Carlo 
(MC) simulation widely used for uncertainty analysis. In it the model outputs 
associated with a set of inputs or/and parameters obtained from the given distributions 
and then a quantitative estimate of the confidence is computed. Generally, this needs a 
large number of model simulations and therefore more attention has to be given to 
developing the economical sampling schemes that allow working with 
computationally intensive models. This thesis presents the results of the investigated 
effects of different sampling schemes (MCS, GLUE, MCMC, SCEMUA, DREAM, 
PSO, and ACCO) for uncertainty estimations of hydrological models. Comparative 
interpretation of the resulting uncertainty statistics shows that the uncertainty analysis 
using sampling in Monte Carlo framework should take into account that the 
uncertainty estimates considerably depend on the sampling method used.  

 
Another aspect of uncertainty analysis relates to predicting uncertainty (rather than 

its analysis). The estimation of uncertainty based on MC simulations methods is 
generally valid for the past data, however, it is not necessarily valid for the future 
model runs in operation. To overcome such difficulties, it would be beneficial to find 
economical ways of predicting uncertainty for the future states of an environmental 
system. Machine learning techniques (data-driven modelling) are used to improve the 
accuracy of hydrological model prediction/forecasting, however, these techniques do 
not permit to build probability distribution function of model (model uncertainty). 
Shrestha et al. (2009, 2013) proposed to build model of probability distribution 
function as predictive uncertainty models, which allows an adequate uncertainty 
estimation for hydrological models. Inputs to these models are specially identified 
representative variables (past events precipitation and flows, and possibly soil 
moisture). The trained machine learning models are then employed to predict the 
model output uncertainty, which is specific for the new input data. A brief description 
of a method to access uncertainty of the model by encapsulating and predicting 
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parameter uncertainty of hydrological models using machine learning techniques and 
their results are presented in this thesis. This method is tested in the Bagmati and Brue 
catchments, to predict uncertainty (quantiles of pdf) of the deterministic outputs from 
the HBV conceptual hydrological model. The results reveal that this method is 
efficient for assessing uncertainty and produced results are quite accurate. 
Furthermore, this method is tested with various sampling based methods of uncertainty 
outputs of hydrological models.  

 
The results produced by several predictive uncertainty models (machine learning 

models) vary, the reasons being: a) the use of different predictive uncertainty models 
that is results of various sampling algorithms in different data sets used to train a 
predictive uncertainty model, and b) different sets of inputs data used to train a 
predictive uncertainty model which leads to several models. In this thesis a 
combination of models is proposed (forming thus a committee) which is applied to 
estimate the uncertainty of streamflows simulation from a conceptual hydrological 
model in the Bagmati and Nzoia catchments. 

 
An important “user” of hydrological models’ simulations is flood inundation 

modelling. The associated uncertainty provides additional information for decision 
making that is related to preparedness and minimizing losses from flooding. This 
modelling process requires information on river flows (e.g, boundary conditions, 
Manning's coefficients, channel cross section and depth), observations of flood extent 
(topographic data), and method for quantifying the performance of the flood 
inundation pattern. Runoff is the main contributor to flood hence knowledge on flow 
characteristics of a certain flood event also required for modelling of inundation. The 
complexity of flood processes can be represented by forming a sequence (cascade) of 
models (hydrological and hydraulic) and by geospatial processing. However, such 
integration is not easy to set up, because it requires large amounts of data, processing 
power and knowledge on the process interactions between models. Various sources of 
uncertainty have to be considered which resulting in uncertain model cascade 
outcomes. One common method to estimate uncertainty is MC technique, which is 
used to produce an ensemble of deterministic model simulations and then assigning it 
the goodness of fit measure based on observed flood inundation extent. Remotely 
sensed data (maps) of flood extent can be to calibrate the models in a deterministic 
framework with a single observed event.  

 
A realistic uncertainty analysis of such integrated models requires multiple model 

runs and hence enough computational resources. In this thesis, SWAT hydrological 
and SOBEK hydrodynamic models are integrated (cascade) to quantify of the 
uncertainty in flood inundation extent for the Nzoia catchment in Kenya. These 
models are set in the high performance computing framework (parallel computing on a 
cluster) and the final outputs used to estimate the uncertainty in flood inundation 
extent which is presented as the relative confidence measure. 
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Overall, this thesis presents research efforts in: (i) committee modelling of 

hydrological models, (ii) hybrid committee hydrological models, (iii) influence of 
sampling strategies on prediction uncertainty of hydrological models, (iv) uncertainty 
prediction using machine learning techniques, (v) committee of predictive uncertainty 
models and (vi) uncertainty analysis of a flood inundation model. This study is a 
contribution to hydroinformatics, which aims to connect various scientific disciplines: 
hydrological modelling, hydrodynamic modelling, multi-model averaging, data driven 
models, hybrid hydrological models, uncertainty analysis and high performance 
computing. The drawn conclusions allow for advancing the theory and practice of 
hydrological and integrated modelling. The developed software is made available for 
public use and can be used by the researchers and practitioners to advance the 
mentioned areas further. 
 
 
Nagendra Kayastha 

Delft, The Netherlands 
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Chapter 1  
Introduction 

This chapter introduces existing research on committee modelling, intended to improve hydrological 
model prediction, uncertainty estimation of hydrological models, and uncertainty prediction using 
machine learning techniques. Committee models use a multi-modelling approach in an effort to 
improve model prediction by involving a combination of model outputs. An overview of committee of 
predictive uncertainty models, and uncertainty analysis of integrated models, is presented. Finally, 
research questions, objectives of research, a description of the catchments used in the present case 
studies, and an outline of this thesis are presented.  

1.1 Background 

Hydrological modelling tools are employed in a wide range of applications, for example, 
estimating flows of ungauged catchments, for real-time flood forecasting, in the design and 
operation of hydraulic structures, and to study the effects of land-use and climate change. 
Hydrological models attempt to describe rainfall-runoff relationships, and these relationships 
are very complex due to non-linear and spatial-temporal variability of the rainfall process and 
catchment characteristics.  

 
Despite the regular emergence of new models, and with a wide spectrum of existing 

models, no single model exists that demonstrates superior performance for all catchments 
(Nayak et al., 2005). The current trend is shifting towards building increasingly complex and 
sophisticated models because of rapid advancement in computational efficiency, as well as a 
better understanding of the physics and dynamics of water processes. Such complex and 
sophisticated models may still be inaccurate in representing reality, due to the use of multiple 
parameters and a lack of reasonable quality input data. Therefore, a model has to describe 
information by using the simplest useful structure possible, which would use reasonably 
accurate estimates of unknown model parameters and encompass good predictive capability. 

 
A hydrological model is an abstraction of a complex, non-linear, time and space-varying 

hydrological process, attempting to imitate reality. This model operates to allow predictions 
of the behaviour of varying streamflows in the catchment over time. However, the validity of 
predictions always depends on the presumed model structure, parameters, and quality of data 
used. In usual practice, modellers often assumed that the data fed into hydrological models 
(conceptually lumped), and its overall structure are correct, and that the model prediction 
presents information based on the collected measurement data, using the identified optimal 
parameter set. However, there always exists an inconsistency between the model prediction 
and the corresponding measurement data, regardless of how precisely the model has been 
built and how perfectly the model is calibrated. The prediction of streamflows from 
hydrological models is persistently constrained by the following factors: (i) multiple 
hydrological responses, for instant, high flow, low flow and  water balance (Kollat et al., 
2012); (ii) one or more objectives to express the tradeoffs between the observed and 
simulated outputs (Zhang et al., 2009); and (iii) different performance measures are sensitive 
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to different flow magnitudes (Westerberg et al., 2011). These constraints oblige modellers to 
improve model prediction by investigating a multi-modelling approach, which might involve 
multi-objective calibration (Efstratiadis and Koutsoyiannis, 2010), ensemble modelling 
(Viney et al., 2009), and model averaging (Ajami et al., 2006; Fenicia et al., 2007; Kayastha 
et al., 2013).  

 
Looking at the history of hydrological modelling, advancements have made considerable 

changes to Sherman's unit hydrograph method (Sherman, 1932) towards conceptual models 
(e.g. HBV) and process-based models (e. g., MIKE-SHE). Moreover, data-driven (regression) 
models have been also successfully to describe the rainfall-runoff relationships.  

 
Apart from dealing with model accuracy, hydrological modelling requires proper 

estimation and thoughtful interpretation of uncertainty in order to understand the significance 
of the results. Incorporating uncertainty into deterministic predictions or forecasts helps to 
enhance the reliability and credibility of the model. The realistic estimation of the 
corresponding predictive uncertainty helps in adequate decision-making processes 
(Georgakakos et al., 2004). There are three major sources of uncertainty in modelling: (i) 
errors in input data and data for calibration; (ii) deficiency in model structure; and (iii) 
uncertainty in model parameters. Monte Carlo (MC) techniques are commonly used to 
estimate the uncertainty of hydrological models, however these techniques use past data, so 
that the estimates are not necessarily valid for future model runs during operation. Hence, it 
would be beneficial to develop practical ways to estimate the model uncertainty for future 
situations.  

 
In the context of flood management, hydrological models are typically linked to hydraulic 

modelling and geospatial processing, and these are carried out by integration of the 
hydrological and hydrodynamic (1D and 2D) models. However, such integration requires the 
accessibility of data, processing power, and complex process interactions between models. 
Models are always influenced by various sources of uncertainty, the study of uncertainty in 
flood modelling serves as important information for decision-making that relates to 
preparedness and for minimizing losses from flooding. Uncertainty analysis of integrated 
models based on Monte Carlo simulations requires considerable computational resources. 

 
This thesis principally explores enhancements in committee hydrological models, hybrid 

hydrological models, various sampling strategies for uncertainty analysis, uncertainty 
prediction using machine learning techniques, committee of predictive uncertainty models, 
and flood inundation models and their estimation of uncertainty, using high performance 
computing. The corresponding literature review is provided in each chapter. 

 

1.1.1 Conceptual hydrological models 

Conceptual hydrological models are simplified representations of the hydrological 
processes in a catchment. These are composed of a number of fluxes and storages, and are 
described by mathematical equations. Storages are interconnected through fluxes of rainfall, 
infiltration, percolation, and other factors that control the way in which water is added, 
stored, transmitted, and discharged from the system, representing physical elements (White, 
2003). The mathematical equations used to describe the system are semi-empirical, with a 
physical basis. Parameters and fluxes represent the average over the entire catchment. While 
these parameters cannot be measured in the field, they can be estimated through model 
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calibration. However, for calibration to be accurate, there is a need for sufficient hydro-
meteological records, which may not be continuously available. Well-structured conceptual 
models should be simple, easy to implement in the computer code, and reveal the model 
complexity and prediction capability. 

 
Many conceptual hydrological models have been developed with different levels of 

physical representation and varying degree of complexity. However, to easily operate them, it 
is required that their characteristics be well understood. Crawford and Linsley (1966) 
introduced one of the first (widely cited) conceptual model called the Stanford Watershed 
Model. Other models include the TANK model (Sugawara, 1967, 1995); Sacramento Soil 
Moisture Accounting model (Burnash et al., 1973); NAM model (Nielsen and Hansen, 1973); 
HBV model (Bergström and Forsman, 1973); TOPMODEL (Beven and Kirkby, 1979); and 
others. A brief description of several early conceptual models can be found in Fleming 
(1975). In addition, Singh (1995) provided comprehensive descriptions of a large number of 
conceptual models. 

 

1.1.2 Committee hydrological models (multi-models) 

The complexity of most natural phenomena originates from the fact that they are 
composed of a number of interacting processes. However, their modelling is typically 
concentrated on a single model handling all processes without consideration for local 
solutions (Corzo and Solomatine 2007). Such simple, single-issue models have less 
prediction capability and often suffer from inaccuracies. The solution to this challenge could 
be an approach to modelling that handles different sub-processes separately with diverse 
models fit to represent a particular process. When the process-based modelling paradigm of 
modelling is used, every model can be built, specifically oriented to a particular process, or 
the same model structure can be used but calibrated differently for different regimes of the 
same process (Fenicia et al., 2007; Kayastha et al., 2013). In the case of data-driven models 
(for example, neural networks), the training set is split into a number of subsets, and separate 
models are trained on these subsets (Corzo and Solomatine 2007). The input (state) space can 
be divided into a number of regions in each of which a separate specialized model is built 
(Figure 1-1.). These specialized models are also called local or expert models, and form a 
modular model (MM). One of the issues to consider here is to ensure compatibility of the 
local models at the boundaries between the processes or regimes which can be done by using 
so-called fuzzy committees (Solomatine 2006).  

 

 
 

Figure 1-1. Modular modelling: local models are responsible for particular sub-processes and their 
outputs combined (Solomatine, 2006) 
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One of the challenges in conceptual hydrological models is to identify a set of parameters, 
characterizing the behaviour of time-varying streamflows in a catchment. In lumped models, 
the parameters cannot be measured directly, due to the problems related to dimensionality 
and scaling (Beven 2000). These are computed based on the measurement of meteorological 
forcing data to produce model predictions that are as close as possible to the observed 
discharge data, using some degree of expertise and experience. Typically, this approach 
focuses on the single model, using the single best set of parameters, and the committee 
approach assumes multiple models can be built from different components of streamflows 
that correspond to characteristics of different flow regimes. These models are then combined 
to provide a more comprehensive and accurate representation of catchment processes. Such 
models are referred to as multi-models, or committee models. The main hypothesis of the 
multi-model combination approach is that different models depict different aspects of the 
data. For this reason, the combination of these aspects can better predict streamflows than 
those produced by any one of the individual models involved in the combination (Fernando et 
al., 2012). 

 
Recently, so-called model averaging has been receiving more attention in hydrological 

modelling. In essence, (weighted) model averaging is a subset of committee modelling 
focussing on particular ways of combining models. The idea of model averaging is also to 
integrate individual models into a single new model, where each individual model's strengths 
are presented in such way that one can obtain optimal prediction, with the weaknesses of each 
model compensated for by each other. This section of the thesis presents one of the ways to 
improve prediction of hydrological models by the modelling of different processes separately. 
Each model represents a particular process, and they can then be merged to produce a 
combined model having a higher degree of accuracy.  

 

1.1.3 Uncertainty analysis of hydrological models 

Several uncertainty analysis methods have been developed to predict the uncertainty of 
hydrological models and to derive meaningful uncertainty in model outputs. Broad 
classification of these methods can be found in Shrestha and Solomatine (2008). The Monte 
Carlo (MC) simulation technique has been used successfully for uncertainty analysis in 
hydrological modelling for many years. It allows for the quantification of model output 
uncertainty resulting from uncertain model parameters, input data or model structure. The 
approach involves random sampling from the distribution of uncertain inputs, and the model 
runs continuously until a desired statistically significant distribution of outputs is obtained. 
The main advantage of MC simulation is that it is simple to apply. However, it requires a 
large number of samples (or model runs), so their applicability may be limited only to simple 
(fast) models. In the case of computational intensive models, the time and resources required 
by this method could be prohibitively expensive. 

 
One of the versions of MC analysis is the Generalized Likelihood Uncertainty Estimation 

(GLUE) [(Beven and Binley (1992), see also its critical analysis by Stedinger et al. (2008); 
and Mantovan and Todini (2006)] ) - it is quite popular in hydrological studies. A procedure 
for partially correcting the prediction limit in the GLUE method has been proposed by Xiong 
and O’Connor (2008).  

 
One of the canonical sampling methods is the Markov Chain Monte Carlo (MCMC) 

method (for hydrological applications, see Kuczera and Parent, 1998; Gilks et al., 1998; Yang 
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et al., 2008). Vrugt et al., 2003 proposed merging the MCMC sampler with the SCE-UA 
global optimization algorithm, and Blasone et al. (2008a,b) proposed a version of GLUE 
based on MCMC sampling.  

 
If a reliable method for MC simulation based uncertainty estimation of hydrological 

models is to be developed, one has to ensure that the results would not depend too much on 
the sampling method used. To facilitate meaningful interpretation of uncertainty results, it is 
necessary to investigate the effects of different sampling schemes for uncertainty estimations 
of hydrological models, to assess applicability of “economical” sampling schemes (allowing 
for working with computationally intensive models) and compare them. 

 

1.1.4 Uncertainty analysis using machine learning techniques 

Machine learning (ML) techniques (data-driven modelling) are widely used in the field of 
rainfall-runoff modelling to improve the accuracy of prediction/forecasting. They are also 
used to build emulators (surrogates) of the process-based models. Shrestha et al., 2009 
proposed to use ML to build predictive models of uncertainty (this method is entitled 
Machine Learning for Uncertainty Estimation (MLUE)). These techniques do not permit the 
building of the probability distribution function of model output directly, but it is possible to 
build a model that would predict the quantiles of this function and thus allow for reasonable 
uncertainty predictions (Shrestha et al., 2009; Shrestha et al., 2013).  

 
It has been already mentioned above about the advantanges of MC simulation-based 

uncertainty analysis techniques. These techniques provide only average measures of 
uncertainty based on past data. However, if one needs to estimate the uncertainty of a model 
in a particular hydro-meteorological situation in real-time application of complex models, 
MC simulation becomes impractical because of the large number of model runs required. In 
this respect, machine learning techniques can be used as predictive models that emulate the 
MC simulations and, hence, provide an approximate solution to the uncertainty analysis in a 
real-time application without re-running the MC simulations. This method allows for 
assessing uncertainty of complex models in real time. Part of this thesis explores an efficient 
method to assess the uncertainty of the model by encapsulating and predicting the parameter 
uncertainty of hydrological models, using machine learning techniques. 

 

1.1.5 Committee of predictive uncertainty models  

The MLUE method (Shrestha et al., 2009; Shrestha et al., 2013) allows for building the 
predictive uncertainty models that use the results of MC sampling (or any other sampling 
scheme) and are able to predict uncertainty (quantiles of pdf) of the deterministic outputs 
from hydrological model. The inputs to these models are specially identified representative 
variables (past events of precipitation and flows). The trained machine learning models are 
then employed to predict the model output uncertainty, which is specific for the new input 
data.  

 
The problem here is that different sampling results in different data sets used to train a 

predictive uncertainty model, which results in several models. These numerous predictive 
uncertainty models (machine learning models) produce several uncertainty results in 
calibration and verification. However, the results presented from a group of competing 
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models are much more complex than any single model. Each model has its own predictive 
capabilities and limitations. The combination of competing models allows the strength of 
each individual model to merge in an optimal way so that the best prediction can be obtained. 
Combining models require determining the weights, which average the model outputs thereby 
taking advantages of each individual model. Part of this thesis proposes a method that 
improves their prediction by merging their outputs optimally, that is, to form a committee of 
all predictive uncertainty models to generate the final output.  

 

1.1.6 Flood inundation models and their uncertainty 

Description of flood processes and their spatial representation is a complex and 
interdisciplinary task, which can be realized by understanding the hydrology and hydraulics 
of a system. Accordingly, integration of relevant models is necessary. The coupling of two or 
more models usually precedes such integation frameworks, where the outputs of one model 
provide inputs for another. This allows easy data transfer between models, —not only related 
to data but also for the associated uncertainties. 

 
Even though it is not straightforward to apply, the associated uncertainty should be 

quantified for each model involved (Pappenberger and Beven, 2006; Todini and Mantovan, 
2007; Beven, 2009). A common problem of such models is the challenge of quantifying and 
describing these uncertainties (McMillan and Brasington, 2008; Cloke and Pappenberger, 
2009). Furthermore, there may be inconsistencies in the results because the individual models 
may describe the same processes in different ways, while most models have been designed to 
simulate specific aspects of the water processes (Guzha and Hardy, 2010). In the last few 
years, many efforts have been undertaken to deal with the integrated modelling in 
hydrological and hydrodynamic domains (He et al., 2009), but still their accuracy is an issue 
(Pappenberger et al., 2009). Despite the progress made in integrated modelling, links between 
the uncertainties of models have not been systematically explored, and the investigation of 
such a framework is important for uncertainty studies of integrated models. 

 
When models are used for decision-making, it is, therefore, crucial that the uncertainties 

are properly described. In a linked modelling system, this is a real challenge due to the 
multiple sources of uncertainty. To gain insight into this problem, it is necessary to assess the 
uncertainties, when these have passed through the linked models. Availability of high-
performance computers and cluster/cloud solutions makes it possible linking of complex 
models, and explicitly presenting the uncertainties associated with predictions.  

1.2 Research questions 

The key research questions addressed in this thesis are as follows: 
(a) How the committee modelling approach would allow for improving hydrological 

model prediction further? 
(b) How to improve methods of combining process-based and data-driven models 

(hybrid modelling), for the improvement of hydrological model accuracy?  
(c) How do various sampling strategies affect the uncertainty estimation of 

hydrological models? 
(d) How can machine learning models be tuned and applied for predicting 

hydrological model uncertainty? 
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(e) How is it possible to combine predictive uncertainty models? 
(f) How can we propagate the uncertainties in the linked hydrological and 

hydrodynamic models in an efficient way? 

1.3 Research objectives 

The main objective of this research is to further develop methods to improve the 
committee modelling approach, and effective and efficient methods for uncertainty analysis 
of hydrological models. Specific objectives are: 

 To refine the methodology of committee (multi-model) modelling, focussing on 
the dynamic weighted-averaging approach.  

 To explore the possibilities of enhancing the accuracy of hydrological models 
by combining the processes-based and data driven models (hybrid models).  

 To analyze the effects of different sampling strategies for estimation of 
uncertainty of a hydrological model. 

 To further develop and refine the uncertainty analysis method MLUE (based on 
using machine learning to encapsulate the results of MC runs).  

 To implement and test the multi-model averaging approach for predictive 
uncertainty models.  

 To quantify and propagate uncertainty in a chain of hydrological and hydraulic 
models (on the Nzoia catchment case study). 

 To implement the software integrating the SWAT modelling system with the 
NSGAX tool for multi-objective calibration.  

 

1.4 Case studies 

The descriptions of five different catchments taken for case studies in this research are 
given below.  

1.4.1  Alzette catchment 

Alzette catchment is located in the large part of the Grand-Duchy in Luxembourg. The 
river has a length of 73 km along France and Luxembourg. The streamflows are measured at 
Hesperange gauging station, which is placed along the Alzette River upstream of 
Luxembourg-city. The drainage area of the catchment is 288 km2, and land cover is 
composed of cultivated land (27%) grassland (26%), forestland (29%) and urbanized land 
(18%). Marls and Marly-sandstones on the left bank tributaries and limestones on the right 
bank tributaries of the Alzette River mainly represent lithology. Marls areas are characterized 
by impermeable bedrock, therefore rainfall water, after losses for evaporation, reaches the 
stream mostly as saturated subsurface flow that develops at the interface between the 
weathered zone and the underlying bedrock areas. When the weathered zone becomes 
saturated, or during heavy rainfall events, surface runoff occurs. In limestone areas, a large 
part of rainfall water infiltrates and after subtraction of losses percolates to the groundwater 
aquifer, which is capable of storing and releasing large quantities of water. The response to 
rainfall of Marl areas is faster and characterized by larger volumes of water than that of 
limestone areas. Moreover, the large part of the baseflow during prolonged dry periods is 
mostly sustained by the limestone aquifer (Fenicia et al., 2006). The basin is instrumented by 
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several rain gauges including tipping-buckets and automatic samplers measuring at a time 
step which does not exceed 20 min. Hourly rainfall series were calculated by averaging the 
series at the individual stations with the Thiessen polygon method. Daily potential 
evaporation was estimated through the Penman-Monteith equation (Monteith, 1965).  

 

 
Figure 1-2. Location map of the Alzette catchment in Luxembourg, black triangles denote 

the rainfall stations, and circles denote the discharge gauging stations.  
 

1.4.2 Bagmati catchment 

Bagmati catchment (26°42′–27°50′N and 85°02′–85°58′E) lies in the central mountainous 
region of Nepal. The elevation ranges from 57 m to 2,913 m encompasses nearly 3700 km2 
within Nepal and reaches the Ganges River in India. The catchment area draining to the 
gauging station at Pandheradobhan is about 2900 km2 (see Figure 1-3) and it covers the 
Kathmandu valley including eight districts of Nepal. The source of the Bagmati River is 
Shivapuri which is surrounded by Mahabharat mountain ranges at an altitude of around 2690 
m. The length of the main channel is about 195 km within Nepal and 134 km above the 
gauging station. Discharge measured at Pandheradobhan is used for the analysis (adopted 
from Solomatine et al. (2008). The altitude discharge gauging stations elevations is 180 m 
and peak discharge is found to be 5030 m3/s based on the data from 1988 to 1995. The mean 
daily discharge is approximately 150 m3/s measured with average precipitation of 250 mm 
and air temperature is 15.8 ◦ C. More than half of the watershed area (58%) is covered by 
forest. Cultivated land accounts for 38% of the area of the watershed while nearly 4% of the 
land in the watershed is barren. Most of the area of this catchment is occupied by the hilly 
and mountainous land. The mean areal rainfall was calculated using Thiessen polygons. 
Although this method is not recommended for mountainous regions, the mean rainfall is 
consistent with the long-term average annual rainfall which is computed by the isohyetal 
method (Chalise et al., 1996). The long-term mean annual rainfall of the catchment is about 
1500 mm with 90% of the rainfall occurring during the four months of the monsoon season 
(June to September). Hydrological seasons are categorized in three different groups in Nepal: 
(a) dry pre-monsoon season (March–May) with almost no rain; (b) rainy monsoon season 
(June–September) and (c) post-monsoon season (October–February) with little rain.(Sharma 
and Shakya, 2006). 
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. 

 
Figure 1-3. Location map of the Bagmati catchment in Nepal, triangles denote the rainfall stations, 

and circles denote the discharge gauging stations.  

 

1.4.3 Brue catchment 

The Brue catchment is located in South West of England, UK. This catchment has been 
extensively used for research on weather radar, quantitative precipitation forecasting and 
rainfall-runoff modelling, as it has been facilitated by a dense rain gauge network as well as 
coverage by three weather radars. Numerous studies (Bell and Moore, 2000; Moore, 2002) 
have been conducted regarding the catchment, especially by the Hydrological Radar 
EXperiment (HYREX),Special Topic Program of Natural Environment Research Council 
(NERC), UK. Figure 1-4 shows the locations of the Brue catchment and the gauging stations. 
The major land use is pasture on clay soil and there are some patches of woodland in the 
higher eastern part of the catchment.  

 

 
Figure 1-4. The Brue catchment showing dense rain gauges network (the horizontal and vertical axes 

refer to the easting and northing in British national grid reference coordinates). 

 

The catchment has a drainage area of 135 km2
 with the average annual rainfall of 867 mm 

and the average river flow of 1.92 m3/s, for the period from 1961 to 1990. Besides weather 
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radar, there is a dense rain gauge network which comprises 49 Cassella 0.2 mm tipping-
bucket rain gauges, having recording time resolution of 10 seconds (Bell and Moore, 2000). 
The network provides at least one rain gauge in each of the 2 km grid squares that lie entirely 
within the catchment. The discharge is measured at Lovington.  

 

1.4.4 Leaf catchment  

The Leaf river catchment has a 1950 km2 area located in the north of Collins, Mississippi 
as shown in Figure 1-5 and its river length is 290 km in a southeastern direction from its 
headwaters in the southeast Scott County to its confluence with the Pascagoula River in 
George County (Duan et al., 2007). Leaf River watershed contains different land use types, 
including forest (49.9%), cropland (2.9%), pasture (22.9%), barren (15.5%), and wetlands 
(8.6) and the dominant land use within the watershed is forested. The mean annual 
precipitation is 1432 mm, and the mean annual runoff is 502 mm based on ten consecutive 
water-years (1951-1961) of data (daily precipitation, potential evapotranspiration estimates 
and observed streamflows). Leaf River Basin displays an annual cycle of six wet months, 
December–May, followed by six dry months, June–November. The variance of the recorded 
flow records peaks around February and is at a minimum from September through October. 
Statistics show a mean flow rate of 27.11 cm and maximum and minimum values of 1313 cm 
and 1.55 cm, respectively (Parrish et al., 2012) 

 
 
 

 
Figure 1-5. Location map of the Leaf catchment 

 

1.4.5 Nzoia catchment 

The Nzoia catchment (latitudes 1º 30’N and 0º 05’S and longitudes 34º and 35º 45’E) is 
located in western Kenya in the Lake Victoria basin as shown in Figure 1-6. The average 
annual discharge is about 1740 x 106 m3 with the catchment area of 12,709 km2, and a length 
of 334 km up to its mouth draining into Lake Victoria. The Nzoia River originates from two 
highland areas of Mt. Elgon and Cherengany Hills. The climate of the catchment is mainly 
tropical humid, with average temperatures ranging from 16ºC in the highlands to 28º C in the 
lower semi-arid areas. The potential evapotranspiration within the catchment decreases with 
increasing altitude. The lowest temperature occurs in the months June to August and this 
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coincides with the lowest evapotranspiration amounts. Generally in the drier months, the 
evapotranspiration exceeds rainfall amounts. The mean annual rainfall varies from a 
minimum of 1076 mm in the lowlands to a maximum of 2235 mm in the highlands. The area 
experiences four seasons in a year as a result of the inter-tropical convergence zone. There 
are two rainy seasons and two dry seasons, namely long rains (March to May) and the short 
rains (October to December). There is no distinctive dry season, but relative to the rainy 
seasons, the dry seasons occur in the months of January to February and in some parts, June 
to September. A total of 13 rainfall stations (1962-2000), 3 temperature stations (1971-2000) 
and 1 river gauging stations (1966-1998) were considered in this study.  

 

 
Figure 1-6. Location map of the Nzoia catchment 

 

1.5 Terminology 

Terminology related to committee modelling and uncertainty analysis of a hydrological 
model is presented below. These definitions may have undergone certain changes over time, 
due to the preferences of different authors.  

 
Hydrological model: The hydrological modelling tool that is used to predict streamflows 

and their uncertainty. The lumped conceptual hydrological (rainfall runoff) model HBV is 
used in this thesis. 

 
Hydraulic model: The hydrodynamic model is used for flood inundation modelling. In this 

study, the SOBEK 1D-2D model is used to simulate flood inundation downstream from the 
Nzoia catchment, Kenya. 

 
Single optimal model: The hydrological model is calibrated by single-objective 

optimization. 
 
Specialized model: A model reproducing different components of a flow hydrograph, 

which correspond to the characteristics of different flow regimes or models, specialized for 
high flows and/or low flows.  
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Committee models: Several models are combined using e.g., weighted averaging to 
provide a more comprehensive and accurate prediction. Often the combined models are 
specialized models.  

 
Fuzzy committee model: A committee model where the specialized models are combined 

using a fuzzy membership function. The weights assigned to each specialized model’s output 
are based on optimally designed fuzzy membership functions.  

 
Hybrid committee model: This committee model is created by the optimal combination of 

conceptual and data-driven models, e.g. conceptual models specialized in high flows, and 
data-driven models specialized in low flows. 

 
Predictive uncertainty model: A machine learning (data-driven) model used to encapsulate 

dependency of the uncertainty characteristics (pdf or its quantiles) on some representative 
variables (e.g. past events precipitation and flows). The trained machine learning models can 
be employed to predict the model output uncertainty, which is specific for the new hydro-
meteorological situations. 

 
SWAT-NSGAX: A particular implementation of the NSGA-II algorithm for multi-objective 

optimization of the SWAT model.  
 
SWAT-SOBEK: Integration of the SWAT and SOBEK modelling systems. In this study, 

we estimate the uncertainty of the flood inundation assessment made by this integrated 
model. 

 
Verification (or validation): Testing the model running at test data which takes place after 

calibration to test if the model performs on a portion of data, which was not used in 
calibration. The objectives of verification is to validate the model’s robustness and ability to 
describe the catchment’s hydrological response. 

 
Cross-validation: A procedure used to minimize the overfitting in the machine learning 

models during their training (calibration). The common way to do this is to use the third data 
set (cross-validation set), apart from the training and test data sets.  

 
Flood inundation: Consequences of excessive water in a river channel, which cause 

flooding and an overflow of water at the bank of the river. This information can be obtained 
from flood modelling and will be valuable in communicating flood risk information to 
decision makers, so that timely planning and mitigation measures can be taken.  

1.6 Outline of the thesis  

This thesis is organized into nine chapters. A brief overview of the structure is given 
below.  
 

Chapter 1 introduces the problems, motivations, research questions, and objectives of the 
research with a description of five catchments. 

 
Chapter 2 describes the conceptual hydrological model and techniques of computational 

intelligence as the major tools for data-driven modelling, including artificial neural networks, 
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instance-based learning, and model trees. This chapter details the calibration of hydrological 
models, with a single objective and multi-objectives, search algorithms and the setup of HBV 
and SWAT hydrological models and ANN rainfall runoff models for various catchments. 

 
Chapter 3 is devoted to multi-modelling (committees) in hydrological modelling. It starts 

with a brief overview of multi-models averaging, followed by different methods of model 
combination techniques. This chapter proposes various types of committee models, and 
presents the results, and their comparison, for various catchments (Alzette, Brue, Bagmati 
and Leaf). 
 

Chapter 4 explores the hybrid committee of hydrological models to improve model 
predictions. First, it describes an overview of a hybrid model, specially for hydrological 
modelling, and then a calibration of a low-flow model using different objective functions. 
The goal was to build an ANN low-flow specialized model and a high-flow specialized 
model (HBV) and to find their optimal combination with appropriate membership function to 
form a hybrid committee model. These models are tested for the Baghmati and Leaf 
catchments.  

 
Chapter 5 is devoted to parametric uncertainty analysis in hydrological modelling. It 

starts with a brief overview of uncertainty analysis methods and comparison of different 
methods of uncertainty analysis in the context of hydrological modelling. It also discusses 
various methods of sampling-based uncertainty analysis and their comparison results. These 
methods were used to analyze the uncertainty of a lumped conceptual hydrological model of 
the Nzoia catchment. 

 
Chapter 6 presents the uncertainty prediction of hydrological model using machine 

learning techniques. Various machine learning models, such as artificial neural networks, 
model trees, and locally weighted regression, are tested and compared on the Bagmati and 
Brue catchments for the uncertainty analysis of lumped conceptual hydrological models.  

 
Chapter 7 explores the committee of several machine learning-based predictive 

uncertainty models. It uses the methods for combining several predictive uncertainty models, 
which are built from various sampling-based uncertainty methods of hydrological modelling 
(also presented in Chapter 5). 

 
Chapter 8 explores the uncertainty analysis of integrated models by linking the SWAT 

hydrological model and SOBEK hydrodynamic model to represent the uncertainty in flood 
inundation (probabilistic flood maps) in the Nzoia catchment. It also explains the setup for 
high performance computers for use in parallel computing for analyzing uncertainty by 
running multiple simulations simultaneously (in parallel). 

 
Chapter 9 describes the conclusions of the presented research based on the various case 

studies included in this thesis. Finally, possible directions for further research are suggested.  
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Figure 1-7. Outline of the thesis 
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Chapter 2  
Conceptual and data-driven 
hydrological modelling  

This chapter presents the classification of the models used in this study: hydrological models [namely, 
Hydrologiska Byråns Vattenbalansavdelning (HBV) conceptual hydrological model and the soil and 
water assessment tool (SWAT) hydrological model],and data-driven models. Their calibration by 
single- and multi-objective optimization is considered as well.  

2.1 Introduction 

Hydrological modelling tools permit to hydrologists and engineers to better understand 
and describe the hydrological systems in the catchments or basins. They are useful for studies 
of streamflows problems, water management, climate impact, and land use changes. 
Hydrological models represent complex, spatially and temporally distributed physical 
processes through straight-forward mathematical equations with parameters. These 
parameters can be estimated based on available knowledge, measurements of physical 
processes, or through calibration using input and output measurements.  
 

The hydrological models have a variety of characteristics that require classification. Doing 
so ensures that the capabilities and limitations of each model can be identified correctly. The 
classifications are generally based on the following criteria (Singh 1995; Refsgaard 1996): (i) 
the extent of physical principles that are applied in the model structure; (ii) the treatment of 
the model inputs and parameters as a functions of space and time. In an example of first 
criterion, a rainfall-runoff model cab be categorized as deterministic or stochastic (refer to 
Figure 2-1). Deterministic models can be further categorized as physically-based or 
conceptual, according to the degree of complexity and physical completeness present in the 
formulation of the structure (Refsgaard, 1996). Figure 2-1 presents these three types of 
rainfall-runoff models, which include (i) data-driven models (black box), (ii) conceptual 
models (grey box); and (iii) physically based models (white box). If any of the input-output 
variables or error terms of the model are regarded as random variables having probability 
distribution, then the model is stochastic. An example of a stochastic model can be found in 
Fleming (1975), Box and Jenkins (1970), and Clarke (1973). 

 

 
Figure 2-1. Classification of rainfall-runoff models according to physical processes (Refsgaard, 1996). 
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Data-driven (black box) models involve mathematical equations that are not derived from 
an analysis of the concurrent input and output time series in the catchments. Conceptual 
models are generally described as models arising from simple descriptions to equations 
governing relationships that aim to describe the reality (Refsgaarrd, 1997). Physically based 
models are built on the basis of based on the physical principles of processes wherein 
equations of continuity, momentum and/or energy conservation are used to describe the 
system behaviour.  

 

2.2 HBV hydrological models for the considered case studies  

2.2.1 HBV model brief characterization  

The HBV model is a lumped conceptual hydrological model that includes conceptual 
numerical descriptions of the hydrological processes at the catchment scale. The model was 
developed at the Swedish Meteorological and Hydrological Institute (Bergström, 1976). The 
abbreviation HBV stands for Hydrologiska Byråns Vattenbalansavdelning (Hydrological 
Bureau Water Balance Section). This model has been successfully applied in all over the 
world (Lindström et al., 1997); its prediction uncertainty has been considered, as well (see, 
e.g., Seibert, 1997; Uhlenbrook et al., 1999). 
 

 
Figure 2-2. Schematic representation of the simplified version of the HBV model used in this thesis 
with routines for snow, soil, and runoff response (adapted from Shrestha and Solomatine, 2008). 

 
The simplified version of the HBV model follows the structure of the HBV-96 model 

(Lindström et al., 1997), and its schematic diagram is shown in Figure 2-2. The model 
comprises subroutines for snow accumulation and melt, the soil moisture accounting 
procedure, routines for runoff generation, and a simple routing procedure. The snowmelt 
routine is based on a degree-day relation, with an altitude correction for precipitation and 
temperature: 

( )snowmelt CFMAX T TT   (2-1) 

where TT is the threshold temperature, T is the altitude-corrected temperature; and the 
parameter CFMAX is the melting factor. The threshold temperature is usually close to 0º C 
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and is used to define the temperature above which snowmelt occurs. The threshold 
temperature is also used to determine whether the precipitation will fall as rain or snow. If the 
mean air temperature is less than the threshold temperature, precipitation is assumed to be in 
snow form. The snowpack is assumed to retain melt water as long as the amount does not 
exceed a certain fraction (given by the parameter WHC) of the snow. When temperature 
decreases below the threshold temperature, this water refreezes according to the formula: 

( )refreezingmeltwater CFR CFMAX TT T    (2-2) 

where CFR is the refreezing factor. 
 
The soil moisture accounting routine computes the proportion of snowmelt or rainfall P 

(mm/h or mm/day) that reaches the soil surface, which is ultimately converted to runoff. This 
proportion is related to the soil moisture deficit and is calculated using the relation (see also   
Figure 2-3a):  

BETAR SM

P FC
   
 

 (2-3) 

where R is the recharge to the upper zone (mm/h or mm/day), SM is the soil moisture storage 
(mm), FC is the maximum soil moisture storage (mm), and BETA is a parameter accounting 
for nonlinearity. If the soil is dry (i.e., small value of SM/FC), the recharge R, which 
subsequently becomes runoff, is small because the major portion of the effective precipitation 
P is used to increase the soil moisture. However, if the soil is wet, the major portion of P is 
available to increase the storage in the upper zone.  

 
The actual evapotranspiration EA (mm/h or mm/day) from the soil moisture storage is 

calculated from the potential evapotranspiration EP (mm/h or mm/day) using the following 
formula (refer to Figure 2-3. HBV model parameters relations (a) contributions from 
precipitation to the soil moisture or ground water storage and (b) ratio of actual and potential 
evapotranspiration.Figure 2-3b): 

   if 

                        if 

SM
EA EP SM FC LP

FC LP

EA EP SM FC LP

     
  

 (2-4) 

where LP is the fraction of FC above which the evapotranspiration reaches its potential level. 
The actual evapotranspiration that occurs place from the soil moisture storage depends on the 
soil moisture. Evapotranspiration is equal to the potential value if the relative soil moisture 
(i.e., SM/FC) is greater than LP. If the relative soil moisture is less than this value, the actual 
evapotranspiration is reduced linearly to zero for a completely dry soil. 

 
A runoff generation routine transforms excess water R from the soil moisture zone to 

runoff. This routine consists of two conceptual reservoirs arranged vertically one over the 
other. The upper reservoir is a nonlinear reservoir whose outflow simulates the direct runoff 
component from the upper soil zone, while the lower one is a linear reservoir whose outflow 
simulates the base flow component of the runoff. Excess water or recharge R enters the upper 
reservoir, and its outflow is given by: 
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(1 )
0

ALFAQ K UZ    (2-5) 

where K is the recession coefficient of the upper reservoir, UZ is the storage in the upper 
reservoir (mm), and ALFA is the parameter accounting for the non-linearity. There is also a 
capillary flux CF (mm/h or mm/day) from the upper reservoir to the soil moisture zone, 
which is calculated by the following formula: 

1
SM

CF CFLUX
FC

   
 

 (2-6) 

where CFLUX is the maximum value of capillary flux. The lower reservoir is filled by a 
constant percolation rate PERC (mm/h or mm/day), as long as there is water in the upper 
reservoir. Outflow from the lower reservoir is calculated according to the following equation: 

1 4Q K LZ   (2-7) 

where K4 is the recession coefficient of the lower reservoir, and LZ is the storage in the lower 
reservoir (mm). The total runoff Q is computed as the sum of the outflows from the upper 
and lower reservoirs. The total runoff is then smoothed using a triangular transformation 
function whose base is defined by a parameter MAXBAS (hours or days). 

 

 
Figure 2-3. HBV model parameters relations (a) contributions from precipitation to the soil moisture 
or ground water storage and (b) ratio of actual and potential evapotranspiration. 

 

2.2.2 Software development of HBV model 

A component of this study effort was to develop software based on the above- mentioned 
model structure (HBV-96 model, Lindström et al., 1997) to ensure that the model and all its 
variables can be accessed in an effective way for uncertainty analysis. Preparation of input 
data and analysis of model results lead to increased model setup time. Such software helps to 
minimize this problem and furthermore enhances our understanding and prediction of the 
temporal dynamics of hydrologic processes.  

 
The inputs to this model are observations of precipitation, air temperature and potential 

evapotranspiration. A daily time step is used for the inputs, but also possible to use a shorter 
time step (hourly). The evaporation values are normally monthly averages, although this 
software uses the daily values. Air temperature data are used for the calculations of snow 
accumulation and melt. They are also used to adjust potential evapotranspiration when the 
temperature deviates from normal values.  
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Figure 2-4. The interface of the HBV model software 

 
The model software’s interface of is designed to automatically save and retrieve 

hydrological data. It simulates the time series and  presents the results in graphs, tables, and 
text files. In addition, it allows evaluation of the model by comparison of the observed and 
simulated streamflows and volumetric water balance in both graphical and tabular form. In 
addition, it allows users to easily manipulate several parameters for the purpose of manual 
model calibration. However, this software does not include automatic calibration as part of 
the model simulation. The interface allows visualization of the time series of simulated 
streamflows and state variables based on selected parameters. Figure 2-5 shows a time series 
plot of simulated and observed streamflows. The water balance plot module allows water 
volume difference, precipitation and evapotranspiration in a time series. The state variable 
module provides information regarding the soil moisture, upper zone, lower zone, 
percolation, fast flow distribution and slow flow distribution over time. Figure 2-4 shows the 
time series of the model states.  

 
The HBV model software interface allows for: 

 Developing spatially lumped conceptual hydrological models, and fitting them to 
data. 
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 Manually adjusting the model parameters and initial conditions. 
 Simulating outputs of the model, including water balance and state variables. 
 Evaluating and comparing simulated and observed streamflows.  
 Summarizing performance by different measures, and displaying graphs and statistics. 
 Storing the model inputs and outputs for further analysis. 

This software permits a user the extraction of  the model states and the visualization of 
their value in the time series during the comparison of observed and simulated streamflows. 
The behaviour of model states (based on physical rule) is often not present during calibration. 
The state variable plot presents the distribution of states along the time series.  

 

 
Figure 2-5. Snapshot of observed and simulated steramflows and water balance 

 
This interface makes it possible to handle the various time scales (i. e., hourly, daily, and 

monthly) of input data, model states and model simulations. This model is developed in 
Delphi programming language and has two versions – one for command line execution and 
one with the visual interface. The command line execution is used for calibration and 
uncertainty prediction where multiple executions of the model are required. Based on the 
function and procedures written in Delphi, we rewrote the code in MATLAB; therefore, it 
can efficiently integrate the MATLAB-based algorithm with the analysis and visualization of 
complex multidimensional model outputs. The MATLAB version allows straightforward 
integration with other types of data analysis and model analysis, including model calibration 
and uncertainty prediction. Figure 2-4 shows a screenshot of the user control interface for 
selecting parameters.  
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Figure 2-6. Snapshot of the model state variables 

 
Open source development of the HBV model provides transparency, free access, and 

ability to modify the source code. The source code documentation is available at  
http://www.unesco-ihe.org/hydroinformatics/HBV/delphi_doc.html. The functions and 
procedures code allows for the framework to be extensible and independently developed. 
Moreover, the software provides ease of use, easy data development and efficient model 
setup and execution. 
 

2.2.3 Models setup 

The summary statistics and records of data for calibration and verification for five 
catchments are presented in Table 2-1. This data set covers multiple-year periods (except 
Brue and Alzette), all seasons, and multiple peak flows. Ideally, we must aim to split data 
into statistically similar sets (coverage of seasons, number and size of peaks, variance, mean, 
etc.). Of course, in these types of hydrological data splits, one is constrained by the 
requirement to maintain data in contiguous blocks (to be able to plot the time series data, 
such as hydrographs). Therefore, the calibration and verification data sets usually have some 
statistical differences. 
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Table 2-1. Summary of the runoff data in calibration and verification for various catchments 
 
Statistical properties of 
streamflows Data  Calibration  Verification  

Alzette (Area =288 km2)    

Period (day/month/year  hour)  
7/29/2000  12:00 - 
8/6/2002  7:00 

7/29/2000  12:00 -
8/6/2001  7:00  

8/6/2001  8:00 -
8/6/2002  7:00 

Number of data points 17720 8960 8760 

Average (m3/s) 4.64 5.55 3.70 

Minimum(m3/s) 0.45 0.59 0.45 

Maximum (m3/s) 51.41 51.41 31.15 

Standard deviation(m3/s) 5.35 5.52 5.00 

Bagmati (Area=3500 km
2
)      

Period (day/month/year) 
01/01/1988 - 
31/12/1995 

01/03/1991 -  
30/121995 

01/07/1988 -  
28/02/1991 

Number of data 2922 1767 1155 

Average (m3/s) 150 150.8 148.6 

Minimum (m3/s) 5.1 5.1 7.7 

Maximum (m3/s) 5030 5030 3040 

Standard deviation(m3/s) 271.2 280.5 256.4 

Brue (Area=135 km
2
)      

Period (day/month/year  hour) 
24/06/1994 05:00 –  
31/05/1996 13:00  

24/06/1994 05:00 –  
24/06/1995 04:00  

24/06/1995 05:00 –  
31/05/1996 13:00 

Number of data 16977 8760 8217 

Average (m3/s) 1.91 2.25 1.53 

Minimum (m3/s) 0.15 0.17 0.14 

Maximum (m3/s) 39.58 39.58 29.56 

Standard deviation(m3/s) 3.14 3.68 2.37 

Leaf (Area=1924 km
2
)      

Period (day/month/year) 
28/07/1951 -  
21/09/1961 

28/07/1951 -  
25/07/1957 

26/07/1957 -  
21/09/1967 

Number of data 3717 2190 1527 

Average (m3/s) 28.28 23.02 35.81 

Minimum (m3/s) 1.56 1.56 2.92 

Maximum (m3/s) 1313.91 549.35 1313.91 

Standard deviation(m3/s) 64.48 47.37 82.51 

Nzoia (Area=12709 km
2
)    

Period (day/month/year) 

01/01/1970 -  01/01/1970 -  01/01/1980- 

12/12/1985 12/12/1979 12/12/1985 

Number of data 5675.00 3544.00 2131.00 

Average (m3/s) 88.50 95.88 76.24 

Minimum (m3/s) 8.62 15.36 8.62 

Maximum (m3/s) 578.68 578.68 381.49 

Standard deviation(m3/s) 63.85 65.65 58.74 
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2.2.3.1. HBV model setup for the Brue catchment  

The hourly data involving rainfall, discharge, and automatic weather data (temperature, 
wind, solar radiation, etc.) were computed from the 15-minute data. The basin average 
rainfall data were used in the study. The hourly potential evapotranspiration was computed 
using the modified Penman method recommended by the United Nations Food and 
Agriculture Organization (FAO) (Allen et al., 1998). One-year hourly data from 1994/06/24 
05:00 to 1995/06/24 04:00 was selected for calibration of the HBV hydrological model and 
data from 1995/06/24 05:00 to 1996/05/31 13:00 was used for the validation (testing) of the 
hydrological model. Each of the two data sets represents almost a full year of observations, 
and their statistical properties are shown in Table 2-1. 

 

 
Figure 2-7. Observed discharge and rainfall in calibration and verification period for the Brue 

catchment 

 

Table 2-2. Ranges and calibrated values of the HBV model parameters for Brue catchment. 

Parameter Description and unit Ranges Calibrated 
value 

FC Maximum soil moisture content (mm) 100-300 160.335 

LP Ratio for potential evapotranspiration (-) 0.5-0.99 0.527 

ALFA Response box parameter (-) 0-4 1.54 

BETA Exponential parameter in soil routine (-) 0.9-2 1.963 

K Recession coefficient for upper tank (/hour) 0.0005-0.1 0.001 

K4 Recession coefficient for lower tank (/hour) 0.0001-0.005 0.004 

PERC Maximum flow from upper to lower tank (mm/hour) 0.01-0.09 0.089 

CFLUX Maximum value of capillary flow (mm/hour) 0.01-0.05 0.0038 

MAXBAS Transfer function parameter (hour) 8-15 12 

 
The HBV model has 13 parameters (4 parameters for snow, 4 for soil, and 5 for the 

response routine). Because there is little or no snowfall in the catchment, the snow routine 
was excluded and only 9 parameters (Table 2-2) were used. The model was first calibrated 
using the global optimization routine – adaptive cluster covering algorithm, ACCO 
(Solomatine, 1999) to find the best set of parameters. Subsequently, manual adjustments of 
the parameters were made by visual comparison of the observed and simulated hydrographs. 
The ranges of parameter values for calibration and uncertainty analysis were established 
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based on the ranges of calibrated values from the other model applications (e.g., Braun and 
Renner, 1992) and the hydrologic knowledge of the catchment. The ranges were extended 
when the solutions were found near the border of the parameter ranges and re-calibration of 
the model was performed with the extended range of the parameters.  

 
 

 
Figure 2-8. Hydrograph for the Brue catchment in a part of the (a) calibration period and (b) 

verification period. 

 
The model was calibrated using the Nash and Sutcliffe efficiency (NSE) value (Nash and 

Sutcliffe efficiency, 1970) as a performance measure of the HBV model. An NSE value of 
0.96 was obtained for the calibration period. The model was validated by simulating the 
flows for the independent verification data set, and the NSE is 0.83 for this period. Figure 2-8 
shows the observed and simulated hydrograph in a part of calibration and in verification 
period. HBV model is quite accurate, but its error (uncertainty) is quite high during the peak 
flows. 

 

2.2.3.2. HBV model setup for the Bagmati catchment  

The long-term mean annual discharge of the river at the station was 151 m3/s but the 
annual discharge varied from 96.8 m3/s in 1977 to 252.3 m3/s in 1987 (Department of 
Hydrology and Meteorology, 1998). The daily potential evapotranspiration was computed 
using the modified Penman method recommended by FAO (Allen et al., 1998). A total of 
1767 numbers of daily records from 1 March 1991 to 31 December 1995 were selected for 
calibration of the process model (in this study the HBV hydrological model).  Data from 1 
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January 1988 to 28 February 1991 were used for the validation (verification) of the process 
model. The first two months from 1 March 1991 to 29 April 1991 of the calibration data were 
used as a warming-up period and hence excluded during calibration. The separation of the 8 
years of data into calibration and validation was done on the basis of hydrological seasons. 
The statistical properties of the runoff data are presented in Table 2-1 

 

 
 
Figure 2-9. Observed discharge and rainfall in calibration and verification period for the Bagmati 

catchment 

 
The NSE value of 0.87 was obtained for the calibration period; this value corresponds to 

the root-mean-squared error (RMSE) value of 102.63 m3/s. The NSE was 0.83 for this period 
with the RMSE value of 111.56 m3/s. Please note that the standard deviation of the observed 
discharge in the validation period is 9% lower than that in the calibration period. The uniform 
ranges of parameters (Table 2-3) are used for calibration of the HBV model using the ACCO 
algorithm. The observed and simulated discharges in the verification period are shown in 
Figure 2-25, and their performances are presented in Table 2-4.  

 
 
Table 2-3. Ranges and optimal values of the HBV model parameters for Bagmati 
catchment.  
 

Parameter Description and unit Ranges Value 

FC Maximum soil moisture content (mm) 50 - 500 354.98 

LP Limit for potential evapotranspiration 0.3 - 1 0.71 

ALFA Response box parameter 0 - 4 0.167 

BETA Exponential parameter in soil routine 1- 6 1.0002 

K Recession coefficient for upper tank (/day) 0.05 - 0.5 0.280 

K4 Recession coefficient for lower tank (/day) 0.01 - 0.5 0.0767 

PERC Maximum flow from upper to lower tank (mm/day) 0 - 8 7.99 

CFLUX Maximum value of capillary flow (mm/day) 0 - 1 0.00006 

MAXBAS Transfer function parameter (day) 1 - 3 2.546 
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2.2.3.3. HBV model setup for the Nzoia catchment  

The HBV model with 9 model parameters was configured for calibration with the data 
period from 01/01/1970 to 31/12/1979 and verification period from 01/01/1980 to 
31/12/1985, with these data sets consisting of 3544 and 2131 daily data respectively. The first 
two months of data were considered as the model warm-up period. The daily potential 
evapotranspiration was computed using the modified Penman method. Each of the two data 
sets represents a different duration of observations. Their statistical properties are given in 
Table 2-1 and rainfall and observed runoff are shown in Figure 2-10. The observed and 
simulated discharges are shown in Figure 5-15 and their performances are presented in Table 
5-3 in Chapter 5.  

 
 

 
Figure 2-10. Observed discharge and rainfall in calibration and verification period for the Nzoia 

catchment 

2.2.3.4. HBV model setup for the Leaf catchment  

The daily data period is from 28/07/1951 to 25/07/1957 and verification 26/07/1957 to 
21/09/1967 which include 2190 and 1527 daily data respectively. The first two months of 
data were considered as the model warm up period. The statistical properties of two data sets 
are shown in Table 2-1 and the observed rainfall and discharge are shown in Figure 2-11. The 
observed and simulated discharges by HBV in verification period are shown in Figure 2-26 
and their performance are presented in Table 2-5. 

 
 
 

 
Figure 2-11. Observed discharge and rainfall in calibration and verification period for the Leaf 

catchment 
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2.2.3.5. HBV model setup for the Alzette catchment 

The hourly basin average rainfall data and discharge was used for the Alzette catchment. 
One-year hourly data from 7/29/2000 12:00h to 8/6/2001 00:00h were selected for 
calibration, and data from 8/6/2001 8:00h to 8/6/2002 7:00h were used for the verifying 
(testing) of the hydrological model (Table 2-1). The observed rainfall and discharge are 
shown in Figure 2-12. The fragment of observed and simulated discharges by HBV in the 
verification period is shown in Figure 3-6 (a) and their performances are presented in Table 
3-6 in Chapter 3. 

 
 

 
Figure 2-12. Observed discharge and rainfall in calibration and verification period for Alzette 

catchment 

2.3 SWAT model for the Nzoia catchment 

2.3.1 SWAT model description 

The soil and water assessment tool (SWAT, Arnold et al., 1998) is a spatially-distributed 
and semi-physically-based hydrological model that is used for the modelling of river basins, 
catchments and watersheds. SWAT incorporates physical processes and lumps together parts 
of catchments that have the same soil and land cover properties. The main processes in the 
model are precipitation, evapotranspiration, runoff, groundwater flow, and storage and their 
interaction within the catchment. The model also accounts for vegetation growth and 
management practices occurring in the catchment (Figure 2-13). The physical processes 
associated with water movement, sediment movement, crop growth, and nutrient cycling can 
be directly modelled by SWAT using input data (Arnold et al., 2005). The SWAT model 
requires topography, soil, land use and weather data whereby the watershed is divided into a 
number of sub-catchments using topography data. The sub-catchments-based simulation is 
particularly beneficial when different areas of the catchment are dominated by land uses or 
soil pattern in which these properties directly impact hydrology. Each sub-catchment is 
subsequently again subdivided into Hydrologic Response Units (HRUs; unique combination 
of land use, and soil). Inputs for each sub-catchment are grouped into the following 
categories: climate, HRUs, ponds/wetlands, groundwater, and the main channel (or reach) 
draining the sub-catchment. 
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Figure 2-13. Schematic representation of hydrologic cycle in SWAT (Neitsch et al., 2005) 

 

The driving force behind SWAT is water balance, which is determined by calculating the 
input, output, and storage changes of water at the catchment's surface. The hydrologic cycle 
as simulated by SWAT is based on the water balance equation: 

(R Q E w Q )
t

t o dry surf a seep gw
i o

SW SW


       (2-8) 

where SWt  is the final soil water content, SW0 is the initial soil water content on day i, t  is 
the time (days), Rday is the amount of precipitation on day i , Qsurf  is the amount of surface 
runoff on day i, Ea is the amount of  evapotranspiration on day i , Wseep is the amount of water 
entering the vadose zone from the soil profile on day i, Qgw is the amount of return flow on 
day i. 
 

The subdivision of the watershed enables the model to reflect differences in 
evapotranspiration for various crops and soils. Runoff is predicted separately for each HRU 
and routed to obtain the total runoff for the watershed, which provides a much better physical 
description of the water balance. In SWAT the water balance of each HRU in SWAT is 
represented by four storage volumes: snow, soil profile (0–2 m), shallow aquifer (typically 2–
20 m), and deep aquifer. Once water is introduced into the system as precipitation, the 
available energy (specifically solar radiation) exerts a major control on the movement of 
water in the land phase of the hydrologic cycle. These processes are significantly affected by 
temperature and solar radiation and include snow fall, snow melt and evaporation. Because 
evaporation is the primary water removal mechanism in the watershed, the energy inputs 
become very important in reproducing or simulating an accurate water balance. 

2.3.2 Inputs for the SWAT model  

Precipitation is one of the influential inputs for runoff simulation and the degradation of 
rain gauge networks strongly affects the simulated hydrographs (e.g., Sun et al. 2002). 
Generally climate data (e. g., precipitation and temperature) are measured at the individual 
gauge stations in the field and used as input data for hydrological models. In a distributed (or 
semi-distributed) hydrological model, input data should be fed into sub-catchment models to 
cover spatially the entire area of the catchment. Hence, spatial interpolation of climate data is 
necessary to upscale the data from point to the sub-catchment area. However, interpolation is 
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possible only if the rain gauge data is available for the area of interest. Various interpolation 
methods exist in hydrological modelling, for example, the Thiessen polygon method 
(Thiessen, 1911), inverse distance weighting (e.g. Shepard, 1968), and geostatistical methods 
(kriging) (Goovaerts, 1997). 

 
Tabios and Salas (1985) presented a comparison of various interpolation methods, namely, 

kriging, Thiessen polygons, inverse distance weighting (IDW), polynomial trend surfaces, 
and inverse square distance algorithms. They found that the Kriging method is the most 
effective method among the reviewed interpolation methods for rainfall. We used the 
ordinary Kriging method for interpolation of rainfall and temperature for the Nzoia 
catchment. The spatial interpolation of precipitation for one event (one day) is shown in 
Figure 2-15.  

 
 

 
Figure 2-14 Rain gauge and temperature stations, red circles indicate rain gauges, blue triangles 

indicate temperature stations 

 

 

 
Figure 2-15. The spatial distribution of precipitation at an event of 13 November 1990 over the Nzoia, 

as derived using the ordinary Kriging interpolation method, legend is at scale of by x10 mm (Nzoia 
catchment) 
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2.4 Calibration of hydrological models  
 

Hydrological models contain several parameters that cannot be directly measured. The 
process of estimating the parameters is called “model calibration”. Generally, calibration is 
carried out by optimizing the model parameters so that the model output matches as closely 
as possible the observed responses of the hydrological system over any historical period of 
time (Figure 2-16). There are two calibration approaches: manual and automatic. Manual 
adjustment of the parameter values is labour intensive, and its success strongly depends on 
the experience of the modeller. Because of the time-consuming nature of manual calibration, 
there has been a great deal of research into the development of automatic calibration methods 
(e.g., Duan et al., 1992; Yapo et al., 1996; Solomatine et al., 1999; Madsen, 2000; Vrugt  et 
al, 2003). Automatic calibration is quite easy to implement in hydrological modelling; 
however, the quality of optimization depends on the objective function choice and data 
quality and efficiency of the calibration approach. 

  

 
Figure 2-16. Calibration of model. 

 
Optimization algorithms are generally classified into two categories, local search and 

global search. The difficulties associated with the local searches include the high degree of 
nonlinearity of the response surface, the existence of multiple local optima in the search 
space and the discontinuities of first and second order derivatives. These problems inspired 
the use of global optimization algorithms (typically, randomized search) that are capable of 
carrying out effective searches regardless of the response surface.  
 

Randomized search algorithms aim to minimize differences between selected features of 
modelled and observed streamflows by systematic trial alterations in the values of the model 
parameters. The objective function, i.e., the quantitative measure of the fit of modelled runoff 
to the observed runoff, is calculated after each parameter alteration. Successful alterations are 
those that cause a reduction in the value of the objective function. During the search only the 
parameter set associated with the current lowest objective function value is retained. At the 
end of a search, this lowest value is regarded as the optimal (best) parameter set (or several 
parameter sets also retained as well to represent other “good” models).  

2.4.1 Single objective optimization  

A single objective optimization aims to find the “best” solution that reaches a target value 
(minimum or maximum) of a single objective function (which may lump several objectives 
into one). The optimization algorithms require the definition of an objective function and the 
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ranges for the decision variables. These algorithms can be found in many publications; 
among them most popular algorithms that include the shuffled complex evolution method 
developed at the University of Alabama (SCE-UA, Duan et al., 1992), the genetic algorithm 
(e.g. Wang 1991), Adaptive cluster covering (ACCO, Solomatine, 1999) and others. SCE-UA 
algorithm combines the strength of the simplex downhill method, controlled random search 
and concept of shuffling. The robustness and efficiency of this algorithm have been evaluated 
by a number of studies (e.g. Duan et al 1992). In this thesis, the single objective optimization 
algorithm ACCO algorithm is used. This algorithm uses clustering as the first step, but it is 
followed by a global randomized search, rather than local search. In general, it utilizes a 
combination of accepted ideas including reduction, clustering, and covering. Its main 
principles are outlined below and a detailed description of the algorithm can be found in 
Solomatine (1999). 

1. Clustering (i. e.,identification of groups of mutually close points in search space) is 
used to identify the most promising sub-domains in which to continue the global 
search by active space covering (single-extremum search in each region). 

2. Covering: Each sub-domain is covered randomly. The values of the objective function 
are then assessed at the points drawn from the uniform distribution or some other 
distribution. Covering is repeated multiple times and each time the subdomain is 
progressively reduced in size. 

3. Adaptation: Adaptive algorithms update their algorithmic behaviour depending on the 
new information revealed about the problem under consideration. In ACCO, adaptation 
is done by shifting the subregion of search, shrinking it, and changing the density 
(number of points) of each covering - depending on the previous assessments of the 
global minimizer. 

4. Periodic randomization: Due to the probabilistic character of point's generation, any 
randomized search strategy may simply miss a promising region for search. In order to 
reduce this risk, the initial population can be re-randomized, (i.e., the problem is solved 
several times). Depending on the implementation of each of these principles, it is 
possible to generate a family of various algorithms that are suitable for certain 
situations. (e.g. with non-rectangular domains (hulls), non-uniform sampling and with 
various versions of cluster generation and stopping criteria). 

 

2.4.2 Multi objective optimization  

A single objective function is often inadequate for properly measuring the simulation of 
all the important characteristics of a system in calibration of a catchment model (van 
Griensven and Bauwens, 2003), possibly resulting in a loss of information. Futhermore, 
when moving from one solution to another, it can be difficult to deal with conflicting 
objectives and the choice of objectives. Gupta et al. (1998) pointed out that there might not 
exist “statistically correct” choice for the objective function therefore no statistically correct 
“optimal choice” for the model parameters. Furthermore, reorganization of the multi-
objective nature of the calibration problem and recent advances in computational power have 
led to more complex hydrological models, often predicting multiple hydrological fluxes 
simultaneously. These issues have spurred increasing interest in the multi-objective 
calibration of hydrological model parameters (Gupta et al., 1998; Yapo et al., 1998; Madsen, 
2000; Khu and Madsen, 2005). 
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The description of the multi-objective calibration problem is stated as follows: 

1min{ ( ),..., ( )}mf f   (2-9) 

where m is the number of objective functions, fi(), i = 1, ..., m are the individual objective 
functions, and   is the set of model parameters to be calibrated. Due to trade-offs between 
the different objectives, the solution to Equation (2-9) will no longer, in general, be a single 
unique parameter set. Instead, there exist several solutions that constitute a so-called Pareto-
optimal set or non-dominated solutions set. Any solution * belongs to the Pareto set when 
there is no feasible solution  that will improve some objective values without degrading 
performance in at least one other objective. Mathematically, the solution *  is Pareto-optimal 
(i) if and only if fi(*)  fi()  for all i = 1, ..., m and (ii) fj(*) < fj() for some j = 1, ..., m. 
According to these two statements, the Pareto-optimal solution *  has at least one smaller 
objective value compared with any other feasible solution   in the decision space, while 
performing as well or worse than   in all remaining objectives. 
 

The multiobjective optimisation algorithm used in this study is the non-dominated sorting 
genetic algorithm (NSGA-II) proposed by Deb et al. (2002). NSGA-II is capable of handling 
a large number of objective functions and provides an approximate representation of the 
Pareto set with a single optimisation run. The NSGA-II algorithm is outlined briefly as 
follows: 

1. Generate an initial population of size p randomly in the domain of the feasible range. 

2. Evaluate the population and sort it based on non-domination using a bookkeeping 
procedure to reduce the order of the computation. 

3. Classify the population into several Pareto fronts based on the non-domination level. 
Individuals belonging to the first Pareto front are assigned with rank 1, individuals 
belonging to the second Pareto front (the second Pareto front is the Pareto front after 
removing the individuals from the first front) are assigned with rank 2, and so on. 

4. Form a new population by generating an offspring population from the parents and 
combining them with the parents (following standard GA procedure). 

5. Compute the crowding distance for each individual. 

6. Select the individuals based on a non-domination rank. The crowding distance 
comparison is made if the individual belongs to the same rank. 

7. Repeat the steps 3–6 until the stopping criterion is satisfied. The stopping criterion may 
be a specified number of generations, maximum number of function evaluations or 
computation time. 

 

There is a necessity for well-organized multi-objective calibration procedures that are 
capable of exploiting all of the useful information and important characteristics about the 
physical system of the catchment. The objectives to be optimized can be the goodness-of-fit 
estimators (e.g., coefficient of efficiency, root mean squared error, and residuals), multiple 
variables (e.g., streamflows, sediment, and nutrients, etc.), and multiple sites (multiple 
locations of observations). Such an approach allows the generation of the so-called Pareto 
front – a set of optimal solutions that represent the trade-offs between the objectives. The 
methodology for solving the multiple-objective global optimization problem is presented in 
many hydrology-related papers; the MOCOM-UA algorithm, (Yapo et al., 1998), MOSCEM-
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UA global optimization algorithm (Vrugt et al., 2003), AMALGAM (Vrugt and Robinson, 
2007), SPEA2 (Zhang et al., 2008), MEAS (Efstratiadis and Koutsoyiannis, 2008), Genetic 
algorithms (Khu and Madsen 2005; Tang et al., 2006; Shafii and Smedt 2009) and MO-
ROPE (Krauße et al.,2011). 

 
In particular, several researchers have comprehensively demonstrated the multi-objective 

genetic algorithm (NSGA-II) in the context of SWAT modelling (e. g. Remegio et al., 2007; 
Bekele et al., 2007; Maringanti et al., 2009; Dumedah et al., 2010). Remegio et al. (2007) 
successfully applied the NSGA-II and Pareto ordering optimization in the automatic 
calibration of SWAT for daily streamflows. Bekele et al. (2007) used NSGA-II for two 
scenarios; in the first, specific objective functions to fit different portions of the time series, 
and in the second, the calibration was performed using data from multiple gauging stations. 
Maringanti et al. (2009) applied NSGA-II for the selection and placement of best 
management practices for nonpoint source pollution control, where total pollutant load from 
the watershed and net cost increase from the baseline were the two objective functions 
minimized during the optimization process. Dumedah et al. (2010) outlined an automated 
framework using the distribution of solutions in both objective space and parameter space to 
select solutions with unique properties from an incomparable set of solutions. However, these 
ample demonstrations are presented only in papers, the developed tools are not directly 
accessible and they are often difficult to set up. For these reasons, we developed SWAT-
NSGAX tool to calibrate the SWAT model in the presence of multiple objectives. 

 
NSGA-II is one of the efficient, multi-objective evolutionary algorithms. It has been 

widely applied in various disciplines. Some of the recent applications can be found in the 
literature, e.g. for the optimization of water distribution networks (Atiquzzaman et al., 2006, 
Herstein and Filion, 2011), operations of a multi-reservoir system (Chang and Chang 2009), 
and rehabilitation of urban drainage systems (Bareto et al., 2010). The complete description 
of this algorithm can be found in Deb et al. (2002). 

 

2.4.3 SWAT-NSGAX tool and its application 

Kayastha et al. (2011) developed the SWAT-NSGAX tool that link the SWAT model and 
the NSGAX (Barreto et al., 2009, 2010) (implementing the NSGA-II algorithm) using the 
SWAT-CUP model standard. The tool allows users to perform an automated calibration that 
considers multiple objective functions in an order to compute the Pareto-front. Doing so gives 
a set of optimal solutions that represent the trade-offs between the objectives, which are often 
due to underlying model-structural errors.  

 
In order to generate a solution space for each model parameter in SWAT-NSGAX, the 

user should first select the upper and lower bounds for the SWAT parameters and provide the 
values for the NSGA-II operational parameters (e.g., population size, number of generations, 
the probability of crossover, and mutation value). The calibration process is intended to 
minimize the identified objective functions. Based on the generated initial population each 
newly sampled parameter set is sent to SWAT, where the model parameter values are 
changed before producing a new model output. The simulated outputs for the specified 
parameter set are used to compute its goodness-to-fit (e.g., coefficient of efficiency and root 
mean squared error). This process is repeated for all parameter sets in that population and 
non-dominated sorting is performed to sort parameter sets into different fronts. Selection and 
reproduction operations are performed on the population followed by crossover and mutation 
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to create a new population of parameter sets for evaluation. The generation of the new 
population incorporates crowding operators by distributing solutions to less-crowded areas in 
order to provide range along with selected solutions. The process is repeated until the 
difference between the fitness values for the previous and current populations is below a user-
defined (low) value.  

 
The generated Pareto front curves from NSGAX are simultaneously visualized in a 

graphical interface and saved in text files. Additionally the NSGAX stores files according to 
the user-defined project name. These files contain the data of the best and of all populations 
(parameter sets) with their corresponding objective function values. All of these values could 
be further used for uncertainty analysis, as well as for a cluster analysis to evaluate the 
distribution of solutions in the objective and parameter spaces.  

 

 
Figure 2-17. Linking between NSGAX and SWAT-CUP 

 
The schematic diagram of the dynamic linking of SWAT and NSGAX is presented in 

Figure 2-17. In this framework, three programs were mainly used to couple SWAT and 
NSGAX: PreInput.exe, GpinToModelin.exe and makeGrmsp.exe; they were written in the 
Delphi programming language. The inputs for NSGAX are prepares by the program 
PreInput.exe, while GpinToModelin.exe reads data from file ‘g.pin’ which is generated by 
NSGAX and updates it in the SWAT-CUP input file ‘model.in’. The program 
makeGrmsp.exe reads the output file from SWAT’s ‘model.out’ and evaluates the user- 
defined objective function value, and updates it into the NSGAX input file ‘gm.rsp’.  

 
This tool was successfully used to solve a multi-objective calibration problem for (i) flow 

and pesticides in a catchment in Nil, Belgium (Kayastha et al., 2011) and (ii) flow and 
sediment routing in a catchment in Lillebæk, Denmark (Lu et al., 2012). The generated 
Pareto-fronts allow for identifying trade-offs between different parameterized (flow, sediment 
and pesticide parameters) models. 

 
Kayastha et al. (2011) used this tool for the SWAT model of pesticides transport with an 

objective of optimizing the streamflows and pesticides in the Nil River in the central part of 
Belgium. NSE was used to evaluate model performance. First multi objective calibration was 
carried out for the flow and pesticide observations by sampling of the flow parameters, 
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second by sampling both flow and the pesticide parameters, and third with and without point 
of sources. The performance of different model variations was assessed by using the resulting 
Pareto fronts. 

 

.  
Figure 2-18. Pareto plots generated by the NSGAX-SWAT tool (Kayastha et al 2011) 

Lu et al. (2012) used this tool to calibrate two different rivers sediment routing methods in 
the SWAT model for the Lillebæk catchment, southeast coast of the Island Fyn, Denmark. 
They plotted the Pareto of the two objectives of which were calculated with (i) a routing 
method with the simplified Bagnold equation (default) and (ii) a routing method that 
separated the river bank and river bed routing. (This experiment used two versions of the 
models – SWAT2005 and SWAT2009. Their results showed that the Pareto front can be 
better represented using SWAT2009 than SWAT2005.) 
 

2.5 Data driven modelling 

2.5.1 Introduction 

Data-driven modelling utilizes the theoretical foundations of machine learning (Mitchell 
1997) and produces a mathematical model of the relationship between the input and output 
even when the underlying mechanism is unknown or hard to describe. This type of modelling 
can learning from data without requiring prior knowledge of the model component process.  

 
There are three main types of machine learning methods: supervised, unsupervised and 

reinforcement. Supervised learning is a machine learning technique for learning functional 
relationships between the input data and the output from the training data. The training data 
consist of pairs of input data and desired outputs. The output of the function can be a 
continuous value (in this case the style of learning is called regression), or it can predict a 
class label of the input variable (this style of learning is called classification). The task of a 
supervised learner is to predict the output for any new input vector after having seen a 
number of training examples. Examples of supervised learning methods are artificial neural 
networks, decision trees, model trees, instance-based learning, support vector machines, etc. 
In unsupervised learning, the training data consist of only input data and the target output is 
unknown. One form of unsupervised learning is clustering, where the data are grouped into 
subsets according to their similarities.  
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Machine learning methods can also be classified into eager learning or lazy learning. The 

former type constructs explicitly constructs the model to predict or classify the output as soon 
as the training examples are presented. The latter type simply stores the presented training 
data and postpones using it until a new instance or input has to be predicted or classified. 
Examples of eager learning are artificial neural networks, decision trees, model trees, etc. 
Lazy learning methods include k-Nearest Neighbour and locally weighted regressions.  

 
This study uses supervised learning techniques (i. e., artificial neural networks and model 

tress), and a lazy learning technique (locally weighted regression). 
 
Machine learning principle  
Learning (or training) is the process of minimizing the difference between observed 

response y and model response ŷ  through the optimization procedure as shown in Figure 
2-19. Learning is an iterative procedure that starts from the initial guess of the parameter 
vector w and updates it by comparing the models’ response ŷ  with the observed response y. 

 

 
 

Figure 2-19. The learning process of a machine learning algorithm  
 
The machine learning algorithm learns an unknown mapping between predicted and 

observed data. Learning is done on the training data and the remaining data are used to check 
the generalizability of the trained model. During the learning phase (training), the prediction 
error ˆy y  is used to update the machine learning model. The predictive performance model is 
evaluated by presenting the unseen input data (verification or validation) data.  

2.5.2 Machine learning in data-driven rainfall-runoff modelling 

Machine learning techniques have been used extensively in the area of rainfall-runoff 
modelling. They are used to improve the accuracy of prediction/forecasting made by process-
based rainfall-runoff model. Among machine learning techniques the artificial neural 
networks (ANNs) are the most popular and widely used technique. Maier and Dandy (2000, 
2010) provide an extensive review of the application of ANNs in hydrological modelling. 
Apart from these, ANNs are also used with a combination of process-based models in flow 
simulations (e.g. Corzo et al. 2009). Shrestha et al. (2009; 2013) proposed to estimate the 
uncertainty of the runoff prediction by hydrological models (instead of the runoff itself) using 
machine learning techniques, which are described in Chapter 6. 

2.5.3 Artificial neural networks 

ANNs are artificial intelligence-based information processing tools inspired by biological 
processes of a human brain. They can be useful when large search spaces of human expertise 
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are required. ANNs resemble the brain processor in two respects; a neural network acquires 
knowledge through learning processes, and inter-neuron connection strengths known as 
synaptic weights, are used to store the knowledge (Haykin, 1999). ANNs have the ability to 
represent both linear and complex, nonlinear relationships between inputs and outputs. They 
also have the ability to learn these relationships directly from the data being modelled. Hence, 
ANNs do not need detailed knowledge of the internal system. They have been successfully 
applied in fields for control, classification, pattern recognition, dynamic systems modelling, 
and time series forecasting. 
 

 
Figure 2-20. Schematic diagram of an artificial neuron. 

 
ANNs consist of a large number of simple processing elements called neurons or nodes. 

Each neuron is connected to other neurons by means of direct links, each being associated 
with a weight that represents information being used by the network in its effort to solve the 
problem. The neural network can be in general characterized by its architecture (the patterns 
of connection between the neurons), its training or learning algorithms (the methods of 
determining the weights on the connections) and its activation functions. The architecture of a 
typical neural network with a single neuron is shown in Figure 2-20. It consists of five basic 
elements: (i) input nodes for receiving input signals x1, …, xp, (ii) a set of connecting links 
(synapses), each of which is characterised by a weight wij, (iii) aggregating function to sum 
the input signals, (iv) an activation function that calculates the activation level of the neuron; 
and (v) output nodes  y1, …, yl. 

 
The processing of each neuron is carried out in two steps: (i) summing of the weighted 

input signals, and (ii) applying an activation function to the sum for limiting the amplitude of 
the output of a neuron. Mathematically, this process described by the following two 
equations: 

1

p

j ij i
i

u w x


   (2-10) 

( )j j jy f u b   (2-11) 

where wij is the weight connecting the input i to the neuron j. The effective incoming signal uj 
and bias bj is passed through activation function f(.) to produce the output signal yj. The main 
difference between the commonly used neurons lies in the type of the activation function. 
Their functional form determines the response of a node to the total input signal; however, 
these activation functions have one thing in common: they all restrict the input signals to 

 )(f
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certain limits. Some commonly used activation functions are linear, binary, sigmoid and 
tangent hyperbolic. 

 
The measured data is used to build an ANNs model where the data are divided into three 

sets:  training, validation, and test sets. (This is actually true for any machine learning 
method.) Training is a set of examples used for learning – that is, to fit the parameters 
(weights) of the ANN. Validation is a set of examples used to tune the parameters of an ANN 
– for example, to choose the number of hidden units in a neural network. Test data is a set of 
examples used only to assess the performance of a fully-specified model. First the ANN 
model is trained to represent the relationships and processes within the training and validation 
data set. Once the model is adequately trained, it is able to generalize and calculate the 
relevant output for the set of input data. This output is subsequently compared with the 
measured test data set. The model is considered to behave satisfactorily if its performance 
during the testing period is similar to that during the training period (or at least does not differ 
too much).  
 

A multi-layer perceptron (MLP) consists of an input layer, an output layers, and at least 
one intermediate layer between the input and output layers. The first layer is the input layer, 
and receives the input signal. The intermediate layers are known as hidden layers and do not 
have direct connection to the outer world. The last layer is the output layer at which the 
overall mapping of the network input is made available and thus represents the model output. 
The nodes in one layer are connected to those in the next, but not to those in the same layer. 
Thus, the information or signal flow in the network is restricted to a layer by layer flow from 
the input to output through hidden layers. Figure 2-21 shows an example of a three-layer 
MLP with one hidden layer.  

 
Training (i.e. computing the weights) of the MLP networks is done with the back-

propagation algorithm which is the most popular algorithm capable of capturing a variety of 
nonlinear error surfaces. A gradient descent technique minimises the network error function. 
The back propagation algorithm involves two steps. The first step is feed forward pass, in 
which the input vectors of all the training examples are fed to the network and the output 
vectors are calculated. 

 
Figure 2-21. A three-layer MLP architecture. 
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The performance of the network is evaluated using an error function based on the target 
and network outputs. After the error is computed, the back propagation step starts, in which 
the error is propagated back to adjust the network weights and bias. The iteration continues 
until the outputs of the network match the targets with a desired degree of accuracy. In a 
typical application, the weight update loop in back propagation may be iterated thousands of 
times. A variety of termination conditions can be used to halt the iteration. One may choose 
to halt after a fixed number of iterations once the error on the training examples falls below 
some threshold or once the error on a separate validation set of examples meets some 
criterion. The choice of termination or stopping criterion is important and has been discussed 
by many authors (see, e.g., Haykin 1999). 
 

The back propagation method does not guarantee convergence to an optimal solution. 
However, because local minima may exist, it appears in practice it appears to solutions in 
almost every case. In fact, standard multi-layer, feed-forward networks with only one hidden 
layer have been found capable of approximating any measurable function to any desired 
degree of accuracy. Detailed description of the back propagation algorithm can be found in 
Haykin (1999) and Principe et al. (1999) among others. 

2.5.4 Model trees 

Model trees (or M5 model trees) (Quinlan (1992); see also Witten and Frank (2000)) are the 
machine learning technique equivalent to a piece-wise linear regression model. They use the 
‘hard’ (i.e. yes–no) splits of input space into regions progressively narrowing the regions of 
the input space. Thus model trees are a hierarchical (or tree-like) modular models that have 
splitting rules in non-terminal nodes and the regression models at the leaves of the tree built 
for the non-intersecting data subsets. Once these models are formed in the leaves of the tree, 
then prediction with the new input vector consists of the following two steps: (i) classifying 
the input vector to one of the subspace by following the rules in the non-leaf nodes of the 
tree; and (ii) running the corresponding regression the model in the leaf node. A more formal 
description of model tree algorithm is presented below. 

 
Assume we are given a set of N data pairs {xi, yi}, i = 1, …, n, denoted by D. Here x is p 

dimensional input vector (i.e. x1, …, xp) and y is the target. Thus, a pair of input vector and 
target value constitute the example, and the aim of building model tree is to map the input 
vector to the corresponding target by generating simple linear equations at the leaves of the 
trees. The first step in building a model tree is to determine which input variable (often called 
attribute) is the best to split the training D. The splitting criterion (i.e., the selection of the 
input variable and splitting value of the input variable) is based on treating the standard 
deviation of the target values that reach a node as a measure of the error at that node, and 
calculating the expected reduction in error as a result of testing each input variable at that 
node. The expected error reduction, which is called standard deviation reduction (SDR) is 
calculated by: 

SDR ( ) ( )i
i

i

T
sd T sd T

T
   (2-12) 

where, T  represents the set of examples that reach the splitting node, T1, T2,…, represents the 
subset of T that results from splitting the node according to the chosen input variable, s d  
represents standard deviation,and |Ti|/|T| is the weight that represents the fraction of the 
examples belonging to subset Ti.  
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After examining all possible splits, M5 chooses the one that maximizes SDR. The splitting 

of the training examples is done recursively to the subsets. The splitting process terminates 
either when the target values of all the examples that reach a node vary only slightly, or when 
merely a few instances remain. This relentless division often produces overly elaborate 
structures that require pruning, for instance by replacing a subtree with a leaf. In the final 
stage, ‘smoothing’ is performed to compensate for the sharp discontinuities that will 
inevitably occur between the adjacent linear models at the leaves of the pruned tree. In 
smoothing, the outputs from adjacent linear equations are updated in such a way that their 
difference for the neighboring input vectors belonging to the different leaf models will be 
smaller. Details of the pruning and smoothing process can be found in Witten and Frank 
(2000). Figure 2-22 presents an example of model trees. 

 
When compared to other machine learning techniques, model trees learn efficiently and 

can tackle tasks with very high dimensionality – up to hundreds of variables. The main 
advantage of model tree is the results are transparent and interpretable. Solomatine and Siek 
(2006) proposed two new versions of the M5 algorithm. One is the M5opt, which allows for 
deeper optimization of trees, and other is the M5flex that gives a modeller more possibilities 
to decide how the data space shold be split in the process of building regression models.  

 

 
Figure 2-22. Example of model trees. 

2.5.5 Locally weighted regression 

Many machine learning methods including those described in Sections 2.5.3 and 2.5.4 are 
model-based methods. This means that they explicitly construct the model to predict or 
classify the output as soon as the training examples are provided. After training, the model is 
used for predictions and the data are generally discarded. In contrast, instance-based learning 
(IBL) simply stores the presented training data and postpone using it until a new instance or 
input has to be predicted or classified. When a new input vector is presented to the model, a 
subset of similar instances is retrieved from the previously stored examples and their 
corresponding outputs are used to predict or classify the output for the new query vector 
(instance). IBL methods, in fact, construct a local approximation of the modeled function that 
applies in the neighborhood of the new query instance (input vector) encountered. They never 
construct an approximation designed to perform well over the entire input space. Therefore, 
even a very complex target function can be described by constructing it from a collection of 
much less complex local approximations.  

 
IBL algorithms have several advantages: they are simple yet robust learning algorithms, 

they can tolerate noise and irrelevant attributes, they can represent both probabilistic and 
overlapping concepts, and they naturally exploit inter-attribute relationships (Aha et al., 

Model 1 Model 2

Yes No
•x1 > 2.5 •x1 < 4 

•x2 < 3.5

•x2 > 2 

Yes No

Yes No

Model 3 Model 4

Yes

Model 5 Model 6 

•x2 < 1 
Yes No 

No

Regression and M5 model tree

X1

Model 2

Model 1

Model 6Model 4 

Model 3 

Model 5

X 2 

Y (output) 
1 2 3 4 5 6

1 

2 

3 

4 



CHAPTER 2 

 
41 

1991). However, they also have disadvantages. One of them is that the computational cost of 
predicting or classifying new instances can be high because all computations take place on-
line when the new instances have to be classified or predicted, rather than when the training 
examples are first encountered. The computational cost increases with the amount of training 
data and the dimension of the input data and has order of |T| x p, where T is the training set 
and p is the dimension of the input vector. Furthermore, because all attributes of the examples 
are considered when attempting to retrieve similar training examples from the stored 
database, the examples that are truly most similar may well be a large distance apart if the 
target variable only depends on only a few of the many input variables. 

 
The most common IBL methods used in numeric prediction are the k-Nearest Neighbour 

method and locally weighted regression. For a detailed description of IBL methods, the 
readers are referred to Aha et al. (1991). The application of these methods in rainfall-runoff 
modelling was reported in Solomatine et al. (2006, 2008).  
 

Locally weighted regression (LWR) is a memory-based method for performing a 
regression around a point xq of interest (often called a query point, or a new input vector) 
using only training data that are “local” to that point. The training examples are assigned 
weights according to their distance from the query instance, and regression equations are 
generated using the weighted data. The so-called “locally weighted regression” is deemed 
local because the function is approximated based on data near the query point. It is deemed 
weighted because the contribution of each training example is weighted by its distance from 
the query point. The target function f in the neighbourhood surrounding the query point xq 
can be approximated using a linear function, a quadratic function, neural network, etc. 

 
A number of distance-based weighting schemes can be used in LWR (Scott, 1992). A 

common choice is to compute the weight wi of each instance xi according to the inverse of 
their Euclidean distance d(xi, xq) from the query instance xq as given by 

1( ( , )) ( ( , ))i q i q iw K d d  x x x x
 (2-13) 

where K(.) is typically referred to as the kernel function. The Euclidean distance d(xi, xq) is 
define as  

2

1

( , ) ( ( ) ( ))
p

i q r i r q
r

d a a


 x x x x  (2-14) 

where an arbitrary instance x can be described by the feature vector 1( ),  ...,  ( )pa a x x  and 

ar(xi) denotes the value of the rth attribute of the instance xi.  
 

Alternatively, instead of weighting the data directly, the model errors for each instance 
used in the regression equation are weighted to form the total error criterion C(q) to be 
minimized: 

  
1

( ) , , ( ( , ))
T

i i i q
i

C q L f y K d


  x x x  (2-15) 

where f (xi, ) is the regression model; L(.) is the loss or error function (typically the sum of 
squared differences 2ˆ( )i iy y between the target yi and its estimated îy values), and  is a 
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vector of parameters or coefficient of the model to be identified. Note that the total error 
criterion is summed over the entire set T of the training examples. However there are other 
forms of the error criteria, such as the loss function over just the k-Nearest Neighbours 
(Mitchell, 1997). In locally weighted regression, the function f is a linear function of the 
form: 

0 1 1( , ) ( ) ... ( )i i p p if a a      x x x  (2-16) 

Cleveland and Loader (1994) among other addressed the issue of choosing weighting 
(kernel) functions: the function should be at it maximum at zero distance, and the function 
should decay smoothly as the distance increases. Discontinuities in the weighting functions 
lead to discontinuities in the predictions because the training points cross the discontinuity as 
the query changes. Yet another possibility to improve the accuracy of LWR is to use the so-
called smoothing, or bandwidth parameter, which scales the distance function by dividing it 
by this parameter. One way to choose the smoothing parameter is to set it to the distance to 
the kth nearest training instance; thus its value becomes smaller as the volume of training data 
increases. Generally, an appropriate smoothing parameter can be found using cross-
validation.  

 

2.5.6 Selection of input variables 

Input variables for building machine learning models contain information about the 
complex (linear or nonlinear) relationship with the model outputs (see, e.g., Guyon and 
Elisseeff, 2003; Bowden et al., 2005). Generally, correlation analysis and mutual information 
analysis are used to determine the strength of the relationship between the input time series 
variables and the output time series at various lags. Correlation analysis is used to find the 
linear relationship between the variables and mutual information analysis is used to determine 
linear or non-linear dependencies. Correlation analysis computes a cross correlation between 
the input vector xi and the output variable y. For the time series variable, it is often required 
to compute (i) correlation of the lagged vector of xi with the output y; and (ii) the 
autocorrelation of the output vector y. The former measures the dependency of the output 
variable to the previous values of the input variables. The latter provides the information on 
the dependency of the output variable on its past values.  
 

The correlation coefficient (CoC) between input vector xt and output vector yt, t=1, ..., n is 
given by: 
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 (2-17) 

where x  is the mean of x. The maximum value of CoC is 1 for complete positive correlation 
and the minimum value of CoC is -1 for complete negative correlation. A CoC value close to 
zero indicates that the variables are uncorrelated.  

 
The mutual information based on Shannon’s entropy (Shannon, 1948) is measured to 

investigate the linear and nonlinear dependencies and lag effects (in time series data) between 
the variables. The mutual information is measure of the information available from one set of 
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data having knowledge of another set of data. The average mutual information (AMI) 
between two variables X and Y is given by: 

2
,

( , )
AMI= ( , ) log

( ) ( )
XY i j

XY i j
X i Y ji j

P x y
P x y

P x P y

 
 
  

  (2-18) 

where PX(x) and PY(y) are the marginal probability density functions of X and Y, 
respectively, and PXY(x,y) is the joint probability density functions of X and Y. If there is no 
dependence between X and Y, then by definition the joint probability density PXY(x,y) would 
be equal to the product of the marginal densities (PX(x) PY(y)). In this case, AMI would be 
zero (the ratio of the joint and marginal densities in Equation (2-18 being one, giving the 
logarithm a value of zero). A high AMI value indicates a high level of dependence between 
two variables. The key to accurately estimating of the AMI lie in the accurately estimating 
the marginal and joint probability densities in Equation (2-18) from a finite set of examples.  

2.5.7 Data-driven rainfall-runoff model of the Bagmati catchment 

Nest , we construct a rainfall-runoff model of the Bagmati catchment. CoC and AMI are 
used to select the most important input variables. Figure 2-23 shows the correlation 
coefficient and the AMI of REt as well as its lagged variables. It is observed that the 
correlation coefficient is highest at 1 hour and the optimal lag time (time at which the 
correlation coefficient and/or AMI are the maximum) is also 1 hour. At this optimal lag time, 
the variable REt provides a maximum amount of information about the output. Additionally, 
the correlation coefficient and AMI of the observed discharge are analyzed. The results show 
that both the immediate and the recent discharges (with the lag of 0, 1, 2 h) have a very high 
correlation.  

 

 
Figure 2-23. Simulated linear correlation between rainfall and runoff 

 
Based on the above analysis, we consider several input data structures for the machine 

learning models. With the maximum dependence of 0 hours and 1 hours lag time, two 
machine learning models are used (namely ANNs and MT)). The same data sets used for 
calibration and verification of the HBV model are used for training and verification 
respectively. However, for proper training of the ANN models the calibration data set is 
segmented into two subsets: 15% of data sets for cross validation (CV) and 85% for training 
(see Figure 2-9). The CV data set is used to identify the best structure for the ANN models. 

 
In ANN, a multilayer perceptron network with one hidden layer is used; optimization is 

performed by the Levenberg-Marquardt algorithm. The hyperbolic tangent function is used 
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for the hidden layer with a linear transfer function at the output layer. The maximum number 
of epoch is fixed to 1000. A trial and error method is adopted to detect the optimal number of 
neurons in the hidden layer, testing various numbers of neurons from 2 to 10 as well as 
different inputs. We observed that a layer with 10 neurons yields the lowest error on the CV 
data set and the best input set has 5 variables REt-0,REt-1,REt-2,Qt-1,Qt-2. 

 
Figure 2-25  shows a fragment of the validation period; on 20 Aug 1990, one of the peak 

of hydrograph peaks was improved by ANN model in camparison to both the HBV and MT 
models. 

 

 
Figure 2-24. The hydrographs of observed discharge, and simulated discharge by HBV, ANN and MT 

in verification 

 
 

Figure 2-25. The fragment of discharge simulated by HBV, ANN and MT in verification 

 
 

Table 2-4. Performances of HBV, ANN and MT models for the Bagmant catchment. 
 

Models Calibration Verification 

  NSE RMSE NSE RMSE 

HBV 0.87 102.63 0.83 111.56 

ANN 0.95 tr/ 0.89 cv* 62.08 tr/ 93.21 cv 0.81 113.46 

MT 0.91 79.57 0.81 110.50 

 *tr indicates training ; cv indicates cross-validation 
 
The MT experiment is carried out with different numbers of pruning factor in order to 

controls for the complexity of the generated models. We report the results of an MT that has a 
moderate level of complexity. Note that the CV data set has not been used in MT, rather the 
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MT uses the full calibration data set to build the models. We observed that the value of 
pruning factor 2 yields 8 local models with best performance. The results are shown in Table 
2-4. 

In Table 2-4, the performances of ANN and MT have high value of NSE and RMSE during 
the calibration period compared with HBV, however these values were yielded low in 
verification period. The NSE values were similar during verification period. 

 

2.5.8 Data-driven rainfall-runoff model of the Leaf catchment 

We have also constructed a rainfall-runoff model for the Leaf catchment. Based on the 
correlation and AMI analyses, we considered several input data structures, Ultimately, REt−7, 
REt−8, REt−9, Qt−1, Qt−1 yielded better results for predicting the streamflows. Figure 2-26 
shows a comparison of the HBV, ANN and MT. None of all three models fails to cover the 
peak (Figure 2-26). The MT was marginally better than the other two models in terms of 
performance measures. Table 2-5 shows the NSE and RMSE values predicted by the two 
machine learning models.  

 
 

Table 2-5. Performances of HBV, ANN and MT models for the Leaf catchment 
Models Calibration Verification 

  NSE RMSE NSE RMSE 

HBV 0.87 17.56 0.90 26.76 

ANN 0.95 tr/ 0.92 cv* 12.08 tr/ 14.21 cv 0.89 27.46 

MT 0.90 15.57 0.91 25.50 
 *tr indicates training ; cv indicates cross-validation 

 

 
Figure 2-26. The hydrographs of observed discharge and simulated discharge by HBV, ANN and MT 

models in verification 
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Figure 2-27. The fragment of discharge simulated by HBV, ANN and MT in verification. 

 

2.6 Summary 
Brief descriptions of hydrological models, both conceptual and data driven, and their 

calibration have been discussed in this chapter. The HBV conceptual hydrological model has 
been setup for the Alzette, Bagmati, Brue, Leaf, and Nzoia catchments and SWAT semi-
distributed hydrological model has been set up for Nzioa catchment (Kenya). Data driven 
models were set up for the Bagmati and Leaf catchments. Additionally quantification of the 
model output errors has been given as well.  
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Chapter 3  
Committees of hydrological models  

This chapter contributes to refining the committee (multi-model) approach to hydrological modelling. 
It deals with a dynamic combination of hydrological models by the so-called “fuzzy committee” 
method. First, it presents the committee models by using several weighting schemes used in objective 
functions for calibration of specialized models, as well as different membership functions to combine 
models. Secondly, it presents a combination of specialized models where their weights depend on the 
hydrological model state variables (soil moisture, base flow, etc.), inputs (precipitation and 
evapotranspiration), and outputs (simulated streamflows), which are different for each time step, 
depending on the current value of flow. This chapter also presents the performance of various 
committee models and their comparisons.1 

3.1 Introduction  

The conceptual hydrological model is composed by fluxes and storages representing 
relevant complex hydrological processes of the catchment. This model is used to predict the 
behaviour of time-varying streamflows, but the strength of the predictions depends on the 
presumed model structure, described parameters, and quality of data used. In usual practice, 
modellers often assume that the data being fed into the hydrological model's (conceptually 
lumped) overall structure are correct, and the model prediction is deliberately presented based 
on measurement data using the degree of knowledge and experience by discovering the 
optimum best parameter set. Typically, this approach focuses on a single model using the 
single best set of parameters. However, the model produced by one best set of parameters 
might not equally well describe the characteristic of the hydrological processes for all ranges 
of flow. Furthermore, different models have strength in predictions of different processes 
(aspects of hydrological responses), but a single model in isolation has difficulty handling all 
the processes. (Note that the widely used notion of a model “ensemble” is in a way a 
particular case of a committee – in an ensemble each model is responsible for the whole 
modelled process but they are differently parameterised or use different initial conditions.)  

 
Multi-model averaging is one way to improve the performances of model prediction and, 

it has been receiving a surge of attention related to deriving predictive model output.  This 
approach involves a combination of several individual models into a new single model, where 
each individual model's strength is presented in such way that optimal prediction can be 
obtained, and the weaknesses of each individual model are compensated for by each other. 
Multi-model approaches are not new in hydrological modelling – examples are the early 
works of Keefer and McQuivey (1974), Todini and Wallis (1977), Bruen (1985) and Becker 

                                                 
1 Kayastha, N., and Solomatine, D. P. (2014) Committees of specialised conceptual hydrological models: 

comparative study, 11th International Conference on Hydroinformatics, New York USA 
Kayastha, N., Ye, J., Fenicia ,F., Kuzmin,V., and Solomatine, D. P. (2013). Fuzzy committees of specialized 

rainfall-runoff models: further enhancements and tests,  Hydrol. Earth Syst. Sci., 17, 4441-4451. 
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and Kundzewicz (1987) (the latter authors built piecewise linear models instead of the overall 
linear hydrological model). Cavadias and Morin (1986) aggregated several watershed models, 
which were considered by WMO (1986) for intercomparison of their model performances. 
Juemoe et al. (1987) combined a conceptual model and a statistical model, which is known as 
a synthesized constrained linear systems model. This model was developed by a combination 
of the Xinanjiang model (Zhao, 1977) and the constrained linear system model (Todini and 
Wallis, 1977). McLeod et al. (1987) combined three models, namely a transfer function noise 
model, a periodic autoregressive model, and a conceptual model for flow forecast. Since then, 
various authors have explored different approaches to identify diverse hydrological regimes 
and ways of combining specialized models that are both process-based and data-driven 
(Table 3-1 and Table 3-2). Many authors introduced combinations of multiple hydrological 
models and concluded that a blend of models is superior to the predictions of unbiased single 
models. A number of methods for combining models are summarized in Table 3-1 and Table 
3-2. 

 
Table 3-1. The model combination methods proposed in earlier works  

Authors Combination methods Combined models 

Shamseldin et al. (1997) 
Simple average method (SAM), 
weighted average method (WAM), 
and neural networks (NNs) method  

SLM, LPM, LVGFM, CLS-Ts, 
and SMAR 

Shamseldin and O’Connor 
(1999) 

Linear  Transfer Function (LTF) 
and WAM  

LPM,  LVGFM, and  SMAR  

See and Openshaw (1999)  Rule-based fuzzy logic  ANN model (Self-Organizing 
Maps (SOM), and multi-layer 
perceptron neural (MLP) 

See and Openshaw (2000)  SAM, Bayesian approach (BA), and 
Fuzzy Logic (FL) models 

Hybrid NN, a simple rule-based FL 
model, an ARMA model, and 
naive predictions model 

Xiong et al. (2001)  First-order Takagi–Sugeno fuzzy 
system 

SLM, LPM, LVGFM, CLS-Ts, 
and SMAR  

Abrahart and See (2002) Arithmetic-average NNs model of low, medium, high, 
very high, and peak flows, FL 
model, TOPMODEL, ARMA 
model 

Coulibaly et al. (2005)  Weighted-average  Nearest-neighbor model, 
conceptual model, and ANN model 

Chen and Adams (2006) ANNs with back-propagation 
algorithm 

HBV-S sub-basin models 

Kim et al. (2006) SAM, constant coefficient 
regression, switching regression, 
sum of squared error, and ANN  

Tank model and NNs model 

Solomatine (2006)  Fuzzy committee  High- and low-flow model by 
Model tree 
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Ajami et al. (2006) SAM, the multimodal 
superensemble (MMSE), modified 
multimodel superensemble (M3SE), 
and WAM. 

DMIP models (Smith et al., 2004) 

Oudin et al. (2006) Time-varying combinations method 
 

High- and low-flows from GR4J 
and TOPMODEL 

Duan et al. (2007)  Bayesian model averaging (BMA)  SAC-SMA, Simple Water Balance 
(SWB) model, and HYMOD  

Shamseldin et al. (2007)  Simple neural network (SNN), 
radial basis function neural network 
(RBFNN) and multi-layer 
perceptron neural network 
(MLPNN) 

SMAR ,  PDISC,  LPM and 
LVGFM  

Fenicia et al. (2007)  Fuzzy committee   High and low-flow by HBV  
Cullmann et al. (2008)  Weighted averaging based on 

sigmoid weight functions 
Event class by WaSiM-ETH  

Nasr and Bruen (2008) Neuro-fuzzy model  with  Takagi–
Sugeno fuzzy approach  

Simple linear model (SLM) and 
the soil moisture and accounting 
routing (SMAR) 

Devineni et al. (2008) Rank probability score skill Statistical models (climatological 
ensembles) 

Viney et al. (2009) SMA, MLR, BMA, WAM, 
conditional ensembles based on 
flow stage (i.e., rising or falling), 
conditional ensembles based on 
flow level (i.e., high and  low 
flows). 

DHSVM ,MIKE-SHE,TOPLATS, 
WASIM-ETH, SWAT, PRMS, 
SLURP, HBV, LASCAM and 
IHACRES 

Jeong and Kim (2009) SAM, WAM, Regression and ANN SSARR, TANK, abcd,GR2M, and 
ENN 

Velazquez et al. (2010) SAM, GA, Continue Rank 
Probability Score (CRPS) 

GR4J,  PDM,  MORD, TOPM,  
SACR, SMAR, NAM,  TANK, 
HBV, CREC, WAGE, IHAC 6, 
GARD, SIMH, MOHY, CEQU, 
HYM 

Hostache et al. (2011)  Fuzzy committee High- and low-flow by FLEX  
 

The data-driven models (DDM) are widely used in rainfall runoff modelling. These 
models have capabilities of learning from data without requiring prior knowledge of the 
model component process. Artificial Neural Networks (ANN) are very popular for the 
application of DDM, to build models and/or sub-models. Refer to Maier et al. (2010) for a 
comprehensive review, where numerous studies have demonstrated the modelling of  rainfall 
runoff processes. In the ANN model, the training set is split into a number of subsets, and 
separate models are trained on these subsets (Corzo and Solomatine 2007b).  

 
The problem of complex modelling can be solved by splitting it into several simple tasks 

and building a simple model for each of them. In this respect, the input (state) space can be 
divided into a number of regions, for each of which a separate specialized model is built 
(Figure 1-1). These specialized models are also called local, or expert models, and form a 
modular model (MM). In machine learning, MMs are attributed to a class of committee 
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machines. There are several available ways to classify committee machines; Solomatine and 
Siek (2006) proposed the method of learning MM using the input data set split (hard split) 
into sub-sets, which results to MMs, and then combining the soft splits of booting schemes 
(e.g., AdaBoost.RT proposed by Shrestha and Solomatine, 2004).  

 
Solomatine (2005) classified committee machine into four categories (i) hard splitting 

where individual experts are trained on particular subspaces of data independently and use 
only one of them to predict the output for a new input vector, e.g. model trees, regression 
trees (Breiman et al., 1984); (ii) hard splitting – soft combination where outputs are combined 
by ‘soft’ weighting scheme; (iii) statistically-driven soft splitting, used in mixtures of experts 
(Jacobs et al., 1991) and boosting schemes (Freund and Schapire, 1996; Shrestha and 
Solomatine, 2006); and (iv) no-split option leading to ensembles; the models are trained on 
the whole training set and their outputs are combined using a weighting scheme where the 
model weights typically depend on model accuracy, e.g. bagging (Breiman, 1996). The 
schema of MM (local models) and their combination are shown in Figure 1-1 in Chapter 1. 
 

Inspite of the limitations of DDM (they do not provide any information on internal 
hydrological processes during predictions of runoff), they can be very useful for river flow 
forecasting (e.g., Nayak et al., 2005; Chapter 2). Several studies (refer to Table 3-2) focussed 
on DDM for building individual models (local models or sub-models) and combining them in 
order to provide more accurate predictions. 

 

Table 3-2. Combined data-driven models proposed in earlier works  
Authors Methods used Combined models 
See and Openshaw (1999)  Rule-based fuzzy logic  ANN (SOM and MLP) 

Abrahart and See (2002) Fuzzy logic  Low, medium, high, very high, and 
peak discharges by NNs  

Solomatine and Xue (2004)  NNs and M5 model trees for 
different flow regimes 

ANN and M5 

Anctil and Tape (2004)   Bayesian regularization, bagging 
and stacking 

MLP and LM  

Nilssom et al. (2005) Snow accumulation and soil 
moisture calculated by conceptual 
model as input to NNs. 

HBV and NNs 

Solomatine and Siek (2006) Fuzzy committees M5 local models (by hierarchical 
splitting of hydrological data) 

Jain and Srinivasulu (2006) 
 

NNs for various flows regimes MLP and SOP model of 
decomposed flows 

Corzo and Solomatine (2007a) Separate NNs for various flow 
regimes  

ANN model of various flow 
regimes, base flow and direct flow. 

Corzo and Solomatine (2007b) Separate NNs for various flow 
regimes 

ANN model of base flow and 
excess flow. 

Toth (2009) Clustering based on SOM ANNs for each data subset 
 
Boucher et al. (2010) 

 
Mean CRPS. 

 
Ensemble of MLP 
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One way to improve predictions of the single hydrological model is to model different 
processes separately, with each representing a particular process, and merging them to 
produce a combined model. In this type of modelling paradigm, every model can be 
differently and specifically oriented to a particular process, or the same model structure can 
be used, but calibrated differently for different regimes of the same process. These 
specifically-oriented models can then be combined with time-varying weights (dynamic 
weighted averaging). Fenicia et al. (2007) presented two weighted performance measures for 
selected characteristics of hydrographs (high and low flow), and then weighted them together 
using a fuzzy combining scheme proposed by Solomatine (2006). Their work was extended 
by Kayastha et al. (2013), who considered the suitability of different weighting functions for 
objective functions and different classes of membership functions used to combine the local 
models and compared them with global optimal models. This approach was also used by 
Hostache et al. (2011) to calibrate two separate low-flow and high-flow conditions using the 
last 24 hours and 120 hours ahead, using forecasted rainfall and observed temperature as 
inputs. The forecasted discharge for 120 hours is obtained by using a combining function. 
They suggested that the combining local model approach could improve the performance of 
hydrological model forecasting. 

 
The different parameterizations within the same model structure that consyitutes one 

model could be better represented to either high-flow regimes and the other to low-flow 
regimes, but the same parameterization could not successfully address in both cases. In this 
respect, the flow series can be split into periods covering different parts of catchment 
responses (e.g., wet periods and dry periods, excess flows and base flows, high flows and low 
flows, rising and falling limbs) and then their performance measure can be calculated 
separately. Willems (2009) demonstrated the application of the multi-criteria model 
evaluation procedure in a river flow series in which the flow series are separated into: (i) sub-
flows, using the filter technique; (ii) independent quick and slow-flow periods; and (ii) 
independent peak and low-flow values. This type of modelling provides knowledge on 
certain important local properties, which reveal useful insights into underlying problems. 
However, this technique is time-consuming and requires specific domain knowledge on flow 
characteristics. Corzo and Solomatine (2007a, b) used several types of filters to separate 
flows into base and excess flow and to build separate data-driven forecasting models for each 
of these types of flow. A genetic algorithm optimizes the weights for the combination 
scheme.  

 
Oudin et al. (2006) presented the model combination approach, which is based on time-

varying weights, and these are estimated as: (i) simple average (fixed weights); (ii) based on 
extraterrestrial radiation (climatic factor); and (iii) based on the state of variables of the 
rainfall runoff model. These weights are used to combine two differently-parameterized 
models of the same structure. They reported that the combined models could produce a 
reasonable outcome compared with a single model. In spite of this, the combined model, 
based on weights derived from extraterrestrial radiation, did not perform well because these 
weights do not consider daily hydro-climatic conditions (This is considered only on inter-
annual index.). Their results showed that a combination of models based on time-varying 
weights (from state variable -soil moisture accounting store) performed better than fixed 
weights because the nature of the error differs in time, and these weights dynamically adjust 
the error between candidate models. One should note that climatic factors (temperature and 
evapotranspiration) typically play a minor role in describing the nature of streamflows, but 
were strongly influenced by infiltration, storage capacity, and intensity and duration of 
rainfall (Jain and Srinivasulu, 2006).  
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Marshall et al. (2007) used the so-called Hierarchical Mixture of Experts approach known 
from machine learning in which a special “gating function” makes a switch between 
specialized (expert) models at every time step. The variable dictating the probability of such a 
switch is the modelled subsurface catchment storage. The justification for this is that the 
mechanisms for producing flow in a wet period, with full storage, are different from those in 
a dry period when the catchment is empty (This reasoning is similar to that in Oudin et al., 
2006). Note that in this approach, there was no combination of models’ outputs at each time 
step, as the investigators were using only one of them.  

Nasr and Bruen (2008) used a neuro-fuzzy model to combine a number of sub-models to 
represent the temporal and spatial variation in catchment response. The different sub-models 
are built under both flood conditions and drier conditions. Each input value (rainfall) is 
assigned to a particular sub-set, and memberships (weights) are estimated. Thus, the weights 
are identified based on the rainfall (model input). Cullmann et al. (2008) presents a process- 
based calibration where the hydrological model is calibrated based on the classification of 
specific events (for extreme and normal floods). The event-specific models are combined 
using the sigmoid weighting scheme. The objective of their method is to predict flood peaks 
by integrating two different classes of flood events. However, low flows were not considered.  

This chapter presents various approaches of committee modelling to improve the 
hydrological model prediction. The first part of this chapter explores the fuzzy committee 
method that was initially proposed by Fenicia et al. (2007). In this approach, the weights 
assigned to each specialized model’s output are based on optimally-designed fuzzy 
membership functions, and they are different at every time step. Furthermore, this study 
reports the results of various committee models that used several weighting schemes in 
objective functions for the calibration of specialized models, as well as different membership 
functions to combine models (Kayastha et al., 2013). Fuzzy committee models are tested for 
Alzette, Bagmati, and Brue catchments, while these models used two approaches of 
optimization for the calibration of models: (i) multi-objective optimization by the Non-
dominated Sorted Genetic Algorithms (NSGA II) by Deb et al. (2002) used to find Pareto 
optimal solutions of specialized models; (ii) Single objective optimization - Genetic 
Algorithm (GA) (Goldberg (1989) and Adaptive Cluster Covering Algorithm (ACCO) by 
Solomatine (1999) are used to calibrate the single specialized models and single global 
models. The second part of this chapter explores different committee models that were built 
by a dynamic combination of specialized models using weights: (i) based on hydrological 
states (e.g., Soil moisture accounting store (Oudin et al., 2006) and other states (e.g., quick 
and slow flows); (ii) based on model inputs; and (iii) based on model outputs (simulated 
flows). These models were tested for the Brue, Bagmati, and Leaf catchments. 

3.2 Specialized hydrological models  

As it has been mentioned, the predictions of hydrological models are often set based on a 
single model, and their evaluation is done by single aggregate measure criteria (e.g., RMSE). 
However, these models typically not fully capable to capture all the characteristics of 
streamflows. The reason for this is that the characteristic of streamflows always vary by 
several orders of magnitude and their variance of error is dependent on the flow value. 
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Hydrological models are composed of complex systems (processes) that are comprised of 
multiple components (simpler sub-processes). Therefore, instead of one model, several sub-
models can be composed that represent sub-processes separately, where each model will then 
represent a specific process and time regime (hydro-meteorological situation). The sub-
models are also called "specialized models". The idea of building specialized models is to 
accurately reproduce the catchment hydrological responses (streamflows). This is 
accomplished by assembling an individual single model that is instantiated in the same model 
structure, specialized on distinctive regimes (high flows and low flows) of system behaviour, 
and their performances are evaluated by different objective functions. At this point, the 
weighted objective functions can be used to evaluate performance measures, where these 
objective functions stress the model errors with respect to each flow simulation. 
Alternatively, individual models can be composed by transformation of the objective 
function, emphasizing model parameterization for efficient regimes of flow domains. For 
example, the model could be better adapted to low flows by using the transformation of the 
objective function, which helps, to a certain extent, in avoiding imperfect models (Oudin et 
al. 2006).  

 
In this study we aim at refining the fuzzy committee approach (Solomatine 2006; Fenicia 

et al. 2007), and the main results are presented in publication by Kayastha et al. (2013). This 
approach is briefly outlined below. The high flows and low flows are considered as 
distinctive regimes, or states of system behaviour. The main aim is to accurately reproduce 
the system response during both regimes, for each of which separate models are built. In 
order to evaluate the performance of the single hydrological model in both conditions, the 
two weighted objective functions are used, where one emphasises the model error with 
respect to low-flow simulation, and the other is focuses on the model error with respect to 
high flows. 

 
The two objective functions are defined as follows: 
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where n is the total number of time steps, Qs, i is simulated flow for the time step i, Qo,i is 
observed flow for time step i. The two weighting functions, WLF and WHF, allow for placing 
the stronger weight on the low or on the high portions of the hydrograph. As a result, RMSELF 
places higher weight on low flow errors and lower weight on high flow errors than RMSEHF. 
Please note that values RMSELF and RMSEHF cannot be compared with each other and with 
the values of RMSE because of differences in weighting; this is important when viewing the 
resulting plots (Figure 3-4 and Figure 3-5). The types of the weighting functions (schemes) 
together with their parameters will be referred to further as WStype. Corresponding equations 
and figures are given below. 
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Table 3-3. Types of the weighting functions 

WStype ,LF iW  ,HF iW  Eq. No Figures 

I ( )Nl  ( )Nh  (3-3) Figure 1a 
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In above equations (Table 3-3), the variables l and h are calculated as:   
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where Qo,max is the maximum observed flow, N is the power value (for the experiment in this 
study, we considered only 1, 2 or 3), and α is a threshold for selecting weights of flows (It 
was chosen to be 0.75). Note that both N and α can also be subjected to optimization, but, in 
this study, that was not done. By computing both objective functions over the full range of 
discharges, both functions constrain the model to fit the entire hydrograph for WStype I, 
where parameter α is not used. However, for WStype with parameter α, WLF excludes high 
flows from the computation of the objective function if the condition is l > α. In the same 
way, WHF excludes low flows if h ≤ α for WStype III and IV. 

 
 
As mentioned above, measured criteria based on the mean square error place greater 

emphasis on high flow simulation and may not be suited for low flows. The objective 
function can be selected for the choice of a target variable in calculating criteria. Oudin et al. 
(2006) proposed an objective function based on the logarithms for transformations on low-
flow values. This criteria is used to calibrate low flows and illustrated in the following as 
logarithmic root mean square: 
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Figure 3-1. (a) WStype I, -weighting scheme for objective functions studied in Fenicia et al. 
(2007); (b) WStype II, (c) WStype III; and (d) WStype IV. Note: These three additional weighting 
schemes were attempted in the latest experiments. 

3.3 Committees of specialized models 

It is possible to classify various types of committee models into the four groups, 
depending on the weighting scheme.  

3.3.1 Fuzzy committee models 

The specialized models are built under the conditions of different regimes of catchment 
hydrological responses and are combined using an appropriate combining scheme. Although 
this combining scheme can be straightforward (Jain and Srinivasulu 2006), implying a switch 
between different models at different time steps, it can also involve various methods of model 
averaging (refer to Table 3-1). However, the issue is how to handle the compatibility at the 
boundaries between the two different specialized models. One possible way is to use a soft 
weighting scheme that switches to a smooth transition between the boundaries, where the 
contribution of each specialized model is based on using a fuzzy membership function – the 
so-called “fuzzy committee” described by Solomatine (2006). Xiong et al. (2001) also 
employed the fuzzy combination (Takagi-Sugeno); of models but their method was used to 
integrate the ensemble models (handling the whole range of the flow conditions), whereas the 
fuzzy committee integrates models were specifically developed for different flow conditions.  

The shape of the function initially used was trapezoidal (later another shape, see Figure 3-
2 b) that parameterized by the two transitional parameters [γ, δ] (see Figure 3-1a). The 
membership function (weight) of the low-flow model was assigned 1 when the relative flow 
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was below the parameter γ, it started to decrease in the proximity of the region boundary 
when the relative flow was between γ and δ; and it decreased to zero beyond the boundary 
when the relative flow was above δ. The membership function of the high-flow model 
follows the opposite logic. These membership functions are described by Equation 3-10 and 
3-11. The outputs of models are multiplied by the weights that depend on the value of flow 
and then normalized (Equation 3-9). The overall committee model is defined as follows: 

 
The committee model defines as follow: 
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where mLF and mHF are membership functions for the two individual models, QLF,i and QHF,i 
simulate high and low flows respectively for the time step i; γ and δ are the thresholds for 
high and for low flows respectively, and N is the parameter determining the steepness of the 
function used. The value N=1 is given for Type A and value of 2 or greater are assigned for 
Type B. The first two optimal specialized models, that is, one for the low-flow (QHF,i), and 
one for the high-flow (QHF,i ) are sought using optimization algorithms. Next two membership 
function parameters δ and γ are introduced to combine specialized models, which ruled the 
transition between the specialized models. The committee model Qc is calculated by 
combining sets of δ and γ, which are selected within given intervals, and the performance 
measure is calculated by RMSE and NSE. 

 

 
Figure 3-2. (a) A typical fuzzy membership function used to combine the specialized models (Type 

A); (b) A class of membership functions for high and low flow models tested in the new experiments 
(Type B). 
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3.3.2 States-based committee models  

Model averaging approaches use various types of weights to combine individual model 
outputs, which improve simulation and eliminate unrealistic discontinuities in the simulated 
system behaviour. The “states-based” committee models are composed by weights that 
depend on the internal model variables and are used to combine specialized models, which 
are built under the conditions of high-low and low-flow regimes. Oudin et al. (2006) 
presented the dynamic weights necessary to combine two models. These weights were 
computed from the rate of the soil moisture accounting (SMA) store of the rainfall runoff 
models, which represent the average of the water content (between 0 and 1) of the two SMA 
stores from the models calibrated on objective function RMSE and objective function 
RMSEln. In this case, when the moisture rate is close to 1, the combined streamflow tends to 
be equal to the streamflow obtained with the objective function RMSE, and when the 
moisture rate is close to 0, the combined streamflow tends to be equal to the streamflow 
obtained with the objective function RMSEln. In addition, the cubic function was used for 
weighting scheme (index) to increase the influence of the variations of these weights because 
the SMA store is rarely completely full or empty, and these indexes vary slowly over time. 
States-based committee models are also composed by the weights that are acquired not only 
from the SMA store value but also from other internal model variables (e.g., upper zone, 
lower zone). Figure 3-3 presents a graphical representation of the different internal states of 
the hydrological model. This study uses two different weighting schemes (similar shapes of 
weighting scheme Figure 3-1a) for specialized models. The weights for combining two 
specialized models are calculated by internal variables of the two specialized models, where 
model 1 is obtained by observed high flows, and are closer to simulations obtained with 
objective function RMSELF. Model 2 is obtained by observed low flows that are closer to 
simulations with objective function RMSEHF.  

 
 
The combination models obtained with weights from internal variables are called "states-

based committee model" and expressed as follows: 
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where QLF,i  and QHF,i are simulated high and low flows for time step i, Qst is an internal 
variable of HBV models, and the two weighting functions lsim and hsim allow for placing the 
stronger weight on the low or on the high flows. 
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Figure 3-3. Inputs and states of hydrological models  

 

 

3.3.3 Inputs-based committee models  

Time-varying weights based on hydrological inputs can be also used to combine 
specialized models (for instance, precipitation and evapotranspiration). These weights depend 
on the climatic environment of the catchment. Bruen (1985) implemented the model 
averaging approach based on the inputs to the rainfall runoff model, which was effectively 
divided into a number of separate series by a threshold of fixed values, subsequently the 
separate sub-models were constructed. The output of the overall model was obtained by the 
sum of the outputs from each of the sub-models applied to the corresponding separated 
inputs, and these inputs corresponded to the different levels of rainfall intensity (low to high 
rainfall). Nasr and Buren (2008) extended this approach by estimating different levels of 
memberships of input to all sub-sets using the fuzzy logic principle. The degrees of 
memberships were taken as the weights that were assigned to the outputs from the models 
corresponding to each of the input sub-sets. However, in this thesis, to combine specialized 
models the inputs-based committee models are built without splitting (sub-sets) the input 
series. These weights were calculated (as in Oudin et al., 2006) from inputs as a rescaled 
value between 0 and 1, and then high weights were used when the model has to be more 
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accurate for high flows, and therefore should be close to 1. In contrast, for low flows, the 
weight should be close to 0. The combination models are expressed as follows: 

 

, , ,( )c i low LF i hig HF iQ I Q I Q           (3-14) 
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where Ilow and Ihig are weighting functions based on hydrological inputs for the two 
specialized models, QLF,i and QHF,i are simulated high and low flows for the time step i; Pmax 
is the maximum value of precipitation over selected time series and Pi is precipitation for the 
time step i. 
 

3.3.4 Outputs-based committee models  

Outputs-based committee models are assembled by weights that are calculated based on 
the simulated outputs of hydrological models (simulated streamflows) to combine specialized 
models. The weights are calculated similar to inputs-based committee models; however, 
instead of inputs, the weights are calculated from the simulated streamflows of each 
specialized model. The combination models are expressed as follows: 
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where QLsim and QHsim are two weighting functions based on hydrological model outputs. 
Qs,max is the maximum simulated flow over selected time series and Qs,i are simulated flows 
for the time step i. 

 

3.4 Performance measures  

The resulting model is subsequently verified (tested) on the verification (test) data set, and 
compared with the single hydrological model (which is optimized by a single-objective 
optimization algorithm) based on RMSE and NSE (Nash-Sutcliffe efficiency (Nash and 
Sutcliffe, 1970) as an objective function.  RMSE is a measure of the difference between 
simulated by a model and the observed that is being modelled. This helps to combine them 
into a single measure of predictive ability. NSE is a similar measure widely used in 
hydrology, and is calculated as 1 minus the absolute squared difference between the 
simulated discharges from the committee model and observed discharges normalized by the 
variance of the observed discharges.  The value of NSE is in the range of [-, 1] and a value 
of 1 indicates a perfect fit of the model. 
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The equations of RMSE and NSE are given below:  

(3-18) 
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where Qo,i expresses the observed discharges for the time step i, Qs,i indicates the simulated 
discharges (single optimal or committee models) for the time step i and n is the number of 
observations.  

3.5 Models setup for Alzette, Bagmati and Leaf catchments 

Initially, the three experimental catchments, namely Alzette, Bagmati, and Leaf, were 
selected for testing the fuzzy committee models. In the second experiment, we tested states, 
inputs- and outputs-based committee models, and compared those with each other for three 
catchments, namely Bagmati, Leaf, and Brue. The summary statistics and records of data for 
calibration and verification of these catchments are presented in Chapter 1, Section 1.4. 

Table 3-4. The range of model parameters 

Para-
meters Units Descriptions 

Ranges used in calibration (optimization)

Alzette Leaf Bagmati Brue

FC  (mm) 
Maximum soil moisture 
content 

100 - 
450 

100 - 
400 50-500 100 - 300

LP  (-) 
Limit for potential 
evapotranspiration  0.3 - 1 0.1 - 1 0.3 - 1 05 - 0.99

ALFA (-) Response box parameter 0.1 - 1 0 - 2 0 - 4 0 - 4

BETA  (-) 
Exponential parameter in 
soil routine 0.1 - 2 1.0  - 4 1.0  - 6 0.9 - 2

K  (mm/h) 
Recession coefficient for 
upper tank 

0.005 - 
0.5 

0.05 - 
0.5 

0.05 - 
0.5 

0.0005 - 
0.1

K4  (mm/h) 
Recession coefficient for 
lower tank 

0.001 - 
0.1 

0.01 - 
0.3 

0.01 - 
0.3 

0.0001 - 
0.005

PERC  (mm/h) 
Percolation from upper to 
lower response box 0.01 - 1 0 - 5 0 - 8 

0.01 - 
0.09

CFLUX  (mm/h) 
Maximum value of 
capillary flow 0 - 0.05 0 - 1 0 - 1 0 - 0.05

MAXBAS  (h) 
Transfer function  
parameter 8 - 15 2 - 6 1 - 3 8   15

Note: The unit 'd-day' is used for Leaf and Bagmati catchments instead of 'h-hour.' 

The version of the HBV model (see Chapter 2, Section 2.2 for a description) is setup for 
this study. The model is calibrated using the global optimization routine named the adaptive 
cluster covering algorithm, ACCO (Solomatine 1999) to find the best set of parameters. The 
investigated sets of parameters from different models are given in Table 3-5 and Table 3-8  
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Table 3-5. Sets of model parameters identified by different optimization algorithms 
Catchments Models FC LP ALFA BETA K K4 PERC CFLUX MAXBAS

Alzette ACCO SO 284.83 0.26 0.06 0.65 0.02 0.01 0.16 0.04 10.96 

  LF 356.34 0.46 0.10 0.42 0.02 0.00 0.14 0.10 13.48 

  HF 414.48 0.19 0.30 0.49 0.00 0.03 0.97 0.01 8.51 

 GA SM 309.97 0.35 0.03 0.72 0.03 0.01 0.27 0.01 11.45 

  LF 255.11 0.46 0.07 0.98 0.03 0.01 0.23 0.05 12.62 

  HF 338.84 0.56 0.06 0.95 0.01 0.02 0.89 0.00 8.37 

 NSGA-II LF 253.24 0.16 0.07 0.54 0.02 0.00 0.13 0.00 9.49 

  HF 253.25 0.34 0.07 0.52 0.02 0.01 0.14 0.00 9.54 

Leaf ACCO SM 272.11 0.29 0.30 1.57 0.27 0.26 2.27 0.62 6.04 

  LF 303.49 0.14 0.42 1.14 0.08 0.04 0.47 0.91 4.94 

  HF 230.27 0.16 0.62 1.08 0.08 0.28 0.00 0.96 5.99 

 GA SM 349.80 0.64 0.65 2.29 0.07 0.14 0.65 0.97 5.99 

  LF 313.84 0.22 0.26 1.24 0.14 0.05 0.66 1.00 5.06 

  HF 285.21 1.00 0.72 1.91 0.05 0.26 1.83 0.99 6.00 

 NSGA-II LF 301.88 0.36 0.37 1.95 0.14 0.24 1.07 0.89 5.57 

  HF 274.26 0.90 0.45 2.27 0.15 0.26 1.24 0.85 5.86 

Bagmati ACCO SM 371.88 0.67 0.07 1.01 0.49 0.14 7.78 0.20 2.57 

  LF 448.05 0.79 0.13 1.04 0.37 0.06 7.88 0.29 2.53 

  HF 445.04 0.65 0.08 1.05 0.46 0.23 7.79 0.67 2.94 

 GA SM 430.26 0.59 3.85 1.04 0.50 0.08 8.00 0.01 2.99 

  LF 301.36 0.83 0.22 1.05 0.22 0.06 7.99 0.10 2.39 

  HF 453.50 0.58 0.07 1.23 0.49 0.03 0.05 0.00 2.91 

 NSGA-II LF 364.46 0.75 0.16 1.05 0.33 0.07 7.94 0.11 2.48 

  HF 370.66 0.66 0.10 1.06 0.37 0.10 7.17 0.17 2.74 

SM is single hydrological model (single optimal model-optimized by a single-objective optimization 
algorithm based on the classical RMSE); LF and HF are low flows model and high flows model (optimized by a 
single-objective optimization algorithms and multi-objective optimization based on the RMSELF and RMSEHF). 
 

3.6 Results and discussion 

3.6.1 Fuzzy committee models 

Fuzzy committee models were tested in the three catchments, namely Alzette in 
Luxemburg, Leaf in the USA, and Bagmati in Nepal. The experimental design follows the 
one used in an earlier study (Fenicia et al., 2007), where the Alzette catchment was 
considered, and only calibration data were considered for building the models without further 
validation. This study presents two additional catchments (Leaf and Bagmati) with both 
calibration and verification periods, and compares the overall model performance when using 
different weighting schemes for objective functions (Figure 3-1) and different membership 
functions (Figure 3-2). The first two months of calibration data are considered as the 
warming-up period in the Leaf and Bagmati catchments. However, for the Alzette catchment, 
we used the hourly data set of only one year for the calibration period and one year for 
verification. We allocated 168 hours of data for the model warm-up period to compensate for 
the lack of data in the calibration set. 

 
The ranges of HBV model parameters for optimization are given in Table 3-4. We 

produced the specialized models (the best single model specialized on high flows and low 
flows), which are optimized by multi- and single-objective optimization algorithms. The 
identified best sets of parameters for different models are given in Table 3-5. It is worth 
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mentioning only one model structure (HBV) is used, but the use of several calibration 
methods and several error functions result in several model parameterizations, or 
instantiations. For simplicity, we will be mentioning several models, meaning actually the 
same model structure but with several parameterizations.  

 
 

 
Figure 3-4. The identified sets of Pareto-optimal parameterizations of single specialized models 

(optimized by NSGAII), committee models, and single optimal models, calibrated by ACCO and GA, 
for the Leaf catchment. (a) calibration data set; (b) verification data set (model parameterizations from 

(a) are used). 

 
We present the results of calibration using several optimization algorithms: NSGAII, GA 

and ACCO. The reasons for using different optimization algorithms for calibration are: 1) the 
GA initially used appeared to be quite slow (in terms of the required model runs). 
Consequenly, we decided to test the use of faster algorithms as well; 2) to cross-check one 
against the another, since they both use randomization of the initial population, and this 
affects the results. In each experiment, a committee model is compared with the single 
optimal model, which is calibrated by two different single-objective optimization algorithms 
(GA and ACCO). The best single models specialized for low and high flows, respectively 
(found by NSGA-II, GA, and ACCO), are used in the committee model. The points denoted 
“committee models” correspond to the model parameterizations generated during the 
exhaustive search for the best γ and δ, ensuring the lowest RMSE. We also tested a committee 
model that was built by combining the specialized models, and compared it against the single 
optimal model for all catchments. In Table 3-6 and Table 3-7, these models are denoted as 
Qc(ACCO), Qc(GA), and Qc(NSGAII). Interestingly, the committee model proved to be 
better on both objective functions (RMSE and NSE) than the single optimal models, for all 
case studies. 

 
The graphs of Pareto-optimal of single specialized models (calibrated by NSGAII), 

committee models, and single optimal models (calibrated by ACCO and GA) for the Leaf 
catchment are shown in Figure 3-4. In this figure, one may see that the 20205 single 
specialized models presented as they were generated during the multi-objective optimization 
process, by using the WStype I weighting scheme. The 70 model parameterizations identified 
as the best (Pareto-optimal) are presented as well (indicated by the darker points). The 
Pareto-optimal models in calibration are not necessarily the best in verification, which is, of 
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course, no surprise. What is important to stress, however, is that their performance is not too 
much lower than that for the calibration data. Among the Pareto-optimal models, the best 
single model specialized on low flows achieved 11.01 in RMSELF (all errors are in m3/s), and 
it can be seen from Figure 3b that this model is also very close to being the best in 
verification with RMSELF of 18.33. However, the best single model specialized on high flows 
(RMSEHF  is 6.08) is not too bad but not the best in verification (Its RMSEHF is 8.42 and, in 
Figure 3b, it is easy to see that there are many models with lower RMSEHF values)  

 

 
Figure 3-5. The identified sets specialized models (optimized by ACCO), committee models, and 

single optimal models, calibrated by ACCO in Leaf catchment. (a) calibration data set; (b) verification 
data set (model parameterizations from (a) are used). 

 
The committee model resulted in the classical RMSE of 15.63 in calibration and 25.23 in 

verification. To represent this model in Figure 3-4 (solid square), we had to calculate it for 
the corresponding RMSELF and RMSEHF values, and we did this using the same type of 
weighting scheme (WStype I) that was used in the calibration of specialized models. In the 
same way, we presented the single optimal models identified using the two single objective 
optimization methods (ACCO and GA are represented by a circle and a star, respectively). It 
can be seen that the committee models are closer to the ideal point than the other single 
optimal models, and this means that the committee model’s performance is highest among 
any of the single models.  

 
The performances of the best single models specialized on high and low flows (RMSEHF 

and RMSEHF) on various catchments are presented in Table 3-6. However, again, it should be 
noted that RMSELF and RMSEHF cannot be compared, since they use different formulas. 
RMSELF values are even higher than those of RMSEHF . The reason is that the number of low 
flows is much higher than that of high flows, and the denominator (total number of 
observations) in both formulas is the same.  

 
In the Leaf catchment, we tested all possible combinations of different weighting scheme 

types and classes of membership functions. These results are presented in Table 3-7. 
Noticeably, all committee models improved their performances in verification in comparison 
with the single hydrological models, which were optimized by single objective optimization. 
However, on the other two catchments, Alzette and Bagmati, the number of experiments was 
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smaller, but, in all of them, the committee models demonstrated the highest performance on 
both calibration and test data sets. 

 
Table 3-6 reports the performance of committee models and single-optimal models 

calibrated by ACCO and GA for each catchment. For the Bagmati catchment, the RMSE, 
calculated by a single optimal model in calibration, is 101.01 m3/s, and verification is 112.42 
m3/s. However, it can be noticeably improved by the committee models and obtained values 
around 94.16 - 95.96 m3/s in calibration and 109.38 - 110.29 m3/s in verification. The RMSE 
of the single model produced 26.76 m3/s in the verification period for the Leaf catchment. 
However, when new types of weighting and membership functions were used, RMSE 
dropped to 23.41 m3/s (see Table 3-7). 

 
The plots for the committee models that are built from the combination of the two 

specialized models for high and low flows, with respect to the hydrograph simulations, are 
illustrated in Figure 3-6. It can be observed that the committee model combines the best 
features of the specialized models. 

 
Table 3-6. The performances of single optimal models (optimized based on classical 

RMSE) and committee models of various catchments. Committee models are assembled by a 
combination of the weighting scheme WStype I and membership function MFtype A. 

Catchments Models 
Membership  

function RMSEHF RMSELF RMSE NSE 

δ γ Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. 

Alzette Qs (ACCO) n a n a 0.97 1.23 2.11 1.71 2.37 2.39 0.88 0.86

 Qs (GA) n a n a 0.99 1.2 2.03 2.01 2.31 2.42 0.89 0.88

 Qc (ACCO) 0.50 0.25 0.53 0.81 1.65 1.48 2.10 2.06 0.91 0.89

 Qc (GA) 0.60 0.40 0.56 0.78 1.71 1.35 2.19 2.15 0.90 0.90

 Qc (NSGAII) 0.50 0.30 0.50 0.86 1.48 1.48 1.99 2.07 0.93 0.89

Leaf Qs (ACCO) n a n a 8.97 14.31 11.84 18.81 17.56 26.76 0.87 0.83

 Qs (GA) n a n a 7.96 11.70 11.71 19.64 17.36 26.58 0.88 0.84

 Qc (ACCO) 0.39 0.37 5.88 9.00 10.55 18.74 15.63 25.23 0.91 0.85

 Qc (GA) 0.51 0.50 5.82 8.91 10.86 19.38 15.76 24.88 0.90 0.85

 Qc (NSGAII) 0.50 0.49 5.61 9.05 10.85 18.59 16.05 23.86 0.90 0.88

Bagmati Qs (ACCO) n a n a 29.55 85.33 38.84 87.54 101.01 112.42 0.87 0.90

 Qs (GA) n a n a 32.42 86.18 34.16 92.38 101.69 116.72 0.86 0.88

 Qc (ACCO) 0.61 0.4940.09 69.31 72.69 65.09 95.96 109.38 0.87 0.90

 Qc (GA) 0.57 0.4718.93 39.75 77.29 74.55 94.39 110.29 0.89 0.91

 Qc (NSGAII) 0.50 0.47 26.94 48.34 82.42 81.67 94.16 109.72 0.87 0.91
Note: In Table 3-6, Qs (ACCO) and-Qs(GA) indicate single hydrological models (SMs), Qc(ACCO), 
Qc(GA), and Qc(NSGAII) are committee models (CMs), (Bold indicates best CMs, italics is best SMs and 
highlighted grey is best model for a catchment, n.a. is  not available) 

 
These experiments have led to one important observation related to using the weighting 

function for objective functions (Figure 3-1  and Equation 3-7) in calibration of specialized 
models; that is, that the quadratic function used earlier (Fenicia et al., 2007) was, in fact, the 
first indication that it will allow for distinguishing the low and high flows. In our latest 
experiments, it appeared, quite expectedly, that other functions (for example, cubic) may 
work better during the calibration period.  
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Table 3-7. Performance of committee models for the Leaf catchment, with possible 
combinations of the various weighting schemes and membership functions. 

 Models Weighted 
function 

Membership function RMSEHF RMSELF RMSE NSE 

WStype N MFtype δ γ Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. 

Qs (ACCO) n a n a n a n a 8.97 14.31 11.84 18.81 n a 17.56 26.76 0.87 0.83 

Qs (GA) n a n a n a n a 7.96 11.70 11.71 19.64 n a 17.36 26.58 0.88 0.84 

Qc (ACCO) I 2 A 0.39 0.37 5.88 9.00 10.55 18.74 15.63 25.23 0.91 0.85 

 II 2 A 0.45 0.44 7.27 10.47 9.71 17.86 16.01 24.38 0.89 0.85 

 III 2 A 0.65 0.14 1.02 3.23 9.56 17.26 15.60 24.52 0.92 0.88 

 IV 2 A 0.56 0.55 1.13 3.00 11.47 19.64 16.20 25.68 0.87 0.86 

 I 2 B 0.39 0.38 5.88 9.00 10.55 18.74 15.63 25.26 0.90 0.85 

 II 2 B 0.45 0.44 7.27 10.47 9.71 17.86 16.03 24.38 0.89 0.85 

 III 2 B 0.94 0.15 1.02 3.23 9.56 17.26 15.67 24.72 0.92 0.88 

 IV 2 B 0.56 0.55 1.13 3.00 11.47 19.64 16.20 25.68 0.87 0.85 

Qc (GA) I 2 A 0.51 0.50 5.82 8.91 10.86 19.38 15.76 24.88 0.90 0.85 

 II 2 A 0.66 0.14 7.36 9.84 9.81 18.93 16.13 25.81 0.92 0.86 

 III 2 A 0.99 0.16 0.99 2.77 9.67 18.36 16.53 24.67 0.92 0.87 

 IV 2 A 0.99 0.30 1.01 2.85 11.50 19.84 16.60 23.96 0.92 0.87 

 I 2 B 0.99 0.15 5.82 8.91 10.86 19.38 16.30 25.56 0.93 0.86 

 II 2 B 0.87 0.16 7.36 9.84 9.81 18.93 16.22 25.58 0.93 0.87 

 III 2 B 0.99 0.31 0.99 2.77 9.67 18.36 16.47 24.34 0.92 0.87 

 IV 2 B 0.99 0.42 1.01 2.85 11.50 19.84 16.55 24.06 0.92 0.87 

 I 1 B 0.42 0.41 9.43 13.06 12.44 20.56 15.96 24.04 0.91 0.89 

 I 3 B 0.99 0.23 3.64 6.95 9.30 17.08 16.50 25.53 0.91 0.86 

Qc (NSGAII) I 2 A 0.50 0.49 5.61 9.05 10.85 18.59 16.05 23.86 0.90 0.88 

 II 2 A 0.50 0.49 7.31 9.98 9.70 17.45 15.71 23.85 0.91 0.88 

 III 2 A 0.86 0.47 1.08 2.86 10.13 17.76 17.36 23.41 0.91 0.90 

 IV 2 A 0.86 0.45 1.08 3.10 11.62 20.01 16.76 23.97 0.90 0.87 

 I 2 B 0.50 0.29 5.61 9.05 10.85 18.59 16.45 23.96 0.90 0.88 

 II 2 B 0.50 0.15 7.31 9.98 9.70 17.45 16.71 23.95 0.91 0.88 

 III 2 B 0.99 0.49 1.08 2.86 10.13 17.76 17.29 23.46 0.91 0.91 

 IV 2 B 0.99 0.46 1.08 3.10 11.62 20.01 16.71 23.97 0.91 0.88 

 I 1 A 0.38 0.36 9.59 12.76 12.91 20.46 16.58 23.86 0.91 0.91 

 I 3 A 0.50 0.49 4.19 7.88 9.60 17.07 15.96 23.79 0.90 0.88 

Note: The value of α =0.75 used in WStype II, III and IV (Bold = best CMs, italics = best SMs) 

 
The performances of the committee models that were built from the combination of the 

two local models for high flow and low flow, with respect to the hydrograph simulations, are 
presented in Figure 3-6. It can be visually observed that the committee model features the 
best characteristics of both specialized models.  

 
One potential issue related to the scaling of weighting function for objective functions 

used in fuzzy committee model is worth mentioning that Equation (3-3) used in all WStype 
that involve Qo,max. This may become a certain problem in operation (verification). Qo,max is 
the maximum for calibration data, but this, of course, does not guarantee that it will not be 
superseded in the future when the model is in actual operation (or when simulating the 
operation by using verification data). The quadratic function will still handle values above 1, 
but if the calibration maximum is exceeded considerably, then the high flow will be given 
disproportionally higher weights, and low flows disproportionally lower weights. A solution 
may lie in using a slightly wider range for scaling.  
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Figure 3-6. A fragment of hydrograph generated from various models, Qo is  observed discharge, Qs 
indicates model identified by single-objective optimization (ACCO and GA), Qc is committee model 

(ACCO, GA and NSGAII), (a) Alzette (31/01/2002 08:00:00 - 18/03/2002 03:00:00); (b) Bagmati 
(20/5/1990-28/5/1990); and (c) Leaf (13/02/1960 - 08/03/1960 

 

3.6.2 States-, inputs-, and outputs-based committee models for Brue, Bagmati, and 
Leaf 

The predictive capability of inputs, states and outputs-based committee models are tested 
on the three catchments (Bagmati, Brue, and Leaf) with both calibration and verification 
periods. The first two specialized models (the best single model specialized on high flows 
and low flows) are optimized by single-objective optimization algorithms with objective 
functions (Figure 3-1 a), and then combined using weights Equations 3-14 to Equations 3-17. 
The overall model performances are compared with a single optimal model and fuzzy 
committee model. 

 
The observed and simulated hydrographs of the best combined cases of specialized models 

for all three catchments are plotted in Figure 3-7 to Figure 3-9 (the hydrograph generated 
from various committee models). Each of the three catchments exhibited different 
hydrological behaviour, which was reflected in the shape of the hydrograph. The six graphs 
demonstrated the ability of nine different committee models to capture most of the 
hydrograph features in calibration and verification. In plots Figure 3-7 to Figure 3-9, MSO is 
the single hydrological model (single optimal model-optimized by a single-objective 
optimization algorithm based on the classical RMSE); MLF and MHF are the low-flows 
model and the high-flows model, respectively (optimized by a single-objective optimization 
algorithms based on the RMSELF and RMSEHF); MFM is a fuzzy committee model; MSV1, 
MSV2, MSV3 are states-based committee models (weights based on soil moisture level, 
upper tank level, and lower tank level, respectively); MBF1, MBF2, MBF3 are outputs-based 
committee models (weights based on quick flow, base flow, and simulated streamflows, 
respectively); MBI1 and MBI2 are  inputs-based committee models (weights based on 
precipitation  and evapotranspiration, respectively). 
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Figure 3-7. Hydrographs generated from the various committee models for the Bagmati catchment:  

(a) calibration and (b) verification 

The committee model MFB3 demonstrated an excellent performance in reproducing the 
observed hydrograph at peak for the Brue and Leaf catchments (Figure 3-8 and Figure 3-9), 
and to some extent in the Bagmati catchment (Figure 3-7), but features, such as rising limb, 
are better generated by this model than the individual peak values. 

 
Table 3-8. The identified set of model parameters by ACCO for Brue catchment 

 

Parameters SO HF LF 

FC 163.56 172.32 191.88 

LP 0.61 0.59 0.62 

ALFA 1.70 1.63 1.38 

BETA 1.89 1.81 1.99 

K 7.4E-04 1.0E-03 1.6E-03 

K4 3.2E-03 3.0E-03 4.1E-03 

PERC 8.8E-02 5.5E-02 0.09 

CFLUX 0.04 0.02 0.04 

MAXBAS 12.09 12.81 10.93 

SO: Single optimal model; LF: Low-flow model; HF: High-flow model 
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Figure 3-8. A hydrograph generated from various committee models for the Brue catchment. (a) 

calibration and (b) verification 

 
 
Table 3-9 shows the overall performance in RMSE and NSE for all committee models, and 

for the single-optimal model in calibration and verification period for three catchments. The 
results in calibration and validation for the different committed models significantly differ 
from each other. RMSE values of fuzzy committee models (MFM) for calibration and 
verification are higher among all models. In Bagmati, committee models MFM, MSV2, 
MBF1 and MBF3 performed better than MSO, both in calibration and in verification. MBI1 
improved the performance in calibration but not in validation. MSV1 model performance is 
the worst among all models. The value of RMSE obtained by the MBF3 represented a 
significant improvement in the calibration period for Brue but insignificant progress in 
verification. There were no significant differences among the NSE in verification. Models 
MFM, MSV1, MSV2, MSV3, and MBF3 performed better than MSO for the Leaf catchment. 
MFM and MBF3 are best among all models in calibration and in verification, respectively. 
RMSE of the MSV1 is almost equal to MSO in calibration, which is greater than the MFM, 
MVS2, and MBF1 but is still best in verification.  
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Figure 3-9. A hydrograph generated from various committee models for the Leaf catchment. (a) 

calibration and (b) verification 

 
 
The overall results show that most committee models performed better than the single 

model, and, among all of them, MFM and MBF3 are the best. Compared with other 
committee models, model MOD did not perform well in its performances. In this model, the 
weights are calculated from the SMA (soil moisture accounting) of the model that balanced 
the low- and high-flow models (these two models are calibrated by log transformed for low 
flows and RMSE for high-flow), while these weights help to increase or decrease flow that 
affects the shape of the hydrograph. In MFM, fuzzy membership function switches to a 
smooth transition between the boundaries of specialized models, which does not allow 
additional flow into the system.  

 
It is useful to mention that overfitting the problem (typically addressed in data-driven 

modelling) may lead to a decrease of accuracy in operation (which can be detected during 
validation), and there are several ways to address this issue. For example, trying to limit the 
complexity of a model, and/or using cross-validation data set to control the calibration 
process. The committee models include weights (MFM includes a number of parameters) that 
increase accuracy of the overall model. However, this contributes to increasing the 
complexity of the model and may lead to overfitting.  
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Table 3-9. The performances of single optimal models and committee models (RMSE and 
NSE) of various catchments 

SN Models 

Bagmati Brue Leaf 

RMSE  NSE  RMSE NSE RMSE NSE 

Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. 

1 MSO 101.01 112.42 0.87 0.89 0.79 0.99 0.96 0.83 17.56 26.76 0.88 0.90 

2 MFM 95.66 109.38 0.89 0.90 0.78 0.97 0.96 0.83 15.63 25.23 0.89 0.91 

2 MOD* 105.45 113.20 0.85 0.82 0.87 0.99 0.95 0.83 18.51 27.98 0.87 0.89 

4 MSV1 107.61 124.25 0.84 0.77 0.88 0.97 0.94 0.83 17.55 24.98 0.87 0.91 

5 MSV2 99.17 110..25 0.88 0.83 0.80 0.97 0.95 0.83 15.81 25.00 0.89 0.91 

6 MSV3 104.21 115.79 0.87 0.80 0.85 0.96 0.95 0.84 20.03 29.59 0.83 0.88 

7 MBF1 99.57 111.15 0.88 0.83 0.83 0.98 0.95 0.83 17.33 28.32 0.87 0.89 

8 MBF2 104.21 115.79 0.87 0.80 0.85 0.96 0.95 0.84 20.03 29.59 0.83 0.88 

9 MBF3 97.88 111.75 0.88 0.82 0.74 0.97 0.96 0.83 15.90 24.30 0.89 0.92 

10 MBI1 105.47 118.44 0.87 0.79 0.83 0.98 0.95 0.83 17.50 28.07 0.87 0.89 

11 MBI2 100.71 114.27 0.87 0.83 0.83 0.96 0.95 0.83 17.37 27.94 0.87 0.89 
*(Oudin et al., 2006) 

 

3.7 Summary  
This chapter provides a comparative assessment of the various committee models that are 

assembled by different model combination methods to improve the prediction of catchment 
hydrological responses. A committee model consists of the specialised models (separately 
calibrated for each regime with different objective function), which are combined using a 
proper weighting method. The resulting model is subsequently tested on verification data and 
compared with other models based on objective function RMSE and NSE. The differently-
parameterized models show strengths in encapsulating different characteristics of the 
catchment responses. Different weighting schemes for objective functions and membership 
functions are compared in terms of the overall model performance. 
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Chapter 4  
Hybrid committees of hydrological 
models  

This chapter presents hybrid models built from a combination of the conceptual and data-driven 
hydrological models. These two individual models are responsible for a particular aspect of flows, this 
chapter describes their combination into one new model to form a hybrid committee model. We tested 
the performance of hybrid committee models by using several weighting schemes in objective 
functions for calibration of individual specialized models, and final models are compared with single 
hydrological models (HBV and ANN) for the Bagmati and Leaf catchments. The results show that 
hybrid committee model can significantly improve the performances of the model.2 

4.1 Introduction  

Conceptual and data-driven models each have a number of advantages and drawbacks. 
Therefore, a new model can be built, by combining the best features of these models into 
what is known as a “hybrid model”. The idea of hybrid modelling is not new in the 
hydrological community, as discussed by some authors in the literature (Abrahart and See, 
2002; Corzo and Solomatine, 2006; Corzo et al., 2009). Various types of hybrid models have 
been proposed; some examples are: wavelet-ANN model (Anctil and Tape, 2004); chaotic-
ANN model (Karunasinghe and Liong, 2006); semi-distributed processed-based; and the 
ANN model (Corzo et al., 2009).  

 
Hybrid models can be classified in three ways (Corzo, 2009): (i) data-driven models with 

incorporated hydrological knowledge (e.g., the separation of input space or the identification 
of processes and regimes of outputs based on hydrological knowledge); (ii) process-based 
models using data-driven techniques, or with some components replaced by data-driven 
models to solve complex processes in a physically-based model; and (iii) data-driven models 
used in parallel (e.g., ensembles) or sequentially (e.g., in a data assimilation setup).  

 
This study implements the first type of hybrid model, with this model initially building 

conceptual and data-driven models. These models specialized on high flows and low flows, 
respectively, which are combined by fuzzy membership function. The conceptual models for 
the low flows of the catchment (hydrograph) are typically difficult to calibrate, and one 
possibility here is to use a data-driven model (ANN) for low-flows. The high-flows can be 
modelled by a conceptual hydrological model. (Note that the data-driven (low-flow) 
component does not have hydrological states, whereas the conceptual model does.)  

 

                                                 
2 Kayastha, N. and Solomatine, D. P., (2013). Combinations of specialized conceptual and neural network 

rainfall-runoff models: comparison of performance, Proc. Geophysical Research Abstract, European 
Geosciences Union. Vol. 15, EGU 2013-9022. 
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This study tests the performance of a fuzzy hybrid committee models for two catchments 
(Bagmati and Leaf), and used the same weighting scheme in objective functions for 
calibration of specialized models of the HBV hydrological model and ANN model. [This is 
presented in the previous chapter (see, Figure 3-1a)]. 

 

4.2 Low flows simulation 

Hydrological models often poorly simulate low flows, since these models are traditionally 
designed to simulate the runoff response to rainfall, and it is difficult for them to learn the 
rainfall-runoff relationships. Furthermore, the values of low flows of the hydrograph are 
considerably lower than those of the high flows during storm events, and have the most 
values that are close to zero. The criteria used for the evaluation of simulation depend on the 
type of hydrological regime or the type of model application. Most of the performance 
criteria are based on the mean model squared error, a criterion which is known to place 
greater emphasis on high flows simulation. Pushpalatha et al, (2012) presented different 
criteria for evaluating the simulation of low flows in hydrological models. They found that 
the criterion calculated on inverse flows is better suited for the evaluation in low-flow 
conditions. The predictability of a hydrological model for low flows is relies on a description 
of the relationship between the surface water and groundwater processes in low-flow 
conditions. In reality, low-flow prediction/forecasting with hydrological models is very 
complex because processes conditioning low flows involve various inherently complex 
predictors (e.g., climatic factors). In addition, it also depends on the region and the season. 
One solution could be to use a data-driven model, e.g., an ANN, model because in 
hydrological modelling, data-driven moels have been shown to be excellent flow predictors 
due to their high nonlinearity, flexibility, and without much prior knowledge about catchment 
behaviours and flow processes. This study proposes to use the ANN model instead of the 
HBV model for low flows in committee models.  

 

4.3 ANN models specialized on low flows  

The motivation behind using ANN is that this is a powerful tool for the modelling of non-
linear systems, such as river streamflows. It allows building a simple model, that is 
decomposed from the larger problem, and the modelling of decomposed streamflows 
performs better than using one single model (Jain and Srinivasulu, 2006; Corzo and 
Solomatine 2007). 

 
A number of specialized rainfall runoff models were built instead of using only one single 

model. The discussion on specialized model can be found in Chapter 3, Section 3. The input 
variables for artificial neural network (ANN) models that specialized on low flows are 
selected based on correlation and mutual information analysis between the input and output 
variables, as described in Chapter 2. The variables selected for the ANN models are shown in 
Equation 4-1. Figure 4-1 presents the autocorrelation and cross-correlation results for the 
Bagmati and Leaf catchments. The peaks of both the cross correlation and mutual 
information are observed at 1 hour and 3 hours, respectively. Along with this analysis, 
several models with different combinations of variables have been selected as well, but here 
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we have only shown the model that results in the lowest error. Hydro-meteorological time 
series of more recent data series at different previous time points are used as model inputs to 
predict the original data series at the current time moment. For daily time series, the past data, 
from one day prior to a few days prior, are typically used as model inputs. 

 
The ANN rainfall runoff models specializing on low flows for the Bagmati and Leaf 

catchment are given below: 
 

),,( 111  tttLF QRRfQ         (4-1) 

 
),,,,( 11543   tttttLF QQRRRfQ       (4-2) 

 
where Rt-1 is rainfall of the previous day, Qt-1 is previous flow, and ΔQt-1 is the change in flow 
(flow derivative). The flow data series at one day prior is always selected as one of the inputs 
because of the usual high lag-1 autocorrelation (Kisi, 2008). This selection principle used of 
single-step-ahead prediction in which each single step ahead can predict the next one-day 
datum. However, this study predicts current stage from one-step previous input (simulation 
mode). 
 

 
Figure 4-1.  Plots of correlations and average mutual information between rainfall and low-flows  

(a) Bagmati catchment and (b) Leaf catchment 

 

4.4 Committee of ANN and HBV for Bagmati and Leaf 

Specialized HBV and ANN rainfall runoff models are built to reproduce catchment 
hydrological responses, which are specialized on distinctive regimes (high flows and low 
flows) and are combined using an appropriate combining scheme. The combining scheme 
was used to weight the contributions of each specialized model, which makes use of a fuzzy 
attribution of weights, and where the outputs of the models are multiplied by the weights that 
depend on the value of flow and then normalized. This is shown in Equation 3-9, and the 
descriptive figure is given in Figure 3-2. Several committee models can be formed by 
combining the two specialized models using a fuzzy committee. This study tests three 
different committee models, which are built by a different combination of specialized models, 
namely (i) low-flow HBV model and high flow HBV model; (ii) low-flow ANN model and 
high flow ANN model; and (iii) low-flow ANN model and high-flow HBV model. The 
committee model Qc is calculated by combination sets of δ and γ, which are selected within 
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given intervals, and the performance measure is calculated by root RMSE and NSE. The 
membership functions are subject to the optimization of parameters (γ, δ) and shapes, for the 
best combination.  

 

 
Figure 4-2. Hybrid committee model 

4.5 Results and discussion 

The performances of all hybrid committee models are presented in Table 4-1. The results 
of the hybrid models show that their performance is best among all committee models. The 
use of the ANN technique is effective in prediction, but not necessarily in terms of the 
modelling efficiency. The reason is that the ANN technique built model is based on 
relationship inputs and outputs rather than on hydrological processes. The hybrid committee 
approach uses two techniques of modelling (separately used within the two models), which 
yield a better model performance.  

 
Table 4-1. Performances of the hybrid model and single hydrological models 

Models 

Specialised 
models 

 Weighted 
function 

Membership 
function RMSE NSE 

N 
δ 

γ 
Calibra
-tion 

Verifi-
cation 

Calibra-
tion 

Verifi-
cation 

(a) Bagmati  
 QHBVs n a n a n a n a 101.01 112.42 0.87 0.82 
 QANNs n a n a n a n a 68.27 110.89 0.94 0.82 
QCHBV+ANN HBVHF + ANNLF 2 0.73 0.01 72.69 105.88 0.93 0.84 
QCHBV+ANN HBVHF + ANNLF 3 0.94 0.02 72.40 103.98 0.93 0.84 
QCHBV HBVHF + HBVLF 2 0.64 0.47 95.66 111.13 0.89 0.82 

QCHBV HBVHF + HBVLF 3 0.51 0.46 94.38 109.59 0.89 0.82 
QCANN ANNHF + ANNLF 2 0.37 0.11 66.75 109.59 0.94 0.82 
QCANN ANNHF + ANNLF 3 0.88 0.75 68.30 109.07 0.94 0.83 

(b) Leaf 

 QHBVs n a n a n a n a 17.56 26.76 0.88 0.90 

 QANNs n a n a n a n a 11.49 24.90 0.94 0.91 
QCHBV+ANN HBVHF + ANNLF 2 0.73 0.49 12.95 18.92 0.93 0.95 
QCHBV+ANN HBVHF + ANNLF 3 0.81 0.02 12.12 19.65 0.94 0.95 
QCHBV HBVHF + HBVLF 2 0.39 0.37 15.63 25.23 0.89 0.91 
QCHBV HBVHF + HBVLF 3 0.51 0.49 15.96 23.79 0.90 0.92 
QCANN ANNHF + ANNLF 2 0.66 0.55 11.26 25.11 0.94 0.91 
QCANN ANNHF + ANNLF 3 0.64 0.5 10.51 20.96 0.95 0.94 
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The value of RMSE calculated for single optimal model in calibration for the Bagmati 
catchment, is 101.01 m3/s and verification is 112.42 m3/s However, these values can be 
noticeably improved by the committee models (ANN), attaining around 66.75- 68.30 m3/s in 
calibration and 109.07 - 109.59 m3/s in verification. The best committee models (hybrid of 
HBV and ANN) obtained values around 72.40 - 72.69 m3/s in calibration and 103.98 - 105.88 
m3/s in verification. The RMSE of the single model produced 26.76 m3/s in verification period 
for the Leaf catchment. However, when a hybrid of ANN and HBV model was used, RMSE 
dropped to 18.92 m3/s.  

 
Comparisons of the performances of different models in calibration and verification are 

presented in Table 4-1 for Bagmati and Leaf, in this table, the best values of RMSE and NSE  
were shown by hybrid models QCHBV+ANN , that is combination of specialized models (low-flow 
model by ANN and high-flow model by HBV). The visual plots of the hybrid committee 
models, with respect to the hydrograph simulations, are represented in Figure 4-3 to Figure 
4-6. It can be observed that the hybrid committee model combines the best features of the 
specialized models. The overall results show that the hybrid models (combination of HBV 
and ANN) have the highest accuracy among all models. 

 

 
Figure 4-3. Hydrograph generated from various models for the Bagmati catchment (calibration) 

 
Figure 4-4. Hydrograph generated from various models for the Bagmati catchment (verification) 
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Figure 4-5. Hydrograph generated from various models for the Leaf catchment (calibration) 

 

 
Figure 4-6. Hydrograph generated from various models for the Leaf catchment (verification) 

 
 
A hybrid committee model can be used when a single hydrological model fails to identify 

catchment responses. The ANN model performs better than the traditional HBV hydrological 
model for daily runoff simulations over both catchments. The results show that the 
combination of HBV and ANN models can improve the performances (i. e., decrease the 
value of RMSE) by about 22% and 20% in calibration and verification respectively, in 
contrast to the committee model, that is, hybrid models achieve higher accuracy.  
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4.6 Summary  

The ANN technique is a powerful tool for simulating the behaviour non-linear systems. In 
this study, the objective of the built hybrid model is to enhance model performance in 
streamflows modelling by integrating the artificial neural network (ANN) into it. ANN 
techniques were combined with a conceptual hydrological model in a committee. The 
proposed hybrid approach can be useful in developing efficient models of the complex, 
dynamic, and nonlinear rainfall-runoff process and can accurately predict the streamflows in 
the catchment. The best committee model was identified by the calibration data set and tested 
on the verification data set. The hybrid models outperformed the committee and single 
models on all case studies (Table 4-1). The results show that the daily streamflows predicted 
by the hybrid model have much better agreement with the observed data, while those 
simulated by the single hydrological model underestimate main peak-flows. 
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Chapter 5  
Model parametric uncertainty and 
effects of sampling strategies  

This chapter presents various sampling-based uncertainty analysis methods to quantify the uncertainty 
source from the parameters of the hydrological model. The uncertainty analysis methods differ with 
respect to sampling strategy (algorithm) that was used to generate the system responses. This study 
compares seven different sampling algorithms namely MCS, GLUE, MCMC, SCEMUA, DREAM, 
PSO and ACCO. The HBV conceptual hydrological model is set for Nzoia catchment as a case study. 
The results were compared and analyzed based on the shape of the posterior distribution of the 
parameters, uncertainty results on model outputs and sampling algorithm's ease of use.3  

5.1 Introduction 

The quantification of predictive model uncertainty is essential for decision-making 
processes (e.g., Beven and Binley, 1992; Vrugt et al., 2003; Liu and Gupta, 2007; Yang et al., 
2008; Keating et al., 2010). Researchers seek to understand the process knowledge subject to 
considerable uncertainties from different sources of hydrological models. Over the past 
decade, the topic of exploring uncertainty from the parameters of hydrological models has 
received much attention in the hydrological community. Usually the model parameters are 
estimated by calibration, wherein  the values of unknown model parameters are determined 
within the selected range by tuning until they match the observed predictions as closely as 
possible. The distributions and ranges of parameters are assumed to show the variation of 
parameters and, thus able to generate many model outputs. It is possible for various 
parameter sets within the chosen model structure yield the same effects in the model output 
because of the complex and highly nonlinear nature of the hydrological processes described 
in the model, further, changes in some parameters might be compensated by others (Bardossy 
and Singh, 2008). This effect is called an “equifinality” problem (Beven and Freer, 2001) and 
induces high uncertainties in the model predictions.  

 
The estimation of hydrological model parameters is not always easy, and this problem has 

been explored in numerous studies (e.g., Bates and Campbell, 2001; Duan et al., 1992; Vrugt 
et al., 2003; Feyen  et al., 2008; Beven, 2009). The main difficulties are related to searching 
problems of global parameters due to: (i) occurrence of multiple local optima, (ii) absences of 

                                                 
3 Kayastha, N., Solomatine, D. P., Shrestha, D. L., van Griensven, A., (2013). Use of different sampling 

schemes in machine learning-based prediction of hydrological models’ uncertainty, Proc.  Geophysical 
Research Abstract, European Geosciences Union. Vol. 15, EGU 2013-9466. 

Kayastha, N., Shrestha, D.L., Solomatine, D. P. (2011). Influence of sampling strategies on estimation of 
hydrological models uncertainty, Proc. Geophysical Research Abstracts, European Geosciences Union. 
Vol. 13, EGU 2011, 3781. 

Kayastha, N., Shrestha, D. L., Solomatine, D. P. (2010). Experiments with several methods of parameter 
uncertainty estimation in hydrological modelling, Proc. 9th International conference on 
Hydroinformatics, China 
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prior information of joint probability distribution of parameters, which are often assumed to 
be independent, (iii) nonlinear interaction between parameters, and (iv) response surface of 
the selected objective function during optimization.  

.  
The estimation of parameters usually entails the searching for optimal parameters 

(calibration) of hydrological models. Modellers often fail to consider a subsequent model 
uncertainty prediction. However, both of these procedures (calibration and uncertainty 
analysis) relate are related (Blasone et al., 2008a; Laloy et al., 2010; Zhang et al., 2009). 
Therefore, the model predictions should be represented with respect to some confidence 
range (Gupta et al., 1998; Beven, 2006; van Grienven et al., 2008) so that the proper 
uncertainty can be quantified; the corresponding prediction limits on model outputs 
characterize the uncertainty of hydrological responses (Vrugt and Bouten, 2002; Feyen  et al., 
2007, 2008).  

 
The approaches of uncertainty analysis differ in philosophy, underlying assumptions, 

understanding and quantification of different sources of uncertainty. Classification of the 
approaches to uncertainty analysis of hydrological models can be found e.g. in Montanari, 
(2011). 

 
This chapter investigates the effects of sampling strategies on an estimation of parametric 

uncertainty in model predictions. The sampling strategy involves the choice of algorithm in 
sampling of parameters in the given range and distribution. Seven different methods were 
used to estimate the uncertainty of the conceptual hydrological HBV model for the Nzoia 
catchment in Kenya. These methods included Monte Carlo (MC) simulation (based on Latin 
hypercube simulation), generalized likelihood uncertainty estimation (GLUE by Beven and 
Binley, 1992), Markov Chain Monte Carlo (MCMC), shuffled complex evolution metropolis 
algorithm (SCEMUA by Vrugt et al., 2003), differential evolution adaptive Metropolis 
(DREAM by Vrugt et al., 2008), particle swarm optimization (PSO by Kennedy and 
Eberhart, 1995) and adaptive cluster covering (ACCO by Solomatine, 1999).  

 

5.2 Comparison of parameter estimation and uncertainty analysis 
methods 

Various approaches have been taken to analyse the uncertainty of hydrological models. 
Comparative studies of uncertainty analysis approaches are essential because they help to 
facilitate and broaden the knowledge concerning uncertainty study, improve the 
understanding of uncertain systems, and permit the determination of the prediction capability 
of different methods. The different approaches of parameter uncertainty estimation and their 
comparative studies can be found in the literature (see, Table 5-1). Most comparative studies 
are limited in parameter estimation (searching for optimum parameter set) and do not 
consider uncertainty estimation. A few studies have considered subsequent uncertainties in 
model outputs after parameter estimation, when compared during calibration (e.g., Vrugt et 
al., 2005; Vrugt et al., 2008; Zhang et al., 2009; Jin et al., 2010; Zhang and Zhao, 2012). 
However, these studies evaluated multiple sources of uncertainties (input, parameter and 
model structure). In contrast, very few studies have been made a concerning the comparison 
of different uncertainty estimation approaches for sources of uncertainty from the parameter 
of hydrological models.  
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Table 5-1. The uncertainty analysis methods compared by different authors  

Sn Year 

Authors /  

Criteria for comparison  

O
pt

im
iz

at
io

n
 

U
n

ce
rt

ai
n

ty
 

Model Study catchment(s) 

Methods compared 

1 1997 

Kuzcera (1997) Objective function 

second-order  

approximation to the 

response surface around 

the local minimum 

Optimum 

parameter 
X 

mSFB  Model 

(Boughton, 

1984) 

Chichester River 

catchment, in New 

South Wales, AustraliaSCE, GA, MS,  and 

Mq-N 

2 1999 

Thyer et al. (1999) Residual sum  of square, 

empirical  quantile plot of 

objective function, and 

number of function  

evaluations 

Optimum 

parameter 
X 

mSFB model 

(Sumner et al., 

1997) 

Allyn River basin,    

and Scott  Creek 

catchment, Australia 
SCE and SA-SX 

3 2002 

Madsen et al. (2002) Water balance error (%), 

NS, RMSE, and Peak and 

low flow statistics 

including bias and 

RMSE. 

Optimum 

parameter 
X NAM 

Tryggevaelde 

catchment, Denmark 

SCE ,CAS and KBES 

4 2004 

Marshall et al. (2004) 
Poster distribution of 

parameter, Mean, median, 

skewness of distribution , 

computation time, 

autocorrelation function 

for parameter 

 X AWBM 

Bass river catchment 

Australia 

AM, MHBC, MHBU 

and MHSS 

5 2005 

Chen et al. (2005) Root mean square error 

(RMSE), root-mean-

square of relative error 

(RR) 

Optimum 

parameter 
X 

Tank model 

(Sugawara, 

1995) 

Shin-Fa Bridge Station 

catchment, Taiwan 
MP and SCE 

6 2005 

Vrught et al. (2005) 
Sum of weighted squared 

differences optimization 

Prediction 

Interval 
 HYMOD  

SODA and  SCEMUA 
Leaf River 

7 2006 

Skahill  and Doherty 

(2006) 
NS   

HSPF model 

(Bicknell et al., 

2001) 

hydrologic 

model 

Wildcat Creek 

watershed, USA 
PD_MS2 and SCE 

8 2007 

Blasone et al. (2007) 

Parameter convergence 

and correlation, MSE 

Optimal 

parameter 

 

X 

MIKE SHE 

(Steady-state 

GW model, 

transient GW 

model and fully 

integrated 

model) 

Karup catchment, 

Denmark 

SCE  and PEST 
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9 2007 

Gattke and Schumann 

(2007) 
NS X 

0.05- and 

0.95-

quantiles of 

the simulated 

discharge 

HBV-96 model 

(Lump and 

Semi-

distributed) 

Meiningen catchment, 

Germany 
GLUE  and MG 

10 2007 

Lee et al. (2007) Simplest least square 

(SLS), Heteroscedastic 

Maximum likelihood 

estimator(HMLE) and 

Modified index of 

agreement (MIA) 

Optimal 

parameter 

Uncertainty 

boundary 

estimated by 

SCEMUA 

KsEdgFC2D 

(Tachikawa et 

al., 2004) 

Kamishiiba catchment, 

Japan 

SCEMUA and SCE 

11 2008 

Blasone et al. (2008a) 

Likelihood function 
Optimal 

parameter 

Percentage 

of 

observations, 

uncertainty 

intervals 

HYMOD, 

NAM and SAC-

SMA 

Tryggevaelde 

catchment Denmark 

and Leaf River 

catchment, USA 

GLUE based 

SCEMUA and GLUE 

based LHS 

12 2008 

Smith and Marshall 

(2008) 
Likelihood function 

Optimal 

parameter 
 PDM TCEF, USA 

AM, DRAM, DEMC 

13 2008 

van Greinsven et al. 

(2008) Global Optimisation 

Criterion(GOC) (van 

Griensven & Meixner, 

2007) and BIAS 

X 
Confidence 

interval 
SWAT 

Honey Creek, Ohio, 

USA 
ParaSol and 

SUNGLASSES 

14 2008 

Vrugt et al. (2008) RMSE, CORR, BIAS, 

POC, Width of 

uncertainty interval 

X 
Uncertainty 

intervals 
HYMOD 

Leaf river, USA and 

French broad 

watershed DREAM and GLUE 

15 2008 

Yang et al. (2008) 
Best parameter, 

correlations between 

paramters, NS, R2, 95 

PPU, r-factor, p-factor, 

CRPS 

Optimal 

parameter 

95% 

confidence, 

ARIL 

SWAT Chaohe Basin, China 
GLUE, ParaSol, SUFI-

2, MCMC, and IS. 

16 2008 

Zhang et al. (2008) 

 
Optimal 

parameter 
 SWAT 

YRHW, China, 

RCEW, USA,   

LREW, USA and 

MCEW. USA SCE, GA, PSO, DE,  

and AIS 

17 2009 

Zhang et al. (2009) 

 
Optimal 

parameter 

POC (67 and 

90%) 
SWAT 

LREB ,USA and 

YRHB,  China 

GA,  and  BMA 
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18 2010 

Jiang et al. (2010) 

 
Optimal 

parameter 
X 

Xinanjiang 

model 

Tianfumiao reservoir, 

China 
PSO, PSSE-PSO and 

MSSE-PSO 

19 2010 

Jin et al. (2010)  

 
Optimal 

parameter 

95% 

confidence, 

ARIL 

WASMOD 
Shuntian catchment, 

China 
GLUE and  MH 

20 2010 

Jin et al. (2010)  
Posterior summary 

statistics for each 

parameter, Model-fit 

based on median values 

of posterior parameter, 

Average 

Relative Interval Length 

(ARIL) 

X 

95% 

confidence 

interval 

WASMOD (Xu 

et al., (1996)  

Shuntian catchment, 

China 

GLUE and Formal 

Bayesian method 

21 2010 

Keating et al. (2010) 

 
Optimal 

parameter 

Uncertainty 

Analysis 

Ground Water 

model 

Yucca Flat, Nevada 

Test Site, USA NSMC, PEST and 

DREAM 

22 2010 

Li et al. (2010) 

 X 

95% 

confidence 

interval, 

ARIL,P-

95CI, MNS 

WASMOD 

DTVGM 
Arid basin, China 

GLUE and  MH 

 2011 

Franz and Hogue 

(2011) 
NSE,Pbias, RMSE, CR, 

ensemble probability, 

Brier score 

 
Categorical 

statistics 
SAC-SMA 

12 basin ,southern 

USA 
GLUE and SCEM 

23 2011 

Cullmann et al. (2011) 
NSE (coefficient of 

efficiency), RPD (peak 

flow deviation), RMSE 

Optimal 

parameter 

Median, 

mean and 

bandwidth of 

model output 

based on the 

ROPE results

WaSiM-ETH 

(Zappa et al., 

2003) 

Rietholzbach 

catchment, 

Switzerland 
PEST,  

and ROPE  

24 2011 

Jeremiah et al. (2011) Posterior Marginal 

(Parameter) Distributions, 

NSE 

Optimal 

parameter 

Sensitivity 

Analysis 

Australian 

Water 

BalanceModel 

(AWBM) 

Bass River, Victoria 

AM-MCMC and SMC 

25 2012 

Dotto et al. (2012) 
NS, Parameter 

correlation, Posteriors 

distributions , POC, 

ARIL, computational 

requirements, Number of 

model runs 

Optimal 

parameter 

5% and 95% 

qunantiles 

Urban drainage 

model 

KAREN(Rauch 

and Kinzel 

2007) 

Richmand, Autrailia 

GLUE, SCEMUA, 

AMALGAM and 

MICA 
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26 2012 

Kraube and Cullmann 

(2012) 
  

95% 

confidence 

interval 

WaSiM 
Rietholzbatch 

catchment  ROPE, AROPE, and   

ROPE-PSO 

27 2012 

Zhang and Zhan 

(2012) 
MSE, CORR, CRPS, % 

Confidence intervals 
X 

% 

Confidence 

intervals 

Neural 

Networks 

Model 

LREW and RCEW, 

USA 

BNN and MCMC 

28 2012 

Wang et al. (2012) 

RMSE, Peak discharge, 

time and runoff, 

Optimal 

parameter 
X 

Xinanjiang 

model 

Shuangpai Reservoir, 

Chaina 
GA, CGA, and 

CGASA 

29 2012 

Mousavi et al. (2012) 

RMSE, hydrograph 
Optimal 

parameter 
X HEC-HMS 

Gorganroud River 

Basin, Iran 
SUFI2,PSO 

and GA 

Note: X indicates not considered:     

 

5.3 Sampling strategies for uncertainty analysis of hydrological model 

Analytical and approximation methods can rarely be applied to complex computer-based 
models. The probabilistic method of uncertainty analysis is one of the most comprehensive 
methods used to estimate the uncertainty of hydrological models, which allows the efficient 
exploitation and improvement of the available physical understanding of complex systems 
(Montari and Koutsoyiannis, 2012). The Monte Carlo simulation method is a probabilistic 
method based on random sampling, This is the most common approach to estimate 
uncertainty of hydrological models. The model outputs associated with a set of inputs and/or 
parameters are repetitively obtained from a given distribution; subsequently a quantitative 
estimate of the confidence, which depends critically on sample size, is computed. In low-
dimensional problems (i.e., small number of parameters) and simple fast-running models it is 
possible to sample sufficiently sample many parameter vectors and to cover the parameter 
space reasonably well (i.e. with high density). In such “data-rich” cases it may be relatively 
easy to estimate the summary statistics of the resulting distribution (mean, standard deviation 
etc.). However, in high-dimensional problems and slow-running models the number of 
sampled points would be lower. Therefore, these models do not cover the entire (highly 
dimensional) parameter space well. In this case, an “economical” sampling strategy can be 
used (that still follows the general framework of MC simulation), which allows work with 
computationally intensive models.  
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5.3.1 Monte Carlo simulation 

The Monte Carlo (MC) method is a flexible and robust method. It is capable of solving a 
wide variety of problems. In fact, it may be the only method that can estimate the complete 
probability distribution of the model output for cases with highly nonlinear and/or complex 
system relationship (Melching, 1995). MC simulation has been widely and successfully 
applied in hydrological sciences for many years. It helps to estimate model output uncertainty 
(typically streamflows) resulting from uncertain model parameters, input data or model 
structure. This approach involves uniform random sampling from the distributions of the 
uncertain inputs. The model is run successively until a desired statistically significant 
distribution of outputs is obtained (Beven and Binley, 1992). The main advantages of the MC 
simulation are that conceptually simplilicity, straightforwardness and wide applicability. 
Nonetheless, this type of method requires a large number of samples (or model runs). The 
number of samples is often determined by obtaining stable statistics from the distribution of 
the model output (e.g., Ballio and Guadagnini, 2004, Shrestha et al., 2009).  

 
In MC simulation, random values of each uncertain variable are generated according to 

their respective probability distributions, and the models are run for each uncertain variable 
realization. Because we have multiple realizations of outputs from the model, standard 
statistical technique can be used to estimate the statistical properties (mean, standard 
deviation, etc.) as well as the empirical probability distribution of the model output.  

 
Consider a deterministic model M of a real-world system predicting a system output 

variable y given the input data X, the initial condition of the state variables s0 and the vector 
of the parameter . The model M could be physically based, conceptual, or even data- driven. 
The model M is also referred to as the “primary model” in order to distinguish it from an 
uncertainty model that will be described later. For the sake of simplicity, the model M here is 
referred to here as a conceptual rainfall-runoff model. The system response can be 
represented by the following equation: 

ˆ( , , )y M s y     x
 (5-1) 

where  is the vector of the model errors between the vector of the observed response y and 
the corresponding model response ŷ . Note that the state variable s, which appears in the 
Equation (5-1), will be computed by running the model M given the initial condition of the 
state variables s0. Before running the model M, the components of the model (i.e. input data 
vector x, initial conditions s0, parameter  , and the model structure itself) have to be 
specified, while the output or model response ŷ  and the state variable s are computed by 
running the model. These components may be uncertain in various ways to various degrees; 
the consequences of these uncertainties will be propagated into the model states and the 
outputs.  

 
To perform the MC simulation, the model is run multiple times by sampling either the 

input data x or the parameters vectors   or even the structure of the model, or a combination 
of these. Thus, it is mathematically equivalent to the following: 

ˆ ( , )y M  x    (5-2) 

where M  is the possible candidate of the model structure, x  is the sampled input data from 
the given pdf, and   is the parameter sampled with the given pdf from the feasible domain of 
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the parameter space. For the sake of simplicity the model structure and input data are 
assumed to be correct. Therefore, Equation (5-2) can be rewritten as: 

,ˆ ( , );    =1, ..., ;   =1, ..., t i iy M t n i s x  (5-3) 

where i is the set of parameters sampled for the ith run of MC simulation, ,ˆt iy  is the model 

output of the tth time step for the ith run, n is the number of time steps and s is the number of 
simulations. 

 
Figure 5-1. Monte Carlo simulation process (Shrestha, 2009) 

 
When MC simulation is used, the error in estimating pdf is inversely proportional to the 

square root of the number of runs s and, therefore, decreases gradually with s. As such, the 
method is computationally expensive but can reach an arbitrary level of accuracy. The MC 
simulation is generic, has fewer assumptions, and requires less user-input than do other 
uncertainty analysis methods. Note that it is difficult to sample the uncertain variables from 
their joint distribution unless the distribution is well approximated by a multinormal 
distribution (Kuczera and Parent, 1998). However this problem is however often ignored. The 
following sampling approaches can be considered when using MC simulation. 

 
a) Pure random sampling: all vectors are sampled randomly and independently of each 

other and the models runs are independent; this approach can be used for low-dimensional 
cases.  

 
b) Latin hypercube sampling (LHS, McKay et al., 1979): the range of each variable is 

divided into m equally probable intervals, and m sample points are placed at each interval. 
The number of divisions, m, is equal for each variable. An important feature of LHS is that it 
does not require more samples for more dimensions (variables), see Figure 5-2. 

 
The LHS technique forces the selection values over the entire parameter range, thereby 

reducing the total number of samples that requires keeping the probability distribution. 
Therefore, LHS-based MC simulation is recommended over simple traditional MC 
simulation. 
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Figure 5-2. Latin Hypercube Sampling (LHS). 

 
.  

c) Consecutive sampling: Each consecutive vector depends on the results of the previously 
generated vectors and on the corresponding model runs. This is an approach taken in the 
Monte Carlo Markov Chain (MCMC) methods. The most widely used version of this 
approach is the Metropolis-Hastings (MH) algorithm, a variation of the Metropolis algorithm 
of Metropolis et al., (1953) that was proposed by Hastings (1970). Other methods, initially 
developed for randomized search, and by design covering the most important areas of the 
parameter space, can be used as well, such as the ACCO algorithm (Solomatine, 1999). There 
are also sampling strategies that combine both approaches, e.g. the SCEM-UA algorithm 
(Vrugt et al., 2003) (which is a combination of the SCE-UA randomized search algorithm 
combined with the Metropolis algorithm), or the DREAM algorithm (Vrugt et al., 2009) 
(which is a combination of differential evolution optimization algorithm with the MCMC 
scheme).  

 

5.3.2 GLUE 

A version of the MC simulation method was introduced under the term “generalized 
likelihood uncertainty estimation” (GLUE) by Beven and Binley (1992). It uses the concept 
of behaviour and non-behaviour classification (Spear and Hornberger, 1980). The likelihood 
measure is used as a criteriation for acceptance or rejection of the models, which is a 
subjective choice (Freer and Beven, 1996). The behaviour and non-behaviour models are 
produced by a set of parameters and behaviour models are assigned weights based on 
likelihood functions (see Equation (5-12).  

 
GLUE is most popular methods that has been widely used over the past 20 years for 

analyzing predictive uncertainty in hydrological modelling (see, e.g., Freer et al., 1996; 
Beven and Freer, 2001; Montanari, 2005; Blasone et al., 2008b; Vrught et al., 2008). Users of 
GLUE are attracted by its easily understandable ideas, relative ease of implementation and 
use, and its ability to handle different error structures and models without major 
modifications to the method itself. Despite its popularity, there are theoretical and practical 
issues related to the GLUE method have been reported in the literature. For example, 
Mantovan and Todini (2006) argue that GLUE is inconsistent with Bayesian inference 
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processes thereby leading to an overestimation of uncertainty, for both the parameter 
uncertainty estimation and the predictive uncertainty estimation. A number of authors 
(Thiemann et al., 2001; Montanari, 2005; Mantovan and Todini, 2006; Stedinger et al., 2008) 
pointed out that the GLUE does not formally follow the Bayesian approach in estimating the 
posterior probabilities of parameters and the output distribution. At the same time, Vrugt et 
al. (2008) presented examples showing that under a variety of different conditions both 
Bayesian and informal Bayesian methods (like GLUE) can result in similar estimates of 
predictive uncertainty.  

 
GLUE is sensitive to the selection of the likelihood function and its threshold value 

(Montanari, 2005, Mantovan and Todini, 2006). The width of the uncertainty bound is 
dependent on the  numbers of behaviour simulations selected for analysis. When large 
numbers of parameters are used, according the sample sizes are increased (Kuczera and 
Parent, 1998; Khu and Warner, 2003). This is because the same sampling strategy of MCS is 
related to computational inefficiency. The spurious correlation among parameters occurs due 
to sampling procedures used in parameter selection. However, the advancements have been 
made regarding the efficiency of the GLUE method (e.g., Blasone et al., 2008a; Xiong and 
O’Connor, 2008). Blasone et al., (2008a) used adaptive MCMC sampling within the GLUE 
methodology to improve the sampling of the high probability density region of the parameter 
space. Xiong and O’Connor (2008) modified the GLUE method to improve the prediction 
limits in enveloping the observed discharge.  

 

5.3.3 MCMC 

MCMC generates a sample of parameter values from a constructed Markov chain that 
converges to the posterior distribution. The chain starts from an initial parameter value, then 
generates a new value using a proposal distribution, and computes the acceptance probability 
before determining whether to accept or reject this new value. The variance of the proposal, 
or candidate, density influences the current state. If this variance is too small, the iterative 
process will induce a Markov Chain that does not mix rapidly enough over the parameter 
space. Hence, the tail regions of the posterior may not be sampled sufficiently. If the variance 
is too large, proposal distribution will frequently be rejected. Convergence of the chain to the 
posterior distribution is approximated by plotting samples to observe the stability of mean 
and variance. Gelman and Rubin (1992) proposed a quantitative measurement to check the 
convergence in both between and within the chain variance.  

 
A numbers of MCMC techniques have been developed for Bayesian sampling of 

parameter space. The Metropolis Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) 
is a widely accepted MCMC technique for hydrological modelling (e.g. Kuczera and Parent, 
1998; Bates and Campbell, 2001; and Engeland et al., 2005). In the Metropolis methods, the 
comparison of the statistics of multiple sample chains in parallel provide a formal solution to 
assess how many model runs are required to reach convergence and obtain stable statistics of 
the model output and parameters. The sample candidate values can be updated on either each 
parameter block at a time (block updating) or on each parameter at a time (single-size 
updating). We use single-size updating of the Metropolis-Hastings algorithm (Marshall et al., 
2004) in this thesis. 

  
Oftentimes an inappropriate selection of the proposal distribution in the Markov Chain 

causes slow convergence. The efficiency can be improved by using an adaptive evolutionary 
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learning strategy within MCMC sampling. An example of such methods are delayed rejection 
adaptive Metropolis (Haario et al., 2006) and differential evolution adaptive Metropolis 
(Vrugt et al., 2008). 

 

5.3.4 SCEMUA 

MCMC sampler entitled the shuffled complex evolution metropolis algorithm (SCEMUA) 
was presented by Vrugt et al. (2003). This algorithm is a modified version of the SCE-UA 
global optimization algorithm developed by Duan et al. (1992). The SCEMUA operates by 
merging the strengths of the Metropolis algorithm, controlled random search, competitive 
evolution, and shuffled complex to continuously update the proposal distribution and evolve 
the sampler to the posterior target distribution. In contrast with traditional MCMC samplers, 
the SCEMUA algorithm is an adaptive sampler, the covariance of the proposal distribution is 
periodically updated in each complex during the evolution to the posterior target distribution 
using information from the sampling in the transitions of the generated sequence. The 
SCEMUA algorithm has been successfully applied in hydrological application. For example, 
it has been utilized in the conceptual rainfall–runoff model HYMOD (Vrugt et al., 2003), the 
groundwater model MODHMS (Vrugt et al., 2004), LISFLOOD model (Feyen et al., 2007; 
2008), the rainfall–runoff model TONET (McMillan and Clark., 2009), and in artificial 
neural network (ANN) rainfall-runoff model (Guo et al., 2012). 

5.3.5 DREAM 

Vrugt et al. (2008) demonstrated a significant improvement in the efficiency of MCMC 
sampling by using a self-adaptive differential evolution learning strategy in population-based 
sampling. This approach is known as differential evolution adaptive Metropolis (DREAM) 
algorithm. This algorithm is a modified version of the SCEMUA but reportedly has the 
advantage of maintaining detailed balance and ergodicity while presenting good efficiency 
for complex, highly nonlinear and multimodal target distributions. The DREAM runs 
multiple different chains simultaneously for global exploration. It also automatically tunes the 
scale and orientation of the proposal distribution in randomized subspaces during the search. 
The method starts with an initial population of points (parameter sets) to strategically sample 
the parameter space of potential solutions. Ergodicity of this algorithm showed that this 
algorithm is superior among other adaptive MCMC sampling approaches (Vrugt et al., 2009). 
In addition, this algorithm significantly enhances the applicability of MCMC simulation to 
complex, multi-modal search problems.  

Recently, Laloy et al. (2010) implemented the calibration of continuous, spatially 
distributed, process-based and plot-scale runoff model. Keating et al. (2010) compared null-
space Monte Carlo with DREAM in the optimization and uncertainty analysis of ground 
water parameters. Minasny et. al. (2011) explored the prediction of the uncertainty interval of 
the posterior distribution of geo-statistical parameters using DREAM algorithm. He et al. 
(2011) investigated the sensitivity and uncertainty of snow parameters combining with 
DREAM with generalize sensitivity analysis (Hornberger and Spear, 1981). Laloy and Vrugt 
(2012) solved the search problems of high-dimensional (i. e., 241 number of parameters) 
parameters in the spatially distributed hydrologic model using the modified DREAM in a 
distributed computing environment.  
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5.3.6 ACCO  

The adaptive cluster covering algorithm (ACCO) was developed by Solomatine (1999). 
This is a random search global optimization algorithm based on the principles of clustering, 
covering, adaptation and randomization. These principles are briefly described in Section 
2.4.1 and a detailed description of the algorithm can be found in Solomatine, (1999). ACCO 
has been successfully applied for the parameter optimization of hydrological models (e. g., 
Shrestha et al., 2009; Kayastha et al., 2013).  

5.3.7 PSO 

The Particle Swarm Optimization (PSO) algorithm has received significant amount of 
attention from researchers due to its simplicity and promising optimization ability in various 
problems. This optimization algorithm was developed by Kennedy and Eberhart (1995) to 
solve the problem of the social behaviour of bird flocking or fish schooling. The algorithm 
uses a group-based stochastic optimization technique for continuous nonlinear functions. It is 
characterized by a simple concept adapted from the decentralized and self-organized systems 
found in nature , whereby all of the particles move to get better results. The PSO algorithm 
runs primarily with a group of random particles assigned with random positions and 
velocities. Through a series of iterations the algorithm searches for optima as the particles are 
escalated through the hyperspace searching for possible solutions. PSO has been successfully 
applied for the parameter estimation of hydrological models (e.g., Gill et al., 2006; Zhang et 
al., 2008; Chu and Chang, 2009; Chou, 2012). 

 
Jiang et al. (2010) pointed out the presence of an early convergence problem in PSO. A 

particle in the swarm can find its current optimal position. However, if this position is in a 
local optimum, then the particle swarm will not be able to search over again in the solution 
space. As a result the algorithm traps into local optima. Shi et al. (2005) presented a hybrid 
evolutionary algorithm based on PSO and GA methods, which possess better ability to find 
the global optimum than does the standard PSO algorithm.  

5.4 Characterization of uncertainty  

5.4.1 Prediction interval 

The problems of hydrology involve modelling of complex hydrological processes over a 
space of time, which constitute in time series of observations and outputs of the model. The 
model is composed of the set of equations that represent rainfall runoff relation. For example, 
see Equation (5-1), The uncertainty associated with the parameters is considered and MC 
simulation is performed by running the model M multiple times by changing the parameter 
vectors. We assume that the model structure and input data are correct and the parameter is 
sampled with the given pdf from the feasible domain of the parameter space. This is 
expressed by Equation (5-3).  

 
The statistical properties (e.g., quantiles) of the model output for each time step t are 

estimated from the realizations ity ,ˆ . The uncertainty of model output is usually described by 

informative quantities such as prediction intervals and quantiles. Prediction interval is 
between upper and lower limits, wherein a future unknown value with prescribed probability 
is expected to lie. These limits are typically the quantiles of the model output distribution. In 
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each simulation, model output is given a different weight as in the case of GLUE. The 
transferred prediction quantile ( )tQ p corresponding to the pth [0, 1] quantile can be calculated 
by the formula: 

,
1

( ( )) ( )
s

t t i t i t
i

P y Q p w y Q p


    (5-4) 

where wi is the weight given to the model output at simulation i, yt is the realization vector at 
time step t, and yt,i is the value of model outputs at the time t simulated by the model M(x,i). 
At simulation i, ( )Q p  is the p% quantile.  The prediction interval [ ( )tPI  ] is derived from the 

transferred prediction quantile for the given confidence level of 1− (0<<1) 
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where, tPI  is the distance between the upper U
tPL  and lower L

tPL  prediction limits and refers 

to the prediction interval corresponding to the 1− confidence level.  
 

5.4.2 Uncertainty indices 

The following different uncertainty indices can be used to evaluate the uncertainty in the 
model output prediction:  

 
1. Prediction interval coverage probability (PICP): It measures the percentage of the 

number of observations enveloped by the prediction intervals. The higher this 
percentage value, the better in terms of representing the uncertainties. 
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(5-6) 

where yt is the observed model output at the time t.  
 
2. Mean prediction interval (MPI): This is the average width of the uncertainty region 

(prediction intervals). This metric expresses the width of the uncertainty of the model 
simulation is as well as the narrowness of the confidence intervals. This is calculated 
using the formula below : 

 
1

1 N
U L
t t

i

MPI PL PL
N 

   (5-7) 

 
3. Average asymmetry degree (S index and T index): These are the indices for assessing 

the geometric structure of the band formed by prediction intervals. They calculate the 
degree of asymmetry of the prediction intervals with respect to observations: 
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4. Average deviation amplitude and relative deviation amplitude (D and RD): These 

indices demonstrate the deviation of the middle point of the prediction intervals from 
the corresponding observations.  
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where ty is the observed model output at the time t. Together with these uncertainty indices, a 
visual inspection of the plot could provide additional significant information along the 
different regimes (e.g., high flows) that are produced by different algorithms. The above 
motioned uncertainty indices given in Equation (5-6) and Equation (5-7) can be found in 
Shrestha et al. (2009) while those indices given in Equations (5-8) to (5-11) can be found in 
Xiong et al. (2009).  
 

5.4.3 Likelihood functions 

The notion of likelihood is used to estimate the model performances. Classical formulation 
defines likelihood as the probability of observing the sampled data set if a certain sampling 
distribution is used. The likelihood function is used to measure the degrees of belief in model 
prediction indicating how well the model can reproduce observation. An inappropriate 
selection of the likelihood function can lead to an incorrect quantification of the model 
uncertainty. Generally, the likelihood is calculated from the probability of the model output 
that generated by a set of parameter values. A likelihood is categorized into two types; formal 
Bayesian and informal likelihoods. A number of studies exist for definitions (e.g., Vrugt et al, 
2008; Stedinger et al., 2008; McMillan and Clark, 2009; Scoup and Vrught, 2010). In the 
present study, we use the following two likelihood functions: 

 

5.4.3.1. Informal likelihood  

This likelihood is normally calculated based on model error variance. The sum of the 
squared errors is the basis to calculate the (generalized) likelihood measure (see, Freer et al., 
1996).  The formula is stated as follows: 



CHAPTER 5 
 

 
93 

2

2
( / ) (1 )e

obs

iL y 





   (5-12) 

where, L(i/y) is the likelihood measure for the ith model (with parameter vector i) 
conditioned on the observations y, 2

e
  is the associated error variance for the sth model, 2

obs


is the observed variance for the period under consideration, and  is a user defined parameter. 
When  set to 1, the Equation 5-12 returns the equivalent to Nash-Sutcliffe model efficiency 
(NSE), which is one of the most widely used performance measures in hydrology. This is 
calculated as 1.0 minus the normalization of the mean squared error by the variance of the 
observed data; its value varies between minus infinity to 1.0 (Nash and Sutcliffe, 1970). 

 

5.4.3.2. Formal Bayesian likelihood 

The probability density function (pdf) of the residual errors is specified a priori. This prior 
information about parameters usually consists of lower and upper ranges for each of the 
parameters as feasible parameter space. It assumes a non-informative uniform prior 
distribution, and the residuals are mutually independent, each having the exponential power 
density E(σ,γ) and the likelihood of a parameter set θ for describing the observed data y. All 
these forms can be derived using the Box and Tiao (1973) equation. 
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where  is the given parameter set, N is the length of the data series, and es(i) denotes error 
at sth observed data series when given the parameter set . If we assumed (following Vrugt et 
Al. 2003) that the influence of  is integrated out by assuming a non-informative prior of the 
form p(, |)  1/) then the likelihood function would be written as:  

(1 )/2( , ) [ ( )] N
i iL y C M       (5-14) 

C is normalized integral, C-1=[M(i)]
-N(1+γ)di, and  is the feasible space of the 

parameter: 
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For convenience, we use the log-likelihood function as follows: 

(1 )
( , ) log log[ ( )]

2i i
N

L y C M
  

   (5-16) 

 

5.5 Experiment setup for the Nzoia catchment  

The Nzoia catchment is considered as the case study (see Chapter 1 for a description of the 
catchment). The HBV model was set up with nine model parameters for calibration. The data 
period was from 1-Jan-1970 to 31-Dec-1979, comprising 3544 daily data. The first of two 
months of data were considered as model warm up period. Several sampling-based 
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algorithms were run to estimate the uncertainty of the hydrological model. Parameters were 
sampled using non-informative uniform random sampling (without prior knowledge of 
individual parameter distribution, but selected a feasible range of values which are presented 
in Table 5-2). The choice of prior distribution of parameters is subjective and feasible ranges  
were determined by the physical meaning of parameters with the model behaviour 
(Pappenberger et al., 2007). The three experiments were setup based on feasible ranges of 
parameters, which are described as follows:  

 
1. Experiment 1 (EX1): For the first experiment, the model runs with a different 

combinations of parameters (sampling of parameters) chosen from the ranges of 
parameters set up based on the calibrated values from the other model applications 
and information about the catchment. These are presented in Table 5-2 as Type-I 
range and widths (white and grey), as shown in Figure 6-3.  
 

2. Experiment 2 (EX2): In this experiment, model uncertainty was analysed with 
exclusively behavioural models. These models were selected from the samples 
generated by the first experiment. The output generated by each set of parameters was 
assigned a likelihood value, which represents the capability of simulating observed 
responses. The total sample of simulations was divided into behavioural and non-
behavioural based on a cut-off threshold above the value of the likelihood value 
(NSE). Negative NSE values were rejected for further analysis of uncertainty. 
 

3. Experiment 3 (EX3): In this experiment, the model runs with parameters that were 
sampled from Type II range of parameters. The Type II were drawn from Type I after 
optimum parameters found in the first experiment and these are presented in grey in 
Figure 5-3. 

 
 

 
Figure 5-3. Ranges of parameters: (a) white bar is ranges Type-I  and  

(b) grey bar is rangesType-II (narrow)  

 

Table 5-2. Ranges of HBV model parameters  
Descriptions and unit of parameters  Ranges 

 Type I Type II

FC (Maximum soil moisture content ), - (mm) 50 - 600 500 - 600

LP (Limit for potential evapotranspiration ),  0.1 - 1 0.1 - 1

ALFA (Response box parameter) ,  0 - 4 0 - 2

BETA (Exponential parameter in soil routine),  1- 6 1 - 2

K (Recession coefficient for upper tank ), (/day) 0.05 - 0.5 0.05 – 0.5

K4 (Recession coefficient for lower tank), (/day) 0.01 - 0. 3 0.01-0.1

PERC (Maximum flow from upper to lower tank), (mm/day) 0 - 8 5 - 8

CFLUX (Maximum value of capillary flow), (mm/day) 0 - 1 0 - 0.5

MAXBAS (Transfer function parameter), (day) 1 – 3 2 - 3
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MC simulation convergence analysis 

MC simulations run for a fixed number of times.  The model runs for each random 
parameter set, and the objective function is computed for each model run. NSE is used as the 
basis to calculate objective function. The adequate number of samples can be confirmed by 
the convergence of variation in the average model error across all model runs. This is set by 
comparing two statistics, mean and standard deviation of the objective function (NSE)  

1
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where, NSEi is the coefficient of model efficiency of the ith MC run, and MEk and SDEk are 
the mean and standard deviation of the model efficiency up to the kth run, respectively. 
 

In the first experiment, MC simulations generated 500,000 samples. This was done in 
order to obtain reliable results and to ensure that random samples adequately covered the 
complete range of parameters. The convergence analysis showed that both statistics stabilized 
after 10,000 simulations. However 25,000 simulations are considered reasonable for further 
analysis (corresponding model outputs were used to calculate the prediction interval).  

 
 

 
Figure 5-4: The convergence of the mean (ME) and the standard deviation (SDE) of Nash-Sutcliffe 

model efficiency (NSE). 

The GLUE method uses the rejection of the subjective value of NSE during sampling. In 
experiment EX1, the number of behavioural samples retained 165330 out of 500000 MC 
samples using rejection threshold value of 0. However, we used only 25000 samples for 
further evaluation and the behavioural sample retained 8260 samples. According to the 
percentage of behavioural samples corresponding to the rejection threshold as measured by 
NSE observed that only approximately 33% of simulations were accepted. In contrast, more 
than 82% of simulations were retained with the sample produced from a narrow range of 
parameters (in Experiment 3). The corresponding model outputs based on behavioural 
samples were used to build the prediction interval.  
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Using the MCMC approach, arbitrary values were first sampled from the selected 

parameter space using a uniform distribution as a proposal distribution with five parallel 
chains. The Metropolis Hastings (MH) algorithm (Hastings, 1970), was applied to estimating 
the posterior parameter distributions and likelihood was calculated using Box and Tiao 
(1973) (see, Equation (5-13)). Each chain of 5,000 samples is retained with an acceptance 
rate ranging between 40% and 50%. The scale reduction score (Gelman and Rubin, 1992) 
was performed to check the convergence of the sampler to stationary point based on sequence 
variances. Its formula is written as follows: 
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(5-19)

where ij is parameter (i=1,.., n; j=1,.., q), n is the number of simulations in each sequence q, 
W is the variance between q means, and B is the average of q within the sequence for 
parameter. The scale reduction score of 1.2 was considered for convergence of the Markov 
chain. After approximately 5,500 simulations, there was convergence to the stationary 
posterior distribution of each parameter. A total  of 25,000 samples (q=5 with each of 
n=5000) were selected for an uncertainty evaluation. 

 

 
Figure 5-5. Scale reduction score generated by MCMC for parameters of HBV 

The SCEM-UA algorithm runs with 250 initial populations of parameters and 10 
complexes. The parallel sequence from each complex was partitioned from the population,   
the likelihood value of each parameter set is calculated by formal Bayesian likelihood (see 
Equation (5-13)). The complete set of 25000 samples were included which was a large 
enough sample from the high probability density region. The Gelman-Rubin method was 
used for the convergence diagnostics of each parameter as well as random initializations of 
the starting points of each of the parallel sequences. The scale reduction factor was quite 
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large for the first 10,000 samples generated. Thereafter, the convergence diagnostics for each 
of the parameters narrowed down very quickly.  

 
A total of 25080 model evaluations with 9 Markov chains were performed over the LHS-

specified samples using DREAM. The same values used to define the upper and lower 
bounds for the other methods were assigned here as well (Table 5-2). First the model ran until 
reaching the maximum number of evaluations; however 3,500 samples were sufficient to find 
the best parameters, indicating that this algorithm has a faster convergence campared to other 
MCMC samplers. Furthermore, the number of individual chains with different starting points 
helped in dealing with multiple regions of highest attraction and facilitating the powerful 
array, and leading to a fast convergence. 

 
For the PSO algorithm the total number of particle swarms, maximum functional 

evolutions, and the cognitive and social acceleration coefficients of 500, 25000, 2.1, and 2.1, 
respectively were used to run the model. The model started with a set of randomly generated 
parameters and updated the swarm in each iteration. This process continued until the stopping 
criteria were satisfied. If we used a small particle swarm size, then the algorithm would stop 
before the stopping criteria were satisfied. Therefore, for this study, we selected a 500 
particle swarm size to obtain the maximum functional evaluation, and then estimated the 
uncertainty of model outputs. 

 
ACCO is by design a randomized search algorithm that typically requires few function 

evaluations. A total of 18,600 samples were used, which is a large enough to find the best set 
of parameter among the given parameter ranges. An initial population of 1000 and cluster 
population of 500 were used to run ACCO. Consequently, it generated a smaller number of 
points compared to other algorithms. Indeed the ACCO was the fastest at finding the best sets 
of parameters; however, a reasonable number of initial sets and for clustering should be 
provided. All of the algorithms mentioned require adequate parameterizations in order to 
ensure that sampled parameters cover the selected ranges. The best value set of parameters 
and NSE is presented in Table 5-1.  

 

5.6 Experimental results and discussion 

5.6.1 Distribution of the model objective function 

The objective function (NSE) was assigned to the respective model output generated from 
model runs with associated parameter sets in each algorithm. Functional evaluations (i.e., 
number of simulations) of the model outputs resulting from each algorithm are shown in 
Figure 5-6. These are categorized into three groups: (i) highly varied objective function over 
completely functional evaluations, such as MCS and GLUE, (ii) less deviated of the objective 
function, such as MCMC, (iii) simultaneously narrows down, such as SCEMUA, DREAM, 
PSO, and ACCO. The first and second groups are flat in distribution compared with third 
group because the objective functions are calculated by randomly generated parameters from 
a large number of points exploring the entire parameter space. The third group algorithms are 
designed to search for the best parameters of the model; therefore typically moves toward the 
region of low objective function value can be achieved. The functional evaluations are 
widespread in the beginning because the initial population was used for better search of space 
and later functional evaluations decreased to a lower value of the objective function.  
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Figure 5-6. Representation of NSE for number of simulations for different algorithm (EX1) 

 
The shape of the cumulative probability distributions (CDFs) are used to determine the 

deviation of model evaluations (NSE). These deviations are evaluated by model outputs from 
different sampling algorithms. The CDFs of NSE by different algorithms are shown in Figure 
5-6 and Figure 5-7, where different numbers of samples were used in each case. The slope of 
CDFs revealed the spread of the distribution of NSE. Both MCS and GLUE showed wide 
distributions, followed by MCMC. SCEMUA and DREAM had steep gradients. MCS, GLUE 
and ACCO had monotonous gradients toward the higher value of the objective function. It 
should be noted that the shape of the distribution of NSE makes a significant contribution to 
the narrow context and wide uncertainty bound. The monotonous slop ensemble contains a 
wider uncertainty range and the steep gradient produces narrow uncertainty. Large numbers 
of NSE values are obtained below zero value when sampling parameters from a wide range of 
parameters (EX1). However, fewer portions of negative NSE values remained when sampling 
a narrow range of parameters (EX3).  

 



CHAPTER 5 
 

 
99 

 

 
Figure 5-7. Representation of NSE for number of simulation for different algorithm (EX3) 

 

 
Figure 5-8. (a) Cumulative distribution of model performances (NSE) in Experiment 1 and 

(b) fragment from (a)) 
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Figure 5-9.  Cumulative distribution of behavioural model performance (NSE) in Experiment 2 

 

 
Figure 5-10. (a) Cumulative distribution of narrow model performance (NSE) in Experiment 3 

and (b) fragment from (a) 

 

5.6.2 Parameter posterior distribution 

 
Figure 5-11. Posterior distribution of parameters (Experiment 1) 
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Figure 5-12. Posterior distribution of parameters (Experiment 2) 

 
Figure 5-13. Posterior distribution of parameters (Experiment 3) 

 
 
The probability will be higher for the bins with many points and lower error, while the 

probability will be lower for the bins with the higher error. The best parameter sets from all 
algorithms showed almost equal performance (NSE). However, they are resulted from 
different numbers of evolutions and their parameter values differ. These different parameter 
sets represent equivalent performance, highlighting the equifinality concept (Beven and 
Binley 1992). More time was required for searching the best parameter sets in Type –I range 
of parameters. If the parameter range (Type-III) was narrow, the bounds obtained for both the 
distribution of posterior parameters and model outputs would be narrower. However, if the 
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uncertainty bounds were too narrow, the model could be unacceptable to compare with the 
observed value. 

 
 

Table 5-3. Best parameter sets and performances (Experiment 1) 

Parameters MCS GLUE MCMC SCEMUA DREAM PSO ACCO 

FC 566.841 566.841 538.230 585.977 594.875 594.800 589.427

LP 0.255 0.255 0.307 0.381 0.283 0.283 0.299

ALFA 3.079 3.079 1.458 1.986 1.922 1.913 3.941

BETA 1.071 1.071 1.176 1.244 1.094 1.094 1.096

K 0.360 0.360 0.436 0.147 0.050 0.050 0.385

K4 0.076 0.076 0.070 0.049 0.070 0.070 0.062

PERC 6.373 6.373 5.283 7.390 5.344 5.342 6.220

CFLUX 0.021 0.021 0.005 0.052 7.799E-

09

4.8E-10 0.002

MAXBAS 2.711 2.711 2.081 2.071 2.404 2.403 1.922

Value of NSE 0.7733 0.7733 0.7751 0.7599 0.7801 0.7801 0.778

Number of function evaluations 500,000 165,330 100,000 100,000 100,000 100,000 18,200

Number of function evaluations

used for uncertainty evaluation 

25,000 8,260 25,000 25,000 25,000 25,000 18,200

 
 
Table 5-4. Behavioural samples by threshold value of 0 in NSE (Experiment 2) 

 MCS GLUE MCMC SCEMUA DREAM PSO ACCO 

Number of function 

evaluations 25,000 8,260 24,603 23,917 24,886 23,916 13,403 

 
 
Table 5-5. Best parameter vectors and performances (Experiment 3) 

Parameter MCS GLUE MCMC SCEMA DREAM PSO ACCO 

FC 
531.99 531.99 597.69 594.87 593.23 592.89 582.53 

LP 0.263 0.263 0.235 0.283 0.285 0.283 0.288 

ALFA 1.268 1.268 1.441 1.920 1.799 1.726 1.633 

BETA 
1.120 1.120 1.024 1.094 1.099 1.097 1.116 

K 
0.389 0.389 0.323 0.050 0.051 0.152 0.408 

K4 0.069 0.069 0.066 0.070 0.070 0.070 0.071 

PERC 
6.698 6.698 7.953 5.339 5.319 7.910 7.633 

CFLUX 
0.004 0.004 0.001 7.619E-09 2.513E-07 7.384E-06 3.118E-05 

MAXBAS 2.410 2.410 2.675 2.403 2.411 2.422 2.474 

Value of NSE 0.7769 0.7769 0.7796 0.7801 0.7801 0.7801 0.78 

Number of function 

evaluations 25000 21381 25000 

 

25000 25000 25000 17929 
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Figure 5-14. Hydrographs of observed and best-simulated discharges from various sampling methods 

(01/01/1970 -31/12/1979) 

 
 

 
Figure 5-15. 90% prediction interval calculated from MCS outputs 

 
Due to the limits of computer memory, it is problematic to compute the prediction 

intervals for an ensemble of many model outputs in one time. One solution to this is to use 
the block wise calculation method, where the prediction intervals are calculated part by part. 
For this analysis, the generated model outputs are partly saved in a vertical block and then the 
saved vertical blocks are loaded one by one and split horizontally into a small blocks. Each 
horizontal small block is merged vertically and then the prediction interval is calculated for 
that block. This process is repeated until the final prediction intervals are obtained. For 
example, to calculate the prediction interval of 25,000 model realizations with 3,500 of data 
points (time series), the blocks are first split and saved as 50 blocks each containing 500 
model realizations. These blocks are loaded again, one by one and each block split into 10 
parts. Each block size would be 500 by 350. At this points, the blocks are merged vertically 
(making the block size 2,5000 by 350). The prediction interval for that block is then 
calculated (i. e., prediction interval for 350 data points). The blocks are loaded repetitively 
and the prediction intervals are calculated until the full length is obtained (3,500 data points). 
This type of block-wise analysis solves the memory problem that arises from working with 
large data (uncertainty calculation from model outputs) on a single computer. It can be used 
for any kind of large data. 
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5.6.3 Statistical analysis of results 

  
Figure 5-16.  90% prediction intervals represented by different algorithms a) EX1, b) EX2 and c) EX3 

 
The last row of Table 5-3 lists the numbers of function evaluations from each algorithm. 

However, the GLUE and ACCO used less than 25,000 samples for uncertainty evaluations. 
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GLUE used the accepted samples (non-negative NSE). The ACCO generated a smaller 
number of points and stopped when one best point was found ignoring the areas with the 
lower NSE. The uncertainty bounds were calculated as the 90% prediction intervals from the 
generated model outputs, that is at each time step of the simulation, the output estimated 5% 
and 95% quantiles of the distribution. If these bounds were too wide, then there was 
sufficient space to include most of the observations.  

 
Figure 5-16 illustrates important differences among the uncertainty bounds calculated 

from the model outputs that were generated from different algorithms. The uncertainty bound 
was estimated based-on the probability distribution of model outputs generated by parameters 
sampled from a given distribution. The 90% prediction intervals represented the uncertainty 
bound that should be able to capture the all observed streamflows,  but in reality may not due 
to no representation of all sources of uncertainty. We considered only parameter uncertainty 
with the assumption that the model structure, input data (such as rainfall, temperature data), 
and output discharge data are correct. The wide uncertainty bounds were observed from 
MCS, GLUE and ACCO in all experiments. This may be due to the fact these three methods 
explore the parameter space more thoroughly than the others do. As a result, relatively more 
bad models (with high error and low likelihood) may have come in when we calculate the 
quantiles of the discharge distribution leading to a wider prediction interval. The DREAM 
produced narrow uncertainty bands in its predictions 

 
 

 
Figure 5-17. Comparison of 90% prediction intervals between the algorithms in Experiment 2: (a) 

MCS–GLUE, (b) GLUE–MCMC, (c) GLUE–SCEMUA, (d) GLUE–DREAM, (e) GLUE–PSO, (f). 
GLUE–ACCO. 
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Table 5-6. Uncertainty indices 

Experiment 1 

Indices MCS GLUE MCMC SCEMUA DREAM PSO ACCO 

PICP(%) 80.77 78.65 67.82 13.03 9.73 72.22 86.60

MPI   172.00 103.57 74.30 10.70 7.27 67.95 133.99

 S  0.41 0.38 0.55 3.07 4.60 0.46 0.27

 T  0.88 0.84 1.04 4.05 5.94 0.94 0.72

 D  37.63 25.31 24.33 24.34 22.65 22.06 27.10

 RD 0.44 0.31 0.32 0.30 0.31 0.29 0.31

Experiment 2 

PICP(%) 80.77 78.65 66.53 20.78 8.96 67.19 80.14 

MPI   172.00 103.57 72.15 17.83 6.61 57.34 88.92 

 S  0.41 0.38 0.57 1.60 5.06 0.51 0.31 

 T  0.88 0.84 1.06 2.25 6.52 1.00 0.77 

 D  37.64 25.91 24.38 25.11 22.58 21.64 23.28 

 RD 0.44 0.31 0.32 0.31 0.31 0.28 0.28 

Experiment 3 

PICP (%) 93.97 93.69 36.60 9.93 9.56 52.38 85.22 

MPI   117.78 114.11 25.72 6.35 7.08 40.66 86.68 

 S  0.23 0.22 1.17 4.94 4.73 0.77 0.28 

 T  0.68 0.67 1.76 6.36 6.11 1.30 0.74 

 D  27.14 25.08 21.90 22.26 22.33 21.98 23.59 

 RD 0.34 0.31 0.28 0.30 0.30 0.29 0.28 

 
Figure 5-17 depicts the comparison of GLUE and the other algorithms based on 

uncertainty bounds that were estimated by the Type I parameter ranges. The GLUE and 
ACCO are capable of covering the observation at peak streamflows; however, the PSO, 
SCEMUA, and DREAM did not cover the observation. Using the SCEMUA and DREAM, 
most of the peaks and other limbs stayed outside the prediction intervals. 

 
The accuracy of uncertainty was measured by the uncertainty indices- PICP, MPI, S, T, D 

and RD which are presented in Table 5-6 (Their formulas are presented in Equations (5-6) to 
(5-11). All of the indices except MPI were evaluated based on the observed streamflows. In 
all these indices, the experiments revealed a high correlation between the width of the 
uncertainty bounds and the ranges of parameters. PICP was expected to be perfect when its 
value becomes higher (perfect value is 100%). The results of the Experiment 3 showed that 
the higher percentage of  (93.97% and 93.69 %) of observed streamflows were covered by 
the MCS and GLUE respectively in narrow ranges of parameters. However, smaller values 
(36.60%, 9.93% and 9.56 %) were covered by MCMC, SCEMUA, DREAM and PSO. 
DREAM and ACCO do not greatly alter the value of PICP with respect to parameter ranges 
(Type I and Type II). The ACCO produced a lower MPI than did MCS in wide ranges of 
parameters, although PICP was higher. The GLUE produced a high MPI when parameter 
ranges were narrow, as it rejects very few non-behavioural models, although the width of the 
uncertainty bound varied with the rejection threshold. When a narrow range of parameters 
was used, the values of S and T were increased for the MCMC, SCEMUA, DREAM, PSO 
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and ACCO. The values of D and RD decreased for the ACCO with leftover values retaining 
only small behavioural parameters changes. 

 

 
Figure 5-18. CDFs at peak streamflows a) EX1, b) EX2 and c) EX3 

 
Figure 5-18  illustrates the relative width of the uncertainties in the predictions at peak 

streamflows. The observed streamflows reasonably covered the upper and lower distributions 
of streamflows at peak level in the MCS, GLUE and ACCO, while MCMC SCEMUA, 
DREAM, and PSO covered significantly less in EX 1 and EX 2. However, in EX 3 and did 
not cover the peak at all. The sharp gradient in the distribution represented narrow 
uncertainty bounds in their predictions.  

 
This study also tests the CDFs and uses Kolmogorov-Smirnov analysis in order to 

compare the significant differences of two datasets at peak streamflows.  
 

Table 5-7. K-statistics from Kolmogorov-Smirnov test 

   GLUE MCMC SCEMUA DREAM PSO ACCO 

EX1 MCS 0.31 0.63 0.85 0.90 0.77 0.44 

EX2 MCS 0.31 0.63 0.89 0.90 0.80 0.61 

EX3 MCS 0.07 0.41 0.42 0.47 0.31 0.18 
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The Kolmogorov-Smirnov test was carried out to compare two datasets (one from MCS 
and another from selected algorithm)  in order to evaluate their significant differences. These 
results are shown in Table 5-3. The values obtained by GLUE, MCMC and DREAM in EX 1 
and EX2 are similar, while the others are not. The values obtained using the DREAM and 
SCEMUA are quite different from those obtained using the GLUE. 

5.7 Summary 

This chapter presents a comparison of seven different sampling-based uncertainty methods 
for hydrological models. The uncertainty of model outcomes from the various sampling 
algorithms are estimated as two quantiles of the pdf, and these are analyzed by different 
uncertainty indices. The numbers of good data-fitting regions are identified in the parameter 
ranges by plotting the posterior distribution of the parameters. GLUE method requires 
subjective decisions in the selection of a cutoff threshold that separates behavioral from non-
behavioral parameter sets. MCMC simulation is a widely adopted approach to estimate the 
posterior probability distribution function of the parameters, and it appropriately samples the 
high-probability-density region of the parameter space. SCEMUA is a global optimization 
algorithm that provides an efficient estimate of the most likely parameter set as well as its 
underlying posterior probability distribution within a single optimization run. In the DREAM 
method, the model runs multiple chains simultaneously for global exploration of parameter 
space and automatically tunes the scale and orientation of the proposal distribution during the 
evolution to the posterior distribution. PSO is a stochastic optimization technique based on 
the movement and intelligence of swarms. In it a number of agents (i.e., particles) constitute a 
swarm that move around in the search space looking for the best solution. ACCO is a 
randomized search algorithm that is used in this study to function as an efficient sampler. We 
present the results showing, how well different algorithms estimate parametric uncertainty of 
hydrological models for a real field case of the Nzoia catchment in Kenya. We found that 
differences in sampling lead to quite large differences in the posterior distributions and hence 
different prediction intervals for the same model/problem considered. This effect has to be 
taken into account in the comparative studies of uncertainty analysis methods. 
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Chapter 6  
Prediction of uncertainty by machine 
learning techniques 

This chapter present an approach to predict the parametric uncertainty of a hydrological model. 
The most widely used methods to analyze uncertainty (which involve Monte Carlo (MC) 
simulation) involve multiple model runs and are time consuming. Machine learning techniques can 
be used to encapsulate the results of MC simulations and to build models that predict model 
uncertainty for future hydrological model runs. These predictive models are fast and can be easily 
used in operation for real-time predictions of parameter uncertainty. This method is referred to as 
Machine Learning in parameter Uncertainty estimation (MLUE) (Shrestha et al.2009; 2013)4.  

6.1 Introduction 

As mentioned in the previous chapter,  that Monte Carlo (MC) simulation could be 
unfeasible for computationally intensive models because of the associated requirements of 
time and resources. This method becomes impractical in real time applications when there is 
a time limitation to perform the uncertainty analysis, because of the large number of model 
runs required.  

 
The number of simulations increases exponentially with the dimension of the parameter 

vector O(np), where p is the dimension of the parameter vector, and n is the number of 
samples required for each parameter. Therefore, sampling from the selected distribution using  
standard MC simulation might be efficient.  
 

The assessment of model uncertainty when it is used in operation is not widely discussed 
in the literature. The MC simulation provides only the averaged uncertainty estimates based 
on past data, but in real-time forecasting situations, there may be little time to perform the 
MC simulations for the new input data in order to assess the model uncertainty for a new 
situation. To overcome these problems, Shrestha et al. (2009, 2013) proposed to use machine 
learning techniques to emulate the MC simulation results obtained for the past data. They 
referred to this method as the MLUE (Machine Learning in parameter Uncertainty 
Estimation). 

 
The idea of MLUE is to use the data from MC simulations to train a statistical or machine 

learning model to predict (with specially selected inputs) the quantiles and pdf of the model 

                                                 
4 Shrestha, D. L., Kayastha, N., Solomatine, D. P. and, Price R. K. (2013) Encapsulation of parametric 

uncertainty statistics by various predictive machine learning models: MLUE method, Journal of 
Hydroinformatics, 16, 1, 95–113  

Solomatine, D. P., Shrestha, D. L., Kayastha, N., Di Baldassarre, G. (2012). Application of methods predicting 
model uncertainty in flood forecasting, Proc. Second European conference on FLOODRisk, Rotterdam, 
The Netherlands.  
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error distribution. It requires only a single set of MC simulations in offline mode and allows 
one to predict the uncertainty bounds of the model prediction when the new input data are 
observed and fed into hydrological models (whereas the standard MC approach requires new 
multiple model runs for each new input). 

 
The MLUE approach involves using machine learning techniques to encapsulate the 

information about the realisations of the hydrological model output generated by MC 
simulations. This approach emulates the complex model by using a simple model, which is an 
example of surrogate modelling, or meta-modelling - an approach that is widely used when 
running the complex model is computationally expensive. For example, O’Hagan (2006) 
used the Gaussian process emulator to emulate a complex simulation model. Li et al. (2006) 
proposed meta modelling whereby a sequential technique is used to construct and 
simultaneously update mutually dependent meta-models for multiresponse, high-fidelity 
deterministic simulations. Young and Ratto (2009) proposed a dynamic emulation model to 
emulate a complex high-order model by using a low-order data-based mechanistic model. 
The uniqueness of MLUE method is that it explicitly builds an emulator for the MC 
uncertainty results based on machine learning techniques. 

 
This chapter presents the experiment of MLUE usage in parameter uncertainty estimation 

of a hydrological model. This method was employed and compared with different machine 
learning models (ANN, MT and LWR) to emulate MC simulation results . This methodology 
is tested with the GLUE uncertainty analysis method (see detailed description in Section 
5.3.2) using HBV hydrological models for the Brue catchment in the U.K. and the Bagmati 
catchment in Nepal. The main results are presented in publication by Shrestha et al. (2013). 

 

6.2 Machine learning techniques for building predictive uncertainty 
models  

The machine learning techniques are briefly described in Chapter 2.5. Usually, predictive 
models built by machine learning are used for deterministic prediction. The main advantage 
of machine learning techniques is that they can build predictive models from data without 
knowledge of the internal system. 

 
A detailed description of the MLUE method can be found in Shrestha et al. (2009, 2013) 

and is briefly outlined here. Instead of predicting a single value of the model error, which is 
done in most error correction procedures, it predicts the distribution of the output generated 
by MC-based simulations. Thus, the method predicts the uncertainty bounds of the 
hydrological model prediction without re-running the MC simulations. However, the MC-
based uncertainty analysis methods require a fresh set of MC runs for each analysis. For 
instance, GLUE will typically require a fresh set of MC runs from the behavioural models to 
produce the prediction intervals for the model output for each time step with the new data 
input. 

 
The flow chart of the MLUE methodology is presented in Figure 6-1. The basic idea here 

is to estimate the uncertainty of the model M (e.g., hydrological) output, assuming that 
uncertainty at a particular time step depends on the corresponding forcing input data and the 
model states (e.g., rainfall, antecedent rainfall and soil moisture) . In MC simulation, the 
vectors of parameters or inputs are sampled and for each of them, the hydrological model M 
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is run generates a time series of the model output ŷ. The results are presented in the matrix 
form Y ={ŷt,s}, where t =1,…, N, s = 1,…, S, N is the number of time steps, S is the number of 
simulations. Note that each row of the matrix Y corresponds to the particular forcing vector 
x't, which is given by: 

 

   ' '
,1 ,1 1ˆ ˆ, ....., ( , ), ....., ( , )

t tt s sy y M x M x   

 
(6-1) 

 
where θ is the parameter vector of the model M. Similarly each column of matrix Y, i.e. 
{ŷ1,s,…, ŷt,s}

T is one realisation of MC simulations corresponding to the parameter set θs. The 
machine learning model U  is built to encapsulate MC results in the following form: ŷt = U 
(xt). 
 

 

 
Figure 6-1. Schematic diagram of using machine learning method to estimate uncertainty generated 

by MC simulations (Shrestha et al. 2013). 

 
 

In Figure 6-1, z = {z1,…, zK} is a set of desired statistical properties and x is the input vector 
of the model U, which is constructed from the forcing input variables x’, model state s and 
possibly model output ŷ (all possibly combined, transformed and/or lagged). A way to 
construct the input space x is described in Section 6.2.3. To characterise the uncertainty of the 
model M prediction the uncertainty descriptors should be considered, which are given in 
section below.  
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6.2.1 Characterization of uncertainty 

Following MC simulations (see Chapter 5 Section 5.3.1), the quantiles of the model output 
for each time step t are estimated from the realizations ,ˆt iy . The uncertainty descriptors are 

characterized from model outputs, which are given below: 

1. The prediction variance 2 ˆ( )t ty  

2 2
, ,

1

1
ˆ ˆ ˆ( ) ( )

1

s

t t t i t i
i

y y y
s




 
   (6-2) 

where ,ˆt iy  is the mean of the MC realizations at the time step t. 

2. The prediction quantile ˆ ( )tQ p corresponding to the pth [0, 1] quantile calculated by 
Equation (5-4). 

3. The transferred prediction quantile ˆ ( )tQ p corresponding to the pth [0, 1] quantile 

ˆ ˆ( ) ( )t t tQ p Q p y    (6-3) 

where ty  is the output of the calibrated (optimal) model. Note that the quantiles ˆ ( )tQ p

obtained in this way are conditional on the model structure, inputs and the likelihood 
weight vector wi. The essence of this transferred prediction quantile will be apparent in the 
next section. 

4. The prediction intervals [ ( )L
tPI   ( )U

tPI  ] derived from the transferred prediction 

quantile for given confidence level of 1- (0<<1) 

ˆ ˆ( ) ( / 2),   ( ) ((1 ) / 2)L U
t t t tPI Q PI Q         (6-4) 

where ( )L
tPI  and ( )U

tPI  are the distance between the model output to the lower and upper 
prediction limits respectively, and refer to the lower and upper prediction intervals 
corresponding to the 1- confidence level (although, formally, these are not intervals but 
rather distances). 

 
Figure 6-2. Prediction intervals as uncertainty descriptors (grey is uncertainty bound of 

streamflows, yellow is pdf at time t, black dot is observed streamflows, and black dash is 
simulated streamflows by hydrological model). 
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6.2.2 Techniques for building predictive uncertainty models  

Once the desired uncertainty descriptors are computed from the realizations of MC 
simulations. The machine learning models are used to map the input data to the uncertainty 
descriptors. The machine learning model U to learn the functional relationship between the 
input data x and the uncertainty descriptor z takes the form: 

 

( )t t tz U  x  (6-5) 

 
where t  is the residual (error) between the target uncertainty descriptor zt and the predicted 
uncertainty descriptor by the machine learning model. The input data vector x used to train 
the machine learning models is typically different from the input to the process based model 
M and is discussed in Section 6.2.3. The input data x is constructed from the input variables 
of the process model, state variables, lagged variables of input and output, and other relevant 
variables that could help to increase the accuracy of the prediction. The residual   measures 
the accuracy and predictability of the machine learning model U. After being trained of 
model U, it encapsulates the underlying dynamics of the uncertainty descriptors of the MC 
simulations and maps the input to those descriptors. The model U can be used ANN, MT and 
LWR.depending on the complexity of the problem to be solved using available of data. Once 
the model U is trained on the calibration data, it can be employed to estimate the uncertainty 
descriptors such as prediction intervals for the new input data vector that were not used in any 
of the model building processes (see Figure 6-1). 

 
If the uncertainty descriptor is the transferred prediction quantile (Equation (6-6)), then the 

model U will take the form: 
 

ˆ ( ) ( )t t tQ p U   x  (6-6) 

 
If the uncertainty descriptor is the prediction interval derived from the transferred 

prediction quantile (Equation (6-4)), then the model U will take the form: 
 

( ) ( )

( ) ( )

L
t L t L

U
t U t U

PI U

PI U

 

 

 

 

x

x
 (6-7) 

 
Since the transferred prediction quantile is derived from the existing value of the model 

simulations (Equation (6-3)), then the predictive quantile of the model output is accordingly 
estimated by:  

 

ˆ ( ) ( )t t tQ p U y x  (6-8) 
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Similarly, upper and lower prediction limits of the model output are given by  

( ) ( )

( ) ( )

L
t L t t

U
t U t t

PL U y

PL U y





 

 

x

x
 (6-9) 

 
where UL and UU

 are the machine learning models for the lower and upper prediction 
intervals, respectively. It is worthwhile to mention that for the uncertainty descriptors of 
Equation (6-3) and Equation (6-4), it is assumed that there is an optimal model.  
 

6.2.3 Selection of input variables for the predictive uncertainty model 

The selection of appropriate model inputs is extremely important as they contain important 
information about the complex (linear or non-linear) relationship with the model outputs. 
Therefore the success of the MLUE method depends on the appropriate selection of the input 
variables to use in the machine learning model U. The required input variables can vary 
depending on the type of the process model and the inputs used in the process model, among 
others. In most cases, a combination of the domain knowledge and the analytical analysis of 
the causal relationship may be used to select relevant variables to use as the input to the 
machine learning model. The input variables to the machine learning model that can be 
considered are termed plausible data and include: 

 

1. Input variables to the process or primary model; 

2. State variables; 

3. Observed outputs of the process model; 

4. Time derivatives of the input data and state variables of the process model; 

5. Lagged variables of input, state and observed output of the process model; and 

6. Other data from the physical system that may be relevant to the pdf of the model errors. 

 
In most practical cases, the input data set x can be constructed from the plausible data set 

according to the methods discussed in section 2.5.6. Since the natures of the models M and U 
are very different, an analytical technique such as linear correlation or average mutual 
information between the quantiles of the model error and the plausible data is required to 
select the relevant input variables. As noted in the above list of the plausible data, the input 
variable might also consist of the lagged variables of input, state and observed output of the 
process model. Based on the domain knowledge and the analytical analysis of the causal 
relationship, several structures of input data can be tested to select the optimal input data 
structure. 

 
For example, if the model M is a conceptual hydrological model, it would typically use 

rainfall (Rt) and evapotranspiration (Et) as input variables to simulate the output variable 
runoff (Qt). However, the uncertainty model U, whose aim is to uncertainty of the simulated 
runoff, may be trained with the possible combination of rainfall and evapotranspiration (or 
effective rainfall), their past (lagged) values, the lagged values of runoff, and, possibly, their 
combinations.  
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Let us recall Equation (6-5) of the uncertainty model U and extend it:  
 

' ' ' '
1( , , , ,...)t t t t t tz U R EP Q S    (6-10) 

where, 
'
tR = Rt, Rt-1, …, Rt-max is the lagged inputs of the rainfall 

'
tEP = EPt, EPt-1, …, EPt-max is the lagged inputs of the potential evapotranspiration 

'
1tQ  = Qt-1, Qt-2, …, Qt-max is the lagged inputs of the runoff 

'
tS = St, St-1, …, St-max is the lagged inputs of the state variable (e.g., soil moisture etc) 

 
The difficulty here is to select an appropriate lags max for each input variables beyond, 

which the values of the input time series have no significant effect on the output time series 
(in our case uncertainty descriptors). A subset of inputs for the model U is selected based on 
methods (CoC and AMI) discussed in Section 2.5.6. It is noteworthy to mention that inputs to 
the model U should not include those variables that are not available or cannot be measured 
at the time of prediction. Thus, in the above formulation, Qt is not included. However, lagged 
of Qt can be used as one of the inputs as shown above.  

 

6.2.4 Verification of the predictive uncertainty models 

The uncertainty model U can be validated its predictive capability; and measuring the 
statistics of the uncertainty. The former approach measures the accuracy of uncertainty 
models in approximating the uncertainty descriptors of the realizations of the MC 
simulations. The latter approach measures the goodness of the uncertainty models as 
uncertainty estimators. The coefficient of correlation (CoC) and the root mean squared error 
(RMSE) are used to measure the predictive capability of the uncertainty model and are given 
as: 

1
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2
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1
RMSE ( ( ))
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t t
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z V
n 

  x  (6-12) 

where z and ( )tV x are the mean of the uncertainty descriptors and the mean of the uncertainty 
descriptors predicted by the uncertainty model U, respectively. In addition to these numerical 
measures, the graphical plots such as the scatter and time plot of the uncertainty descriptors 
obtained from the MC simulation and their predicted values are used to judge the 
performance of the uncertainty model U. 

 
The goodness of the uncertainty models is evaluated based on uncertainty measures 

prediction interval coverage probability (PICP) and mean prediction interval (MPI). Their 
equations are given in Section 5.4.2 (Equations 5-6 and 5-7). The PICP is the frequency of 
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the observed outputs falling within the computed prediction intervals corresponding to the 
prescribed confidence level of 1- (say 90%). Thus, PICP measures the efficiency to bracket 
the observed outputs within the uncertainty bounds against the specified  value. 
Theoretically, the value of PICP should be close to the prescribed degree of confidence 1-. 
However, if the value of PICP obtained by MC simulation is not close to 1-, then we cannot 
expect that the PICP value obtained by uncertainty model U will be close to . If the model 
U is sufficient good then its PICP value should be close to that of the MC simulations. MPI is 
the average width of the prediction intervals and provides an indication of the magnitude of 
the uncertainty. The larger the uncertainty, the larger the value of the MPI will be. In the ideal 
case that there is no uncertainty, then the value of the MPI will be zero. However, the MPI 
value alone does not provide much information; it will be used together with PICP to 
compare the performance of the uncertainty models. The best model will be that one that 
yields the PICP close to 1- with the lowest MPI. It is obvious that the PICP will be 
increased with the increase of the MPI. 

 
In addition to these uncertainty statistics, the plot of uncertainty bounds and the observed 

model output are investigated to judge the performance of the uncertainty model. Visual 
inspection of these plots can provide significant information about how effective the 
uncertainty model is in enclosing the observed outputs along the different input regimes (e.g., 
low, medium or high flows in hydrology). 

6.3 Experimental setup  

6.3.1 Uncertainty analysis for case studies Bagmati and Brue 

In present chapter, the MLUE approach was used to test two catchments Brue and 
Bagmati. The descriptions of these catchments are provided in Section 1.4.3 and 1.4.2. The 
size of the Bagmati catchment and the size of the associated data set  are larger than the 
Brue,. HBV hydrological model is calibrated by using adaptive cluster covering (ACCO) 
(Solomatine 1999), a global optimization method implemented in using GLOBE software. 
MC simulation results considering the only parameter uncertainty are not free from these 
sources of error. Although we try to reduce such errors, uncertainty results only considering 
parameter uncertainty. We explicitly consider only parameter uncertainly in this study.  

 
The convergence of MC simulations is assessed to determine the number of samples 

required to obtain the reliable results (e.g. refer to Chapter 5 Section 5.5). The parameters of 
the HBV model are sampled using non-informative uniform sampling without prior 
knowledge of individual parameter distributions other than a feasible range of values (see 
Table 2-2 and Table 2-3). The likelihood measure is calculated based on the sum of the 
squared error in Equation (5-12), which corresponds to the NSE. The threshold value of NSE 
equal to 0 is selected to classify simulation as either behavioural or non-behavioural. The 
number of behavioural models is set to 25,000, which is based on the convergence analysis of 
MC simulations. Various uncertainty descriptors such as variance, quantiles, prediction 
intervals and estimates of the probability distribution functions are computed from these 
25,000 MC realisations. Note that these descriptors are computed using the likelihood 
measure (Equation 5-12) as weights ws in Equation (5-4). The model parameters ranges used 
for MC sampling are given in Table 2-3. For the Bagmati catchment, first 122,132 MC 
samples are generated by setting threshold value of 0.7 to obtain 25,000 behavioural samples. 
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However, to make consistent with the Brue catchment experiment, model simulations with 
negative NSE are removed from the further analysis, leaving 116,153 samples out of 122,132.  

6.3.2 Machine learning models (ANN, MT and LWR) 

A multilayer perceptron neural network with one hidden layer is used; the Levenberg-
Marquardt algorithm is employed for its training. The hyperbolic tangent function is used for 
the hidden layer, and the linear transfer function is employed for the output layer. The 
maximum number of epochs is fixed to 1000. The trial-and-error method is adopted to find 
the optimal number of neurons in the hidden layer; we explored the number of neurons 
ranging from 1 to 10. It was found that 7 and 8 neurons for lower and upper PI, respectively 
yield the lowest CV error for the Brue catchment, For the Bagmati catchment, the number of 
hidden neurons 5 and 7 were used to yield the lowest CV error. 
 

Experiments with MT are carried out with various values of the pruning factor that 
controls the complexity of the generated model (i.e., number of the linear models) and hence 
the generalizing ability of the model. We report the results of the MT which has a moderate 
level of complexity. The CV data set has not been used in the MT, rather it uses the whole 
calibration data set to build the model. 

 
In the LWR model, two important parameters, number of neighbours and the weight 

functions are used. Several experiments were conducted with different combination of these 
parameter values. The best results were obtained using 5 neighbours and the linear weight 
function for the Brue catchment, and 11 neighbours with the Tricube weight function for the 
Bagmati catchment. 

 
The selection of input variables for the machine learning model U is based on the methods 

outlined in Section 2.5.6. They are constructed from the forcing input variables (e.g. rainfall, 
evapotranspiration) used in the process models, and the observed discharge. The selected 
input variables are REt-9a, Yt-1, Yt-1 for the Brue catchment and REt-0, REt-1, Yt-1, Yt-2 for the 
Bagmati catchment.  In the terminology for these variables, REt−  is effective rainfall at time t 
−, Yt−  is discharge at time t −;  is lag time, and REt−9a is  the average of REt−5, REt−6, 
REt−7, REt−8, REt−9  and Yt−1 is Yt−1 − Yt−2. Due to the resolution of data is daily for the 
Bagmati catchment (as opposed to hourly data for the Brue), we do not consider the 
derivative (stepwise difference) of the flow as an input to the model for it.  

 
The same data sets used for calibration and verification of the HBV model are used for the 

training and verification of model U, respectively. However, for proper training of the 
machine learning models, the calibration data set is segmented into two subsets: 15% of the 
data sets are used for CV and the remaining 85% are utilised for training. The CV data set 
was used to identify the best structure of machine learning models.  

 

6.3.3 Modelling the probability distribution function 

Shrestha et al. (2009) estimated the 90% prediction intervals (PIs) by building only two 
models predicting the 5% and 95% quantiles. However, Shrestha et al.(2013) extended that 
work to predict several quantiles of the model outputs to estimate the distribution functions 
(CDF) of the model outputs generated by the MC simulations. They shown that MLUE 
methodology estimate the two quantiles can be extended to approximate the full distribution 
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of the model outputs. The procedures to estimate the CDF of the model outputs consist of: (i) 
deriving the CDF of the realisations of the MC simulations in the calibration data; (ii) 
selecting several quantiles of the  CDF in such a way that these quantile can approximate the  
CDF; (iii) computing corresponding prediction quantiles using Equation (6-5); (iv) 
constructing and training separate machine learning models for each prediction quantiles; (v) 
using these models to predict the quantiles for the new input data vector; and (vi) 
constructing a  CDF from these discrete quantiles by interpolation. This  CDF will be an 
approximation to the  CDF of the MC simulations.  

 
In this study, we first estimated the 90% PIs by building only two models predicting the 

5% and 95% quantiles, and later we extended the 19 quantiles from 5% to 95% with uniform 
interval of 5%. Next, an individual machine learning model was constructed for each quantile 
using the same structure of the input data and the model that was used for modelling two 
quantiles. In principle, the optimal set of inputs data and the model structure could differ for 
each quantile but we leave this investigation for future studies. 

6.4 Results and discussion 

The HBV model is calibrated by maximizing NSE.  These maximized NSE values of 0.96 
and 0.83 are obtained for the calibration period in the Brue and Bagmati catchments, 
respectively. The model is validated by simulating the flows for the independent verification 
data set, and NSE is 0.83 and 0.87 in the Brue and Bagmati catchment, respectively.  

 

 
Figure 6-3. The 90% prediction intervals in fragment of the verification period for Brue catchment 

(LPI and UPI denote the prediction uncertainty estimated by ANN, MT, and LWR)  

The HBV model is quite accurate for the Brue catchments but its error (uncertainty) is 
quite high during the peak flows for the Bagmati catchment, the standard deviation of the 
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observed discharge in the validation period is 54% higher than that in the calibration period, 
which apparently increases performance during the validation period.  

 
Figure 6-3 shows a comparison of the 90% prediction bounds estimated by the GLUE and 

three machine learning models (ANN, MT and LWR) in the verification period for the Brue 
catchment. One can see a noticeable difference among them for predicting the lower and 
upper bounds of PI. For example, in the second peak of Figure 6-3 4a, the upper bound of PI 
is underestimated by the ANN compared with the MT and LWR. However, the lower bound 
is well approximated by the ANN as compared with the other models. Furthermore, in Figure 
6-3b, the ANN is overestimating two peaks, while the MT and LWR models underestimate 
them (Figure 6-3d and f). From the Figure 6-3, it can be seen that the results of the three 
models are comparable. They reproduce the MC simulations uncertainty bounds reasonably 
well except for some peaks, in spite of the low correlation of the input variables with the PIs. 
The predicted uncertainty bounds follow the general trend of the MC uncertainty bounds 
although some errors can be noticed and the models fails to capture the observed flow during 
one of the peak events (Figure 6-3a, c, and e). 

 
 

 
Figure 6-4. The 90% prediction intervals in fragment of the verification period for Bagmati catchment 

(LPI and UPI denote the prediction uncertainty estimated by ANN, MT, and LWR)  

 
For the Bagmati catchment, it is found that only 49.79% of the observed discharge data are 

inside the 90% prediction bounds computed by the GLUE method in the calibration period 
and 61.48% in the verification period. Therefore, we follow the modified GLUE method 
(denoted by mGLUE) (Xiong and O’Connor, 2008) to improve the capacity of the prediction 
bounds to capture the observed runoff data. The mGLUE method uses the bias-corrected MC 
simulations to estimate the uncertainty bounds. Compared with the original GLUE method 
(Beven and Binley, 1992), the mGLUE method includes two additional procedural steps. 
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Firstly, for each behavioural parameter set, a simulation bias curve is constructed based on 
the simulation series that are obtained using the calibration data. Thus, for a number of 
behavioural parameter sets, there will be different simulation bias curves. Secondly, at each 
time step, with the new data input, all of the different prediction values for the same 
observation are corrected by dividing by a common median bias value, before the derivation 
of the prediction limits. In further reading, the mGLUE term is referred as “GLUE” for the 
Bagmati catchment. 

 
Figure 6-4 presents the 90% prediction bounds estimated by the GLUE and the three 

machine learning models in the verification period. Using the GLUE method, the percentage 
of the observations falling inside the bounds is increased to 65.26 % and 67.52% in the 
calibration and verification periods, respectively. The machine learning models are able to 
approximate the GLUE simulation results reasonably well. The results of the three machine 
learning models are comparable; however, one can see a noticeable difference between them 
when predicting the peaks. The highest peak is overestimated by the ANN model, while the 
other two peaks are underestimated.  

 
Figure 6-5 and Table 6-1 present a summary of statistics of the uncertainty estimation in 

the verification period. The ANN model is very close to the MC simulations results. The MT 
and LWR are better than the ANN with respect to MPI (note that lower MPI indicates better 
performance), however PICP shows that the prediction limits estimated by them enclose 
relatively lower percentage of the observed values compared with those of the ANN.  

 
 

Table 6-1. Performances of the models measured by the coefficient of correlation 
(CoC),  root mean squared error (RMSE), the prediction interval coverage probability (PICP) 
and the mean prediction interval (MPI). 

Catch- 

ments Models 
Lower 

prediction interval 
Upper 

prediction interval PICP MPI 

  Calibration Verification Calibration Verification

Cal. Ver. Cal. Ver.     CoC RMSE CoC RMSE CoC RMSE CoC RMSE 

Brue ANN 0.91 0.70 0.86 0.56 0.80 1.61 0.80 1.59 90.03 77.00 2.73 2.09 

 MT 0.91 0.77 0.84 0.61 0.81 1.62 0.79 1.63 84.24 68.72 2.54 1.95 

  LWR 0.91 0.78 0.82 0.64 0.78 1.73 0.80 1.60 89.33 75.43 2.54 1.93 

Bagmati ANN 0.87 38.51 0.81 51.46 0.97 37.69 0.94 61.59 60.26 66.24 122.12 124.03 

 MT 0.83 44.17 0.81 50.25 0.96 48.27 0.95 52.14 58.92 59.05 117.82 120.59 

  LWR 0.91 32.43 0.86 44.56 0.97 40.11 0.96 50.37 63.04 59.16 118.91 121.73 

 
We have compared the performance of the three machine learning models by analyzing 

the accuracy of the prediction as well as there are other factors to be considered. These 
include computational efficiency, ease of use, number of training parameters required, 
flexibility and transparency. These considerations are shown in Table 6-2. The time 
(hh:mm:ss) is based on prediction of two quantiles (5% and 90%). Data analysis includes the 
analysis of dependency between prediction intervals and the input data, and preparation time 
in the calibration period except GLUE; The computer used for this study is an Intel (R) 
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Pentium(R) Dual CPU E2160 @ 180 GHz 2GB RAM. We use linguistic variables to describe 
these factors. It can be observed that none of the models is superior with respect to all factors; 
however, one may favour the ANN if the ranking is done by assigning equal weight to all 
factors. 

 
Table 6-2. Computational time for GLUE and MLUE 

Catchments Brue Bagmati 

Periods Calibration  Verification Calibration  Verification 

Number of data use  8760 8217 2000 922

      

GLUE  Monte Carlo simulations 15:49:00 11:12:00 07:35:00 06:36:00

 Estimation of quantiles  00:45:00 00:33:00 00:10:00 00:05:00

  16:34:00 11:45:00 07:45:00 06:41:00

-
ANN Data analysis  00:05:00  00:02:00  

 Preparation of training data 00:02:00 00:02:00 00:01:00 00:01:00

 Train the model  02:00:00  01:00:00  

 Testing the model  00:02:00  00:00:30

  02:07:00 00:04:00 01:03:00 00:01:30

MT Data analysis 00:05:00  00:02:00  

 Preparation of training data 00:02:00 00:02:00 00:01:00 00:01:00

 Train the model  01:00:00  00:30:00  

 Testing the model  00:01:00  00:00:05

  01:07:00 00:03:00 00:33:00 00:01:05

LWR Data analysis 00:05:00  00:02:00  

 Preparation of training data 00:02:00 00:02:00 00:01:00 00:01:00

 Train the model  04:00:00  02:00:00  

 Testing the model  00:07:00  00:02:00

 04:07:00 00:09:00 02:03:00 00:03:00

 

6.4.1 Comparison among ANN, MT and LWR 

Figure 6-6 and Figure 6-7 show a comparison of the CDFs for the peak events estimated 
by the three machine learning methods for the Brue and Bagmati catchment, respectively. 
One can see that the CDFs estimated by the ANN, MT and LWR are comparable and are 
very close to the CDFs given by the MC simulations. It is observed that the CDFs estimated 
by the ANN, MT and LWR models deviate a slightly near the peak event of 9 January 1996 
in the Brue catchment (see Figure 6-6b). The CDFs estimated by the ANN, MT and LWR 
deviate a bit more at the higher percentile values for the peak event of 13 August 1995 in the 
Bagmati catchment (see Figure 6-7b).  
 

From the visual inspection the plot, one can see that the CDFs are reasonably 
approximated by the machine learning methods. However, it may require a rigorous statistical 
test to conclude if the estimated CDFs are not significantly different from those given by the 
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MC simulations. In this study, since we have limited data (only 19 points) the results of the 
significance test (e.g. Kolmogorov-Smirnov) may not be reliable. 

 

 
Figure 6-5.  The comparison of PICP and MPI estimated with GLUE, ANN, MT, and LWR ) (a) and 

(c) calibration and verification for the Brue catchment, (b) and (d) for the Bagmati catchment 

 

Table 6-3. Linguistic performance criteria of machine learning models  

Models 
Model parameters 

(optimized) 

Accuracy 
Efficiency Transparency Rank 

CoC PICP and MPI 

ANN Numbers of hidden nodes High High Medium Low 1 

MT Pruning factor Medium Low High Medium 2 

LWR 
Kernel weighted density 
function 

Low Medium Low High 3 

 
In this study, the uncertainty of the model output is assessed when the hydrological 

process model is used in simulation mode. However, this method can also be used in 
forecasting mode, provided that the process model is also run in forecasting mode. Note that 
we have not used the current observed discharge Qt  as an input to the machine learning 
models because this variable is not available during the model application (indeed, the value 
of this variable is calculated by the HBV model, and the machine learning model assesses the 
uncertainty of this output). 

 
The results shown that the performance of the machine learning models to predict lower 

quantiles (5%, 10%, etc.) is relatively higher compared with those of the models for the upper 
quantiles (95%, 90%, etc.). This can be explained by the fact that the upper quantiles 
correspond to higher values of flow (where the HBV model is obviously less accurate) and 
higher variability, which makes prediction a difficult task. It is possible to develop a specific 
model only to simulate the peak observed data and their uncertainty, as well as for the mean 
flows. In general, such a model performs better than the global model. In this study, we have 
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used MT and LWR models for uncertainty estimation that implicitly builds the local models 
internally. It would be interesting to build the local models explicitly for high-flow events, 
but, this is not always possible because of training data requirements for such rare and 
extreme events. 

 
 

 
Figure 6-6. A comparison of cumulative distribution function (CDF) estimated with GLUE and ANN, 

MT, and LWR for the Brue catchment in a part of the verification period. (a) peak event of 20 
December 1995,(b) peak event of 09 January 1996, (c) CDF at (a) and (d) CDF at (b) 

 

 
Figure 6-7. A comparison of cumulative distribution function (CDF) estimated with GLUE and ANN, 

MT, and LWR for the Bagmati catchment in a part of the verification period. (a) peak event of 14 
September 1994, (b) peak event of 13 August 1995 (c) CDF at (a) and (d) CDF at (b) 
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When comparing the percentage of the observed discharge data falling within the 
uncertainty bounds (i.e. PICP) produced by the GLUE method, it can be seen that this 
percentage is much lower than the specified confidence level to generate these bounds. Low 
PICP value is consistent with the results reported in the literature (e.g., Montanari, 2005; 
Xiong and O’Connor 2008). 

 
To approximate CDF, an individual machine learning model is constructed for each 

quantile with the same structure of the input data and the model configuration. Thus we have 
not undertaken the full-fledged optimization of the model and the input data structure of the 
machine learning models and there is a possibility to improve the results. Furthermore, one 
can notice that the CDFs estimated are not necessarily monotonically increasing (see, e.g. 
30% quantile of the MT model for the second case study). This is not surprising given that 
individual models are built for each quantile independently. This deficiency can be addressed 
by a correcting scheme (to be developed) that would ensure monotonicity of the overall CDF. 
 

6.5 Summary 

This chapter presents the machine learning techniques to predict parameter uncertainty in 
hydrological modelling. The MLUE method is used to encapsulate the computationally 
expensive MC simulations of a process model by an efficient machine learning model. This 
model is first trained on the data generated by the MC simulations to encapsulate the 
relationship between the hydro-meteorological variables and the uncertainty descriptors – 
characteristics of the model output probability distribution, e.g. quantiles. The trained model 
can subsequently be used to estimate the latter for the new input data.  

 
In MLUE, the three machines learning techniques, namely ANN, MT and LWR are used 

to predict several uncertainty descriptors of the hydrological model outputs. Two case studies 
demonstrated the application of the MLUE method. First, the method was tested to estimate 
the two quantiles (5% and 95%) forming the 90% PIs and later extended the 19 quantiles 
from 5% to 95% with a uniform interval of 5%, to approximate the CDF of the model 
outputs, and then an individual machine learning model is constructed for each quantile. 
Several performance indicators and visual inspection were used to evaluate MLUE. The 
results of the MLUE experiments showed that machine learning models are reasonably 
accurate to approximate the GLUE uncertainty bounds as well as estimate the CDF resulting 
from the GLUE. The MLUE method is computationally efficient and can be used in real-time 
applications when a large number of model runs are required. 
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Chapter 7  
Committees of models predicting 
models' uncertainty 

This chapter also presents machine learning methods in uncertainty prediction, but instead of using 
one model, we form a committee of predictive models. Artificial neural networks, model tree, and 
locally weighted regression are employed. Two committees of models are formed (i) six different 
model input structures for uncertainty prediction models; and (ii) seven different uncertainty 
prediction models from the results of different sampling based methods (MCS, GLUE, MCMC, 
SCEMUA, DREAM, PSO and ACCO). These models are combined to improve performances of their 
outputs. This approach is applied to estimate the uncertainty of streamflows simulation from a 
conceptual hydrological model in the Bagmati catchment in Nepal, and the Nzoia catchment in 
Kenya.5 

 

7.1 Introduction  

The motivation behind multi-model averaging is to extract as much information as 
possible from the existing competing models to produce better outputs. The analysis of the 
results from groups of competing models is much more complex than the analysis of any 
single model. Each model has its own predictive capabilities and limitations. Hence, it is 
difficult to compare effectively between models. However, the combination of competing 
models allows the strengths of each individual model to merge in an optimal way, so that the 
best prediction can be obtained.  

 
Different hydrological models have various strengths in capturing different aspects of the 

hydrological processes, and different objective functions have advantages in simulating a 
veriety of flow ranges. Such model outputs can be combined into a single new model by 
employing the committee approach. The results of these models and their predictions are 
described in Chapters 3 and 4. Combining models requires weights, which average the model 
outputs, taking advantage of each individual model’s strengths. 

 
Uncertainty analysis is an essential component for any hydrological modelling effort. The 

sampling-based method is largely used to characterize and for quantifying the uncertainty of 
hydrological models. Machine learning techniques are used to encapsulate the results of 
Monte Carlo (MC) simulations by building a predictive uncertainty model (Shrestha et al., 
2009). The machine learning-based uncertainty prediction approach is very useful for the 
estimation of hydrological models' uncertainty, in particular the hydro-metrological situation 

                                                 
5 Kayastha, N., Solomatine, D. P, Shrestha, D. L.,  (2014) Prediction of hydrological models’ uncertainty by a 

committee of machine learning-models,11th International conference on Hydroinformatics, New York 
USA 
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in real-time applications. In this approach, the hydrological model realizations from MC 
simulations are used to build different machine learning uncertainty models to predict 
uncertainty (quantiles of pdf) of the a deterministic output from a hydrological model. 
Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The 
trained models are then employed to predict the model output uncertainty, which is specific 
for the new input data. This approach can be used for results of any sampling scheme to build 
machine learning models that are able to predict the uncertainty of hydrological model 
outputs. The trained model, called a predictive uncertainty model (V), maps the input data to 
the prediction interval of the model output, generated by sampling schemes. Details of this 
methodology are described in Chapter 6. 

 
This chapter presents the results of hydrological model uncertainties predicted by several 

of machine learning models. Three machine learning models, namely artificial neural 
networks (ANNs), model tree (MT), and locally weighted regression ( LWR) with (i) six 
different model input structures are tested to predict the uncertainty of streamflow 
simulations from a conceptual hydrological model an HBV for Bagmati catchment in Nepal; 
and (ii) seven different sampling-based uncertainty estimation methods applied to Nzoia 
catchment in Kenya. The problem here is that several input datasets were used to train model 
V resulting in a total of 18 models for the Bagmati and 21 models for the Nzoia. These are 
difficult to compare. In such situation, the multi-model averaging can be applied in order to 
combine these models. The main objective of the combining different predictive uncertainty 
models is to use efficiently the available information and to construct an averaged predictive 
uncertainty model with the proper balance between model flexibility and over-fitting. We 
propose to form a committee of all predictive uncertainty models using averaging schemes to 
generate the single (final) output. Two averaging schemes, namely simple averaging (SA) 
and Bayesian model averaging methods (BMA) are used in this study. 

 

7.2 Bayesian Model Averaging 

Bayesian Model Averaging (BMA) is a statistical technique used to combine multiple 
models for better prediction among various competing models. The main idea of BMA is that 
the ensemble outputs, which are generated by various models, are combined based on their 
performance. The better-performing models receive higher weights, so that the final 
combined model outputs can be much closer to on-the-ground observations. Using varying 
weights from one model to another makes more physical sense and decreases the uncertainty 
in the forecast (Ajami et al, 2007). We use BMA to combine the ensemble of predictive 
uncertainty models. The brief description of this method is described below. 

 
The quantity Q to be predicted on the basis of input data D=[X, Y]. Where X denotes the 

input forcing data, and Y represents for the observed data. The ensemble of the k-member 
predictions is given as f= [f1,f2,...,fk]. The probabilistic prediction of BMA is given by: 

 

1

( | D) ( | ) ( | , )
K

k k k
k

p Q p f D p Q f D


 
       

(7-1) 

 
where, p(fk |D) is the posterior probability of the kth individual prediction fk given input data 
D. This reflects how well model fk fits Y, which was denoted as BMA weight wk  . Better 
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performing predictions receive higher weights than the worse performing ones. All weights 
are positive and should sum to 1. pk(Q | fk ,D) is the conditional probability density function 
(PDF) of the predicting Q conditional on fk and D. For convenience of computation, pk(Q | fk 
,D) is assumed to be a normal pdf  and is represented as g(Q | fk ,σk

2)~N( fk ,σk
2), where σk

2 is 
the variance associated with model prediction fk and observations Y.  
 
 

The BMA mean prediction is a weighted average of the individual model’s predictions, 
with their posterior probabilities being the weights. This quantity can be expressed as 

2

1 1

( |D) ( | ) g( | , )
K K

k k k k k
k k

E Q p f D E Q f w f
 

      (7-2) 

 
The equation can be rewritten for combining multiple models of prediction intervals as 
follows 
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where, LPI and UPI are the distance between the model output to the lower and upper 

prediction limits, respectively, and refer to the lower and upper prediction intervals. 
 
Expectation-Maximization (EM) algorithm is used to estimate BMA weight wk and model 

prediction variance ϭ2
k, based on the assumption that k-member predictions are normally 

distributed. 
 

7.3 Building predictive uncertainty models for the Bagmati catchment 

Machine learning models are separately employed for encapsulating the uncertainty 
estimated by the GLUE method, which is supposed to be fit for reliable uncertainty bound, 
thus forming two-member individual predictions (upper and lower prediction interval) for 
uncertainty predictions. Three machine learning models, namely ANN, MT, and LWR are 
used to build a predictive uncertainty model. The same data sets of the HBV model are used 
for the training and verification of the model V, respectively. However, for proper training of 
the machine learning models the calibration data set is segmented into two subsets: 15% of 
data sets for cross-validation (CV), and 85% for training (see., Figure 2-9). The CV data set is 
used to identify the optimal structure of the machine learning models. 

 
The input variables for model V are constructed from rainfall and the observed discharge 

based on correlation and average mutual information (AMI). Experimental results show that 
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evapotranspiration alone does not have a significant influence on the prediction intervals 
(PIs). Thus, it is not included as a input variable for model V but effective rainfall is used. 
Figure 7-1 shows the correlation coefficient and the AMI of REt and its lagged variables with 
the lower and upper prediction intervals (PIs). The optimal lag time (time at which the 
correlation coefficient and/or AMI is maximum) is also 0 and 1 hour. At this optimal lag 
time, the variable REt provides a maximum amount of information about the PIs. 
Additionally, correlation and AMI between the PIs and the observed discharge are analyzed. 
The results show that the immediate and the recent discharges (with the lags of 0, 1, 2 h) have 
very high correlation with the PIs. Consequently, it was also decided to also use the past 
values of the observed discharge as additional input to the model V. 

 
 

 
Figure 7-1.  Simulated linear correlation between rainfall and (a) lower prediction 

interval; and (b) upper prediction interval. 
 
 
Based on the above analysis, several structures of the input data for the machine learning 

models are considered. We use various combinations of three effective rainfall values 
denoted by REt−0, REt−1 and REt−2, and past values of the observed discharge (see Table.7-1). 
The derivative of the flow indicates whether the flow situation is either normal or base flow 
(zero or small derivative), or can be characterized as the rising limb of the flood event (high 
positive derivative), or the recession limb (high negative derivative). Therefore, in addition to 
the flow variable, Qt−1, the rate of the flow change at time t−1 is also considered.  

Table.7-1. Input data structures of machine learning models to reproduce GLUE uncertainty 
results of the HBV model 

Models Input combination for lower 
and upper prediction interval

V01 REt−0, Qt−1 
V02 REt−0, Qt−1, Qt−2 
V03 REt−0, REt−1, Qt−1, Qt−2

V04 REt−0, REt−1, Qt−1, Qt−1

V05 REt−0, REt−1, REt−2,  Qt−1, Qt−2

V06 REt−0, REt−1,  REt−2,  Qt−1, Qt−1 

Note: Qt−1 is Qt−1− Qt−2 (characterizes the derivative of previous discharge) 

 

In Table.7-1, six possible combinations of input structure considered for the machine 
learning models are presented. Note that these models are trained identically for lower and 
upper PI. However, it is possible to use a single model in some machine learning models 
(e.g., ANN) to produce two outputs given that it has the same input structures. The structure 
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of the two machine learning models to estimate the lower and upper PI, for instance, in V03 
configuration, takes the following forms: 

0 1 1, 2

0 1 1, 2

( , , )

( , , )
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t L t t t t

U
t U t t t t

PI V RE RE Q Q
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


 (

(7-5) 

where L
tPI  and U

tPI  are the lower and upper PI for the tth time step. Note that we have not 
used Qt as an input to the above machine learning model because during the model 
application, this variable is not available (Indeed, the prediction of this variable is done by the 
HBV model, and the machine learning model assesses the uncertainty of the prediction). 
Furthermore, we would like to stress that in this study the uncertainty of the model output is 
assessed when the model is used in simulation mode. However, this method can also be used 
in forecasting mode, provided that the process model is also run in forecast mode.  

 

7.3.1 Several sets of variables 

We built six ANN uncertainty models (V) based on different input structures (Table.7-1) 
using a multilayer perceptron network with one hidden layer. Optimization is performed 
using the Levenberg-Marquardt algorithm. The hyperbolic tangent function is used for the 
hidden layer with linear transfer function at the output layer. The maximum number of 
epochs is fixed to 1000. A trial-and-error method is adopted to determine the optimal number 
of neurons in the hidden layer, in which a number of neurons from 3 to 10 for both lower and 
upper PI, which yielded the lowest error on the CV data set. The performance of the ANN 
model V for different input structures is shown in Table 7-2. It is observed that ANN models 
V03, V04, V05 and V06 possess almost similar CoC in the verification data set in producing 
upper PI. However, V01 or V02 have the smaller value of CoC. In lower PI, V01 and V02 
gives the lowest; V03, V04 and V06 yield moderate CoC values; and V05 attains the highest 
CoC value in the verification dataset. V05 yields the best result corresponding to a PICP 
value of 78.77% in comparison with the required 90%. However, the average width of the PIs 
(i.e., MPI) is wider. This is one of the reasons to cover additional observed data inside the 
PIs. V01 gives the lowest MPI value with the lowest PICP value. The MPI values of V03 and 
V04 are very similar to the MC simulation results. 

 
The performances of various MT models V using different input structures are shown in 

Table 7-2. MT models use calibration and verification data sets. A number of pruning factors 
6 to 8 and 2 to 8 were used to build MT models for lower and upper PI, respectively. For 
upper PI, the model V03 was build using 8 numbers of linear models to obtain the best CoC 
values in calibration. The models V01 and V02 were produced low CoC values for upper PI, 
but these values still higher than values yielded by lower PI. The analysis reveals that 59.05% 
to 66.24% of the observed data were enclosed within the estimated 90% PIs in the 
verification period. The MPI values from all models are comparable. MT yeilds low value of 
the PICP with lower value of MPI. Note that the PICP and MPI value of the MC simulation 
results were 67.52% and 122.74 m3/s in the verification period. 
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Figure 7-2. The fragments of 90% prediction intervals by GLUE and MT in 

verification period with (a and b) V01, (c and d) V02, (e and f) V03, (g and h) V04, (i and j) 
V05, (k and l) V06. (The black dot indicates observed discharges, the grey shaded area 

denotes the prediction interval by GLUE, the black line denotes the prediction interval by 
MT. 

 
Figure 7-2 shows the comparison of 90% PIs estimated by MC simulations with 6 

different input configurations for MT in the verification period. It was observed that upper 
PIs on some peak flows are underestimated by both models of MT (i.e., V01 and V02). One 
can see in the some peaks of upper PI in hydrographs (Figure 7-2 b, d, f, j, l) failed to cover 
by MT . The models V03, V04, V05, V06 (Figures 7-2  f, h, j and i), attempted to follow the 
upper prediction intervals estimated by GLUE, although some errors can be noticed. 
Noticeably, the models succeed to capture the observed flow during one of the peak events.  
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The two important parameters, namely the number of neighbours and the weight function, 
are considered to build LWR models. With different combinations of these values, several 
experiments were performed. The experiment was conducted with a number of neighbours, 
from 0 to 15, using weighted functions namely; linear, Epnechnikov and Tricube. We 
reported the best results obtained from 11 numbers of neighbour and Tricube weight function. 
The comparison of the performance of LWR by CoC, RMSE, PICP and MPI,with different 
input configurations is shown in Table 7-2. The models V03, V02, V03 and V04 have similar 
results, and these are slightly better than other models with respect to CoC values in the 
verification period. The CoC values for lower and upper PI are 0.86 and 0.96, respectively, 
for the V03 model.  The experiment shows that the low value 0 to 1 of k-Nearest neighbour 
(KNN) unable to present good LWR models, only values greater than 2 started to improve the 
performances of these models. We also tested with different values of KNN, from 1 to 15, for 
the V03 model, which are shown in Figure 7-3. The value of KNN is 11 with Tricubic 
weighted kernel function is used for building different input structure of the LWR model.  

 
 

 
Figure 7-3. The performances of LWR models using different kernel functions and 

KNN values (a) calibration and (b) verification 
 

7.3.2 Model averaging results and discussion 

The BMA is applied for combining 18 individual predictive uncertainty models based on 
six different variants of input structures with three machine learning models (ANN, MT and 
LWR) for calibration and verification periods. These models were tested on data from the 
Bagmati catchment and it results are presented in Table 7-2. The outputs generated by 
various models (considering two quantities that are lower and upper PI.) were combined 
using BMA. Each model (e.g., lower PI) received weights, which were calculated based on 
CoC, and then the final averaged model was compared by predictive measures of uncertainty, 
PICP and MPI. The result of the BMA model shows that the performance of PICP can be 
improved by individual models (MT and LWR models).  ANN models showed performances 
that were between the best and the worst. The best of ANN models is V05, which has a value 
of a CoC value of 0.89 and 0.87 in calibration and verification, respectively. Its value of 
PICP is 74.43% in calibration and 78.77% in verification. The BMA yields 64.35 % and 
69.74 % in the calibration and verification periods, respectively. However, it produced wider 
MPI among all models except ANN V05. 
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Figure 7-4. Hydrograph of 90% prediction bounds in the verification period; the black dot 

indicates observed discharges, and the dark grey shaded area denotes the prediction 
uncertainty that results from MCS. Black, blue and purple lines denote the prediction 

uncertainty estimated by BAM, SA and ANN-V01, respectively. 
 

Table 7-2. Performances of the machine learning models and BMA  

ML 
techni
ques 

Mod
-els 

CoC  RMSE 

PICP MPI Lower PI Upper PI Lower PI Upper PI 

Cal Ver Cal Ver Cal Ver Cal Ver Cal Ver Cal Ver 

ANN V01 0.83 0.71 0.89 0.86 44.57 60.25 74.85 88.05 55.26 56.84 117.81 118.73 

V02 0.85 0.71 0.90 0.86 41.56 60.79 76.89 92.09 70.62 75.52 141.84 142.80 

V03 0.85 0.81 0.96 0.94 41.98 51.46 47.80 61.59 60.26 66.24 122.12 124.03 

V04 0.86 0.81 0.95 0.94 40.10 49.96 50.08 60.81 60.52 68.91 124.56 125.79 

V05 0.89 0.87 0.96 0.95 36.29 43.34 61.45 67.53 74.43 78.77 160.96 160.48 

V06 0.88 0.82 0.95 0.93 37.78 49.54 54.52 66.28 68.35 73.32 135.56 136.94 

MT V01 0.77 0.72 0.88 0.90 49.77 59.14 77.03 76.92 57.32 64.04 117.68 118.95 

V02 0.78 0.73 0.88 0.90 48.91 58.68 76.67 76.81 58.66 66.24 117.70 119.14 

V03 0.87 0.77 0.95 0.95 38.96 54.93 49.61 53.14 58.87 59.40 117.80 120.42 

V04 0.87 0.76 0.95 0.95 39.16 55.66 49.22 53.27 59.07 60.09 117.74 119.67 

V05 0.83 0.81 0.96 0.95 44.17 50.25 48.27 52.14 58.92 59.05 117.82 120.59 

V06 0.83 0.80 0.96 0.95 44.29 51.18 47.99 52.21 59.12 59.51 117.76 119.89 

LWR V01 0.84 0.71 0.91 0.89 43.20 59.80 67.26 78.42 61.96 61.37 117.21 120.19 

V02 0.86 0.74 0.93 0.90 40.06 57.12 61.59 73.83 62.37 58.82 116.62 118.65 

V03 0.91 0.86 0.97 0.96 32.43 44.56 40.11 50.37 63.04 59.16 118.91 121.73 

V04 0.91 0.86 0.97 0.96 33.43 44.42 40.60 51.09 62.27 57.89 117.93 121.01 

V05 0.92 0.87 0.97 0.96 31.91 43.33 38.98 49.62 63.71 59.74 119.92 123.05 

V06 0.92 0.86 0.97 0.96 31.92 44.10 38.98 49.85 62.73 59.28 119.42 122.33 

SA 0.86 0.79 0.94 0.93 40.03 52.14 55.66 64.11 62.08 63.57 123.30 125.24 

BMA 0.91 0.86 0.96 0.94 32.96 45.79 47.83 47.84 64.35 69.74 135.26 136.20 

7.4 Building predictive uncertainty models for the Nzoia catchment 

The results Monte Carlo (MC) simulation-based estimation of model uncertainty depend 
on the sampling method used. In Chapter 5, we tested different sampling schemes (MCS, 
GLUE, MCMC, SCEMUA, DREAM, PSO and ACCO)  for the uncertainty estimations of 
hydrological models. We used the results of these sampling schemes to build various machine 
learning models and these models were combined using simple averaging (SA) and Bayesian 
model averaging (BMA) methods, and tested their performances for the Nzoia catchment. 
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The uncertainty of model output generated by various sampling schemes is described by 90% 
prediction intervals. 

 

Three machine learning models, namely ANN, MT, and LWR were separately employed 
to encapsulate the uncertainty results from each sampling-based method for uncertainty 
predictions. The experiment follows the results of previous experiments on sampling-based 
uncertainty. In Chapter 5, 10 years of daily data were considered as calibration data set (see 
Chapter 1, Section 3). Here, we presented a comparison of different predictive uncertainty 
models and their combinations in both calibration and verification periods. In addition, 
emphasis is placed to testing (verification). For proper training of the ANN machine learning 
model the calibration data set is segmented into two subsets: 15% of data sets for cross-
validation (CV), and 85% for training to identify the optimal structure of the ANN models. 

 
Figure 7-5. Prediction intervals generated by various sampling-based uncertainty 

estimation methods 
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Table.7-3.Performances of various sampling-based uncertainty estimation methods  
Sampling 
Methods 

PICP MPI 
Cal Ver Cal Ver 

MCS 82.73 85.22 180.48 163.45 
GLUE 82.39 75.52 110.17 94.61 
MCMC 72.08 62.24 76.81 66.95 

SCEMUA 22.31 18.20 19.03 16.07 
DREAM 9.40 7.07 7.13 6.17 

PSO 70.67 58.46 60.37 54.97 
ACCO 79.45 72.52 92.57 83.51 

Average 78.14 78.11 70.44 70.21 
 
 
 
Study area and selection of input variables  
The input variables for model V were constructed from correlations and AMI, which also 

have been described in a previous Chapter, Section 6.2.3. Figure 7-6 shows the correlation 
coefficient and the AMI of REt and its lagged variables with the lower and upper PI. The 
optimal lag time (time at which the correlation coefficient and/or AMI is maximum) and the 
variable REt provide the maximum amount of information about the PIs. The immediate 
discharges with the lag of 1 and 2  have very high correlations with the PIs.  

 
 

 
Figure 7-6. Linear correlation and average mutual information (AMI) between 

effective rainfall (a) lower prediction interval; and (b) upper prediction interval for different 
time lags 
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Table 7-4. Input structures of machine learning models  
 

Models Lower prediction interval Upper prediction interval 

VMCS REt−8a, Qt−1, Qt−2 REt−0a, Qt−1, Qt−2 
VGLUE REt−9a, Qt−1, Qt−2 REt−0a, Qt−1, Qt−2 
VMCMC REt−8a, Qt−1, Qt−2 REt−1a, Qt−1, Qt−2 
VSCEMUA REt−5a, Qt−1, Qt−2 REt−0a, Qt−1, Qt−2 
VDREAM REt−4a, Qt−1, Qt−2 REt−1a, Qt−1, Qt−2 
VPSO REt−6a, Qt−1, Qt−2 REt−1a, Qt−1, Qt−2 
VACCO REt−10a, Qt−1, Qt−2 REt−1a, Qt−1, Qt−2 

 
 

 
Figure 7-7. Fragment of uncertainty predicted by MT (a) calibration; and (b) 

verification 
 
A multilayer perceptron neural network with one hidden layer and Levenberg-Marquardt 

algorithm was employed for the training in the ANN. The hyperbolic tangent function is used 
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for the hidden layer, and the linear transfer function for the output layer. The optimal number 
of neurons in the hidden layer, ranging from 6 to 8, was found for the lower and upper PI. 
The trial-and-error method was adopted to determine which, yielded the lowest CV error. 
Experiments with MT were carried out with pruning factor ranging from 2 to 15 numbers and 
for LWR models used 5 to 10 neighbours and the Tricube weight function. 

 

 
Figure 7-8. Combination of predictive uncertainty models 

 
 

Table.7-5. Performances of different V models 

ML 
Techniques Models 

CoC  RMSE 
Lower PI Upper PI Lower PI Upper PI 

Cal Ver Cal Ver Cal Ver Cal Ver 

ANN VMCS 0.77 0.89 0.79 0.72 31.50 20.42 84.67 68.53 
VGLUE 0.66 0.70 0.80 0.66 28.74 22.83 31.30 29.17 
VMCMC 0.65 0.66 0.77 0.63 19.95 16.74 18.74 17.44 

VSCEMUA 0.54 0.48 0.56 0.44 9.60 9.11 11.11 7.14 
VDREAM 0.46 0.42 0.63 0.66 3.68 3.70 3.56 1.43 

VPSO 0.63 0.68 0.73 0.59 15.54 12.42 14.03 11.04 
  VACCO 0.65 0.66 0.73 0.59 23.18 19.60 24.46 21.70 

MT VMCS 0.75 0.89 0.80 0.75 31.71 20.29 82.46 66.05 
VGLUE 0.65 0.71 0.79 0.64 27.61 21.53 31.31 29.12 
VMCMC 0.61 0.63 0.80 0.63 20.13 16.96 17.18 17.74 

VSCEMUA 0.60 0.45 0.64 0.43 7.72 7.50 10.20 7.23 
VDREAM 0.53 0.43 0.61 0.68 3.50 3.68 3.63 1.40 

VPSO 0.60 0.65 0.79 0.69 15.56 12.51 9.61 8.56 
  VACCO 0.62 0.65 0.76 0.58 23.24 19.22 22.99 21.85 

LWR VMCS 0.91 0.85 0.93 0.74 20.63 23.35 53.13 68.64 
VGLUE 0.88 0.68 0.92 0.63 17.95 23.22 21.38 29.81 
VMCMC 0.87 0.61 0.91 0.60 12.81 18.03 12.01 18.61 

VSCEMUA 0.86 0.41 0.86 0.42 5.05 7.84 7.44 7.34 
VDREAM 0.84 0.41 0.83 0.66 2.33 3.80 2.77 1.47 

VPSO 0.87 0.59 0.91 0.67 9.81 13.88 6.73 8.93 
  VACCO 0.86 0.61 0.90 0.56 15.36 20.98 15.73 22.68 
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Table.7-6. Uncertainty indices of different V models 

ML 
techniques Models 

PICP MPI 

Cal Ver Cal Ver 

ANN VMCS 96.94 96.79 185.81 156.86 

VGLUE 87.15 82.58 115.08 100.19 

VMCMC 80.29 74.02 78.25 69.88 

VSCEMUA 31.14 24.77 23.09 21.07 

VDREAM 9.17 6.85 7.19 6.54 

VPSO 58.66 50.96 51.95 47.65 

  VACCO 86.35 83.73 93.92 84.68 

MT VMCS 85.56 82.30 180.59 153.94 

VGLUE 88.90 82.51 110.51 98.95 

VMCMC 75.54 69.16 76.84 70.76 

VSCEMUA 24.75 19.49 18.99 16.83 

VDREAM 9.51 7.21 7.02 6.66 

VPSO 70.78 61.31 60.26 56.24 

  VACCO 88.17 81.94 92.73 86.04 

LWR VMCS 85.56 82.16 179.20 155.42 

VGLUE 86.30 82.30 109.58 98.19 

VMCMC 75.59 68.52 76.25 70.27 

VSCEMUA 23.73 18.27 18.79 16.33 

VDREAM 9.57 7.71 7.01 6.64 

VPSO 71.18 60.96 60.08 55.39 

  VACCO 84.94 80.73 92.51 85.23 

SA 76.78 69.81 78.02 69.00 

BMA 83.01 77.80 98.04 85.68 

 

7.4.1 Committee of uncertainty prediction models 

The process of combining a number of uncertainties predicted by machine learning models 
is presented in Figure 7-8. The 21 predictive uncertainty models can be built by machine 
learning models for the prediction of different sampling-based uncertainty BMA, and the SA 
method was used for combining all models. The outputs of models are multiplied by the 
weights from the contributions of each single model and depend on the performance of the 
models. The results of the BMA and SA are compared with the average PI and generated 
seven sampling schemes because each sampling scheme produces a different band of 
uncertainty, and this is difficult to compare effectively among sampling schemes.  

 
 

7.4.2 Results and discussion 

The results of applying the three machine learning models (ANN, MT and LWR to predict 
90% PI of the HBV hydrological model outputs) showed that the percentage of the 
observation discharge data, falling within the prediction bounds, generated by some sampling 
schemes, has much lower than the given certainty level that used to produce these prediction 
bounds. 
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Figure 7-9. Comparison of the BMA results with average uncertainty bound (average 

PI) obtained from 7 PIs for the period of (a) calibration; and (b) verification 
 

 
Figure 7-10. Fragment of comparison result of the BMA with mean uncertainty bound 

(average of seven PIs) in calibration and verification. PI-SBU is the mean PI of seven 
sampling-based uncertainty; PI-PUM is PI produced by using BMA of models V'. 

 
 
Machine learning-based uncertainty model V trained on the data set, which was generated 

by each sampling scheme and tested on verification data set. Their performances are shown 
in Table.7-5. Table.7-6 shows the hydrograph of the 90% uncertainty bounds predicted by 
model V together with the mean of seven uncertainty bounds in the verification period. It can 
be said that the BMA reproduced the average uncertainty bounds reasonably well, in spite of 
the low correlation of the input variables with the PIs. Although some errors can be observed, 
the predicted uncertainty bounds follow the trend of average uncertainty bounds (sampling 
schemes). Noticeably, the mean of the uncertainty bound (sampling schemes) failed to 
capture the observed flow during one of the peak events (Figure 7-10a). However, the results 
of V (BMA) are visually covered by the observed data.  

 
Detailed analysis reveals that the estimated uncertainty bounds from BMA contain 77.80% 

(PICP) of the observed runoffs, which is higher than the result of SA (69.81 %). The average 
width of the prediction intervals (MPI), estimated by the BMA, is wider (85.68 m3/s) than the 
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SA (69.00 m3/s). Furthermore, the results showed that 15.94% of the observed data are below 
the lower uncertainty bounds, whereas 6.61% of the data are above the upper bounds. For the 
predictive capability of the BMA model in estimating lower and upper PIs, both for the 
calibration and verification periods, it appears that the correlation coefficient and RMSE for 
PIL is higher than those of PIU. This can be explained by the fact that PIU corresponds to the 
higher values of flow (where the HBV model is less accurate) and has higher variability, 
which makes its prediction difficult.  
 

7.5 Summary  

The comparison of various predictive uncertainty models is not straightforward, so several 
models’ outputs can be combined. A committee of predictive uncertainty models by BMA 
overcome the problem by conditioning, not on the single best model, but on the entire group 
of models (e.g.,Raftery et al., 2005). This chapter demonstrates the use of one of the methods 
of model averaging (however others can be employed as well), which can be employed to 
combine several predictive uncertainty models. BMA assumes the pdf of individual models 
of prediction in establishing the aforementioned, and uses a calibration period to determine 
static weights for each individual model. We have found that combination of different 
machine learning-based predictive uncertainty models leads to an increase in accuracy.  
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Chapter 8  
Integration of hydrological and 
hydrodynamic models and their 
uncertainty in inundation modelling 

This chapter presents an uncertainty estimation of flood inundation extent through the integration 
of SWAT (hydrological) and SOBEK (hydrodynamic) models. Models are implemented with 
MATLAB using  parallel computing tools to simulate the flood inundation in the Nzoia catchment. 
The SWAT model simulates streamflows in the outlet of the catchment, while the SOBEK model 
routed the down streamflows at the outlet of the catchment to Lake Victoria. Both the SWAT and 
SOBEK models are individually calibrated before the coupling. Monte Carlo simulations are used 
to run the coupled SWAT and SOBEK, in order to produce a probabilistic flood map. Several 
simulations are run to explore the distribution of streamflows at the upstream (inflow boundary) of 
the channel (river). The resulting flood inundation map allows for presenting and analysing the 
probability of flooding in certain areas. Various levels of probability of flood inundation extent are 
identified.6 

8.1 Introduction 

Hydrological and hydraulic models simulate the river processes to assess the spatial and 
temporal information on flooding, which is crucial for operational flood forecasting. 
Hydrological models involve an empirical relation of rainfall-runoff, which reproduces the 
flow in the river. However, these models do not allow capturing the interaction between 
channel, floodplain, and backwater effects of flow in the river.  Therefore, river hydraulic 
models (hydrodynamic models) operate to manage, adequately, the dynamic characteristics of 
flow by hydraulic routing. In fact, River hydraulic models are mainly used to understand the 
mechanisms that cause flooding, the behaviour of rivers, and the consequences of changes of 
future discharges and water levels. They are also used to design and evaluate the impact of 
flood inundations, which serves as essential information for decision makers, allowing 
planning and mitigating measures to be taken in time.  

 
Hydraulic models involve governing flow equations based on the conservation of mass, 

momentum, and energy, which are necessary to be parameterized by imposing boundary 
conditions. An important aspect of hydraulic models is that these models simulate the flow, 
which can transform into a flood inundation map to represent the flood extent, magnitude, 
and shape of the flood depth. However, these models require information on river flow (e.g., 
boundary conditions, Manning's, channel cross section and depth), observations of flood 

                                                 
6 Kayastha, N., van Griensven, A., Solomatine, D. P. (2011). Dealing with uncertainties in remotely linked 

models. Proc. OpenWater Symposium and Workshops, UNESCO-IHE,The Netherlands 
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extent (topographic data), and methods of quantifying the performance of individual 
simulations in reproducing inundation patterns.  

 
One way to validate the performance of a deterministic hydraulic (flood) model is by 

using available remotely-sensed data on the flood extent, where data used is observed, and by 
comparing these data with the predicted flood extent by overlapping these two events 
(described in Section 8.8). 

. 
The accuracy of the models can be significantly improved using topographic data with the 

availability of remote sensing data. However, uncertainties in topographic data limit the use 
of models in river networks. Numerous sources of uncertainty need to be considered during 
modelling of river processes, which results in uncertain model outcomes. Knowledge of the 
uncertainties is crucial for a meaningful interpretation of the model results, which is 
significant for accurate decision-making processes (Warmink et al., 2011). Understanding 
and quantification of individual sources of uncertainty in flood models are very complex. 
Addressing such frameworks requires the knowledge of each variable that affects the flood 
inundation process and contributes to total model uncertainty.  

 
Uncertainty may arise from various sources in flood inundation models. Jung et al. (2012) 

delineated the following sources of uncertainty: (i) flows; (ii) topography and land use data; 
(iii) modelling type (one-dimensional vs two-dimensional); (iv) model setup and assumptions 
(e. g., steady state, unsteady state); (v) model parameters (e.g., Manning’s roughness); (vi) 
lack of model calibration data (e. g., observed flood extent); and (vii) approaches of flood 
inundation mapping. However, flow is one of the most uncertain variables in flood 
inundation mapping (Pappenberger et al., 2006).  Flow can be obtained in two ways: (i) direct 
measurements of water stage; and (ii) estimation by hydrological model. Most flood 
modelling practice utilizes observed hydrographs, used for boundary conditions (Montanari 
et al., 2009). The uncertainty of the inflow boundary condition depends on the methods used 
to estimate flow. Uncertainty arises from precipitation, model structure, and the model 
parameters of the hydrological model, and should be included when flow is used as an input 
to the hydraulic model. One of the major issues is the availability of measure discharge data 
in un-gauged catchment. Such data are quite rare. Therefore, the hydrological model is used 
to overcome this problem. This model generates the simulated discharge hydrograph to assess 
inflow boundary conditions for the hydraulic model. In this study, the hydrological model is 
coupled with a hydraulic model to generate the flood inundation map, where the uncertainty 
outputs of the hydrological model are an input to hydraulic models. 

 
Generally, Monte Carlo simulation is employed to estimate the uncertainty of flood 

models. It produces an ensemble of deterministic model simulations, where each model 
output received an evaluation of its value or fit based on observed flood inundation extent. 
This allows the determination of the impact of individual model input on the flood inundation 
polygon and uncertainty zone at various confidence levels. Various techniques have been 
used to address the issue of uncertainty in flood inundation. Examples include the Bayesian 
forecasting system (Krzysztofowicz 1999, 2002); GLUE (Jung et al., 2012; Blazkova and 
Beven 2009; Yatheendradas et al., 2008; Horritt, 2005), Fuzzy logic (Pappenberger et al., 
2006), and PEST (Liu et al., 2005). Pappenberger et al. (2006) showed that the sources of 
uncertainty of boundary conditions have a significant effect on the performance of inundation 
prediction. They demonstrate remote sensing-derived water stages to correct inflow of the 
hydraulic models. Montanari et al. (2009) introduce the approach of calibration, and 
sequentially update a coupled hydrologic-hydraulic model using remotely-sensed flood 
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information. They used remote sensing data of flooded areas for correcting volume error in 
the hydraulic model. Neal et al. (2009) generated an ensemble of flood simulations, where 
discharge is estimated from a rainfall-runoff model with precipitation from numerical 
weather predictions. 

 
In this chapter, we test the uncertainty of hydrological and hydraulic models, thereby 

focusing on quantification of the uncertainties in the model outcomes as flood inundation. 
The model results are obtained using a high performance computer (parallel computing) by 
simulating the hydrological SWAT model and the SOBEK hydrodynamic model in the Nzoia 
catchment, Kenya. The SWAT model estimates the flow of the river channel, and the 
SOBEK model obtains the flood inundation extent. Integration of SWAT and SOBEK is done 
in looping sequence of model outputs, so that the final output can be utilized to estimate 
uncertainty. 

 

8.2 Flood models 

A flood is the result of excessive water overflow in the river channel (water bodies), that 
is, flow exceeds the capacity of the river channel and submerges land. The occurrence and the 
magnitude of the flood event are traditionally established by analysis of historical 
hydrological data. Computer models are set once the frequency, magnitude, and shape of the 
hydrograph have been established. The topographic data of the river, floodplain and land are 
used to estimate flood depth and flood elevation. 

 
Flood models are built on one-dimenstional (1D), two-dimensional (2D) or coupled 1D -

2D flow, based on solutions of the full or approximate forms of the shallow water equations. 
1D model can be more efficient than 2D models for flow in the main river, while 2D models 
are usually more accurate when flow in the floodplains is significant. 1D modelling is the 
most common approach for simulating flow in a river channel, where water flow in the river 
is assumed to flow in one dominant direction, aligned with the center line of the main river 
channel. A 1D model solves shallow water flows in open channels, assuming that vertical 
acceleration is not significant, and water level in the channel cross-section is approximately 
horizontal. However, problems arise when the channel is embanked and water levels are 
different in the floodplain than in the channel. In this case, 2D models can be used to 
calculate water levels in the floodplain.  

 
In coupled 1D-2D models, unidirectional representation of a river is coupled to two- 

dimensional representations of the floodplains, which separate into a form of the grid using 
2D solver. Fully 2D models involve river channel bathymetry and floodplain topography as 
an integrated continuous surface. This type of model solves the water level and depth-
averaged velocities in two spatial dimensions (Pender and Neelz, 2007). Fully 2D models do 
not assume a dominant direction for the flow. Therefore, they are suited for floodplain flows, 
since there is no necessity to prescribe a particular direction of flow. Limitations of 2D 
models involve large computing power, longer run times, and difficulty in including 
hydraulic structures, such as bridges and weirs. Furthermore, large data requirements could 
make their use prohibitive in data-scarce regions (Merwade et al., 2008).  
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8.3 Model integration  

Flood inundation modelling is a sequential process of hydrological analysis, which is 
followed by hydraulic analysis and then by geospatial processing. Each model 
(hydrological/hydrodynamic) involves a set of procedures that are performed in sequence. An 
increasing understanding of the complexity of river processes can be recognized by the 
looping sequence of models (hydrological and hydraulic). This is accomplished by the 
integration of models. While it not only incorporates the knowledge of two models, it is also 
able to capture the overall complex flood processes in a study area. Such integration requires 
accessibility of data, sufficient processing power, and complex process interactions between 
models. In present study, integration or linking of models assumes that the output of one 
model will feed another. However, the models should be linked together in a meaningful way 
that should address the variables, scales, and resolution problems (Voinov and Cerco, 2010). 
A number of tools for model integration can be found in the literature, e.g., OpenMI 
(Gregersen et al., 2007); the Simple Model Wrapper (SMW, Castronova and Goodall, 2010); 
Invisible Modelling Environment (TIME, Rahman et al., 2003); and HydroPlanner 
(Maheepala et al., 2005). 

 
TIME tool is used to integrate the models in the water domain, which does not support the 

use of non-TIME models (e.g., SWAT, HBV, SOBEK etc.). HydroPlanner combines 
wastewater and stormwater systems and interacts with natural water systems, as well as 
contaminant and nutrient flows at the city and regional scale. This tool supports models that 
have spatially explicit data only. SMW reduces the complexity associated with creating new, 
process-level components within an OpenMI-based modelling framework. However, these 
tools require a broader and deeper understanding of the model components that are going to 
be used, and hardly support a minimal range of metadata types. They are also difficult to 
manage.  Spatial representations, visualizations of uncertainty, and the large scale of temporal 
data input and output are the limitations of this tool. 

 
Models can be coupled in two different ways (Goodall et al, 2011) (see Figure 8-1): (i) 

tight-coupling, in which the independent models are integrated into a single modelling 
application by changing the code. This provides complete control over the process 
representations and data structures within all parts of the model, but the data structures and 
semantics within a module are fixed; and (ii) loosely-coupled, in which the model component 
developer allows the assembly of the internal algorithms, which are required to represent a 
particular system. Some intermediate data processes occur, which presents an opportunity to 
identify model inputs that are physically impossible (Voinov and Cerco (2010). However, in 
tight-coupled models, the results from one model directly transmit into another  

 

 
Figure 8-1. (a) tight-coupling; and (b) loose-coupling (Goodall et al. 2011). 
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Open Modelling Interface (OpenMI) is the result of a European-wide effort to develop a 

protocol making it possible to link various types of simulation models (Gregersen et al., 
2005; 2007). OpenMI considerably reduced the time and effort required to import and export 
data between models. However, it required an adjustment of the internal time steps of 
models, and the selection of the appropriate type of links is needed to reduce possible 
numerical instabilities at selected locations (Gregersen et al., 2007). Donchyts et al. (2007) 
pointed out some limitations of OpenMI. Firstly, it does not explicitly support 
synchronization among different models at run-time to prevent one component from waiting 
forever, which might be inadequate for real-time applications. Secondly, there is a lack of 
detailed semantic information at runtime. Branger et al. (2010) mentioned that the design of 
OpenMI is most useful for coupling previously existing models, and it has no facilities for 
developing new components from scratch or establishing data input and output facilities.  

8.4 Propagation of uncertainties in integrated models 

The uncertainty associated with each individual procedure affects the overall system. The 
end-to-end (or whole system) modelling approach ensures integration of the models (e.g., 
climate, hydrology and hydraulics), while taking into account sources of feedbacks within the 
uncertainties outcomes. This type of modelling approach enables a better understanding of 
the complex system effects of key drivers, such as climate, in simulating how the future may 
unfold under various scenarios. These models produce various sources of uncertainties used 
to support decision-making. For example, they contribute to the analysis of the influence of 
climate change on the streamflows (Schaake, 1990; Xu, 1999; Chiew and McMahon, 2002; 
Bronstert et al., 2005; Burger et al., 2007). Coupled meteo-hydrological models are effective 
tools to achieve longer lead times in hydrological forecasting (Ramos et al., 2009). The 
cooperation between interdisciplinary domains is essential in developing such systems, as 
they can provide the basis for tracking uncertainty from the beginning (climate forcing data) 
to end (flood predictions). Pappenberger et al. (2005) investigated the cascading of model 
uncertainty from medium-range weather forecasts (10-days ahead of rainfall forecasts) 
through the LISFLOOD rainfall–runoff model down to flood inundation predictions within 
the European Flood Forecasting System (EFFS). They found that rainfall forecasts in the 
modelling system for real-time flood inundation prediction can yeild useful longer lead times 
for decision-making. McMillan and Brasington (2008) developed the “end-to-end” modelling 
approach for the formation of a coupled system of models allowing continuous simulation 
methodology to predict the magnitude and to simulate the effects of high return period flood 
events. They reported that their approaches addressed the problem of computational 
limitations. Saint and Murphi (2010) developed an end-to-end workflow for coupled climate 
and hydrological modelling to examine the effect of environmental changes. They presented 
data establishing that interactive systems can be used to tackle emerging questions about 
climate uncertainty. 

 
Cascading uncertainty is a widely accepted technique for propagation of uncertainties 

through the model chain. However, it is not straightforward. Each model involved in the 
integrated modelling system has to be quantified for its effects. In the last few years, several 
approaches have been developed to manage the propagation of uncertainty in the hydro-
meteorological model to the flood routing model (see Pappenberger et al., 2005; Romanowicz 
et al., 2006; McMillan and Brasington, 2008; Block et al., 2009; Thielen et al., 2009; He et 
al., 2009; Cloke and Pappenberger, 2009). Pappenberger et al. (2005a) present the cascading 
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model uncertainty predictions and propagation of uncertainty, from an atmospheric model to 
a rainfall runoff model to a flood inundation model. Cloke and Pappenberger (2009) show the 
capturing and cascading of uncertainty through flood forecasting systems to produce an 
uncertainty prediction of flooding. He et al. (2009) demonstrate the coupled atmospheric-
hydrologic-hydraulic cascade system, driven by the THORPEX Interactive Grand Global 
Ensemble (TIGGE) ensemble forecasts. A probabilistic discharge and flood inundation 
forecast are presented to test the use of the TIGGE database. The study shows that mainly 
precipitation input uncertainties mainly dominate in the system, and these propagated through 
the cascade chain. They suggested that the current NWPs were influenced by spatial 
precipitation variability that requires improvement in resolution. Techniques should be 
developed that narrow down the spatial gap between meteorology and hydrology. 

 

8.5 SWAT and SOBEK models setup for the Nzoia catchment 

The reach length of the longest Nzoia River channel is approximately 355 kilometres 
(km). Along its long path up to its outflow into the Lake Victoria, It is joined by four main 
tributaries on the left bank and six relatively smaller tributaries on the right bank. It has a 
catchment area of 12,709 square kilometers (km2). The river originates from Mt. Elgon and 
Cherangani Hills. This is a highland of the catchment known to receive higher rainfall. Due 
to excessive rainfall, the high flows accumulating in the plains results in increased incidences 
of floods in the lower Nzoia catchment. The most severely affected regions are within a the 
Bundalangi Division of the Busia District, which is located on the shores of Lake Victoria at 
the mouth of the Nzoia River. The river length ranges from 0 (outfall into the lake) to 25 km, 
and the bed slope flattens to 1 in 3400 as the river meanders through a wide flood plain (red 
line shown in Figure 8-3). The channel width increases to 70 metres (m), and the height of 
the banks decreases considerably, which causes the spilling of flood waters over the banks, 
and the consequent flooding of large areas on either side. Major severe flooding was recorded 
in the lower reaches of the Nzoia River in November 2008, which mainly affected the 
Budalangi Division of the Busia District. This flooding affected more than 12,000 people. 

 

 
Figure 8-2. Map of the Nzoia catchment. The hydrodynamic model SOBEK is set up in for the river 

reach shown in red.  

The catchment hydrological simulations were undertaken using the Soil and Water 
Assessment Tool (SWAT), version 2005. This model is a physical-based semi-distributed 
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model developed to simulate the processes at the catchment scale using a daily time-step 
(Neittsch et al., 2005). Ten years of daily data, from 1970 to 1989, and six years of daily data, 
from 1980 to 1985, were selected for model calibration and verification, respectively. The 
ACCO optimization algorithm (Solomatine 1999) is used to find the most sensitive optimal 
eight parameters (Table 8-1) to establish the best possible model. The surface runoff and 
groundwater were adjusted until a good fit was achieved between the observed and simulated 
streamflow. The performance of the model as the coefficient of efficiency obtained a value of 
0.69 in calibration and 0.60 in verification.  

 
Table 8-1. Ranges of SWAT parameters for model calibration 
Name Minimum  Maximum 
v__Rchrg_Dp.gw      0.01        1 
v__Canmx.hru      0.0          0.5 
v__CH_K2.rte    20          70 
v__Surlag.bsn      0.5         1.3 
r__CN2.mgt        0.5            0.5 
v__Gwqmn.gw  0.5            1.5 
v__ALPHA_Bf.gw 0.5          1.5 
r__SOL_AWC().sol  0.1        0.5 

 
SOBEK-RE is setup for flood simulation along 18.6 km of the lower the Nzoia River 

(river reach mark in red in Figure 8-2). SOBEK-RE is a one-dimensional (1D)- two-
dimensional (2D) hydrodynamic model that couples 1D hydraulic modelling of the river 
channel to a 2D representation of the floodplains. The hydrodynamic 1D-2D simulation 
engine is built based upon the optimum combination of a minimum connection search by 
direct solver and the conjugate gradient method.  

 

 
Figure 8-3. Illustration for generating the multiple flood inundation map 

 
The upstream boundary condition of the SOBEK model is set at the flow hydrograph at 

the hydrometric station in the SWAT model output. Topographical information from the 
Shuttle Radar Topography Mission (SRTM) has data with a resolution of 90 m data, used in 
both the hydrological and hydraulic models. The downstream boundary condition is set at the 
normal depth of Victoria Lake. The downstream boundary often sets the slope of the water 
surface in the framework of an unsteady flow analysis (Montanari et al., 2009). Three 
tributaries meet in the main channel between the upstream and downstream boundaries. 
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However, their contribution is quite small and not relevant for the flood extent information. 
Therefore, we did not attempt simulation.  

 

 
Figure 8-4. Simulated discharge generated by SWAT (05-Nov-2008 to 13-Nov-2008) 

 

 
Figure 8-5 Overlay of flood-inundated area simulated by SOBEK (blue) and observed flood extent 

(black)  

 

Figure 8-6. An ensemble of boundary inflow (05-Nov-2008 to 13-Nov-2008) generated by SWAT 
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The SOBEK model was calibrated using inflow flow data that simulated output of SWAT 
for the period from 6 to 13 November 2008. During the process of SOBEK model calibration, 
two values of Manning’s for the river channel and one for the floodplain were adjusted to 
bridge the gap between the observed and simulated flood inundation area. The observed flood 
inundation area was compared to topographic information captured by the Advanced Land 
Imager (ALI) NASA’s earth satellite on 13 November 2008 (Figure 8-11). The model set 
spatially uniform Manning’s coefficient for the channel and flood plain, of 0.032 and 0.03, 
respectively. The total inundated area predicted was obtained, that is 50.16 km2, However, 
the satellite image calculated 47.68 km2. The model was run at a spatial resolution of 90 m 
and a time step of 20 s in order to reduce computational efficiency and random errors 
associated with the topographic data (DEM). The files for the inundation extent were 
exported using MATLAB for analysis and visualization.  

 
The SWAT and SOBEK models were integrated after individual calibration. MC 

simulations are set to represent model uncertainties through an ensemble of model outputs, 
where each ensemble corresponds to a model realization of the set of parameters that simulate 
the SWAT model that produced the boundary discharges (Figure 8-3) into SOBEK. Error in 
boundary inflows produced uncertainty in the hydraulic model, which is estimated by an 
ensemble of model outputs. These are generated by treating boundary inflows in the model as 
stochastic variables. In this study, we represent the uncertainty in the upstream boundary 
inflows, which is generated by the SWAT simulations, so that the SOBEK model can 
produce flood inundation extent maps. The MC simulation procedure produces 25,000 
ensembles of flood inundation extent maps with respect to boundary inflow hydrographs 
(Figure 8-6).  

8.6 Approach to estimate the uncertainty of flood inundation extent 

The uncertainty estimation of flood inundation extent that comes from the uncertainty of 
streamflows (including the inflow (upstream) boundary conditions and the hydrological 
model parameters) consists of the following stages: 

1. Calibration and verification of the SWAT model, based on historical observations of 
streamflows. 

2. Generation of streamflows from SWAT (inflow boundary condition) for SOBEK for 
particular event. 

3. Generation of a priori distribution for the chosen parameters (hydrological model), 
using information obtained from the deterministic optimization. 

4. MC simulation of the SWAT model, using sampling of a parameter space to calculate 
the uncertainty of streamflows. 

5. Calibration of the SOBEK model using inflow boundary (simulated streamflows) that 
generated by SWAT, the optimal value of Mannings (parameters) in the flood plain 
and river channels obtained during the calibration (e.g., maximum water levels in the 
cross sections of the river reach and flood inundation area). 

6. Multiple simulation of the SWAT and SOBEK models using parallel computing and 
the generation of ensembles of flood inundation maps with a specified inflow 
boundary condition (i.e., an event being greater or equal to a given value), 
corresponding to the uncertainty of the inflow boundary derived for an input of the 
model. 
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7. Estimation of uncertainty of a posteriori outputs from the models, in flood inundation 
maps, and the derivation of maps of probabilities of maximum inundation. 

8.7 Use of parallel computing 

The SWAT and SOBEK models require sets of large data and computational resources for 
long simulation time. When multiple simulations of models and model chains for a single 
computer restrict the use because of computational power and time, an alternative can be the 
implementation of multiple computers. This can be accomplished by distributing tasks across 
computers in a network, arranged in clusters, and through cloud computing with effective and 
efficient support from hydroinformatics tools. In this study, we show the potential of using 
parallel computing for analyzing uncertainty of hydrological and hydraulic systems by 
running multiple simulations in parallel. 

 
The Parallel Computing Toolbox of MATLAB provides parallel application programming 

that allows the execution of multiple independent models simultaneously for the same 
problem with multiple computers, in distributed and parallel environments, by managing 
computations and data between MATLAB sessions and computing resources. The MATLAB 
Distributed Computing Server  is set up on a computer cluster as workers. Models are execute 
parallel applications from the MATLAB prompt on these workers. Master computer retrieves 
results after they finish their assigned computations. The parallel processing functions allow 
the implement of tasks in parallel and data-parallel algorithms at a high level in MATLAB 
without programming for specific hardware and network architectures. 

 
 

 
Figure 8-7. Architecture for parallelization of MC simulation studies  

 
The architecture of parallel computing is shown in Figure 8-5, which includes several 

functions (scheduler, execution, retrieve, destroy) that communicates between master and 
workers. The optional job manager can run on any machine on the network. The scheduler 
creates an object in the MATLAB session to represent the job manager that will run the job. 
Each task of a job is represented by a task object in the local MATLAB session (worker). The 
task for running the job from the job manager, the worker executes this task. When workers 
complete the job's tasks, it moves to the finished state. The resulting data from the evaluation 
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of the job of each task object is collected, returns the result is returned to the job manager, 
destroys the job to free memory resources. The worker is, then assigned another task. When 
all tasks for a running job have been assigned to workers, the job manager starts running the 
next job with the next available worker. 

 
The flow of information through the model chain is shown in Figure 8-3. MC simulations 

run on a master computer, and integrated (cascade) models (SWAT and SOBEK) run on 
workers’ computers. The output of the SWAT model results in the hydrographs at specific 
locations. The model results are input (i.e., boundary conditions) to the SOBEK model. The 
automation of data transfer and model executions were implemented by additional runtime 
functions and are written in MATLAB. The two functions "changeboundary.m"and 
"changefriction.m" are written in MATLAB scripts, these are used to change inflow 
boundary and friction coefficient (Manning's) in each simulation. The scripts for change 
boundary is shown in Figure 8-9 and for iterative runs of the model shown in Figure 8-10. 
After the finalization of the execution of one integrated model run for a particular input, the 
results are converted to text files and saved, in order to perform their uncertainty analysis 
following the collection of all results. 

 
 

 
Figure 8-8. Batch file for runing SOBEK from the command line 

 

 
Figure 8-9. Script for write inflow boundary data into the BOUNDARY.DAT file 
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Figure 8-10. Script for running SOBEK from MATLAB 

8.8 Quantification of model performance and uncertainty 

The evaluation of flood models in predicting flood inundation extent depends on the 
types of model and observed data used. Visual representation is one of the common 
approaches for evaluating model outputs. However, a large data set may not permit 
visualization. Quantitative measures of model performance are used to compare different 
properties of the flood extent. Model predictions of flood inundation extent can be 
evaluated by retrieving flood information from space, that is, by extracting binary maps 
consisting of flooded and dry cells (e.g., Aronica et al., 2002; Hunter et al., 2005). The 
binary comparison of maps is done with the symbolic observations of measure of the fit, 
based on a contingency table that shows the frequency of wet and dry prediction and 
observation described in Table 8-2. The number of pixels correctly predicted as wet or 
dry, and both under-predicted and over-predicted. 

 
The F statistic is used as a performance measure that describes the overall matching 

of the predicted and observed spatial distribution of flood extent. A variety of possible 
performance measures (F) can be found in Hunter (2005) and Schumann et al. (2009). The 
model we use does not cover all aspects of the inundation phenomenon, main of which are 
the local contribution of the rainfall, infiltration and possible backwater effects, so it is a 
priory expected that the inundation area will be underpredicted. Having this in mind, we 
have selected the F2 statistics (Schumann et al., 2009, Di Baldassarre et al., 2009) that 
penalizes the overprediction.  

The performance measure for prediction of flood extent (Schumann et al., 2009; Di 
Baldassarre et al., 2009) is given below: 

 

2
A B

F
A B C




 
 (8-1) 

 
where A is the size of the wet area correctly predicted by the model, B is the area predicted 
as wet that is observed to be dry (over-prediction), C is the wet area not predicted by the 
model (under-prediction), and the term –B in the numerator is used to penalize model 
over-prediction. The value of F ranges from –1 to +1 where value close to +1 is the 
model’s output, comparable to the actual flood extents, while -1 exceeds the overlap size 
A.  
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Table 8-2. Matrix of possible flood observation in model combinations for a binary 
classification scheme  

 
Present in 

Observation 
Absent in 

Observation 
Present in model A  B 
Absent in model C D 

 
Uncertainty in flood extent is derived by multiple simulations of a flood inundation model, 
where the derivation of a ‘‘probability’’ map can be characterized by a relative confidence 
measure (RCM, Romanowicz et al., 1996). This expresses a belief that uncertain prediction is 
a consistent representation of system behavior. The relative confidence measure for each cell 
j is given by a weighted-average goodness-of-fit measure: 
 

i ij
i

j
i

i

L w
RCM

L




  (8-2) 

where Li is the weight for each simulation i , and the simulation results for the jth model 
element (cell), that is wij, is 1 for wet and 0 for dry. RCMj presents the range between 0 and 1, 
and reflects the likelihood of inundation at that point for uncertain forcing boundary inflows. 
Each simulation, i, attributed a likelihood weight  Li  in the range [0, 1] according to the 
values of measure fit F: 

min( )

max( ) min( )
i i

i
i i

F F
L

F F





 (8-3) 

where max(Fi ) and min(Fi ) are the maximum and minimum measures of fit found 
throughout the ensemble.  

 
Hunter et al. (2005) evaluated the binary measures that involve observing area-based 

measures interpreted by degree of correspondence between a given model realization and a 
binary pattern observation. Pappenberger et al. (2007) provided the methods of assessment 
using a fuzzy global performance measure with selected discrete binary performance 
measures for a set of model realizations to illustrate the differences between them.  

 

 
Figure 8-11. Flood map observed by satellite (captured by the Advanced Land Imager (ALI) NASA’s 

earth satellite) 
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Figure 8-12. Flood inundation map observed (after processing of satellite data) 

 

 
Figure 8-13. Overlay of 75% confidence level of flood inundated area (blue) and observed (black) 

8.9 Results and discussion 

MC simulations were conducted for uncertainty propagation from target variable inflow 
boundary conditions to produce different flood inundation areas. The results of 23,400 model 
simulations are considered for further analysis instead of the initial 25,000 MC simulations 
because the rest (600 simulations) less than 300 m3/s in peak discharges (inflows boundary 
discharges) have no influence in flood inundation extent. Furthermore, the hydraulic model 
requires the specification of roughness parameters, and during MC simulations, these 
parameters used two Manning's as a fixed variable (used calibrated values), and the number 
of acceptable flood simulations were generated at without changing of Manning's. The 
differences between the simulated inundation areas are obtained in the range of 2.07 to 103 
km2. However, an observation satellite calculated 47.68 km2. The satellite observed image 
spatial regulation 25 m (Figure 8-11) is extrapolated into 90 m (Figure 8-12) in order to 
simplify the analysis and make compatible comparison of the flood map obtained from 



CHAPTER 8 

 
155 

SOBEK. The inundation maps generated by SOBEK are reclassified into binary wet/dry 
flood maps to produce a probability of the inundated area. This represents the percentage of 
area in which each cell is classified as inundated. The analysis of inundation corresponding to 
5 to 95% is shown in Figure 8-16.  

 
Figure 8-14. Overlay of maximum flood inundated area simulated by SOBEK (blue) and observed 

(black) 

 
The results of analysis show that the inflow boundary condition had the highest influence 

on the flood inundation area. The reason for the overestimated flood extent prediction could 
be attributed to the uncertainty of the observed topography. The importance for flood 
mapping is the selection of proper performance measures of models. Model prediction flood 
extent was evaluated against the relevant benchmark DEM simulations fit (F2) statistic 
(Schumann et al., 2009, Di Baldassarre et al., 2009). The likelihood measure based on the F2 
produces the uncertainty bound of flood map. In Figure 8-15 one may note that the 
downstream part of the domain is not inundated. Figure 8-16 shows that in most simulations, 
the domain water enters at the blocked drain in the southwest corner and flows down the lake. 
 

One another aspect is design flood estimation that is an additional source of uncertainty 
into flood inundation extent (Di Baldassarre et al., 2010). The estimated 1-in-100-year design 
flood is obtained in peak discharge value around 688 m3/s (Balica, 2012) for Nzoia 
catchment. This value is calculated based on Gumbel extreme value distribution method 
using a limited data set. We used this value in order to compare the results of the MC 
simulation to other estimates of flood magnitude (simulated by SWAT). It can observe is that 
the interval for the peak flood values on November 8, 2008 that found within interval [270 
m3/s, 986 m3/s] indeed includes the value 688 m3/s (refer to Figure 8-6).  

 
The effects of the non-stationarity of friction parameters can decrease performance of 

hydraulic models (Horritt et al., 2007), especially the modelling of flood extent. However, the 
probabilistic approach can be facilitated to reduce these effects because this approach uses 
multiple models in prediction, rather than a single best model (Bates et al., 2004).  
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Figure 8-15. Simulated flood inundation overlapped with the Google map  

 

 
Figure 8-16. Uncertainty in flood inundation map, taking account of uncertainty of model parameters 

(legend shows relative confidence measure, 5% to 90%) 

 

 
Figure 8-17. An inundation likelihood map for Nzoia (conditioning averaging of likelihood)  
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Figure 8-17 shows that the flood extent map, obtained by combining weights based on the 
likelihood of 23,400 simulations, reflects the uncertainty from inflow boundary in flood 
inundation extent. The higher value (after the averaging of likelihood) indicates that the 
model simulated flood extend is overlapped by observed flood inundation extent. 

 
In fact, the hydrological flows are affected by errors that are caused by the inadequate 

model structure and inputs, as well as by the parameterization of the model itself. Therefore, 
it might produce a different uncertain flood extent map when uncertain sources of input and 
model structure take into account the uncertainty in the hydrological flow estimation. This 
chapter considers initial experiments with the uncertainty-based modelling, and only the 
hydrological model parameters are considered as the uncertainty source.  

 
The optimal parameters for the period 1970-1985 (calibration and verification) were used 

in simulating the hydrological behaviour of the catchment in 2008 event. We tried to explore 
the magnitude of changes in Nzoia catchment. We undertook all possible efforts to find latest 
data from the authorities but unfortunately failed. However, the experts who know the area 
told us that the catchment land uses characteristics have not changed much from 1980 to 
2010 since the agricultural areas largely preserve the same pattern with the main crop being 
sugar cane. So a conclusion was made that, as a proof of concept, we can still use the model 
calibrated on old data to simulate the recent event. However, if more data is collected or 
made available, then the model has to be re-calibrated.  

 

8.10 Summary 

Uncertainty in flood inundation extent can come from various sources of uncertainty in 
hydrological models. This study aimed at estimating the uncertainty of flood inundation 
extent downstream in the Nzoia River using the 1D -2D SOBEK river model, where 
uncertainty is considered from a hydrological model by simulating SWAT. MC simulations 
were used to generate multiple flood inundation extent patterns from coupled (cascade) 
SWAT and SOBEK model outputs. The uncertainty of outputs is presented in the form of 
confidence level, which is based on the observed flood inundation extent obtained from 
remote sensing data. This analysis allows one to create a visualization, indicating the 
uncertainty in flood inundation maps. The coupling of hydrological and hydraulic models is 
important for flood forecasting. However, additional tests are required for data processing 
techniques, which can better represent system responses especially in operational flood 
forecasting.  
 

Use of the tools supporting parallel computing allows for estimating uncertainty of flood 
inundation extent by integrating hydrological and hydraulic models. The advantage of this 
framework is that it can incorporate of the hydrological uncertainty into flood inundation 
modelling. The disadvantage is that it is computationally more demanding and requires the 
use of large data sets. 
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Chapter 9  
Conclusions and recommendations 

This study aimed at refining the committee approach and uncertainty prediction in hydrological 
modelling. The following conclusions and recommendations are grouped around these main themes of 
this study: model committees, uncertainty prediction models, their committees, and uncertainty-based 
integrated modelling.  

9.1 Committee modelling 

One of the important keywords in this study is “committee”. Different types of committee 
models, namely (a) fuzzy committee models; (b) states-based committee models; (c) inputs-
based committee models; (d) outputs-based committee models; and (e) hybrid committee 
models, are presented in this thesis. All models used a multi-modelling approach, which 
intends to improve model prediction involving a combination of model outputs. These 
outputs are obtained by differently parameterized models with the same model structure (in 
the above mentioned first four models, that is, (a), (b), (c), and (d). In model (e), two different 
models were combined. One output was from a process-based model, and another from data-
driven models. These models were combined to form a hybrid model. The resulting models 
were tested on verification data and compared with other models based on objective function 
RMSE and NSE.  

 
The major findings from the committee modelling experiments show that the combination 

of two specialized models indeed does lead to the better performance of the resulting 
committee model. The committee model always showed better results, on both objective 
functions (RMSEHF and RMSELF), compared with the single model. Furthermore, fuzzy 
committee models always presented better than the single hydrological model with respect to 
independent values of parameters MFtype and WStype. One of the interesting effects here is 
that the membership function parameters δ and γ to be optimized often having very close 
values, which means that there is a very narrow region where specialized models “work 
together.” Potentially this may which a minor change in average flows will force the 
committee model to produce relatively large changes in outputs. We cannot suggest a 
“universal” best set of parameters MFtype and WStype that would be applicable for every 
case study, as, in calibration, all of them were good. However, in verification performance of 
models using different MFtype and WStype showed slight differences depending on cases.  

 
States and inputs-based committee models are not so advantageous in their performances 

when compared with fuzzy committee models. However, the outputs-based committee 
models have shown very good results. The states- ,inputs-, and outputs-based committee 
models are treated by the time-varying indicators that weigh the streamflow simulations of 
individual models. These weights add the quantity of flows into the system that might not be 
acceptable for process-based modelling theory, but this is not the case for fuzzy committee 
models. 
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It should be noted that the hydrological model state variables are not always possible to 
use in weighting schemes because they depend completely on the accessibility of a model 
source code (inside) to abstract these values.  

 
Hybrid committee models have shown great potential among committee models. As 

demonstrated in a committee modelling study, the integrated form of the conceptual models 
and the ANN model as a hybrid model offer the most promising results compared with any 
other committee models. 

 
Further development and application of the presented committee modelling approach is 

seen in exploring possible interactions between the parameters of the weighting functions and 
the shapes and parameters of the membership functions.  

 
The committee model may be sensitive to the choice of these parameters, determining the 

shapes of the weighting and membership functions, and indeed exploring the use of more 
robust optimization methods for their identification to ensure higher robustness of the 
committee model. The committee approach helps one to understand hydrological complexity 
and to improve the predictive power of the model. A more accurate comparison of 
performances between various models can be made if the problem of overfitting is addressed 
(for example, by cross-validation during model calibration and stopping the optimization 
process earlier to ensure minimum error on cross-validation) instead of “deep” optimization 
of the model on calibration set and using a single validation set. However, to use a cross-
validation set would require an effort in determining the optimal splitting of the data set into 
three rather than two sets. This study recommends that this be done in future research if the 
size of the data set would allow for this.  

 
One of the topics for further consideration is improving the performance metrics for the 

committee models; they use the same metric of objective functions for different magnitude of 
flows, which originate from statistical theory. However, the nature of this metric (e.g., 
RMSE) is basically oriented towards high flows and may not be suited for low flows. 
Therefore, the performance measure can be acknowledged in the form of a transformed 
metric (e.g., transformed RMSE) to calibrate low flow model (van Werkhoven et al., 2009; 
Willems, 2009; Kollat et al., 2012).  

9.2 Sampling-based uncertainty analysis techniques 

The reliability of the uncertainty estimation methods strongly depends on the sampling 
method used, choice of likelihood measure, dimension of estimation problems (number of 
model parameters), size of catchment, and the quantity and quality of observation data. Exact 
comparisons of these methods are difficult because they are based on different philosophies 
and hypotheses. The common criteria for the comparisons in this study used what are 
uncertainty indices, objectives function, visual plots, and ease of use. We focused on 
estimation of uncertainty for the hydrological model outputs produced by seven different 
algorithms. We explored different sampling outcomes of the conceptual HBV hydrological 
model. Among these sampling methods, MCS and GLUE are easy to implement, due to 
fewer assumptions, but more computationally intensive. GLUE often requires expert 
judgment for an acceptance threshold because this is subjective. The subjective choices of 
objective functions can be influenced by the estimation of the prediction interval. PSO 
requires knowledge about the movement and intelligence of swarms, and ACCO requires 
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clustering and covering theory. MCMC, SCEMUA, and DREAM estimate the parameters 
describing probabilistic representation of parameter uncertainty and are used within the 
classical Bayesian framework.  

 
SCEMUA and DREAM produced narrow uncertainty intervals, while MCS and GLUE 

produced an ensemble of models spread all over the parameter space. PSO and MCMC 
produced less-wide uncertainty than MCS and GLUE, but ACCO had a shaped narrower 
uncertainty than GLUE. The GLUE method rejects the larger number of samples when 
sampling was carried out with the wider ranges of the parameter space, while less samples are 
rejected in narrow ranges. The uncertainty statistics (e.g., prediction interval, pdf) is strongly 
influenced by the amount of samples used (generated model outputs). Therefore, a sufficient 
sample should accomplish to enable comprehensive evaluation of uncertainty. 

 
MCMC, SCEMUA, DREAM, PSO and ACCO simultaneously estimate the global 

exploration of optimum parameter. SCEMUA, DREAM, PSO, and ACCO were originally 
developed for optimization, while MCS, GLUE and MCMC are explicitly oriented for 
uncertainty analysis. Different methods used different sampling strategies, and there are no 
generally applicable rules able to indicate if “unconventional” sampling adopted in the 
randomized search algorithms, as in DREAM, SCEMUA and ACCO, can be employed to 
judge model uncertainty.  

 
The uncertainty bounds (prediction intervals) of model outputs depend on the range of 

parameters considered for uncertainty analysis. The narrow range of parameters represented 
relatively narrow uncertainty, but not always. This depends on the magnitude of selected 
ranges that is narrowing around the optimum parameters producing a narrow uncertainty 
bound. 

 
The wider prediction interval generated by MCS (compared to that of DREAM) does not 

necessarily indicate that MCS is bad (visa versa, this may be a more realistic estimate of 
uncertainty). Different algorithms generate different number of samples in different regions 
of the parameter space (same for SCEMUA). This brings up a more general question to 
which we still do not have an answer: if unconventional (economic) different sampling 
strategies (like those employed in the optimization algorithms SCEMUA and ACCO) were 
used, how reliable would the results of uncertainty analysis be?  

 
The prediction intervals presented by some algorithms were very narrow, and only a few 

observation points were covered by prediction intervals. Hence, model parameter uncertainty 
may be less significant than the uncertainties caused by other sources for that sampling 
algorithm. In such a case, it is worth considering the uncertainty associated with model 
structure and input so that the total uncertainty became a wider prediction interval. On the 
other hand, parameter variability alone could be compensated by the other sources of 
uncertainty if in a wider uncertainty bound. 

 
Further research may be inspired by the present study, since the problem here is that 

different sampling algorithms produce different results, and there is no clear evidence to 
suggest that one algorithm is superior. A solution could be to form a committee of all model 
uncertainty and to develop a model averaging scheme to generate the final prediction interval. 
This would allow for the combination of different uncertainty methods, where incorporated 
knowledge uncertainty is an uncertain hydrologic domain.  
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At the same time, if enough computational resources were available, an obvious answer to 
the question about the sampling algorithms would be: do not use “economic” strategies trying 
to move towards the optimal model too quickly, or “structured” sampling like LHS, but apply 
a straightforward MC sampling from the prior parameters distributions, preferably from their 
joint distribution if available.  

9.3 Uncertainty prediction using machine learning techniques 

One of the issues related to uncertainty-based modelling is prediction of uncertainty (as 
opposed to its analysis). In this thesis, we explore the application of an approach (MLUE) to 
encapsulate the results of MC simulations using machine learning techniques. A machine 
learning model (we employed ANN, MT and LWR) were first trained on the data generated 
by MC simulations to encapsulate the relationship between the hydrometeorological variables 
and the characteristics of the model output probability distribution (prediction interval and 
pdf). Then trained models were used to estimate the prediction interval for the new input data. 
MC simulations were performed off-line, only to generate the data to train the model, while 
the trained models were employed to estimate the uncertainty (pdf quantiles) in real-time 
application without running the MC simulations further. 

 
This method is computationally efficient and can be used in real-time application when a 

large number of model runs are required, and it is applicable to hydrological models. First, 
we tested two separate machine learning models to estimate the two quantiles (5% and 95%) 
forming the 90% prediction interval. Furthermore, this method extended to predict several 
quantiles of the model outputs, that is, in fact, to estimate the probability distribution of the 
model output generated by MC simulations. The results demonstrate that the method 
performs quite well in estimating the CDF, resulting from the MC simulations. Several 
performance indicators and visual inspection show that machine learning models are 
reasonably accurate to approximate the uncertainty bounds. It is also observed that the 
uncertainty bounds estimated by ANN, MT and LWR are comparable. However, ANN is 
somewhat better than the other two models.  

 
The results demonstrate that the prediction of uncertainty with machine learning 

techniques generate interpretable uncertainty estimates and quite accurate, and this is an 
indicator that the presented method can be a valuable tool for the assessment of the 
uncertainty of various predictive models. Furthermore, it allow for assessing uncertainty of 
complex models in real time.  

 
Applicability of the MLUE approach in any sampling methods can be recommended, 

ensuring the compatibility of the models for multiple quantiles to achieve monotonicity of the 
resulting approximation of CDF, considering multiple sources of uncertainty, and testing the 
method on more complex models.  

 
Further studies should aim at testing the applicability of this approach with other sampling 

methods (e.g., MCMC, SCEMUA, DREAM, and others), ensuring compatibility of the 
models for multiple quantiles to achieve monotonicity of the resulting approximation of  
CDF, considering multiple sources of uncertainty, and testing the method on more complex 
models. Furthermore, future studies are intended to test other machine learning models, and 
to apply the presented methodology to other hydrological (process) models in various case 
studies.  
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9.4 Committee of predictive uncertainty models 

The two mentioned keywords, “committee” and “uncertainty”, come here together. 
Machine learning techniques use the results of MC sampling (or any other sampling scheme) 
to build machine learning models and these models able to predict uncertainty (quantiles) of 
the deterministic outputs from hydrological models (described in Chapter 6). We present the 
results of hydrological model output uncertainties predicted from a number of machine 
learning models (ANN, MT and LWR). Firstly, a combination of six different model input 
structures is tested to predict the uncertainty of streamflow simulation from a conceptual 
hydrological model (HBV for the Bagmati catchment in Nepal). Several input datasets used 
to train predictive uncertainty models resulted in a total of 18 models. Secondly, uncertainty 
outputs that were generated by seven sampling methods, namely MCS, GLUE, MCMC, 
SCEMUA, DREAM, PSO and ACCO, used to train models, led to several predictive 
uncertainty models. Three machine learning models predicting seven sampling outcome 
uncertainties resulted in 21 models, applied to estimate the uncertainty of streamflows 
simulation from a conceptual hydrological model in the Nzoia catchment in Kenya. 

 
It may not be fair to compare the results of various predictive uncertainty models. Model 
averaging overcomes the problem by conditioning, not on a single best model, but on the 
entire group of models. We present one of the methods for model averaging that can be 
employed to combine several predictive uncertainty models. BMA is proposed to form a 
committee of all predictive uncertainty models and to generate the final output. In two case 
studies, we demonstrate the BMA method for combining each quantile (5% and 95%), 
forming the lower and upper PIs (distance from the simulated output to the selected quantile). 
Several performance indicators and visual inspection show that the BMA of machine learning 
models is reasonably accurate.  The verification results show that both averaging methods 
(BMA and SA) generally improve the predictive performance, but BMA is somewhat better 
than SA. Future studies intend to test other model averaging methods (dynamic averaging) in 
various case studies. 

 

9.5 Uncertainty analysis of flood inundation models 

The description of flood processes and their spatial representation can be realized by 
integrating hydrological and hydraulic models. Properly describing the uncertainties is a 
challenge in the linked modelling system (integration of the SWAT (hydrological) and the 
SOBEK (hydrodynamic) model) because of the multiple sources of uncertainty.  

 
This study aimed at estimating uncertainty concerning potential flood inundation 

downstream of the Nzoia River, using 1D -2D SOBEK river model. MC simulations were 
used to run on coupled SWAT and SOBEK to generate multiple flood inundation extents and 
to produce probabilistic flood maps. Different levels of probability of flood inundation were 
identified in the form of percentage in confidence level, which is based on observed patterns 
of flood inundation obtained from remote sensing data. Uncertainty in flood inundation 
mapping was considered from sources of uncertainty from hydrological modelling. 

 
The coupling of hydrological and hydraulic models with remote sensing data can be 

established as a powerful approach in particular for flood forecasting. However, more tests 
are required for different ways of both model evaluation and remote sensing data processing 
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techniques, which can represent better system responses, especially in operational flood 
forecasting.  

 
Advances in computer technology (we used MATLAB toolboxes) have led to 

improvements in the overall simulation of coupled hydrological and hydraulic models and 
allow an estimate of uncertainty for flood inundation extent. It should be noted that it is still 
computationally demanding. 

 
Further development and application of the presented approach may lie in exploring 

various sources of uncertainty and their interactions, and the sensitivity of the resulting 
probabilistic maps to these sources. 

9.6 Final conclusion 

Overall, this thesis presents research efforts in: (i) committee modelling of hydrological 
models, (ii) hybrid committee hydrological models, (iii) influence of sampling strategies on 
prediction uncertainty of hydrological models, (iv) uncertainty prediction using machine 
learning techniques, (v) committee of predictive uncertainty models and (vi) flood inundation 
model and their uncertainty.  

 
The main objectives and research questions have been addressed and mainly answered; the 

main results have been published in peer-reviewed journals. At the same time, the future 
suggestions for subsequent research have been outlined as well.  

 
This study may allow for advancing the theory and practice of hydrological and integrated 

modelling. The developed software is made available for public use and can be used by the 
researchers and practitioners to advance the mentioned areas further.  

 
This study is a contribution to Hydroinformatics, which aims to connect various scientific 

disciplines: hydrological modelling, hydrodynamic modelling, multi-model averaging, 
machine learning and data driven models, hybrid hydrological models, uncertainty analysis 
and high performance computing.  
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SAMENVATTING 
Een hydrologisch model is een abstractie van complexe en niet-lineaire fysische processen 

met als doel om de niet-stationaire waterbeweging in stroomgebieden te kunnen voorspellen. 
Het succes van dergelijke voorspellingen hangt af van de gekozen modelstructuur, de 
gekozen parameters, en de kwaliteit van de gegevens die zijn gebruikt. Bij voorspellende 
(conceptuele hydrologische) modellen wordt over het algemeen aangenomen dat de gebruikte 
meetgegevens correct zijn, zodat modelvoorspellingen veelal worden gepresenteerd ten 
opzichte van de  meetgegevens waarbij kennis van het onderliggende proces wordt gebruikt 
om de optimale parameter instellingen te bepalen (kalibratie). Bij modelvoorspellingen moet 
echter ook rekening worden gehouden met onzekerheid omdat kalibratie en onzekerheid aan 
elkaar gerelateerd zijn. De betrouwbaarheid van modelresultaten kan niet worden bepaald 
zonder de onzekerheid te bepalen waarmee de hydrologische respons kan worden voorspeld.  

 
Vaak is het niet mogelijk voor een enkel hydrologisch model om alle hydrologische 

processen even goed te beschrijven, gelet op de vele verschillende processen die in 
verschillende mate kunnen plaats hebben. Een ‘meervoudige model benadering’ opent de 
mogelijkheid om deze beperkingen op te heffen en de voorspellende waarde van modellen te 
verbeteren. Een van de mogelijkheden betreft een zogenaamd “comité model” dat in dit 
proefschrift nader wordt onderzocht. Daarbij worden afzonderlijke modellen voor specifieke 
hydrologische processen in eenzelfde modelstruktuur samengevoegd tot een nieuw model dat 
optimaal gebruik maakt van de sterke eigenschappen die elkaars zwakke kanten 
compenseren. 

 
Speciale aandacht wordt gegeven aan de zogenaamde 'fuzzy comite" aanpak van de 

hydrologisch modelleren (Solomatine, 2006, Fenicia et al. (2007).  In deze aanpak eerst 
verschillende (stroomgebied) processen worden gekalibreerd teneinde een bepaald proces het 
best te beschrijven, en ze vervolgens samen te voegen door ze een bepaald (fuzzy) gewicht 
toe te kennen. Een dergelijk aanpak wordt beschreven door Kayastha et al. (2013) die 
verschillende typen gewichtsfactoren onderzocht om gespecialiseerde modellen te kunnen 
kalibreren, alsmede verschillende klassen ‘membership functions’ om deze modellen te 
kunnen combineren. De modellen zijn in eerste instantie opgezet om afzonderlijke 
stromingsaspecten te beschrijven, en vervolgens zodanig samengevoegd dat een betere en 
nauwkeuriger voorspelling wordt verkregen. In dit proefschrift worden dergelijke modellen 
aangeduid als “committee models”. De gewichten die aan de output van de verschillende 
gespecialiseerde modellen worden toegekend zijn gebaseerd op de geoptimaliseerde ‘fuzzy 
membership functions’. Het proces wordt in dit proefschrift uitgewerkt. Alle ‘committee 
modellen’ vertoonden een beter resultaat dan de enkele (optimale) hydrologische modellen in 
toepassingen voor het stroomgebied van de Alzette, Bagmati, Brue, en Leaf river. Het 
bepalen van de gewichten voor een comité-model kan worden gebaseerd op ondermeer de 
toestandsvariabelen (bodemvochtigheid, basis stroming, etc.), invoer grootheden (neerslag en 
verdamping) en uitvoerresultaten (gesimuleerde afvoeren) zoals hier beschreven, waarbij is 
gebleken dat deze gewichtsfactoren in de tijd kunnen variëren afhankelijk van de grootte van 
de stroming.  

 
De modellen die speciaal waren ontwikkeld voor de trage stromingen in het stroomgebied 

hadden een relatief grotere fout dan de modellen voor snelle stromingen. Een van de 
mogelijkheden om het comité-model te verbeteren is om een hybride vorm te ontwikkelen. In 
dit proefschrift is een comité-model samengesteld uit twee gespecialiseerde modellen (een 
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conceptueel model voor de snelle stromingen en een data-gedreven kunstmatig neuraal 
netwerk model voor de trage stromingen) waarbij een toegesneden combinatie methodiek 
(fuzzy membership function) is ontwikkeld. Het concept van hybride comité-modellen is 
uitgetest op de  Bagmati and Leaf stroomgebieden en de resultaten blijken het best van alle 
comité-modellen. 

 
Onzekerheidsanalyse kan worden gebruikt om de betrouwbaarheid en geloofwaardigheid 

van hydrologische modelvoorspellingen te verbeteren. Methoden gebaseerd op steekproeven 
worden veel gebruikt bij hydrologische modellen. Monte Carlo (MC) simulatie is een van de 
meest populaire steekproeftechnieken waarbij de uitvoer wordt gerelateerd aan de invoer 
en/of de parameterinstellingen op basis waarvan een kwantitatieve betrouwbaarheidsmaat 
wordt bepaald, die overigens sterk afhangt van de grootte van de steekproef. De Monte Carlo 
methode vereist een groot aantal modelsimulaties. Vandaar dat veel aandacht uitgaat naar het 
ontwikkelen van meer economische steekproeftechnieken waardoor ook met rekenintensieve 
modellen gewerkt kan worden (bijv. LHS, GLUE, MCMC, enz.). De theorie van Bayes kan 
worden gebruikt om de a-posteriori verdeling van parameters te berekenen op basis van 
‘generalized likelihood functions’ die verschillende gewichtsfactoren toekennen aan 
verschillende parameter combinaties of modellen. Een dergelijke aanpak zorgt voor een 
statistisch betrouwbare beschrijving van de waarschijnlijkheidsverdeling. 

 
In dit proefschrift worden de resultaten gepresenteerd van de onderzochte 

steekproeftechnieken (MCS, GLUE, MCMC, SCEMUA, DREAM, PSO, and ACCO) om de 
onzekerheid te bepalen van hydrologische modellen en hun resultaten te vergelijken op basis 
van onzekerheidsanalyse. Daarbij bleek dat de onzekerheidsanalyse sterk afhangt van de 
gebruikte steekproeftechniek. 

 
Het schatten van onzekerheid op basis van MC simulaties is een valide benadering voor 

meetgegevens uit het verleden, maar geldt niet noodzakelijkerwijs voor modelvoorspellingen 
in de toekomst. Om die te verkrijgen zou het dienstig zijn een economische manier te vinden 
om de onzekerheid te schatten van de hydrologische systemen. In dit proefschrift worden 
zelf-lerende computertechnieken (data-gedreven modelleren) gebruikt om de nauwkeurigheid 
te verbeteren van hydrologische voorspelsystemen. Deze technieken geven echter geen 
inzicht in de verdelingsfunctie  van de onzekerheid. Shrestha et al. (2009, 2013) gaven een 
aanzet om de verdelingsfunctie te schatten voor hydrologische modellen door karakteristieke 
invoergrootheden (neerslag-afvoerrelaties uit het verleden) als input te gebruiken voor 
zelflerende computer technieken om de bijbehorende onzekerheid in de uitvoergrootheden te 
bepalen. Een korte beschrijving van deze methode om de onzekerheid te bepalen is te vinden 
in dit proefschrift. De methodiek is getest voor de stroomgebieden van de Bagmati en Brue 
om de onzekerheidsbanden van de deterministische uitvoer van het conceptuele 
hydrologische HBV model te schatten. De resultaten laten zien dat dit een efficiënte methode 
is om onzekerheid te bepalen die bovendien nauwkeurig is. Deze methode is verder 
onderzocht aan de hand van verschillende steekproeftechnieken voor het bepalen van de 
onzekerheid in de uitvoer van hydrologische modellen. 

 
De resultaten van verschillende onzekerheidsvoorspellingen (verkregen met behulp van 

zelflerende computermodellen) kunnen verschillen vanwege: a) het gebruik van verschillende 
steekproeftechnieken voor verschillende gegevensbestanden; en b) het gebruik van 
verschillende invoerbestanden om de onzekerheid te bepalen. In dit proefschrift wordt een 
combinatie van modellen voorgesteld (die een comité vormen) die is toegepast om de 
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onzekerheid te schatten in de afvoeren van een conceptueel model in de stroomgebieden van 
de Bagmati en Nzoia. 

 
Een belangrijk toepassingsgebied van hydrologische modellen betreft het modelleren  van 

overstromingen. Kennis omtrent de mate van onzekerheid in de voorspellingen is belangrijk 
voor het nemen van beslissingen om de gevolgen van overstromingen te beperken. Daarbij is 
het zaak om alle informatie over rivierafvoeren te kennen (afvoerwaarden,  ruwheid 
coëfficiënten, dwarsdoorsneden, waterdiepten) maar ook de ligging van het gebied 
(topografie) en methoden om overstromingsgebieden goed in kaart te brengen. De afvoer is 
een belangrijke factor en daarom is kennis van het stromingsgedrag noodzakelijk voor het 
bepalen van de omvang van een overstroming. Een ingewikkeld overstromingsproces kan 
worden weergegeven door een reeks (cascade) van afzonderlijke (hydrologische en 
hydraulische) modellen gekoppeld aan een ruimtelijk landschapsmodel. Dit is echter 
gemakkelijker gezegd dan gedaan, want dit vereist beschikbaarheid van gegevens, 
rekenkracht en kennis van de interacties tussen de modellen. Daarbij dient rekening te 
worden gehouden met de verschillende bronnen van onzekerheid die leiden tot onzekere 
modelvoorspellingen. Een veelgebruikte techniek is de MC simulatie, die wordt gebruikt om 
een ensemble van deterministische modelsimulaties te genereren om daar vervolgens een 
waarde aan toe te kennen gebaseerd op overstromingswaarnemingen in het gebied. Daarbij 
worden veelal Remote Sensing waarnemingen gebruikt om op een deterministische manier 
modellen te kalibreren aan de hand van een enkele gebeurtenis. Beter inzicht in de 
onzekerheid zou kunnen worden verkregen door meerdere overstromingen te simuleren,  mits 
de rekenkracht daarvoor toelatend is. In dit proefschrift zijn het hydrologisch model SWAT 
en het hydrodynamisch model SOBEK geïntegreerd in een cascade-model om de onzekerheid 
in het overstromingsgebied te kwantificeren voor het stroomgebied van de Nzoia in Kenya. 
De modellen zijn ingebed in een high-performance (parallel computing) raamwerk en de 
uitvoer is gebruikt om de onzekerheid in de overstromingsberekeningen te bepalen en weer te 
geven in de vorm van een relatieve betrouwbaarheidsband. 

 
Kort samengevat beschrijft dit proefschrift de onderzoeksresultaten van: (i) comité-

modellen voor hydrologisch modelleren; (ii) hybride comité-modellen; (iii) het effect van 
steekproef- technieken op de voorspelling van onzekerheid in hydrologische modellen; (iv) 
het voorspellen van onzekerheid met behulp van zelflerende (computer) technieken; (v) het 
gebruik van comite-modellen om onzekerheid te voorspellen; en (vi) het schatten van 
onzekerheid in overstromingsmodellen. Dit onderzoek draagt bij aan het vakgebied van de 
hydroinformatica dat zich kenmerkt door verschillende wetenschappelijke disciplines bijeen 
te brengen: hydrologisch modelleren, hydrodynamisch modelleren, data-gedreven 
modelleren, het combineren van modellen, het gebruik van hybride modellen, 
onzekerheidsanalyse en high-performance computing. De resultaten laten zien dat deze 
methoden bruikbaar zijn in de praktijk. De ontwikkelde software is publiek beschikbaar voor 
verdere ontwikkeling in onderzoek en toepassing. 
 
 
Nagendra Kayastha 

Delft, Nederland 
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Due to the complexity of hydrological systems 
a single model may be unable to capture 
the full range of a catchment response and 
accurately predict the streamflows. A solution 
could be the in use of several specialized 
models organized in the so-called committees. 
Refining the committee approach is one of 
the important topics of this study, and it is 
demonstrated that it allows for increased 
predictive capability of models. 

Another topic addressed is the prediction 
of hydrologic models’ uncertainty. The 
traditionally used Monte Carlo method is 
based on the past data and cannot be directly 
used for estimation of model uncertainty for 
the future model runs during its operation. 
In this thesis the so-called MLUE (Machine 
Learning for Uncertainty Estimation) approach 
is further explored and extended; in it the 
machine learning techniques (e.g. neural 
networks) are used to encapsulate the results 
of Monte Carlo experiments in a predictive 
model that is able to estimate uncertainty for 
the future states of the modelled system.  

Furthermore, it is demonstrated that a 
committee of several predictive uncertainty 
models allows for an increase in prediction 
accuracy. Catchments in Nepal, UK and USA 
are used as case studies. 

In flood modelling hydrological models are 
typically used in combination with hydraulic 
models forming a cascade, often supported 
by geospatial processing. For uncertainty 
analysis of flood inundation modelling of the 
Nzoia catchment (Kenya) SWAT hydrological 
and SOBEK hydrodynamic models are 
integrated, and the parametric uncertainty of 
the hydrological model is allowed to propagate 
through the model cascade using Monte 
Carlo simulations, leading to the generation 
of the probabilistic flood maps. Due to the 
high computational complexity of these 
experiments, the high performance (cluster) 
computing framework is designed and used.

This study refined a number of hydroinformatics 
techniques, thus enhancing uncertainty-based 
hydrological and integrated modelling. 
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