
The Impact of the Retrieval Stage in Interpolation-based Re-Ranking

Dan-Cristian Ciacu1

Supervisor(s): Avishek Anand1, Jurek Leonhardt1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Dan-Cristian Ciacu
Final project course: CSE3000 Research Project
Thesis committee: Avishek Anand, Jurek Leonhardt, Alan Hanjalic

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Efficient and effective information retrieval (IR)
systems are needed to fetch a large number of rel-
evant documents and present them based on their
relevance to the input queries. Previous work
reported the use of sparse and dense retrievers.
Sparse retrievers offer low latency but suffer from
term mismatch issues, while dense retrievers im-
prove performance at the cost of higher process-
ing times. The literature proposed Fast-Forward
Indexes, an interpolation-based re-ranking frame-
work that leverages the benefits of both sparse and
dense retrievers.
Although a lot of work was done in the field, most
studies evaluate the performance of the proposed
models only on the MS Marco dataset, neglecting
other datasets. This study extends previous work
by exploring how different sparse retrievers, em-
ploying no-encoder, uni-encoder, and bi-encoder
architectures, perform in an interpolation-based re-
ranking setting on datasets originating from vari-
ous domains. Results show that bi-encoder-based
retrievers outperform the other sparse retrievers in
terms of recall but with a substantial increase in la-
tency compared to simpler retrievers, which gener-
ally showed good performance. Further, when the
retrievers were used in an interpolation-based re-
ranking setting, they performed similarly in terms
of ranking quality.

1 Introduction
The primary goal of an Information Retrieval (IR) system
is to retrieve documents (e.g. websites, threads) relevant to
the user’s request. Given that multiple documents could be
found suitable, these are usually ranked based on their simi-
larity to the input query. The ad-hoc setting (i.e. documents
have no specific structure) desires (i) a fast retrieval and (ii)
a large fraction of the retrieved documents are relevant to the
query. In addition, some studies [1, 2, 3] suggest a two-stage
retrieval approach (known as Retrieve and Re-rank), where
the retrieved documents get re-ranked using a more expen-
sive method.

Retrieval models that stored documents in an inverted in-
dex structure became popular [4] due to their remarkable per-
formance and ability to prune a large number of irrelevant
documents [2]. This method can be associated with sparse re-
trieval, due to the sparse nature of the inverted indexes. One
of the first models was TF-IDF, where the authors introduced
the concept of document relevancy based on term use, instead
of term meaning [5]. Later, BM25 was introduced, based on
the probabilistic retrieval framework [6]. Currently, BM25
is considered a baseline in the retrieval task, due to its effi-
ciency and simplicity [7]. Additionally, there was a consid-
erable effort to adapt BM25 to different use cases, such as
structured search [8] or semantic search [9]. However, the
traditional retrieval/weighting models suffer from the vocab-
ulary mismatch problem, in which the relevant results might

not contain the terms found in the query, thereby remaining
unselected.

To alleviate that, several approaches were suggested.
Pseudo Relevance Feedback (PRF) was introduced to miti-
gate it and it expands the user’s query using terms from the
top-k ranked documents retrieved in a first pass. Yet, stud-
ies show that the expansion terms are often unrelated to the
query, reducing the retrieval quality [10]. As an alterna-
tive, neural approaches were suggested [11, 12]. The key
aspect of these approaches consists of encoding documents
and queries into vector representations. In the literature,
these models are usually referred to as dense models. Studies
showed that dense models perform significantly better than
sparse models but with increased latency. The most common
approaches employ bi-encoder-based models, where queries
and documents are encoded independently, allowing for pre-
computing the document embeddings. Nonetheless, search-
ing in a dense space using a standard approach, such as kNN,
is still non-feasible for ad-hoc retrieval due to the increased
latency. Fortunately, recent studies propose ANN (approxi-
mate nearest neighbor) search [13, 14] which promises simi-
lar performance with reduced latency.

Considering the benefits of both sparse and dense models,
recent studies [15, 16, 17, 18] propose neural term-weighting
approaches that store weights in inverted indexes (known
as learnt sparse retrievers). These methods show impres-
sive results for the retrieval task. Yet, the latency is reason-
ably similar to traditional sparse retrievers (e.g. BM25) for
uni-encoder term-weighting models, while in the bi-encoder-
based models, the latency is poorer [15].

Following both different retrieval approaches and the goal
of ad-hoc retrieval, Fast-Forward Indexes [2] was introduced.
Fast-Forward Indexes is a Retrieve and Re-Rank framework
that employs an interpolation-based re-ranking approach.
The Retrieve and Re-Rank framework usually employs a sim-
ple retrieval model (e.g. sparse retriever) to fetch documents
fast (known as the first-stage retrieval) and the retrieved docu-
ments are fed to a more expensive model (e.g. dense model).
Interpolation-based Re-Ranking consists of re-ranking docu-
ments based on an interpolation of the scores from the two
stages. Furthermore, Fast-Forward Indexes tries to (i) im-
prove the ranking of long documents, without decreasing per-
formance and (ii) reduce query processing times. The authors
achieved that by introducing two novel techniques for index
compression and early stopping during searching.

It is important to note that most of the extensive efforts
in developing retrieval models overlooked diversity. Most
proposed retrieval systems were only evaluated on the MS
MARCO corpus [19], using different sets of queries (e.g.
TREC-DL-2019 [20] or TREC-DL-2020 [21]). Further, in
the context of Fast-Forward Indexes, Leonhardt et al. evalu-
ated the efficiency of their proposed retrieve and re-rank ap-
proach on MS MARCO and they only considered BM25 and
SPLADE [17] (a neural sparse retriever) as retrieval models.
Nonetheless, exploring other alternatives could lead to a more
meaningful understanding of the importance of the retrieval
stage in Fast-Forward Indexes.
This paper will answer the following question:

RQ What is the impact of the retrieval stage in the context

1

of Fast-Forward Indexes?
To answer the main question (RQ) in a more structured way,
the following research sub-questions are proposed:

SQ 1 What is the impact of the retrieval stage on the per-
formance of Fast-Forward Indexes?

SQ 2 How does the selected retrieval model affect the la-
tency of Fast-Forward Indexes?

The contribution. This paper will explore both traditional
sparse retrievers (TF-IDF, BM25) and neural sparse retriev-
ers, such as DeepCT or SPLADE on various datasets for tasks
including question-answering, and entity retrieval. Finally,
this work shows that SPLADE, a bi-encoder sparse retriever,
outperforms other sparse retrievers in terms of recall. Addi-
tionally, traditional sparse retrievers generally provide satis-
factory results with significantly lower processing latency.

The rest of the paper will be structured as follows. Sec-
tion 2 provides the necessary background information on the
topics discussed in the next sections. Then, section 3 outlines
the methodology. Results and their analysis are discussed in
sections 4, 5, and 6. Lastly, section 7 presents the summary
and future work.

2 Background
This section will discuss the commonly used concepts and
techniques for a better understanding of the topic.

2.1 Retrieve and Re-rank
Retrieval models are responsible for fetching documents re-
lated to a given query. Simultaneously, they apply a scoring
algorithm to each retrieved document to enable a ranking of
the documents. Generally, retrieval models follow one of the
two architectures: sparse models or dense models.

The re-ranking phase was introduced as a supplementary
step to the retrieval phase and it aims to improve the rank-
ings of relevant documents without the need to consider the
entire search space [1]. Creating a system leveraging both
retrieval and re-ranking phases proved beneficial for the ad-
hoc retrieval task, as it showed notable improvements over
other complex neural approaches [1, 2]. Following this
idea, interpolation-based re-ranking was introduced, where
the scores from both retrieval and re-ranking phases are con-
sidered during re-ranking [2].

2.2 Sparse Retrieval
Sparse retrievers became popular in the IR world because
they use an inverted index structure to store term-specific
statistics, enabling faster retrievals and lower memory us-
age. The sparse retrieval approaches can be divided into two
main categories. First, the traditional term-weighting mod-
els, where the weights of each term are computed based on
predefined mathematical formulas and using basic document
statistics. Second, exploiting neural networks to (i) perform
term-weighting and (ii) expand documents and queries, aim-
ing to alleviate the vocabulary mismatch problem.

Traditional term-weighting
The first retrieval systems were based on simple statistics
from a given query and a set of documents. The most used

Table 1: Example of Document Expansion Using DocT5Query

Document: Inborn errors of bile acid synthesis can pro-
duce life-threatening cholestatic liver disease
(which usually presents in infancy) and pro-
gressive neurological disease presenting later
in childhood or in adult life.[...]

Generated
query:

what type of disease do inborn errors of bile
acid synthesis cause

Target
query:

is autoimmune hepatitis a bile acid synthesis
disorder

statistics were the term-frequency and the inverse document-
frequency. Term-frequency (also known as ”Tf”) represents
the relative number of occurrences of a term in a document,
as illustrated in Equation 1. On the other hand, the inverse
document-frequency (”Idf”) is the logarithmically scaled in-
verse fraction of the number of documents that contain a spe-
cific term (Equation 2).

tf(t, d) =
ft,d∑

t′∈d ft′,d
(1)

idf(t,D) = log
N

nt
(2)

The terms used in the formulas are: ft,d represents the fre-
quency of term t in document d,

∑
t′∈d ft′,d is the total num-

ber of terms in document d, N is the total number of docu-
ments available in the corpus, nt is the number of documents
containing at least one occurrence of term t.

Neural term-weighting
For neural term-weighting, also known as learnt term-
weighting, two fundamental architectures exist. The first
includes separate encoders (i.e. neural networks) for doc-
uments and queries, known as bi-encoders. A notable ad-
vantage of the bi-encoder architecture is that it allows for
pre-computing the document representations. Therefore, at
search time, only the query needs to be encoded, allowing
for faster retrieval. For example, SparTerm [22] uses a pre-
trained language model (PLM) to convert frequency-based
details to a term importance distribution across the entire vo-
cabulary space.

Uni-encoders use only one encoder and it is used for ei-
ther documents or queries. DeepCT [16] is a well-known ap-
proach that uses a deep-learning model to learn contextual-
ized term weights from a passage during document indexing.

Given their enhanced performance compared to the tradi-
tional term-weighting approaches, the neural-based models
still face the term mismatch problem [15].

Document & Query Expansion
Document expansion is a technique to augment the original
document with additional terms. The main objective of the
method is to trigger more matching documents during search,
in an attempt to alleviate the term mismatch problem. Fur-
thermore, query expansion works similarly.

A popular document expansion approach is
”DocT5Query” [23]. This approach generates a series

2

of potential questions that a document could answer, which
are appended to the original document. The questions are
generated using the T5 sequence-to-sequence transformer
[24], which processes the document’s terms and produces
the corresponding questions. The main advantage of the
document expansion techniques is that they do not add
additional overhead to the query processing times, since the
expansion is performed offline, during indexing. Table 1
shows an example of a query produced by the model.

Regarding the query expansion procedures, ”TILDEv2”
[25] is a state-of-the-art model that promises comparable per-
formance to the more complex models, such as BERT [26] or
ANCE [27], but with reduced latency. The main idea behind
this approach is to use a neural model to learn contextualized
information about the passages and expand the queries.

Classical Ranking Functions
Retrieving relevant documents is important, but presenting
the most relevant ones first is crucial. To achieve that, ranking
(or scoring) functions are used to generate scores that deter-
mine relevancy. TF-IDF [5] is one of the early scoring models
to be used in the sparse retrieval task. It is computed as the
product of ”Tf” and ”Idf”. Similarly, BM25 is another scor-
ing model that still leverages ”Tf” and ”Idf”. It incorporates
document length normalization and additional parameters to
improve the scoring. Another approach is the Query Likeli-
hood model [28], which represents each document as a lan-
guage model, allowing for ranking based on the likelihood of
the document generating the query.

2.3 Dense Retrieval
Dense retrieval is an alternative to sparse retrieval where neu-
ral networks are employed to translate documents and queries
to feature vectors (also known as dense vectors).

The main architecture for dense retrievers is based on dual-
encoders, often referred to as bi-encoders. This structure pro-
poses an independent encoding for queries and documents,
allowing for pre-computing document representations during
indexing. Yet, the underlying encoders could either be iden-
tical (known as Siamese encoder) or different.

Recent studies [29, 30, 31] in the direction of dense models
typically shared a common characteristic. They all build on
top of BERT [26] to further improve the performance. BERT
(Bidirectional Encoder Representations from Transformers)
is a Language Model (LM) that leverages transformers [32],
which is a deep-learning model that uses self-attention to
capture relationships between all terms and assigns attention
weights to the terms based on the relevance. BERT stands out
by being designed to read in both directions at the same time,
unlike other models where reading is uni-directional [33].

Given that feature vectors cannot be stored in an inverted
index structure, dense retrievers come with the problem of re-
trieving relevant documents due to the inherent complexity of
searching through a set of embeddings. One first solution is
to apply kNN (k-nearest neighbors) search. Even though its
results are accurate, its time complexity grows proportionally
with both the number of documents and the number of di-
mensions, making it unfeasible for the ad-hoc retrieval task.
An alternative would be to use ANN (approximate nearest

neighbors) search to retrieve the candidates. This method is
affected by the inability to guarantee the optimal solution, yet
it provides comparable results in a reasonable amount of time.

2.4 Fast-Forward Indexes
Fast-forward Indexes emerged as a Retrieve and Re-rank ap-
proach with various improvements over the standard proce-
dure. The goal of the authors was two-fold: (1) to rank long
documents with increased accuracy and (2) to improve query
processing times [2].

In Fast-Forward Indexes, the retrieval is performed
by a sparse model, and the initial sparse score for a
(query, document) pair is denoted by ϕS(q, d). The re-
ranking phase involves a dense model to achieve a more
meaningful relation between a query and the retrieved doc-
uments, and the dense score is expressed as ϕD(q, d). For
computing the final rankings, Leonhardt et al. [2] used an
interpolation-based re-ranking, as it was proved that includ-
ing the sparse scores (ϕS) in the re-ranking stage could be
beneficial [34]. The interpolation is regulated by the hyper-
parameter α closed in the unit interval [0, 1] (as shown in
Equation 3).

ϕ(q, d) = α · ϕS(q, d) + (1− α) · ϕD(q, d) (3)
To reduce the query processing times, Leonhardt et al. [2]

propose two innovative concepts for computing the dense
scores. First, neural models usually have an upper limit on
the input’s length, requiring long documents to be split. The
split causes the creation of multiple feature vectors, increas-
ing the index size and search time considerably. To alleviate
that, Sequential Coalescing for index compression was intro-
duced. It consists of computing a similarity score between
two consecutive passages, and if the similarity score is above
a threshold, the passages are grouped.

Second, an early stopping technique was introduced. It is
known that retrieving more documents than the final num-
ber of documents (K) improves performance. Yet, this im-
plies an increased number of look-ups. To overcome that, the
Leonhardt et al. [2] propose stopping the search when the es-
timated current interpolated score (using the maximum dense
score found so far) is worse than the minimum interpolated
score from the top-K documents.

3 Methodology
This section presents the methodology used to answer the
research questions. This exploratory work compares the
performance of different sparse retrievers when used in an
interpolation-based re-ranking environment. The sparse re-
trievers employ both traditional term-weighting (explained in
subsection 3.1) and neural term-weighting (discussed in sub-
section 3.2). In subsection 3.3, the datasets used for com-
parison are introduced, and the metrics used to measure the
performance of each retriever are defined. Lastly, hyperpa-
rameter optimization and the implementation of the selected
models are discussed in subsection 3.5 and in subsection 3.6,
respectively.

The dense retrievers were excluded from the evaluations
for two reasons. Firstly, Fast-Forward Indexes were intro-
duced as a Retrieve and Re-rank approach, where the retrieval

3

Table 2: Example of Query Expansion using SPLADE and Word-
Piece Tokenization. The original query is expanded (new terms are
bold) into multiple terms with associated relevance scores. The ‘##‘
prefix indicates subword tokens generated by the WordPiece tok-
enizer

Original query: 0 dimensional biomaterials show induc-
tive properties

New query: Dimensional (187.1), Properties
(167.8), ##uc (165.1), Bio (158.1), Ind
(155.9), ##mate (155.2), 0 (152.7),
##rial (140.3), Show (134.8), Zero
(133.0), ##tive (120.1), Dimensions
(104.7), Property (100.8), Characteris-
tics (67.2)

is performed using a term-frequency-based retriever [2]. Sec-
ondly, the authors of Fast-Forward Indexes evaluated the per-
formance of two dense retrievers (TCT-ColBERT and ANCE)
against the interpolation-based retrieve and re-rank approach,
and the dense retrievers performed substantially worse [2].

3.1 Traditional term-weighting
TF-IDF & BM25
TF-IDF and BM25 are both among the fundamental tradi-
tional sparse retrievers. BM25’s scoring function is given by
the following formula:

BM25(q, d) =
∑

qi:tf(qi,d)>0

hBM25
q (q, t) · hBM25

d (d, t)

hBM25
q (q, t) =

idf(t) · tft,q · (k1 + 1)

tft,q + k1
(4)

hBM25
d (d, t) =

tft,d · (k3 + 1)

tft,d + k3 · (1− b+ b · |d|
avgdl)

where: IDF (qi) is the inverse document frequency of the
query term qi, f(qi, d) is the term frequency of qi in the doc-
ument d, |d| is the length of the document d, avgdl is the
average document length in the collection, and k1, k3, b are
free parameters.

3.2 Neural term-weighting
DeepCT. Translated to Deep Contextualized Term Weight-
ing, DeepCT is one of the first retrieval models that tackle
the problem of integrating context in the term weights, while
still storing them in an inverted index approach [16]. The au-
thors propose using BERT to extract contextual features of
each term [16]. At the end, the BERT transformer outputs
an embedding for each term which reflects the learned con-
textualized information. To make the resulting embeddings
compatible with the standard ranking functions, DeepCT con-
verts each contextualized feature vector to a term impor-
tance score (i.e. a scalar weight), which then serves as the
weight for each term [16]. An interesting aspect of DeepCT
is its query-independent attribute (also referred to as a uni-
encoder), meaning that the content of the documents can be
computed during indexing, while the queries are not encoded.

Table 3: Representative query for each dataset

FiQA Can I pay off my credit card balance to free
up available credit?

NFCorpus Using Diet to Treat Asthma and Eczema
SciFact TMEM27 is a marker for beta cells
Quora Why creativity is important?
HotpotQA Who was born first, Bryan Callen or Bren-

dan Schaub?
FEVER Roman Atwood is a content creator
DBPedia Who founded Intel?
MS
MARCO

what is a virtual interface

DeepImpact. Building on the idea of computing contex-
tualized term weights in an uni-encoder setting, similar to
DeepCT, DeepImpact [18] leverages document expansion to
further improve retrieval performance. The authors suggested
a two-stage approach, also known as Inject and Re-write.
The Inject phase makes use of DocT5Query [23] to generate
queries that the document could answer. The rationale behind
this idea was to expand the document with terms that were not
originally included. The latter stage, Re-write, is responsi-
ble for recomputing the weights of both original and injected
terms. To achieve that, it feeds all terms of the document to
BERT which generates an embedding for each input token
[18]. Then, the embeddings corresponding to the first occur-
rence of each term are processed by the Impact Scores En-
coder, a two-layer MLP (multi-layer perceptron) with ReLU
activations [18], which determines the final weights assigned
to each term. DeepImpact stands out by incorporating a docu-
ment expansion technique in a shot to alleviate the vocabulary
mismatch. The evaluations show a substantial improvement
on MS Marco over DeepCT, and additionally, DeepImpact
outperforms methods relying solely on document expansion,
proving that term weighting could be beneficial [18].

SPLADE. A neural sparse retriever that learns term rele-
vance for both documents and queries [17]. One particular-
ity of SPLADE is that it predicts the relevance of the terms
in BERT WordPiece vocabulary. More explicitly, the BERT
WordPiece vocabulary is a set of 30522 sub-words, known as
”wordpieces” [35] and its objective is to restrict the number
of unique tokens in a Language Model environment. Further,
SPLADE uses the WordPiece tokenizer to convert the origi-
nal input to ”wordpieces”, which then allows for computing a
relevance score for each entry in the BERT vocabulary. This
can be seen as a document or query expansion technique since
the relevance scores are calculated for the terms in the BERT
vocabulary, indicating that the input is augmented by the rele-
vant terms from the vocabulary, along with their weights. An
example of query augmentation using SPLADE is presented
in Table 2. Additionally, the authors propose a sparsity reg-
ulator, responsible for reducing the number of floating-point
operations required to compute the score of a document, re-
ducing the search time [17].

4

uniCOIL. Sharing the dual-encoder architecture with
SPLADE, unified Contextualized Inverted Lists (uniCOIL)
was introduced to push the performance boundaries of neural
sparse retrievers. It is important to note that uniCOIL is based
on COIL [36], as uniCOIL only brings a small change to the
model. Similar to the previous approaches, COIL leverages
BERT to create contextual feature vectors of 768 dimensions
for each token of the input. Notably, the authors proposed
using a mapping matrix to reduce the vector dimensionality
to only 32 dimensions, as they discovered that the reduction
does not affect performance [36].

The newer model, suggests reducing the dimensionality
even further, bringing the token dimension to one, and ap-
plying a ReLU function to the token values to ensure they
remain positive for all tokens [37]. Further, the encoding
process happens for both queries and documents, yet docu-
ments are processed during indexing. The final score for a
(query, document) pair is calculated by summing the maxi-
mum dot products of embeddings for each shared token.

3.3 Datasets
The classification of the datasets is inspired by BeIR
(Benchmarking-IR), an evaluation benchmark containing
public datasets from diverse domains [38]. Furthermore, to
get a more practical understanding of the differences be-
tween the chosen datasets, Table 3 presents a typical query
for each dataset. To experiment with the following datasets,
IR-Datasets [39] was used.

Question Answering is the task of retrieving documents
that might answer the question. It can be divided into two
sections. First, there is the general question answering (e.g.
HotpotQA or Quora), where the corpus contains documents
touching various fields. On the other hand, field-specific
question answering focuses the attention on an explicit area.
FiQA - 2018 (Financial Question Answering) serves the gap
in assessing the ability of models to capture the unique se-
mantic characteristics of the financial sector [40]. The cor-
pus was composed by crawling the threads opened in the In-
vestment section of StackExchange between 2009 and 2017.
HotpotQA provides a set of over 5,000,000 Wikipedia-based
documents. The distinctive aspect of HotpotQA is the na-
ture of the queries, as they require reasoning over multiple
paragraphs of the documents to find the correct answer [41].
Quora dataset was initially released by Quora as part of an
online challenge [42] to develop systems able to detect du-
plicate questions. This dataset contains 500,000+ documents
from various domains, collected from Quora posts.

The bio-medical datasets underline more complex docu-
ments and queries using medical terms. NFCorpus was re-
leased in an effort to mitigate the discrepancy between user
queries and medical information [43]. Further, it provides
around 3,600 documents crawled from NutritionFacts.org, a
website where doctors translate medical research papers to
blog posts for the general public.

The entity retrieval domain focuses on retrieving docu-
ments relevant to the entity mentioned in the query [38].
For example, for the query ”Who founded Intel?”, a possi-
ble retrieved document provides information about Intel, the
chip manufacturer. DBPedia-Entity is considered the stan-

dard entity retrieval dataset [44]. It contains 4.6 million doc-
uments collected from DBpedia, which contains Wikipedia
pages stored in a knowledge graph structure.

The fact checking category is responsible for verify-
ing a claim against a large collection of sources [38].
FEVER (Fact Extraction and Verification) is a fact check-
ing dataset that includes 5.4 million documents gathered
from Wikipedia. Moreover, the queries were extracted from
Wikipedia pages and altered without any knowledge of the
domain [45]. SciFact differs from FEVER as it is focused
on scientific entity retrieval. The documents were retrieved
from a large corpus of scientific articles encompassing dif-
ferent domains, while the queries were composed by experts
[46].

Lastly, MS MARCO Passage [19] was selected for the
passage retrieval task. MS MARCO consists of 8.8M doc-
uments gathered from Bing’s results. The dataset includes
around 1M real-world queries, divided across different sets.

3.4 Metrics
To measure the effectiveness of the selected retrieval mod-
els, recall (R), mean average precision (MAP), mean recipro-
cal rank (MRR), and normalized discounted cumulative gain
(nDCG) were used. All mentioned metrics are defined at
a depth K, illustrating the number of top recommendations
considered. Recall at depth K (noted as Recall@K) is defined
as

∑K
i=1 reli
N , where i is the position in the list of retrieved doc-

uments, N is the total number of relevant documents for the
current query and reli is a binary variable illustrating whether
i-th document is relevant for the given query or not. MAP
is defined as 1

r

∑k
i=1 precision@i · reli, where r is the to-

tal number of relevant documents for the current query and
precision@i =

∑i
i=1 reli

i , illustrating the fraction of rele-
vant documents in the top-i positions. Further, MRR is de-
fined as 1

|Q|
∑|Q|

i=1
1

ranki
, where |Q| is the number of queries,

and ranki is the position of the first relevant document for
query i. Lastly, nDCG is interested in the ranking quality
compared to an ideal ordering. It uses DCG@K, which is
defined as

∑K
i=1

2reli−1
log2(i+1) , and reli is the relevance level of

i-th document. Therefore, nDCG is defined as the ratio be-
tween DCG@K and the ideal DCG@K, obtained when the
list of retrieved documents is sorted in decreasing order by
relevance. To compute the metrics, the functionality offered
by PyTerrier [47] was used.

3.5 Hyperparameter Optimization
To optimize the hyperparameter α for the interpolation-based
re-ranking setting, an exhaustive grid search was performed.
Eight possible alphas (0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.5,
0.7) were applied during the re-ranking process to evaluate
their impact on the validation sets of each selected dataset.
For datasets with over 1000 queries, a random sample of 500
queries was used to reduce running times.

3.6 Models Implementation
The BM25 model was implemented using the PyTerrier li-
brary [47]. The library uses a formula identical to the one

5

Table 4: Performance in a retrieval-only setting. Comparison of R@1000 and nDCG@10 across various retrieval models on multiple
datasets. For each dataset, the best model in terms of R@1000 is marked bold and the best model in terms of nDCG@10 is underlined.
Statistical significant improvements using two-paired tests (p < 0.05) are indicated using superscripts.

BM-251 TF-IDF2 DeepCT3 DeepImpact4 uniCOIL5 SPLADE6

R@1000 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10

FiQA 0.7744,5 0.253 0.7694,5 0.254 0.7734,5 0.265 0.747 0.251 0.733 0.2751,2,4 0.8421-5 0.3461-5

NFCorpus 0.3613,4 0.322 0.3633,4 0.323 0.3514 0.320 0.325 0.313 0.4451-4 0.3254 0.5791-5 0.3401-5

Scifact 0.970 0.672 0.970 0.666 0.970 0.667 0.956 0.643 0.968 0.6724 0.9901-5 0.6784

Quora 0.9933-5 0.7683-5 0.9923-5 0.7683-5 0.9904,5 0.7504,5 0.981 0.6545 0.9844 0.619 0.9991-5 0.8321-5

HotpotQA 0.8522,3 0.5132 0.8503 0.512 0.840 0.5761,2 0.8821-3,5 0.6471-3,5 0.8503 0.6221-3 0.8951-5 0.6781-5

DBPedia 0.6604,5 0.274 0.6604,5 0.274 0.6694,5 0.3191,2 0.627 0.3341,2 0.611 0.3241,2 0.7831-5 0.4241-5

Fever 0.925 0.427 0.925 0.428 0.9461,2 0.5851,2 0.9671-3 0.7721-3,6 0.9691-4 0.8031-4,6 0.9721-5 0.7631-3

MS MARCO Passage 0.736 0.480 0.736 0.478 0.744 0.5301,2 0.729 0.6661-3 0.737 0.6311-3 0.8301-5 0.7291-5

presented in Equation 4. Regarding the free parameters, the
values suggested by the library were used: k1 = 1.2, k3 = 8,
b = 0.75. Similarly, for TF-IDF, the implementation of-
fered by PyTerrier [47] was used, which follows the standard
formula. For SPLADE [17], the implementation offered by
PyTerrier SPLADE [48] was used in the evaluations. This
library uses the splade-cocondenser-ensembledistil check-
point, which was trained on the MS MARCO Passage dataset.
Furthermore, this pre-trained model implements the stan-
dard SPLADE, but with a more advanced training technique
[49]. For DeepCT, the implementation provided by PyTerrier
DeepCT [50] was used and it employs the exact model from
the DeepCT paper [16]. To evaluate uniCOIL [37] and Deep-
Impact [18], the SPRINT framework [51] was used, along
with the pre-trained models suggested by SPRINT. Lastly, for
the re-ranking stage of Fast-Forward Indexes, a pre-trained
version of TCT-ColBERT [52], which was trained on the MS
MARCO Passage dataset, was used.

The document expansion, required by DeepImpact, was
performed using the base ”docT5query” model [53], trained
on the MS MARCO Passage dataset. Additionally, for each
dataset, three queries were generated per document, as in-
creasing the number of queries would not produce any addi-
tional meaningful terms.

4 Results
This section presents the results of the evaluations introduced
in the methodology.

4.1 RQ1: What is the impact of the retrieval stage
on the performance of Fast-Forward Indexes?

The recall at the top 1000 retrieved documents and the Nor-
malized Discounted Cumulative Gain on all selected retrieval
models are reported in Table 4. Furthermore, Table 5 re-
ports the ranking quality of pairing each selected retrieval
model with TCT-Colbert in an interpolation-based re-ranking
setting. The first part of Table 5 reports MAP@1000 and
nDCG@10 on some datasets, while the second presents
MRR@10 and nDCG@10 on the remaining datasets. The
split is necessary as some datasets have more relevant docu-
ments per query, making the average precision a more suit-
able metric. In contrast, other datasets have few relevant doc-
uments per query, making the reciprocal rank a more appro-
priate metric. Furthermore, it is important to acknowledge

that the recall scores remain unchanged from the retrieval
stage, as only the top 1000 retrieved documents are re-ranked
and displayed, while the others are discarded. The key find-
ings are split between retrieval-only performance and the per-
formance in an interpolation-based re-ranking setting.

Retrieval-only performance. First, the traditional term-
weighting models, BM25 and TF-IDF, show similar perfor-
mance in terms of recall, with BM25 achieving a slightly
better recall on certain datasets. Interestingly, DeepCT
and DeepImpact, two neural sparse retrievers that share the
idea of learning contextualized information from the terms,
achieve comparable recall scores to the simpler methods.
However, the additional document expansion technique em-
ployed by DeepImpact does not improve the recall; in fact,
it decreases it on most datasets, except on HotpotQA. The
reduced performance might be caused by the document ex-
pansion model’s training on MS MARCO Passage, which,
while beneficial for in-domain usage (i.e. trained and used on
the same corpus), fails to provide meaningful additions in an
out-of-domain environment. The boost in recall for Deep-
Impact on HotpotQA supports this claim. HotpotQA and
MS MARCO were both intended for the general question-
answering task, suggesting a similar structure of the datasets.
The two bi-encoder-based retrievers, SPLADE and uniCOIL,
showed mixed results in terms of recall. SPLADE presented
outstanding performance compared to all other models. On
the NFCorpus dataset, SPLADE retrieved 59% and 64%
more relevant documents in the top 1000 compared to BM25
and DeepCT, respectively. On the other hand, uniCOIL per-
formed similarly to or worse than traditional retrieval models
on most datasets, still it showed better recall on NFCorpus.

In the retrieval-only setting, bi-encoder-based retrievers
(i.e. uniCOIL and SPLADE) show increased performance
in ranking quality. SPLADE outperformed all other retrieval
models in nDCG@10 and its performance generalized well
over multiple domains, as illustrated in Table 4. The other bi-
encoder approach, uniCOIL, surpassed the traditional sparse
retrievers on half of the considered datasets, while on some
datasets it performed comparably to them. Yet, both uniCOIL
and DeepImpact showed significantly worse ranking quality
for Quora. Furthermore, all encoder-based retrieval models
showed better ranking performance than the no-encoder re-
trievers on the MS MARCO Passage dataset. Lastly, it can
be observed that there are three datasets (i.e. SciFact, Quora,

6

Table 5: Ranking performance in interpolation-based re-ranking setting, with MAP and nDCG@10 reported across various datasets and
retrieval models. The initial retrieval was performed using the specified retrieval model, and re-ranking was done with TCT-ColBERT.
In the table’s first section, the best model in terms of MAP is marked in bold. In the second section, the top model in terms of MRR@10
is highlighted in bold. In the entire table, the best model in terms of nDCG@10 is underlined. Statistical significant improvements using
two-paired tests (p < 0.05) are indicated using superscripts.

BM-251 TF-IDF2 DeepCT3 DeepImpact4 uniCOIL5 SPLADE6

MAP nDCG@10 MAP nDCG@10 MAP nDCG@10 MAP nDCG@10 MAP nDCG@10 MAP nDCG@10

FiQA 0.265 0.316 0.263 0.314 0.264 0.316 0.258 0.310 0.263 0.314 0.3001-5 0.3561-5

NFCorpus 0.1573,4 0.335 0.1563,4 0.334 0.152 0.329 0.149 0.325 0.1622-4 0.332 0.1721-5 0.3453-5

HotpotQA 0.552 0.637 0.553 0.637 0.553 0.635 0.6111-3,5,6 0.6901-3,5,6 0.5841-3 0.6691-3 0.6021-3,5 0.6841-3,5

DBPedia 0.2793,5 0.3993,5 0.277 0.3953 0.267 0.369 0.2775 0.3983,5 0.264 0.380 0.3181-5 0.4291-5

MSMarco Passage 0.435 0.684 0.438 0.692 0.444 0.695 0.454 0.722 0.436 0.694 0.504 0.7355

BM-251 TF-IDF2 DeepCT3 DeepImpact4 uniCOIL5 SPLADE6

MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10

SciFact 0.662 0.698 0.658 0.691 0.656 0.689 0.656 0.674 0.661 0.691 0.649 0.681
Quora 0.8363-5 0.8453-5 0.8381,3-5 0.8461,3-5 0.7994,5 0.8124,5 0.7665 0.7815 0.758 0.772 0.8491-5 0.8571-5

Fever 0.681 0.700 0.682 0.7011 0.7221,2 0.7351,2 0.8191-3,6 0.8161-3,6 0.8291-4,6 0.8261-4,6 0.7731-3 0.7781-3

and Fever) on which all models perform similarly, achieving
recall scores close to perfection. This could happen due to
either of two factors: (i) these datasets have a small number
of relevant documents per query or (ii) there is a high lexical
overlap between queries and documents, allowing retrieving
the most relevant documents.

Interpolation-based re-ranking performance. In the
first part of Table 5, where multiple documents are rele-
vant to a query, the models performed similarly in terms
of nDCG, except for SPLADE, which mostly outperformed
other models. Experiments on HotpotQA showed some in-
teresting facts. First, DeepImpact performed slightly better
than SPLADE in terms of both MAP and nDCG@10. Sec-
ond, the neural sparse retrievers achieved better MAP than the
traditional sparse retrievers. One potential reason for this is
the increased recall from the retrieval stage, illustrating that
the more relevant documents are retrieved, the better MAP
is, given that all experiments employed the same re-ranking
model. In contrast, the second part of the table indicates
mixed results. For SciFact, the similar results for nDCG@10
from the retrieval stage transfer to the re-ranking stage, in-
dicating that re-ranking, in this scenario, could not further
improve the ranking quality. For Fever, the bi-encoder-based
sparse retrievers significantly outperform the other models,
while for Quora, no-encoder-based retrievers surpassed the
more complex models.

4.2 RQ2: How does the selected retrieval model
affect the latency of Fast-Forward Indexes?

Figure 1 presents the performance of several retrieval mod-
els against their query processing times on different datasets.
Some interesting observations can be made.

There is a clear distinction between bi-encoder-based
(SPLADE and uniCOIL) sparse retrievers and the other
sparse retrievers. First, the uni-encoder and the no-encoder
approaches are placed on the bottom-left part of the plots, in-
dicating a worse recall, but low latency. On the other hand, bi-
encoders are on the right part of the plots, illustrating high la-
tency and, in some cases, higher recall. Moreover, the average

query processing times for the no-encoder- and uni-encoder-
based retrievers range from 20 to 30ms, while the bi-encoder-
based retrievers achieve an average query processing latency
ranging from 60ms to approximately 90ms. This translates to
simpler retrievers being about 3 times faster in query process-
ing compared to the bi-encoder-based retrievers.

Second, SPLADE achieves the best recall from the se-
lected models but has the highest query processing latency.
Another model that shows interesting characteristics is uni-
COIL, which has high query processing times but only pro-
vides average performance compared to the simpler models.
The reason behind the large differences in latency between
these models and the simpler ones is due to the bi-encoder
architecture, which requires query encoding at search time.

Lastly, SPLADE is faster than uniCOIL on the NFCor-
pus dataset, although it is significantly slower on the other
datasets. A particularity of NFCorpus is its shorter query
length compared to the other datasets. Precisely, NFCor-
pus has an average query length of 21.5 terms, while FiQA
and SciFact have 61.3 and 88.8 terms per query, respectively.
Given that both approaches use BERT as an encoder, this
comes down to the complex “WordPiece” tokenization pro-
cess, together with the sparsity regulator is faster than the di-
mensionality reduction used by uniCOIL for shorter queries,
while uniCOIL is faster for longer queries.

5 Discussion
The results show that SPLADE provides higher recall and
ranking quality compared to the other models in a retrieval-
only scenario. However, the increased performance comes at
the cost of higher query processing latency, with SPLADE
achieving almost the highest latency. Further, it can be ob-
served that traditional retrieval models, such as BM25 and
TF-IDF, still provide good recall, often being ranked sec-
ond when compared to other retrieval models. Addition-
ally, the uni-encoder approaches (e.g. DeepCT and DeepIm-
pact) showed similar recall to the simpler approaches. When
the chosen models are evaluated in an interpolation-based
re-ranking setting (e.g. Fast-Forward Indexes) the ranking

7

(a) FiQA (b) NFCorpus (c) SciFact

Figure 1: R@1000 (Y-axis) and the average query latency (X-axis, in ms) on (a) FiQA, (b) NFCorpus, and (c) SciFact of different sparse
retrievers employing both traditional and neural term-weighting techniques. The reported latency is the average processing time per query
on five runs, computed on the test set. Furthermore, the processing time per query was measured as the sum of the time taken for retrieving
and the time taken for re-ranking the documents. Further, the latency was measured using the timeit Python library. All experiments were
performed on a 10-core M1 Chip with 16GB of RAM.

performance is mostly consistent with the findings from the
retrieval-only stage, that is, SPLADE significantly outper-
formed most of the other retrieval models. Yet, the mod-
els that obtained a lower nDCG@10 score after the retrieval
stage benefited from the re-ranking stage, achieving compara-
ble performance in terms of nDCG@10 to the more expensive
approaches.

The findings align with previous research that suggests bi-
encoder models can enhance retrieval performance due to
their ability to capture the importance of each term in the
context of a document or query [17]. Curiously, Lin and Ma
[37] report that uniCOIL performs substantially better than
other sparse retrieval models in terms of nDCG@10 on the
MS MARCO Passage ranking task. Yet, our experiments of
uniCOIL, used in an interpolation-based re-ranking environ-
ment, show similar or worse nDCG@10 than simpler models
on specific domains, such as SciFact or Quora. In this sce-
nario, the performance of uniCOIL stands out even from the
retrieval stage, where it was performing poorer than the other
retrievers. Nevertheless, in the context of interpolation-based
re-ranking, it can be argued that the chosen α value influences
nDCG@10, but these experiments used optimized α values
for each (model, dataset) pair to overcome this issue.

The results indicated that encoder-based methods outper-
formed the standard methods on the MS MARCO Passage
dataset. Considering that all the selected encoder-based mod-
els were previously trained on the MS MARCO Passage
dataset, and evaluating them on MS MARCO shows that
replacing traditional term-weighting methods, such as term-
frequency or inverse document-frequency, with neural mod-
els could improve the ranking quality, as illustrated in Table 4.
Yet, the reduced performance compared to no-encoder-based
approaches on other datasets indicates a poor generalization
of the learned term weights. Furthermore, the comparable re-
call scores between no-encoder-based and encoder-based re-
trievals are expected because encoders were used for term-
weighting rather than document or query expansion. More-
over, DeepCT showed lower recall compared to BM25 on all
datasets, except for the MS MARCO passage dataset, which
supports the above claim and the results from a study by
Thakur et al. [38].

The implications of these discoveries are significant for the
design of a retrieval system. For applications that deal with
specialized data, such as scientific research, where many rele-
vant documents are desired, a bi-encoder retrieval model (e.g.
SPLADE) could be beneficial as it fetches the highest number
of relevant documents, despite its latency drawbacks. On the
other hand, applications that handle general information and
require fast retrievals, such as web search or question answer-
ing, could employ a traditional retrieval system (e.g. BM25
or TF-IDF) in an interpolation-based re-ranking setting, as
they showed satisfactory performance with an average query
processing time of 25ms.

6 Responsible Research
This section discusses the reproducibility of the reported re-
sults using the principles of FAIR research. Additionally, the
ethical implications of the presented work will be addressed.

6.1 Reproducibility
The results are findable and accessible because all the code
written during this project and the parameters used to evalu-
ate the models are available on GitHub1. The libraries used
in the experiments, especially PyTerrier [47] and SPRINT
[51], which were responsible for evaluating the performance
are also publicly available. In addition, all datasets used for
evaluating the different models were offered by IR-Datasets
[39], which is also accessible to the public. Lastly, all evalu-
ated neural sparse retrievers made use of pre-trained models,
which were available for download from either HuggingFace
[54] or GitHub [55]. The results are reusable and interop-
erable because the experimental setup is described in detail
in Sections 3 and 3.6 and via comments across the uploaded
code. Moreover, the output of the experiments is also avail-
able, allowing for the reproduction of the presented results.

6.2 Ethical implications
Retrieval or re-ranking approaches employing neural models
are prone to bias-related issues. Therefore, before using any

1https://github.com/cristianciacu1/neural ranking models

8

such model in production, it is recommended that the poten-
tial bias be addressed.

7 Conclusions and Future Work
Summary. This work evaluated the ranking quality of dif-
ferent sparse retrieval models, including traditional retriev-
ers, which make use of mathematical formulas to compute
the weights of the terms, and neural-based retrievers which
employ neural models to compute the term weights (e.g.
SPLADE, DeepCT,) and expand the documents during in-
dexing (e.g. DeepImpact). This study showed that SPLADE
achieves the best recall and ranking quality across all datasets.
Yet, SPLADE showed a substantial increase in latency, mak-
ing it unfeasible for tasks requiring fast retrieval. On the
other hand, employing simpler approaches, such as BM25
and TF-IDF, in an interpolation-based re-ranking environ-
ment, proved to be considerably faster, and, in most cases,
the difference in performance compared to the more expen-
sive approaches was not critical, making them strong candi-
dates for the ad-hoc retrieval task.
Future work. Firstly, all neural term-weighting models used
in these experiments were previously trained on a specific
dataset (e.g. MS MARCO). Future research should consider
re-training these models on various other datasets, to allow
for a more comprehensive evaluation. Secondly, future stud-
ies assessing the performance of different retrievers should
include more retrieval methods, such as TextRank [56], a
graph-based term-weighting model, or SpaDE [15].

References
[1] Vishal Gupta, Manoj Chinnakotla, and Manish Shri-

vastava. “Retrieve and re-rank: A simple and effective
IR approach to simple question answering over knowl-
edge graphs”. In: Proceedings of the First Workshop
on Fact Extraction and VERification (FEVER). 2018,
pp. 22–27.

[2] Jurek Leonhardt et al. Efficient Neural Ranking us-
ing Forward Indexes and Lightweight Encoders. en.
arXiv:2311.01263 [cs]. Nov. 2023. URL: http://arxiv.
org/abs/2311.01263 (visited on 05/08/2024).

[3] Zhiguo Wang et al. “Retrieval, re-ranking and multi-
task learning for knowledge-base question answering”.
In: Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume. 2021, pp. 347–357.

[4] Joeran Beel et al. “Paper recommender systems: a lit-
erature survey”. In: International Journal on Digital
Libraries 17 (2016), pp. 305–338.

[5] Karen Sparck Jones. “A statistical interpretation of
term specificity and its application in retrieval”. In:
Journal of documentation 28.1 (1972), pp. 11–21.

[6] Stephen E Robertson and K Sparck Jones. “Rele-
vance weighting of search terms”. In: Journal of the
American Society for Information science 27.3 (1976),
pp. 129–146.

[7] Andrew Trotman, Antti Puurula, and Blake Burgess.
“Improvements to BM25 and language models exam-
ined”. In: Proceedings of the 19th Australasian Docu-
ment Computing Symposium. 2014, pp. 58–65.

[8] Stephen Robertson, Hugo Zaragoza, and Michael Tay-
lor. “Simple BM25 extension to multiple weighted
fields”. In: Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge man-
agement. 2004, pp. 42–49.

[9] José R Pérez-Agüera et al. “Using BM25F for seman-
tic search”. In: Proceedings of the 3rd international se-
mantic search workshop. 2010, pp. 1–8.

[10] Guihong Cao et al. “Selecting good expansion terms
for pseudo-relevance feedback”. In: Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval.
2008, pp. 243–250.

[11] Jiafeng Guo et al. “A deep relevance matching model
for ad-hoc retrieval”. In: Proceedings of the 25th ACM
international on conference on information and knowl-
edge management. 2016, pp. 55–64.

[12] Bhaskar Mitra, Fernando Diaz, and Nick Craswell.
“Learning to match using local and distributed repre-
sentations of text for web search”. In: Proceedings of
the 26th international conference on world wide web.
2017, pp. 1291–1299.

[13] Wen Li et al. “Approximate nearest neighbor search
on high dimensional data—experiments, analyses, and
improvement”. In: IEEE Transactions on Knowledge
and Data Engineering 32.8 (2019), pp. 1475–1488.

[14] Sunil Arya et al. “An optimal algorithm for approxi-
mate nearest neighbor searching fixed dimensions”. In:
Journal of the ACM (JACM) 45.6 (1998), pp. 891–923.

[15] Eunseong Choi et al. “SpaDE: Improving sparse rep-
resentations using a dual document encoder for first-
stage retrieval”. In: Proceedings of the 31st ACM In-
ternational Conference on Information & Knowledge
Management. 2022, pp. 272–282.

[16] Zhuyun Dai and Jamie Callan. “Context-aware sen-
tence/passage term importance estimation for first
stage retrieval”. In: arXiv preprint arXiv:1910.10687
(2019).

[17] Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. “SPLADE: Sparse Lexical and Expansion
Model for First Stage Ranking”. en. In: Proceedings of
the 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. Vir-
tual Event Canada: ACM, July 2021, pp. 2288–2292.
ISBN: 978-1-4503-8037-9. DOI: 10 . 1145 / 3404835 .
3463098. URL: https : / / dl . acm . org / doi / 10 . 1145 /
3404835.3463098 (visited on 05/06/2024).

[18] Antonio Mallia et al. “Learning passage impacts for
inverted indexes”. In: Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. 2021, pp. 1723–
1727.

9

http://arxiv.org/abs/2311.01263
http://arxiv.org/abs/2311.01263
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://dl.acm.org/doi/10.1145/3404835.3463098
https://dl.acm.org/doi/10.1145/3404835.3463098

[19] Payal Bajaj et al. “Ms marco: A human generated
machine reading comprehension dataset”. In: arXiv
preprint arXiv:1611.09268 (2016).

[20] Nick Craswell et al. “Overview of the TREC
2019 deep learning track”. In: arXiv preprint
arXiv:2003.07820 (2020).

[21] Nick Craswell et al. “Overview of the TREC
2020 deep learning track”. In: CoRR abs/2102.07662
(2021). arXiv: 2102.07662. URL: https://arxiv.org/abs/
2102.07662.

[22] Yang Bai et al. “SparTerm: Learning term-based sparse
representation for fast text retrieval”. In: arXiv preprint
arXiv:2010.00768 (2020).

[23] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic.
“From doc2query to docTTTTTquery”. In: Online
preprint 6.2 (2019).

[24] Colin Raffel et al. “Exploring the limits of transfer
learning with a unified text-to-text transformer”. In:
Journal of machine learning research 21.140 (2020),
pp. 1–67.

[25] Shengyao Zhuang and Guido Zuccon. “Fast passage
re-ranking with contextualized exact term matching
and efficient passage expansion”. In: arXiv preprint
arXiv:2108.08513 (2021).

[26] Jacob Devlin et al. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In:
arXiv preprint arXiv:1810.04805 (2018).

[27] Lee Xiong et al. “Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval”. In:
arXiv preprint arXiv:2007.00808 (2020).

[28] Victor Lavrenko and W Bruce Croft. “Relevance-
based language models”. In: ACM SIGIR Forum.
Vol. 51. 2. ACM New York, NY, USA. 2017, pp. 260–
267.

[29] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy
Lin. “Distilling dense representations for ranking
using tightly-coupled teachers”. In: arXiv preprint
arXiv:2010.11386 (2020).

[30] Rodrigo Nogueira and Kyunghyun Cho. “Pas-
sage Re-ranking with BERT”. In: arXiv preprint
arXiv:1901.04085 (2019).

[31] Omar Khattab and Matei Zaharia. “Colbert: Efficient
and effective passage search via contextualized late in-
teraction over bert”. In: Proceedings of the 43rd Inter-
national ACM SIGIR conference on research and de-
velopment in Information Retrieval. 2020, pp. 39–48.

[32] Ashish Vaswani et al. “Attention is all you need”. In:
Advances in neural information processing systems 30
(2017).

[33] Alec Radford et al. “Improving language understand-
ing with unsupervised learning”. In: (2018).

[34] Zeynep Akkalyoncu Yilmaz et al. “Cross-domain
modeling of sentence-level evidence for document re-
trieval”. In: Proceedings of the 2019 conference on em-
pirical methods in natural language processing and
the 9th international joint conference on natural lan-

guage processing (EMNLP-IJCNLP). 2019, pp. 3490–
3496.

[35] Yonghui Wu et al. “Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation”. In: arXiv preprint
arXiv:1609.08144 (2016).

[36] Luyu Gao, Zhuyun Dai, and Jamie Callan. “COIL:
Revisit exact lexical match in information retrieval
with contextualized inverted list”. In: arXiv preprint
arXiv:2104.07186 (2021).

[37] Jimmy Lin and Xueguang Ma. “A few brief notes
on deepimpact, coil, and a conceptual framework for
information retrieval techniques”. In: arXiv preprint
arXiv:2106.14807 (2021).

[38] Nandan Thakur et al. “Beir: A heterogenous bench-
mark for zero-shot evaluation of information retrieval
models”. In: arXiv preprint arXiv:2104.08663 (2021).

[39] AI2 - Allen Institute for AI. ir datasets: A repository
of datasets for information retrieval research. https :
//github.com/allenai/ir datasets. 2024.

[40] Macedo Maia et al. “Www’18 open challenge: finan-
cial opinion mining and question answering”. In: Com-
panion proceedings of the the web conference 2018.
2018, pp. 1941–1942.

[41] Zhilin Yang et al. “HotpotQA: A dataset for diverse,
explainable multi-hop question answering”. In: arXiv
preprint arXiv:1809.09600 (2018).

[42] Kaggle. Quora Question Pairs. Accessed: 2024-06-
23. 2024. URL: https : / / www. kaggle . com / c / quora -
question-pairs.

[43] Vera Boteva et al. “A full-text learning to rank dataset
for medical information retrieval”. In: Advances in
Information Retrieval: 38th European Conference on
IR Research, ECIR 2016, Padua, Italy, March 20–23,
2016. Proceedings 38. Springer. 2016, pp. 716–722.

[44] Faegheh Hasibi et al. “DBpedia-entity v2: a test col-
lection for entity search”. In: Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
2017, pp. 1265–1268.

[45] James Thorne et al. “FEVER: a large-scale dataset for
fact extraction and VERification”. In: arXiv preprint
arXiv:1803.05355 (2018).

[46] David Wadden et al. “Fact or fiction: Verifying sci-
entific claims”. In: arXiv preprint arXiv:2004.14974
(2020).

[47] Terrier Team. PyTerrier: Python Integration for Ter-
rier Information Retrieval Platform. https : / / github .
com/terrier-org/pyterrier. 2024.

[48] Craig Macdonald. pyt splade: PyTerrier-SPLADE In-
tegration. https://github.com/cmacdonald/pyt splade.
2024.

[49] Thibault Formal et al. “From distillation to hard nega-
tive sampling: Making sparse neural ir models more
effective”. In: Proceedings of the 45th international
ACM SIGIR conference on research and development
in information retrieval. 2022, pp. 2353–2359.

10

https://arxiv.org/abs/2102.07662
https://arxiv.org/abs/2102.07662
https://arxiv.org/abs/2102.07662
https://github.com/allenai/ir_datasets
https://github.com/allenai/ir_datasets
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://github.com/terrier-org/pyterrier
https://github.com/terrier-org/pyterrier
https://github.com/cmacdonald/pyt_splade

[50] Terrier Team. PyTerrier-DeepCT: DeepCT Integration
with PyTerrier. https : / / github . com / terrierteam /
pyterrier deepct. 2024.

[51] Nandan Thakur. Sprint: A Repository for Sprint
Projects. https : / / github. com / thakur - nandan / sprint.
2024.

[52] Hugging Face. TCT-ColBERT MS MARCO. 2024.
URL: https : / / huggingface . co / castorini / tct colbert -
msmarco.

[53] Castorini. doc2query-t5-base-msmarco. https : / /
huggingface . co / castorini / doc2query - t5 - base -
msmarco. Accessed: 2024-06-23. 2021.

[54] Hugging Face. Hugging Face: The AI community
building the future. 2024. URL: https : / /huggingface .
co/.

[55] GitHub, Inc. GitHub: Let’s Build from Here. 2024.
URL: https://github.com/.

[56] Rada Mihalcea and Paul Tarau. “Textrank: Bringing
order into text”. In: Proceedings of the 2004 confer-
ence on empirical methods in natural language pro-
cessing. 2004, pp. 404–411.

11

https://github.com/terrierteam/pyterrier_deepct
https://github.com/terrierteam/pyterrier_deepct
https://github.com/thakur-nandan/sprint
https://huggingface.co/castorini/tct_colbert-msmarco
https://huggingface.co/castorini/tct_colbert-msmarco
https://huggingface.co/castorini/doc2query-t5-base-msmarco
https://huggingface.co/castorini/doc2query-t5-base-msmarco
https://huggingface.co/castorini/doc2query-t5-base-msmarco
https://huggingface.co/
https://huggingface.co/
https://github.com/

	Introduction
	Background
	Retrieve and Re-rank
	Sparse Retrieval
	Dense Retrieval
	Fast-Forward Indexes

	Methodology
	Traditional term-weighting
	Neural term-weighting
	Datasets
	Metrics
	Hyperparameter Optimization
	Models Implementation

	Results
	RQ1: What is the impact of the retrieval stage on the performance of Fast-Forward Indexes?
	RQ2: How does the selected retrieval model affect the latency of Fast-Forward Indexes?

	Discussion
	Responsible Research
	Reproducibility
	Ethical implications

	Conclusions and Future Work

