

Delft University of Technology

Eda tools and methodologies for reliable nanoelectronic systems

Augusto da Silva, F.

DOI
10.4233/uuid:92bc5717-c27d-4cd2-b2b2-560c6551e437
Publication date
2022
Document Version
Final published version
Citation (APA)
Augusto da Silva, F. (2022). Eda tools and methodologies for reliable nanoelectronic systems. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:92bc5717-c27d-4cd2-b2b2-
560c6551e437

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:92bc5717-c27d-4cd2-b2b2-560c6551e437
https://doi.org/10.4233/uuid:92bc5717-c27d-4cd2-b2b2-560c6551e437
https://doi.org/10.4233/uuid:92bc5717-c27d-4cd2-b2b2-560c6551e437

EDA TOOLS AND METHODOLOGIES FOR RELIABLE
NANOELECTRONIC SYSTEMS

EDA TOOLS AND METHODOLOGIES FOR RELIABLE
NANOELECTRONIC SYSTEMS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Wednesday 21 September 2022 at 17:30 o’clock

by

Felipe AUGUSTO DA SILVA

Master of Science in Electrical Engineering,
Federal University of Santa Catarina, Brazil

born in São Paulo, Brazil.

This dissertation has been approved by the promotors.

promotor: Prof. dr. ir. S. Hamdioui
copromotor: Dr. ir. J.S.S.M. Wang

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. ir. S. Hamdioui Delft University of Technology, promotor
Dr. ir. J.S.S.M. Wang Delft University of Technology, copromotor

Independent members:
Dr. M. Jenihhin Tallinn University of Technology, Estonia
Prof. dr. ir. G. Gaydadjiev University of Groningen, the Netherlands
Prof.ḋr. ir. M. Sonza Reorda Politecnico di Torino, Italy
Prof. dr. ir. A.J. van der Veen Delft University of Technology
Dr. C. Sauer Cadence Design Systems, Germany
Prof. dr. ir. R.E. Kooij Delft University of Technology, reserve member

Keywords: Functional Safety, Verification, ISO 26262, Fault Space Analysis, Tool
Qualification, Fault Injection Simulation, Formal Methods, Automo-
tive benchmark, Safe Faults, Software Test Library, Safety Metrics,
SPFM, ASIL

Printed by: Ipskamp Printing, the Netherlands

Front & Back: design by Felipe Augusto da Silva

Copyright © 2022 by Felipe Augusto da Silva

ISBN 978-94-6366-596-4

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Education is the most powerful
weapon you can use to change the world.

Nelson Mandela

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Functional Safety Verification by ISO 26262 3

1.2.1 Concept Phase . 5
1.2.2 Product Development at System Level 8
1.2.3 Product Development at Hardware Level 10
1.2.4 Supporting processes . 15
1.2.5 Discussion . 18

1.3 State-of-the-Art in Functional Safety Verification 19
1.3.1 Fault Space Analysis . 19
1.3.2 Early estimation of safety metrics 25
1.3.3 Validation of software tools . 27

1.4 Research Topics . 27
1.4.1 Validation of software tools . 28
1.4.2 Representative test cases for the Automotive sector 28
1.4.3 Estimation of design safety metrics 29
1.4.4 Enhancements of the functional safety verification methods 30

1.5 Contributions of the Thesis . 30
1.6 Thesis Organization. 32

2 Functional Safety Verification Methods and Validation 35
2.1 Fault Analysis Technologies . 37

2.1.1 Formal Methods . 37
2.1.2 Fault Injection Simulation . 38
2.1.3 Automatic Test Pattern Generator 38

2.2 Software Tools Validation Methodology 40
2.2.1 Configuration . 40
2.2.2 Execution . 41
2.2.3 Report . 42

2.3 Experiments and Results . 43
2.3.1 Experiments Setup . 44
2.3.2 Results . 44
2.3.3 Discussion . 46

2.4 Conclusions. 47

vii

viii CONTENTS

3 Safety Benchmarks for Automotive SoCs 49
3.1 Safety Standardization and Benchmarking 51
3.2 Automotive SoC Architectures . 52

3.2.1 Industry Solutions Characterization 52
3.2.2 AutoSoC Functional Blocks . 53

3.3 AutoSoC Base Components . 55
3.3.1 Hardware Components . 55
3.3.2 Software Resources . 56
3.3.3 Simulation Environment. 57

3.4 AutoSoC Safety Components . 58
3.4.1 Dual-Core LockStep . 59
3.4.2 Software Test Libraries . 59
3.4.3 Internal Memories ECC . 60
3.4.4 External Memory ECC . 60
3.4.5 Bus Parity . 61
3.4.6 Checkpoint Control . 61
3.4.7 Safety Monitor . 61

3.5 AutoSoC Configurations . 61
3.6 Preliminary Functional Safety Analysis 62

3.6.1 AutoSoC DCLS configuration . 63
3.6.2 AutoSoC ECC configuration . 63
3.6.3 AutoSoC STL configuration . 64

3.7 Conclusions. 65

4 Early Estimation of Design Safety Metrics 67
4.1 Safety Metrics Estimation Methodology. 69

4.1.1 Design Characterization . 69
4.1.2 Fault Activation Analysis . 72
4.1.3 Fault Propagation Analysis . 73
4.1.4 Estimation of Fault Injection Results 74

4.2 Validation and Results . 74
4.2.1 Validation . 76
4.2.2 Safety Lifecycle Results. 78
4.2.3 Additional Design Evaluation . 81
4.2.4 Summary of Results and Discussion 82

4.3 Conclusions. 83

5 Enhancing Online Fault Detection of Automotive CPUs 85
5.1 Formal Properties and Counter-Examples 87
5.2 Automatic Generation of Software Test Libraries 90
5.3 Configuration for the AutoSoC . 93

5.3.1 Control Signals and Operational Mode. 93
5.3.2 Instructions Input Configuration 95
5.3.3 Strobes. 97
5.3.4 Counter-Example and STL Generation. 97

5.4 Results . 99

CONTENTS ix

6 Enhancing the Safety Verification of Automotive SoCs 103
6.1 Testable Safe Faults Identification. 105

6.1.1 Code Coverage . 107
6.1.2 Automated Code Coverage Analysis 108
6.1.3 Formal Analysis of Testable Safe Faults. 110

6.2 Results . 111
6.2.1 Test Case . 111
6.2.2 Classification of Testable Safe Faults 112
6.2.3 Functional Safety Verification . 113

7 Conclusion 119
7.1 Findings Overview . 121

Curriculum Vitæ 131

List of Publications 133

SUMMARY

In recent years, advances in technology have enabled the employment of automated
systems to control driving tasks. The idea of electronic devices having complete control
over a vehicle promises to change the concept of mobility soon. However, allowing com-
puters to control all the tasks in a vehicle demands sophisticated systems and significant
safety concerns. Furthermore, the increasing complexity in such applications is causing
a shift in the traditional design flow. For example, the development of semiconductors
implementing safety-critical functionalities must incorporate mechanisms to reduce the
risk of failures avoiding life-threatening situations. This dissertation addresses the role of
the EDA industry in supporting the safety aspects of automotive electronic systems. We
propose methodologies to deploy the traditional EDA technologies into functional safety
verification, improving compliance to Automotive Safety Standards, like ISO 26262, and
ensuring automotive devices’ safety integrity levels. For such, we must comprehend how
the guidelines of ISO 26262 establish a comprehensive safety lifecycle that supports the
analysis of Systematic Failures and Random Hardware Failures. Afterward, we investigate
the many possibilities to advance the state-of-the-art by deploying EDA technologies in
compliance with safety requirements. As a result, we identify research possibilities at dif-
ferent safety lifecycle stages. Furthermore, we propose methodologies to support such
development phases, enabling compliance with ISO 26262.

Initially, we need to ensure that the software tools deployed in the development of
safety-critical systems have the necessary levels of confidence; in other words, a mal-
function in such software tools cannot mask or fail to identify failures in the design. For
such, we propose a methodology that deploys multiple technologies capable of clas-
sifying the behavior of faults; if one of the tools has a malfunction, the classifications
will differ, revealing a possibility of safety violation. Furthermore, the execution of the
methodology is controlled by an application that automates the analysis and generates
a report highlighting any discrepancies.

Another crucial aspect for validating any methodology targeting automotive safety is
the presence of representative test cases. Nonetheless, the limited access to representa-
tive designs and industrial methodologies poses a challenge to the research community.
Therefore, we present the AutoSoC Benchmark Suite. The AutoSoC intends to provide re-
searchers with an automotive SoC based on commercial solutions, including all essential
components, highly customizable and allowing comparability between distinct method-
ologies and results. Furthermore, this dissertation describes the conception, features,
and configurations targeting compliance with different levels of automotive safety.

Even though safety requirements are established earlier in automotive systems’ de-
velopment, the safety metrics verification is only possible at later stages of the lifecycle;
failing to achieve the required figures demands additional iterations causing a high im-
pact on costs and development time. For that reason, this work proposes a systematic
approach for the early estimation of safety metrics of Automotive designs. The method-

xi

xii SUMMARY

ology is based on the characterization of the design description (RTL and gate-level) and
the workload impact concerning fault propagation. Ultimately, the gathered informa-
tion allows an early assessment of the Safety Mechanisms’ performance at various de-
velopment phases; and, therefore, it will enable the early estimation of safety metrics.

Later, during the development of safety features, engineers encounter a typical trade-
off between cost and safety. The conventional safety schemes, such as Dual-Core Lock-
Step (DCLS), require full redundancy of the hardware area, increasing costs. We propose
a methodology that automatically generates test patterns for CPUs, avoiding hardware
overhead. First, the process deploys formal verification to analyze the propagation of
faults in a CPU; the analysis results in a sequence of test stimuli required to propagate
the fault. Then, by integrating such sequences as a Software Test Library (STL), we can
replicate this behavior for detecting faults during FI Simulation. Such an approach re-
sults in a standalone safety mechanism enabling detection of faults and increasing the
safety integrity of the CPU without additional hardware.

Furthermore, we propose a methodology to support the final clauses for hardware
safety verification, enabling the validation of the contributions to previous development
phases and assessing the safety integrity level of the target SoC. For such, we introduce
an automated approach for identifying the nature of faults not concerning safety-critical
functionalities. The severe demands for tolerance to random faults demand a compre-
hensive fault space analysis. As part of this process, fault classification methods are still
driven by experts, requiring manual analysis that is very expensive, time-consuming,
and prone to errors. The proposed methodology begins with code coverage analysis for
identifying design elements where a fault cannot disturb safety-critical functionalities.
Next, those elements are automatically translated into formal rules and configured in a
formal analysis environment, enabling the identification of additional Safe faults.

Finally, we confirm this dissertation’s contributions to the safety lifecycle by complet-
ing ISO 26262 hardware verification clauses assuming the proposed methodologies. As a
result, the final figures show supplementary coverage in the implemented Safety Mecha-
nisms, improving the safety metrics and enabling compliance with ASIL C requirements.
Also, the results satisfy the validation of our test case, enabling an accurate safety evalu-
ation permitting compliance to ISO 26262 without hardware redundancy.

SAMENVATTING

Dankzij de technologische ontwikkelingen van de laatste jaren is het mogelijk geautoma-
tiseerde systemen te gebruiken om het rijden van voertuigen te besturen. Het idee dat
elektronische apparaten de volledige controle over een voertuig hebben, belooft het con-
cept van mobiliteit binnenkort te veranderen. Computers alle taken in een voertuig laten
uitvoeren vereist echter gesofisticeerde systemen en aanzienlijke veiligheidsrisico’s. Bo-
vendien leidt de toenemende complexiteit van dergelijke toepassingen tot een verschui-
ving in de traditionele ontwerpprocessen. Zo moeten bij de ontwikkeling van halfgelei-
ders die veiligheidskritische functies uitvoeren, mechanismen worden ingebouwd om
het risico van falen te verminderen en zo levensbedreigende situaties te vermijden. In
dit proefschrift wordt ingegaan op de rol van de EDA-industrie bij de ondersteuning van
de veiligheidsaspecten van elektronische systemen voor de automobielindustrie. Wij
stellen methodologieën voor om traditionele EDA-technologieën te gebruiken bij de ve-
rificatie van functionele veiligheid en zo de naleving van veiligheidsnormen voor auto’s,
zoals ISO 26262, te verbeteren en de veiligheidsintegriteit van auto-elektronica te verze-
keren. Daartoe moeten wij begrijpen hoe de richtlijnen van ISO 26262 een uitgebreide
veiligheidslevenscyclus vaststellen die de analyse van systematische storingen en wille-
keurige hardwarefouten ondersteunt. Vervolgens onderzoeken wij de vele mogelijkhe-
den om de stand van de techniek te verbeteren door EDA-technologieën te gebruiken
die aan de veiligheidseisen voldoen. Als gevolg daarvan identificeren wij onderzoeks-
mogelijkheden in verschillende stadia van de veiligheidslevenscyclus. Verder stellen wij
methodologieën voor om die ontwikkelingsstadia te ondersteunen, teneinde te voldoen
aan ISO 26262.

In eerste instantie moeten wij ervoor zorgen dat de software-instrumenten die bij
de ontwikkeling van veiligheidskritische systemen worden gebruikt, de nodige betrouw-
baarheidsniveaus hebben; met andere woorden, een storing in die software-instrumenten
kan geen fouten in het ontwerp maskeren of niet aan het licht brengen. Daarom stellen
wij een methode voor waarbij meerdere technologieën worden gebruikt die het gedrag
van fouten kunnen classificeren; als een van de hulpmiddelen een storing heeft, zul-
len de classificaties verschillen, wat een mogelijke veiligheidsovertreding aan het licht
brengt. Bovendien wordt de uitvoering van de methodologie gecontroleerd door een
toepassing die de analyse automatiseert en een rapport genereert waarin eventuele af-
wijkingen worden aangegeven.

Een ander essentieel aspect voor de validering van een methodologie die gericht is op
de veiligheid van auto’s is de aanwezigheid van representatieve testgevallen. De beperkte
toegang tot representatieve ontwerpen en industriële methodologieën vormt echter een
uitdaging voor de onderzoeksgemeenschap. Daarom stellen wij de AutoSoC Benchmark
Suite voor. De AutoSoC is bedoeld om onderzoekers een SoC voor auto’s te bieden die
gebaseerd is op commerciële oplossingen, met inbegrip van alle essentiële componen-
ten, zeer aanpasbaar is en vergelijkbaarheid tussen verschillende methodologieën en

xiii

xiv SAMENVATTING

resultaten mogelijk maakt. Verder beschrijft dit proefschrift het ontwerp, de kenmerken,
en de configuraties die gericht zijn op de naleving van verschillende veiligheidsniveaus
voor auto’s.

Hoewel de veiligheidsvoorschriften reeds in een vroeg stadium bij de ontwikkeling
van automobielsystemen worden vastgesteld, is de verificatie van de veiligheidscijfers
pas in latere stadia van de levenscyclus mogelijk; als men er niet in slaagt de vereiste
cijfers te halen, zijn extra iteraties nodig, wat een grote invloed heeft op de kosten en de
ontwikkelingstijd. Daarom wordt in dit werk een systematische aanpak voorgesteld voor
de vroege schatting van veiligheidscijfers van automobielontwerpen. De methodologie
is gebaseerd op de karakterisering van de ontwerpbeschrijving (RTL en gate-niveau) en
de werklast die de voortplanting van fouten met zich meebrengt. Uiteindelijk maakt de
verzamelde informatie een vroege beoordeling mogelijk van de prestaties van de veilig-
heidsmechanismen in de verschillende ontwikkelingsfasen; en daardoor zal het moge-
lijk zijn de veiligheidscijfers vroegtijdig te schatten.

In een later stadium, bij de ontwikkeling van veiligheidsfuncties, stuiten de inge-
nieurs op een typische afweging tussen kosten en veiligheid. De conventionele veilig-
heidssystemen, zoals Dual-Core LockStep (DCLS), vereisen volledige redundantie van
de hardware, waardoor de kosten stijgen. Wij stellen een methode voor die automatisch
testpatronen voor CPU’s genereert, waarbij hardware-overhead vermeden wordt. Eerst
gebruikt het proces formele verificatie om de voortplanting van fouten in een CPU te
analyseren; de analyse resulteert in een opeenvolging van teststimuli die nodig zijn om
de fout voort te planten. Door deze opeenvolgingen vervolgens in een Software Test Li-
brary (STL) te integreren, kunnen wij dit gedrag repliceren voor het opsporen van fouten
tijdens FI Simulatie. Een dergelijke aanpak resulteert in een stand-alone veiligheidsme-
chanisme waarmee fouten kunnen worden opgespoord en de veiligheidsintegriteit van
de CPU kan worden verhoogd zonder extra hardware.

Ook stellen wij een methode voor om de definitieve bepalingen voor de verificatie
van de hardwareveiligheid te ondersteunen, zodat de bijdragen aan de vorige ontwikke-
lingsfasen kunnen worden gevalideerd en het veiligheidsintegriteitsniveau van de be-
oogde SoC kan worden beoordeeld. Daartoe introduceren wij een geautomatiseerde
aanpak voor het identificeren van de aard van fouten die geen betrekking hebben op
veiligheidskritieke functies. De strenge eisen die gesteld worden aan de tolerantie ten
opzichte van toevallige fouten vereisen een uitgebreide foutenruimte-analyse. Als on-
derdeel van dit proces worden foutclassificatiemethoden nog steeds door deskundigen
gestuurd, zodat handmatige analyse nodig is, die zeer duur, tijdrovend en foutgevoelig
is. De voorgestelde methode begint met een analyse van de codedekking, om te bepalen
in welke ontwerpelementen een fout de veiligheidskritische functies niet kan verstoren.
Vervolgens worden die elementen automatisch vertaald in formele regels en geconfi-
gureerd in een formele analyse-omgeving, waardoor bijkomende veilige fouten kunnen
worden geïdentificeerd.

Tenslotte bevestigen wij de bijdragen van dit proefschrift aan de veiligheidslevenscy-
clus door de ISO 26262 hardwareverificatieclausules te voltooien, uitgaande van de voor-
gestelde methodologieën. Het resultaat is dat de eindcijfers aanvullende dekking laten
zien in de geïmplementeerde veiligheidsmechanismen, waardoor de veiligheidsmetrie-
ken verbeteren en aan de ASIL C-eisen kan worden voldaan. Ook voldoen de resultaten

SAMENVATTING xv

aan de validatie van onze testcase, waardoor een nauwkeurige veiligheidsevaluatie mo-
gelijk wordt, die naleving van ISO 26262 zonder hardware-redundantie mogelijk maakt.

1
INTRODUCTION

1.1 Motivation . 2
1.2 Functional Safety Verification by ISO 26262 3
1.3 State-of-the-Art in Functional Safety Verification 19
1.4 Research Topics . 27
1.5 Contributions of the Thesis . 30
1.6 Thesis Organization. 32

The prospect of fully autonomous vehicles promises to revolutionize mobility concepts in
the coming years. As a result, the semiconductors industry invests heavily to support the
technologies embedded in a vehicle. Nonetheless, the concept of computers having com-
plete control of a car implies new challenges, as a life-threatening situation caused by a
malfunction in electronic systems is unacceptable. Therefore, this dissertation addresses
the role of the EDA industry in supporting the safety aspects of automotive electronic sys-
tems. We start with a comprehensive investigation of the challenges imposed by the au-
tomotive safety standards, e.g., ISO 26262; we describe the requirements for the concept,
production, verification, and supporting process for the development of automotive semi-
conductors. Next, we discuss the challenges for compliance with safety requirements and
their relation to the EDA technologies. For each listed challenge, we investigate the state-
of-the-art, considering the methods applied by the automotive industry and the contri-
butions from academia. After, we describe the research topics explored during this Ph.D.
project. Then, we present this dissertation’s main contribution; we propose methodologies
that deploy the traditional EDA technologies into innovative solutions to ensure the safety
integrity levels of automotive devices. Finally, we detail the thesis organization.

1

1

2 1. INTRODUCTION

1.1. MOTIVATION

I N recent years, the development of electronic systems has become an essential asset
in the revenue of the automotive sector. Established applications, as Advanced Driver

Assistance Systems (ADAS) and recent trends, as Hybrid/Electric Vehicles (HEV/EV),
have a relevant influence on the sector’s success. Figure 1.1 illustrates a study from
the IHS Markit denoting the increase of the average semiconductor value per car and
its impact on the overall revenue for the sector. The study outlines a Compound An-
nual Growth Rate (CAGR) of 7,1% with a relevant increase in some application domains.
The ADAS, for example, has the potential to grow around 19% per year in the follow-
ing years. This application already represents a share of six billion dollars, potentially
reaching eight billion dollars shortly.

Figure 1.1: Automotive semiconductor revenue by application

This favorable scenario generates momentum for investments aiming to advance the
technologies embedded in a vehicle. All the supply chain associated with the develop-
ment of automotive solutions has their share of contribution. When considering semi-
conductors, one of the crucial shareholders is the Electronic Design Automation (EDA)
industry. EDA tools are essential for developing semiconductors and have supported
the advances in technology for several years. Nowadays, EDA companies provide sev-
eral products to assist the traditional semiconductors development flow and tailored
solutions to address the needs of specific industries, such as Aerospace, Defense, Hy-
perscale Computing, 5G Systems, and Automotive. Nonetheless, the advances in auto-
motive technologies are increasing the burden of electronic systems to new levels, and
the traditional solutions do not suffice to attend to the sector’s requirements. Further-
more, the concept of autonomous vehicle applications implies new challenges, as a life-
threatening situation caused by a malfunction in electronic systems is unacceptable.

The idea of electronic devices having complete control over a vehicle promises to

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

3

change the concept of mobility. However, allowing computers to control all the tasks in
an automobile requires high complexity systems and significant safety concerns. Also,
the development of autonomous vehicles applications, where a system failure could
cause life-threatening situations, entails state-of-the-art challenges for reducing the chances
of such shortcomings. Therefore, compliance with Functional Safety Standards is of high
priority. The primary standard for the automotive sector is the "ISO 26262 Road vehicles
– Functional safety" [1]. The standard defines requirements to assure that functional
safety is a fundamental part of developing automotive electronic systems; and describes
measures to confirm that the probability of failures is reduced to acceptable levels. Com-
pliance with ISO 26262 is an arduous task and should be addressed by all supply-chain
involved in developing automotive solutions, including the EDA industry.

This research addresses the role of the EDA industry in supporting the safety of au-
tomotive electronic systems. We propose tools and methodologies to deploy the tradi-
tional EDA technologies into functional safety verification, improve compliance to ISO
26262, and ensure the safety integrity levels of automotive devices.

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262
Functional safety aims to reduce the risk of physical injury and damage to health caused
by failures in safety-critical systems; it requires implementing protection (safety) mea-
sures to reduce the risk of such events. In other words, Functional safety aims to assure
that a system will perform its intended function correctly. In case of a failure, the system
will fail in a predictable (safe) manner. There are specific functional safety standards for
several industries, such as Defense, Aviation, Aerospace, and Medical. As cited before,
the primary standard for the automotive sector is the ISO 26262.

The first edition of ISO 26262, targeting passenger cars, was published in 2011. A
second edition, published in 2018, extended the scope to all road vehicles. The stan-
dard is considered a best practice framework for achieving automotive functional safety.
The requirements from ISO 26262 cover the entire product lifecycle, ranging from spec-
ification, design, implementation, integration, verification, validation, and production
release. Similar to others, ISO 26262 is a risk-based safety standard; it defines quanti-
tative and qualitative measures to assess the risk of hazardous situations. Then, safety
measures should be implemented to control or mitigate the effects of failures that could
cause such hazards. The implementation of safety measures must consider the class of
the failure they aim to mitigate. ISO 26262 defines two categories of failures: Systematic
Failures and Random Hardware Failures.

• Systematic Failures are failures generally caused by human errors in defining, de-
signing, configuring, installing, calibrating, and maintaining a system; good prac-
tices and quality control should recognize such failures. ISO 26262 defines this
class of failures as "failure related in a deterministic way to a specific cause, that
can only be eliminated by a change of the design or manufacturing process, oper-
ational procedures, documentation or other relevant factors." If, for example, the
implementation of a function is incorrect due to a misinterpretation of a require-
ment, such failure should be identified by a development flow that contemplates
requirement-based testing and review.

1

4 1. INTRODUCTION

Figure 1.2: ISO 26262 Safety Lifecycle

• Random Hardware Failures: are failures in which the cause is not always observ-
able or controllable; such failures have a probability of happening in designs with-
out apparent errors, and their root cause is usually not noticeable. According to
ISO 26262 definition, these are "failures that can occur unpredictably during the
lifetime of a hardware element, and that follows a probability distribution." Com-
mon causes of Random Hardware Failures are defects inherent in the technology
process, usage condition, aging, interference, radiation, among others. As root
causes are not predictable, the failure rate of random faults cannot generally be
reduced; thus, the focus is on handling these faults employing detection and cor-
rection mechanisms.

ISO 26262 defines guidelines and means to access the quality of the implemented
measures for both failure categories. For Random Hardware Failures, the standard de-
fines safety metrics to assess if the probabilistic risk is sufficiently low. Meanwhile, the
control of Systematic Failures is achieved by the safety lifecycle defined by the standard.
The safety lifecycle devises a product life in three phases: Concept, Product Develop-
ment, and After the release for production. Each phase has determined clauses, ob-
jectives, and work-products, including well-defined pass criteria between the clauses.
Each clause also defines verification requirements for the work-products, assuring the
required quality levels are achieved. Figure 1.2 illustrates the ISO 26262 Safety Lifecycle.

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

5

In the following sections, we describe the main elements of the Concept and Product
Development phases of the safety lifecycle. Since this thesis is primarily concerned with
the EDA role in safety hardware development, we will focus on the requirements related
to such parts.

1.2.1. CONCEPT PHASE
The Concept Phase elaborates initial impressions and definitions as the functional con-
cept for the product development. It also establishes the safety plan, with the activities
to ensure safety during the development process and tailoring its actions accordingly.
Consequently, the safety plan determines the overall sequence of steps to assure a safety
development process and compliance to ISO 26262. Additionally, the Concept Phase in-
cludes clauses to identify and categorize hazard situations resulting from malfunctions
and determine the required safety integrity level during the development. This phase de-
fines the clauses: Item Definition, Hazard Analysis and Risk Assessment and Functional
Safety Concept. Figure 1.3 illustrates the clauses of the Concept Phase.

Figure 1.3: Concept Phase

ITEM DEFINITION

As defined by ISO 26262, an item is a system or array of systems to implement a function
at the vehicle level. In other words, an item relates to the specific functionality under
development. The Item Definition clause defines and describes the item functionalities
and dependencies; also, it determines the item interactions with the driver, the environ-
ment, and other items at the vehicle level. Another objective is to support an adequate
understanding of the item with a high-level description of its limitations and intended
functionalities; such a clause enables a better comprehension for subsequent phases.

HAZARD ANALYSIS AND RISK ASSESSMENT

This clause aims to identify and categorize possible hazards triggered by failures in the
item defined in the previous clauses; for each hazard, we need to formulate safety goals
for prevention and mitigation, avoiding unreasonable risks to human life. The Hazard
Analysis and Risk Assessment (HARA) is a structured method for understanding what
might go wrong with a system and the resulting hazards.

1

6 1. INTRODUCTION

The ISO 26262 defines a hazard as "a potential source of harm caused by malfunc-
tioning behavior of the item." The potential harm of an item malfunction depends on
circumstances where the malfunction occurs. Hence, the identification of possible haz-
ards is based on the analysis of operational situations. For instance, the analysis of a
malfunction in an Anti-lock Braking System (ABS) must consider operational situations
of the vehicle; the hazard resulting from such a malfunction is different in a parking ve-
hicle or a vehicle at high speed on a highway. Therefore, the combination of a hazard and
an operational situation defines a hazardous event. As an example, possible hazardous
events resulting from a malfunction in an ABS could be:

• Loss of stability when the breaks are activated during a sudden stop on a highway.

• Loss of stability when the breaks are activated during a sudden stop in an unpaved
road.

• Unintended activation of the breaks in the city center.

• Unintended activation of the breaks on a highway.

A comprehensive list of hazardous events must be prepared based on the vehicle class,
where the system will be employed, and the outputs from the Item Definition clause.
Next, all hazardous events need to be classified by three metrics Exposure, Severity, and
Controllability.

Exposure defines how likely is the hazard to happen; it must consider factual infor-
mation regarding similar vehicles and systems, traffic accidents rate, and the employed
technologies. The Severity represents the hazardous event’s harmful; it examines the
possible level of impairment to human lives. Finally, the Controllability assesses the
possibility of the driver to control the situation and avoid the hazardous event. Figure
1.4 illustrates the possible classes of Exposure, Severity, and Controllability.

Figure 1.4: Exposure, Severity, and Controllability classes for Risk Analysis

The combined classification of these metrics defines the Automotive Safety Integrity
Level (ASIL) allocation. The ASIL establishes the strictness of the safety requirements
to be respected during the development of automotive components. According to ISO
26262, there are four ASILs classes, ranging from A to D; ASIL A represents the lower
grade in the safety spectrum, while ASIL D symbolizes systems with the highest degree of
hazard risk. As the ASIL allocation is based on the probability and acceptability of harm,
the rigor applied to safety assurance depends on the system’s functionality. For example,

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

7

systems like airbags and ABS require an ASIL D because the risks associated with their
failure are the highest. On the other end, components like infotainment may only require
ASIL A. Other examples are headlights and brake lights that generally would be ASIL B; or
cruise control systems that would frequently be ASIL C. Figure 1.5 demonstrates the ASIL
allocation based on the Exposure, Severity, and Controllability classification. When the
risk of harm is sufficiently low, the hazardous event is classified as Quality Management
level (QM); such classification represents not dangerous components that do not dictate
any safety requirements to be managed under the ISO 26262.

Figure 1.5: Automotive Safety Integrity Level (ASIL) allocation

The ASIL allocation is determined by how much threat the malfunctioning of a par-
ticular component can cause under various situations. Consequently, it also defines the
demands for safety processes and the level of risk reduction needed to achieve a toler-
able risk. Therefore, throughout the ISO 26262 safety lifecycle, the ASIL will determine
the requirements of each clause. Higher ASILs demand additional verification steps im-
proving the product quality and reducing the risk of Systematic Failures. The ASIL alloca-
tion also defines the required measures for controlling Random Hardware Failures. The
standard defines metrics to evaluate the effectiveness of implemented measures to cope
with such failures. The requirements for Random Hardware Failures are defined in the
Product Development at Hardware level section.

At this stage, risk reduction is exemplified as a Safety Goal. According to ISO 26262,
safety goals are the first level of safety requirements. They are high-level descriptions
that will be detailed into procedures to bring the vehicle to a safe state in case of mal-
functions. Therefore, during the HARA, each analyzed hazardous event will have an al-
located ASIL and derived safety goals. If, for example, we consider the situation below
resulting from a malfunction in an ABS component:

• Unintended activation of the breaks on a highway.

Such a hazardous event can have a high Exposure (E4), considering the usage of vehicles
on highways; moreover, Controllability may be difficult (C3) if the car is at high speeds;

1

8 1. INTRODUCTION

finally, Severity is very high (S3) in this situation. This example would result in an ASIL D
allocation. For such, the safety goals listed below could be derived:

• The ABS must not limit the functionality of the breaking system.

• The ABS must include mechanisms to avoid unintended activation of the breaks.

Under the context of functional safety, the safety goals are more critical than the
functionalities of the automotive systems; one of the main objectives of the safety lifecy-
cle is to avoid violation of these goals. In the following development phases, the safety
goals will be derived into a Functional Safety Concept and later into requirements for the
Software and Hardware components that will fulfill the system.

FUNCTIONAL SAFETY CONCEPT

The objective of this clause is to derive the functional safety requirements from the Item
Definition and the safety goals; then, these requirements must be allocated to the pri-
mary architectural elements, defining provisions for software and hardware develop-
ment. The Functional Safety Concept also contemplates the high-level definition of safety
mechanisms. Therefore, the functional safety requirements must envision mechanisms
to avoid safety goals violations. Conventional descriptions employed at this stage of de-
velopment are:

• Fault detection,

• Mitigation,

• Safe states,

• Warnings to the driver,

• Redundancies.

The work-products of the Functional Safety Concept clause will enable the initiation of
product development at the system, software, and hardware levels.

1.2.2. PRODUCT DEVELOPMENT AT SYSTEM LEVEL

The objective of the Product Development phases is to elaborate the work-products from
the Concept Phase into a concrete implementation, including confirmation of the safety
concept. This phase starts with the System development and continues with Hardware
and Software development; for each, the standard defines a v-model approach, where
work-products are verified to assure compliance to safety requirements. In addition,
each clause includes pre-requisites ensuring that it only starts when the previous clauses
are concluded and verified. Figure 1.6 illustrates the Product Development at system level
phase; it also highlights the clauses responsible for verification of past clauses work-
products.

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

9

Figure 1.6: Product Development at the system level

TECHNICAL SAFETY CONCEPT

The Product Development at system level starts with the Technical Safety Concept. This
clause aims to refine the functional safety concept into technical requirements. Con-
sequently, the system’s functionalities must be elaborated, including the definition of
the system architecture, dependencies and properties of the system elements, interfaces
between internal and external components, and allocation of requirements to hardware
and software. In addition, it contemplates the specification of safety mechanisms, fault
detection intervals, and the transition to the Safe States.

At this stage, after the elaboration of the hardware architecture, it is possible to es-
tablish the measures to avoid Random Hardware Failures; for that, safety engineers must
estimate, for each hardware component, the probability of failures (Failure Rate). Next,
they must define the requirements of Diagnostic Coverage to reduce the Failure Rate to
acceptable levels. The Diagnostic Coverage represents the percentage of faults detected
by Safety Mechanisms. Traditional methods to improve the accuracy of this analysis are
Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA). The confirma-
tion of the measures to avoid Random Hardware Failures made at this stage will only
happen at the end of the Product Development at hardware level. For that reason, the
accuracy of this analysis is of high importance; failing to achieve the estimated metrics
will entail modifications at later development stages.

1

10 1. INTRODUCTION

SYSTEM AND ITEM INTEGRATION AND TESTING

The work-products of the Technical Safety Concept allow the start of the product devel-
opment at software and hardware levels. Still, verifying the product at the system level is
only possible after software and hardware are available. Therefore, the System and item
integration and testing clause can only start after sufficient completion of hardware and
software development. This clause comprises integration tests of the hardware and soft-
ware elements, subsystems, and other in-vehicle systems. The objectives of the System
and item integration and testing are to demonstrate that the defined safety measures, re-
sulting from system safety analyses, are correctly implemented; and to provide evidence
that the integrated system elements fulfill their safety requirements.

SAFETY VALIDATION

Finally, the final clause of the Product Development at system level aims to verify that
the system implementation fulfills the definitions from the Concept Phase. The Safety
validation clauses provide evidence that the safety goals are achieved when integrated
into the vehicle(s); and that the functional and technical safety concepts are appropriate
for achieving functional safety.

1.2.3. PRODUCT DEVELOPMENT AT HARDWARE LEVEL
The hardware development must fulfill the definitions from the Technical Safety Con-
cept; the work-products of the before-mentioned clause determine the expected hard-
ware behavior. Examples of such are the Technical safety concept, System architectural
design specification, and Hardware-software interface specification. Figure 1.7 illus-
trates the clauses for the development of hardware.

Figure 1.7: Product Development at the hardware level

SPECIFICATION OF HARDWARE SAFETY REQUIREMENTS

The Product development at hardware level starts with further refinement of the system
definitions. The Specification of hardware safety requirements has as objectives the de-
velopment of hardware safety requirements, derived from the technical safety concept

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

11

and the system architectural design; and also, the refinement of the hardware-software
interface.

The definitions at the hardware level should include attributes to ensure the effec-
tiveness of safety mechanisms and considerations over safety metrics; for such, engi-
neers must determine fault tolerance, fault detection intervals, and the target diagnostic
coverage for each safety mechanism. Also, at this stage, the hardware-software interface
must include a description of safety-related dependency between hardware and soft-
ware.

HARDWARE DESIGN

This clause ensures that the hardware design development complies with the system de-
sign specification and the hardware safety requirements. The Hardware design clauses
do not determine the design cycle steps, allowing the use of standard design cycles;
for example, the development lifecycle for an Integrated Circuit could be: Architectural
Design, Functional and Logic Design, Circuit Design, Physical Design, Verification and
Signoff, Layout Post Processing, and Fabrication. Nevertheless, the clause includes ob-
jectives aiming to guarantee that the overall safety lifecycle is respected and fulfills the
safety requirements, avoiding Systematic Failures.

For ensuring compliance with the safety requirements, Hardware design clauses also
determine the extension of the safety analysis started at the Technical Safety Concept.
The elaboration of the deductive (i.e., FTA) and inductive (i.e., FMEA) analysis, at this
stage, can include factual information about the implementation of the hardware. The
example below represents one possible Failure Mode (FM) in the register bank of a given
CPU; such FM results from elaborating a high-level failure mode that describes a Dead-
lock in the CPU. The FM definition starts with the FMEA during the Technical Safety
Concept and is refined with the hardware implementation information.

• FM-1: The value in the program counter register becomes corrupted causing a
deadlock.

After implementing the hardware responsible for the program counter register, we
can map the FM-1 to the flops and gates performing the functionality; such mapping
enables an assessment of the probability of an occurrence of FM-1. For that, we must
determine the Failure Rate for each hardware element (flop, gate, and memory cell). The
Failure Rate is measured in Failure In Time (FIT) units, where FIT represents the num-
ber of failures per billion hours of operation of the component. The FIT of the hardware
elements is generally extracted from the history of use of a given tape-out technology;
alternatively, it can be defined based on standards as the IEC 62380 Electronic Reliabil-
ity Prediction Standard. Finally, by considering the FIT rate of each hardware element
mapped to the FM, we can determine the Raw FIT rate of each FM. Eventually, Failure
Modes should cover every hardware component implementing safety-related function-
alities; the sum of the Raw FIT rate of each FM results in the total FIT rate of the hardware.

EVALUATION OF THE HARDWARE ARCHITECTURAL METRICS

This clause aims to provide evidence of the suitability of the hardware architecture de-
sign concerning detection and control of safety-related Random Hardware Failures. The

1

12 1. INTRODUCTION

evaluation is the initial verification step that allows engineers to demonstrate compli-
ance to the Concept Phase assumptions for Random Hardware Failures.

The evidence of detection and control of Random Hardware Failures can be shown
by the hardware architectural metrics. The metrics defined by ISO 26262 are the Single-
Point Fault Metric (SPFM) and the Latent Fault Metric (LFM). The SPFM represents the
threats imposed by faults that Safety Mechanisms do not protect. The LFM symbolizes
the danger of faults that cannot directly violate a safety goal but could be a risk in the
presence of a second fault (i.e., faults in a Safety Mechanism).

To calculate the hardware architectural metrics, we need to understand the effect
of faults in the hardware functional behavior and classify them accordingly. According
to ISO 26262, the hardware safety analysis must consider the classification of Stuck-At-0
(SA0), Stuck-At-1 (SA1), Single Event Upset (SEU), and Single Event Transient (SET) faults
at all inputs and outputs of the design gates; the combination of all faults comprise the
Fault Space. The philosophy behind it is to examine the hardware behavior under the
influence of each element of the Fault Space. Then, based on the alterations caused
by the fault, we can determine the fault classification in one of the sub-classes defined
below.

• Safe faults: these are faults that do not cause any disturbance of safety-critical
functionalities.

• Detected faults: these are faults that can disturb the safety-critical functionalities;
hence Safety Mechanisms (SMs) are deployed to correct them and ensure that they
become innocent.

• Undetected: these are faults for which the effect is unknown; they can be either
safe, detected or even dangerous faults without associated safety mechanisms.

The results of the Fault Space analysis must confirm the assumptions related to the
technical safety concept; for example, the clause should have defined Safety Mecha-
nisms to protect the hardware from faults that affect safety-related functionalities. Ad-
ditionally, the analysis confirms the effectiveness of implemented SM by demonstrating
that a fault was detected, avoiding the disruption of the hardware behavior. The under-
standing regarding the fault classification and safety diagnostic is crucial to achieving a
comprehensive functional safety analysis.

Next, we must confirm that the probability of failures is reduced to acceptable lev-
els. For such, we need to refine the FMEA, including the results of the Fault Space anal-
ysis; the examination of Failure Modes together with safety diagnostic information is
called Failure Modes Effects and Diagnostic Analysis (FMEDA). The FMEDA integrates
the FMEA information, FIT of each FM based on the correlation to semiconductor com-
ponents, with the analysis of faults in such components. In the FMEDA, we can incorpo-
rate for each FM the fault classification; with such, we can demonstrate that part of the
FIT is related to Safe or Detected faults, reducing the residual FIT of the FM.

The example in Table 1.1 represents one FMEDA input related to the Data RAM of
a given CPU; such input represents an FM in a memory that includes an Error Correc-
tion Detection Code (ECC) mechanism. Following ISO 26262 recommendations, we can
claim that the ECC can correct 99% of the single faults in the memory; therefore, as most

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

13

faults are handled, only the remaining 1% must be accounted for the residual FIT. The
parameters of the FMEDA, demonstrated in Table 1.1 are:

• ID: a unique identifier for the Failure Mode;

• Failure Mode: a textual description of the cause of the failure or the possible way
the system can fail;

• Area: total size, in micro square meters, of the semiconductor components mapped
to the FM;

• Gates: number of gates mapped to the FM;

• Flops: number of flops mapped to the FM;

• Memory cells: number of memory cells, or memory bits, mapped to the FM;

• Raw FIT rate: total FIT rate considering the probability of failures of the semicon-
ductor components mapped to the FM;

• Safe Faults: percentage of faults, in the components mapped to the FM, classified
as Safe during the Fault Space analysis;

• Safety Mechanism: identification of SMs protecting the semiconductor compo-
nents mapped to the FM;

• DC: percentage of faults that are detected/corrected by the SM;

• Residual FIT rate: the final probability of failure of the FM after excluding the con-
tribution of Safe and Detected faults.

Table 1.1: FMEDA example

ID Failure Mode Area Gates Flops
Memory

cells
Raw FIT

rate
Safe

Faults (%)
Safety

Mechanism
DC
(%)

Residual
FIT rate

FM_2
Data RAM corrupted value is read by
the CPU leading to a wrong result

11888,2 0 0 131072 3,715 0% ECC 99% 0,03715

The functional safety analysis of the hardware design requires the correlation of FM
to all safety-related hardware components; by doing so, we can determine the Raw FIT
rate and the Residual FIT rate of all Failure Modes, and therefore of all hardware com-
ponents. Thus, the sum of the FIT rates of all FMs will represent the total FIT rate of the
hardware design.

Considering the results of the Faults Space analysis, we understand the effect of faults
on each hardware component. Therefore, we can also represent the Raw FIT rate (λ) as
the sum of the contribution of all the fault classes. ISO 26262 defines the following fault
classes:

• λSPF represents Single-Point faults that are not protected by SMs.

• λR describes Residual faults that are Undetected by SMs.

1

14 1. INTRODUCTION

• λMPF or multi-point faults represent faults that could only violate a safety goal
when combined with a second fault. Such class can be divided into two sub-
classes:

– Detected/Perceived Multi-Point Faults (λMPF,DP) are the Detected faults that
could only pose a thread in combination with a second fault.

– Latent Multi-Point Faults (λMPF,L) are faults that can only violate a safety
goal combined with a second fault (i.e., faults in a Safety Mechanism).

• λS represents the contribution of Safe faults.

The sum of the fault classes is equal to the Raw λ, as defined in the equation 6.1.

λ=λSPF +λR +λMPF +λS (1.1)

The definition of the fault classes is necessary to calculate the hardware architectural
metrics; such operation is mandatory to demonstrate the capacity of the hardware de-
sign to cope with Random Hardware Failures. The minimum coverage values for the
Single-Point Fault Metric (SPFM) and the Latent Fault Metric (LFM) are defined based
on the target ASIL. The table 1.2 describes the target values.

The SPFM examines the fault classes with direct potential to violate safety goals in
case of single-point faults. As λSPF represents faults that SM does not protect, and λR
describes faults that are Undetected by SM, both classes contribute significantly to the
Residual λ. The equation 6.2 illustrates the method for determining the SPFM.

SPF M = 1−
∑

(λSPF +λR)∑
λ

(1.2)

The LFM represents the coverage of faults that cannot directly violate a safety goal
but could be a risk in the presence of a second fault. For such, we must subtract the
contribution of single-point faults (λSPF and λR) and include the failure risk of multi-
point faults. The equation 6.3 defines the LFM calculation.

LF M = 1−
∑

(λMPF,L)∑
(λ−λSPF −λR)

(1.3)

EVALUATION OF THE SAFETY GOAL VIOLATION DUE TO RANDOM HARDWARE FAILURES

This clause aims to provide evidence that the residual risk of a safety goal violation due
to Random Hardware Failures is sufficiently low. However, even after complying with the
requirements of the Evaluation of the hardware architectural metrics clause, it is neces-
sary to demonstrate that the risk posed by residual faults is acceptable. For such, ISO
26262 defines two methods for evaluating the residual risk.

The first method is a comprehensive evaluation of each possible cause of safety goal
violation; for such, individual analysis of each failure violating a safety goal shall be per-
formed at the hardware part level. This evaluation shall provide evidence the risk of
failures from the different fault classes is acceptable. Hence, the analysis must consider
the occurrence rate of failures caused by single-point faults, residual faults, multi-point
faults, and the presence of diagnostic coverage concerning detection intervals.

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

15

The second method is the calculation of the Probabilistic Metric for Random Hard-
ware Failures (PMHF). The PMHF value represents the average probability of failure per
hour over the operational lifetime of the hardware design. In other words, it demon-
strates the remaining possibility of failure after all safety measures are in place. Thus,
the PMHF evaluation proves that all hardware elements’ cumulative safety target vio-
lating failure rate is sufficiently low. However, unlike the other metrics, ISO 26262 does
not define a method to perform the PMHF analysis. For that reason, the methodology
can be derived from different safety standards; we refer to the IEC 61508 for the PMHF
calculation as in 6.4.

P M HF =∑
λSPF +∑

λR +∑
λMPF,L (1.4)

Table 1.2 illustrates the Safety Metrics minimum value required for each ASIL. It is
essential to note that only now, at the verification clauses of the Product development
at hardware level can engineers demonstrate compliance to the Concept Phase assump-
tions for Random Hardware Failures. If the hardware architecture fails to achieve the
ASIL requirements, it must be modified; requiring rework of the safety life cycle steps.
The calculation of the Safety Metrics is not required for hardware designs targeting ASIL
A; in such cases, as the risk of failures causing life-threatening situations is negligible,
there are no requirements for Random Hardware Failure control. For hardware designs
targeting higher ASIL, compliance to the Safety Metrics values is mandatory.

Table 1.2: Safety Metrics Requirements per ASIL

ASIL SPFM LFM PMHF
A Not Relevant Not Relevant Not Relevant
B >90% >60% <100 FIT
C >97% >80% <100 FIT
D >99% >90% <10 FIT

HARDWARE INTEGRATION AND VERIFICATION

This clause aims to ensure that the developed hardware complies with the hardware
safety requirements and design specifications. The verification of the hardware with
requirements-based tests is a common practice to assure compliance with requirements
and avoid Systematic Failures. For such, the hardware integration test cases shall con-
sider the requirements and interfaces, equivalence classes, boundary values, based er-
ror guessing, functional dependencies, and others. This clause must also consider the
verification of the SM; for such, it is possible to reuse the functional testing and fault in-
jection simulation results. The Hardware integration and verification also requires the
confirmation of the robustness of hardware against external stresses, considering the
operational conditions of the system.

1.2.4. SUPPORTING PROCESSES
This chapter defines guidelines and additional considerations to support engineers in
accomplishing compliance to the safety lifecycle. As in the other chapters, the Support-
ing processes includes clauses with defined objectives, prerequisites, and work-products;

1

16 1. INTRODUCTION

however, the clauses are not sequential; instead, they describe critical processes that
support the entire safety lifecycle. The list below summarizes the objective of each clause.

• Interfaces within distributed developments: defines the interactions and depen-
dencies between customers and suppliers for development activities;

• Specification and management of safety requirements: ensure the correct spec-
ification of safety requirements and its consistent management throughout the
entire safety lifecycle;

• Configuration management: ensure that lifecycle products are under proper ver-
sion control, can be uniquely identified, and are reproducible;

• Change management: analyze and control changes to safety-related work-products;

• Verification: ensures that the work-products comply with their requirements;

• Documentation management: aims the development of a documentation man-
agement strategy for the entire safety lifecycle;

• Confidence in the use of software tools: provides criteria to determine the required
level of confidence and to create evidence that the deployed software tools are
suitable to be used to support the activities required by the ISO 26262;

• Qualification of software components: provide evidence for the suitability of soft-
ware components reuse in items developed in compliance with the ISO 26262;

• Evaluation of hardware elements: ensure that the functional behavior of hardware
elements is adequate to meet the allocated safety requirements and therefore the
risk of a violation of a safety goal is sufficiently low;

• Proven in use argument: guides the argument for the reuse of existing elements
when field data is available;

• Interfacing an application that is out of scope of ISO 26262: aims to achieve confi-
dence that such applications are not able to violate safety goals;

• Integration of safety-related systems not developed according to ISO 26262: aims
to confirm that a system designed according to another standard still satisfies the
required level of functional safety.

Although several clauses of the Supporting processes define critical activities for com-
pliance with ISO 26262, in the next section, we are going to elaborate the Confidence in
the use of software tools clause.

CONFIDENCE IN THE USE OF SOFTWARE TOOLS

The conception of automotive systems demands numerous software tools to support
development and verification activities; tools such as compilers, simulators, synthesis
engines, among others, are mandatory for complex solutions. However, as these tools

1.2. FUNCTIONAL SAFETY VERIFICATION BY ISO 26262

1

17

have a critical role in modifying work-products of the safety lifecycle, they could also in-
troduce failures that can lead to the violation of safety goals. For that reason, software
tools used to support the activities required by ISO 26262 must undergo an analysis pro-
cess to determine the necessary level of confidence in their effectiveness.

This clause applies to any software tool that supports development activities required
by ISO26262. For each software tool, engineers have to determine if a malfunction can
introduce or mask errors in safety-related items; if the answer is yes, the clause provides
means for the evaluation and qualification of the software tools. Furthermore, if the soft-
ware tool requires qualification, its development process must be adequate concerning
compliance with the ISO 26262. In other words, the development of the software tool
must respect a safety lifecycle to avoid the occurrence of Systematic Failures.

The evaluation of the software tool’s confidence depends on the safety activity the
tool supports; also, its functionalities and properties. Hence, the examination aims to
determine the impact caused by a malfunction, the Tool Impact (TI), and the measures
implemented to detect malfunctions in the tool, the Tool error Detection (TD). The list
below describes the possible values for TI and TD:

• Tool Impact (TI)

– TI1: all other cases;

– TI2: malfunctions can introduce or fail to detect errors in a safety-related
item.

• Tool error Detection (TD)

– TD1: high degree of confidence that a malfunction will be prevented or de-
tected;

– TD2: medium degree of confidence that a malfunction will be prevented or
detected;

– TD3: all other cases.

The analysis of TD and TI is crucial to assure that the outputs of software tools are
reliable. For example, we can analyze the results of a logic synthesis software tool; such
a tool aims to translate the Register Transfer Level (RTL) description of a hardware ele-
ment into a gate-level design implementation. If the synthesis result is wrong due to a
malfunction in the software tool, the intended functionality of the hardware design may
be affected, leading to safety goal violations. Consequently, such an example should
be classified as TI2 due to the possibility of introducing errors to the design implemen-
tation. In the specific case of the logic synthesis software tool, it is common practice
that the resulting gate-level design implementation is verified employing equivalence
checking. Such a method assures that the functionality implemented by the gate-level
is equivalent to the RTL description. Therefore, as the logic synthesis output is verified,
we can claim a high degree of confidence that a malfunction would be detected. For that
reason, the example could be classified as TD1. The combination of TI and TD values de-
termines the Tool Confidence Level (TCL), in the example above the software tool would
be classified as TCL1. Table 1.3 illustrates the possible combinations and the resulting
TCL.

1

18 1. INTRODUCTION

Table 1.3: Determination of the Tool Confidence Level (TCL)

Tool error Detection (TD)
TD1 TD2 TD3

Tool Impact
(TI)

TI1 TCL1 TCL1 TCL1
TI2 TCL1 TCL2 TCL3

The TCL classification will determine what the requirements for using the software
tool are. For example, in cases where the analysis results in TCL2 and TCL3, the Tool
Qualification is required. On the other hand, a software tool classified at TCL1 needs no
additional qualification methods. Figure 1.8 illustrates the tool evaluation flow.

Figure 1.8: Tool Evaluation Flow

When the tool qualification is required, ISO 26262 defines methods to ensure that the
risk of malfunctions is sufficiently low. The requirements are dependent on the software
tool TCL and the ASIL assigned to the tool’s work product. The goal of the qualification is
to guarantee that a tool malfunction is not going to influence the safety functionalities;
for such, engineers can deploy one of the following methods:

• Increase the confidence in the outputs of the tool employing additional verifica-
tion.

• Demonstration of the tool development process following safety standards or an-
other development process with an acceptable level of quality.

• Validation of the software tool through test and verification.

1.2.5. DISCUSSION
As described above, there are several challenges to achieving compliance with ISO 26262.
The guidelines of the standard establish a comprehensive safety lifecycle that confirms

1.3. STATE-OF-THE-ART IN FUNCTIONAL SAFETY VERIFICATION

1

19

that the automotive design is free of Systematic Failures. Additionally, it stipulates func-
tional safety verification requirements that ensure the hardware elements contain safety
measures to cope with Random Hardware Failures. By decreasing the probability of both
failure categories, we avoid safety goal violations and accomplish higher integrity levels.
Such a complex standard presents many possibilities for researchers aiming to advance
state-of-the-art to facilitate compliance to safety requirements.

Furthermore, even though functional safety verification has its particular challenges,
it includes several intersections with other areas of interest for developing semiconduc-
tors, such as reliability, security, quality, among others. Consequently, the research space
that can contribute to compliance with safety standards is vast. In the scope of this work,
we have narrowed down the many challenges presented by functional safety compliance
to the ones that the EDA industry can support. The EDA industry has a crucial role in
the development of integrated circuits. The available tools and methodologies cover the
entire product lifecycle range, including support from requirements to post-production
tests; the same scenario applies to the development of safety-critical solutions. For that
reason, the EDA industry must also undertake the additional challenges for compliance
with safety standards.

Even though most semiconductor development activities rely on EDA tools, the final
burden of certification is from the companies responsible for the development. There-
fore, it is essential to consider the feedback of these companies to understand the ac-
tual difficulties and define strategies to facilitate the development of safety systems.
Furthermore, during the development of this research, we had the opportunity to con-
tribute with some essential IP providers for the Automotive sector; therefore, we could
understand their challenges and narrow down the research topics that would provide the
higher contribution. Finally, by understanding state-of-the-art EDA technologies and
considering the requests from Automotive IP providers, we have selected the following
topics of interest:

• Fault space analysis;

• Early estimation of safety metrics;

• Validation of software tools for compliance with the Confidence in the use of soft-
ware tools clause;

• Enhancements to the functional safety verification process of hardware designs.

1.3. STATE-OF-THE-ART IN FUNCTIONAL SAFETY VERIFICATION
In this section, we will analyze the state-of-the-art on the chosen research topics; for
such, we describe the current industry practices and elaborate on the latest findings
from the research community.

1.3.1. FAULT SPACE ANALYSIS
This section first defines the faults as seen by ISO 26262 and, after that, briefly describes
the commonly known technologies for fault classification, namely Formal Methods, and
Fault Injection.

1

20 1. INTRODUCTION

FAULT CLASSIFICATION

According to ISO 26262, the safety analysis of a Hardware device must consider the clas-
sification of the effect of faults on the circuit’s functional behavior; for such, the stan-
dard defines all inputs and outputs of the design gates as fault targets. Also, ISO 26262
demands analysis of SA0, SA1, SEU, and SET fault models. Therefore, the fault space to
be analyzed englobes the four cited fault models on every input and output of the design
gates. For example, Figure 1.9 illustrates a section of a logic design in which red arrows
highlight the fault targets.

Figure 1.9: Targets for fault analysis

In such an example, the permanent fault space analysis would require the classifica-
tion of 20 faults, resulting from examining the SA0 and SA1 fault models on the ten fault
targets highlighted in the Figure 1.9. The philosophy behind it is to identify the behav-
ior change caused by each fault. Then, based on the circuit’s response under the fault’s
influence, we can classify a suitable fault sub-class. The possible fault sub-classes are:

• Safe faults: these are faults that do not cause any disturbance of safety-critical
functionalities; also named untestable or redundant in the DfT community.

• Detected faults: these are faults that can disturb the safety-critical functionalities;
hence SMs are deployed to correct them and ensure that they become innocent.

• Dangerous faults: these are faults that can disturb the safety-critical functionalities
and are not protected by SMs; therefore, they are an immediate risk for safety goal
violations.

• Undetected: these are faults for which the effect is unknown; they can be either
Safe, Detected or even Dangerous faults without associated safety mechanisms.

Figure 1.10 illustrates the process of fault classification commonly deployed by the
industry for ISO 26262 compliance. It starts with the definition of the fault space; all
faults are initially classified as Unknown. Next, engineers deploy Formal Methods for
identifying Safe faults; as these are untestable, it is beneficial to remove them before
the simulation. Finally, the remaining fault space undergoes FI Simulation; this pro-
cess classifies the faults as Detected when SM covers them, Dangerous when they affect
the design functionalities, and Undetected otherwise. This initial assessment allows the
calculation of the Diagnostic Coverage (DC); it represents the efficiency of Safety Mech-
anisms, and it is essential for ISO 26262 compliance. If the desired DC is achieved, the

1.3. STATE-OF-THE-ART IN FUNCTIONAL SAFETY VERIFICATION

1

21

process ends. Otherwise, engineers have two possibilities: first, to deploy expert judg-
ment trying to classify the Undetected residual faults, as shown in Figure 1.10; second,
to include additional SMs to detect/correct Dangerous faults.

Figure 1.10: Fault Space Analysis

The reduction in the number of Undetected and Dangerous faults improves the DC.
As described in 1.2.3, the DC is crucial during the FMEDA for computation of the residual
FIT and the safety metrics. The DC is calculated according to the equation 1.5:

DC = Detected

(Tot al −Sa f e)
(1.5)

where Detected represents the number of faults detected or corrected by SMs, Total
is the size of the fault space, and Safe the number of faults that cannot disturb safety-
critical functionalities. The following sections detail the implementation of the lead
technologies for fault classification.

FORMAL METHODS

The classification of a fault as Safe is only possible if one can prove that the given fault
is untestable; in other words, no existing combination of test stimuli can propagate the
fault. Therefore, formal methods appear as a sound alternative since they are not limited
to a specific time or state. Instead, the scope is global, and every evaluation context and
test stimuli are considered [2]. Consequently, formal methods can exhaustively prove
that a fault can never produce any failure; hence, these faults cannot violate safety goals
and are considered Safe.

Different EDA vendors explore fault analysis capabilities in their formal solutions.
Generally speaking, these solutions automatically generate properties that prove the be-
havior of the faulty design; for that reason, knowledge of formal languages is not neces-
sary. In addition, they allow integration with FI Simulators providing fault lists optimiza-
tion and reducing simulation campaigns. Tools used for formal analysis usually apply
two main fault analysis techniques, Structural Analysis and Formal Analysis.

1) Structural Analysis: It determines the testability of faults by verifying the physi-
cal characteristics of the design. Figure 1.12 illustrates such approach; the figure repre-
sents a circuit with combinational logic (g), outputs (out) and fault targets (f). Initially,
the user must configure the outputs of the circuit that are relevant for fault propagation,
also named Observation Points or Strobes. In the example, as the only Observation Point
(strobe) configured for the fault analysis is ’out0’, any fault outside of its Cone of Influ-
ence cannot propagate to ’out0’; therefore, it is considered Safe. The structural analysis
uses three techniques to identify the nature of faults:

1

22 1. INTRODUCTION

Figure 1.11: Structural Analysis Example.

• Cone of Influence analysis: For the given cone of influence in the figure and con-
sidering only one strobe ’out0’, a fault ’f1’ will never cause a failure; hence it is
Safe.

• Activation analysis: The drivers of ’g1’ can define the activatability of ’f2’. For ex-
ample, if ’g1’ always outputs the logic value one, ’f2’ would not be activatable for
SA1 faults. Consequently, an SA1 fault in ’f2’ would be Safe.

• Propagation analysis: The combinational logic ’g2’ can mask the propagation of
a fault in ’f3’. If, for example, ’g2’ is an AND gate, with one of the inputs always
set with the logic value zero, the effect of a fault in ’f3’ would never propagate to
’out0’; hence ’f3’ would be Safe for SA1 and SA0 faults.

2) Formal Analysis: Its fundamental theory consists of creating a representation of
the boolean function implemented by the design under test, where formal proves can
be deployed. Modern Formal tools employ different techniques, and although details of
implementation are not disclosed, standard forms of design representation are Binary
and Multiway Decision Diagrams [3][4].

To understand the behavioral changes in the faulty design, these tools elaborate two
copies of the design representation; the good and the bad machine. First, the tool applies
the same inputs to both machines and includes monitors to the observation points; dif-
ferences in the observation points of both machines indicate the propagation of a fault.
Second, by forcing the fault effect in the bad machine, we can determine the fault sub-
class; this process is repeated for all elements of the fault space. Figure 1.12 illustrates
the formal analysis process.

Unlike simulators, formal methods rely on the verification of properties to under-
stand the design behavior. For that reason, such tools automatically generate properties
to determine the activation and propagation of faults. The activation analysis indicates
whether any combination of inputs can functionally activate a fault. Therefore, the for-
mal engine must verify a property confirming that the fault target can assume a logic
value opposite to the fault model, allowing the activation of such fault. Next, the formal
engine must prove the properties for every possible combination of input values. If a
property is false, the activation of the relevant fault is not possible, and therefore, the

1.3. STATE-OF-THE-ART IN FUNCTIONAL SAFETY VERIFICATION

1

23

Figure 1.12: Formal Analysis flow

fault is Safe. The example below describes the properties to verify the activation of SA0
and SA1 faults in the fault target "dut.cpu.loadstore.read_data_enable".

• SA0 activation property:
assert property (dut.cpu.loadstore.read_data_enable == 1)

• SA1 activation property:
assert property (dut.cpu.loadstore.read_data_enable == 0)

Propagation analysis verifies if there is a combination of inputs that provoke fault
propagation to the observation points. Once again, formal properties to perform the
analysis are automatically generated and verified concerning all possible input stimuli.
However, the properties for the propagation analysis are complex; the formal tool must
create a set of assumptions based on the reset conditions, the clock trees, and user in-
puts; then, it generates properties to describe the propagation paths and monitor the
observation points. Finally, for each element of the fault space, the properties are ver-
ified by the formal engine; faults that cannot propagate to the observation points are
Safe.

The formal analysis capabilities of such tools can also provide additional information
about the faults. If, for example, a property that verifies the propagation of a fault is
confirmed, the tool can provide the combination of input stimuli that demonstrate the
property. Hence, we can retrieve a counter-example for each proven property, showing
the necessary conditions for the property to be true. Furthermore, we can replicate such
inputs stimuli in the simulation environment, improving the Fault Injection simulation
results.

Even in state-of-the-art solutions that demand powerful parallelization capabilities,
it is worth noting that formal analysis is still limited due to the state explosion problem.
In addition, such engines are resource hungry and cannot find results for all fault space.
Therefore, as illustrated in Figure 1.10, the Undetected residual faults are still a problem

1

24 1. INTRODUCTION

requiring expert judgement for additional classification to accomplish sound Diagnostic
Coverage figures.

FAULT INJECTION SIMULATION

Fault Injection Simulation is widely used and available in various solutions. It is also the
recommended ISO 26262 fault analysis method. Such tools can analyze RTL or gate-level
design descriptions and simulate their behavior based on given test inputs. The determi-
nation of a faulty design behavior occurs by comparing the outputs of the hardware with
and without faults. The flow implemented by Fault Injection Simulators is described
below:

1. Elaboration of RTL/GTL design description.

2. Fault list generation and optimization: definition of the fault space for simulation.
The user can define fault targets, models, and activation times for individual fault
campaigns. Also, modern tools include capabilities for pruning the fault space,
reducing simulation efforts.

3. Fault-free simulation: fault-free behavior of design is simulated for recording the
observation points reference values. The observation points, defined by the user,
are (1) functional strobes, which store information related to functional outputs,
and (2) checker strobes, which indicate how the Safety Mechanisms react.

4. Fault injection simulation: For each fault, the faulty design behavior is simulated.
The observation points are then compared to the reference values; the differences
in the values determine the design behavior under fault.

5. Fault classification: If the fault effect is perceived in a checker strobe, then the
fault is classified as Detected; if it is noted in a functional strobe, it is classified as
Dangerous. Otherwise, the fault is classified as Undetected.

FI Simulation determines the behavior change provoked by a fault when the effect
is observable in one of the outputs (strobes). In cases where a fault effect is not visible
on the strobes, the tools classify it as Undetected. However, the propagation of faults to
the observation points is highly dependent on the stimuli applied to the circuit. For that
reason, the classification of a fault as Undetected is not conclusive, as different stimuli
could induce fault propagation to the observation points. In these cases, it is common
to repeat FI simulation with additional test benches to cause fault propagation. After ex-
tensive simulation campaigns are held, the remaining option is to count on expert judg-
ment to analyze the remaining fault space to improve fault classification and, therefore,
the DC.

ENHANCEMENTS TO THE FAULT SPACE ANALYSIS

As described above, the industry’s state-of-the-art solutions for functional safety verifi-
cation still leave gaps in the fault space that must be closed for achieving higher integrity
levels. As a result, it is common to use Expert Judgment; specialists in the design im-
plementation perform several analyses to identify areas that would not be affected by
faults due to design characteristics. Additionally, formal analysis and FI simulation are

1.3. STATE-OF-THE-ART IN FUNCTIONAL SAFETY VERIFICATION

1

25

a constant source of improvements possibilities as any enhancement in the results or
execution times can be crucial. For those reasons, several works explore options for en-
hancing the Fault Space analysis.

Identifying Safe faults is one of the critical contributions to the flow, as an early clas-
sification of these faults reduces simulation efforts and directly improves the DC. In [5],
the authors present a method for identifying untestable faults in sequential circuits. For
such, it deploys a symbolic simulation to identify flip-flops and circuit lines that cannot
be initialized. In [6], the authors propose an alternative method based on theorems that
enables a fault injection in any time frame within the unrolled sequential circuit, which
implications extend the unobservability propagation of gates to multiple time frames.
Furthermore, this technique efficiently identifies conflicting assignments to multiple-
node by analyzing logical relationships in the circuit, increasing the identification of
untestable faults.

In addition to identifying Safe faults, another essential technique for improving the
execution times of FI simulation is optimizing the fault space. One of the most efficient
methods is the generation of fault groups by cluster techniques [7]. By grouping hard-
ware components with identical behavior under the influence of faults, we can deter-
mine the classification of the entire group by analyzing a single member. Examples of
such works are [8], and [9], where authors explore different techniques to group similar
semiconductor components into clusters to reduce the number of FI simulations.

Due to high complex characteristics and the number of involved technologies, an
ideal Fault Space analysis methodology cannot rely on a single approach. Instead, it
should consider a combination of expert design analysis, FI simulations, and formal
analysis techniques. An example of such complete methodology is described in [10].
In this work, the authors specify a fault simulation methodology that uses fault propaga-
tion probability and clustering approaches for accelerating fault simulation campaigns.
Another example is described in [11]. Here, the authors introduce concepts of functional
safety analysis; and explain how the state-of-the-art traditional design flow bridges with
fault space analysis.

Even though the presented methodologies improve fault analysis and execution time,
there is still a gap requiring expert judgment. As part of this process relies on manual
analysis by experts, they tend to become expensive, time-consuming, and prone to er-
rors. Consequently, an automated and reliable methodology that decreases manual ef-
forts while fulfilling ISO 26262 requirements is needed. Additionally, a common problem
is the lack of representative test cases that capture the complexity of Automotive semi-
conductors; it is not always obvious to realize how the proposed solutions would escalate
in larger designs.

1.3.2. EARLY ESTIMATION OF SAFETY METRICS

As discussed in 1.2.3, the confirmation of the safety requirements defined during the
HARA is only possible at later stages of the safety lifecycle. Therefore, in cases where
achieving safety metrics is impossible, additional iterations through critical develop-
ment and verification phases are needed. For that reason, a misleading architecture
decision before implementation will be exposed only at the final stages of the develop-
ment, producing a high impact on costs and development time. For that reason, there

1

26 1. INTRODUCTION

is a high demand for techniques that can support engineers with design space explo-
ration of safety features, increasing the confidence in conceptual decisions and avoiding
rework. One of the fundamental variables to determine the safety metrics is the DC. Con-
sequently, early-stage evaluations of the DC, together with an estimation of the gate-level
design area, enable an accurate prediction of the fault classes and, therefore, the safety
metrics. For that reason, several authors explore the correlation of diagnosis in differ-
ent design abstraction levels; such levels are Virtual Platforms based on Instruction Set
Simulators (ISS), RTL, and gate-level.

Methodologies to perform fault injection in Virtual Platforms [12] and also the ef-
fects of soft errors are explored in several works as [13], [14], [15], [16], among others.
In general, the authors explore the effect of bitflips in the registers of CPUs using Vir-
tual Platforms. These articles include several important contributions: the comparison
of faulty behavior in bare-metal software applications and operational systems, the ef-
fectiveness of traditional SM for soft errors, software mechanisms for fault detection,
among others. However, the fault targets and models in such a high abstraction level are
not representative of the gate-level; for that reason, predictions based on these are not
accurate.

Trying to improve the accuracy of fault analysis in different abstraction levels, au-
thors start exploring correlation models. In [17][18], the authors propose a multi-abstraction
level simulation of embedded processors. The simulation utilizes checkpoints enabling
the context switch between the ISS and RTL. The simulation starts with the ISS until the
fault activation time. Then, the simulator switches to RTL and inserts a bitflip into the
fault target register. Next, the RTL simulation continues until one of the checkpoint reg-
isters can capture the fault’s impact. Finally, the simulation switches back to the ISS to
investigate the fault impact. In [19][20], the authors elaborate a correlation of the fault
injection experiments in an RTL microcontroller description with the information avail-
able at the ISS. The correlation between RTL and ISS fault injection implies that the prob-
ability of an injected fault becoming a failure depends on the set of instructions exercised
by the microcontroller. Thus, the likelihood that a given set of instructions triggers a fail-
ure is proportional to the processor functional units utilized for each instruction and,
consequently, the area of each unit.

The correlation between RTL and gate-level provides a better trade-off between ac-
curacy and effort for predicting safety metrics. Such practice is already explored in other
areas of interest. In [21] the authors address test pattern generation in RTL. They pro-
pose a fault model and an ATPG algorithm, resulting in excellent fault coverage proper-
ties in test patterns, also providing a good estimate of the final gate-level fault coverage.
In [22], and [23], the authors propose frameworks for establishing correspondence of
gate-level implementation and its reference model specified at RTL. The papers propose
techniques to compare the similarities in names, structures, and functions between the
gate-level implementation and the RTL counterpart.

The correlation between abstraction levels appears as a good alternative for the pre-
diction of safety metrics. However, as higher abstraction levels represent a subset of the
fault space available at gate-level, the estimation errors tend to be significant. For that
reason, there is still a lack of methodologies that can support the accurate estimation of
safety metrics during the several phases of the hardware development process.

1.4. RESEARCH TOPICS

1

27

1.3.3. VALIDATION OF SOFTWARE TOOLS

The confidence in the use of software tools tends to be overlooked during the develop-
ment process. In general, the tool developer is responsible for providing well-tested solu-
tions for their customers. On the other end, the user trusts the tool’s outputs are correct
and don’t need additional verification. However, in the context of safety-critical appli-
cations, where a malfunction could cause life-threatening situations, we need to ensure
that all possible causes of failures are covered. Therefore, as described in 1.2.4, any soft-
ware tool that can introduce, or fail to detect, failures in a safety component, should
comply with the requirements of the Confidence in the use of software tools clause.

The growing adoption of safety standards in the automotive industry results in an in-
creasing uncertainty about software tools. In [24], the authors summarize the tool qual-
ification approach of ISO 26262 and differentiate it from other safety standards. Also,
the work describes their first-hand experiences with qualifying development and veri-
fication tools. In [25], the author presents a study that ties weaknesses in support en-
vironments to software faults. Based on the results, the work provides a guideline for a
top-down software toolchain qualification; it also includes a broader view on risks re-
lated to tool usage.

In [26], the authors define safety goals for toolchains and suggest a qualification
method that takes a systems approach. With this method, software tools are pre-qualified
under the assumption that specific properties of the development environment will sup-
port the verification of the software tool. In [27], the authors propose using a monitor
and fault injection to exercise the functionalities of a software tool. The work defines a
process that iteratively activates the tool’s functionalities and simulates faults that could
impact the given functionality. When all injected faults are detected as expected, we can
increase confidence in the measures to avoid malfunctions in the tool.

The state-of-the-art presents attractive alternatives for complying with the require-
ments for tool qualification. However, the process to prove that a tool’s malfunction
cannot interfere with a safety-critical functionality presents an additional burden on the
tool’s developer and users. For that reason, there is a high demand for methodologies
that could automate the verification of the software tools, avoiding expensive develop-
ment processes and additional assurances on the user’s side.

1.4. RESEARCH TOPICS

Traditionally, compliance with functional safety requirements is the responsibility of car
manufacturers and system providers. However, with the increasing complexity of elec-
tronics involved, this burden is now diffusing through the supply chain, namely the EDA
companies and design tool providers. Given this scenario and the state-of-the-art pre-
viously discussed, innovations in the several challenges of functional safety verification
are in high demand. However, on this work’s scope, we have focused on the joint hurdles
of Automotive IP providers and EDA companies. Next, we describe the research topics
and elaborate on issues in each step.

1

28 1. INTRODUCTION

1.4.1. VALIDATION OF SOFTWARE TOOLS

The development of safety components demands compliance with requirements that
validate the development environment and tools. As previously discussed, the valida-
tion of software tools is mandatory for achieving ISO 26262 certification. Therefore, it is
important that aspects of software tool qualification as evaluated in the initial develop-
ment phases. Failing to fulfill the requirements could make design elements considered
unfit for use in a safety-critical context.

1) Requirements for the evaluation of software tools: We first surveyed the de-
mands of safety standards regarding the validation and software tools and then inves-
tigated the literature and industry methodologies. Also, the study considered the needs
of Automotive IP providers to improve their confidence in the tools used in their devel-
opment environments. The goal was to establish alternatives to enhance the trust in the
software tools without resorting to expensive modifications to their development pro-
cesses.

2) Methods for the qualification of software tools: The TCL analysis will determine
the necessity for Tool Qualification; as previously discussed, such examination is based
on the TI and TD parameters. The tool’s impact (TI) depends on its role in the safety life-
cycle and cannot be modified; however, improvements on TD are possible by enhanc-
ing the methods for detecting tool malfunctions. Tool Qualification generally requires
demonstration of the tool development process following safety standards; such an ap-
proach would be costly for the EDA industry, considering that these tools are constantly
evolving and require additional qualification effort for each new release. Therefore, we
will address the issue of how to verify software tools’ functionalities without modifying
the tool development process. Additional verification in the tool outputs enables a better
TD, increasing the confidence in the tool’s results and avoiding Tool Qualification.

1.4.2. REPRESENTATIVE TEST CASES FOR THE AUTOMOTIVE SECTOR

The availability of representative test cases is an additional challenge when assessing
the quality of functional safety verification methodologies. Nowadays, industries do not
disclose development lifecycles and verification techniques, and each big player in the
automotive sector has its methods and tools. For that reason, it was crucial to define a
representative test case to assess the quality of the results proposed in this work. To this
end, the following topics are explored in this thesis.

1) Characterization of industry Automotive solutions: Initially, we performed a com-
prehensive analysis of commercial SoCs from the leading Automotive IP providers; this
research leads to the definition of functional blocks present in the various platforms.
Also, specifics of the Automotive sector are considered, generating requirements for the
proposed solution. This characterization aims to create an SoC definition that is repre-
sentative of the Automotive industry standards.

2) Evaluation of Open Source platforms: Next, we need to choose a development
platform that complies with the previously gathered requirements and is open-source,
enabling easy dissemination in the research community. The selection of the CPU, as
the central unit of the SoC, considered different processor architectures, performance
features (e.g., pipeline stages and memory interfaces), main buses, software stacks, and
the possibility of development on multiple abstraction levels (Virtual Platforms, RTL,

1.4. RESEARCH TOPICS

1

29

and gate-level).

3) Definitions of an Automotive SoC platform: Finally, after defining the require-
ments to qualify an SoC as representative of the Automotive domain, we can build a
solution fulfilling such requirements. The proposed Automotive benchmark comprises
all its elements in the format of an SoC, and hence, it was named AutoSoC. The AutoSoC
was conceived by analyzing commercial solutions and considering standard develop-
ment techniques deployed by the industry. The selected architecture considered the
availability of software (compilers, debuggers, operating systems, and others) and the
feasibility of development in multiple hardware abstraction levels. The suite includes
various configurations targeting different levels of safety. Due to its intrinsic characteris-
tics, the AutoSoC qualifies as a perfect test case for assessing the quality of the techniques
proposed in this work.

1.4.3. ESTIMATION OF DESIGN SAFETY METRICS

Compliance with safety metrics is a critical step for the validation of hardware designs.
As previously discussed, the target values are defined during the HARA, on the initial
development phases; however, the calculation of the metrics is only possible at later
stages of hardware verification. This scenario can be dangerous when the target values
are not met, resulting in design modifications and re-work of several lifecycle steps. For
that reason, developing methodologies to estimate the safety metrics throughout the
lifecycle phases is vital for enhancing the hardware development process. To this end,
the research carried out in this thesis focuses on the following topics.

1) Safety metrics calculation for compliance with ISO 26262: Initially, this work
conducts a comprehensive examination of the requirements for the computation of safety
metrics, considering the guidelines of multiple safety standards. Several safety standards
(i.e., IEC 61508) provide methods to support the calculation of safety metrics; therefore,
they can offer alternative approaches to compliance with ISO 26262. Furthermore, by
considering the available possibilities for the computation of the metrics, we can isolate
the design variables required for each method.

2) Correlation of design abstraction level: Next, with the appropriate knowledge of
the required design information for calculating the safety metrics, we can understand
how to assess this information during the earlier development phases of hardware de-
signs. An important variable to be evaluated is the fault space classification; we need to
correlate the behavior of faults in the gate-level to higher design abstraction levels, as
RTL and Virtual Platforms.

3) Accurate estimation of safety metrics: Once the correlation approach is obtained,
we need to determine a method for estimating the safety metrics at distinct hardware
development stages. We have to gather the design information available at different ab-
straction levels and consider the accuracy compared to the gate-level description—the
lower the accuracy, the higher the safety metrics estimation error. By considering these
conditions, we can define a methodology for accurately estimating safety metrics at ev-
ery hardware development stage.

1

30 1. INTRODUCTION

1.4.4. ENHANCEMENTS OF THE FUNCTIONAL SAFETY VERIFICATION METH-
ODS

After validating the support tools, defining representative test cases, and establishing a
methodology to estimate safety metrics throughout the development process, the last
step is to comply with the functional safety verification requirements. For that reason,
we target methods to facilitate compliance with ISO 26262 clauses, as described in the
following topics.

1) Functional safety verification requirements: As previously discussed, functional
safety verification determines several requirements to guarantee that a failure in a safety-
critical system cannot cause life-threatening situations. Such requirements are addi-
tional verification steps, comparing with the traditional functional verification of semi-
conductors. Therefore, in this phase, we aim to understand the specific requirements of
ISO 26262 for functional safety verification. In addition to a complete examination of the
standard, we had the opportunity to analyze parts of the verification methodologies and
primary challenges of some of the essential IP providers in the Automotive industry.

2) EDA tools and technologies: With a better understanding of the requirements,
we could address the contribution of EDA technologies to comply with safety standards.
The EDA tools and solutions are already critical for the development of semiconduc-
tors; this is also becoming a certainty for functional safety verification. In this scenario,
we need to, first, learn how the different EDA technologies contribute to the industry
verification methodologies, the challenges, and gaps; second, how to close the gaps by
improving the tools; and last, how the technologies can support additional steps of the
hardware development lifecycle.

3) Enhancing the functional safety verification of Automotive SoCs: This phase
aims to determine methods to deploy the EDA technologies to close the gaps of func-
tional safety verification. Every EDA tool has a traditional use that is already extensively
deployed. Therefore, even though several contributions can still be made, our focus is on
finding alternative employment for the different technologies. For that reason, we can
divide this research twofold: first, online fault detection, where EDA solutions contribute
by generating hardware mechanisms to enhance fault detection; and second, enhance-
ments to the fault space classification, where we look for alternative deployments of EDA
technologies for improving fault classification.

1.5. CONTRIBUTIONS OF THE THESIS
Over the entire course of this Ph.D. project, we are devoted to addressing the research
issues at different stages of the safety lifecycle. Our main goal is to propose methodolo-
gies to support several development phases and facilitate compliance with ISO 26262.
Therefore, Figure 1.13 demonstrates how the main contributions of this thesis support
the safety lifecycle as defined by ISO 26262; also, the items below summarize such con-
tributions.

1) Functional Safety Verification Methods and Validation: Initially, we need to en-
sure that the software tools deployed in the development of safety-critical systems have
the necessary levels of confidence; for such, based on the literature review, we propose a
methodology for increasing Tool Confidence Level according to ISO26262. Our approach

1.5. CONTRIBUTIONS OF THE THESIS

1

31

Figure 1.13: Contributions of the thesis to the ISO 26262 safety lifecycle

deploys multiple technologies capable of classifying the behavior of faults; if one of the
tools has a malfunction, the classifications will differ, revealing the problem to the user.
Furthermore, the validation process is automated by a script responsible for configur-
ing all tools and test environments; at the end, it generates a report comparing the fault
classification and highlighting any discrepancies. By providing an automated flow for
detecting malfunctions in Fault Analysis tools, we improve the Tool error Detection (TD)
capability and avoid the extensive ISO26262 Tool Qualification requirements. Addition-
ally, the report provides further information about the design under test, contributing to
engineers with information about the fault space classification.

2) Safety Benchmarks for Automotive SoCs: Next, it was necessary to introduce a
hardware design that is representative of the Automotive industry standards. In general,
there is limited access to automotive hardware and software solutions; such a scenario
becomes a challenge for researchers, who may not verify their work in representative
designs or assess the quality of their results. To address these challenges, we propose an
open-source industrial-grade benchmark suite. The proposed Automotive benchmark
comprises all its elements in the format of an SoC, and hence, it was named AutoSoC.
The AutoSoC was conceived by analyzing commercial solutions and considering stan-
dard development techniques deployed by the industry. The selected architecture con-
sidered the availability of software (compilers, debuggers, operating systems, and oth-
ers) and the feasibility of development in multiple hardware abstraction levels (Virtual
Platform, RTL, and gate-level). The suite includes various configurations with different
levels of Safety Mechanisms (SMs), enabling investigation of functional safety aspects.
In addition, the AutoSoC demonstrates representative use cases by a set of software ap-

1

32 1. INTRODUCTION

plications, including an Automotive Cruise Control.
3) Early Estimation of Design Safety Metrics: The Safety Metrics verification is only

possible at later stages of the development lifecycle, and failing to achieve the required
figures demands additional iterations through critical development and verification phases.
In other words, it has a high impact on costs and development time. For that reason, this
work proposes a systematic approach for the early estimation of safety metrics of Au-
tomotive designs. Furthermore, by allowing engineers to estimate fault detection rates
before the final development stages, we provide a tool for the design space exploration of
safety architectures, improving the confidence in conceptual decisions and decreasing
the chances of rework. The methodology is based on the characterization of the design
description (RTL and gate-level) and the workload impact concerning fault propagation.
Ultimately, the gathered information allows an early assessment of the Fault Injection
campaign results at various development phases; and, therefore, it will enable the early
estimation of safety metrics.

4) Enhancing Online Fault Detection of Automotive CPUs: The development of Au-
tomotive CPUs faces a typical tradeoff between cost and safety. The conventional safety
schemes, as Dual-Core LockStep (DCLS), require full redundancy of the hardware area,
increasing costs. We propose a methodology that deploys verification EDA technologies
to generate Safety Mechanisms (SM), avoiding hardware overhead; as the EDA technolo-
gies effectively understand the behavior of faulty designs, we explore such knowledge to
assist in generating SMs. First, the process deploys Formal Tools to analyze the prop-
agation of faults in a CPU; for such, we create a set of properties to enable the formal
environment to use only pre-selected opcodes for fault propagation. Next, we extract
the sequence of opcodes deployed to propagate the fault, also known as the counter-
prove of the formal properties. Then, by integrating all opcode sequences, we generate
a Software Test Library (STL) capable of detecting faults in the CPU; finally, we deploy FI
Simulation to validate the generated mechanisms and assess their quality.

5) Enhancing the Safety Verification of Automotive SoCs: With a sound compre-
hension of the different stages of functional safety verification; and considering the con-
tributions to previous development phases, we propose a methodology to support the
final clauses for hardware safety verification. For such, we introduce an automated ap-
proach for identifying the nature of faults overlooked by other technologies, i.e., faults
concerning or not concerning safety-critical outputs. For example, suppose the effect
of a fault does not affect safety-related functionalities. In that case, there are no Safety
Goal violations; hence the fault can be classified as a Safe fault, increasing compliance to
safety standards. Additionally, we validate all listed contributions to the safety lifecycle
by performing the hardware verification clauses considering the AutoSoC and all pro-
posed methodologies. Such confirmation follows ISO 26262 functional safety require-
ments, including developing an FMEDA, Failure Rate analysis, and the final metrics cal-
culation.

1.6. THESIS ORGANIZATION
The aforementioned contributions to the ISO 26262 safety lifecyle will be elaborated in
detail in the remainder of this thesis, which is organized as follows.

Chapter 2 describes a methodology to validate the software tools deployed for the

1.6. THESIS ORGANIZATION

1

33

functional safety verification of hardware designs. As suggested by ISO 26262, preven-
tion and detection of malfunctions can be accomplished through redundancy in the
tasks performed by software tools; we aim to improve Tool Confidence Level (TCL) by
detecting errors in the classification of faults using three different technologies. By com-
bining the strengths of Automatic Test Pattern Generators (ATPG), Formal Methods, and
Fault Injection Simulators, we can automatically generate a Test Environment that en-
ables the validation of the tools and provides supplementary information about the de-
sign behavior.

Chapter 3 narrates the concept and development of the AutoSoC benchmark suite.
First, it presents a study regarding the main features available in commercial SoCs from
the leading Automotive IP providers; this investigation leads to the definition of func-
tional blocks required for a representative Automotive test case. Next, it describes the
determination of open-source platforms as the central unit of the AutoSoC and the de-
velopment process. The benchmark consists of different safety configurations targeting
particular ASILs; each configuration is based on combinations of the available safety
mechanisms. Finally, the chapter describes a preliminary functional safety analysis for
each benchmark configuration.

Chapter 4 introduces a methodology that can efficiently and precisely estimate the
safety metrics of Automotive designs. The technique is based on the characterization
of the design to determine how hardware components contribute to fault propagation.
Also, by examining the test stimuli applied during simulation, we can rank workloads
according to their fault detection coverage. The approach was verified by running fault
injection campaigns on distinct gate-level hardware designs, including the AutoSoC. The
results demonstrate that the methodology provides an efficient and cost-effective mech-
anism to support engineers in a confident design space exploration.

Chapter 5 details a methodology for automatically generating Software-Based Self-
Test (SBST) for automotive CPUs. For such, we explore the strengths of formal methods
in determining optimal test stimuli for fault propagation to create a sequence of com-
mands in the format of a Software Test Library (STL). The approach improves online
fault detection during the operational mode of the CPU—the method experiments on
the AutoSoC CPU, enhancing the coverage of the digital area of the SoC.

Chapter 6 presents an automated approach to identify and classify faults overlooked
by traditional methods. Our methodology recognizes design areas that are not rele-
vant for the safety-critical functionalities of the design; as faults in such parts cannot
disturb safety goals, they can be considered Safe during the fault space analysis. The
method starts with a comprehensive code coverage analysis to understand the design
operational behavior; this behavior is automatically translated into formal properties,
enabling the classification of faults by formal tools. Finally, the approach is validated
using the AutoSoC benchmark as a test case; we perform the fault space classification,
FMEDA, and safety metrics calculation according to ISO 26262 guidelines.

Chapter 7 concludes this thesis and provides an outlook to future research directions.

2
FUNCTIONAL SAFETY

VERIFICATION METHODS AND

VALIDATION

2.1 Fault Analysis Technologies . 37

2.2 Software Tools Validation Methodology 40

2.3 Experiments and Results . 43

2.4 Conclusions. 47

Safety standards are concerned not only with the validations of the systems under devel-
opment; but also with the development environment. For instance, ISO 26262 demands
a comprehensive validation of the software tools deployed to design and verify such de-
vices. The intention is to avoid that a malfunction could mask or fail to detect failures
in the design. For that reason, this chapter proposes a methodology to improve the Tools
Confidence Level (TCL) by detecting malfunctions in the tools used for fault analysis. We
deploy three different fault classification technologies: Automatic Test Pattern Generators
(ATPG), Formal methods, and FI simulators; by comparing the fault annotation from the
various technologies, we can identify possible malfunctions. Also, our approach enables
the use of test environments generated by ATPG, allowing similar conditions for the fault
analysis in the different technologies; and avoiding efforts to develop test benches.

Parts of this chapter have been published in the IEEE 28th Asian Test Symposium (ATS), 2019 [28].

35

2

36 2. FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

F UNCTIONAL safety verification is one of the most challenging steps for compliance
with ISO26262. Particularly for safety-critical applications such as autonomous driv-

ing, where failures can cause life-threatening situations. For such applications, engi-
neers must consider every possible source of malfunctions that could lead to impair-
ment in safety-related functionalities. Therefore, in addition to the traditional devel-
opment flow, ISO 26262 contemplates verification requirements related to the software
engines deployed for development and verification. The verification of software tools
requires that developers assess the level of confidence in its outputs. If the necessary
levels are not demonstrated, the engines must undergo the Tool Qualification process,
increasing the complexity and costs of functional safety verification.

In the context of this work, we target the validation of software tools deployed for
fault space classification. As previously discussed, the leading technologies for func-
tional safety verification of faults in semiconductors are Fault Injection (FI) simulation
and formal methods. FI simulation aims to determine if faults can impact the design out-
puts and that SMs can detect them. However, as this technology relies on stimuli applied
to the circuit, the propagation of faults depends on the simulation testbench (workload).
Thus, faults that are not observable must be re-simulated with different stimuli, result-
ing in complex simulation environments with numerous workloads; if the simulation
cannot determine the fault behavior, it must be proven untestable by other means. On
the other hand, formal methods are a crucial technology for establishing that a fault is
untestable. Its capacity for analyzing design behavior to all possible combinations of
test inputs allows the identification of untestable faults and determining test inputs for
corner cases.

The tools deployed in the verification of semiconductors are in constant evolution.
The nature of such devices requires continuous development of new features to accom-
modate their demands. For that reason, it is common practice to update the version of
the software engines during the lifecycle of a semiconductor. Unfortunately, this sce-
nario increases the difficulty of obtaining Tool Qualification, as such a process increases
the complexity of new releases. The Tool Qualification process demand that the devel-
opment of the software tools comply with safety lifecycles avoiding systematic errors
but impacting the time and costs of new releases. Another possibility suggested by ISO
26262 is to verify the correct behavior of a software tool through redundancy in the tasks
it performs. Including means for preventing and detecting malfunctions improves Tool
Confidence Level (TCL), avoiding the need for Tool Qualification.

This chapter proposes a methodology to verify the correctness of fault classification
tools by combining three different technologies, named Automatic Test Pattern Genera-
tors (ATPG), FI simulation, and formal methods. For such, we compare the classification
given by each technology; discrepancies in the results may expose a malfunction. Addi-
tionally, we deploy the test environment generated by ATPG tools for the FI simulation;
by doing so, we avoid development efforts and ensure equality between the analysis on
both engines. First, we deploy fault analysis by ATPG, generating a verification environ-
ment that provides a high fault propagation rate. Then, the FI simulator uses such an
environment to perform the classification of the fault space. In parallel, we employ fault
analysis by formal methods, identifying untestable faults and determining the behaviors
that ATPG does not cover. Finally, the outputs of each tool are verified against each other

2.1. FAULT ANALYSIS TECHNOLOGIES

2

37

to expose malfunctions, increasing the confidence in the tool’s results, as required by
ISO 26262.

2.1. FAULT ANALYSIS TECHNOLOGIES
This section investigates how different technologies implement fault analysis. The study
aims to identify the strengths and weaknesses of each solution and determine how they
comply with functional safety requirements. The variation in methods to assess the be-
havior of faults is crucial to conclude if the technologies can validate each other; we must
recognize correlations in the classification given by each tool, allowing the identification
of inconsistencies, and therefore, malfunctions.

2.1.1. FORMAL METHODS
As described in 1.3.1, the identification of Safe faults by formal methods is one of the
first steps of fault space analysis. As such a sub-class of faults is untestable for any test
stimuli, there is no need to undergo FI simulation, optimizing execution times. Formal
analysis can also be deployed for the identification of test stimuli that causes fault prop-
agation. Due to their characteristics, these engines must prove properties to every pos-
sible combination of design inputs; therefore, they can identify the optimal set of stimuli
to support fault propagation. The formal methods will classify each element of the fault
space into one of the following fault sub-classes:

• Unpropagatable: There is no combination of inputs that causes fault propagation
to observation (strobe) points (Safe faults).

• Detected: At least one combination of inputs causes fault propagation to a checker
strobe point.

• Always Detected: The fault always propagates to a checker strobe point, indepen-
dently of the test inputs.

• Dangerous: At least one combination of inputs causes fault propagation to a func-
tional strobe point.

• Always Dangerous: The fault always propagates to a functional strobe point, inde-
pendently of the test inputs.

• Unknown: Formal properties could not be proven.

Such tools allow us to retrieve the necessary conditions where a property is veri-
fied; such condition is the counter-example. The counter-example demonstrates the test
stimuli and circuit conditions used to verify the property. Thus, if we consider the valida-
tion of formal tools, we can deploy the counter-examples to demonstrate that the fault
classification is correct. Furthermore, the counter-examples for Dangerous faults can
also be deployed to confirm the result in FI simulation. Due to these characteristics that
allow the verification of fault classification using counter-examples, formal methods are
a powerful tool for the validation of fault analysis. Being so, we can deploy formal fault
classification to confirm the results of the FI simulation. For such, we need to verify that

2

38 2. FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

the output of the tools does not contradict each other; for example, a fault classified as
Unpropagatable by formal cannot be annotated as Detected by FI simulation; this would
highlight a malfunction in one of the tools.

It is worth noting that such engines are resource hungry and cannot find results for all
fault space due to the state explosion problem. Thus, even in state-of-the-art solutions
that demand powerful parallelization capabilities, most properties will be classified as
Unknown after a deadline. Therefore, it is common practice to integrate Formal Meth-
ods and FI simulation for optimizing the fault space classification; an integrated fault
analysis flow allows the identification of Safe faults before the start of the simulation.
Thus, the analysis will reduce the number of simulatable elements. Furthermore, after
the simulation, we can execute formal methods on the remaining undetected faults to
verify if a combination of test inputs would result in fault propagation; then, these can
be applied to the FI simulation.

2.1.2. FAULT INJECTION SIMULATION
Fault Injection (FI) simulation is widely used and available in various tools, being the
methodology recommended by ISO 26262 for fault space analysis. These tools can an-
alyze RTL or gate-level descriptions of an IC by simulating its faulty behavior. The de-
termination of the fault effect occurs by comparing the behavior of the design with and
without faults. Section 1.3.1 describes the flows implemented by FI simulators. The FI
simulation will classify each element of the fault space into one of the following fault
sub-classes:

• Untestable (Safe) faults

• Detected faults

• Dangerous faults

• Undetected

The simulation of a design provides a comprehensive analysis of its behavior when
exercised by a given stimulus. For that reason, by repeating this analysis, including the
injection of a fault, we can have definitive evidence of the behavior changes provoked
by such a fault. However, if the fault effect is not observable, the analysis is inconclu-
sive; the result could be different when applying different test stimuli. Also, analyzing all
fault space for every possible combination of test stimuli is usually impossible in realistic
time frames. This situation is a challenge for the verification of safety-critical semicon-
ductors, as discussed throughout this work. However, it also makes it tricky to ensure
that the fault analysis results are correct. Furthermore, as the result of the tools (classifi-
cation of the fault) depends on the simulation workload, the tool verification also must
consider this variable. For that reason, a reasonable methodology for comparing the
fault classification must contemplate workloads with a higher rate of fault propagation.

2.1.3. AUTOMATIC TEST PATTERN GENERATOR
ATPG engines generate test patterns to identify if an IC contains manufacturing-induced
defects. In other words, to distinguish between the correct circuit behavior and the faulty

2.1. FAULT ANALYSIS TECHNOLOGIES

2

39

circuit behavior. When applying the test pattern to the inputs of a circuit, the values ob-
served at the outputs should be monitored. A defect detection happens if any of the
outcomes are different from the expected pattern. Nowadays, ATPG is a well-established
technology being used in the development of almost all semiconductors. ATPG tools can
generate a minimal group of test vectors to achieve acceptable levels of manufacturing
defects detection [29][30]. In addition, the engines can create reports about the testa-
bility of each defect, allowing the generation of metrics to indicate test quality and test
execution time. The ATPG will generate a fault report classifying each element of the
fault space into one of the following sub-classes:

• Untested: The ATPG engine could not process the fault.

• Ignored: The current scan chain configuration cannot reach the fault.

• Tested: The ATPG can test the fault.

• Redundant: The fault has a redundant behavior compared to other Tested faults;
therefore, it is also Tested.

• Untestable: The ATPG engine could not test the fault.

Usually, an ATPG flow receives a gate-level description and specification of the scan
chains as inputs. Then, it verifies if the implemented scan chains can ensure the re-
quired levels of testability. If affirmative, it generates a fault model and test patterns
to assure propagation of fault effects to the design outputs. Typically, the test patterns
and expected results are programmed in a Test Equipment (TE) used in semiconductors
manufacturing tests. The TE applies the test patterns in the circuit’s inputs and monitors
the outputs to verify if the values are the expected ones. We propose a similar approach
using FI simulation. However, instead of using TE, we apply the test patterns on the
design simulation and employ the strobe functionality to monitor the outputs of the de-
sign. During the Fault-free simulation, the simulator stores the strobe values, defining
the expected output pattern. Afterward, the simulation of each fault is executed using
the same inputs and monitoring the outputs. By following this approach, we can use
the propagation capabilities of ATPG to identify behavioral changes caused by injected
faults.

The use of the ATPG is an established practice in the DfT domain. After manufac-
turing, it is critical that semiconductors are tested to ensure the ICs are functioning as
expected; such tests should cover as many components as possible. For that reason,
ATPG tends to have very high coverage rates, propagating most of the faults to the scan
chain outputs. The fault propagation potential of ATPG test environments is a decisive
benefit for compliance with functional safety. However, ATPG focuses on manufacturing
tests, where the target IC is in test mode. In the case of functional safety verification, we
must demonstrate that the semiconductor is capable of coping with Random Hardware
Faults while keeping its operation. Nevertheless, the ATPG test environment can still
support the validation of software tools.

Table 2.1 summarizes the strengths and weakness of each technology. Considering
this examination, we propose a methodology that highlights the strengths of FI simula-
tion, formal methods, and ATPG to validate functional safety verification tools.

2

40 2. FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

Table 2.1: Fault Analysis Technologies Comparison

Technology Strengths Weaknesses

FI Simulation
- Comprehensive behavior analysis
- Recommended by ISO26262

- Single test input at a time
- Multiple simulations to propagate all faults
- High Testbench development efforts

Formal Methods
- Analysis of all possible test inputs
- Analysis of untestable faults
- Generates test inputs for corner cases

- Time-consuming
- Not able to determine behavior of all faults

ATPG
- Automatically generated Testbenches
- High fault propagation rate

- Focus on manufacturing tests
- No analysis of untestable
- Do not reach corner cases

2.2. SOFTWARE TOOLS VALIDATION METHODOLOGY
This section describes the application of three fault analysis technologies for software
tools validation according to ISO 26262. The methodology highlights the strengths of
FI simulation, formal methods, and ATPG to generate a comprehensive fault analysis
report. The execution of such tools is controlled by an application that automates the
fault analysis flow and validates the results by comparing them. The Fault Checker ap-
plication implements a control flow that allows the configuration of multiple software
tools representing each technology. For each technology, the application parses the fault
classification reports and verifies discrepancies in the fault annotations; all findings are
synthesized in a final report allowing the identification of malfunctions in the software
tools. In the following sections, we describe the steps implemented by the Fault Checker
application, named Configuration, Execution, and Report.

2.2.1. CONFIGURATION
The concept behind the proposed methodology is to develop a generic flow allowing the
deployment of verification engines from multiple vendors. For that reason, before the
execution, the users must provide the required configuration for each tool. Thus, the
flows start with selecting one representative of each analysis technology; an ATPG en-
gine, an FI simulator, and a formal solution. In addition, the chosen tools must include
fault analysis capabilities, and the naming convention for fault classification must be
known.

Initially, the user must provide scripts to control the execution of the analysis flow
on each tool; even though all modern tools provide graphical user interfaces, these en-
gines are controlled by scripts that allow automation of design verification in production.
Next, the user must provide a set of rules that enable mapping the fault classification
from each tool. For example, the Fault Checker entails knowing that a fault classified as
Tested by ATPG is equivalent to the Dangerous annotation by FI simulation; these rules
will establish the creation of warnings during the report phase. Finally, the user also
must provide the design information required for the execution of each technology, i.e.,
design description and library files, scan chain configuration, strobes, fault targets, and
fault models. Figure 2.1 illustrates the configuration phase of the Fault Checker applica-
tion.

2.2. SOFTWARE TOOLS VALIDATION METHODOLOGY

2

41

Figure 2.1: Fault Checker Configuration Phase

2.2.2. EXECUTION
After the configuration of all pre-requisites, the Fault Checker can start the execution of
the fault analysis flows. The control of the fault classification from each technology is
based on the execution scripts provided during the configuration phase. Furthermore,
aiming to improve performance, we split the execution into two threads. First, the Ex-
ecution Thread 1 initiates with the ATPG flow, performing the fault classification and
generating the simulation environment; next, the ATPG testbench and test vectors are
configured in the FI simulator, allowing the analysis of the fault space in the same con-
ditions of the ATPG flow. Finally, the Execution Thread 2 is responsible for controlling
the Formal Tool flow; as such engine does not require a test environment, its execution
is independent and can be dispatched in a separate thread. Figure 2.2 illustrates the
execution phase of the Fault Checker application.

Figure 2.2: Fault Checker Execution and Report Phases

The ATPG flow initiates with the configuration of the test and fault models. The avail-
able options may vary on engines from different vendors, but the overall flow is similar.

2

42 2. FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

We initially execute commands for building, testing, and verifying the test model; these
will configure the parameters to generate test patterns. Then, we select cell boundary as
the fault model; this option shows similar fault patterns compared to the requirements
of ISO 26262. Next, we execute the command to generate static patterns targeting the
test of the circuit logic and the scan chain logic. Additionally, the options for compact-
ing the test patterns are enabled; this will increase the execution time of the ATPG flow;
however, the smaller test vectors demand less effort during the FI simulation, causing an
overall improvement in execution time. Finally, the ATPG engine must produce a simu-
lation environment to reproduce the fault analysis with the generated test patterns; such
an environment is composed of a Verilog testbench and test vectors, allowing the verifi-
cation of the ATPG test in simulation. At the end of the ATPG flow, the tool generates a
fault report, including the annotation given to each fault in the fault space.

The FI simulation will follow the same flow described in 1.3.1. The main difference is
that the simulation will deploy the simulation environment generated by ATPG. Hence,
the FI simulator can reproduce the test stimuli and conditions used during the ATPG
analysis. For that reason, we can expect that the FI simulation fault classification is
equivalent to the ATP classification, allowing the validation of the results from both tools.
Furthermore, as the FI simulator must wait for the conclusion of the ATPG, we opt to se-
rialize the execution of both flows, requiring only a single CPU for the control task.

On the other hand, the Formal tool is independent of the separate flows. For that rea-
son, we can administer it in a separate thread parallel to the execution of the ATPG and
FI simulation. The flow executed by the Formal tool is described in 1.3.1. The addition
of a third technology aims to complement the validation achieved with the previously
described flows. Formal methods are a robust tool for identifying Safe faults; the Formal
definition of Safe is compatible with the description of Untestable from FI simulators;
therefore, the addition of Formal close a gap not covered by ATPG. Also, by including a
third fault analysis technique, we improve the chances of identifying the source of mal-
functions. In case of incompatible annotations between the tools, we can use a voting
strategy to define which tool has a malfunction.

2.2.3. REPORT

After the finish of the execution of both threads, the Fault Checker initiates the Report
phase. Initially, the application retrieves the fault report from each tool and parses the
results based on the parser rules introduced during the Configuration phase. The parser
rules must provide an association between the fault annotations from the different tools.
The Fault Checker must be able to recognize discrepancies between the annotations to
alert possible malfunctions. Next, the application generates a detailed report in CSV
format; the report lists every fault space element, including the fault classification of
each tool and the result of the Fault Checker analysis. Table 2.2 illustrates a sample of
the Fault Checker report. The parameters highlighted in the report are described below:

• Fault Target: The hardware component where the fault was injected for the analy-
sis;

• Fault Model: The model selected for representing the behavior of the fault;

2.3. EXPERIMENTS AND RESULTS

2

43

• Formal Classification: The result of the Formal analysis regarding the circuit be-
havior changes caused by a fault;

• FI Simulation Classification: The result of the FI Simulation regarding the circuit
behavior changes caused by a fault;

• ATPG Classification: The result of the ATPG analysis regarding the circuit behavior
changes caused by a fault;

• Checker Result: The result of the Fault Checker application analysis regarding the
association of the fault annotation on each technology.

The result of the Fault Checker application analysis will be a Pass or a Warning. A
Pass indicates that all the fault annotations for a given fault are compatible according to
the parser rules; if there are no discrepancies between the technologies, we can assume
there are no malfunctions. A Warning will indicate that the user must verify the results
for a given fault, as it may represent an error caused by a malfunction in one of the tools.
For example, if a given fault is classified as Detected by FI simulation and as Safe by
Formal, the discrepancy in the annotation indicates a possible malfunction in one of the
tools.

Table 2.2: Fault Checker Report Example

Fault
Target

Fault
Type

Formal
Classification

FI Simulation
Classification

ATPG
Classification

Checker
Results

dut.u0.rst SA0 Dangerous Detected Tested PASS
dut.u0.sig1 SA1 Safe Undetected Ignored WARNING
dut.u0.sig2 SA0 Dangerous Undetected Ignored WARNING
dut.u0.sig3 SA1 Dangerous Detected Tested PASS
dut.u0.iNsT0.0 SA1 not_listed not_listed Tested WARNING

In addition to malfunction evidence, the report provides supplementary information
to understand the behavior of a faulty design. For example, signal "dut.u0.sig2" in Table
2.2, is annotated as Undetected by the Simulator and Ignored by ATPG. Still, the fault is
listed as Dangerous by Formal, meaning that formal analysis identified at least one test
stimulus that can propagate the fault to a strobe; FI Simulation can use such information
to achieve detection of this fault. Another example to highlight is "dut.u0.sig1", where
Formal classified the fault as Safe, while the other tools annotated it as Undetected and
Ignored. In this case, results from the formal analysis can demonstrate that the fault can-
not propagate to a strobe, and therefore can be considered untestable. The report will
highlight any other discrepancy between the fault analysis with a Warning; as illustrated
by signal "dut.u0.INsT0.0".

2.3. EXPERIMENTS AND RESULTS
This section describes the validation process of the proposed methodology. First, we
describe the adopted setup, the configuration of the tools, and the target designs. Then,
we demonstrate our results and explain the benefits and limitations of the Fault Checker

2

44 2. FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

application. The following validation aspects were considered: Detection of malfunction
in the tools via detailed report; Application of fault analysis results to support functional
safety verification of the design.

2.3.1. EXPERIMENTS SETUP
The verification of the methodology deploys the Fault Checker application on designs
with different characteristics. First, the Fault Checker is configured with the representa-
tives of each technology to execute the fault analysis. Our work has adopted Cadence®
Xcelium™ Fault Simulator (XFS), Cadence® JasperGold (JG) Formal Verification Plat-
form Functional Safety Verification (FSV) and Cadence® Modus DFT Software Solution
ATPG component, as the software engines for validation.

The selection of the designs contemplated different levels of complexity and the avail-
ability of functional testbenches for assessing the quality of our solution. The measure-
ment of complexity considers the size of the fault space in each circuit. As previously
discussed, ISO 26262 defines all cell ports in the circuit’s gate-level as fault targets. The
target circuits are available on the IWLS 2005 benchmark [31]. The designs are:

1. Up-Down Counter: 4 bits adder containing 81 cell ports;

2. Memories: Two memories with CRC, containing 1391 cell ports;

3. AC97: An Audio Codec Controller compatible with Wishbone bus, containing 28610
cell ports; and

4. Conmax: An interconnect matrix IP core featuring parameterized priority-based
arbiter, with 76727 cell ports.

The circuits were synthesized using the standard cell reference libraries provided
with Cadence 45nm Generic Process Design Kit (GPDK) [32].

Initially, we deployed Designs (1) and (2) to verify that the Fault Checker application
worked properly. As the designs are smaller, it was possible to manually check the clas-
sification of each fault to ensure the correctness of the final report. Next, we verified
the behavior of the Fault Checker application when analyzing larger designs by examin-
ing the other circuits. In addition, for circuits (3) and (4), we compared the results with
FI simulation results using the functional testbenches only; we aim to ensure that the
fault propagation levels are high and cover a large percent of the fault classified by the FI
simulator. The following sections describe our results.

The experimental setup consists of two Intel Xeon E5-2680 CPUs with 16 Cores and
252 GB of memory each; the Formal flow executed on CPU1 and ATPG followed by Sim-
ulation Flow in CPU2. In addition, the FI simulation flow deploys parallelization for sev-
eral fault injection jobs; by doing so, we improve the overall execution time of the flow.

2.3.2. RESULTS
To validate the Fault Checker application, we have performed the described flow using
the previously defined target circuits. Table 2.3 illustrates the results. The table details
the size of the fault space, the rate of fault detection from the FI simulation, and the
number of Pass/Warning indications resulting from the Fault Checker analysis.

2.3. EXPERIMENTS AND RESULTS

2

45

Table 2.3: Fault Checker Results

Design
Faults

(SA0/SA1)
Detection

Rate
PASS WARNING

Up-Down Counter 162 100% 162 0
Memories 2782 99,78% 2776 6
AC97 57226 99,77% 57108 118
Conmax 153454 99,80% 153191 263

For the Up-Down Counter circuit analysis, the Fault Checker confirmed that all faults
have equivalent classifications. As the example is relatively simple, the different tech-
nologies can determine that all faults propagate to observation points (strobes); and
have compatible annotations.

In the analysis of the Memories design, the application detected six faults with dis-
crepant classifications. In this example, the Warnings were due to annotation of Safe
Faults by Formal and Undetected by the Simulator. For these faults, the Formal analysis
proves that the faults are untestable and can be disregarded.

On the AC97 design, the Fault Checker was able to detect 118 faults with distinctive
classifications. From these, 49 faults were classified as Safe by Formal and Undetected by
the Simulator and declared untestable. Additionally, 23 faults were annotated as Danger-
ous by Formal and Undetected by the Simulator; FI simulation may detect these faults
by applying the counter-examples from Formal. Other 46 faults were considered Unde-
tected by FI simulation and ATPG, and Unknown by Formal, indicating that none of the
tools could define the possible behavior of these faults, and they require manual analysis.
Finally, six faults were in cell ports related to power that are not relevant for functional
safety verification.

During the analysis of the Conmax design, the methodology detected 263 discrepan-
cies between the tools. From these, seven faults were classified as Dangerous by Formal
and Undetected by FI simulation. Meaning that results from Formal can be applied for
detecting these faults during simulation. The other 256 faults were classified as Redun-
dant by ATPG, Undetected by Simulation, and Unknown by Formal. However, as the
classifications are not conclusive, the user must analyze these faults manually.

To analyze the capability of the methodology for fault classification, we compared
the Fault Checker results with results from fault injection using functional testbenches.
It is important to remember that the validation of the FI simulator should deploy an en-
vironment it a high detection rate; as Undetected is a weak annotation that could change
with different test stimuli, it may mask malfunctions.

The AC97 and Conmax designs include simulation environments for verification of
their functionalities. By deploying such an environment, we can compare the detec-
tion rates of a functional verification environment against the ATPG simulation environ-
ment. Figure 2.3 illustrates the comparison of the FI simulation results when deploying
the functional testbenches and the Fault Checker; the additional detection provides a
comprehensive environment for validation of the FI simulation results.

Table 2.4 details the results of the FI simulation of the AC97 and the Conmax de-
signs. Due to the characteristics of fault propagation provided by the ATPG Testbenches,

2

46 2. FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

Figure 2.3: Fault Detection Comparison

after one execution of the Fault Injection campaign, the Fault Checker achieves a fault
Detection Rate improvement of 28,2% for the AC97 and 18,2% for the Conmax. Hence,
these figures represent the number of FI simulation results where malfunctions could be
masked, compromising the confidence in the use of the tool.

Table 2.4: Fault Detection Comparison

Design
Faults

(SA0/SA1)
Functional Testbench Fault Checker

Detected Undetected Detected Undetected

AC97 57220 71,50% 28,48% 99,77% 0,21%
Conmax 153454 81,66% 18,34% 99,80% 0,20%

The Undetected classification is inconclusive for fault analysis. Undetected faults
must be proven Untestable to collaborate to ISO 26262 metrics and are more likely to
mask a malfunction in a tool. For these reasons, we want to achieve as many detected
faults as possible. To achieve the same level of fault detection with functional test-
benches, we would need to repeat the FI campaign with new test inputs until detection
rates are acceptable. However, such a scenario demands high efforts in developing test
environments and even longer FI simulation execution times.

2.3.3. DISCUSSION
The results demonstrated above corroborate with the selected evaluation criteria. First,
the deployment of multiple fault analysis technologies enables the detection of erro-
neous fault classifications. The proposed methodology allows high confidence in tool
error detection, resulting in a sound Tool Confidence Level (TCL). A software tool with
TCL1, as described in 1.2.4, doesn’t require Tool Qualification, avoiding significant ef-
forts on documentation and analysis for compliance with ISO 26262 [33]. Second, iden-
tification of Safe faults collaborates with ISO 26262 compliance. By proving that a fault is
untestable, we can disregard it, decreasing the total number of faults to be simulated and

2.4. CONCLUSIONS

2

47

improving ISO 26262 metrics [34]. Third, the proposed methodology achieved substan-
tial fault detection rates; using ATPG test vectors during the simulation and identifying
Dangerous faults by Formal provides extra information about the design behavior. In
summary, we can apply the proposed methodology to support the following aspects of
ISO 26262 functional safety verification:

• Avoid efforts with Tool Qualification by automating tool error detection.

• Identification of Untestable Faults allows improvement of ISO 26262 metrics and
reduction of the number of faults to be simulated.

• Fault supplementary data supports additional information for the fault injection
campaigns.

Even though we have achieved high fault detection rates, we must consider that the
examples used were of average complexity. If the methodology is applied to validate the
software tools in the lifecycle of an industry-grade semiconductor, designers would have
to decide how to deploy the Fault Checker. As the design under development may not be
available, designers could start with example designs; pre-validating the tools and de-
velopment environment. Later, they may repeat the execution with the actual design,
leveraging the additional design information before the final clauses of hardware verifi-
cation. Another aspect to acknowledge is the possibility of changes in the fault propa-
gation patterns when ATPG scan chains are disabled. For that reason, designers should
consider this effect and employ formal results to assess differences in the classification
of the faults.

2.4. CONCLUSIONS
Due to the harsh requirements for Random Hardware Failures tolerance, functional safety
verification is challenging for ISO 26262 compliance. As part of this process, fault space
analysis becomes an extensive procedure that is usually repeated numerous times until
the metrics for fault detection are achieved. Furthermore, ISO 26262 requires specific
criteria to determine the level of confidence in the adopted software tool, increasing the
efforts even further.

As the initial contribution of this thesis, we propose a methodology that deploys
ATPG and Formal to support the validation of FI simulation and decrease the overall
efforts of ISO 26262 compliance. The Fault Checker application enables the use of test
environments created with ATPG tools for the simulation of faults; also, it integrates the
use of Formal to identify untestable faults. Formal results allow the optimization of the
fault space, reducing the number of faults to be simulated, and the generation of test
vectors to detect corner cases.

Additionally, the application generates a fault report to identify potential software
tools malfunctions. The inclusion of redundancy as a method to detect malfunctions in
tools is a suggested method for achieving ISO 26262 Tool Confidence [33]. The validation
of the development environment and software tools is a prerequisite for compliance with
the safety life cycle requirements.

3
SAFETY BENCHMARKS FOR

AUTOMOTIVE SOCS

3.1 Safety Standardization and Benchmarking 51

3.2 Automotive SoC Architectures . 52

3.3 AutoSoC Base Components . 55

3.4 AutoSoC Safety Components . 58

3.5 AutoSoC Configurations . 61

3.6 Preliminary Functional Safety Analysis 62

3.7 Conclusions. 65

This chapter addresses the constraints posed by the lack of representative open-source au-
tomotive designs. Furthermore, the limited access to such designs and industrial method-
ologies challenges the research community, making it difficult to assess the quality of their
results and compare distinct methodologies and results. For that reason, we propose the
AutoSoC, an automotive SoC benchmark suite that includes hardware and software ele-
ments and is entirely open-source. The objective is to provide researchers with an industrial-
grade automotive SoC that includes all essential components, is fully customizable, and
enables analysis of functional safety solutions and automotive SoC configurations. Ad-
ditionally, we describe the benchmark’s available configurations, including an initial as-
sessment for ASIL B to D configurations.

Parts of this chapter have been published in the IEEE 38th VLSI Test Symposium (VTS), 2020 [35].

49

3

50 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

I N recent years, technological advances enabled the employment of automated sys-
tems to control driving tasks. The idea of electronic devices having complete control

over a vehicle promises to change the concept of mobility soon. However, allowing com-
puters to handle all the tasks in a car requires high complexity systems and significant
safety concerns. The development of autonomous vehicles applications, where a sys-
tem failure could cause life-threatening situations, entails state-of-the-art challenges on
different aspects of system development. Therefore, concerns with Reliability, Security,
Quality, and compliance to Safety Standards are high priority. This scenario requires
adopting new techniques and methodologies that will facilitate the development and
verification of these applications.

Several organizations are working to close the technological gap for autonomous ve-
hicles. However, to assess the quality of their solutions, it is necessary to compare the
results against industry standards. Nowadays, development life-cycles and verification
techniques applied by industry are not disclosed, and each big player in the automotive
sector has its methodologies and tools. In addition, there is limited access to automotive
hardware and software solutions. This scenario is a challenge for researchers, who may
not verify their work in representative designs or assess the quality of their results. For
that reason, there is a high demand for a suite of open-source benchmarks that would
enable research on the different aspects of Automotive applications development.

As part of the efforts for developing solutions to address the demands of autonomous
driving, industry and academia are investing in research on several related areas. Sev-
eral works are exploring aspects of fault-tolerance in hardware architectures [36][37],
software design [38], operational systems [13], among others. In [39] the authors provide
a broader look at specific reliability challenges for autonomous systems, for both auto-
motive and robotics. Several works are also discussing the security issues imposed by
these applications [40]; including challenges with hardware attacks [41], and secure in-
vehicle communication [42]. Although several works include significant contributions
to advance the state-of-the-art, they all have some common pitfalls. First, experiments
are usually not performed on representative designs. Results may be compromised by a
lack of comprehensive test cases, which should be based on representative SoCs; these
must include operating systems and software applications typical of their domain. Also,
such systems should be fully open-source, allowing different researchers to assess the
quality of the results by comparison. Even though some components of such systems
are available in the community, to the best of our knowledge, no open-source package
including SoC hardware models, OS, and SW applications that is representative of the
Automotive sector is available.

This chapter presents an open-source industrial-grade benchmark suite, aiming to
address challenges previously discussed. The proposed Automotive benchmark com-
prises all its elements in the format of an SoC, and hence, it was named AutoSoC. We
formulate the AutoSoC by analyzing commercial solutions and considering standard de-
velopment techniques deployed by the industry. The selected architecture considered
the availability of software (compilers, debuggers, operating systems, and others) and
the feasibility of development in multiple hardware abstraction levels (Virtual Platform,
RTL, and gate-level). The suite includes numerous configurations with different levels
of Safety Mechanisms (SMs), enabling investigation of functional safety aspects. There-

3.1. SAFETY STANDARDIZATION AND BENCHMARKING

3

51

fore, the AutoSoC appears as an exciting candidate to support Automotive research. The
main contributions of our work are:

• Launch the initiative for an open-source SoC benchmark suite for Automotive ap-
plications

• Provide a solution for integrating inter-layer components and their interoperabil-
ity required for an automotive SoC development

• Demonstrate representative use cases by a set of software applications including
an automotive cruise control

• Validate the concept by including a preliminary safety assessment targeting differ-
ent ASIL configurations.

The AutoSoC benchmark suite is available for download in http://www.autosoc.org.

3.1. SAFETY STANDARDIZATION AND BENCHMARKING
Nowadays, the implementation of highly automated safety-critical systems demands
complex integrated circuits. These applications are composed of many HW elements,
executing an equally extensive collection of SW elements, often from third parties. This
complexity has created a strong demand for semiconductor standardization initiatives
to guarantee uniformity, interoperability, and repeatability of the many activities re-
quired by a safety lifecycle. As previously discussed, safety standards as ISO 26262 present
guidelines for demonstrating the levels of safety of automotive designs. As such, there
are a variety of possibilities for compliance with the safety guidelines.

That vastity of options is a challenge from several points of view. For example, de-
spite the ISO 26262 providing a mathematical approach to quantify the probability of
Random Hardware Failures, it is very effort-intensive to apply it and quickly compare the
effectiveness of each proposed solution. The results are highly dependent on the chip ar-
chitecture and the related SW application. The same challenge exists for the safety ver-
ification activities (e.g., fault space analysis) required to confirm some functional safety
properties’ effectiveness, such as the diagnostic coverage. The time spent setting up each
fault injection campaign for each different architecture solution makes it unpractical to
use it during the exploration phase, limiting the creativity and design space exploration.
Another challenge is caused by the interaction between several different properties and
requirements. For example, a typical approach to achieve high diagnostic coverage is
the so-called loosely coupled lock-step; i.e., the same SW is executed redundantly in two
different processing cores and compared by a third element. The resulting diagnostic
coverage highly depends on the execution of the redundant SW (e.g., if it is a task per
task or instruction per instruction redundancy, if the OS is in common or shared, etc.);
also, it depends on how often the two SW executions are compared. Additionally, it is
necessary to evaluate the so-called Diagnostic Time Interval, i.e., how often it is possi-
ble to perform that comparison and the time required by the SM to compare and detect
the potential failure. Furthermore, it is necessary to evaluate the degradation of per-
formance (e.g., in terms of worst-case execution time) that the lock-step comparisons
produce to the data traffic of the nominal functionality.

3

52 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

The complexity described by the previous examples indicates the vital need for an
open-source benchmarking environment, providing scientists with a ready-to-use and
clearly defined platform to implement and test safety solutions in a comparable way.
That platform, for example, should allow researchers to compare two different imple-
mentations of the loosely coupled lock-step scheme. Another use case for that bench-
marking environment is the measure of the application overhead caused by the execu-
tion of Software Test Libraries (STLs). Once more, the availability of a standard bench-
mark will allow a transparent and well-defined comparison of the impact to the applica-
tion caused by two different STL implementations.

3.2. AUTOMOTIVE SOC ARCHITECTURES
This section describes the analysis of commercial automotive SoCs that led to the def-
inition of the functional blocks of the AutoSoC. The gathering of requirements for the
proposed SoC considered the main features available in well-known automotive solu-
tions. The objective of this characterization was to create an SoC that is representative
of the industry standards.

3.2.1. INDUSTRY SOLUTIONS CHARACTERIZATION

The industry is embedding several features in SoCs targeting different in-vehicle applica-
tions. The so-called automotive ecosystem includes solutions for infotainment, power-
trains, network communication, and automatization of driving tasks. All those features
require robust solutions that must consider aspects of functional safety and security. Al-
though different commercial solutions are available, architectures generally have simi-
larities that can be explored to define a set of requirements for an Automotive SoC. The
gathering of requirements for the AutoSoC was based on an analysis of the datasheets of
commercial Automotive SoCs. We considered the main characteristics of available solu-
tions to identify common aspects that the industry considers mandatory. In general, this
investigation considers the following domains:

1. Hardware Architecture: common architecture characteristics;

2. Safety: what components of the SoCs are considered for functional safety compli-
ance and which safety mechanisms are usually implemented;

3. Security: which security features are available;

4. Other: commonly available peripherals (e.g. communication protocols, GPUs, Au-
dio/Video DSPs).

One notable common characteristic among the evaluated solutions is the availability
of multiple CPUs. In general, dedicated hardware components are available for safety-
critical and application-specific operation. This concept allows the deployment of pow-
erful CPUs for applications with high processing demands (e.g., video processing), while
safety-critical applications are executed in CPUs with dedicated safety mechanisms. For
example, the Renesas R-Car M3 [43] includes two CPUs for common applications and

3.2. AUTOMOTIVE SOC ARCHITECTURES

3

53

an additional Dual-Core LockStep (DCLS) CPU for safety-critical applications. The In-
fineon AURIX [44] and Texas Instruments TDA2SG [45], follow a similar concept by in-
cluding a CPU and separated cores for dedicated functionalities. DCLS is the most com-
mon safety mechanism available for CPUs. Industrial solutions usually deploy Error Cor-
rection Codes (ECCs) and Parity for the memories, including RAMs and caches. DCLS,
ECCs, and Parity have an advantage regarding functional safety analysis. These SMs are
introduced by the recommendations of ISO 26262 [34] and include a reference of their
fault coverage capabilities. Hence, by deploying any of these SMs as described in ISO
26262, the referenced DC can be directly used during functional safety analysis.

The other components in the analyzed SoCs are related to communication protocols,
application-specific, security, and infrastructure peripherals. The commercial solutions
generally implement various communication peripherals, including automotive proto-
cols as CAN and FlexRay; also, general protocols as Ethernet, SPI, and I2C. Another com-
mon characteristic is the availability of video and audio dedicated hardware. As most of
the SoCs aim to Advanced Driver-Assistance Systems (ADAS) applications, they include
peripherals like GPUs, video codecs, Image Processing Units, and audio DSPs.

Apart from proprietary features that are not detailed in the security domain, the
most common components are cryptography engines, like Advanced Encryption Stan-
dard (AES), Data Encryption Standard (DES), and Hash. Also, some solutions provide
access control features like firewalls and protected memory areas. Additionally, every
analyzed solution included infrastructure peripherals like JTAG, UART, GPIO, and debug
components.

The set of characteristics gathered during the investigation points to conventional
features that describe the automotive industry requirements. Therefore, the extension of
safety-related components, application-specific units, automotive protocols, and secu-
rity cores can be established as the basic set of features for a representative Automotive
SoC. The summary of common characteristics observed in the evaluation of commercial
solutions is detailed in Table 3.1.

Table 3.1: Summary of Commercial SoC Analysis

Renesas
R-Car M3

Infineon
AURIX

Texas
TDA

Safety CPU with DCLS + + -
Memories with ECC + + +
Second CPU (no SM) + + +
Dedicated Video IPs + + +
Automotive Peripherals + + +
Security Cripto IPs + - +

3.2.2. AUTOSOC FUNCTIONAL BLOCKS

Based on the characterization of industrial solutions, we establish an initial architecture
of AutoSoC. Initially, we define functional blocks to cover the minimum features required
for a representative automotive benchmark suite. Such a concept is also essential to keep
the design modular. As a result, the various versions of AutoSoC can deploy distinct

3

54 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

hardware components to cover the requirements of each functional block. Figure 3.1
illustrates the outcome of our analysis.

Figure 3.1: AutoSoC Functional Blocks

As it happens in most commercial solutions, the AutoSoC has two central process-
ing units. The Safety Island is responsible for all safety-critical processing capabilities.
It is composed of CPUs and memories that Safety Mechanisms must cover according
to the requirements of ISO 26262. The division between safety-related hardware and
the rest of the SoC components supports functional safety standards, as only the safety-
related hardware must comply with ISO 26262. The other processing unit is the Applica-
tion Specific Block. This unit implements the hardware required for application-specific
processing. For example, it may include CPUs and memories for high-demand applica-
tions, GPUs, and image processing units for video applications. The target functionality
for each given AutoSoC configuration will define the Hardware components required for
the Application Specific Block. Also, it is essential to notice that the Safety Island and the
Application Specific Blocks have dedicated software stacks; both can execute different
Operational Systems and applications that will better suit their requirements.

The remaining blocks implement communication, security, and general SoC infras-
tructure. The Automotive Block is responsible for SoC communication with in-vehicle
systems. The most common protocol deployed for in-vehicle communication is CAN.
However, other options can be implemented, like FlexRay, LIN, Automotive Ethernet,
among others. The Security Block is responsible for performing all security-related func-
tionalities of the AutoSoC. The most common employment is cryptography cores, like
AES and DES. However, we expect other security features to be explored. With this, the
AutoSoC benchmark architecture allows future extensions to support the new security
standard under development ISO 21434. The latter aims at defining a Cybersecurity As-
surance Level (CAL), similar to the ASIL concept [46]. The Infrastructure Block is respon-
sible for the online health monitoring of the SoC. It includes debugging features such
as JTAG and UARTs to ease the development process. Finally, the Interconnect Block is

3.3. AUTOSOC BASE COMPONENTS

3

55

Table 3.2: Summary of Commercial SoC Analysis

Amber OpenRISC Leon3
Processor 32-bit RISC 32/64-bit RISC 32-bit RISC

Instructions
Set

ARM v2a OpenRISC 1000 SPARC V8

Pipeline
Configuration

Configurable
3 or 5 stages

Configurable
2 to 6 stages

7-stages

Memory
DDR3 interface
(for Xilinx FPGA)

Single/Dual port RAMs DDR/DDR2 ports

Main BUS 32-bit Wishbone 32-bit Wishbone AMBA-2.0 AHB bus

Peripherals
Ethernet, UART,
Timers, Interrupt Ctrl

fuseSoC library
Opencores IP’s:
(e.g. CAN, AES, DES, ...)

GRLIB IP library

Virtual
Platforms
Support

ARM ISS
or1sim ISS (System C
TLM Model)

Not Available

RTL
Description

Verilog Verilog VHDL

Gate-level
netlist

Optimized for
FPGA

Synthesizable RTL Synthesizable RTL

Software
Stack

ARM gcc-toolchain or1k-elf toolchain Leon gcc-toolchain

Operational
Systems

Not Available Linux and RTEMS
Linux, RTEMs
and VxWorks

responsible for internal SoC communication. It may deploy standard communication
buses, like AXI and Wishbone, or more advanced options like a Network-on-Chip (NoC).

3.3. AUTOSOC BASE COMPONENTS
This section outlines the processing units, interconnect components, debug elements,
and software workloads currently integrated into the AutoSoC. An initial configuration of
the benchmark, named AutoSoC QM, is set up by deploying only the base components.
The AutoSoC QM is a fully functional version of the benchmark and works as the foun-
dation for further configurations. The modular design of the AutoSoC allows additional
formats to be instantiated by simply enabling different Safety components. The follow-
ing sections describe the available Safety components and AutoSoC configurations.

3.3.1. HARDWARE COMPONENTS
The selection of the CPU, as the central unit of the AutoSoC, considered different pro-
cessor architectures, performance features (e.g., pipeline stages and memory interfaces),
main buses, software stacks, and the possibility of development on multiple abstraction
levels (Virtual Platforms, RTL, and gate-level). A further requirement is that the CPU has
to be open-source. Table 3.2 summarizes the main attributes of the open-source plat-
forms considered in this analysis.

3

56 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

Different analyzed options could be considered as promising candidates for the CPU.
For instance, the Amber2 [47] is a 32-bit RISC CPU compatible with the ARM v2a instruc-
tions set. Another considered option was the Gaisler LEON3 [48]; it includes a seven
stages pipeline, a comprehensive set of peripherals, and support scripts. This work has
deployed the OpenRISC [49] (mor1kx implementation) as the main CPU. The OpenRISC
includes a better variety of support tools, an active community, and the resources for
developing a Virtual Platform. Also, the community supports a variety of compatible
peripherals that can be easily integrated, including CAN, AES, and DES [50]. The Open-
RISC community provides tools and examples for the development of SoCs. As part of
that, there is an example SoC based on the mor1kx CPU. The package includes CPU,
memory, UART, JTAG, and a debug unit; the components are connected with a Wish-
bone bus. Also, the example SoC contains a testbench with features for loading software
applications to the memory and connection to the debug unit via JTAG. This example
serves as a base for the AutoSoC. By deploying it, we can cover the infrastructure and
interconnect blocks. Also, we can reuse part of the provided test environment to speed
up the development.

3.3.2. SOFTWARE RESOURCES
One of the objectives of the Automotive functional safety analysis is to avoid disturbance
of the safety-related functionalities of a system by Random Hardware Faults. In the case
of an SoC, the software application executed by the CPU defines the functionality. For
that reason, the software stack is an essential part of the functional safety analysis.

The current version of AutoSoC includes several software options. The intention was
to integrate the available resources and the applications developed by ourselves in a uni-
fied repository in the AutoSoC simulation environment. The simulation of all available
software applications is possible by suitably setting up the configuration files. AutoSoC
includes several software resources organized by folders. For example, the Baremetal
folder contains development resources as Makefiles, drivers, and around 50 compiled

Figure 3.2: Software Resource Folder Structure

3.3. AUTOSOC BASE COMPONENTS

3

57

test applications. Also, the Linux folder contains a compiled Linux kernel (bootable in
simulation) and the configuration files for building customized Linux configurations.
Furthermore, the RTEMS folder includes a development environment, including Make-
files and drivers, enabling buildings of new RTEM applications. Figure 3.2 illustrates
the software folder structure available in the AutoSoC package. It is essential to high-
light that all software resources are compatible with the simulation environment, also
included within the benchmark.

Finally, the AutoSoC also incorporates an Automotive Cruise Control application.
The development of such an application aims to increase the benchmark representation;
by including an actual automotive application, we can leverage the functional safety
analysis considering fundamental functionalities. The Cruise Control application de-
ploys the RTEMS Operational System and comprises four real-time tasks: the Sensor
reads vehicle sensor data through the AutoSoC CAN bus; the Control computes actua-
tion parameters based on driving configurations and the data retrieved by the Sensor;
The Engine set the engine parameters via an Analog-Digital Converter (ADC); and, the
House Keeping monitors the correct functioning of the software application. Figure 3.3
illustrates the control flow of the Cruise Control application.

Figure 3.3: Cruise Control Application

3.3.3. SIMULATION ENVIRONMENT
The elements previously described are integrated by a simulation environment; such an
environment deploys Makefiles to automate the configuration and simulation of the Au-
toSoC. The execution of a complete fault injection campaign is possible by the execution
of three commands:

1. make elab: controls the elaboration of the AutoSoC version; the setup is based on
configuration files that enable features of the benchmark.

3

58 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

2. make good_sim: starts the fault-free simulation of the design previously elabo-
rated; the simulation will dispatch the software application selected in the cam-
paign configuration files.

3. make fault_sim: begins the fault injection campaign; all FI simulation parame-
ters are configurable via configuration files (e.g., fault type, fault injection time,
strobes, available resources for parallelization).

At the end of the FI campaign, the Makefile retrieves the result of each simulation and
presents a summary of the fault space classification. Figure 3.4 illustrates the simulation
environment integrated in the AutoSoC benchmark package.

Figure 3.4: AutoSoC Simulation Environment

3.4. AUTOSOC SAFETY COMPONENTS

Another critical aspect of the benchmark is the availability of Safety Mechanisms in the
Safety Island. This block is responsible for executing safety-critical applications; there-
fore, we need to ensure that potential faults can be detected, avoiding possible harm to
the expected functionalities. The CPU, as the primary unit of the Safety Island, is the pri-
mary target for the safety evaluation. Hence, different safety mechanisms schemes were
conceived, targeting different Automotive Safety Integrity Levels (ASIL).

3.4. AUTOSOC SAFETY COMPONENTS

3

59

3.4.1. DUAL-CORE LOCKSTEP
The first option deploys time diversity Dual-Core Lockstep (DCLS) as the main Safety
Mechanism. The DCLS configuration includes a redundant copy of the CPU, delay units
for time diversity, and compare units for fault detection. Figure 3.5 illustrates the imple-
mentation of the DCLS with time diversity.

Figure 3.5: Time diversity Dual-Core Lockstep implementation

The performance of the central processor is not affected by the DCLS implementa-
tion. The main CPU is the only one with write access to the bus, controlling the function-
ality of the SoC. On the other hand, the shadow CPU does not perform any write access
to the SoC resources. Instead, the outputs of the shadow CPU are used only by the Com-
pare Unit for fault detection. In case of a mismatch between the results of both proces-
sors, an alarm is activated by the Compare Unit. Despite the additional fault coverage by
including DCLS, we still need to consider the effect of common-mode failures that can
impact both processors and are not detectable by comparison of their outputs [51]. The
DCLS mechanism also includes time diversity, minimizing the potential of common-
mode failures. Time diversity works by applying a delay in the execution of the shadow
processor. The time difference is obtained by including a delay unit in the driven signals
of the CPU. Delay units are also added to the outputs of the central processor to align
both core outputs for the Compare Unit. The time shift applied by the Delay Units can
be configured; the current version applies a delay of 2 clock cycles to all signals. The
shadow CPU execution delay configuration must consider the system requirements for
maximum fault tolerance time. Since this delay is also applied to the inputs, a mismatch
will be detected only after the configured delay.

Dual-Core Lockstep is the most used SM scheme for processors targeting ASIL D ap-
plications. However, not all applications demand ASIL D and the extra cost of including
a redundant copy of the CPU. For that reason, AutoSoC incorporates additional config-
urations targeting different ASIL requirements.

3.4.2. SOFTWARE TEST LIBRARIES
A Software Test Library (STL) is a collection of software tests targeting the detection of
permanent faults; these can occur anytime during the execution of a safety application

3

60 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

and can lead to safety goal violations. An STL corresponds to a set of software proce-
dures, usually developed in assembly code, C code, or both. These may be executed
either at boot-time or run-time. In the former case, they require supervisor capabilities
to avoid conflict with the Operating System (OS). On the other hand, the deployment of
STLs at run-time requires symmetry with the OS. For that reason, it is essential to make
these tests run in short periods; usually, a few milliseconds, avoiding affecting the be-
havior of the other software applications running on the same hardware. Therefore, the
software scheduler will dispatch these tests at specified time intervals when the hard-
ware is idle or running less time-sensitive applications.

Several semiconductor and IP companies started to provide their customers with STL
solutions for online fault detection in recent years. The advantage stemming from their
adoption lies first of all in the fact that system companies can test their products in the
field while guaranteeing a given fault coverage, even without knowing the implementa-
tion details (black-box testing). Moreover, STLs perform the test precisely in the system
operating conditions, thus executing at speed and avoiding any overtesting. Finally, they
do not require any change in the hardware, thus avoiding any area or performance over-
head. On the other side, the generation of STLs is mainly manual and requires special
skills to achieve sufficiently high fault coverage figures. Several recent works introduced
guidelines on how to correctly generate STLs for CPUs [52], [53] and peripherals [54],
how to speed up their tests [55], how to maximize their fault coverage in the different
scenarios (possibly minimizing the test time [56]), and how to re-use existing STLs.

3.4.3. INTERNAL MEMORIES ECC

Usually, in complex CPUs, internal memories occupy the highest area on the physical
device. As the component size is directly related to the probability of faults, internal
memories are a primary target for SMs. The ISO 26262 standard includes recommenda-
tions for well-known memory Safety Mechanisms. Based on the guidance and the find-
ings of the industry solutions characterization, Error-Detection-Correction Code (ECC)
was selected as an option to protect the internal memories of the CPU. The current im-
plementation of the Safety Island CPU includes seven blocks of internal RAMs. Together,
the internal memories represent 91,3% of the total fault targets in the RTL representation
of the CPU. Therefore, deploying an SM with high Diagnostic Coverage, like ECC, on all
internal memories will provide a satisfying coverage for the overall CPU.

3.4.4. EXTERNAL MEMORY ECC

Other elements that comprise the Safety Island are also a target for Random Hardware
Failures; therefore, these elements must undergo functional safety verification for the
possibility of single points of failure. Generally, software applications must be loaded to
the external memory to be executed by the CPU. Also, the applications utilize memory
for storing data and controlling parameters. As the software application function relays
on the external RAM, memory failures directly impact the intended functionality. ECC
must also cover the external RAM to avoid propagation of internal memory faults to the
outputs of the Safety Island.

3.5. AUTOSOC CONFIGURATIONS

3

61

3.4.5. BUS PARITY

The data bus is responsible for data transmission between the memory and the CPU. For
that reason, a fault in the data bus could propagate to the CPU or the memory and would
not the detected. The addition of a parity checker verification to the bus can avoid these
cases and protect data transmissions between CPU and memories. The parity checker
monitors data bus transmissions and calculates a parity bit for all communications be-
tween CPU and memory. The control bit utilizes a dedicated connection for commu-
nication between the parity check blocks. In case of a wrong parity, an alarm is set to
inform the system.

3.4.6. CHECKPOINT CONTROL

Even if the DCLS is employed, both CPUs could get stuck in the same software instruc-
tion, and none of the mentioned SMs could detect this fault. For that reason, we include
an SM to verify the correct execution of the software applications; named Checkpoint
Control. The Checkpoint control monitors the Data Bus expecting pre-determined soft-
ware signatures in specific memory locations. Thus, the mechanism works as a hardware
watchdog, but instead of expecting a single refresh from the software application, it ex-
pects a different signature for each software task. Consequently, the SM can verify if the
software application is running and if the control flow is as expected. Furthermore, the
Checkpoint Control is fully customizable during elaboration, allowing the definition of
the software signatures, expected signatures, and deadlines.

3.4.7. SAFETY MONITOR

Finally, we developed a Safety Monitor to integrate all the detection alarms. In the case
of fault detection of any SM, the Safety Monitor generates an external alarm and an error
code to indicate where the fault was detected. Figure 3.6 illustrates the architecture of
the AutoSoC Safe configuration, including the DCLS, External Memory ECC, Bus Parity,
and Checkpoint Control.

3.5. AUTOSOC CONFIGURATIONS
This section outlines the available benchmark forms and how they can be set up by en-
abling the different safety components. The available configurations comply with the
Functional Blocks: Safe, Automotive, Infrastructure, and Interconnect. The Application
Specific and Security Blocks, as illustrated in Figure 3.1 will be developed in the following
stages of our work. The modular design of the AutoSoC allows the reuse of the functional
safety analysis on later configurations.

As part of its modular concept, several configurations of the AutoSoC are possible by
enabling different combinations of the mentioned components. For defining a new con-
figuration, based on the provided simulation folder, the user must select the hardware
components in the elaboration config file, enabling any combination of Safety Mecha-
nisms by adding defines to the ’plus args’ config file (e.g., +define+DCLS). The new con-
figuration can then be elaborated and simulated with the provided Makefile. The bench-
mark enables the creation of multiple formats by combining the available component;
nevertheless, we have defined a group of initial configurations for the AutoSoC. These

3

62 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

Figure 3.6: AutoSoC Safe Configuration

configurations follow industry standards when considering common SM combinations.
Table 3.3 illustrates some potential configurations for the AutoSoC. For the scope of this
work, we have performed a preliminary safety assessment for three configurations; the
analysis targets AutoSoC ECC, AutoSoC STL, and AutoSoC DCLS as candidates to differ-
ent ASIL levels.

Table 3.3: AutoSoC Configurations

Benchmark
Configurations

Dual Core
LockStep

Internal
Mem ECC

Software Test
Libraries

BUS
Parity

Checkpoint
Control

Safety
Monitor

AutoSoC QM - - - - - -
AutoSoC ECC - + - - - -
AutoSoC STL - + + - - -

AutoSoC DCLS + - - - - +
AutoSoC SAFE + - - + + +

3.6. PRELIMINARY FUNCTIONAL SAFETY ANALYSIS
This section describes the functional safety analysis of the AutoSoC configurations. As
specified by ISO 26262, functional safety analysis aims to decrease the risk of failures
caused by malfunctions. Within electronic systems, it focuses on avoiding that Random
Hardware Faults can disrupt the expected functionality of a design. The ASIL defines the
required risk reduction for a particular functionality. Functionalities with a higher risk of

3.6. PRELIMINARY FUNCTIONAL SAFETY ANALYSIS

3

63

hazard situations demand a higher ASIL. In general, to reduce the risk of malfunctions
induced by random faults, we include SMs. The required percentage of detection, or DC,
is defined by the ASIL.

Typically, functional safety analysis occurs at later stages of the hardware design.
Hence, additional parameters like area, Failure-in-Time (FIT) rate, and Failure Modes
distribution are necessary to confirm design compliance to the required ASIL. Further-
more, we need these parameters to calculate Safety Metrics that show the design capac-
ity to cope with different fault models. For that reason, the current AutoSoC analysis is
considered preliminary. The following chapters determine the possible failure modes,
define the diagnostic coverage based on the failure mode distribution, and calculate the
final safety metrics.

3.6.1. AUTOSOC DCLS CONFIGURATION
Hardware redundancy schemes, like dual-core lockstep, are defined by ISO 26262 as rec-
ommended safety mechanisms for processing units. The standard defines the typical di-
agnostic coverage for these mechanisms as high, meaning 99% of detection for random
hardware faults. Therefore, the implementation of DCLS should aim to provide early
detection of failures by step-by-step comparison of results produced by two processing
units operating in lockstep. The AutoSoC DCLS configuration intends to comply with
the description from ISO 26262. Also, the implementation of time diversity increases the
DCLS features by addressing the effects of common-mode failures.

A preliminary investigation of the mor1kx_cpu description shows a potential of 337.752
possible fault targets. If we consider the SA0 and SA1 fault models, as required for ISO
26262 permanent faults analysis, there are a total of 675.504 faults to be analyzed. The
DCLS safety mechanism intends to identify faults in the mor1kx_cpu. By respecting the
Diagnostic Coverage defined by ISO 26262 for the DCLS, we can assume that the Lock-
step Controller will detect 99% of the faults in the mor1kx_cpu(Main). With 99% of fault
coverage, we can expect the AutoSoC DCLS to be a good candidate to comply with ASIL
D requirements. Table 3.4 illustrates the potential fault coverage for the AutoSoC DCLS
configuration.

Table 3.4: DCLS CPU Fault Coverage

Fault Target
SA(1/0)
Faults

Detected
by DCLS

Residual
Faults

mor1kx_cpu 675.504 668.749 6.755

3.6.2. AUTOSOC ECC CONFIGURATION
As described for the Processing Units, ISO 26262 also includes recommendations of SMs
for volatile and non-volatile memories. One of the recommendations is the deploy-
ment of memory monitoring using Error-Detection-Correction Codes (ECC). Tradition-
ally, ECC algorithms can detect one and two-bit failures and some three or more bit fail-
ures in a word. The standard defines the typical diagnostic coverage for ECC as 99% of
detection for random hardware faults. Usually, on complex CPUs, internal memories or
caches occupy the largest physical devices area. For that reason, a high detection rate on

3

64 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

the memories will provide a significant contribution to the design Failure-In-Time (FIT)
rate. This contribution will appear in the Failure Modes (FM) distribution, with cache-
related FMs requiring SM to decrease the residual FIT. In addition, it is a common design
practice to protect the cache memories with ECC or Parity.

In the AutoSoC design, the internal memories represent 633.344 possible fault tar-
gets considering the SA0 and SA1 fault models. This number represents 93,7% of the to-
tal number of fault targets for the entire CPU. For that reason, the addition of SM to the
internal memories means an excellent overall coverage for the CPU faults. The AutoSoC
internal ECC configuration considers the incorporation of ECCs to all internal memo-
ries. Table 3.5 demonstrates the fault coverage of the ECC for each inner memory block.
The total number of faults covered by the ECCs, considering the 99% DC defined by ISO
26262, is 627.011 faults. This coverage represents a 92,8% Diagnostic Coverage of the
entire CPU. These figures acknowledge the AutoSoC internal ECC configuration as an
excellent candidate to comply with ASIL B requirements.

Table 3.5: Internal Memories ECC Fault Coverage

Fault Target
SA(1/0)
Faults

Detected
by ECC

Residual
Faults

Fetch instructions cache ram 262.144 259.523 2.621
Fetch instructions cache tag ram 20.992 20.782 210
Fetch instructions MMU ram 8.192 8.110 82
Load/Store data cache ram 262.144 259.523 2.621
Load/Store data cache tag ram 19.968 19.768 200
Load/Store data MMU ram 8.192 8.110 82
Load/Store store buffer 51.712 51.195 517

TOTAL 633.344 627.011 6.333

3.6.3. AUTOSOC STL CONFIGURATION
In several cases, the overhead required by redundancy schemes as DCLS is not possible.
For that reason, there is an increasing demand for alternative strategies for the online
testing of automotive processors. This section describes the main characteristics of the
software test libraries under development to improve the AutoSoC CPU fault coverage
and reports the preliminary results.

We gather preliminary results on two AutoSoC CPU modules: the Arithmetic Logic
Unit (ALU) and the Load and Store Unit (LSU). The STL programs have been developed
resorting to three of the most common strategies for Software-Based Self-Test (SBST)
generation [57]: ATPG-based, deterministic, and evolutionary-based [58]. The current
STL comprises 16 test programs for a total of 64 KB. The AutoSoC STL Configuration
targets the CPU (mor1kx_cpu), cleared of all the possible sources of non-determinism
such as Instruction Cache and Data Cache. Furthermore, it is essential to note that a
controlled STL execution must consider a deterministic stream of instructions enter-
ing the pipeline. For that reason, modules that lead to a fluctuating in the control flow
(e.g., caches) should be deactivated for the fault grading process. This scenario does not
prevent caches (or similar) components from being used when the STLs are deployed;
however, it requires additional preparation to execute the test libraries.

For evaluation of the STLs, we carried out FI simulation on 42.160 faults targeting

3.7. CONCLUSIONS

3

65

the mor1kx_cpu at RTL and a total of 60.672 permanent faults for the mor1kx_alu and
the mor1kx_lsu units at gate-level. When considering the mor1kx_alu and mor1kx_lsu,
there are 4.938 fault targets. The FI experiments were performed at both the RTL and
gate-level, mimicking the typical industry flow; RTL estimations work as a proxy for the
gate-level fault coverage estimation, guiding the STL development process. Additionally,
the analysis of Safe fault by formal methods reveals a non-negligible increase in the fault
coverage of the two targeted modules. Table 3.6 sums up the gathered results showing
the achieved fault coverage on the ALU and LSU modules, both at the RTL and gate-
level. The table also differentiates the total Fault Coverage (FC) from the Testable Fault
Coverage (TFC), as TFC considers the fault coverage after excluding Safe faults.

The deployment of software routines to identify permanent faults is shown to be ef-
fective in multiple units of a CPU [59]. Although it is not always possible to achieve
ASIL D fault coverage requirements by deploying STLs, they are an appealing alternative
when combined with other SMs. A common practice in the automotive industry is to
correlate STLs with ECC in the internal memories of the CPU. For instance, in [59] the
authors achieved a permanent fault coverage of 84,4% by deploying an STL in an Open-
RISC CPU similar to AutoSoC CPU. The AutoSoC CPU contains 42.160 targets for SA0
and SA1 faults, not considering the internal memories. If we believe the fault coverage
from [59], the STL would be able to detect 35.583 faults; including the STL routines in the
AutoSoC ECC Configuration 3.6.2, the SMs combination would detect 662.594 faults. As
the total number of faults is 675.504, the combined detection rate represents a Diagnos-
tic Coverage of 98%. This figure would allow the combination of the AutoSoC STL and
ECC configurations to be a good candidate to comply with ASIL C requirements.

Table 3.6: Selected CPU Modules STL Fault Coverage

CPU Modules
RT-Level Gate Level

FC [%] TFC [%] FC [%] TFC [%]
ALU + LSU 68,71 80,04 76,23 85,43

3.7. CONCLUSIONS
The development of autonomous vehicles is driving the industry to close the technolog-
ical gap demanded by these applications. The research community is proposing solu-
tions to address safety, security, performance, among others. However, it may be hard
to assess the quality of their results. In most cases, there is limited access to representa-
tive designs, and comparison with industrial methodologies is very complicated. To ad-
dress this matter, we present the AutoSoC benchmark suite. Our work intends to provide
researchers with an SoC based on commercial solutions, includes all essential compo-
nents, is highly customizable, and allows comparability between distinct methodologies
and results.

This chapter outlines the current architecture options incorporated in the AutoSoC,
including hardware components, software applications, operating systems, and safety
mechanisms. Also, we describe a preliminary functional safety assessment targeting dif-
ferent ASIL configurations. Finally, the following chapters deploy the AutoSoC as a test
case for evaluating the proposed methodologies; named, targeting early estimation of

3

66 3. SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

safety metrics, improvements to online fault detection, and enhancements to the fault
space analysis. Additionally, we believe that the availability of this benchmark suite will
allow researchers to develop new solutions and quantitatively assess their effectiveness,
thus contributing to the advancement of the state-of-the-art in the related areas.

4
EARLY ESTIMATION OF DESIGN

SAFETY METRICS

4.1 Safety Metrics Estimation Methodology. 69

4.2 Validation and Results . 74

4.3 Conclusions. 83

The requirements of ISO26262 for developing safety-critical Integrated Circuits (IC) de-
mand substantial efforts on fault analysis for safety metrics evaluation. Failing to achieve
the required conditions entails modifications to the circuit, additional iterations through
critical design phases, and consequently extra costs and delays. For that reason, provid-
ing accurate methods to estimate safety metrics is of great importance. In this chapter,
we introduce a methodology that can efficiently and precisely evaluate the safety metrics
of Automotive designs. The technique is based on the characterization of the hardware
description in different abstraction levels to determine how the components contribute to
fault propagation. Also, by examining the test stimuli applied during simulation, we can
rank Workloads/Testbenches according to their fault detection coverage. We validate the
approach by running fault injection campaigns on distinct hardware designs in RTL and
gate-level. Our results show that the fault detection coverage can be estimated with an av-
erage error rate of 3% at up to 20X faster execution times when compared to the traditional
campaigns. Hence the methodology provides an efficient and cost-effective mechanism to
support engineers in a confident design space exploration.

Parts of this chapter have been published in the IEEE 27th International Symposium on On-Line Testing and
Robust System Design (IOLTS), 2021 [60].

67

4

68 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

F UNCTIONAL Safety Verification, as defined by ISO26262, is usually performed at later
stages of the development cycle; when failing to achieve the required safety met-

rics demands additional iterations through critical development and verification phases.
Such a scenario has a high impact on costs and development time. In a typical lifecy-
cle, the safety concept and architecture are established at the early development stages,
requiring engineers to estimate fault detection coverage without a proper evaluation
methodology. As a result, a misleading architecture decision before implementation will
be exposed only at the final stages of the development when modifications are expen-
sive. For that reason, there is a high demand for techniques that can support safety en-
gineers with design space exploration of safety features, increasing the confidence in
conceptual decisions and avoiding rework.

The recent advances in fault classification propose optimizations in fault analysis
and accentuate the strengths of several different technologies. However, the deployment
of such techniques assumes that the design is at the final development stages; for that
reason, they are not fully applicable for early estimation of the safety metrics. Further-
more, early design exploration of safety metrics is a gap in the development lifecycle.
Design space exploration refers to the activity of exploring design alternatives before
implementation. The concept is established in several domains of IC development, like
area, performance, power consumption [61][62], high-level synthesis [63], deep learning
[64], among others. Nevertheless, to the best of our knowledge, there are no method-
ologies for early design space exploration targeting safety metrics for compliance with
ISO26262.

Our work introduces a methodology for estimating safety metrics in Automotive de-
signs. By allowing engineers to evaluate fault detection rates before the final develop-
ment stages, we provide a tool for the design space exploration of safety architectures,
improving the confidence in conceptual decisions and decreasing the chances of rework.
The methodology is based on the hardware components’ characterization and the anal-
ysis of the test stimuli concerning fault propagation; the technique can be deployed us-
ing RTL or gate-level, covering multiple steps of the development lifecycle. Initially, we
identify the prime propagation nodes of the hardware design; these are sequential el-
ements that can hold the effect of faults. Then, we designate a weight for each prime
node that represents the number of components where a fault can propagate to such
node; in other words, the elements in the Cone of Influence (CoI). Next, we need to un-
derstand the behavior of the prime propagation nodes under the influence of faults; for
such, we perform FI simulation only on these nodes. Finally, we can assess fault space
analysis results by compiling the prime propagation nodes’ weight and their faulty be-
havior. Additionally, we consider the impact of fault activation by analyzing constant
nodes during the fault-free simulation; such a technique allows the classification of the
Workload/Testbench by their fault detection rate potential, resulting in enhanced esti-
mations for the analysis of gate-level designs. The main contributions of this work are:

• A systematic approach for the estimation of safety metrics of Automotive designs
in multiple phases of the development lifecycle;

• An effective method to rank Workloads/Testbenches according to their impact in
the fault detection coverage;

4.1. SAFETY METRICS ESTIMATION METHODOLOGY

4

69

• Validation of the methodology in Automotive IPs, considering RTL and gate-level
abstraction levels;

• The results estimate the fault detection coverage with an average error of 3% at up
to 20X faster execution times.

4.1. SAFETY METRICS ESTIMATION METHODOLOGY
Fault analysis targeting ISO26262 compliance aims to identify faults that can propagate
to safe-related outputs of the system. As these faults may disturb a safety goal, the design
should include mechanisms to detect and control them, maintaining a safe state. The
propagation of the fault effect depends on the hardware characteristics and the stimuli
applied to the design. These two aspects are fundamental to understanding a design’s
behavior under the influence of faults. Additionally, as previously discussed, the classifi-
cation of the Fault Space is mandatory for calculating the safety metrics; for that reason,
forecasting fault behavior is crucial for early estimation of the safety metrics. One of the
essential parameters for calculating the Diagnostic Coverage (DC) is the number of Fault
Space elements classified as Detected. The DC represents the capability of the design to
cope with Random Hardware Faults; for that reason, such a value is critical for calculat-
ing the SPFM, LFM, and PMHF, as described in 1.2.3.

Aiming to predict the number of Detected faults in different phases of the develop-
ment lifecycle, and without the need to execute an entire Fault Injection campaign, we
propose the Safety Metrics Estimation methodology. Initially, the structure of the hard-
ware design, in the available abstraction level, is analyzed to identify components that
can retain the effect of faults; these are, in general, sequential elements, inputs, and out-
put ports; these elements are named prime propagation nodes. Next, a weight is calcu-
lated for each prime propagation node; the weight represents the number of hardware
elements where a fault can propagate to such a node. After, we deploy simulation to
identify the effect of the workload regarding fault activation and fault propagation; such
a step is crucial to improve the prediction of fault classification. Finally, by combin-
ing design characterization with the contribution of the workload, we can estimate the
number of Detected faults for a given hardware design and workload.

The Safety Metrics Estimation methodology deploys four distinct phases: Design
Characterization, Fault Propagation Analysis, Fault Activation Analysis, and Estimation
of Fault Injection Results. Figure 4.1 illustrates each phase. The next sections describe
the technologies and activities deployed in each phase.

4.1.1. DESIGN CHARACTERIZATION
The design characterization aims to understand how each fault in the Fault Space prop-
agates in the design; it evaluates fault propagation to selected sequential elements, cre-
ating a matrix representing the potential of faults affecting each component. Such a
matrix allows the calculation of a weight denoting all fault nodes as a function of the se-
quential elements. The design characterization is based only on the physical attributes
of the hardware; therefore, the influence of the test stimuli, or workload, is not contem-
plated at this stage. For that reason, formal methods appear as a good candidate for the
technology to extract the required information from the design. This work deploys the

4

70 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

Figure 4.1: Safety Metrics Estimation Flow

Functional Safety Verification (FSV) application from Cadence®JasperGold (JG) Formal
Verification Platform.

ISO26262 requires that the Fault Space analysis contemplate all cell ports on the gate-
level representation of the design. However, our methodology intends to support early
estimation of safety metrics, so we need to adjust this requirement for higher hardware
abstraction levels, such as RTL. State-of-the-art EDA tools enable the evaluation of the
Fault Space at RTL; for such, they can identify constructions of description languages like
Verilog by the intended functionality and determine if they will become combinational
or sequential logic in the gate-level representation. Even though faults in RTL and gate-
level may not directly correlate, as synthesis will influence the resulting gate-level, the
implemented functionalities must be the same; for that reason, the RTL prediction is a
good indication of the faulty design behavior.

As illustrated in Figure 4.1, the first step of the design characterization is the Struc-
tural Analysis; the analysis is described in 1.3.1. Jasper Gold FSV enables the analysis in
RTL and gate-level; it also identifies RTL constructions as sequential or combinational
components. Therefore, as a result of the Structural Analysis, we can identify every ele-
ment of the design and extract information about the Fault Space. First, the Structural
Analysis initiates with the fault target configuration; for this work, we have specified all
cell ports for SA0 and SA1 fault models. Next, the fault list is optimized by the identifi-
cation of Safe faults. As previously discussed, formal methods can prove that Safe faults
cannot propagate to design outputs; therefore, these faults can be ignored, improving
the fault propagation estimation.

The next step is the analysis of the Cone of Influence (CoI) of each prime propagation
node. The prime propagation nodes are the hardware components identified as sequen-
tial elements and the output ports of the design; the selection of these nodes considers
their possibility to retain the effect of faults and the potential for correlation between
RTL and gate-level [65][66][67]. Furthermore, the CoI details all the fault nodes phys-
ically connected to a given hardware element. The CoI analysis is generally deployed
on the design outputs to identify faults that cannot propagate to them; however, this
work deploys the CoI analysis on every prime propagation node to understand the prop-

4.1. SAFETY METRICS ESTIMATION METHODOLOGY

4

71

agation of faults to such hardware components. For each element classified as a prime
propagation node, the flow continues as follows:

1. Extract the fault nodes inside the CoI;

2. Remove sequential elements as they are part of the prime propagation nodes list
and will be computed in separate;

3. Compute all remaining fault nodes.

After analyzing all prime propagation nodes, we have collected the required infor-
mation to calculate the weights. The weight represents the number of faults propagating
to a given prime propagation node. For example, a fault node that propagates to only
one flip flop has a weight contribution of one. Faults nodes with a physical propagation
path to multiple flip flops, need to have their weight contribution calculated based on
the number of flip flops they can affect. Figure 4.2 illustrates the weight calculation on
an example circuit.

Figure 4.2: Flip Flop Cone of Influence example

Figure 4.2 shows an example design containing Flip Flops (DFF) and gates (g). The
figure also highlights each flip flop’s Cone of Influence (CoI). The solid pattern represents
the CoI of ’DFF1’, while the checkered pattern represents the CoI of ’DFF2’. The gate
’g1’ is inside both CoI, implying that a fault in its ports can affect ’DFF1’ and ’DFF2’.
As previously described, a fault node that propagates to only one flip flop has a weight
contribution of one. Considering that each gate (g) contains three fault nodes, we can
calculate that ’DFF1’ has a starting weight of six, from the faults in ’g0’ and ’g2’, while
’DFF2’ has a starting weight of 6, from the faults in ’g3’ and ’g4’. To calculate the weight
contribution of ’g1’, as it is inside multiple CoI, we need to divide the number of fault
nodes by the number of flip flops they can affect. In the example, as ’g1’ is inside two
CoI, any fault node in the gate will have a weight contribution of 0,5. Consequently,
’g1’ will induce additional 1,5 to ’DFF1’ and ’DFF2’ weights. It is essential to highlight
that the described analysis considers a single fault model; therefore, we must repeat it
for every fault model in the Fault Space. Finally, considering a single fault model, the

4

72 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

netlist characterization of the example design would result in a final weight of 7,5 for
both ’DFF1’ and ’DFF2’.

The design characterization will result in a representation of the fault propagation
potential of a given circuit, by only their prime propagation nodes (flip flops and primary
outputs). Each prime propagation node will have a weight that expresses the number
of faults factored by the node. Therefore, we can estimate the classification of all fault
targets in the design by analyzing fault effects in the prime propagation nodes. After un-
derstanding how the physical characteristics of the circuit impact in the fault behavior, it
is necessary to compute the contribution of the workload regarding fault activation and
propagation.

4.1.2. FAULT ACTIVATION ANALYSIS
The workload has an essential role in determining the behavior of a design under the
influence of faults. The stimuli applied by the Testbench for simulation of the circuit
determine if a fault node will be activated. The combination of test inputs will determine
the logic value on the gate ports; if such a value is constant, a stuck-at-fault with the same
logic value will never be activated. For example, if a given hardware component has a
continuous logic value of ’0’ due to the applied test stimuli, the effect of an SA0 fault will
never be noticed. As the fault would never propagate in this example, we could remove
it from the previously calculated weight, increasing the accuracy of the prediction.

To verify the activation of faults, we need to execute a behavior simulation of the de-
sign to a given workload; by monitoring the logic value from all hardware components
throughout the simulation, we can identify constant nodes, and therefore, not activat-
able faults. The chosen technology for this analysis step is FI Simulation. Even though
this step does not require fault injection, we can deploy the fault-free simulation to ex-
tract the constant analysis. Our work deploys Cadence®Xcelium™Fault Simulator (XFS)
to represent this technology.

The test stimuli applied to the circuit will determine if a fault will be activated. Hence,
to identify fault nodes that are not exercised by the current workload, we need to analyze
the circuit’s inputs during the simulation. The fault activation analysis starts by identify-
ing test inputs that are constant during the design simulation. Then, this information is
applied to perform the testability analysis. The testability analysis identifies faults that
are unobservable for a given workload. Figure 4.3, illustrates an example of fault activa-
tion analysis.

Figure 4.3: Fault Activation example

4.1. SAFETY METRICS ESTIMATION METHODOLOGY

4

73

In the example illustrated in Figure 4.3, a fault node ’fa’ depends on the logic values
applied to ’in0’ and ’in1’ to be activated. Any combination of the inputs that produce
a logic value ’0’ in the gate ’g0’ output, results in an unobservable SA0 fault in ’fa.’ The
same would be true for an SA1 fault if ’g0’ outputs a constant logic value ’1’.

By examining all test inputs and identifying constant signals throughout the circuit, it
is possible to classify several fault nodes that are unobservable for a specific fault model.
As the workload never activates these fault nodes, we can conclude that they will never
propagate to circuit outputs during FI Simulation. Therefore we can determine that
these faults will be Undetected during the Fault Space analysis with the current work-
load.

After identifying all unobservable fault nodes for a given workload, we need to con-
sider them for the weight calculation. All faults identified as unobservable will have a
weight contribution of zero. Consequently, we can recalculate the weight from the de-
sign characterization step with the inputs from the activation analysis. The resulting
weight enhances the results from the design characterization by assessing the role of the
workload regarding fault activation.

4.1.3. FAULT PROPAGATION ANALYSIS

Likewise, the stimuli applied by the workload determine if a fault injected in a given node
can propagate to the outputs of the design; the test stimuli may put hardware gates in
a logic state that can mask the propagation of faults. For that reason, fault propagation
analysis is crucial to determine the behavior of a faulty design. Moreover, as previously
discussed, the Fault Space analysis demands FI simulation on every cell port of a hard-
ware design. Nevertheless, in the previous phases, we have defined a method to create a
representation of the fault space of a given circuit by only its prime propagation nodes;
therefore, we can estimate the Fault Space analysis results by only simulating faults in
such nodes. Furthermore, by decreasing the number of simulations, we can significantly
improve execution times and enable early estimation of the safety metrics.

In the previous phases, we have determined a weight for each prime propagation
node; it represents the number of hardware components where a fault could reach such
a node. Next, we need to assess the behavior of a fault injected in the prime propagation
nodes; the annotation of such a fault can be extrapolated based on the weight, predict-
ing the behavior of the other faults without additional simulations. Initially, we need to
define the fault target for each prime propagation node; in the case of gate-level designs,
the target will be the output port of flip flops; in RTL, the target will be the sequential vari-
able itself. Next, we deploy FI Simulation to determine the propagation of each prime
propagation node. The FI campaign follows the exact arrangement as described in 1.3.1;
the only difference is that the Fault Space is manually adapted to consider only the prime
propagation nodes. Figure 4.4 shows an example of the fault propagation analysis.

The example illustrates the propagation of a fault ’fo’ injected in the output port of
’DFF1’ to the circuit output ’out1’. The observability of the effects of ’fo’ in ’out1’ depends
on the logic level of the gates ’g3’ and ’g5’. As the workload is responsible for setting the
logic level of these gates, the simulation can confirm the fault propagation to the output.
Finally, at the end of the FI campaign, we can comprise each prime propagation node’s
weights and fault annotation to estimate the classification of all faults in the hardware

4

74 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

Figure 4.4: Fault Propagation example

design.

4.1.4. ESTIMATION OF FAULT INJECTION RESULTS

The final phase is the estimation of fault injection results. By considering the classifica-
tion of the fault effects on the prime propagation nodes and their weight, we can esti-
mate the fault classification to the entire circuit. For such, we extrapolate the FI result to
all faults represented by the weight; therefore, if a node weighted five and was classified
as Undetected, we can predict that five faults would be classified as Undetected in the
Fault Space analysis. For example, if ’DFF1’ in Figure 4.4 has a final weight of nine, and
the fault classification of a fault injected in ’DFF1’ output is Detected, we can estimate
that the nine faults weighted in ’DFF1’ would also be annotated as Detected. By repeat-
ing this analysis to all prime propagation nodes, we can estimate all faults in the circuit.
Finally, by computing the total number of faults for each fault classification category, we
can predict the result of the Fault Space analysis; this result also enables the estimation
of the DC, and consequently, of the safety metrics.

4.2. VALIDATION AND RESULTS
The validation of the proposed methodology consists of a comparison between esti-
mated fault classification results and actual fault injection results on target designs. By
incorporating the actual results, we can analyze the estimation error rate and the perfor-
mance improvements achieved by the methodology. Furthermore, the validation con-
sidered circuits with different physical characteristics and multiple simulation work-
loads, improving the overall assurance of the methodology efficiency. The AC97 is an
audio codec controller IP compatible with a wishbone bus; it includes a functional test-
bench that verifies all circuit functionalities and a post-production test simulation envi-
ronment based on ATPG [31]. The Conmax is an interconnect matrix IP core featuring
a parameterized priority-based arbiter, including a functional testbench [31]. Finally,
contemplating a test case representative from the automotive sector, we deploy the es-
timation methodology to the AutoSoC. The following sections detail the validation of
our method and its deployment during the safety lifecycle; additionally, we demonstrate
how to examine the computed parameters to extract an in-depth mapping of the design
under the influence of faults.

The estimation of the Fault Space analysis results follows the phases described in 4.1

4.2. VALIDATION AND RESULTS

4

75

for each of the test cases. However, in an actual product lifecycle, the availability of the
design abstraction level and simulation environment will vary according to the develop-
ment stage. For that reason, the methodology supports the deployment of each analysis
phase with the RTL or gate-level design descriptions. Furthermore, we can merge results
from different abstraction levels by correlating the prime nodes; therefore, as the devel-
opment advances, we can improve the estimation results by including more accurate
design descriptions. Figure 4.5 illustrates the applicability of the proposed methodol-
ogy in the different steps of the safety lifecycle; additionally, it highlights the hardware
abstraction level we can deploy for the estimation on each phase.

Figure 4.5: Application of the methodology during the Safety lifecycle

Generally, at the 5. Product development at the hardware level, the design descrip-
tion is initially available at RTL; after verification of the implemented functionalities, the
description of the hardware is synthesized into gate-level. It is also common to reuse the
functional simulation environment for both abstraction levels; with such an approach,
we can deploy the same testbenches and workloads to simulate the designs in RTL and
gate-level. For that reason, the proposed methodology was conceived so each analysis
phase can be performed on both RTL and gate-level, allowing the estimation of the safety
metrics at different stages of the development lifecycle. Furthermore, initial estimates
based only on RTL can be enhanced as the development advances. Figure 4.5 illustrated
the options for deploying the estimation methodology during the safety lifecycle. The
orange rectangles, named Estimation of Fault Injection Results, are numbered from one
to four, representing the estimation results in the different development phases.

Initially, when the hardware description and simulation environment are only avail-
able in RTL, each phase of the proposed methodology should be performed at the ab-
straction level mentioned above; scenario 1 - Estimation of Fault Injection Results in Fig-

4

76 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

ure 4.5. It is essential to notice that due to the characteristics of RTL, we could not see
benefits from the Fault Activation Analysis phase; for that reason, we can bypass the exe-
cution of this phase in the analysis regarding only RTL. Next, when the initial versions of
the gate-level are available, we can re-compute the results by only executing the Design
Characterization; this scenario is highlighted as 2 - Estimation of Fault Injection Results.
In this case, we can reuse the RTL Fault Propagation Analysis results by correlating the
prime propagation nodes from RTL and gate-level; the gate-level synthesis must include
options to keep design hierarchy and terminology. For example, suppose the name of
the sequential elements is the same in both abstraction levels. In that case, we can cor-
relate the propagation, simulated in RTL, with the weights, from the gate-level, improv-
ing the estimation accuracy and avoiding the computational efforts from FI simulation
at the gate-level. After, when the workloads are available for gate-level simulation, we
can integrate the results from the Fault Activation Analysis into the previous results, as
illustrated in 3 - Estimation of Fault Injection Results. As fault activation has an essential
role in the faulty gate-level behavior, calculating new weights based on this analysis im-
proves the estimation results. Finally, scenario 4 - Estimation of Fault Injection Results
represents the final step of the methodology when all phases are executed with the gate-
level resources; this is an extra estimation option to assess modification to the design
before the final Fault Space analysis is conducted.

4.2.1. VALIDATION

Initially, the methodology was validated using the gate-level version of the more uncom-
plicated test cases; this approach enables the manual verification of the results, assuring
that each flow step is operating as expected. In addition, it allows careful confirmation of
the contribution of each phase to the estimation accuracy. Furthermore, we have config-
ured the FI simulator to deploy the analysis using single strobes. In such a configuration,
the faults will be annotated only as Detected or Undetected, facilitating the comparison
between the actual FI results and the methodology estimation; it is crucial to notice that
the methodology is applicable with any strobe configuration.

Figure 4.6 illustrates the results of the methodology applied to the AC97 test case;
the top graph shows the results using a functional testbench, while the bottom presents
the analysis with the ATPG testbench. The column "FI Campaign" shows the results of
the FI simulation campaign; the other columns demonstrate the methodology results.
From these, the "Design Characterization + Fault Propag" column shows the estima-
tion results without Fault Activation analysis, and the "Design Characterization + Fault
Propag + Fault Activation" column illustrates the final estimation results, deploying all
methodology phases. The difference between the number of Detected in "FI Campaign"
and "Design Characterization + Fault Propag + Fault Activation" demonstrates the er-
ror of the estimated results. When simulating the functional testbench, the methodology
computes 42.166 Detected faults, while the FI Campaign identifies 39.863 faults in such
a category; additionally, this test case highlights the importance of the Fault Activation
Analysis to improve the estimation results. By excluding the weights of faults that are
not activated by the workload, the Detection estimation decreased from 49.172 to 42.166
faults, achieving a difference of 4% between estimated and actual results.

Next, the bottom graph of Figure 4.6 illustrates the results when deploying the AC97

4.2. VALIDATION AND RESULTS

4

77

Figure 4.6: AC97 with Functional and ATPG Testbenches Analysis Result.

test case with the ATPG testbench. As both estimation and FI results are above 99%, the
graph’s vertical axis shows the results from 99% to 100%. This example highlights the
impact of the workload for fault classification; even though the hardware design is the
same, the behavior of the faults is entirely different when applying ATPG stimuli. An-
other essential observation is that the methodology result is the same with and without
Fault Activation analysis; as the test stimulus was generated by an ATPG tool, the work-
load enables the activation of all faults, balancing the benefits of this analysis. In this
example, with almost 100% detection, the estimation error is due to the weight compu-
tation during the design characterization. Even though the weight rounding results in
a maximum estimation of 56.923 Detected faults, the difference between estimated and
actual results in the example is minimal.

Finally, we conclude the validation with the analysis of the Conmax test case using a
functional testbench. The Conmax implements a control matrix, enforcing parallel pro-
cessing, differently from the previous test case; also, the design has a higher complexity,
with an almost three times larger Fault Space. Figure 4.7 illustrates the estimation results.
Likewise, we can see the benefits of the Fault Activation analysis in the middle column;

4

78 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

Figure 4.7: Conmax with Functional Testbench Analysis Result

after removing 6.450 faults that are not activated, the Detection estimation rate is 87,1%,
resulting in a difference of 6,4% when comparing with the FI Campaign results.

4.2.2. SAFETY LIFECYCLE RESULTS

After the validation with more straightforward test cases, where we could manually ver-
ify the results and validate the methodology, it was necessary to prove it with a represen-
tative design comprising the resources for mimicking an actual safety lifecycle. As illus-
trated in Figure 4.5, for such demonstration, we need the hardware described in multiple
abstraction levels, a compatible simulation environment, and various workloads. Con-
sidering these requirements, we select the AutoSoC as the target for the design safety
metrics estimation. This section describes the results of the estimation methodology
applied to the AutoSoC using three different software applications; also, it follows the
flow demonstrated in Figure 4.5. First, we execute all analysis phases using the RTL ab-
straction level. Then, as gate-level becomes available, the RTL results are merged with
the design characterization at the gate-level. Next, we compute the Fault Activation anal-
ysis, improving the estimation results. Finally, all methodology phases are deployed at
the gate-level, generating a final estimation before an entire FI campaign is required.

Figure 4.8 illustrates the analysis results at RTL; this step is represented by 1 - Esti-
mation of Fault Injection Results in Figure 4.5. The analysis comprises three software
applications available in the AutoSoC benchmark: Hello World, a bare metal hello world
application; CalcPrime, an application based on RTEMS operational system that verifies
if a range of input values are prime numbers; STL, a Software Test Library deploying a
sequence of opcodes to propagate faults to the CPU outputs.

The methodology demonstrates a good estimation in the RTL abstraction level; esti-
mation results have a difference between 1,5% to 2,3% in the Detection rate compared
to the FI Campaign results. However, it is essential to consider that the Fault Space in
RTL is different from the gate-level; even though the FI results in RTL indicate the design
behavior under faults, it is necessary to repeat the analysis at the gate-level for a pre-
cise classification. For that reason, as the design development progress, we can improve

4.2. VALIDATION AND RESULTS

4

79

Figure 4.8: AutoSoC RTL Analysis Result

the estimation by repeating phases of our methodology at the more accurate abstraction
level.

The following Figures illustrate the results of the Estimation of Fault Injection Results
steps two to four according to Figure 4.5. Each Figure represents the analysis results
for one of the software applications. For example, figure 4.9 illustrates the results when
executing the HelloWorld; Figure 4.10 shows the CalcPrime estimation results; Figure
4.11 displays the STL analysis output.

The first example, in Figure 4.9, illustrates the analysis results when simulating the
Hello World application in the AutoSoC; as this is a simple application, generally being
used as an initial functionality test for compilers and CPUs, it provides a low fault prop-
agation rate. This behavior is also observed in the estimation results. The estimation
of Detected faults starts with 44.672 when applying the 2 - Estimation of Fault Injection
Results flow; next, when deploying Fault Activation, the result is 40.729 Detected faults;
and finally, when executing all phases with the gate-level, the estimation of detection is
41.110. As the actual number of Detected faults is 38.964, the methodology provides a
detection rate estimation with an error varying from 5,9% to 1,8%.

Next, as illustrated in Figure 4.10, we deploy the CalcPrime workload. Such an ex-

4

80 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

Figure 4.9: AutoSoC Hello World Analysis

Figure 4.10: AutoSoC CalcPrime Analysis

ample provides a higher activation of the CPU blocks when compared to the previous
one; the calculation of prime numbers requires the arithmetic unit’s usage and general-
purpose registers for storing partial values. As a result, the workload exercises more CPU
components, providing better fault propagation rates. In this example, the methodology
estimates 51.183, 45.817, and 46.198 Detected faults for each analysis phase. Meanwhile,
the FI Campaign resulted in 45.362 Detected faults, representing a detection rate of 47%.
Therefore, the difference between estimated and actual starts with 6% in 2 - Estimation
of Fault Injection Results, and achieves 0,4% and 0,8% in the following phases.

Finally, Figure 4.11 shows the methodology results when simulating the STL appli-
cation on the AutoSoC. An STL is a collection of software tests targeting faults’ propa-
gation or detection; it corresponds to a set of software procedures, usually developed
in assembly code, C code, or both. As these applications are specifically designed to
propagate the faults in the CPU, they achieve higher detection rates when compared to
the previous workloads. Likewise, the results supplied by the estimation methodology

4.2. VALIDATION AND RESULTS

4

81

Figure 4.11: AutoSoC STL Analysis

are in similar figures. For example, the actual FI Campaign results report 61.230 faults
as Detected. Meanwhile, the methodology phases estimated 62.017, 59.077, and 66.082
Detected faults, respectively. Therefore, in this example, our estimation achieved a dif-
ference between 0,8% and 5% compared to the actual Detection rates.

Unlike the other test cases, the measure of phase 2 - Estimation of Fault Injection
Results is the more accurate; however, we need to understand the reasons for such a
discrepancy. In test cases like STL, aiming to exercise particular hardware components,
our methodology tends to have a higher difference from actual results; the design char-
acterization calculates the weights as a representation of the Fault Space. Therefore, as
with any representation model, there is a natural loss of accuracy compared to the ac-
tual Fault Space; consequently, hardware components targeted by the STL may not be
represented in the design characterization model, increasing the estimation error. Con-
sidering that the RTL contains a subsampling of the gate-level Fault Space and that the
STL targets specific gate-level components, the RTL-based estimation’s higher accuracy
results from elements not represented in this abstraction level. In such a scenario, the
RTL’s smaller Fault Space reduces the number of faults estimated as Detected, decreas-
ing the difference to the actual FI Campaign results. Nevertheless, the estimation results
provided by the methodology are in a good accuracy range enabling early estimation of
the safety metrics even in test cases like the STL.

4.2.3. ADDITIONAL DESIGN EVALUATION

As previously discussed, the workload has a crucial function in the activation and prop-
agation of faults; a fault can only be declared as Detected if the test stimulus applied to
the circuit promotes the activation of the faulty element and enables the propagation
of the fault effect to the strobes. Therefore, for assessing the workload importance, the
proposed methodology computes its contribution, recalculating weights during Fault
Activation analysis and evaluating their influence in the Fault Propagation analysis. The
results above demonstrate that the cumulative information extracted by the design char-
acterization and workload analysis provides an accurate model for estimating fault de-

4

82 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

tection. Furthermore, by studying this information, we can extract an in-depth mapping
of the design under the influence of faults; such an analysis demonstrates crucial details
about fault propagation potential and critical areas of the circuit. Table 4.1 details the
information extracted during the analysis of the AutoSoC.

Table 4.1: Detailed AutoSoC Weighting Analysis

AutoSoC
Analysis (SA0/SA1)

Prime
Nodes

Total
Weight

Max
Weight

Average
Weight

Design
Characterization

4648 83427 1806,4 33,8

Design+Workload
Hello World

4648 66240 1232,2 26,8

Design+Workload
CalcPrime

4648 67314 1301,9 27,3

Design+Workload
STL

4648 76110 1806,4 30,8

First, the row Design Characterization demonstrates the results without analyzing
the workloads. The column Total Weight demonstrates the numbers computed dur-
ing the design characterization for the AutoSoC. After the design characterization, the
weight represents the fault propagation potential of the circuit; if a workload could ac-
tivate and propagate all faults in the design, the Total Weight would describe the num-
ber of detected faults. The column Max Weight promotes the identification of critical
nodes in the design, denoting the maximum weight in a single node. The column Aver-
age Weight shows the Total Weight divided by the number of Prime Nodes; representing
the distribution of fault nodes over the sequential elements in the circuit.

Next, each additional row demonstrates the results after analyzing a given workload;
if the workload does not activate a fault, the weight is recalculated accordingly. There-
fore, the Design+Workload rows represent the maximum fault detection coverage when
simulating the given workload. Furthermore, we can deploy the Total Weight after the
workload analysis to rank the workloads by their potential for fault detection. The work-
load with resulting parameters closest to the netlist characterization parameters will
likely have higher fault detection rates.

By analyzing Table 4.1, we can conclude that the STL workload has a higher potential
for fault propagation. First, the Total Weight is higher than the other workloads, mean-
ing that the STL activates more faults. Also, the Max Weight value is the same before
and after the STL analysis, indicating that this workload could exercise all faults in the
most critical area of the design. Finally, the difference between the Total Weight of the
Design Characterization and the Design+Workload STL rows reveals the number of faults
that the given workload cannot detect; highlighting a gap for improvements in the fault
coverage.

4.2.4. SUMMARY OF RESULTS AND DISCUSSION
As previously described, the validation of the results consisted of comparing the actual
results of the Fault Space analysis with the estimation of Detected faults for each test
case. For such, we configured FI Campaigns to simulate SA0 and SA1 faults on every cell
port of the circuits. Table 4.2 summarizes the result considering the gate-level descrip-

4.3. CONCLUSIONS

4

83

tion of the test cases. The columns labeled as Actual Detected represent the results from
the FI Simulation; the columns labeled as Estimated Detected outline the results from
the proposed methodology; the Estimation Error column shows the difference between
Estimated and Actual; and, finally, the column Exec. Time Improvement highlights the
performance gain when comparing the estimation method with the actual FI Campaign.

Table 4.2: Results Summary

Design Workload
Total Faults

SA0/SA1
Actual

Detected
Actual

Detected (%)
Estimated
Detected

Estimated
Detected (%)

Estimation
Error

Exec. Time
Improvement

ac97
Funct TB 57220 39863 69,67% 42166 73,69% 4,02% 8,5X
ATPG TB 57220 57091 99,77% 56923 99,48% -0,29% 5,8X

conmax Funct TB 153454 123796 80,67% 133762 87,17% 6,49% 12,8X

autoSoC
helloWorld 96354 38964 40,44% 41109 42,66% 2,23% 17,8X
calcPrime 96354 45362 47,08% 46198 47,95% 0,87% 19,1X

STL 96354 61230 63,55% 67083 69,62% 6,07% 20,4X

The execution time of the FI Simulation campaigns depends on several factors. How-
ever, the most critical parameter is the availability of resources for executing parallel sim-
ulations. For the designs with a faster simulation time (e.g., the AC97 and the Conmax),
the FI Simulation campaign is configured sequentially, resulting in execution time in the
granularity of days to a week. For the AutoSoC, which contemplates the simulation of
an entire SoC, the FI simulation is configured in concurrent mode, executing up to 100
faults in parallel, resulting in execution times in the granularity of weeks to a month; the
estimation technique execution time is faster than the FI Simulation campaigns in all
cases. Table 4.2 highlights the main achievements from the proposed methodology:

• Accuracy: The column "Estimation Error" highlights the difference between the
Estimated fault detection rates and the Actual fault detection;

• Efficiency: The column "Exec. Time Improvement" notes the performance gain
when deploying the proposed methodology.

As illustrated in Table 4.2, the results achieved by the proposed methodology are en-
couraging; it estimates fault detection rates with an accuracy between 0,2% and 6,4%,
with up to 20X faster execution times. These figures allow for a confident design space
exploration of a hardware design concerning the safety metrics. By deploying such a
technique, safety engineers can explore diverse architecture possibilities with a higher
degree of certainty. It is crucial to note that the proposed methodology cannot substitute
the execution of the Fault Space analysis as part of the Functional Safety requirements of
ISO 26262. However, even though the hardware design must undergo Functional Safety
verification at the final stages of development, the feasibility of an early estimation of the
safety metrics sustains safety-related architectural decisions.

4.3. CONCLUSIONS
Functional safety verification is a critical step for ISO26262 compliance. At later stages of
safety-critical systems development, designers must analyze the behavior of the design
under the effect of faults to show conformity with the expected safety metrics. Failing to
achieve these conditions entails additional iterations through critical development and

4

84 4. EARLY ESTIMATION OF DESIGN SAFETY METRICS

verification phases. This chapter presents a methodology for the design space explo-
ration of safety architectures. By allowing engineers to estimate safety metrics at ear-
lier development stages, we provide a tool for investigating safety architectures, improv-
ing the confidence in conceptual decisions, and decreasing the chances of rework. We
tackle this issue by allowing the estimation of Detected faults throughout the safety life-
cycle. We consider the current hardware abstraction level for each development stage to
model faulty behavior; as the development progresses, we enhance the results by com-
puting more accurate hardware descriptions. Our results demonstrate the accuracy of
the technique by providing an estimation of the fault detection rate with an average er-
ror of 3%. Moreover, the methodology results in an execution time up to 20X faster when
compared with the traditional gate-level Fault Injection campaigns.

5
ENHANCING ONLINE FAULT

DETECTION OF AUTOMOTIVE

CPUS

5.1 Formal Properties and Counter-Examples 87

5.2 Automatic Generation of Software Test Libraries 90

5.3 Configuration for the AutoSoC . 93

5.4 Results . 99

The advances in Automotive applications increase the demand for safety solutions tar-
geting online fault detection with low-cost overhead. Unfortunately, DfT is often not an
option during operational life; redundancy methods such as the DCLS may be prohibitive
due to the overhead. In contrast, STLs appear as a cost-effective alternative for the on-
line detection of random faults, but the development efforts are usually a problem. This
chapter proposes a formal-based technique for generating STLs. First, we constrain the
formal environment to use only pre-selected CPU instructions; then, the formal verifica-
tion will determine a sequence of such instructions to propagate a given fault. Further-
more, we modify the traditional strobes configuration to calculate a signature indicating
the presence of faults; such an approach results in a standalone safety mechanism en-
abling detection of faults. Finally, the technique is validated using the AutoSoC CPU; the
automatically generated STL achieves a detection rate of 53% for SA0/1 faults in the CPU
digital area.

85

5

86 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

T HE increasing complexity in automotive applications is causing a shift in the tradi-
tional design flow. For instance, an Integrated Circuit (IC) that implements safety-

critical applications, such as autonomous driving, must incorporate mechanisms to re-
duce the risk of failures resulting in life-threatening situations. For such applications,
the system must detect an extremely high percentage of potential faults while already
deployed in the field. This process becomes challenging in the most advanced auto-
motive ICs, where millions of design components are susceptible to random hardware
faults. Furthermore, the demands for fault detection during the design operation require
the deployment of suitable test mechanisms; Design for Testability (DfT) is often not an
option, as it could disturb the intended functionalities. Another common approach in
safety-critical domains is to deploy redundancy of systems and components, such as the
Triple Modular Redundancy (TMR) or Dual Core Lock Step (DCLS). However, the over-
head costs of redundancy schemes have a substantial impact on automobiles; the conse-
quence on the final price may be prohibitive in such a competitive market. The growing
demand for Automotive applications, together with functional safety requirements from
ISO 26262, demands innovative methodologies to increase operational safety without
significant increases in the cost.

The typical approach for developing automotive CPUs compatible with ASIL D is
the DCLS. However, not all applications require the highest integrity levels, and many
cannot afford the additional cost; a tradeoff between costs and safety would suffice for
many automotive systems. Consequently, safety schemes based on Software-Based Self-
Testing (SBST) are a good alternative for achieving high integrity levels without the over-
head of redundant hardware. The purpose of such methods is to achieve high fault
detection rates without imposing excessive overhead in the test budget [52]. Further-
more, solutions based on Self-Test Library (STL) - a collection of Software-Based Self-
Test (SBST) procedures - are widely deployed for the verification of CPUs [68][53][58].

Nonetheless, not all approaches are suitable for Automotive applications. For exam-
ple, most proposed STLs target the propagation of faults to the outputs of the circuit,
similar to the ATPG method; for these to work, it would be necessary to include compo-
nents to monitor the design outputs and identify the presence of faults. The approach
based on STLs with standalone capabilities for fault detection is primarily adopted in
the automotive industry [69][70][71]. However, the manual development of such STLs is
very complex, demanding specialized resources and long development cycles.

This chapter proposes a technique that enables the automatic generation of STLs,
targeting online fault detection in automotive CPUs. For such, we explore the strengths
of formal methods in determining optimal test stimuli for fault propagation to create a
sequence of commands in the format of an STL. First, the process deploys Formal Tools
to analyze the propagation of faults in a CPU; for such, we create a set of properties to
enable the formal environment to use only pre-selected opcodes for fault propagation.
Next, we extract the sequence of opcodes deployed to propagate the fault, also known as
the counter-example of the formal property. Then, by integrating all opcode sequences,
we generate an STL capable of detecting faults in the CPU. Finally, the technique is vali-
dated using the AutoSoC Bechnmark as a test case. The results of the FI campaign, using
the generated STL, show a standalone detection rate of 53% for SA0/1 faults in the CPU
digital area.

5.1. FORMAL PROPERTIES AND COUNTER-EXAMPLES

5

87

5.1. FORMAL PROPERTIES AND COUNTER-EXAMPLES
As discussed in 1.3.1, formal analysis is a powerful technology to understand the behav-
ior of a circuit. For example, such tools can determine the testability of faults by verifying
the design’s physical characteristics. Also, by generating a representation of the design’s
boolean function, they can determine the validity of formal properties. The analysis of
the properties must consider every possible combination of input values; a property is
True if the formal engine identifies a sequence of test stimuli that activate it. Figure 5.1
illustrates a simple circuit example with inputs (in), outputs (out), gates (g), and a fault
target (f).

Figure 5.1: Circuit Example for Formal Analysis

The example illustrates the analysis of a fault target ’f1’ in the output port of ’g1’; in
the context of fault analysis, the formal tool would verify activation and the propagation
of ’f1’ to one of the circuit’s outputs. For example, the activation analysis of SA0 and SA1
faults would generate the following properties:

SA0 activation property: asser t pr oper t y (g 1.out == 1) (5.1)

SA1 activation property: asser t pr oper t y (g 1.out == 0) (5.2)

Then, the formal engine would apply all possible combinations of values to the in-
puts (in1 to in5) and confirm the cases where the properties are True. In this simpli-
fied example, the value of ’f1’ depends only on the test stimulus applied to ’in1’ and
’in2’. Therefore, the engine would determine that property 5.1 is True when ’in1’ and
’in2’ receive the logic value one; and property 5.2 is True when ’in1’ or ’in2’ acquire the
logic value zero. The combination of test stimuli that induces a property to be True is
named the counter-example of the property. Still considering the given circuit, if the
activation properties are True, the formal engine would also perform the propagation
analysis; it would generate properties to demonstrate if a value applied to ’f1’ can reach
one of the outputs. Likewise, the formal engine would verify if the propagation proper-
ties are True, considering all combinations of test stimuli; if they are, we could extract
the counter-example of the properties, meaning the input values that drive fault acti-
vation and propagation. Furthermore, the counter-example of a given property can be
deployed in FI Simulation to reproduce the behavior.

5

88 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

The formal properties validation using the counter-example is a well-established
method for verifying hardware designs; it is a powerful resource for debugging the de-
sign behavior. In the context of fault space analysis, it is also an effective option to gen-
erate test cases with sound fault propagation rates. Another significant advantage is that
state-of-the-art tools can automatically generate formal properties to classify faults, re-
ducing formal verification environments development efforts. Furthermore, these tools
provide features to help us understand the behavior changes caused by faults. For exam-
ple, Cadence® JG FSV includes the fault detection trace utility; it provides an advanced
analysis window highlighting the circuit state, sequence of test stimuli, and the number
of cycles that enable the effect of the fault to reach the design outputs. Next, we will
describe an example of the fault detection trace utility applied to the fault analysis of a
CAN controller. Figure 5.2 illustrates the example test case, highlighting the inputs and
outputs of an open hardware implementation of the SJA1000 CAN Controller, developed
by Philips in the early 2000s.

Figure 5.2: CAN Controller Top Level

The CAN controller is compatible with the Wishbone bus; therefore, most circuit
stimuli are supplied by the bus’s connections; these are the input ports named with
the "wb_" prefix, representing the main source of stimulation for propagating the cir-
cuit faults. Additionally, the circuit includes an external clock. In the example, the fault
space analysis will examine SA0 and SA1 faults in every cell port; for each fault, the for-
mal engine will generate properties to show activation and propagation; the proofing of
such properties will consider every combination of input values. For each fault classified
as Detected, we can deploy the detection trace utility to verify the conditions that cause
fault propagation. Figure 5.3 demonstrates the fault detection trace when analyzing an
SA0 fault in the addr[1] signal of the CAN Controller.

The Figure details the circuit signals that are relevant for the propagation of the fault
under analysis; the signals are always displayed in pairs, the value in the Design Under
Test (DUT), and the counterpart in the Bad Machine. As described in 1.3.1, the Bad Ma-
chine is a copy of the DUT, where the faults are injected; the formal engine connects the

5.1. FORMAL PROPERTIES AND COUNTER-EXAMPLES

5

89

Figure 5.3: Fault Detection Trace

inputs of both and monitors the outputs; any discrepancy in the behavior of the ma-
chines indicates the fault effect. Furthermore, the user must indicate the signals respon-
sible for the clock and reset sequences of the circuit; these configurations are necessary
so the formal tool can interpret the timing and design’s initialization state. In Figure 5.3,
the control signals previously configured in the tool are shown under Clock Signals and
Reset Signals. The example illustrates the SA0 fault under Fault Signal; we can see that
can_top_bad_machine.addr[1] maintains a logic value of zero, while addr[1] is initiated
with a logic value of one. Additionally, the group FO Strobes highlights the propagation
of the fault to the circuit output wb_dat_o; after one clock cycle, we can already see a
discrepancy between the DUT and the Bad Machine outputs. The test stimuli that in-
fluence the propagation of the SA0 fault in can_top_bad_machine.addr[1] to the output
can_top_bad_machine.wb_dat_o is detailed under the group Inputs. These are the val-
ues applied by the formal engine to the circuit’s inputs to propagate the fault; in other
words, this combination of values is the counter-example that the activation and prop-
agation properties are True. Finally, considering that the user-defined clock and reset
configuration are accurate, we can reproduce the sequence of values from Inputs in a

5

90 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

testbench, confirming the propagation of the fault in the FI simulation environment.
The strength of formal verification in identifying scenarios that confirm the design’s

properties is crucial for analyzing the fault space. This technology is not limited to a
specific time or state; instead, it contemplates a global scope, considering every eval-
uation context and test stimuli. Consequently, formal methods can exhaustively prove
that a fault can never produce any failure; in cases where no existing combination of
test stimuli can propagate it. In the opportunities where an assortment of test stimuli
causes fault propagation, the tool can identify such values as the counter-example of the
formal properties. Furthermore, the method applied by such technology for verifying
properties is the foundation for enabling the automatic generation of the test libraries.

5.2. AUTOMATIC GENERATION OF SOFTWARE TEST LIBRARIES
As previously described, solutions based on STLs deploy a collection of Software-Based
Self-Test (SBST) procedures for detecting faults during the operational phase of CPUs.
The concept is similar to the CAN controller example previously discussed, where a com-
bination of inputs is applied to the design to identify the presence of faults. The differ-
ence is that in the case of CPUs, which are mainly controlled by software instructions (or
opcodes), a sequence of such instructions is the primary source for identifying the pres-
ence of faults. Furthermore, we explore the formal capability for generating counter-
examples of fault propagation to create a sequence of commands in a STL format.

When deploying the fault space analysis of a CPU using formal methods, we must
consider specific characteristics of such design. First, we must configure the control
signals of the CPU in the formal environment; the engine must comprehend complex
clock threes and reset sequences. Also, CPUs tend to include several debug features;
these additional inputs and outputs may not be relevant during its operational phase
and should be configured accordingly. Likewise, we must inform the tools about external
signals responsible for stopping the execution of the CPU (e.g., interruptions, JTAG, and
so on). Finally, we need to identify the main inputs and outputs for fault propagation;
these will generally be the connections to the instruction and data memory; they can
also be other connections to application-specific peripherals. Figure 5.4 illustrates an
example CPU; highlighted in blue are the control signals; and, marked in red, the inputs
from the instructions and data memories.

One of the advantages of formal verification is that the analysis doesn’t require the
presence of testbenches; the technology deploys every combination of inputs, not lim-
ited to the scenarios conceived in a simulation environment. However, for complex cir-
cuits like CPUs, not all combinations are usually relevant; considering the design sur-
roundings, we can decrease the level of freedom of the formal analysis, improving the
results. If, for example, a given SoC that includes the example CPU doesn’t incorporate
peripherals to the ports others_in and others_out, we can configure this information in
the formal engine with assume statements. Furthermore, by decreasing the exploration
space, we facilitate the proving of formal properties, improving execution times. Equa-
tion 5.3 describes an assume statement indicating to the verification environment that
the connection others_in is open; it will always hold the logic value zero.

assume −env {cpu_exampl e.other s_i n[31 : 0] == 32′h00000000} (5.3)

5.2. AUTOMATIC GENERATION OF SOFTWARE TEST LIBRARIES

5

91

Figure 5.4: Example CPU

Another essential aspect to consider is the operating modes available in a CPU. In
general, the execution control of a CPU includes several flows, initialization of inter-
nal blocks, handling of interruptions and exceptions, external control via debuggers and
JTAGs, among others. Furthermore, not all combinations of test stimuli are consistent
with all operating modes. For that reason, setting up the proper operational mode is
crucial to validate the formal verification results. For such, we can include assume state-
ments replicating the external inputs that set the CPU into the desired mode. For the
specific case of the STLs, we want to perform fault analysis in operational mode; as such,
we must configure the formal environment accordingly. In the example CPU illustrated
in Figure 5.4, the setup would include proper configuration of clock and reset signals, as-
suring proper initialization of all internal blocks; and the inclusion of assume statements
in the debug_in input to disable external CPU control.

Next, we need to identify the operational outputs where we would like to analyze
fault propagation. As previously discussed, we determine the behavior change provoked
by a fault when the effect is observable in one of the outputs (strobes); the test stimuli
are responsible for triggering such propagation to the strobes. For that reason, the clas-
sification of faults relies not only on the test inputs but also on the outputs configured as
strobes. Furthermore, when assessing Automotive designs, we must consider ISO 26262
definition for the fault space classification; a fault is dangerous if it can violate a safety
goal. Therefore, the configuration of strobes in the example CPU should include only
outputs that can affect the system’s functionalities. In Figure 5.4, we could determine
address_out to both buses and data_out to the Data Bus as the operational outputs; an
error propagate to these outputs could affect safety-critical functionalities. The output
others_out could also be considered depending on the function implemented by the pe-
ripherals connected to it; the debug_out could be ignored as the propagation of errors
to this output are not relevant for critical functions.

Finally, the formal engine will generate properties that demonstrate fault propaga-
tion to the configured strobes; the validation of such properties will consider every pos-
sible combination of values in the inputs of the CPU; in the example, these inputs are
the data_in from both buses. By default, the verification environment has no previous
knowledge regarding the format of the data inputs; however, in the case of the data_in

5

92 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

from the instructions memory, the structure of the information should observe the CPU’s
Instruction Set Architecture (ISA). Furthermore, we want to assure that the formal prop-
erties are confirmed using proper instructions as test stimuli; as a result, the counter-
examples can be extracted and converted back to assembly opcodes; next, the sequence
of opcodes is formated as a software function.

The input from the instructions memory to the CPU follows a numeric machine code
format. The ISA defines such a code, including the functionality to be executed by the
CPU and the required internal registers. In addition, the ISA describes the opcode for-
mat, allowing compilers to translate it to machine code. For instance, Table 5.1 describes
an addition operation on the OpenRISC architecture. The Table also highlights the math-
ematical function to be executed, the instruction format defined in the ISA, the assembly
command, the machine code in hexadecimal and binary formats, the size of each field,
and the bitwise mapping in bits for each instruction operator.

Table 5.1: Example of a 32 bits CPU Instruction

CPU Functionality Reg D = Reg A+V alue
Instruction Format Opcode Register D Register A Value
Assembly Example l.addi Reg1 Reg2 100
Hexadecimal Code 0x27 0x01 0x02 0x0064
32 Bits Instruction 10 0111 0 0001 0 0010 0000 0000 0110 0100
Field Size 6 bits 5 bits 5 bits 16 bits
Bitwise Map 31 - 26 25 - 21 20 - 16 15 - 0

The example in Table 5.1 describes a 32 bits instruction split into four fields: first,
the Opcode defines the operation to be executed by the CPU; next, the Registers D and A
specifies the CPU’s general-purpose registers to hold the procedures partial and final val-
ues; lastly, Value appoints an auxiliary integer value. By default, the formal engine is not
aware of the ISA definition; therefore, it will randomly apply test stimuli to the instruc-
tions data_in input until it concludes the verification of the properties. However, we can
deploy assume statements to configure appropriate input conditions in the formal envi-
ronment; by doing so, we potentialize the verification and assure the counter-examples
from proven properties can be replicated as proper CPU instructions. For such, we
would define only the Opcode field of the instruction as an assume statement; the formal
engine has the freedom to determine the combination of the other fields to generate a
complete instruction (or sequence of instructions) that causes fault propagation. The
equation below describes an assume statement configuring the instruction illustrated in
Table 5.1 in the formal environment; also, the example illustrates two restrictions on the
Register D field, limiting the values that the formal engine can use. In the example, Op-
code field (bits 31 to 26) is configured with the machine code corresponding to the l.addi
instruction; the field Register D (bits 25 to 21) must comprise values different from 0 and
16, as writing to these registers could perturb the software execution.

5.3. CONFIGURATION FOR THE AUTOSOC

5

93

assume −env { (cpu_exampl e.d at a_i n[31 : 16] == 6′b100111) and

(cpu_exampl e.d at a_i n[25 : 21] ! = 5′b00000) and

(cpu_exampl e.d at a_i n[25 : 21] ! = 5′b10000) }

The counter-example of the formal verification of propagation properties, including
the constraint above, would consist of a sequence of l.addi commands, with different
values for the Register D, Register A and Value fields. As we are overconstraining the test
stimuli space to a single instruction, the fault space analysis would result in fewer De-
tected faults. However, for the faults classified as Detected, we could extract a counter-
example with direct translation into a sequence of assembly commands. Furthermore,
we can define several opcodes that the formal engine can apply as stimuli; therefore, we
can expand the CPU area exercised by the test stimuli increasing the coverage. By im-
proving the number of opcodes available for the formal engine, we tend to have a higher
number of Detected faults; as such, the verification of propagation properties will spec-
ify a sequence of pre-determined opcodes that will be the base of the STL.

5.3. CONFIGURATION FOR THE AUTOSOC
This work deploys the AutoSoC Benchmark as the test case to validate the previously
discussed techniques. As described in 3, the AutoSoC includes several configurations
targeting different ASILs; the AutoSoC STL configuration targets higher integrity levels
without the overhead required by redundancy schemes as DCLS. For such, the STL must
cover a good portion of the digital area of the CPU; combining the ECC in internal mem-
ories with a good STL coverage results in an inexpensive version of the SoC that complies
with Automotive requirements. Figure 4.11 illustrates the AutoSoC STL configuration in-
cluding the CPU primary inputs and outputs; the signals ibus_ctrl and dbus_ctrl sym-
bolizes the several control signals of the Wishbone bus.

5.3.1. CONTROL SIGNALS AND OPERATIONAL MODE

Similar to the example CPU described in the previous section, we need to properly con-
figure the formal environment to analyze the AutoSoC CPU. First, we need to set up the
control signals; the mor1k implementation of the OpenRISC includes a simple clock
three and synchronous reset; for that reason, a simple indication of the clock and re-
set signals suffice for the control configuration. Next, we must ensure that the formal
engine performs the fault analysis considering the correct operational mode of the CPU.
For such, we analyze the CPU simulation in operating mode and replicate the conditions
applied by the testbench to the formal engine; this analysis results in a series of assume
statements setting up the state of external and internal values of the CPU. With a concise
definition of the signals that control the CPUs operating mode, the formal engine can an-
alyze considering only conditions valid for STLs. Listing 5.1 exemplifies the assumptions
applied to the AutoSoC verification environment to ensure the correct operational mode
is considered. It includes the signal states of external inputs, such as interruption, debug
unit, buses errors, and internal signals not used in the current CPU configuration. The

5

94 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

Figure 5.5: AutoSoC STL Configuration

configuration of internal signals values may not impact the operational mode but reduce
the analysis exploration space, improving the results.

1 # Inputs from External Interruptions
2 assume -env { mor1kx_cpu.irq_i [31 :0] == {32 ’ h00000000 }}
3 # Inputs from Data and Instruction Buses
4 assume -env { mor1kx_cpu.ibus_err_i == {1’b0 }}
5 assume -env { mor1kx_cpu.dbus_err_i == {1’b0 }}
6 # Inputs from the Debug unit
7 assume -env { mor1kx_cpu.du_we_i == {1’b0 }}
8 assume -env { mor1kx_cpu.du_stb_i == {1’b0 }}
9 assume -env { mor1kx_cpu.du_stall_i == {1’b0 }}

10 assume -env { mor1kx_cpu.du_dat_i [31 :0] == {32 ’ h00000000 }}
11 assume -env { mor1kx_cpu.du_addr_i [15 :0] == {16 ’ h0000 }}
12 # Internal signals not used in current configuration
13 assume -env { mor1kx_cpu.spr_bus_dat_pmu_i [31 :0] == {32 ’ h00000000 }}
14 assume -env { mor1kx_cpu.spr_bus_dat_pcu_i [31 :0] == {32 ’ h00000000 }}
15 assume -env { mor1kx_cpu.spr_bus_dat_mac_i [31 :0] == {32 ’ h00000000 }}
16 assume -env { mor1kx_cpu.spr_bus_dat_fpu_i [31 :0] == {32 ’ h00000000 }}
17 assume -env { mor1kx_cpu.spr_bus_ack_pmu_i == {1’b0 }}
18 assume -env { mor1kx_cpu.spr_bus_ack_pcu_i == {1’b0 }}
19 assume -env { mor1kx_cpu.spr_bus_ack_mac_i == {1’b0 }}
20 assume -env { mor1kx_cpu.spr_bus_ack_fpu_i == {1’b0 }}
21 assume -env { mor1kx_cpu.snoop_en_i == {1’b0 }}
22 assume -env { mor1kx_cpu.snoop_adr_i [31 :0] == {32 ’ h00000000 }}
23 assume -env { mor1kx_cpu.multicore_numcores_i [31 :0] == {32 ’ h00000000 }}
24 assume -env { mor1kx_cpu.multicore_coreid_i [31 :0] == {32 ’ h00000000 }}

Listing 5.1: CPU Mode Formal Environment Setup

5.3. CONFIGURATION FOR THE AUTOSOC

5

95

5.3.2. INSTRUCTIONS INPUT CONFIGURATION

As previously discussed, the test stimuli with higher control over the CPU functionalities
is the data supplied by the Instructions Memory idata_in; any information applied to
such input must respect the definitions from the ISA. Any given CPU includes instruc-
tions to control all implemented functionalities; generally, an assembly application re-
quires a sequence of such instructions to execute a functionality correctly. For exam-
ple, an assembly application that sums up two numbers would need: first, instructions
to move the addends to general-purpose registers; second, the addition instruction on
such registers; and, finally, the commands to store the result in the memory or return it
to a caller function.

In the context of the STL generation, we cannot expect the formal engine to deploy
a logical sequence of instructions as exemplified above; instead, it will randomly apply
values to the input fields until it finds a combination of values that confirm a property.
Therefore, we must include constraints to the formal environment to enable verifica-
tion using only test stimulus that will result in a concise counter-example. Such con-
ditions must consist of a list of instructions that allow activation of the different CPU
blocks without disturbing the software execution flow and boundaries for each instruc-
tion’s field. For instance, if the counter-example of a formal property includes a Jump
instruction to a random location, it would not be possible to translate it to a software
function; the execution of such operation would result in an exception. Furthermore,
we need to preserve the values of registers used to save the original context of an appli-
cation. For example, in the OpenRISC architecture, we cannot write to general-purpose
registers "r1" and "r16" without disturbing software execution; the reason is that the first
is a read-only register, and the second holds the return address of caller functions.

For the AutoSoC test case, the analysis for defining the constraints for the formal en-
vironment was based on manual verification of each instruction in a simulation environ-
ment. The AutoSoC development environment contemplates simulation and software
development tools; we have developed a software library function in assembly based
on these resources. The initial version of the procedure consisted of an arbitrary exe-
cution of assembly commands; first, we integrated it with the AutoSoC Cruise Control
application to verify if we could restore the context of the original application after the
procedure execution. At this stage, we could identify the general-purpose registers that
should be preserved to keep consistency with the main application. Next, we expanded
the number of integrated assembly instructions until all were identified by the risk of
disturbing the software execution. The instructions that maintain the execution flow are
then selected as the base for the STL.

After identifying the commands that will be part of the STL, we need to understand
how to configure them in the formal environment. The instructions architecture for the
OpenRISC defines several instruction groups, each with distinct bitwise map formats
and fields sizes. Furthermore, the configuration of the opcodes must respect the proper
format defined in the ISA; in case of mismatches, the formal engine will apply invalid
test stimuli to the CPU invalidating the results. Table 5.2 describes the different instruc-
tion groups; for each group, it also highlights the definition of the bitwise map and an
example assembly command.

Considering the formal environment constraints and the instruction groups illus-

5

96 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

Table 5.2: OpenRISC ISA Instructions Format

Instructions
Group

Instruction Format
Assembly
Example

1
Opcode D A Value

l.addi rD, rA, Value
[31-26] [25-21] [20-16] [15-0]

2
Opcode D A B

l.and rD, rA, rB
[31-26] [9-8] [3-0] [25-21] [20-16] [15-11]

3
Opcode D A B

l.sll rD, rA, rB
[31-26] [9-6] [3-0] [25-21] [20-16] [15-11]

4
Opcode D A

l.extbs rD, rA
[31-26] [9-6] [3-0] [25-21] [20-16]

5
Opcode A B

l.sfeq rA, rB
[31-21] [20-16] [15-11]

6
Opcode A Value

l.sfeqi rA, Value
[31-21] [20-16] [15-0]

7
Opcode D Value

l.movhi rD, Value
[31-26] [16] [25-21] [15-0]

trated in Table 5.2, we must construct a logical equation enabling the expected values
for the idata_in input in the format of an assume statement. Such an equation must
detail the valid combination of values for each input port bit. The Listening 5.2 demon-
strate an example assume statement for the idata_in input port, including Opcodes from
groups 1, 3 and 5 and write restrictions for the general-purpose registers "r1" and "r16".

1 # Set valid opcodes for Formal Analysis
2 # and add specific Register restrictions per opcode
3

4 # Group1 [31 :26]: l.addi, l.andi
5 # Group3 [31 :26][9 :6][3 :0]: l.sll, l.sra
6 # Group5 [31 :21]: l.sfeq, l.sfeqi
7

8 # OpCodes machine code - For all Opcodes the first register cannot be
9 # r1 or r16, as both can cause exceptions

10 assume -env {
11 # Group1
12 (idata_in [31 :26] == {6’ b100111 } and idata_in [25 :21] != {5’ b00000 }
13 and idata_in [25 :21] != {5’ b10000 }) or
14 (idata_in [31 :26] == {6’ b101001 } and idata_in [25 :21] != {5’ b00000 }
15 and idata_in [25 :21] != {5’ b10000 }) or
16 # Group3
17 (idata_in [31 :26] == {6’ b111000 } and idata_in [9 :6] == {4’ b0000 } and
18 idata_in [3 :0] == {4’ b1000 } and idata_in [25 :21] != {5’ b00000 } and
19 idata_in [25 :21] != {5’ b10000 }) or
20

21 (idata_in [31 :26] == {6’ b111000 } and idata_in [9 :6] == {4’ b0010 } and
22 idata_in [3 :0] == {4’ b1000 } and idata_in [25 :21] != {5’ b00000 } and
23 idata_in [25 :21] != {5’ b10000 }) or
24 # Group5
25 (idata_in [31 :21] == {11 ’ b11100100000 } and idata_in [20 :16] != {5’ b00000 }
26 and idata_in [20 :16] != {5’ b10000 }) or
27 (idata_in [31 :21] == {11 ’ b10111100000 } and idata_in [20 :16] != {5’ b00000 }
28 and idata_in [20 :16] != {5’ b10000 })
29

30 }

Listing 5.2: AutoSoC Opcodes Setup

5.3. CONFIGURATION FOR THE AUTOSOC

5

97

The final assume statement for defining the proper instructions for the AutoSoC anal-
ysis included 43 opcodes, together with their restrictions for each field. We have gener-
ated several STL versions with smaller subsets of commands to get to this stage. After
generating each STL, we have to verify the proper execution of the software flow by in-
tegrating it in the Cruise Control application and analyzing the behavior of the CPU in
the simulation. The process for generating the STLs will be described in the following
sections.

5.3.3. STROBES

The final setup to initialize the formal verification flow is the configuration of the strobes.
As previously discussed, the strobes are design components configured as observation
points by the user; they indicate to the tool the elements to be monitored to demonstrate
fault propagation. In the case of formal analysis, the engine will generate the properties
to show fault propagation to the configured strobes; in the context of the STL, the en-
gine will try to identify a sequence of pre-configured opcodes to propagate faults to the
observation points.

The common practice for setting up the strobes is to identify all functional outputs
of the target design; these are the ports where a fault could propagate to the system and
violate safety goals. In this case, the counter-example of the proven properties would
indicate test stimuli to reproduce the effects in such outputs. As described in 1.3.1, this
class of faults is classified as Dangerous, which can disturb the safety-critical function-
alities. However, only propagating faulty elements to the output is insufficient to claim
they will become detected; this would require an additional mechanism to verify the de-
sign outputs. Ideally, an STL does not require other components to detect faults; the
idea is to have a standalone software module able to identify the presence of faults and
indicate it to the system. For that reason, we propose a different configuration for the
strobes. Figure 5.6 illustrates two strobes configurations on the AutoSoC CPU; in ’a),’ the
formal setup includes the configuration of the strobes on all functional outputs of the
CPU; in ’b),’ a single strobe is configured in the general-purpose register "r31".

By modifying the location of the strobes, we are indicating to the tool that we want
to identify test stimuli that propagates the effect of faults to the register "r31". Therefore,
for each fault analyzed by the formal engine, the counter-example will consist of a se-
quence of instructions that propagate the outcome to the target register. In other words,
after executing such a sequence of commands, the value held by "r31" will differ from
the value in the fault-free simulation; this difference indicates the existence of a fault.
Furthermore, we can use the content of the register "r31" to calculate a signature; first,
we must define the signature during the fault-free simulation; next, during each execu-
tion of the STL, we can recalculate the signature. The STL has detected a fault in case of
mismatches between the current and the fault-free signatures.

5.3.4. COUNTER-EXAMPLE AND STL GENERATION

Finally, with all required configurations of the environment, we can dispatch the func-
tional safety verification of the formal tool. At the end of the analysis, the engine will
classify the fault space elements as Unknown, Safe, or Detected, considering the con-
straints previously configured. In the cases where the formal engine couldn’t finalize the

5

98 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

Figure 5.6: a) Strobes configured on CPU outputs b) Strobe configured on GPR r31

analysis due to timing constraints, the faults will be Unknown. If no valid combination of
inputs can propagate the fault effect to a strobe, the fault is classified as Safe; it is crucial
to note that these faults are Safe only considering the input restrictions; the classifica-
tion may differ in a constraints-free analysis. Finally, Detected faults are when the tool
identifies a valid sequence of instructions propagating it to the strobes. We can extract a
counter-example for generating the STL for each Detected fault.

The counter-examples will describe the machine code applied to the idata_in input
for propagating a given fault to the strobe "r31". As illustrated in Table 5.1, the machine
code is a 32-bits numeral representing an assembly command. As we intend to deploy
the counter-example result as a software library, we need to translate the machine code
to the corresponding assembly instruction. Therefore, we developed a script that inputs
a sequence of 32-bits hexadecimal arrays and outputs the related assembly instructions.
For example, considering a single Detected fault in the context of the AutoSoC analysis,
the item below demonstrates the counter-example extracted from the formal tool.

• 32’hbc480000 32’h9fe007ff 32’he3fffffb 32’hbc420000 32’hbc420000 32’h9fffffff

The sequence of six hexadecimal machine codes represents the instructions for prop-
agating the given fault; we can reproduce this behavior in an STL by converting the ma-
chine code into assembly instructions. However, as previously discussed, we intend to
detect faults and not propagate them to the outputs. For that reason, we must include
the logic for calculating the signature that will indicate the fault propagation; for such, at
the end of each sequence of instructions, we manually insert a tag "$SIGN." During the
execution of the conversion script, the "$SIGN" will be replaced with a function to han-
dle the signature calculation. The Listing 5.3 demonstrates the assembly code generated

5.4. RESULTS

5

99

by the conversion script; it contemplates the instructions related to the counter-example
and also the call for the signature calculation function.

1 asm(" l.sfgtui r8, 0 ");
2 asm(" l.addi r31, r0, 2047");
3 asm(" l.mulu r31, r31, r31");
4 asm(" l.sfgtui r2, 0 ");
5 asm(" l.sfgtui r2, 0 ");
6 asm(" l.addi r31, r31, 65535 ");
7 stlSignatureCalc ();

Listing 5.3: Assembly Code for the STL

The example in Listing 5.3 represents the sequence of instructions for detecting a
single fault; as the analysis will incorporate thousands of faults, we cannot verify the
signature every time; instead, we must compress the "r31" values and prove it on strate-
gic positions. For such, we apply an Exclusive OR (XOR) between the "r31" current and
past values. Furthermore, the function will return the value to the main application af-
ter a pre-determined sequence of instructions; the user must define the size of such a
sequence based on the application time slots for running the STL. Finally, at the end of
each sequence, or STL stage, the compressed signature is returned to the main applica-
tion to be compared with the fault-free value. The Listing 5.4 describes de source code of
the signature calculation function. The function loads the past "r31" values from mem-
ory, calculates the XOR with the current value on the target register, and store the result
back to the memory.

1 // Inline function to calculate the signature of the STL
2 void inline stlSignatureCalc (void) {
3 // Prepare the higher part of the stlSign address in memory
4 // stlSign = (unsigned int *)0 x0075000 ;
5 asm volatile ("l. movhi r5 , 0x10 ");
6 // Load current stlSign value to r30
7 asm volatile ("l.lwz r30 , 0 x5000 (r5) ");
8 // XOR r31 and r30
9 asm volatile ("l.xor r31 , r31 , r30");

10 // Save r31 to stlSign in memory
11 asm volatile ("l.sw 0 x5000 (r5), r31 ");
12 }

Listing 5.4: STL Signature Function

After defining the STL stages, we must extract the golden signature values from a
fault-free simulation. At the end of each stage, the STL function will return the accu-
mulated signature function result; if the value differs from the golden, it indicates the
presence of a fault. Additionally, we must ensure that the CPU’s internal values are the
same for every call of the STL function. For such, at the start of the function, we manu-
ally save the context of the main application and zeroize the general-purpose registers;
the context is restored before returning the execution to the main application. Finally,
when the main application identifies a discrepancy between the current and golden sig-
natures, it activates an external interruption indicating the detection of a fault.

5.4. RESULTS
The formal analysis for generating the STL for the AutoSoC resulted in 58.676 faults clas-
sified as Detected. For each Detected fault, we extract a counter-example and trans-

5

100 5. ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

late it into assembly instruction using the conversion script; these represent a total of
89.495 assembly instructions without counting instructions related to the signature cal-
culation. By analyzing the output of the formal analysis, we identify several repeated
sequences of instructions; as the verification of each fault is standalone, every sequence
of instructions targets a single fault; therefore, there is no advantage in repeating a se-
quence in the STL. Furthermore, we can optimize the machine code generated by the
counter-examples to decrease the execution time of the STL. For such, we remove re-
peated sequences of instructions from the counter-examples. After optimization, we
achieve 2.282 unique sequences of machine codes, resulting in 19.049 assembly instruc-
tions for the final STL.

When analyzing the STL automatic generated by the formal verification, we foresee
possibilities for further optimizations. For example, we identified sequences of instruc-
tions where the last opcode did not modify the value of "r31". In all cases, at least one
command modifies the value of "r31", but in some cases, this is not the last instruction of
the sequence. The reason for such behavior is that some instructions require additional
cycles to finalize their execution, so the discrepancy caused by the fault is only visible in
"r31" after some clock cycles. In the meantime, the formal engine will continue to insert
stimuli into the design until the fault is detected. These additional instructions may be
worthless for the fault propagation and could be removed from the STL. However, as we
target the automatic generation of the STL, avoiding the need for manual efforts from
specialists, we decide not to optimize the STL further in the scope of this work.

Next, we must define the length of the STL stages and store the fault-free signature.
The final STL includes a total of 19.049 assembly instructions; considering the software
cycles of the AutoSoC Cruise Control application, we define each STL stage of around
1.000 instructions, resulting in 19 stages. This size was determined based on the OS time
frame and forged after several trials within the simulation environment. Furthermore,
we deploy the application simulation, including the activation of the STL, to store the
golden signatures for each stage. At each spare frame, the application activates an STL
stage; at the end of the execution, the STL returns the calculated signature of the given
stage; finally, the application can compare the received and golden values and activate
an external interruption, signaling the fault detection, in case of discrepancies.

For verifying the efficiency of the STL, we adopt the Cadence® Xcelium™ Fault Sim-
ulator (XFS). The configuration of the XFS includes injection of SA0 and SA1 faults at
every cell port of the GTL representation of the AutoSoC CPU. Additionally, the strobes
configuration of the FI simulation environment comprises all functional outputs of the
CPU as Functional Strobes; the irq_out and a Watchdog alarm are set up as Checker
Strobes to identify fault detection. Considering the digital area, the AutoSoC CPU con-
tains 96.354 faults for simulation. Table 5.3 describes the results of the FI campaign of
the AutoSoC CPU using the proposed STL as the workload. The table shows, for each
internal block of the CPU, the number of faults classified as Unobserved Undetected,
not observed in any strobes; Dangerous Undetected, observed only in the Functional
Strobes; and, Dangerous Detected, observed in the Checker and Functional Strobes. It
also highlights the percentage of Dangerous Detected faults. The classification of the
faults via FI simulation is detailed in 1.3.1.

During the FI Simulation, the STL presents coverage of 53,38% by detecting 51.434 of

5.4. RESULTS

5

101

Table 5.3: AutoSoC FI Campaign Results

AutoSoC CPU Blocks
Total SA0/1

Faults
Unobserved
Undetected

Dangerous
Undetected

Dangerous
Detected

Dangerous
Detected (%)

top 2236 1773 117 346 15,47%
fetch_cappuccino 11460 4977 1041 5442 47,49%
decode 1612 268 41 1303 80,83%
decode_execute_cappuccino 6630 2176 264 4190 63,20%
branch_prediction 20 5 3 12 60,00%
execute_alu 26824 2804 2717 21303 79,42%
lsu_cappuccino 12998 6420 1128 5450 41,93%
wb_mux_cappuccino 1118 148 17 953 85,24%
rf_cappuccino 8398 2219 1421 4758 56,66%
execute_ctrl_cappuccino 3598 904 242 2452 68,15%
ctrl_cappuccino 21460 13818 2417 5225 24,35%

TOTAL 96354 35512 9408 51434 53,38%

the faults in the CPU. By analyzing the internal blocks of the CPU, we can determine that
the proposed approach presents a good coverage for blocks as decode and execute_alu,
while ctrl_cappuccino and lsu_cappuccino are below the average. One of the reasons
for such behavior is that we have restricted the instructions related to control and load-
store; as these instructions can disrupt the execution flow of the CPU, it is problematic
to deploy them with random parameters generated by the formal engine. Another as-
pect to note is the average coverage of 56,66% over the rf_cappuccino block; in general,
manual written STLs achieve higher coverage over the registers; therefore, this can also
be considered a disadvantage of the proposed methodology. Even though the coverage
of some blocks could be improved by manually including test instructions, the coverage
above 50% of all cell ports is considered satisfactory for a software safety mechanism. It
is also crucial to highlight that we are only considering Detected faults, as per ISO 26262
definitions; the propagation of faults to outputs is not sufficient to claim a fault as De-
tected. Furthermore, the numbers presented in Table 5.3 are raw fault injection results;
in the next chapter, we will describe the analysis of Safe faults, decreasing the Total Faults
and resulting in a higher percentage of Detected faults.

6
ENHANCING THE SAFETY

VERIFICATION OF AUTOMOTIVE

SOCS

6.1 Testable Safe Faults Identification. 105

6.2 Results . 111

Compliance with ISO 26262 entails a detailed analysis and evaluation of potential ran-
dom hardware faults. Due to the complexity of these applications, part of this analysis
is manually performed by experts, resulting in an expensive, time-consuming, and error-
prone process. Furthermore, such a method complicates the analysis of the fault space,
making it hard to accomplish ISO 26262 compliance. This chapter proposes an automated
method to identify and classify faults overlooked by the traditional flow. Our approach
deploys the code coverage to understand the design operational behavior; this behavior is
automatically translated into a formal environment, enabling further fault classification.
The process is validated on an AutoSoC Benchmark, improving the Diagnostic Coverage
and Single Point Fault Metric. Additionally, we perform the functional safety verification
of the design according to ISO 26262, validating all methodologies proposed in this thesis
and enabling and ASIL C configuration of the AutoSoC.

Parts of this chapter have been published in the IEEE International Test Conference (ITC), 2021 [72].

103

6

104 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

T HE final step for the conception of hardware components in compliance with ISO
26262 is the validation of the development lifecycle and its products. Safety engi-

neers must show evidence that the implemented mechanisms are adequate to comply
with the hardware architecture metrics and that the residual probability of safety goal vi-
olation is sufficiently low. As previously discussed, a comprehensive fault space analysis
is crucial for achieving ISO 26262. Fault analysis and classification according to safety
standards is an arduous task that requires extensive knowledge of the design function-
alities. Therefore, there is a high demand for methodologies that can speed up fault
classification reducing time to market and verification costs.

The industry standard flow for fault classification analyzes SA0 and SA1 faults at all
inputs and outputs of the design gates. The philosophy behind it is to identify the func-
tional behavior chance caused by the fault in the DUT; in cases, it cannot disturb safety-
related functionalities, the fault is Safe; faults that upset the functionalities are Danger-
ous, or Detected if SMs are implemented; when the effect provoked by a fault is unknown
they are named Unknown or Undetected. Figure 6.1 illustrates the process of fault clas-
sification and analysis for ISO 26262. The process starts with the definition of the fault
space; initially, all faults are classified as Unknown. Next, Formal Methods are deployed
for the identification of Safe faults. After that, FI Simulation is applied to the remaining
faults to evaluate the efficiency of SMs; the FI Simulation classifies the faults as Detected
when SM covers them and as Undetected otherwise.

Figure 6.1 also illustrates an additional flow step that is required when deployment of
Formal Methods and FI Simulation is not sufficient to classify the whole fault space. The
Expert Judgement is an alternative method to classify the Undetected residual faults. Re-
ducing the number of Undetected faults contributes to improving the DC, hence, to ISO
26262 compliance. Nevertheless, relying upon manual analysis by experts is not sustain-
able; the process is expensive, time-consuming, and prone to errors. Consequently, an
automated and reliable methodology that decreases manual efforts while fulfilling ISO
26262 requirements is needed.

This chapter presents a methodology setting steps toward fully automated fault space
analysis for ISO 26262. Our focus is on identifying the nature of each fault in the fault
space, i.e., faults concerning or not concerning safety-critical outputs. For example, sup-
pose the effect of a fault does not affect safety-related functionalities. In that case, there
are no Safety Goal violations; hence the fault can be classified as a Safe fault, increasing
compliance to safety standards. Initially, we deploy code coverage techniques to iden-
tify design elements that are not operated during functional verification. Then, the code
coverage reports are examined by an automated tool that generates formal properties
to reproduce the observed behavior. Finally, we configure all the properties in a Formal
analysis tool, improving the tool’s efficiency. The additional classification causes an im-
mediate increase in the Safety Metrics, enabling compliance with ISO 26262. Finally, the
methodology is validated using the AutoSoC automatically generated STL, described in
5, as the test case. Furthermore, we validate all methodologies proposed in this work
by performing the functional safety verification of the AutoSoC following ISO 26262 re-
quirements; the process includes the FMEDA, Failure Rate analysis, and Safety Metrics
calculation. The deployment of this work methodologies enables an ASIL C configura-
tion of the AutoSoC without hardware redundancy.

6.1. TESTABLE SAFE FAULTS IDENTIFICATION

6

105

Figure 6.1: Fault Classification Flow

6.1. TESTABLE SAFE FAULTS IDENTIFICATION
The ISO 26262 Hardware Architectural Metrics determines the effectiveness of designs
to cope with random hardware failures [34]. The failures addressed by these metrics
are limited to elements that can contribute to the violation of safety goals; these define
the required mitigation of hazardous events to avoid unreasonable risks caused by mal-
functions. During the system development phase, safety goals are decomposed into a
Functional Safety Concept that defines the requirements for the hardware architecture.
However, the development of a hardware design demands additional components that
are not related to the safety concept; these components will decrease the compliance to
Hardware Architectural Metrics, even though they may not violate safety goals in case of
faults. If that is the case, these components can be identified by their potential to dis-
rupt safety goals, increasing Safe faults classification. Safe faults can be divided into two
categories:

• Untestable: there is no combination of test stimuli that induce the fault to affect
the functionality of the design. Also know as redundant in the DfT community.

• Testable: faults that can affect the output of the design with a suitable test stimu-
lus. Nevertheless, they cannot affect safety-critical functionalities.

The Testable Safe faults do not cause any deviation of the safety-related operational
mode. However, identifying the nature of faults (being safe or not) typically requires the
judgment of hardware design experts; this is time-consuming and prone to errors. For
that reason, we propose an automated flow to identify Testable Safe faults without rely-
ing upon manual analysis. Figure 6.2 illustrates the fault space analysis flow; however,
instead of deploying Expert Judgement to identify additional Safe faults, our methodol-
ogy employs the Automated Flow to identify Testable Safe faults.

6

106 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

Figure 6.2: Proposed Fault Space Analysis Flow

Figure 6.3 shows our methodology, which explores the strengths of code coverage
and Formal Analysis to generate an automated fault analysis flow, decreasing the ne-
cessity of manual efforts. Our approach deploys the code coverage to understand the
design operational behavior; this behavior is automatically translated into formal prop-
erties. By reproducing the design operational behavior in a Formal tool, we decrease the
space exploration, allowing the classification of additional faults. Next, the main steps of
the method will be explained.

Figure 6.3: Proposed methodology flow

6.1. TESTABLE SAFE FAULTS IDENTIFICATION

6

107

6.1.1. CODE COVERAGE
Code coverage is a method of assessing to what extent test cases exercise a design under
test. The method deploys simulation of a target design considering a group of test cases;
it is crucial to consider a comprehensive batch of test cases to ensure the code coverage
results represent the actual design functionalities. Furthermore, as safety verification is
performed after the functional verification, we can assume that the verification environ-
ment will be available for the testable safe fault analysis.

The code coverage analysis will verify the variations in all internal signals of the tar-
get design, resulting in detailed reports on the behavior of such signals. In the context
of this work, we will utilize the block and toggle coverage reports. Block coverage de-
termines whether test scenarios exercise the statements in a block. A block is a series
of sequential statements without delays or control flow statements (if, case, wait, while,
among others). In other words, a block is a specific state in a state machine. Toggle cov-
erage measures the activity of the signals in the design during the simulation. It provides
information on untoggled signals or signals that remain constant during the simulation.

The metrics from the code coverage provide information regarding design parts that
may not be safety-related. For instance, by recognizing states that are never activated
due to block coverage, we can identify design modes that are not related to safety func-
tionalities. Similarly, untoggled signals can highlight important details of the design,
like invalid configurations, not utilized functions, status monitors, among others. The
combination of toggle and block coverage provides additional information about spe-
cific functionalities. For example, the missing toggle in a control signal may be respon-
sible for never activating a block in a state machine. Also, by bypassing a specific state,
another signal may not be toggled. Figure 6.4 illustrates an example of the correlation
between the toggle and the block coverage. The block coverage (Figure 6.4-a) shows a
never activated block. Since the last "else if" statement is always false, the ’error_irq’ is
not set to zero. In Figure 6.4-b, the result of toggle coverage shows that the control sig-
nal ’read_irq_reg’ never toggles, validating the block coverage. Additionally, the coverage
confirms that the signal ’error_irq’ has one rising toggle but never toggles back to zero.

Figure 6.4: a) Block Coverage example - b) Toggle Coverage example

In this example, the code coverage result triggers an investigation that concludes that
the interrupt requests (IRQ) error register is never read. In this case, a fault in the IRQ er-
ror register can not disturb safety-related functionalities; hence it is a Safe fault. If we can
reproduce the described behavior in a formal tool, we can automate the identification of
Safe faults as the IRQ error register.

6

108 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

6.1.2. AUTOMATED CODE COVERAGE ANALYSIS

The automation process aims to translate the code coverage behavior into formal prop-
erties. For example, by replicating the control signals’ logic values from Figure 6.4 in
the formal environment, we reduce the space exploration, allowing formal to identify
the IRQ error register as a Safe fault. As the formal environment includes operational
constraints, the newly identified faults are Testable Safe faults.

The automated code coverage analysis tool will translate design elements from the
code coverage report into assume statements or fault-propagation barriers. Assume state-
ments enable constraints configuration for formal analysis. When an expression is as-
sumed, the formal verification tool constrains the design inputs accordingly. The role of
the Assume construct is useful in the confirmation of the design functional configura-
tion. Also, by configuring the expected behavior of the design, we increase the capacity
of Safe faults identification by limiting the test stimuli space. Fault-propagation barriers
are design elements that can block the propagation of a fault. Faults that propagate only
to certain elements may not affect safety-critical functionalities. For example, any fault
that can only propagate to an IRQ output port disconnected (open) in the design imple-
mentation cannot disturb safety-related functionalities. Consequently, these faults can
be Testable Safe faults.

The automated code coverage analysis must also examine the design element types
and values. For example, input ports of the design instances are suitable candidates
to assume statements; output ports, on the other hand, are better candidates for fault-
propagation barriers. The tool automatically retrieves the signal types and values by an-
alyzing the coverage report and source code. An illustrative description of the automated
code coverage analysis tool implementation is described in Algorithm 1. The Algorithm
describes the logic executed for analysis of the toggle and block coverages; the definition
of the assume statements, and fault-propagation barriers depend upon the results of the
report and the declaration of relevant signals as extracted from the source code. During
the loop that describes the analysis of the block coverage report, we have simplified that
analysis of the block control with a single command, get(control_signals). However, it
is essential to highlight that such an analysis requires an interpretation of the logic that
defines the block flow. For example, in the case of a statement checking the result of a
logic "AND" between two signals; we need to identify the value of the signals so that we
can define the reason why the "true part of" the statement is never true, and replicate
this behavior as an assume statement.

Next, the automated code coverage analysis will output a text file containing all for-
mal properties generated for the design. Listing 6.1 illustrates an example of such output.
The output includes the formal properties (assume statements and fault-propagation
barriers) and supplementary information that lead to the creation of the properties. In
the example, as the code coverage shows no activity in the Debug Unit (du), its inputs are
always zero, and we can ignore faults that propagate to it; this behavior is described as
an assume statement declaring that debug input is always zero, and a fault-propagation
barriers on the debug data output.

The only required manual step is revising the formal properties generated by the au-
tomated code coverage analysis tool. The coverage result is not enough to distinguish
the potential Testable Safe faults; for such, it would need to include information related

6.1. TESTABLE SAFE FAULTS IDENTIFICATION

6

109

Algorithm 1 Automated Code Coverage Analysis Tool

Input: toggle_coverageReport, block_coverageReport, netlist

read(cover ag eRepor t s) . Read reports
read(netl i st) . Read design information

while (getLine(tog g le_cover ag eRepor t) 6= −1) do . Toggle Coverage Analysis
if (si g nal is input) then . assume statement

if (si g nal toggle is always 0) then
set assume si g nal == 0

end if
if (si g nal toggle is always 1) then

set assume si g nal == 1
end if

else if (si g nal is output) then . fault barrier
if (si g nal toggle is always 0) then

set f aul t_bar r i er si g nal
end if

end if
end while

while (getLine(bl ock_cover ag eRepor t) 6= −1) do . Block Coverage Analysis
get(control_signals) . Get Block control signals
if (bl ockCover ag e = "tr ue par t o f ") then . True part is never activated

set assume si g nal ! = (bl ock contr ol T RU E)
else if (bl ockCover ag e = " f al se par t o f ") then . False part is never activated

set assume si g nal ! = (block contr ol F ALSE)
else if (bl ockCover ag e = "a case i tem o f ") then . Case never activated

set assume si g nal ! = (bl ock contr ol C ASE value)
end if

end while

to the functional requirements of the design. To ensure the formal property does not
conflict with the expected behavior, engineers must review the output of the automated
code coverage analysis tool. For that reason, as illustrated in Listing 6.1, the tool output
includes supplementary information to support the review process. Each formal prop-
erty generated by the tool includes a comment section with the rationale for defining
such property; it includes comments describing the instances information, declaration
and connection of the signals in the source code, and the code coverage results that lead
the investigation. Each formal property must represent the reality of the design. An over-
constrained formal environment would cause false positives, invalidating the results.

6

110 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

1 # ======================================
2 # Toggle Coverage Analysis Result
3 #
4 # Instance Name: mor1kx_cpu.mor1kx_ctrl
5 # Source Code: mor1kx_ctrl.v
6 #
7 # ======================================
8 # List of Signals with no Rise and no Fall
9 # (always 0)

10 # ======================================
11

12 # Assume Proposal
13 assume -env { mor1kx_ctrl.du_dat_i [31] == 1’b0}
14

15 # ======================================
16 # List of Outputs with no Toggle Activity
17 # for Fault Barriers Analysis
18 # ======================================
19 # Instance Name: mor1kx_cpu.mor1kx_ctrl
20 # Module Source Code: mor1kx_ctrl.v
21 # Top Source Code: mor1kx_cpu.v
22

23 # ======================================
24 # Match of du_dat_o on Top Source Code
25 # Source: mor1kx_cpu.v
26 # 148 output du_dat_o,
27 # 1438 .du_dat_o (du_dat_o),
28

29 # ======================================
30 # Match of du_dat_o on Module Source Code
31 # Source: mor1kx_ctrl.v
32 # 198 output du_dat_o,
33 # 1282 assign du_dat_o = du_read_dat ;
34 # 1449 assign du_dat_o = 0;
35 # ======================================
36

37 # Barrier Proposal
38 check_fsv -barrier -add { mor1kx_ctrl.du_dat_o }

Listing 6.1: CPU Mode Formal Environment Setup

6.1.3. FORMAL ANALYSIS OF TESTABLE SAFE FAULTS

The Testable Safe faults identification is based on the traditional formal verification flow
to identify Safe faults. The difference is that the formal environment will incorporate the
results of the automated code coverage analysis tool. By constraining the environment,
we enable the tool to evaluate the design in a well-specified configuration; the con-
straints decrease the number of possible test stimuli combinations, increasing the po-
tential for identifying Safe faults. Furthermore, we need to differentiate between Testable
and Untestable Safe faults; for such, we deploy the formal verification flow twice. First,
without the automatically generated constraints, the traditional flow identifies Untestable
faults. Next, the verification is repeated, including the constraints. Additional Safe faults,
identified in the second run, will be classified as Testable Safe, as they are only Safe when
considering the functional constraints included in the environment.

To enable the identification of the Testable Safe faults, we must source the output
of the automated code coverage analysis tool into the formal environment. The set-
up file must include all assume statements and fault-propagation barriers; also, it must
be reviewed to ensure the formal properties do not contradict functional requirements,

6.2. RESULTS

6

111

avoiding over-constraining the design. Finally, after properly configuring the formal en-
vironment, we repeat the formal verification flow, resulting in additional Safe faults; such
faults can be classified as Testable Safe.

6.2. RESULTS

6.2.1. TEST CASE

The validation of the proposed methodology targets the AutoSoC STL test case previ-
ously described in 3 and 5. Such configuration of the benchmark includes ECC pro-
tection on the internal memories and the automatically generated STL as protection to
the digital portion of the CPU. As conclusive evidence of the proposed methodology, we
must follow ISO 26262 functional safety verification guidelines:

1. Analyze the contribution of the ECC and STL SMs; for the STL, we must recalculate
the Diagnostic Coverage (DC), including the assistance of the Testable Safe faults.

2. Assess the CPU failure modes and their contribution to the failure rate; we must
consider the safeness and detection rates to compute the residual failure rates for
each failure mode.

3. After completing the Failure Modes Effects Diagnostic Analysis (FMEDA), we can
calculate the safety metrics and verify compliance with ASIL.

The internal memories occupy the highest area of the AutoSoC physical device, rep-
resenting 91,3% of the fault space. Based on ISO 26262 standard recommendations, we
can assume the ECC provides a Diagnostic Coverage of 99% for random hardware faults
on internal memories, representing a satisfying coverage for the overall CPU. The Au-
toSoC CPU includes 633.344 fault targets in the internal memory cells. Considering the
DC of 99%, we can conclude that the ECC covers 627.011 faults, while 6.333 faults are still
Undetected.

For verifying the efficiency of the STL, we must revisit the FI simulation results de-
scribed in Chapter 5. Considering only the digital area, the AutoSoC CPU contains 96.354
fault targets for Simulation. During the FI Simulation, the STL presents coverage of
53,38% by detecting 51.434 of the faults. The analysis also shows that 35.512 faults are
Unobserved Undetected; from these, we can identify Safe faults. The traditional formal
analysis flow identifies 8.020 Untestable Safe faults; these can be decreased from the To-
tal number of faults for DC calculation, resulting in a detection rate of 58,23%.

In a preliminary analysis of the Safety Mechanisms listed above, we can conclude
that the memory area has sufficient coverage with the DC provided by ECC. However,
the digital area of the CPU may still require further coverage for achieving the required
safety metrics. Furthermore, even though the deployed STL achieves significant DC, over
27.000 faults are still Unobserved Undetected. These faults must be classified to allow
compliance with the requirements of ISO 26262. The following section shows how the
proposed methodology impacts the Diagnostic Coverage of the STL by classifying Unob-
served Undetected faults as Testable Safe.

6

112 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

6.2.2. CLASSIFICATION OF TESTABLE SAFE FAULTS
The first step for the identification of the Testable Safe faults is the code coverage anal-
ysis. The AutoSoC code coverage analysis consisted of the simulation of the 100 work-
loads available in the benchmark. The workloads cover a variety of applications, pro-
ducing a representative baseline of the CPU functionalities. Next, the automated code
coverage analysis tool is deployed on the code coverage report to generate the next step’s
formal properties. We investigated the properties file to avoid over-constraining the for-
mal analysis. The revision process included inspection of the RTL code and monitoring
of the signals during the simulation. Also, some RTL internal signals needed to be traced
to wires in the Gate level representation of the hardware. The final formal properties file
consisted of 3.884 assume statements and 63 fault-propagation barriers.

Our work applies Cadence® Integrated Metrics Center (IMC) for code coverage and
Cadence® JasperGold (JG) Formal Verification Platform Functional Safety Verification
(FSV) for Formal Analysis. The identification of Safe faults consisted of two steps. First,
we deploy JG FSV formal analysis for the identification of Untestable Safe faults. Next,
we load the formal properties file into the Formal Analysis tool and repeat step one. The
additional Safe faults identified in step two will be listed as Testable Safe. The computa-
tional time required for each Formal campaign was a couple of days. As many properties
are never proven, the total execution time depends on the timeout configured for each
formal property.

Table 6.1 demonstrates the results for each analysis step. First, formal verification
identifies Untestable Safe faults; next, we repeat the flow, including the functional con-
straints for determining Testable Safe faults; finally, we deploy FI simulation to classify
the remaining faults.

Table 6.1: AutoSoC Fault Space Classification Results

AutoSoC
CPU Blocks

Total
Faults

Untestable
Safe

Testable
Safe

Total
for FI

Unobserved
Undetected

Dangerous
Undetected

Dangerous
Detected

Dangerous
Detected (%)

top 2236 807 907 522 59 117 346 66,28%
fetch_cappu 11460 1030 0 10430 3947 1041 5442 52,18%
decode 1612 5 0 1607 263 41 1303 81,08%
dcde_exec_cap 6630 632 42 5956 1502 264 4190 70,35%
branch_predict 20 0 0 20 5 3 12 60,00%
execute_alu 26824 31 667 26126 2106 2717 21303 81,54%
lsu_cappu 12998 708 66 12224 5646 1128 5450 44,58%
wb_mux_cap 1118 44 64 1010 40 17 953 94,36%
rf_cappuccino 8398 2 0 8396 2217 1421 4758 56,67%
exec_ctrl_cap 3598 208 67 3323 629 242 2452 73,79%
ctrl_cappu 21460 4553 1034 15873 8231 2417 5225 32,92%

TOTAL 96354 8020 2851 85483 24641 9408 51434 60,17%

Figure 6.5 illustrates the results highlighting the contribution of the various analysis
steps. The graph illustrates the faults classification contribution achieved during Fault
Injection, Untestable Safe (UF), and Testable Safe (TS) analysis. The process is incremen-
tal, always focusing on faults that were previously Undetected. Also, Figure 6.5 displays
the calculated Diagnostic Coverage at each step. The proposed methodology can iden-
tify 2.851 additional Safe faults, resulting in a 1,94% increase in the Diagnostic Coverage.
As previously explained, we apply Formal methods to decrease the number of Unde-
tected faults. As increasing the number of Safe faults decreases the denominator in the

6.2. RESULTS

6

113

Figure 6.5: STL Diagnostic Coverage Analysis

DC equation (1.5), our methodology directly influences the Diagnostic Coverage.

6.2.3. FUNCTIONAL SAFETY VERIFICATION

The calculation of the Diagnostic Coverage is an indication of the design safety based
on the efficiency of each Safety Mechanism. However, to assure compliance with ISO
26262 requirements, a comprehensive Functional Safety Analysis must be performed.
The analysis intends to confirm that the probability of failures in a safety-relevant system
is reduced to acceptable levels. The primary methodology for the Functional Safety Anal-
ysis of hardware devices is the Failure Modes Effects and Diagnostic Analysis (FMEDA).
The FMEDA correlates IC components (Gates, Flops, and Memory cells) to Failure Modes
(FM). Also, considering the base Failure In Time (FIT) rate of individual IC components,
the Diagnostic Coverage of Safety Mechanisms, and the Safe faults, we can determine the
Residual FIT contribution of each FM. The sum of the FM FIT contributions is essential
to calculate the Safety Metrics.

The FMEDA starts with the definition of the FMs and the mapping of design com-
ponents. For the AutoSoC, we considered ten subparts, one for each sub-block of the
CPU. Each subpart includes the FMs for Data Corruption, Deadlock, Modified Execu-
tion, Exceptions, and Performance. After, we must connect each FM to the appropriate
design components; the calculation of the FMs FIT is related to the design components
mapped to it. For that reason, each FM must include the total area, number of gates,
flops, and memory bits. The AutoSoC FMEDA comprises 75 Failure Modes mapped to
28.956 Gates, 1.983 Flops, and 316.672 Memory cells. Table 6.2 demonstrates an exam-
ple failure mode mapped to the ctrl_cappuccino design block; it also includes the design
block information extracted from the netlist.

The Safety Metrics calculation consists of the contribution of each FM to the FIT Rate
(λ). To calculate λ, we need to define the base λ for a given tape-out technology. Gen-

6

114 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

Table 6.2: FMEDA: Failure Mode and Area

ID Part SubPart
Failure
Mode

Technology Area #Gates #Flops #Bits

FM_1 cpu_top ctrl_cappuccino Data Corruption Digital 1348,2 1314 107 0

erally, the definition of the base λ is based on the historical data of a given technology;
another option is the calculation based on reliability standards. For example, the IEC
62380 Electronic Reliability Prediction Standard defines a base λ for several technolo-
gies and components. Therefore, following IEC 62380 guidelines, we can determine the
technology λ of the Digital components (based on the equivalent area of a NAND2 gate)
and of the Memory components (based on the area of a memory cell). Then, the λ of
each FM is calculated by multiplying the mapped design area by the base λ for each
technology. Finally, following the example of Table 6.2, we can multiply the Area by the
base λ for the chosen technology, resulting in the Raw λ of the FM.

The calculation of FM λ must also assess the contribution of Safe faults and the per-
centage of faults protected by SMs. The fault space analysis determined the components
of the CPU blocks that could not disturb safety-related functionalities; the FIT related to
these Safe components should be decreased from the FM λ. For example, we have pre-
viously determined that 26% of the faults in the ctrl_cappuccino are Safe; therefore, we
can conclude that the 26% of the Raw λ cannot disrupt safety-related functionalities.
Likewise, we have determined that the STL achieves a detection rate of around 33% for
the ctrl_cappuccino block; the faults that SM detects also cannot disrupt safety-related
functionalities and must be accounted for accordingly. Finally, the FM Residual λ is cal-
culated as the Raw λ minus the λ contribution of components identified as Safe and
Detected. Table 6.3 illustrates the components for the computation of the λ, as a contin-
uation of the FM_1 from Table 6.2.

Table 6.3: FMEDA: FIT Rate Parameters

ID
Raw
FIT

Safe
Faults(%)

Safe FIT
Non-Safe

FIT
SM
ID

Diagnostic
Coverage(%)

Residual
FIT

FM_1 7,536e-02 26,0% 1,962e-02 5,574e-02 STL 32,92% 3,739e-02

We can also decompose the FIT according to ISO 26262 definition of fault classes;
every portion of the λ provokes a behavior, the different classifications represent that.
The λSPF represents Single-Point faults that SMs do not cover; these are hardware com-
ponents without correlated SM. The Residual (λR) describes elements with SM coverage
but classified as Undetected during the fault space analysis. On the other hand, the De-
tected faults, which could only violate a safety goal combined with a second fault, are
called Multi-Point faults (λMPF). λS represents the contribution of Safe faults. The sum
of the fault classes is equal to the total λ, as defined in the equation 6.1.

λ=λSPF +λR +λMPF +λS (6.1)

The classification of the λ classes is necessary for determining ASIL compliance. The
ASIL requirements are expressed as target values in the form of metrics. These metrics

6.2. RESULTS

6

115

are calculated based on the fault classes’ contribution to the total λ [73]. The metrics
defined by ISO 26262 are the Single-Point Fault Metric (SPFM), the Latent Fault Metric
(LFM), and the Probabilistic Metric for Random Hardware Faults (PMHF).

The Single-Point Fault Metric (SPFM) considers λSPF and λR potentials to violate
safety goals. In other words, it defines the probability of violation due to faults in design
elements without SM coverage or Undetected by SM. The SPFM is calculated according
to the equation 6.2.

SPF M = 1−
∑

(λSPF +λR)∑
λ

(6.2)

The Latent Fault Metric (LFM) considers faults that cannot directly violate a safety
goal but could be a risk in the presence of a second fault, i.e., Latent Multi-Point faults
(λMPF,L). The λMPF,L are faults that can only violate a safety goal in connection with a
second fault (i.e., faults in a Safety Mechanism). For this calculation, we must subtract
the λSPF and λR from the overall λ. The equation 6.3 defines the LFM calculation.

LF M = 1−
∑

(λMPF,L)∑
(λ−λSPF −λR)

(6.3)

The PMHF evaluation provides evidence that the cumulative safety target violating
failure rate of all hardware elements is sufficiently low. Unlike the other metrics, ISO
26262 provides multiple methods to perform the PMHF analysis and does not define an
equation. For that reason, we refer to IEC 61508 Safety Standard for the PMHF calcula-
tion as in 6.4.

P M HF =∑
λSPF +∑

λR +∑
λMPF,L (6.4)

Figure 6.6 details the result of the Functional Safety Analysis of the AutoSoC. The left
axis presents the classification of FIT’s different λ classes, while the right axis demon-
strates the SPFM final result. The analysis considered four safety configurations:

1. ECC: Includes the DC only of the ECC applied to Failure Modes connected to the
internal memories;

2. ECC+STL: Incorporates the STL SM in the prior version, adding DC to the digital
area of the CPU;

3. ECC+STL Untestable Safe: Comprises the previous versions, including the Untestable
Safe percentage for each FM;

4. ECC+STL Testable Safe: Includes all features of the versions above and increases
the Safe percentage according to the Testable Safe results.

When comparing the results achieved by versions ECC and ECC+STL, we can observe
the impact of the automatically generated STL in the safety metrics. Even though the
ECC enables a high coverage on a significant area of the design, the lack of SMs in the
digital area limits the potential for achieving higher ASILs. Also, we can observe that the
ECC is the only version with λSPF different from zero; as the other versions include SMs
in all FM, the λSPF becomes zero. Furthermore, all versions result in the same total λ,
resulting from the sum of the other λ classes.

6

116 6. ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

Figure 6.6: Safety Metrics Analysis

The graph also illustrates how the increase in the λS directly impacts the SPFM. The
increment in λS causes a decrease in λR and, therefore, enables an SPFM coverage of
97,07%. Furthermore, as the analysis has not contemplated hardware components re-
sponsible for Safety Mechanisms, the λMPF,L is zero; consequently, the LFM result is
100% for all FMEDAs. Finally, as described above, the λSPF and λMPF,L are zero for all
Failure Modes; hence, we can determine from the equation 6.4 that PMHF is equal to the
total λR.

Table 6.4 describes the minimum Safety Metrics requirements for each ASIL accord-
ing to ISO 26262; also, it shows the calculated metrics for the AutoSoC FMEDA when ap-
plying the proposed methodologies. The additional coverage provided by the Testable
Safe faults enabled an SPFM of 97,07%, achieving the minimum requirement for an ASIL
C design. It is crucial noting that, as seen in Figure 6.6, our results allowed an immediate
increase in the ASIL of the AutoSoC.

Table 6.4: Safety Metrics Requirements and AutoSoC results

Safety
Metrics

ASIL D ASIL C ASIL B AutoSoC

SPFM ≥ 99% ≥ 97% ≥ 90% 97,07%
LFM ≥ 90% ≥ 80% ≥ 60% 100%
PMHF 10 FIT 100 FIT 100 FIT 1,08 FIT

Even with the increased fault classification, there is still a considerable contribution
from λR (Undetected faults), which decreases the coverage restricting ASIL D compli-
ance. The classification of the Undetected faults could be achieved by improving the
STL coverage, including additional Safety Mechanisms, or adjusting the design analysis
to increase the number of Safe faults. In complex designs, it is challenging to achieve 99%
of SPFM without hardware modifications. The traditional industrial-grade Automotive
CPUs deploy redundancy schemes, as the Dual-Core LockStep (DCLS), to achieve ASIL
D. Even though we cannot achieve ASIL D, our work significantly contributes to ASIL

6.2. RESULTS

6

117

compliance. This contribution is an essential factor for improving the safety of the CPU
without the need for redundancy schemes.

The proposed methodology appears as a promising alternative for the classification
of Undetected faults. We define a systematic approach that allows the identification of
Safe faults based on two well-established techniques: code coverage and formal veri-
fication. Identifying these faults usually relies on reliability experts and requires deep
knowledge of the system functionalities; such a process is strenuous and prone to er-
rors. Our automated approach classifies 2.851 additional faults, improving the STL DC
by 1,94%. The additional coverage enables a final SPFM of 97%, enabling the AutoSoC to
achieve the requirements for an ASIL C hardware component as-is, i.e., without design
modifications.

7
CONCLUSION

7.1 Findings Overview . 121

This dissertation addresses the role of the EDA industry in supporting the safety aspects
of automotive electronic systems. Nowadays, the development of automotive semicon-
ductors must respect safety standards like ISO 26262. Such standards define requirements
to assure functional safety verification; the development considered measures to confirm
that the probability of failures is acceptable. As one of the key players in the semiconduc-
tor industry, the EDA industry has a crucial role in enabling functional safety verification.
Furthermore, as the safety lifecycle defined by ISO 26262 comprehend various phases of
the development and verification of automotive semiconductors, we propose methodolo-
gies for different development stages. This chapter presents an overview of the tools and
methodologies proposed in this dissertation; it highlights contributions to the safety life-
cycle and details each methodology individually.

119

7

120 7. CONCLUSION

T HE prospect of fully autonomous vehicles promises to revolutionize mobility con-
cepts in the coming years. As a result, the automotive industry is investing heavily;

the semiconductors’ revenue will potentially reach 50 billion dollars shortly. This favor-
able scenario generates momentum for investments aiming to advance the technologies
embedded in a vehicle. As one of the key players when considering semiconductors, the
Electronic Design Automation (EDA) industry has a crucial role. Nowadays, EDA compa-
nies provide several products to assist the traditional semiconductors development flow
and tailored solutions to address the needs of specific industries. Nonetheless, the con-
cept of autonomous vehicle applications implies new challenges, as a life-threatening
situation caused by a malfunction in electronic systems is unacceptable.

This dissertation addresses the role of the EDA industry in supporting the safety as-
pects of automotive electronic systems. We propose methodologies to deploy the tra-
ditional EDA technologies into functional safety verification, improve compliance to
ISO 26262, and ensure the safety integrity levels of automotive devices. Furthermore,
in this Ph.D. project, we address the challenges at different stages of the safety lifecycle
proposing methodologies to support the development and verification phases. Figure
7.1 demonstrates how the main contributions of this dissertation support the safety life-
cycle as defined by ISO 26262.

Figure 7.1: Contributions of the thesis to the ISO 26262 safety lifecycle

7.1. FINDINGS OVERVIEW

7

121

7.1. FINDINGS OVERVIEW
Next, we will emphasize the concepts and findings of each proposed methodology to the
safety lifecycle. Furthermore, as the presented methods are organized in the different
chapters of this dissertation, we will present the following conclusions preserving the
same organization.

CHAPTER 2: FUNCTIONAL SAFETY VERIFICATION METHODS AND VALIDATION

This chapter introduces the functional safety standard demands for validating the soft-
ware tools used during the safety lifecycle; such requirements aim to ensure that the
level of confidence in the usage of these engines is adequate. In other words, they cannot
mask or fail to identify failures in the design. We propose a methodology to improve the
Tools Confidence Level (TCL) by detecting malfunctions in the tools used for fault anal-
ysis; for automating the execution of the methodology, we conceive the Fault Checker
application. The application deploys the analysis of test cases with three different fault
classification technologies: Automatic Test Pattern Generators (ATPG), Formal methods,
and FI simulators; by comparing the fault annotation from the various technologies, we
can identify possible malfunctions. Furthermore, the Fault Checker enables the use of
test environments generated by ATPG for the FI simulation, allowing similar conditions
for the fault analysis in the different technologies; and avoiding efforts with the devel-
opment of test benches. Finally, the application generates a fault report to identify po-
tential software tools malfunctions. The inclusion of redundancy as a method to detect
malfunctions in tools is a suggested method for achieving ISO 26262 Tool Confidence
[33]. The validation of the development environment and software tools is a prerequi-
site for compliance with the safety life cycle requirements.

CHAPTER 3: SAFETY BENCHMARKS FOR AUTOMOTIVE SOCS

This chapter outlines the conception and development of the AutoSoC Benchmark Suite;
it describes the current architecture options, including hardware components, software
applications, operating systems, and safety mechanisms. Due to the current demands
for research targeting autonomous driving solutions, the availability of industrial-grade
test cases is crucial. Nonetheless, the limited access to representative designs and in-
dustrial methodologies poses a challenge to the research community. Therefore, the
AutoSoC intends to provide researchers with an automotive SoC based on commercial
solutions, including all essential components, highly customizable and allowing com-
parability between distinct methodologies and results. Furthermore, we believe that the
availability of this benchmark suite will allow researchers to develop new solutions and
quantitatively assess their effectiveness, thus contributing to the advancement of the
state-of-the-art in the several technologies required by these applications, e.g., safety,
security, performance, among others. This chapter also describes the preliminary func-
tional safety assessment of the AutoSoC configurations targeting different ASIL.

CHAPTER 4: EARLY ESTIMATION OF DESIGN SAFETY METRICS

This chapter discusses the challenges of early estimation of fault space classification. At
later stages of safety-critical systems development, designers must analyze the behav-
ior of the design under the effect of faults to show conformity with the expected safety

7

122 7. CONCLUSION

metrics. Failing to achieve these conditions entails additional iterations through criti-
cal development and verification phases. Furthermore, by allowing engineers to esti-
mate safety metrics at earlier development stages, we provide a tool for investigating
safety architectures, improving the confidence in conceptual decisions, and decreasing
the chances of rework. We tackle this issue by allowing the estimation of Detected faults
throughout the safety lifecycle. We consider the current hardware abstraction level for
each development stage to model faulty behavior; as the development progresses, we
enhance the results by computing more accurate hardware descriptions. Furthermore,
the technique is based on the characterization of the hardware description to determine
how the components contribute to fault propagation. Also, by examining the test stim-
uli applied during simulation, we can rank Workloads/Testbenches according to their
fault detection coverage. Our results demonstrate the accuracy of the technique by pro-
viding an estimation of the fault detection rate with an average error of 3%. Moreover,
the methodology results in an execution time up to 20X faster when compared with the
traditional gate-level Fault Injection campaigns.

CHAPTER 5: ENHANCING ONLINE FAULT DETECTION OF AUTOMOTIVE CPUS

This chapter describes a methodology for improving online fault detection in CPUs with-
out hardware and development overheads. A common approach in safety-critical do-
mains is to deploy redundancy of systems and components, such as the Dual-Core Lock
Step (DCLS). However, the overhead costs of redundancy schemes have a substantial
impact on automobiles; the consequence on the final price may be prohibitive in such
a competitive market. In contrast, safety schemes based on Software-Based Self-Testing
(SBST) are a good alternative for improving integrity levels; solutions based on Self-Test
Library (STL) - a collection of SBST procedures - are widely deployed in the Automotive
industry. However, the manual development of such STLs is very complex, demand-
ing specialized resources and long development cycles. To tackle such a problem, we
propose a formal-based technique for generating STLs. First, we constrain the formal
environment to use only pre-selected CPU instructions; then, the formal verification
will determine a sequence of such instructions to propagate a given fault. Furthermore,
we modify the traditional strobes configuration to calculate a signature indicating the
presence of faults; such an approach results in a standalone safety mechanism enabling
detection of faults. Finally, the technique is validated using the AutoSoC CPU; the au-
tomatically generated STL achieves a detection rate of 53% for SA0/1 faults in the CPU
digital area.

CHAPTER 6: ENHANCING THE SAFETY VERIFICATION OF AUTOMOTIVE SOCS

This chapter presents an automated methodology that combines code coverage and for-
mal verification techniques for Safe fault identification. The severe demands for toler-
ance to random faults are a hurdle for ICs targeting ISO 26262 safety-critical applications.
As part of this process, fault analysis methods are still driven by experts, requiring man-
ual analysis that is very expensive, time-consuming, and prone to errors. The proposed
methodology begins with code coverage analysis for identifying design elements where
a fault cannot disturb safety-critical functionalities. Next, those elements are automat-
ically translated into formal rules and configured in a formal analysis environment, en-
abling the identification of Testable Safe faults. Reducing the contribution of λR (Unde-

7.1. FINDINGS OVERVIEW

7

123

tected) faults by identifying additional Safe faults is mandatory for improving the safety
compliance of a hardware design. We validate our methodology on the AutoSoC con-
figuration deploying the automatically generated STL. The approach improves the STL
Diagnostic Coverage by 6,7% considering the raw FI simulation results and 1,94% when
compared with the state-of-the-art approach for identifying Safe faults. The proposed
methodology appears as a promising alternative for Undetected faults classification. Our
automated approach reduces the constraints of manual expert-based analysis, reducing
the verification costs and time to market.

Furthermore, we performed the functional safety verification of AutoSoC STL con-
figuration; the verification includes an FMEDA, Failure Rate analysis, and Safety Met-
rics calculation, according to ISO 26262 guidelines. Such a process intends to validate
all propositions of this dissertation by applying them to an automotive test case, show-
ing actual improvement on the final safety compliance. First, the software tools to be
deployed for the functional safety verification are validated according to the Tools Con-
fidence Level (TCL) requirements, as described in 2. Furthermore, we must define the
design under development at the system level, as shown in 3; the test case illustrates the
challenges and complexity of automotive solutions. After, as the development of the Au-
toSoC progresses, we deploy the techniques demonstrated in 4 for estimating the safety
metrics in various stages of the development lifecycle. Later, in the final stages of the
design development, we must find solutions to enable configurations of the AutoSoC
without redundancy overhead; for such, we apply the technique presented in 5 to im-
prove online fault detection without additional hardware. Next, the fault space analysis
of the AutoSoC STL configuration includes the additional coverage from the identifica-
tion of Testable Safe faults, as shown in 6. Finally, we validate all the proposed method-
ologies by performing the complete functional safety verification. The improvements
achieved by the additional coverage enable compliance with ASIL C requirements, with
97% coverage of single-point faults. Also, it enables an accurate safety evaluation, allow-
ing compliance to ISO 26262 without hardware redundancy.

BIBLIOGRAPHY

[1] International Standardization Organization, ISO 26262 Road Vehicles - Function
Safety, Second edition, International Standardization Organization, Dec. 2018.

[2] J. Raik, H. Fujiwara, R. Ubar, and A. Krivenko, “Untestable fault identification in
sequential circuits using model-checking”, in 2008 17th Asian Test Symposium,
IEEE, Nov. 2008. DOI: 10.1109/ats.2008.22.

[3] G. Cabodi and M. Murciano, “BDD-based hardware verification”, in Formal Meth-
ods for Hardware Verification, Springer Berlin Heidelberg, 2006, pp. 78–107. DOI:
10.1007/11757283_4.

[4] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, “Multiway decision graphs
for automated hardware verification”, Formal Methods in System Design, vol. 10,
no. 1, pp. 7–46, 1997. DOI: 10.1023/a:1008663530211.

[5] H.-C. Liang, C. L. Lee, and J. Chen, “Identifying untestable faults in sequential cir-
cuits”, IEEE Design & Test of Computers, vol. 12, no. 3, pp. 14–23, 1995. DOI: 10.
1109/mdt.1995.466367.

[6] M. Syal and M. Hsiao, “New techniques for untestable fault identification in se-
quential circuits”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 25, no. 6, pp. 1117–1131, Jun. 2006. DOI: 10.1109/tcad.
2005.855967.

[7] C. Romesburg, Cluster Analysis for Researchers. Lulu.com, Apr. 1, 2004, 344 pp.,
ISBN: 1411606175. [Online]. Available: https://www.ebook.de/de/product/
4208765/charles_romesburg_cluster_analysis_for_researchers.html.

[8] S. Mirkhani and Z. Navabi, “Enhancing fault simulation performance by dynamic
fault clustering”, IEEE, 2005. DOI: 10.1109/ats.2005.58.

[9] A. Evans, M. Nicolaidis, S.-J. Wen, and T. Asis, “Clustering techniques and statis-
tical fault injection for selective mitigation of SEUs in flip-flops”, in International
Symposium on Quality Electronic Design (ISQED), IEEE, Mar. 2013. DOI: 10.1109/
isqed.2013.6523691.

[10] D. Alexandrescu, A. Evans, M. Glorieux, and I. Nofal, “EDA support for functional
safety — How static and dynamic failure analysis can improve productivity in the
assessment of functional safety”, in 2017 IEEE 23rd International Symposium on
On-Line Testing and Robust System Design (IOLTS), IEEE, Jul. 2017. DOI: 10.1109/
iolts.2017.8046210.

[11] A. Nardi and A. Armato, “Functional safety methodologies for automotive appli-
cations”, in 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), IEEE, Nov. 2017. DOI: 10.1109/iccad.2017.8203886.

125

https://doi.org/10.1109/ats.2008.22
https://doi.org/10.1007/11757283_4
https://doi.org/10.1023/a:1008663530211
https://doi.org/10.1109/mdt.1995.466367
https://doi.org/10.1109/mdt.1995.466367
https://doi.org/10.1109/tcad.2005.855967
https://doi.org/10.1109/tcad.2005.855967
https://www.ebook.de/de/product/4208765/charles_romesburg_cluster_analysis_for_researchers.html
https://www.ebook.de/de/product/4208765/charles_romesburg_cluster_analysis_for_researchers.html
https://doi.org/10.1109/ats.2005.58
https://doi.org/10.1109/isqed.2013.6523691
https://doi.org/10.1109/isqed.2013.6523691
https://doi.org/10.1109/iolts.2017.8046210
https://doi.org/10.1109/iolts.2017.8046210
https://doi.org/10.1109/iccad.2017.8203886

7

126 BIBLIOGRAPHY

[12] B. Tabacaru, M. Chaari, W. Ecker, C. Novello, T. Kruse, K. Liu, H. Post, N. Hatami,
and A. von Schwerin, “Fault-injection techniques for TLM-based virtual proto-
types”, Sep. 2015.

[13] G. Rodrigues, F. Rosa, A. de Oliveira, F. L. Kastensmidt, L. Ost, and R. Reis, “An-
alyzing the impact of fault tolerance methods in ARM processors under soft er-
rors running linux and parallelization API”, IEEE Transactions on Nuclear Science,
pp. 1–1, 2017. DOI: 10.1109/tns.2017.2706519.

[14] F. Rosa, L. Ost, R. Reis, S. Davidmann, and L. Lapides, “Evaluation of multicore sys-
tems soft error reliability using virtual platforms”, in 2017 15th IEEE International
New Circuits and Systems Conference (NEWCAS), IEEE, Jun. 2017. DOI: 10.1109/
newcas.2017.8010111.

[15] P. Adelt, B. Koppelmann, W. Mueller, M. Becker, B. Kleinjohann, and C. Scheytt,
“Fast dynamic fault injection for virtual microcontroller platforms”, in 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), IEEE, Sep.
2016. DOI: 10.1109/vlsi-soc.2016.7753545.

[16] S. Reiter, A. Viehl, O. Bringmann, and W. Rosenstiel, “Fault injection ecosystem
for assisted safety validation of automotive systems”, in 2016 IEEE International
High Level Design Validation and Test Workshop (HLDVT), IEEE, Oct. 2016. DOI:
10.1109/hldvt.2016.7748256.

[17] D. Mueller-Gritschneder, P. R. Maier, M. Greim, and U. Schlichtmann, “System C-
based multi-level error injection for the evaluation of fault-tolerant systems”, in
2014 International Symposium on Integrated Circuits (ISIC), IEEE, Dec. 2014. DOI:
10.1109/isicir.2014.7029567.

[18] D. Mueller-Gritschneder, M. Greim, and U. Schlichtmann, “Safety evaluation based
on virtual prototypes: Fault injection with multi-level processor models”, in 2016
International Symposium on Integrated Circuits (ISIC), IEEE, Dec. 2016. DOI: 10.
1109/isicir.2016.7829710.

[19] J. Espinosa, C. Hernandez, and J. Abella, “Characterizing fault propagation in safety-
critical processor designs”, in 2015 IEEE 21st International On-Line Testing Sympo-
sium (IOLTS), IEEE, Jul. 2015. DOI: 10.1109/iolts.2015.7229848.

[20] J. Espinosa, C. Hernandez, J. Abella, D. de Andres, and J. C. Ruiz, “Analysis and
RTL correlation of instruction set simulators for automotive microcontroller ro-
bustness verification”, in Proceedings of the 52nd Annual Design Automation Con-
ference on - DAC ’15, ACM Press, 2015. DOI: 10.1145/2744769.2744798.

[21] F. Corno, P. Prinetto, and M. Sonza Reorda, “Testability analysis and ATPG on be-
havioral RT-level VHDL”, in Proceedings International Test Conference 1997, Int.
Test Conference, 1997. DOI: 10.1109/test.1997.639688.

[22] S. Ravi, I. Ghosh, V. Boppana, and N. K. Jha, “A technique for identifying RTL
and gate-level correspondences”, in Proceedings 2000 International Conference on
Computer Design, IEEE Comput. Soc, 2000. DOI: 10.1109/iccd.2000.878351.

https://doi.org/10.1109/tns.2017.2706519
https://doi.org/10.1109/newcas.2017.8010111
https://doi.org/10.1109/newcas.2017.8010111
https://doi.org/10.1109/vlsi-soc.2016.7753545
https://doi.org/10.1109/hldvt.2016.7748256
https://doi.org/10.1109/isicir.2014.7029567
https://doi.org/10.1109/isicir.2016.7829710
https://doi.org/10.1109/isicir.2016.7829710
https://doi.org/10.1109/iolts.2015.7229848
https://doi.org/10.1145/2744769.2744798
https://doi.org/10.1109/test.1997.639688
https://doi.org/10.1109/iccd.2000.878351

BIBLIOGRAPHY

7

127

[23] E. Cheung, X. Chen, F. Tsai, Y.-C. Hsu, and H. Hsieh, “Bridging RTL and gate: Cor-
relating different levels of abstraction for design debugging”, in 2007 IEEE Interna-
tional High Level Design Validation and Test Workshop, IEEE, 2007. DOI: 10.1109/
hldvt.2007.4392790.

[24] M. Conrad, G. Sandmann, and P. Munier, “Qualifying software tools according
to ISO 26262”, in 2010 Model-Based Development of Embedded Systems (MBEES),
2010. DOI: 10.4271/2011-01-1005.

[25] F. Asplund, “The future of software tool chain safety qualification”, Safety Science,
vol. 74, pp. 37–43, 2015, ISSN: 0925-7535. DOI: 10.1016/j.ssci.2014.11.023.

[26] F. Asplund, J. El-khoury, and M. Törngren, “Qualifying software tools, a systems
approach”, in 2012 International Conferenceon Computer Safety, Reliability and
Security (SAFECOMP), 2012, pp. 340–351. DOI: 10.1007/978- 3- 642- 33678-
2_29.

[27] Q. Wang, A. Wallin, V. Izosimov, U. Ingelsson, and Z. Peng, “Test tool qualification
through fault injection”, in 2012 17TH IEEE EUROPEAN TEST SYMPOSIUM (ETS),
IEEE, May 2012. DOI: 10.1109/ets.2012.6233042.

[28] F. Augusto da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer, “Combining fault
analysis technologies for ISO26262 functional safety verification”, in 2019 IEEE
28th Asian Test Symposium (ATS), IEEE, Dec. 2019. DOI: 10 . 1109 / ats47505 .
2019.00024.

[29] S. Praveen, S. Yellampalli, and A. Kothari, “Optimization of test time and fault
grading of functional test vectors using fault simulation flow”, in 2014 Interna-
tional Conference on Electronics, Communication and Computational Engineering
(ICECCE), IEEE, Nov. 2014. DOI: 10.1109/icecce.2014.7086633.

[30] S. Arekapudi, F. Xin, J. Peng, and I. G. Harris, “ATPG for timing-induced functional
errors on trigger events in hardware-software systems”, in Proceedings The Seventh
IEEE European Test Workshop, IEEE Comput. Soc, 2002. DOI: 10.1109/etw.2002.
1029635.

[31] C. R. Berkeley, “International Workshop on Logic and Synthesis (IWLS) 2005 bench-
marks”, Tech. Rep., 2005.

[32] GPDK045 reference manual, Revision 5.0, Cadence Design Systems , Inc., 2016.

[33] International Standardization Organization, ISO 26262 Road Vehicles - Function
Safety - Part 8: Supporting processes, Second edition, International Standardiza-
tion Organization, Dec. 2018.

[34] I. S. Organization, ISO 26262 Road Vehicles - Function Safety - Part 5: Product devel-
opment at the hardware level, Second edition, International Standardization Orga-
nization, Dec. 2018.

[35] F. Augusto da Silva, A. C. Bagbaba, A. Ruospo, R. Mariani, G. Kanawati, E. Sanchez,
M. Sonza Reorda, M. Jenihhin, S. Hamdioui, and C. Sauer, “Special session: Au-
toSoC - a suite of open-source automotive SoC benchmarks”, in 2020 IEEE 38th
VLSI Test Symposium (VTS), IEEE, Apr. 2020. DOI: 10.1109/vts48691.2020.
9107599.

https://doi.org/10.1109/hldvt.2007.4392790
https://doi.org/10.1109/hldvt.2007.4392790
https://doi.org/10.4271/2011-01-1005
https://doi.org/10.1016/j.ssci.2014.11.023
https://doi.org/10.1007/978-3-642-33678-2_29
https://doi.org/10.1007/978-3-642-33678-2_29
https://doi.org/10.1109/ets.2012.6233042
https://doi.org/10.1109/ats47505.2019.00024
https://doi.org/10.1109/ats47505.2019.00024
https://doi.org/10.1109/icecce.2014.7086633
https://doi.org/10.1109/etw.2002.1029635
https://doi.org/10.1109/etw.2002.1029635
https://doi.org/10.1109/vts48691.2020.9107599
https://doi.org/10.1109/vts48691.2020.9107599

7

128 BIBLIOGRAPHY

[36] J. Han, Y. Kwon, Y. C. P. Cho, and H.-J. Yoo, “A 1ghz fault tolerant processor with dy-
namic lockstep and self-recovering cache for ADAS SoC complying with ISO26262
in automotive electronics”, in 2017 IEEE Asian Solid-State Circuits Conference (A-
SSCC), IEEE, Nov. 2017. DOI: 10.1109/asscc.2017.8240279.

[37] A. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing lockstep dual-
core ARM cortex-a9 soft error mitigation in freeRTOS applications”, in Proceedings
of the 30th Symposium on Integrated Circuits and Systems Design Chip on the Sands
- SBCCI ’17, ACM Press, 2017. DOI: 10.1145/3109984.3110008.

[38] A. Höller, N. Kajtazovic, T. Rauter, K. Römer, and C. Kreiner, “Evaluation of diverse
compiling for software-fault detection”, in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015, IEEE Conference Publications, 2015. DOI:
10.7873/date.2015.0118.

[39] M. Jenihhin, M. Sonza Reorda, A. Balakrishnan, and D. Alexandrescu, “Challenges
of reliability assessment and enhancement in autonomous systems”, in 2019 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnol-
ogy Systems (DFT), IEEE, Oct. 2019. DOI: 10.1109/dft.2019.8875379.

[40] M. Singh and S. Kim, “Security analysis of intelligent vehicles: Challenges and
scope”, in 2017 International SoC Design Conference (ISOCC), IEEE, Nov. 2017.
DOI: 10.1109/isocc.2017.8368805.

[41] G. Kalamkar, A. Gotkhindikar, and A. R. Suryawanshi, “Low-level memory attacks
on automotive embedded systems”, in 2018 Fourth International Conference on
Computing Communication Control and Automation (ICCUBEA), IEEE, Aug. 2018.
DOI: 10.1109/iccubea.2018.8697376.

[42] G. Kornaros, O. Tomoutzoglou, and M. Coppola, “Hardware-assisted security in
electronic control units: Secure automotive communications by utilizing one-time-
programmable network on chip and firewalls”, IEEE Micro, vol. 38, no. 5, pp. 63–
74, Sep. 2018. DOI: 10.1109/mm.2018.053631143.

[43] Renesas, R-Car M3 Automotve SoC specification, 2020. [Online]. Available: https:
//www.renesas.com/us/en/solutions/automotive/soc/r-car-m3.html.

[44] Infineon, AURIX Family - TC264DA, 2020. [Online]. Available: https : / / www .
infineon . com / cms / en / product / microcontroller / 32 - bit - tricore -
microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc264da-
adas/.

[45] Texas Instruments, TDA2SG SoC processor for ADAS applications, 2020. [Online].
Available: http://www.ti.com/product/TDA2SG.

[46] ISO, ISO 21434 Road vehicles - Cybersecurity engineering. [Online]. Available: https:
//www.iso.org/standard/70918.html.

[47] Amber 2 core specification, opencores.org, Mar. 2015.

[48] Cobham Gaisler, LEON3 multiprocessing CPU core, 2010.

[49] D. Lampret et al., OpenRISC 1000 architecture manual, Revision 0, opencores.org,
Dec. 2012.

https://doi.org/10.1109/asscc.2017.8240279
https://doi.org/10.1145/3109984.3110008
https://doi.org/10.7873/date.2015.0118
https://doi.org/10.1109/dft.2019.8875379
https://doi.org/10.1109/isocc.2017.8368805
https://doi.org/10.1109/iccubea.2018.8697376
https://doi.org/10.1109/mm.2018.053631143
https://www.renesas.com/us/en/solutions/automotive/soc/r-car-m3.html
https://www.renesas.com/us/en/solutions/automotive/soc/r-car-m3.html
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc264da-adas/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc264da-adas/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc264da-adas/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc264da-adas/
http://www.ti.com/product/TDA2SG
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/70918.html

BIBLIOGRAPHY

7

129

[50] OpenRISC, OpenRISC Community, 2020. [Online]. Available: https://github.
com/openrisc.

[51] N. Kanekawa, T. Meguro, K. Isono, Y. Shima, N. Miyazaki, and S. Yamaguchi, “Fault
detection and recovery coverage improvement by clock synchronized duplicated
systems with optimal time diversity”, in Digest of Papers. Twenty-Eighth Annual
International Symposium on Fault-Tolerant Computing (Cat. No.98CB36224), IEEE
Comput. Soc, 1998. DOI: 10.1109/ftcs.1998.689470.

[52] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Microprocessor
software-based self-testing”, IEEE Design & Test of Computers, vol. 27, no. 3, pp. 4–
19, May 2010. DOI: 10.1109/mdt.2010.5.

[53] P. Bernardi, R. Cantoro, S. D. Luca, E. Sanchez, and A. Sansonetti, “Development
flow for on-line core self-test of automotive microcontrollers”, IEEE Transactions
on Computers, vol. 65, no. 3, pp. 744–754, Mar. 2016. DOI: 10.1109/tc.2015.
2498546.

[54] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. Sonza Reorda, “Test
program generation for communication peripherals in processor-based SoC de-
vices”, IEEE Design & Test of Computers, vol. 26, no. 2, pp. 52–63, Mar. 2009. DOI:
10.1109/mdt.2009.43.

[55] A. Floridia, E. Sanchez, and M. Sonza Reorda, “Fault grading techniques of soft-
ware test libraries for safety-critical applications”, IEEE Access, vol. 7, pp. 63 578–
63 587, 2019. DOI: 10.1109/access.2019.2917036.

[56] M. Gaudesi, I. Pomeranz, M. Sonza Reorda, and G. Squillero, “New techniques
to reduce the execution time of functional test programs”, IEEE Transactions on
Computers, vol. 66, no. 7, pp. 1268–1273, Jul. 2017. DOI: 10 . 1109 / tc . 2016 .
2643663.

[57] E. Sanchez, “Increasing reliability of safety critical applications through functional
based solutions”, in 2018 13th International Conference on Design & Technology of
Integrated Systems In Nanoscale Era (DTIS), IEEE, Apr. 2018. DOI: 10.1109/dtis.
2018.8368555.

[58] P. D. Schiavone, E. Sanchez, A. Ruospo, F. Minervini, F. Zaruba, G. Haugou, and L.
Benini, “An open-source verification framework for open-source cores: A RISC-V
case study”, in 2018 IFIP/IEEE International Conference on Very Large Scale Inte-
gration (VLSI-SoC), IEEE, Oct. 2018. DOI: 10.1109/vlsi-soc.2018.8644818.

[59] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda, and J.-G. Mess,
“Improved test solutions for COTS-based systems in space applications”, in VLSI-
SoC: Design and Engineering of Electronics Systems Based on New Computing Paradigms,
Springer International Publishing, 2019, pp. 187–206. DOI: 10.1007/978-3-030-
23425-6_10.

[60] F. Augusto da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer, “Flip flop weight-
ing: A technique for estimation of safety metrics in automotive designs”, in 2021
IEEE 27th International Symposium on On-Line Testing and Robust System Design
(IOLTS), IEEE, Jun. 2021. DOI: 10.1109/iolts52814.2021.9486697.

https://github.com/openrisc
https://github.com/openrisc
https://doi.org/10.1109/ftcs.1998.689470
https://doi.org/10.1109/mdt.2010.5
https://doi.org/10.1109/tc.2015.2498546
https://doi.org/10.1109/tc.2015.2498546
https://doi.org/10.1109/mdt.2009.43
https://doi.org/10.1109/access.2019.2917036
https://doi.org/10.1109/tc.2016.2643663
https://doi.org/10.1109/tc.2016.2643663
https://doi.org/10.1109/dtis.2018.8368555
https://doi.org/10.1109/dtis.2018.8368555
https://doi.org/10.1109/vlsi-soc.2018.8644818
https://doi.org/10.1007/978-3-030-23425-6_10
https://doi.org/10.1007/978-3-030-23425-6_10
https://doi.org/10.1109/iolts52814.2021.9486697

130 BIBLIOGRAPHY

[61] E. Kang, E. Jackson, and W. Schulte, “An approach for effective design space explo-
ration”, in Foundations of Computer Software. Modeling, Development, and Verifi-
cation of Adaptive Systems, Springer Berlin Heidelberg, 2011, pp. 33–54. DOI: 10.
1007/978-3-642-21292-5_3.

[62] S. Chtourou and O. Hammami, “SystemC space exploration of behavioral synthe-
sis options on area, performance and power consumption”, in 2005 International
Conference on Microelectronics, IEEE. DOI: 10.1109/icm.2005.1590039.

[63] B. C. Schafer, “Probabilistic multiknob high-level synthesis design space explo-
ration acceleration”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 3, pp. 394–406, Mar. 2016. DOI: 10.1109/tcad.
2015.2472007.

[64] K. Roy, H. T. Mert, and M. Swaminathan, “Preliminary application of deep learning
to design space exploration”, in 2018 IEEE Electrical Design of Advanced Packaging
and Systems Symposium (EDAPS), IEEE, Dec. 2018. DOI: 10.1109/edaps.2018.
8680888.

[65] M. Karunaratne, A. Sagahayroon, and S. Prodhuturi, “RTL fault modeling”, in 48th
Midwest Symposium on Circuits and Systems, 2005., IEEE, 2005. DOI: 10.1109/
mwscas.2005.1594451.

[66] M. Siebert, E. Gramatova, and L. Nagy, “PaCGEN: Automatic system for critical
path selection based on multiple parameters”, in 2014 14th Biennial Baltic Elec-
tronic Conference (BEC), IEEE, Oct. 2014. DOI: 10.1109/bec.2014.7320565.

[67] H. Fang, K. Chakrabarty, A. Jas, S. Patil, and C. Tirumurti, “RT-level deviation-
based grading of functional test sequences”, in 2009 27th IEEE VLSI Test Sympo-
sium, IEEE, May 2009. DOI: 10.1109/vts.2009.12.

[68] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda, and J.-G. Mess,
“An analysis of test solutions for COTS-based systems in space applications”, in
2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),
IEEE, Oct. 2018. DOI: 10.1109/vlsi-soc.2018.8644846.

[69] ARM, Development tools and software - Software Test Libraries, 2019.

[70] Cypress, AN204377 FM3 and FM4 family, IEC61508 SIL2 self-test library, 2017.

[71] Microchip, DS52076A 16-bit CPU self-test library user’s guide, 2012.

[72] F. Augusto da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer, “An automated
formal-based approach for reducing undetected faults in ISO 26262 hardware com-
pliant designs”, in 2021 IEEE International Test Conference (ITC), IEEE, Oct. 2021.
DOI: 10.1109/itc50571.2021.00047.

[73] Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu, “Assessing auto-
motive functional safety microprocessor with ISO 26262 hardware requirements”,
in Technical Papers of 2014 International Symposium on VLSI Design, Automation
and Test, IEEE, 2014. DOI: 10.1109/vlsi-dat.2014.6834876.

https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1109/icm.2005.1590039
https://doi.org/10.1109/tcad.2015.2472007
https://doi.org/10.1109/tcad.2015.2472007
https://doi.org/10.1109/edaps.2018.8680888
https://doi.org/10.1109/edaps.2018.8680888
https://doi.org/10.1109/mwscas.2005.1594451
https://doi.org/10.1109/mwscas.2005.1594451
https://doi.org/10.1109/bec.2014.7320565
https://doi.org/10.1109/vts.2009.12
https://doi.org/10.1109/vlsi-soc.2018.8644846
https://doi.org/10.1109/itc50571.2021.00047
https://doi.org/10.1109/vlsi-dat.2014.6834876

CURRICULUM VITÆ

Felipe AUGUSTO DA SILVA

PERSONAL INFO

14-10-1986 Date of Birth in São Paulo, Brazil.
E-mail felipeaugdasilva@gmail.com

EDUCATION

2018–2022 Ph.D. degree in Computer Engineering
Delft University of Technology (TU Delft), the Netherlands
Thesis: EDA tools and methodologies for reliable nanoelec-

tronic systems
Supervisors: Prof. dr. ir. S. Hamdioui (TU Delft)

Dr. C. Sauer (Cadence)

2010–2014 M.Sc. degree in Electrical and Electronics Engineering
Federal University of Santa Catarina (UFSC), Brazil
Thesis: Conception and Validation of a robust architecture

based on Soft Processors aiming On Board Comput-
ers for artificial Satellites

Supervisor: Prof. dr. E. Bezerra (UFSC)

2004–2009 Engineer’s degree in Computer Engineering
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil

131

132 CURRICULUM VITÆ

EXPERIENCE
2017–Present Functional Safety Specialist,

Cadence Design Systems, Germany

2015–2017 Avionics Software Team Leader,
AEL Sistemas (Elbit Systems Group), Brazil

2014–2017 Technical Manager,
AEL Sistemas (Elbit Systems Group), Brazil

2012–2014 Software Engineer,
Elbit Systems, Israel

LIST OF PUBLICATIONS

12. F. Augusto da Silva, R. Cantoro, S. Hamdioui, S. Sartoni, C. Sauer, M. Sonza Reorda, "A Sys-
tematic Method to Generate Effective STLs for the In-Field Test of CAN Bus Controllers,"
Electronics, MDPI AG, 2022, Vol. 11, No. 16, doi:10.3390/electronics11162481

11. J. E. Rodriguez Condia, F. Augusto da Silva, A. Bagbaba, J. D. Guerrero-Balaguera, S. Ham-
dioui, C. Sauer, M. Sonza Reorda, "Using STLs for Effective In-field Test of GPUs," IEEE
Design & Test, 2022 (early-access), doi:10.1109/MDAT.2022.3188573

10. A. Bagbaba, F. Augusto da Silva, M. Sonza Reorda, S. Hamdioui, M. Jenihhin, C. Sauer, "Au-
tomated Identification of Application-Dependent Safe Faults in Automotive Systems-on-a-
Chips," Electronics, MDPI AG, 2022, 11, 319, doi:10.3390/electronics11030319

9. F. Augusto da Silva, A. Bagbaba, S. Hamdioui, C. Sauer, "An automated formal-based ap-
proach for reducing undetected faults in ISO 26262 hardware compliant designs," 2021 IEEE
International Test Conference (ITC), IEEE, 2021, doi:10.1109/itc50571.2021.00047

8. F. Augusto da Silva, A. Bagbaba, S. Hamdioui, C. Sauer, "Flip Flop Weighting: A technique
for estimation of safety metrics in Automotive Designs," 2021 IEEE 27th International Sym-
posium on On-Line Testing and Robust System Design (IOLTS), IEEE, 2021,
doi:10.1109/iolts52814.2021.9486697

7. F. Augusto da Silva, A. Bagbaba, S. Sartoni, R. Cantoro, M. Sonza Reorda, S. Hamdioui, C.
Sauer, "Determined-Safe Faults Identification: A step towards ISO26262 hardware compli-
ant designs 2020 IEEE European Test Symposium (ETS)," IEEE, 2020,
doi:10.1109/ets48528.2020.9131568

6. F. Augusto da Silva, A. Bagbaba, A. Ruospo, R. Mariani, G. Kanawati, E. Sanchez, M. Sonza
Reorda, M. Jenihhin, S. Hamdioui, C. Sauer, "Special Session: AutoSoC - A Suite of Open-
Source Automotive SoC Benchmarks," 2020 IEEE 38th VLSI Test Symposium (VTS), IEEE,
2020, doi:10.1109/vts48691.2020.9107599

5. J. E. R. Condia, F. Augusto da Silva, S. Hamdioui, C. Sauer, M. Sonza Reorda, "Untestable
faults identification in GPGPUs for safety-critical applications," 2019 26th IEEE Interna-
tional Conference on Electronics, Circuits and Systems (ICECS), IEEE, 2019,
doi:10.1109/icecs46596.2019.8964677

4. F. Augusto da Silva, A. Bagbaba, S. Hamdioui, C. Sauer, "Combining Fault Analysis Tech-
nologies for ISO26262 Functional Safety Verification," 2019 IEEE 28th Asian Test Sympo-
sium (ATS), IEEE, 2019, doi:10.1109/ats47505.2019.00024

3. F. Augusto da Silva, A. Bagbaba, S. Hamdioui, C. Sauer, "Efficient Methodology for ISO26262
Functional Safety Verification," 2019 IEEE 25th International Symposium on On-Line Test-
ing and Robust System Design (IOLTS), IEEE, 2019, doi:10.1109/iolts.2019.8854449

133

https://doi.org/10.3390/electronics11162481
https://doi.org/10.1109/MDAT.2022.3188573
https://doi.org/10.3390/electronics11030319
https://doi.org/10.1109/itc50571.2021.00047
https://doi.org/10.1109/iolts52814.2021.9486697
https://doi.org/10.1109/ets48528.2020.9131568
https://doi.org/10.1109/vts48691.2020.9107599
https://doi.org/10.1109/icecs46596.2019.8964677
https://doi.org/10.1109/ats47505.2019.00024
https://doi.org/10.1109/iolts.2019.8854449

134 LIST OF PUBLICATIONS

2. F. Augusto da Silva, A. Bagbaba, C. Sauer, "Use of Formal Methods for verification and opti-
mization of Fault Lists in the scope of ISO26262," 2018 Design and Verification Conference
(DVCon) Europe, Zenodo, 2018, doi:10.5281/zenodo.3361533

1. A. Bagbaba, F. Augusto da Silva, C. Sauer, "Improving the Confidence Level in Functional

Safety Simulation Tools for ISO26262," 2018 Design and Verification Conference (DVCon)

Europe, Zenodo, 2018 doi:10.5281/zenodo.3361607

https://zenodo.org/record/3361533
https://zenodo.org/record/3361607

LIST OF PUBLICATIONS 135

	Summary
	Samenvatting
	Introduction
	Motivation
	Functional Safety Verification by ISO 26262
	Concept Phase
	Product Development at System Level
	Product Development at Hardware Level
	Supporting processes
	Discussion

	State-of-the-Art in Functional Safety Verification
	Fault Space Analysis
	Early estimation of safety metrics
	Validation of software tools

	Research Topics
	Validation of software tools
	Representative test cases for the Automotive sector
	Estimation of design safety metrics
	Enhancements of the functional safety verification methods

	Contributions of the Thesis
	Thesis Organization

	Functional Safety Verification Methods and Validation
	Fault Analysis Technologies
	Formal Methods
	Fault Injection Simulation
	Automatic Test Pattern Generator

	Software Tools Validation Methodology
	Configuration
	Execution
	Report

	Experiments and Results
	Experiments Setup
	Results
	Discussion

	Conclusions

	Safety Benchmarks for Automotive SoCs
	Safety Standardization and Benchmarking
	Automotive SoC Architectures
	Industry Solutions Characterization
	AutoSoC Functional Blocks

	AutoSoC Base Components
	Hardware Components
	Software Resources
	Simulation Environment

	AutoSoC Safety Components
	Dual-Core LockStep
	Software Test Libraries
	Internal Memories ECC
	External Memory ECC
	Bus Parity
	Checkpoint Control
	Safety Monitor

	AutoSoC Configurations
	Preliminary Functional Safety Analysis
	AutoSoC DCLS configuration
	AutoSoC ECC configuration
	AutoSoC STL configuration

	Conclusions

	Early Estimation of Design Safety Metrics
	Safety Metrics Estimation Methodology
	Design Characterization
	Fault Activation Analysis
	Fault Propagation Analysis
	Estimation of Fault Injection Results

	Validation and Results
	Validation
	Safety Lifecycle Results
	Additional Design Evaluation
	Summary of Results and Discussion

	Conclusions

	Enhancing Online Fault Detection of Automotive CPUs
	Formal Properties and Counter-Examples
	Automatic Generation of Software Test Libraries
	Configuration for the AutoSoC
	Control Signals and Operational Mode
	Instructions Input Configuration
	Strobes
	Counter-Example and STL Generation

	Results

	Enhancing the Safety Verification of Automotive SoCs
	Testable Safe Faults Identification
	Code Coverage
	Automated Code Coverage Analysis
	Formal Analysis of Testable Safe Faults

	Results
	Test Case
	Classification of Testable Safe Faults
	Functional Safety Verification

	Conclusion
	Findings Overview

	Curriculum Vitæ
	List of Publications

