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A B S T R A C T

Coastal wave forecasting over large spatial scales is essential for many applications (e.g., coastal safety
assessments, coastal management and developments, etc.). This demand explains the necessity for accurate
yet effective models. A well-known efficient modelling approach is the quadratic approach (often referred
to as frequency-domain models, nonlinear mild-slope models, amplitude models, etc.). The efficiency of
this approach stems from a significant modelling reduction of the original governing equations (e.g., Euler
equations). Most significantly, the description of wave nonlinearity essentially collapses into a single mode
coupling term determined by the quadratic interaction coefficients. As a result, it is expected that the efficiency
achieved by the quadratic approach is accompanied by a decrease in prediction accuracy. In order to gain
further insight into the predictive capabilities of this modelling approach, this study examines six different
quadratic formulations, three of which are of the Boussinesq type and the other three are referred to as fully
dispersive. It is found that while the Boussinesq formulations reliably predict the evolution of coastal waves,
the predictions by the fully dispersive formulations tend to be affected by false developments of modulational
instability. Consequently, the predicted wave fields by the fully dispersive formulations are characterized
by unexpectedly strong modulations of the sea-swell part and associated unexpected infragravity response.
The impact of the modulational instability on wave prediction based on the quadratic approach is further
demonstrated using existing laboratory results of bichromatic and irregular wave conditions.
1. Introduction

Over coastal waters, incoming ocean waves undergo a dramatic
transformation due to the interaction with the bathymetry and due
to nonlinear wave–wave interactions. Quasi-linear sinusoidal waves in
deep water transform into skewed and asymmetric saw-tooth like shape
over shallower water. Ultimately, the waves break and dissipate their
energy close to shore.

These complex wave dynamics in coastal waters give rise to many
important phenomena nearshore. Examples are, wave setup (e.g.
Longuet-Higgins and Stewart, 1964), alongshore currents (e.g. Bowen
(1969), Longuet-Higgins (1970), Reniers and Battjes (1997) and
Ruessink et al. (2001)), return flow (e.g. Dyhr-Nielsen and Sørensen
(1970) and Stive and De Vriend, 1994) and associated sediment trans-
port processes (e.g. Fredsoe and Deigaard, 1992, Van Rijn, 1993) and
the generation of infragravity waves which may significantly influence
wave run-up and overtopping (e.g. Van Gent, 2001), dune erosion
and sediment transport (e.g. Roelvink and Stive, 1989; Roelvink et al.,
2009), and harbour oscillations (e.g. Bowers, 1977).

∗ Corresponding author.
E-mail address: G.Akrish@tudelft.nl (G. Akrish).

In practice, engineers and governmental agencies require accurate
wave parameters over large spatial scales to correctly predict these
processes. A well-known modelling approach that allows efficient large
scale wave prediction is provided by the so-called quadratic formula-
tion (other names are frequency-domain formulation, nonlinear mild-
slope models, amplitude models, etc.). The name ‘‘quadratic approach’’
refers to the nonlinear representation through a single quadratic mode
coupling term. Obviously, such a simplification constitutes a significant
reduction of the original incompressible and inviscid Euler equations.
Therefore, a central question that this study aims to answer is, how
reliable is the forecasting of coastal waves as provided by the quadratic
formulation?

The earliest quadratic formulation was suggested by Freilich and
Guza (1984) based on the classical Boussinesq model of Peregrine
(1967). Over relatively shallow waters, this formulation agrees well
with observations (Freilich and Guza, 1984). However, due to its
weak dispersion assumption, its prediction of wave shoaling from in-
termediate to shallower waters may deviate significantly (e.g., Agnon
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et al., 1993). Consequently, efforts were set forward to improve the
dispersive behaviour within the quadratic approach, leading to the
development of weakly nonlinear Boussinesq models with improved
dispersion (e.g., Madsen and Sørensen, 1993). The success of this
modelling improvement (e.g., Eldeberky and Battjes, 1996) motivated
further developments of fully dispersive and weakly nonlinear models,
aiming to improve wave predictions without additional computational
costs. Quadratic models with such properties were proposed by Agnon
et al. (1993) and Kaihatu and Kirby (1995) and later generalized and
further developed by numerous following studies (e.g., Eldeberky and
Madsen, 1999, Bredmose et al., 2005, Janssen, 2006, Sheremet et al.,
2016, Ardani and Kaihatu, 2019, Kim and Kaihatu, 2021).

There is no doubt that these developments have improved the
linear characteristics of the quadratic modelling (i.e., dispersion and
shoaling), however doubt arises concerning the improvement in the
prediction of the nonlinear evolution. This doubt stems from the fact
that the improvement of the linear properties of the quadratic model is
accompanied by a change in the quadratic coefficients, and therefore,
also by a change in the truncation error obtained due to the modelling
reduction associated with the formulation of the quadratic model.
An indication for that is presented by the study of Bredmose et al.
(2005), which proposes a fully dispersive quadratic model with exact
second-order transfer. In other words, bound wave solutions obtained
by this model exactly match the second-order bound wave predictions
of Stokes theory (e.g., Hasselmann, 1962). Although expected to be
promising, Bredmose et al. (2005) observed phase errors of the model
predictions by comparing to laboratory experiments. These phase errors
were explained by the significant over prediction of the amplitude
dispersion embedded in this model. However, apart from cumulative
phase errors, errors in amplitude dispersion may lead to much more
dramatic consequences. In specific, it is well known that the amplitude
dispersion has a decisive impact on the evolution of narrow-banded
fields (e.g., Lighthill, 2001, Whitham, 1974), controlling energy ex-
changes through the modulational instability mechanism (Benjamin
and Feir, 1967). A well-known example that clearly highlights the effect
of improving the linear dispersion relation on the stability characteris-
tics in the context of weak nonlinear modelling is given by the Whitham
equation. The Whitham equation was proposed by Whitham (1967)
as a generalized Korteweg–de Vries (KdV) equation that incorporates
the full linear dispersion relation. Such a generalization is expected
to provide a more faithful description of wave field evolution which
may also be composed of shorter wave components. However, it is
now known that this generalization is accompanied by an unfavourable
modification of the modulational instability mechanism triggered over
shallower water than expected (the threshold is 𝜇 > 1.146, which is
lower than the usual threshold of 𝜇 > 1.363, see, e.g., Van Groesen,
1998, Hur and Johnson, 2015, where 𝜇 = 𝑘𝑝ℎ, 𝑘𝑝 is the characteristic
wavenumber of a considered wave field and ℎ represents the water
depth). Thus, Whitham’s generalization turns the modulationally stable
KdV equation into a modulationally unstable Whitham equation which
will predict faulty focusing/defocusing recurrence of narrow-banded
fields over regions of relatively small 𝜇. This erroneous effect may not
only lead to false energy exchanges and thus incorrect evolution of the
peak frequency components, but may also contaminate the associated
development of the infragravity components as a result of incorrect
modulations of the wave field.

This study aims to reveal in further detail the nonlinear properties
of the quadratic modelling approach and to gain insight into the
prediction capabilities of different quadratic formulations to spectrally
describe the nonlinear evolution of coastal wave fields, including the
development of the sea-swell components (i.e., the primary harmonics
and the secondary super-harmonics) and the generation and evolution
of the infragravity components (i.e., the secondary sub-harmonics).
In total six different formulations are examined and compared. These
formulations consist of three Boussinesq formulations and three fully
2

dispersive formulations. The leading order nonlinear properties of these 1
formulations, including their second-order bound wave solutions, am-
plitude dispersion and stability characteristics are explored and com-
pared in Section 2. Subsequently, Section 3 discusses the impact of
these nonlinear properties on the predictive capabilities of coastal
wave dynamics using comparisons with existing laboratory results of
bichromatic and irregular wave conditions. Finally, conclusions are
drawn in Section 4.

2. Model analysis over finite depth

This section aims to gain further insight into the leading order
contributions of the nonlinear evolution of a considered wave field
as obtained by different quadratic formulations. As in the rest of
this study, the considered wave field is assumed to be composed of
long-crested waves (i.e., this study is confined to one-dimensional
wave propagation). For the purpose of the following analysis, the one-
dimensional formulation (ignoring for now the effect of bathymetry
changes) of the quadratic model is given as follows:

𝜕𝑥𝑎𝑛 − 𝑖𝑘𝑛𝑎𝑛 = −𝑖
∑

𝑟
𝑉𝑟,𝑛−𝑟𝑎𝑟𝑎𝑛−𝑟, (1)

where 𝑉𝑙,𝑚 are the quadratic interaction coefficients and 𝑎𝑛 and 𝑘𝑛 are
the 𝑛th complex-amplitude and wavenumber of a time-periodic wave
field, represented through the surface elevation function, 𝜂, as

𝜂 =
∑

𝑛
𝑎𝑛 exp(−𝑖𝜔𝑛𝑡), (2)

where 𝜔𝑛 is the 𝑛th wave angular-frequency and 𝑥, 𝑡 represent the
spatial and temporal coordinates. Further details on the derivation of
the quadratic model (1) are provided in Appendix A.

The analysis here focuses on the bound wave solutions and the
parameters which control the evolution of narrow-banded seas. To
this end, it is assumed here that nonlinear effects are relatively weak,
such that Stokes theory can be applied to predict the physical param-
eters of the wave field (e.g., surface elevation, fluid velocities, etc.).
A well-known parameter which provides an indication regarding the
validity of Stokes expansion is the so-called Ursell parameter (or Stokes
parameter), defined as

𝑈𝑟 =
𝐻𝑝𝐿2

𝑝

ℎ3
(3)

where 𝐻𝑝 and 𝐿𝑝 are the characteristic wave height and length of the
considered wave field. Based on this definition, weak nonlinearity cor-
responds to 𝑈𝑟 < 26, for which Stokes theory applies (see Le Méhauté,
1976). This parameter provides a convenient non-dimensional limit for
the present analysis.

In total, six models are examined. The first three are the Boussi-
nesq models proposed by Freilich and Guza (1984) (the ‘‘consistent
shoaling model’’), Madsen and Sørensen (1993) and Nwogu (1993).
The other three are the fully-dispersive models proposed by Whitham
(1967), Kaihatu and Kirby (1995) and Bredmose et al. (2005). Note
that Nwogu (1993) and Whitham (1967) actually present time-domain
model formulations. However, here those references are used to refer
to the corresponding quadratic formulations which are derived based
on these original time-domain models. The nonlinear interaction coef-
ficients and also the linear parameters (for the linear dispersion and
wave shoaling) of these six quadratic models are summarized in the
Supplementary material document.

2.1. Second-order bound waves

The leading nonlinear contributions to the evolution of wave fields,
as provided by the quadratic model (1), are extracted here under the
conditions of unidirectional propagation over constant and finite depth.
Based on the assumption of weak nonlinearity (i.e., 𝑈𝑟 < 26), the
ollowing multiple-scale expansion is being employed (e.g., Holmes,

995). It is assumed that the waves evolve over two spatial scales. The
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fast scale is denoted by 𝑥1 = 𝑥 and the slow scale is represented by
2 = 𝜖2𝑥, where the small parameter 𝜖 represents the ratio between the
ypical wave amplitude and wave length in deep/intermediate water or
he ratio between the amplitude and water depth in shallow water. Note
hat 𝑥2 is defined as 𝑂(𝜖2) variable since resonance condition can only
e satisfied between four-waves as dictated by the dispersion relation
this statement contradicts the so-called near-resonance assumption
hat underlies the development of the quadratic model, see discussion
n Appendix A).

In addition to the definition of the two new spatial variables, it is
lso assumed that the 𝑛th complex-amplitude, 𝑎𝑛, can be written as
ollows:

𝑛 = 𝜖𝑎(1)𝑛 + 𝜖2𝑎(2)𝑛 + 𝜖3𝑎(3)𝑛 +⋯ (4)

y substituting these assumptions into the quadratic model, (1), one
btains a set of equations, each balancing terms of mutual order. The
irst three equations are given as follows:

𝑥1𝑎
(1)
𝑛 − 𝑖𝑘𝑛𝑎

(1)
𝑛 = 0 (5)

𝑥1𝑎
(2)
𝑛 − 𝑖𝑘𝑛𝑎

(2)
𝑛 = −𝑖

∑

𝑟
𝑉𝑟,𝑛−𝑟𝑎

(1)
𝑟 𝑎(1)𝑛−𝑟 (6)

𝑥1𝑎
(3)
𝑛 − 𝑖𝑘𝑛𝑎

(3)
𝑛 = −𝜕𝑥2𝑎

(1)
𝑛 − 𝑖

∑

𝑟
𝑉𝑟,𝑛−𝑟

(

𝑎(1)𝑟 𝑎(2)𝑛−𝑟 + 𝑎(2)𝑟 𝑎(1)𝑛−𝑟
)

(7)

The interest here focuses on the bound wave solutions which can be
obtained through the solution of (6). To this end, knowledge of 𝑎(1)𝑛 is
required. This knowledge is achieved through the solution of (5), given
by

𝑎(1)𝑛 = 𝐴𝑛 exp(𝑖𝑘𝑛𝑥1), (8)

where 𝐴𝑛 is a complex amplitude that depends on the boundary condi-
tion, say at 𝑥 = 0, and the variable 𝑥2. In addition, the wavenumber, 𝑘𝑛,
is obtained through the dispersion relation, 𝐷(𝜔𝑛, 𝑘𝑛) = 0, as defined
by the different model formulations (see details in Supplementary
material).

The bound wave solutions are considered for each possible bichro-
matic pair. To this end, a pair of two incoming primary wave compo-
nents which are represented by 𝑎𝑙 and 𝑎𝑚, are assumed. Using the linear
solution, (8), and assuming that the homogeneous solution of 𝑎(2)𝑛 equals
zero, the following expression is obtained:

𝑎(2)𝑛 =

⎧

⎪

⎨

⎪

⎩

2𝐺𝑙,𝑚𝑎𝑙𝑎𝑚, 𝑙 ≠ 𝑚
𝐺𝑙,𝑚𝑎𝑙𝑎𝑚, 𝑙 = 𝑚
0, 𝑚 = −𝑙

(9)

where 𝑛 = 𝑙 + 𝑚, and the so-called quadratic transfer function, 𝐺𝑙,𝑚, is
given by

𝐺𝑙,𝑚 = 𝑉𝑙,𝑚∕(𝑘𝑛 − 𝑘𝑙𝑚) (10)

where 𝑘𝑙𝑚 = 𝑘𝑙 + 𝑘𝑚. Note that for the case where 𝑚 = −𝑙, 𝑎(2)𝑛 is
zero since 𝑉𝑙,−𝑙 is zero (as required to ensure real solutions). However,
in the limit for which 𝑚 approaches to 𝑙, the value of 𝐺𝑙,−𝑚 does not
converges to zero, but it converges to the coefficient that corresponds
to the set-down associated with a monochromatic wave.

A computed demonstration of the bound solutions is presented in
Fig. 1. The figure compares the solutions according to each of the
models, where the values are normalized by the values of the solutions
according to the second-order Stokes theory (expressions of which are
given by, e.g., Hasselmann, 1962, Sharma and Dean, 1981, Dalzell,
1999).

Following these results, the model of Bredmose et al. (2005) is
clearly preferable over the others with regard to the prediction of the
bound waves. In fact, the solutions following Bredmose et al. (2005)
match exactly to the solutions according to Stokes theory. The deviation
of the other models arises as a result of two factors. The first relates
to the nonlinear terms of the underlying time-domain models which
3

construct the quadratic coefficients, 𝑉𝑙,𝑚. These terms are subjected b
to some a priori assumed relation between the depth parameter 𝜇
and the parameter for nonlinearity 𝜖. For example, a well-known
relation is 𝜖 = 𝑂(𝜇2), which leads to the classical Boussinesq formu-
lation (e.g., Peregrine, 1967). Therefore, under the classical Boussinesq
regime, nonlinear terms involving corrections of the dispersion relation
are neglected (also see Madsen and Schäffer, 1998). The second factor
that leads to deviations in the bound wave predictions is the near-
resonance assumption, that is usually taken to derive the quadratic
formulation (see Appendix A). The exception in this regard is the
model by Bredmose et al. (2005), being formulated through an operator
splitting idea suggested by Agnon (1999). The operator splitting idea
bypasses the necessity to rely on the near-resonance assumption, and
therefore, avoids an additional error in the bound wave solutions (see
further discussion in Bredmose et al., 2005 and in Supplementary
material).

The exceptional performance of the model by Bredmose et al.
(2005) in predicting the bound waves, raises the anticipation of its
preferable wave prediction capabilities in general. However, account
should also be paid to the fact that the different definitions of the
quadratic coefficients and dispersion relation are also accompanied by
different definitions for the truncation error (arising as a result of the
modelling reduction associated with the formulation of the quadratic
model), which may significantly influence the evolution of the waves,
and thus, the model forecast.

2.2. Amplitude dispersion

An important nonlinear property that is deteriorated as a result
of the modelling reduction introduced by the quadratic model is the
amplitude dispersion. The amplitude dispersion is considered here in a
complete sense based on the bichromatic case and using (7). Generally
speaking, the solutions for 𝑎(3)𝑛 , as also found for 𝑎(2)𝑛 , consist of bound
components which provide high-order corrections to the primary so-
lutions, 𝑎(1)𝑛 . However, the products of 𝑎(1)𝑖 and 𝑎(2)𝑗 can also result in
resonance interactions as would be clearly understood for the product
𝑎(2)2𝑙 𝑎

(1)
−𝑙 which would lead to an unbounded growth of 𝑎(3)𝑙 . The multiple-

scale method allows to keep the solution bounded by balancing such
forcing terms with the derivatives of the primary solutions with respect
to 𝑥2 (as given by the right-hand-side of (7)). Namely, by requiring the
following solvability condition:

𝜕𝑥2𝑎
(1)
𝑛 = −𝑖

∑

𝑟
𝑉𝑟,𝑛−𝑟

(

𝑎(1)𝑟 𝑎(2)𝑛−𝑟 + 𝑎(2)𝑟 𝑎(1)𝑛−𝑟
)

(11)

which for the considered bichromatic case leads to
⎧

⎪

⎨

⎪

⎩

𝑖𝜕𝑥2𝑎
(1)
𝑙 = 𝐶𝑙,𝑙|𝑎

(1)
𝑙 |

2
𝑎(1)𝑙 + 2𝐶𝑙,𝑚|𝑎

(1)
𝑚 |

2
𝑎(1)𝑙

𝑖𝜕𝑥2𝑎
(1)
𝑚 = 𝐶𝑚,𝑚|𝑎

(1)
𝑚 |

2
𝑎(1)𝑚 + 2𝐶𝑚,𝑙|𝑎

(1)
𝑙 |

2
𝑎(1)𝑚

(12)

where 𝐶𝑙,𝑙 and 𝐶𝑙,𝑚 are the cubic interaction coefficients which arise
ue to the trivial resonant quartets of self and mutual interactions re-
pectively (see further details on the definition of the cubic interaction
oefficients for trivial and non-trivial resonant quartets in Appendix B).

The solution for (12) can be obtained explicitly, since the magni-
udes square of 𝑎(1)𝑙 and 𝑎(1)𝑚 are constant in 𝑥2 (as can be found from the
orresponding evolution equations for |𝑎(1)𝑙 |

2
and |𝑎(1)𝑚 |

2
). This solution

an be written as
⎧

⎪

⎨

⎪

⎩

𝑎(1)𝑙 = 𝐴0
𝑙 exp

(

𝑖𝑘𝑙𝑥1 − 𝑖
(

𝐶𝑙,𝑙|𝑎
(1)
𝑙 |

2
+ 2𝐶𝑙,𝑚|𝑎

(1)
𝑚 |

2)
𝑥2
)

𝑎(1)𝑚 = 𝐴0
𝑚 exp

(

𝑖𝑘𝑚𝑥1 − 𝑖
(

𝐶𝑚,𝑚|𝑎
(1)
𝑚 |

2
+ 2𝐶𝑚,𝑙|𝑎

(1)
𝑙 |

2)
𝑥2
)

(13)

here 𝐴0
𝑙 and 𝐴0

𝑚 are constants given at 𝑥 = 0. The solution expressed
n (13) clearly shows the effect of the amplitudes on the dispersion
elation through modifications of the wavenumbers. As an example, if
he coefficients 𝐶𝑖,𝑗 are positive, then a particular wave component of
given wave field would not only travel faster due to self interaction
ut also due to the presence of other waves.
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Fig. 1. Second-order bound wave solutions normalized by the solutions of Stokes theory (or simply 𝐺𝑙,𝑚∕𝐺𝑠𝑙,𝑚 where 𝐺𝑠𝑙,𝑚 is the quadratic transfer function according to Stokes
theory). Solutions due to sum interactions are given for 𝑘𝑚 ≥ 𝑘𝑙 (upper triangular of each panel), while solutions of sub interactions are provided for 𝑘𝑚 < 𝑘𝑙 (lower triangular of
ach panel).
Fig. 2. Model prediction of the amplitude dispersion contributions due to self interactions, 𝜔(2)
𝑙,𝑙 . The results are normalized by third-order Stokes theory as given by Madsen and

Fuhrman (2006).
The values of the amplitude dispersion due to self interactions as
given by the different model formulations are compared with those
of the third-order Stokes theory over finite depth (e.g., Madsen and
Fuhrman, 2006) in Fig. 2. The computed values are not the corrections
for the wavenumbers, but the corrections for the angular frequencies.
The latter are obtained based on the following transformation (see,
e.g., Bredmose et al., 2005):

𝜔(2)
𝑙 = 𝑐𝑔,𝑙𝑘

(2)
𝑙 (14)

where 𝑐𝑔,𝑙 is the group velocity and 𝑘(2)𝑙 is the wavenumber correction,
defined as

𝑘(2)𝑙 = 𝐶𝑙,𝑙|𝑎
(1)
𝑙 |

2
+ 2

∑

𝑚
𝐶𝑙,𝑚|𝑎

(1)
𝑚 |

2 (15)

including contribution due to self interaction, 𝑘(2)𝑙,𝑙 , and sum of contri-
butions due to mutual interactions, 𝑘(2)𝑙,𝑚.

The results demonstrated in Fig. 2 show a clear over prediction
of the contribution due to the self interaction, 𝜔(2)

𝑙,𝑙 , by most of the
models. This over prediction is reduced for increasing values of 𝜇. The
4

one exception here is the formulation by Freilich and Guza (1984),
which under predicts the self interaction contribution. Consequently,
most of the models will typically predict faster travelling waves in
coastal waters, leading to cumulative phase errors as demonstrated by
Bredmose et al. (2004) and Bredmose et al. (2005). Ultimately, these
results provide further evidence for the implications of the modelling
reduction associated with the formulation of the quadratic model and
how different assumptions (e.g., different relation between 𝜇 and 𝜖)
affect the corresponding modelling errors. Similarly, the mutual inter-
actions’ contributions to the amplitude dispersion can be illustrated as
well. However, since this illustration is not required for the purposes
of the present analysis, it is omitted here.

To summarize, the bichromatic case considered here provides a
complete quantitative determination of the amplitude dispersion and
emphasizes its direct physical consequences. Particularly, these refer
to the change in wave velocity due to self and mutual interactions.
Inaccuracy in the prediction of the amplitude dispersion will obviously
result in phase errors with respect to, e.g., field/laboratory obser-
vations. However, beyond phase errors, inaccurate prediction of the

amplitude dispersion may lead to much more dramatic deviations.
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These deviations are related to the formation of instability mechanism
known as modulational instability, discussed next.

2.3. Modulational instability

Narrowbanded wave fields which propagate over relatively deep
water tend to develop modulational instability. Such an instability leads
to a relatively rapid growth of a field’s modulation at the expense of
the carrier wave energy. Coastal waters though are typically shallow,
and therefore, coastal wave fields are commonly not affected by mod-
ulational instability. Yet, model forecasting of coastal waves may be
affected by such a mechanism if it wrongly predicts the amplitude
dispersion (see qualitative description by Lighthill, 2001, page 462,
on the role of the amplitude dispersion in the development of the
modulational instability).

Modulational instability can be analysed by considering the inter-
action of three waves, namely, by considering the trichromatic case.
To this end, the 𝑂(𝜖) solution is now considered to be composed of
three components, indicated by the carrier component, 𝑎(1)𝑝 , and the
two side-bands, 𝑎(1)𝑙 and 𝑎(1)𝑚 . The corresponding angular-frequencies are
defined as 𝜔𝑙 = 𝜔𝑝(1 − 𝛿𝜔𝑝

) and 𝜔𝑚 = 𝜔𝑝(1 + 𝛿𝜔𝑝
), where 𝛿𝜔𝑝

= 𝛥𝜔∕𝜔𝑝.
Accordingly, the solvability condition (11) for this case results in the
following system of equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝜕𝑥2𝑎𝑙 =
(

𝐶𝑙,𝑙|𝑎𝑙|
2 + 2𝐶𝑙,𝑝|𝑎𝑝|

2 + 2𝐶𝑙,𝑚|𝑎𝑚|
2
)

𝑎𝑙 + 𝐶𝑙,𝑚,𝑝,𝑝𝑎2𝑝𝑎−𝑚

𝑖𝜕𝑥2𝑎𝑝 =
(

𝐶𝑝,𝑝|𝑎𝑝|
2 + 2𝐶𝑝,𝑙|𝑎𝑙|

2 + 2𝐶𝑝,𝑚|𝑎𝑚|
2
)

𝑎𝑝 + 2𝐶𝑝,𝑝,𝑙,𝑚𝑎𝑙𝑎𝑚𝑎−𝑝

𝑖𝜕𝑥2𝑎𝑚 =
(

𝐶𝑚,𝑚|𝑎𝑚|
2 + 2𝐶𝑚,𝑙|𝑎𝑙|

2 + 2𝐶𝑚,𝑝|𝑎𝑝|
2
)

𝑎𝑚 + 𝐶𝑚,𝑙,𝑝,𝑝𝑎2𝑝𝑎−𝑙

(16)

where the magnitude notation ()(1) that accompanies the amplitudes is
removed here to ease the presentation of the equations. Additionally,
the formulation of each of the cubic coefficients, e.g. 𝐶𝑙,𝑚,𝑝,𝑝, is defined
in Appendix B. The terms in the parenthesis on the right-hand-side
of these equations are the amplitude dispersion components due to
self and mutual interactions. These terms are real, and consequently,
only result in phase corrections. In contrast, the last terms on the
right allow exchange of energy among the components (e.g., Phillips,
1967). These last terms arise due to the interactions that satisfies the
equality 2𝜔𝑝 − 𝜔𝑙 − 𝜔𝑚 = 0. It could be argued that these last terms
should not be included to satisfy the solvability condition, since they
correspond to a wavenumber mismatch, i.e., 2𝑘𝑝−𝑘𝑙−𝑘𝑚 ≠ 0. However,
if the wavenumber mismatch is close enough to zero, that is to say, if
2𝑘𝑝 − 𝑘𝑙 − 𝑘𝑚 = 𝑂(𝜖2), its contribution is absorbed as part of the slow
spatial variation. Therefore, for such conditions, these terms should be
included as well.

2.3.1. Modulational instability of Stokes waves
Modulational instability concerns with the evolution of weakly mod-

ulated wave fields. Accordingly, it is assumed that the side-band ampli-
tudes are small compared to the amplitude of the carrier component.
This allows to reduce the above coupled system (16) to the following
linear system (the so-called ‘pump-wave’ approximation, e.g., Craik,
1985):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝜕𝑥2𝑎𝑙 = 2𝐶𝑙,𝑝|𝑎𝑝|
2𝑎𝑙 + 𝐶𝑙,𝑚,𝑝,𝑝𝑎2𝑝𝑎−𝑚

𝑖𝜕𝑥2𝑎𝑝 = 𝐶𝑝,𝑝|𝑎𝑝|
2𝑎𝑝

𝑖𝜕𝑥2𝑎𝑚 = 2𝐶𝑚,𝑝|𝑎𝑝|
2𝑎𝑚 + 𝐶𝑚,𝑙,𝑝,𝑝𝑎2𝑝𝑎−𝑙

(17)

The solution for 𝑎𝑝 corresponds to a monochromatic Stokes wave, while
the solution of either 𝑎𝑙 or 𝑎𝑚 is obtained through

2 ̃ (1) (2) 2 ̃ 4 ̃
5

𝜕𝑥𝐴𝑙∕𝑚 + 𝑖(𝛥 − 2𝛥 |𝐴𝑝| )𝜕𝑥𝐴𝑙∕𝑚 − 𝐶𝑙,𝑚,𝑝,𝑝𝐶𝑚,𝑙,𝑝,𝑝|𝐴𝑝| 𝐴𝑙∕𝑚 = 0 (18) l
which is derived by combining the first and last equations of (17),
through substitution for 𝑎𝑙 or for 𝑎𝑚, where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑙 = �̃�𝑙 exp(−𝑖2𝐶𝑙,𝑝|𝐴𝑝|
2𝑥)

𝐴𝑚 = �̃�𝑚 exp(−𝑖2𝐶𝑚,𝑝|𝐴𝑝|
2𝑥)

𝛥(1) = 𝑘𝑙 + 𝑘𝑚 − 2𝑘𝑝
𝛥(2) = 𝐶𝑙,𝑝 + 𝐶𝑚,𝑝 − 𝐶𝑝,𝑝

(19)

and recall that the definition of the 𝑗th complex-amplitude, 𝐴𝑗 , is given
by (8). The solution of (18) obeys to the following eigenvalues:

𝜎1,2 = − 𝑖
2
(𝛥(1) − 2𝛥(2)

|𝐴𝑝|
2) ± 𝑖

√

𝑅 (20)

where 𝑅 is defined as

𝑅 = 1
4
(𝛥(1) − 2𝛥(2)

|𝐴𝑝|
2)2 − 𝐶𝑙,𝑚,𝑝,𝑝𝐶𝑚,𝑙,𝑝,𝑝|𝐴𝑝|

4 (21)

herefore, the side-bands are expected to grow when 𝑅 < 0, where
he growth rate value is provided by Im{

√

𝑅} (Im{} = the imaginary
part). In order to gain some insight into the conditions for which
modulational instability is expected to emerge, the assumption of small
modulation frequency is being employed. More specifically, it is as-
sumed that 𝛿𝜔𝑝

= 𝑂(𝜖) (i.e., 𝛥𝜔 ≪ 𝜔𝑝). Accordingly, the following
asymptotic relations are assumed as well:

𝐶𝑙,𝑚,𝑝,𝑝 ∼ 𝐶𝑚,𝑙,𝑝,𝑝 ∼ 𝛥(2) (22)

which can be understood by letting 𝐶𝑙,𝑚,𝑝,𝑝 and 𝐶𝑚,𝑙,𝑝,𝑝 to be defined
through the continuous definition (instead of the discontinuous defini-
tion applied so far) of 𝐶𝑖,𝑗,𝑘,𝑙 (see details in Appendix B). Furthermore,
the assumption that 𝛿𝜔𝑝

≪ 1 also allows to obtain the relation

𝛥(1) ∼ 𝜕2𝜔𝑝
𝑘𝑝𝛥𝜔

2 (23)

Using these relations, 𝑅 can be approximated to fourth order (in 𝜖 or
𝛿𝜔𝑝

) as follows:

𝑅 ∼ 𝜕2𝜔𝑝
𝑘𝑝𝛥𝜔

2
( 1
4
𝜕2𝜔𝑝

𝑘𝑝𝛥𝜔
2 − 𝛥(2)

|𝐴𝑝|
2
)

(24)

onsequently, it is found that modulational instability is determined
y 𝛥(2), as the other terms are defined positive. Thus, modulational
nstability can only emerge if 𝛥(2) is positive as well. To get a better
nderstanding of the meaning of 𝛥(2) and its role in the development of
odulational instability, its definition in (19) is written more explicitly

s follows:
(2) = (2𝐺𝑚,𝑝𝑉𝑚+𝑝,−𝑝 + 2𝐺𝑙,𝑝𝑉𝑙+𝑝,−𝑝 − 2𝐺𝑝,𝑝𝑉2𝑝,−𝑝)

+ (2𝐺𝑚,−𝑝𝑉𝑚−𝑝,𝑝 + 2𝐺𝑝,−𝑙𝑉𝑙−𝑝,𝑝) (25)

hrough the assumption of small modulation frequency and that each
f the terms above are smooth enough around 𝛥𝜔 = 0 (see details in
ppendix B), the first group of terms on the right-hand side of (25)
onverges to 𝐶𝑝,𝑝 = 2𝐺𝑝,𝑝𝑉2𝑝,−𝑝, which is the normalized wavenumber
orrection due to self interaction. The second converges to a normalized
orrection due to interaction between the primary component and the
omponent that represents the wave-induced current (e.g., 4𝐺𝑝,−𝑝𝑉𝑝,0).
his explicit definition also highlights the opposite roles of these two
ontributions. The first group of terms leads to a positive contribution
since both the 𝑉 terms and the super-harmonic forcing related 𝐺
erms are positive), and thus, triggers energy focusing (as qualitatively
xplained in Lighthill, 2001, page 462), whereas the second group leads
o a negative contribution (since the 𝑉 terms are positive, but the sub-
armonic forcing related 𝐺 terms are negative), and therefore, provides
ffect of stabilization (as discussed by Whitham, 1974 and Janssen and
norato, 2007). As a result, the definition of 𝛥(2) under the assumption
f small modulation frequency essentially converges to the normalized
avenumber correction as defined by third-order theory (e.g. Whitham,
974).

A convenient third-order formulation, used here as a reference to
valuate the impact of modulational instability, is the so-called non-

inear Schrödinger equation (NLSE) (e.g., Mei et al., 2005). The NLSE
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Fig. 3. Modulationally stable and unstable regions as determined by 𝛥(2) for the different quadratic formulations and based on the NLSE. Instability is expected over 𝜇 (or 𝑘𝑝ℎ)
values for which 𝛥(2) is positive. The horizontal black dashed line provides a reference line for the zero value.
Fig. 4. Normalized growth rate of modulational instability as a function of normalized modulation frequency as obtained by the different model formulations for three different
values of 𝜇 and using the same steepness value of 𝜖 = 0.13, where the wave steepness is given by 𝜖 = 2|𝐴𝑝|𝑘𝑝. The maximum modulation frequency considered is 𝛥𝑓 = 0.5𝑓𝑝.

ccordingly, the vertical dashed line in the middle of each panel indicates the value equal to a quarter of the peak frequency.
ccurately captures third-order nonlinear effects, and thus, serves an
dequate reference for comparison. This allows to quantitatively com-
are between 𝛥(2), and the correct normalized wavenumber correction
s given by the NLSE (see Eq. (27) in Supplementary material). This
omparison is demonstrated for the different quadratic formulations in
ig. 3.

The comparison in Fig. 3 confirms the well-known modulational
nstability threshold of 𝜇 > 1.363 as provided by the NLSE. As expected,
he Boussinesq models are not exposed to this instability mechanism.
urprisingly though, this determination does not apply to the formula-
ion by Nwogu (1993), demonstrating relatively weak positive values
f 𝛥(2). On the other hand, the fully dispersive models are strongly
ffected by modulational instability. The important result revealed
ere is that these models obey to a much lower instability threshold.
onsequently, using these formulation, predictions of narrow-banded

ields over coastal waters may be affected significantly by false unstable
volution. This finding raises questions concerning the growth rate of
he modulation and the ranges of 𝛿𝜔𝑝

for which this mechanism is
xpected to emerge. Answers to these questions are discussed through
ig. 4.

Fig. 4 presents the growth rate of modulational instability as a
unction of the modulation frequency, 𝛥𝑓 (recall that 𝛿𝜔𝑝

= 𝛥𝑓∕𝑓𝑝 =
𝛥𝜔∕𝜔𝑝), for three 𝑘𝑝ℎ values. For two of which (𝑘𝑝ℎ = 1.07 and 𝑘𝑝ℎ =
1.33), instability is unexpected, and for the third (𝑘𝑝ℎ = 2.10), instability
is expected to be relatively weak. The growth rate is calculated based on
(21), which is not subjected to the small modulation frequency approx-
6

imation. Note that the growth rate results based on (21) are expected
to be somewhat weaker than those that would have been obtained
through the approximated expression (24) (see Liu et al., 2022). Also
note that the values presented are normalized by the expressions of
the growth rate and modulation frequency that are obtained for the
maximum growth rate (according to NLSE) over infinitely deep water
(see Eqs. (34) and (35) in Supplementary material).

The results presented by the right panel of Fig. 4 (corresponding to
𝑘𝑝ℎ = 2.10) show that the fully dispersive formulations of Bredmose
et al. (2005) and Whitham (1967) are subjected to much stronger
growth rates than the expected growth rate based on NLSE. The max-
imum growth rates and modulation frequencies presented by these
models are even greater than the ones which are expected for infinitely
deep water (which correspond to the values of 1 and

√

2, respectively).
Note that the model by Kaihatu and Kirby (1995) predicts zero growth
rate for 𝑘𝑝ℎ = 2.10, a result that is consistent with the stability ranges
shown in Fig. 3.

It is remarkable to see that even for the other cases (corresponding
to 𝑘𝑝ℎ = 1.07 and 𝑘𝑝ℎ = 1.33), for which modulational instability is
not expected to emerge at all (as emphasized by the zero values of the
NLSE, see the left and the middle panels of Fig. 4), the growth rates
and modulation frequencies demonstrated using the fully dispersive
formulations are significant.

2.3.2. The impact of modulational instability on the evolution of irregular
waves

The stability analysis presented so far allows to explain unstable
evolution for the three wave interaction case (i.e., monochromatic cases
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Fig. 5. The BFI versus 𝑘𝑝ℎ as obtained by NLSE and the different quadratic formulations. The results are based on a shoaling wave field characterized by JONSWAP spectrum
with 𝑇𝑝 = 2.25 s, 𝐻𝑠 = 0.2 m and for three different peak-enhancement factors: 𝛾 = 1, 3.3, 10. The black dashed line provides the corresponding 𝑈𝑟 number (factored by 10−1).
a

ubjected to small side-bands). However, the significance of modu-
ational instability is not obviously determined for the more general
rregular cases. Two different perspectives were proposed to give an
ndication for the expected impact of modulational instability on the
volution of irregular wave fields. The first, due to Alber (1978), relies
n statistical arguments which result in the ratio between the expected
odulation scale (a representative scale over which coherent structures
ue to modulational instability are formed) and the correlation scale (a
epresentative scale over which the field is still correlated). The second,
ue to Onorato et al. (2001), relies on physical arguments which
oncern the ratio between nonlinear and dispersion effects (equivalent
rguments underlying the Ursell parameter). Ultimately, these two
erspectives share the same parameter, commonly referred to as the
enjamin–Feir Index (BFI) (Janssen, 2003). The BFI can be written as

FI = 𝜆 𝜖
𝛿𝜔𝑝

(26)

where 𝛿𝜔𝑝
should be interpreted now as the bandwidth parameter,

which defines the ratio between a representative of the spectral band-
width and the peak frequency, 𝜔𝑝 (see specific definition in Supple-
mentary material). Additionally, the wave steepness, 𝜖, should now be
interpreted as a characteristic steepness value, which commonly taken
as 𝜖 = 𝑘𝑝𝐻𝑠∕2, where 𝐻𝑠 is the significant wave height. Finally, 𝜆 is
defined such that, using the NLSE parameters, the BFI value equals 1 for
he typical deep water wave conditions characterized by a JONSWAP
pectrum with peak-enhancement factor of 𝛾 = 3.3 and a characteristic
teepness of 𝜖 = 0.1 (see details in Supplementary material).

The BFI values as obtained by the NLSE and the different quadratic
ormulations are examined and compared through the following exam-
le. The example considers a shoaling wave field that is characterized
y a JONSWAP spectrum with 𝑇𝑝 = 2.25 s and 𝐻𝑠 = 0.2 m (similar
o the wave conditions of experiment A2 by Ruessink et al., 2013,
ntroduced later in the text). The water depth is assumed to increase
inearly from a value of ℎ = 0.2 m and up to ℎ = 4 m. It is assumed

that over this shoaling region 𝐻𝑠 stays constant (see, e.g., Ruessink
et al., 2013). However, 𝑘𝑝 does change and is determined by the linear
dispersion relation according to the mild slope assumption. These wave
conditions result in a steepness value of 𝜖 ∼ 0.2 at the shallowest point
and a value of 𝜖 ∼ 0.08 at the deepest point. The results of BFI as a
function of 𝑘𝑝ℎ are presented in Fig. 5 for three different values of the
peak-enhancement factor: 𝛾 = 1, 3.3, 10.

The results shown in Fig. 5 provide further evidence for the effect
of modulational instability on the predictions according to the fully
dispersive quadratic formulations. The discrepancies are particularly
significant over 0.5 < 𝑘𝑝ℎ < 2, a region where the effect of modulational
instability is expected to be weak or absent (as confirmed by the NLSE,
and see also additional support provided by Akrish et al., 2016, Fig.
5). The results also demonstrate the effect of increasing 𝛾. Higher 𝛾
values correspond to narrower spectra, and thus also to weaker disper-
sion effects (or larger correlation scale). Consequently, as 𝛾 increases,
7

modulational instability becomes more dominant. Finally, the inclusion
of the 𝑈𝑟 number highlights the significance of the results shown by the
fully dispersive quadratic formulations. The 𝑈𝑟 number suggests that
over 0.5 < 𝑘𝑝ℎ < 2 the expected wave evolution can be characterized as
quasi-linear. However, the BFI due to the fully dispersive formulations
suggests that over this region of 𝑘𝑝ℎ, the evolution may be significantly
affected by the nonlinear modulational instability mechanism. This
point is further demonstrated and discussed through the following
numerical example.

2.3.3. Bichromatic group evolution over constant depth
The example considered here concerns the evolution of a bichro-

matic wave group in a 60 m long flume with constant depth of ℎ = 0.8
m. The group is assumed to be composed of a primary frequency,
𝑓3 = 0.60 Hz, that is subjected to a side-band frequency of 𝑓2 = 0.45 Hz,
nd a forced sub-harmonic frequency of 𝑓1 = 0.15 Hz (𝑓1 = 𝑓3−𝑓2). The

corresponding incoming amplitudes are assumed to be 𝑎𝑚𝑝3 = 0.08 m
and 𝑎𝑚𝑝2 = 0.008 m, where the amplitude of the forced sub-harmonic
is obtained based on (9). These specifications result in the following
primary wave parameters:

⎧

⎪

⎨

⎪

⎩

𝑘3ℎ = 1.33
𝜖 = 0.13
𝛿𝜔3

= 0.25
(27)

Therefore, as suggested by Fig. 4 (middle panel), the modulation of the
group is expected to grow along the flume following the predictions
by Whitham (1967) and Bredmose et al. (2005). Modulational growth
indeed occurs in both of these model formulations as implied by the
sub-harmonic growth shown in Fig. 6.

The results shown in Fig. 6 are obtained numerically using a spatial
step of 𝛥𝑥 = 0.05 m and a spectral step of 𝛥𝑓 = 0.05 Hz, where the
highest frequency considered is 𝑓𝑚𝑎𝑥 = 4𝑓3. Based on these parameters,
the spatial-dependent solution of the quadratic system, (1), is achieved
through the classical fourth-order Runge–Kutta (RK4) method. Also
note that the solutions shown here are phase-averaged over 10 different
realizations (assuming random phases for 𝑎3 and 𝑎2 at the flume’s
boundary for each realization). Finally, the results of the quadratic
models are compared with the highly accurate SWASH model (Zijlema
et al., 2011), which is implemented here using two vertical layers,
spatial step of 𝛥𝑥 = 0.02 m, time step of 𝛥𝑡 = 0.005 s and simulation
time of 10 min, where the results shown here are time-averaged over
the last 5 min.

The significance of the results shown in Fig. 6 can be explained
using the Ursell parameter, (3). The parameter value of the present
example is estimated as 𝑈𝑟 ∼ 4.4, indicating that the amplitude spec-
trum, and accordingly also the significant wave heights, are expected
to stay approximately constant along the flume. The results show that
most of the quadratic formulations and SWASH indeed describe this
permanent behaviour, demonstrating roughly constant 𝐻𝑠 values of the
shorter and longer waves. The weak deviations of SWASH from this
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Fig. 6. Bichromatic group evolution in a flume of constant depth (shown in terms of the significant wave heights, 𝐻𝑠), as predicted by the different model formulations and the
SWASH model. The vertical dashed lines shown in the upper panel (located at 𝑥 = 4 m, 24 m, 44 m) approximately indicate the spatial recurrence of the group’s focusing/defocusing
s obtained by the prediction following Bredmose et al. (2005).
Fig. 7. Energy spectra demonstrating the stable group’s evolution according to Freilich and Guza (1984) and the spatial recurrence of the group’s focusing/defocusing as obtained
by the prediction following Bredmose et al. (2005).
permanent behaviour (i.e., the short waves 𝐻𝑠 drop near the incoming
boundary and the weak short and long waves 𝐻𝑠 oscillations) are
ue to mismatch between the imposed incoming wave field and the
esulted downwave field (see Vasarmidis et al., 2024). In contrast, the
redictions of Whitham (1967) and Bredmose et al. (2005) present
ignificant deviations from the expected permanent behaviour out-
ome. These deviations are the result of modulational instability, giving
ise to significant energy transfers between the carrier and the side-
and components. Accordingly, the initial weak modulation, which
orces relatively small sub-harmonic response, develops into a strong
odulation and an abnormal sub-harmonic growth. As demonstrated

y the lower panel of Fig. 6, the prediction of the sub-harmonic 𝐻𝑠
following Whitham (1967) and Bredmose et al. (2005) is an order of
magnitude higher than expected. Eventually, the significant growth
of the side-bands and the corresponding modulations is restricted by
energy conservation. This leads to back and forth transfers of energy
and to the well-known long distance behaviour of focusing/defocusing
recurrence (e.g., Lake et al., 1977), which is demonstrated through the
8

prediction of Bredmose et al. (2005) in Fig. 7. This model prediction
shows that the initial weakly modulated monochromatic field evolves
into an almost fully modulated bichromatic field due to intensive
energy exchanges between the carrier and the side-band components.
Close to the end of the flume, the initial energy spectrum is almost
recovered.

To summarize, the analysis presented in this section shows that
the positive effect of improving the dispersion on the linear behaviour
of wave fields also involves an unfavourable effect on the nonlinear
evolution. Nonlinear effects are governed by the quadratic interaction
coefficients, 𝑉𝑙,𝑚, and generally, also by higher-order factors which
are neglected based on the quadratic modelling approach. As a con-
sequence, a change of 𝑉𝑙,𝑚 due to improvement of the linear dispersion
relation also involves a change of the neglected higher-order residual. It
turns out that this residual becomes significant for the fully dispersive
models, leading to over prediction of the amplitude dispersion, and as
a consequence, to changes in the modulational instability mechanism,
including the instability threshold, the growth rate and the modulation
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Fig. 8. Schematic illustration of the experiments conducted by Van Noorloos (2003) (left panel) and Ruessink et al. (2013) (right panel). The structures of the bathymetries are
described by the thick green lines. The thin vertical lines, plotted along the still water level (ℎ = 0), indicating measurement locations. The vertical dashed lines indicate the
locations where computed and measured wave spectra are compared.
Table 1
Incoming wave parameters for the bichromatic examples of Van Noorloos (2003). The incoming forced amplitude 𝑎𝑚𝑝1 of
the sub-harmonic indicated by 𝑓1 is calculated based on second-order Stokes theory. Additionally, 𝑈𝑟,𝑚𝑎𝑥 estimates the Ursell
number at the breaking point and 𝑥𝑠,𝑚𝑎𝑥 estimates the maximum location for which 𝑈𝑟 < 26.

Exp. 𝑓3 (Hz) 𝑓2 (Hz) 𝑓1 (Hz) 𝑎𝑚𝑝3 (m) 𝑎𝑚𝑝2 (m) 𝜇𝐼 𝑈𝑟,𝐼 𝑈𝑟,𝑚𝑎𝑥 𝑥𝑠,𝑚𝑎𝑥 (m)

A1 0.6714 0.4761 0.1953 0.06 0.012 1.43 4.7 41.8 21
B3 0.6470 0.5005 0.1465 0.06 0.024 1.35 5.6 39.2 20
B5 0.6470 0.5005 0.1465 0.06 0.036 1.35 6.0 38.6 19
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ranges over which this mechanism is expected. Hence, fully disper-
sive quadratic formulations not only tend to develop significant phase
errors, but are also exposed to intensive energy exchanges triggered
by false modulational instability, which may even take place over
relatively shallow waters and under conditions for which quasi-linear
behaviour is expected.

3. Model prediction of waves over coastal waters

The impact of modulational instability on coastal wave predic-
tion and the prediction capabilities of the different quadratic formula-
tions are studied here through comparisons with different laboratory
and SWASH results. The considered cases concern incoming wave
fields which are either bichromatic or described through a continuous
spectrum.

Since the examples presented here involve bathymetry changes,
the quadratic formulation (1) discussed so far should be modified to
include the effect of wave shoaling. This can be readily implemented
by using the energy-flux related amplitude, 𝑏𝑛 = 𝑎𝑛

√

𝑐𝑔,𝑛 (see details
n Appendix A, also regarding the definition of 𝑐𝑔,𝑛 for each of the
onsidered quadratic formulations). As a result, the modified quadratic
ormulation reads

𝑥𝑏𝑛 − 𝑖𝑘𝑛𝑏𝑛 = −𝑖
∑

𝑟

√

𝑐𝑔,𝑛
𝑐𝑔,𝑟𝑐𝑔,𝑛−𝑟

𝑉𝑟,𝑛−𝑟𝑏𝑟𝑏𝑛−𝑟 (28)

he quadratic model (28) is solved numerically using the RK4 method.
he spatial step being used is 𝛥𝑥 = 0.05 m, while the spectral resolution
nd thus also the number of realizations are determined for each
xample specifically. Similarly, all the computations with SWASH are
erformed here using two vertical layers, a spatial step of 𝛥𝑥 = 0.02 m
nd a time step of 𝛥𝑡 = 0.005 s, while the simulation time is determined
eparately for each example.

.1. Evolution of bichromatic groups and irregular waves over a slope

Two sets of laboratory experiments, conducted by Van Noorloos
2003) and Ruessink et al. (2013), are considered. Generally speaking,
hese experiments describe one-dimensional nonlinear shoaling of wave
ields over a mild slope. The settings of these experiments are described
chematically in Fig. 8 and the parameters of the incoming wave fields
re detailed in Tables 1 and 2. Model capabilities are examined by
omparisons to measured results and to the predictions of SWASH up
9

d

o the breaking points beyond which the quadratic formulations be-
ome invalid. The comparison focuses on the evolution of the primary
omponents and the generation and development of the secondary
omponents (the super and sub-harmonics). Finally, since the quadratic
ormulations only account for the incoming wave components, the
xamined cases considered here are such that the effect of wave re-
lection on the evolution of the primary and secondary components is
egligible (Rijnsdorp et al., 2014; De Bakker et al., 2015). Accordingly,
he measured data is not separated into incoming and reflected wave
omponents. To avoid unwanted reflections in SWASH, a radiation
ondition is applied on the downwave side of the domain at a depth
f ℎ ∼ 0.057 m accompanied by a sponge layer of 5 m in front of it.

The combination of these measures allows an effective absorption of
both the long and the short wave components, as verified in Fig. 9 and
Fig. 12.

3.1.1. Bichromatic groups over a slope
Three bichromatic examples introduced by Van Noorloos (2003)

(i.e., A1, B3 and B5) are considered. Wave predictions for these exam-
ples as obtained by the different quadratic formulations are compared
to measured and SWASH results in Fig. 9. The comparison is presented
in terms of the 𝐻𝑠 of the primary and super-harmonics (defined by
𝑓 > 𝑓𝑖𝑔,𝑚𝑎𝑥 and referred to as the sea-swell components) and the 𝐻𝑠
of the sub-harmonics (defined by 𝑓 ≤ 𝑓𝑖𝑔,𝑚𝑎𝑥 and referred to as the
infragravity (IG) components), where the separating frequency takes
the following value: 𝑓𝑖𝑔,𝑚𝑎𝑥 = 0.3 Hz. Additionally, the results of the
quadratic formulation are computed using spectral resolution of 𝛥𝑓 =
0.025 Hz and maximum frequency of 𝑓𝑚𝑎𝑥 = 4𝑓𝑝 (recall that 𝑓𝑝 is the
eak frequency). Furthermore, these results are phase-averaged over 10
ealizations. Finally, the results according to SWASH are time-averaged
ver the last 6 min, where the total simulation time is chosen to be 10
in.

The depth parameter values, 𝜇𝐼 , given in Table 1 indicate that the
onsidered examples describe incoming wave groups over intermediate
ater depth. Additionally, these groups are characterized by relatively

mall incoming 𝑈𝑟 value (see 𝑈𝑟,𝐼 in Table 1). The Ursell number only
ecomes significant around the breaking area. Thus, the evolution is
xpected to be quasi-linear, namely, dominated by linear dispersion
nd shoaling along most of the domain (up to 𝑥 ∼ 𝑥𝑠,𝑚𝑎𝑥) for all the
onsidered examples.

Based on these expectations, the predictions presented by the fully
ispersive models in Fig. 9 are surprising. These predictions describe
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Fig. 9. A comparison of computed and measured 𝐻𝑠 for the bichromatic examples A1 (upper row), B3 (middle row) and B5 (lower row) of Van Noorloos (2003). The vertical
ashed lines provide estimation for the initial wave breaking locations.
ignificant energy transfers from the primary component (i.e., the
omponent with frequency 𝑓3) to secondary components, as implied
y the decrease of the sea-swell 𝐻𝑠 and the relatively rapid 𝐻𝑠 growth
f the IG components. The mechanism which triggers these energy
xchanges is attributed to modulational instability.

The impact of modulational instability on the group evolution may
e explained through the data detailed in Table 1. The depth param-
ter of the primary component (given by 𝜇𝐼 ) provides an indication

whether modulation instability can emerge. Following Fig. 3, it is clear
that all the three fully dispersive formulations (i.e., the formulations
by Whitham, 1967, Kaihatu and Kirby, 1995 and Bredmose et al.,
2005) are subjected to modulational instability for all the considered
examples. However, the significance of the energy transformation due
to modulational instability is determined by the steepness parameter
(i.e., 𝜖) and the normalized modulation frequency (i.e., 𝛿𝜔3

). As an
example, the wave conditions, based on which the growth rate shown
in Fig. 4 (left panel) is calculated, approximately describe the wave
conditions of example B3 and B5 at 𝑥 ∼ 15. Consequently, it is expected
that the predictions for these examples following the formulations by
Whitham (1967) and Bredmose et al. (2005) will be strongly affected by
the modulational instability mechanism. These models indeed describe
rapid 𝐻𝑠 growth of the IG components, indicating significant modula-
tional growth. On the other hand, the Boussinesq formulations agree
better with the measured and SWASH results and with the expectation
of quasi-linear evolution. The largest deviations obtained based on
these models observed by the sea-swell 𝐻𝑠 prediction due to Freilich
and Guza (1984) and by the 𝐻𝑠 prediction of the infragravity response
due to Madsen and Sørensen (1993). The former develops due to over
prediction of linear shoaling (see Fig. 1 in Supplementary material).
Whereas the latter stems from the nonlinear balance generated by
the quadratic coefficients, 𝑉𝑙,𝑚, which is characterized by relatively
strong tendency towards sub interactions (as also described by the 𝐺𝑙,𝑚
of Madsen and Sørensen, 1993, as given in Fig. 1).

Further insight is gained by examining the spectral wave evolution,
which is considered here for example B5. To this end, Figs. 10–11
present the amplitude spectra at two different locations in the vicinity
of the breaking point. This spectral point of view provides further evi-
dence to the impact of modulational instability on the evolution of the
wave group. Especially, the results of Whitham (1967) and Bredmose
et al. (2005), but also less prominently the results of Kaihatu and Kirby
(1995), show significant energy transfer from the primary component
to the side-bands, providing explanation to the amplitude increase of
10

the modulation frequency (as shown in Fig. 10 at 𝑥 = 18 m). This initial
stage is followed by a significant spectrum broadening towards sub and
super-harmonics as is most clearly presented by the results of Whitham
(1967) (as demonstrated by Fig. 10 at 𝑥 = 22 m). The predictions of the
rest of the models agree well with the measured and SWASH results.
Especially, the results of Freilich and Guza (1984) and Nwogu (1993)
show accurate development of the complete spectrum (excluding the
over prediction of the primary components by Freilich and Guza, 1984).
The prediction of Madsen and Sørensen (1993) though, tend to under
predict the development of the super-harmonics.

3.1.2. Irregular waves over a slope
This part is devoted to the evolution of irregular wave fields. The

considered examples are the irregular cases which were experimentally
investigated by Ruessink et al. (2013). The generated wave fields are
defined based on the JONSWAP spectrum using the parameters detailed
in Table 2. The computations through the quadratic formulations are
based on a spectral resolution of 𝛥𝑓 = 0.015 Hz, maximum frequency
of 𝑓𝑚𝑎𝑥 = 4𝑓𝑝 and averaging over 60 realizations. The computations
through SWASH are based on a simulation time of 60 min, where the
results represented are time-averaged over the last 54 min.

The computed and measured results are compared in Fig. 12 in
terms of 𝐻𝑠. Here again, the values of 𝐻𝑠 are presented separately
for the shorter waves (denoted as the sea-swell components and satisfy
𝑓 > 𝑓𝑖𝑔,𝑚𝑎𝑥) and for the longer waves (denoted as the infragravity (IG)
components and satisfy 𝑓 ≤ 𝑓𝑖𝑔,𝑚𝑎𝑥), where the separation frequency,
𝑓𝑖𝑔,𝑚𝑎𝑥, is provided in Table 2 for each of the considered examples. For
the intermediate to shallow water depth conditions that characterize
these examples, the values of 𝑥𝑠,𝑚𝑎𝑥 define the regions over which
second-order Stokes theory is expected to be valid. Over these regions,
wave evolution is expected to be dominated by linear dispersion and
shoaling, while evidence of nonlinear exchanges of energy is expected
to be weak. This highlights again the abnormal infragravity responses
as presented by the fully dispersive formulations in Fig. 12. Here, the
explanation for these results is based on the BFI parameter. As an
example, refer to the middle panel of Fig. 5 which shows the BFI
values due to the fully dispersive formulations under the same wave
conditions as of example A2. These BFI values indeed suggest that
for the considered 𝜇 values, wave prediction using the fully dispersive
formulations (especially using the model by Whitham, 1967) would be
strongly affected by the modulational instability mechanism. This may
lead to unexpectedly strong prediction of wave field’s modulations, and
consequently, to the prediction of unexpectedly strong responses of the

infragravity components as indeed suggested by Fig. 12. Furthermore,
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Fig. 10. A comparison of amplitude spectra as obtained by the measurements, SWASH and the fully dispersive models.
Fig. 11. A comparison of amplitude spectra as obtained by the measurements, SWASH and the Boussinesq models.
Table 2
Wave parameters for the irregular examples of Ruessink et al. (2013). The incoming wave fields are defined based on the
JONSWAP spectrum requiring the values of 𝑓𝑝, 𝐻𝑠 and 𝛾 (recall that 𝛾 stands for the peak-enhancement factor). Also here,
𝑈𝑟,𝑚𝑎𝑥 represents the Ursell number at the breaking point and 𝑥𝑠,𝑚𝑎𝑥 indicates the maximum location for which 𝑈𝑟 < 26.

Exp. 𝑓𝑝 (Hz) 𝐻𝑠 (m) 𝛾 𝑓𝑖𝑔,𝑚𝑎𝑥 𝜇𝐼 𝑈𝑟,𝐼 𝑈𝑟,𝑚𝑎𝑥 𝑥𝑠,𝑚𝑎𝑥 (m)

A1 0.6329 0.1 3.3 0.37 1.5 2.1 47.5 61
A2 0.4444 0.2 3.3 0.26 0.9 11.4 52.5 37
A3 0.4444 0.1 20 0.26 0.9 5.7 77.3 49
the results of Fig. 12 provide additional evidence to the reliability of
wave prediction using the Boussinesq models. These models agree well
with the measured and SWASH results up until the breaking points.
However, also here, the inaccurate shoaling prediction of Freilich and
Guza (1984) and the inadequate nonlinear balance due to the quadratic
coefficients of Madsen and Sørensen (1993) result in over prediction of
the sea-swell 𝐻𝑠 and the infragravity 𝐻𝑠, respectively.

Further details explaining the prediction capabilities of the different
quadratic formulations are presented in Figs. 13–14. These results pro-
vide a limited view on the spectral evolution as obtained for example
A2 close to the breaking point. In order to highlight the modelling
capabilities of the infragravity components (which also provide possible
indication to the significance of modulational instability), the spectra
are plotted through logarithmic scales. The results provide another
perspective on the effect of modulational instability, which induces
11

much faster spectral broadening than predicted by the measurements
(especially notable by the results of Whitham, 1967 and Bredmose
et al., 2005, but also seen less obviously through the results of Kaihatu
and Kirby, 1995 in Fig. 13). In addition, the tendency of the model
by Madsen and Sørensen (1993) to over predict the sub-harmonic re-
sponses and to under predict the super-harmonic responses is revealed
again through Fig. 14. Moreover, Fig. 14 provides additional demon-
stration of the tendency of the model by Freilich and Guza (1984) to
over predict the shoaling primary components. In summary, the model
by Nwogu (1993) seems to generate the most accurate prediction for
this example.

To summarize, the verification conducted for both bichromatic and
irregular wave conditions shows the preferable prediction capabili-
ties of the Boussinesq models. However, all the examples considered
showed the tendency of Freilich and Guza (1984) to over predict the
sea-swell components due to inaccurate formulation of linear shoaling

and the tendency of Madsen and Sørensen (1993) to under predict the
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Fig. 12. A comparison of computed and measured 𝐻𝑠 for the irregular examples A1 (upper row), A2 (middle row) and A3 (lower row) of Ruessink et al. (2013). The vertical
dashed lines provide estimation for the initial wave breaking locations.
Fig. 13. A comparison of variance spectra as obtained by the measurements, SWASH and the fully dispersive models.
Fig. 14. A comparison of variance spectra as obtained by the measurements, SWASH and the Boussinesq models.
ea-swell components and to over predict the IG components due to in-
12

dequate nonlinear balance provided by the quadratic coefficients. The

model of Nwogu (1993) present the most satisfying general agreement

with the measured and SWASH results, and together with the model
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of Freilich and Guza (1984) showed the most accurate prediction of
the infragravity response. Finally, the predictions of the fully dispersive
formulations deviated considerably from the measurement results. The
mechanism that leads to the observed deviations appears to be the
modulational instability. This instability mechanism triggered rapid
energy exchanges and accompanying growth of wave modulations over
regions for which the waves are expected to develop (almost) linearly.
As a result, an unexpectedly strong response of the infragravity field is
presented by the predictions of these fully dispersive formulations.

4. Discussion and concluding remarks

The quadratic modelling approach proposes a significant modelling
reduction of the original Euler equations. The description of wave
nonlinearity essentially collapses into a single mode coupling term
determined by the quadratic interaction coefficients. Therefore, doubt
arises regarding the prediction capabilities of this modelling approach
especially for coastal waves which are characterized by significant
nonlinearity.

Since the first development of the quadratic formulation by Freilich
and Guza (1984), efforts were mainly devoted to the improvement
of the dispersion relation and the inclusion of highly dispersive and
weakly nonlinear terms. Beyond the improvement of the linear wave
properties, accounting for high-order dispersive terms also improves
the representation of the second-order bound waves (see Madsen and
Schäffer, 1998). As an example, the formulation by Bredmose et al.
(2005) provides second-order bound wave solutions which exactly
match those of Stokes theory. However, as demonstrated throughout
this study, these added capabilities also involve unfavourable conse-
quences on the nonlinear evolution. This unexpected impact can be
explained by considering the neglected residual (or truncation error)
arising due to the modelling reduction of the quadratic modelling
approach. It turns out that this residual may lead to significant con-
sequences for the prediction of coastal waves using quadratic formula-
tions with improved dispersion. Specifically, the residuals correspond-
ing to the fully dispersive models of Whitham (1967), Kaihatu and
Kirby (1995) and Bredmose et al. (2005) lead to considerable over pre-
dictions of the so-called amplitude dispersion, and consequently, also to
unfavourable modifications of the modulational instability mechanism.
Therefore, beyond phase errors, errors related to nonlinear energy
exchanges are expected to evolve as well using these models. Stability
analysis showed that these models become modulationally unstable
over much shallower water than expected and are subjected to much
stronger growth rates and much larger modulation ranges. As a result,
predictions using these models may be significantly affected by mod-
ulational instability even under conditions (e.g., water depth, spectral
bandwidth) for which this mechanism is expected to be weak or absent.
Specifically, this study shows the consequences of false development of
modulational instability on the prediction of waves in coastal waters.
As an example, the evolution of relatively linear waves (characterized
by small Ursell number) over relatively shallow waters (𝜇 < 1.36) was
examined several times along this study. The expected evolution for
such conditions should be well described by linear theory. However, the
fully dispersive formulations demonstrated entirely different results,
which are characterized by rapid growth of wave modulations and
associated growth of the infragravity field.

In contrast to the fully dispersive formulations, the Boussinesq
models (i.e., the models by Freilich and Guza, 1984, Madsen and
Sørensen, 1993 and Nwogu (1993)) tend to underestimate the ampli-
tude dispersion, and consequently, modulational instability has little
or no effect on these models’ prediction. Therefore, based on the
laboratory results presented here (designated to characterize coastal
wave evolution), for which modulational instability is negligible, the
Boussinesq models demonstrated more reliable predictive capabilities.
The difference between the predictive capabilities of the two model
13

types (i.e., the Boussinesq approach and the fully dispersive approach)
stood out in particular in the shoaling regions, over which wave con-
ditions were typically quasi-linear. In contrast to the fully dispersive
formulations, the Boussinesq models which are not exposed to false
development of modulational instability described more adequately
the quasi-linear evolution of the shoaling waves. Nevertheless, these
models also demonstrated some deviations in comparison to the mea-
surements. Specifically, the model by Freilich and Guza (1984), while
accurately predicted the infragravity field, showed shoaling devia-
tions of the shorter waves as a result of its simplified description of
linear dispersion. Furthermore, the model by Madsen and Sørensen
(1993) demonstrated deviations of both the sub and super-harmonics.
These latter deviations are explained by the inadequate nonlinear bal-
ance characterizing the quadratic coefficients of Madsen and Sørensen
(1993). Ultimately, based on the examples presented here, it appears
that the model by Nwogu (1993) provides the most adequate coastal
wave predictions considering the evolution of both the sea-swell field
and the infragravity field. It should be emphasized that the investi-
gation in this study is limited to coastal waters. Under deep water
conditions, nonlinear wave evolution is controlled by effects related
to the interaction between wave quartets (e.g., amplitude dispersion,
modulational instability). Therefore, all the quadratic formulations pre-
sented here would not be suitable to describe wave nonlinearity in deep
water, since none of them correctly captures these nonlinear effects for
relatively high values of 𝜇 (see Figs. 2 and 3).

To conclude, this study raises the need to improve the capabilities
of the quadratic approach for the prediction of coastal waves. The
Boussinesq approach is relatively reliable, but shows discrepancies
related to inaccurate description of linear dispersion or inadequate
nonlinear balance between super and sub interactions. On the other
hand, the improved linear properties of the fully dispersive approach
are accompanied by the tendency to develop false modulational insta-
bility. Therefore, a clear modelling gap remains. This gap indicates
the need for deriving of a fully dispersive quadratic model, which
adequately describes nonlinear wave developments over water depths
and bathymetrical structures that characterize the coastal environment.
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Appendix A. Formulation of the quadratic model

Generally speaking, the derivation of the quadratic model starts
with the underlying time-domain model. The latter is usually written
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as a set of two equations for the surface elevation, 𝜂, and for the
fluid velocity variable (may be the depth-averaged horizontal velocity
or the horizontal velocity at a certain elevation level or the surface
potential velocity etc.). However, in order to simplify the discussion,
it is assumed that the underlying time-domain model can be written
through the following combined form:

(𝑖𝜕𝑡,−𝑖𝜕𝑥)𝜂 =  (𝑖𝜕𝑡(1) , 𝑖𝜕𝑡(2) ,−𝑖𝜕𝑥(1) ,−𝑖𝜕𝑥(2) )𝜂
(1)𝜂(2) (29)

where  is a linear differential operator and  defines a nonlinear op-
rator. The superscripts used on the right-hand-side of (29) (indicated
y the numbers 1, 2) specify the partial derivatives with superscript
𝑗) operates on 𝜂(𝑗). Additionally, as implied by (29), the effect of slow
ottom variations is ignored here (otherwise the differential operators
ere dependent on 𝑥). This is done based on the common assumption

hat this effect, which is manifested by the so-called linear shoaling
erm, is of the same order as of the quadratic nonlinear term. As
uch, the shoaling term can be simply added to the quadratic model
eparately at a later stage.

The usual procedure to derive the quadratic model, (1), is through
he multiple-scale method. A detailed account for this derivation can
e found for instance in Dingemans (1997), Chapter 7. Here, this
erivation is briefly summarized based on the combined model form,
29). To start with, two spatial scales are defined, 𝑥1 = 𝑥 and 𝑥2 = 𝜖𝑥,
here recall that 𝜖 represents a small valued measure of the field’s
onlinearity. In addition, 𝜂 is expanded as 𝜂 = 𝜖𝜂1 + 𝜖2𝜂2 + ⋯. By

substituting these assumptions into (29), one obtains a set of equations,
each balancing terms of mutual order. Here, only the first two equations
are required. These are given by,

1𝜂1 = 0 (30)

1𝜂2 = 𝑖′
1𝜕𝑥2𝜂1 +1𝜂

(1)
1 𝜂(2)1 (31)

where the subscript in 1 and 1 indicates that these operators are
functions of the spatial derivative 𝜕𝑥1 . In addition, the definition of the
operator ′

1 stems from the following symbolic Taylor expansion:

(𝑖𝜕𝑡,−𝑖𝜕𝑥1 − 𝑖𝜖𝜕𝑥2 ) = 1 − 𝑖𝜖′
1𝜕𝑥2 −

𝜖2

2
′′

1 𝜕
2
𝑥2

+⋯ (32)

here the tag notation defines derivative with respect to the factor
𝑖𝜕𝑥1 .

The non-trivial solution, 𝜂1, is assumed to be periodic in time and
lowly modulated in space, and therefore, it is assumed to take the
ollowing form:

1 =
∑

𝑛
𝐴𝑛(𝑥2) exp(𝑖𝑘𝑛𝑥1 − 𝑖𝜔𝑛𝑡) (33)

y substituting this solution into (30), the following linear dispersion
elation is obtained

(𝜔𝑛, 𝑘𝑛) = 0 (34)

nd the substitution of 𝜂1 into (31) provides

1𝜂2 =
∑

𝑛
exp(−𝑖𝜔𝑛𝑡)

[

𝑖𝐷′
𝑛𝜕𝑥2𝐴𝑛 exp(𝑖𝑘𝑛𝑥1)

+
∑

𝑟
𝑁𝑟,𝑛−𝑟𝐴𝑟𝐴𝑛−𝑟 exp

(

𝑖(𝑘𝑟 + 𝑘𝑛−𝑟)𝑥1
)

]

(35)

where now the tag of 𝐷′
𝑛 indicates derivative with respect to 𝑘𝑛 and

𝐷𝑛 = 𝐷(𝜔𝑛, 𝑘𝑛). Additionally, 𝑁 is associated with the operator 1,
such that 𝑁𝑟,𝑛−𝑟 = 𝑁(𝜔𝑟, 𝜔𝑛−𝑟, 𝑘𝑟, 𝑘𝑛−𝑟).

It is well-known that the dispersion relation does not allow reso-
nance to occur between three waves, and therefore, at this stage, only
bound wave solutions are expected to exist. However, as the water
depth becomes shallower, the wavenumber mismatch, 𝑘𝑟+𝑘𝑛−𝑟−𝑘𝑛, be-
comes smaller, creating a weaker condition that is commonly referred
to as ‘‘near resonance’’, which practically allows energy exchange to
take place. Therefore, in order to keep the solution bounded over
14
elatively shallow waters, it is required that the right-hand-side of (35)
s set to zero. This condition is expressed as follows:

𝐷′
𝑛𝜕𝑥2𝐴𝑛 exp(𝑖𝑘𝑛𝑥1) +

∑

𝑟
𝑁𝑟,𝑛−𝑟𝐴𝑟𝐴𝑛−𝑟 exp

(

𝑖(𝑘𝑟 + 𝑘𝑛−𝑟)𝑥1
)

= 0 (36)

r, in terms of 𝑎𝑛 = 𝐴𝑛 exp(𝑖𝑘𝑛𝑥1)

𝜕𝑥𝑎𝑛 − 𝑖𝑘𝑛𝑎𝑛 = −𝑖
∑

𝑟
𝑉𝑟,𝑛−𝑟𝑎𝑟𝑎𝑛−𝑟 (37)

As can be observed, this is exactly the quadratic model which is
introduced by (1), where since the scale separation has stopped to play
a role at this stage, it is simply reduced. Additionally, the transition
from (36) to (37) suggests the following relation:

𝑉𝑙,𝑚 = −𝑁𝑙,𝑚∕𝐷′
𝑛 (38)

here 𝑛 = 𝑙 + 𝑚. This relation can be conveniently used to derive the
missing quadratic coefficients of Nwogu (1993) and Whitham (1967)
(see derivation in Supplementary material).

A.1. Shoaling term

As mentioned earlier, the shoaling term can be added into the
quadratic formulation separately by assuming it to be of the same order
as the quadratic nonlinear term. The derivation of the shoaling term is
based on the usual WKB assumption allowing the wavenumbers to be
weakly dependent on 𝑥. Namely, the first order solution, 𝜂1, takes now
the following form:

𝜂1 =
∑

𝑛
𝐴𝑛 exp(𝑖𝑆𝑛(𝑥) − 𝑖𝜔𝑛𝑡) (39)

where 𝜕𝑥𝑆𝑛 = 𝑘𝑛. The linear operator, , is now weakly dependent on 𝑥
as well. For model formulations which are based on the so-called free-
surface velocity potential (see definition in, e.g., Zakharov, 1968), the
slowly varying operator, , can be treated as a Weyl operator (Akrish
et al., 2023). This is convenient since the Weyl operator provides the
following general formula for the shoaling term (see, e.g., Akrish et al.,
2020, Eq. (A8)):

𝜕𝑥𝐴𝑛
𝐴𝑛

= −
𝜕𝑥𝑘𝑛𝐷′′

𝑛 + 𝜕𝑥𝐷′
𝑛

2𝐷′
𝑛

(40)

here 𝐷′′
𝑛 indicates second derivative with respect to 𝑘𝑛. This equation

eads to the following well-known linear shoaling definition (which
orresponds to the well-known energy flux conservation):

𝑥

(

𝐴𝑛
√

𝑐𝑔,𝑛
)

= 0 (41)

where 𝑐𝑔,𝑛 is the fully dispersive group velocity if one of the fully
dispersive models is considered, while for the model by Freilich and
Guza (1984), the shallow water approximation, 𝑐𝑔,𝑛 =

√

𝑔ℎ, is used.
Note that the shoaling term formula, (40) (or (41)), is applied here also
for the model by Whitham (1967) which was developed for constant
depth. This applicability is argued heuristically based on the derivations
of the Whitham systems in Moldabayev et al. (2015) and Akrish (2023).
A more rigorous derivation is beyond the scope of this study. Finally,
recall that the Weyl formula, (40), is valid for models which are
formulated based on the free-surface velocity potential. Accordingly,
this formula does not lead to the correct shoaling terms of Madsen
and Sørensen (1993) and Nwogu (1993). Furthermore, the expression
in (41), written in terms of 𝑐𝑔,𝑛, is also not found to agree with the
shoaling terms of Madsen and Sørensen (1993) and Nwogu (1993)
(see discussions by Beji and Nadaoka, 1996 and Schäffer and Madsen,
1998). However, Fig. 3 in Schäffer and Madsen (1995) shows that
the deviation of the shoaling terms of Madsen and Sørensen (1993)
and Nwogu (1993) from the fully dispersive shoaling is practically
negligible over depths that characterize coastal waters. Therefore, for
the computations performed here, the fully dispersive shoaling term is
applied for the models by Madsen and Sørensen (1993) and Nwogu
(1993) as well.
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Appendix B. Cubic interaction coefficients

The cubic interaction coefficients, 𝐶𝑖,𝑗,𝑘,𝑙, are formulated through
the solvability condition, (11), that is obtained at third order. This
equation describes the interaction of resonant quartets, which satisfy
the conditions
{

𝜔𝑖 + 𝜔𝑗 = 𝜔𝑘 + 𝜔𝑙

𝑘𝑖 + 𝑘𝑗 = 𝑘𝑘 + 𝑘𝑙 + 𝑂(𝜖2)
(42)

for non-trivial interactions, while exact resonance is obtained for the
trivial interactions (the interactions which result in amplitude disper-
sion contributions). As implied by the formulation of the solvability
condition, the cubic coefficients of the cubic terms (appearing implicitly
on the right-hand-side of (11)) are constructed as sums of multipli-
cations of the quadratic coefficients, 𝑉 , and the quadratic transfer
function, 𝐺. In the following, this is demonstrated explicitly based on
the assumption that 𝜔𝑘 ≤ 𝜔𝑖 ≤ 𝜔𝑗 ≤ 𝜔𝑙. Consider first the more common
resonant case which satisfies the following:
{

𝜔𝑖 − 𝜔𝑘 = 𝜔𝑙 − 𝜔𝑗

𝜔𝑗 − 𝜔𝑖 ≠ 𝜔𝑖 − 𝜔𝑘
(43)

In this case, any wave component participates in four trivial resonant
interactions and one non-trivial interaction, as is demonstrated for the
component corresponding to 𝜔𝑖 as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜔𝑖 = 𝜔𝑖 + 𝜔𝑖 − 𝜔𝑖

𝜔𝑖 = 𝜔𝑖 + 𝜔𝑗 − 𝜔𝑗

𝜔𝑖 = 𝜔𝑖 + 𝜔𝑘 − 𝜔𝑘

𝜔𝑖 = 𝜔𝑖 + 𝜔𝑙 − 𝜔𝑙

𝜔𝑖 = 𝜔𝑙 + 𝜔𝑘 − 𝜔𝑗

(44)

The cubic coefficient corresponding to each of these interactions con-
sists of different products of 𝐺 and 𝑉 which are determined by the
right-hand-side of the equations in (44). For example, consider the
formulation for the cubic coefficient of the non-trivial interaction which
is determined according to the last equation of (44). Each pair of
frequencies on the right-hand-side of this equation forces a second-
order bound solution which is in resonant with the third frequency and
with 𝜔𝑖. As a result, the following expression is obtained:

𝐶𝑖,𝑗,𝑘,𝑙 = 2𝐺𝑙,𝑘𝑉𝑙+𝑘,−𝑗 + 2𝐺𝑙,−𝑗𝑉𝑙−𝑗,𝑘 + 2𝐺𝑘,−𝑗𝑉𝑘−𝑗,𝑙 (45)

The formulation for the cubic coefficients of the trivial interactions can
be derived in a similar fashion based on the other equations of (44).
The resulted evolution equation for 𝑎𝑖 is given by

𝑖𝜕𝑥2𝑎𝑖 =
(

𝐶𝑖,𝑖|𝑎𝑙|
2 + 2𝐶𝑖,𝑘|𝑎𝑘|

2 + 2𝐶𝑖,𝑗 |𝑎𝑗 |
2 + 2𝐶𝑖,𝑙|𝑎𝑙|

2
)

𝑎𝑙 + 2𝐶𝑖,𝑗,𝑘,𝑙𝑎𝑙𝑎𝑘𝑎−𝑗

(46)

which is coupled with the corresponding equations for 𝑎𝑘, 𝑎𝑗 and 𝑎𝑙.
Note that the compact notations defined for the cubic coefficients of the
trivial interactions 𝐶𝑛,𝑛 and 𝐶𝑛,𝑚 conveniently represent the notations
𝐶𝑛,𝑛,𝑛,𝑛 and 𝐶𝑛,𝑚,𝑛,𝑚, respectively.

The above described formulation, when applied for cubic coeffi-
cients that correspond to the trivial resonant interactions, raises some
doubt due to apparent singularity demonstrated by terms like 𝐺𝑛,−𝑛.
The quadratic model naturally bypasses this difficulty since it excludes
the set-down terms due to self interactions as a results of the property
which states that 𝑉𝑛,−𝑛 = 0. The formulation of the cubic coefficients
based on the quadratic model is referred here as the discontinuous
definition. On the other hand, the continuous definition requires some
assumptions regarding the limit of 𝐺𝑛,−𝑛, which should be identical
through the different convergence paths described by 𝐺(𝜔𝑛±𝛥𝜔,−𝜔𝑛±
𝛥𝜔) and by taking the limit 𝛥𝜔 → 0. Thus, consider for instance
the cubic coefficient, 𝐶 , defined by the right-hand-side of the first
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𝑖,𝑖
equation in (44). The discontinuous definition expresses this coefficient
as

𝐶𝑖,𝑖 = 2𝐺𝑖,𝑖𝑉2𝑖,−𝑖 (47)

whereas the formulation following the continuous definition gives

𝐶𝑖,𝑖 = 2𝐺𝑖,𝑖𝑉2𝑖,−𝑖 + 4𝐺𝑖,−𝑖𝑉𝑖,0 (48)

The continuous definition is used in this study to relate between the
different cubic coefficients for the case of three-wave interaction. An
example of such case is defined by the condition (43) and assuming that
𝜔𝑗 = 𝜔𝑖. The three cubic coefficients that correspond to the non-trivial
interaction are given as follows:

⎧

⎪

⎨

⎪

⎩

𝐶𝑘,𝑙,𝑖,𝑖 = 2𝐺𝑖,𝑖𝑉2𝑖,−𝑙 + 4𝐺𝑖,−𝑙𝑉𝑖−𝑙,𝑖
𝐶𝑙,𝑘,𝑖,𝑖 = 2𝐺𝑖,𝑖𝑉2𝑖,−𝑘 + 4𝐺𝑖,−𝑘𝑉𝑖−𝑘,𝑖
𝐶𝑖,𝑖,𝑘,𝑙 = 2𝐺𝑙,𝑘𝑉𝑙+𝑘,−𝑖 + 2𝐺𝑙,−𝑖𝑉𝑙−𝑖,𝑘 + 2𝐺𝑘,−𝑖𝑉𝑘−𝑖,𝑙

(49)

Under the assumption of small modulation frequency, namely, 𝜔𝑖−𝜔𝑘 =
𝜔𝑙 − 𝜔𝑖 = 𝛥𝜔, where 𝛥𝜔 ≪ 𝜔𝑖, one obtains the approximation

𝐶𝑘,𝑙,𝑖,𝑖 ∼ 𝐶𝑙,𝑘,𝑖,𝑖 ∼ 𝐶𝑖,𝑖,𝑘,𝑙 ∼ 𝐶𝑖,𝑖 (50)

if the following conditions hold:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺(𝜔𝑖 ± 𝛥𝜔,−𝜔𝑖 ± 𝛥𝜔) = 𝐺𝑖,−𝑖 + 𝑂(𝛥𝜔)
𝐺(𝜔𝑖 ± 𝛥𝜔,𝜔𝑖 ± 𝛥𝜔) = 𝐺𝑖,𝑖 + 𝑂(𝛥𝜔)
𝑉 (2𝜔𝑖 ± 𝛥𝜔,−𝜔𝑖 ± 𝛥𝜔) = 𝑉2𝑖,−𝑖 + 𝑂(𝛥𝜔)
𝑉 (𝜔𝑖 ± 𝛥𝜔,±𝛥𝜔) = 𝑉𝑖,0 + 𝑂(𝛥𝜔)

(51)

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.coastaleng.2024.104502.
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