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Abstract
Recording onto a single-frame multiple exposures of the tracer particles has the potential to simplify the hardware needed for 
3D PTV measurements, especially when dealing with high-speed flows. The analysis of such recordings, however, is chal-
lenged by the unknown time tag of each particle exposure, alongside their unknown organization into physical trajectories 
(trajectory tag). Using a sequence of two or more illumination pulses with a constant time separation leads to the well-known 
directional ambiguity problem, whereby it is not possible to distinguish the direction of motion of the tracer particles. Instead, 
an irregular and asymmetric sequence of time separation for the illumination pulses allows recognizing the time tag of the 
unique sequence of positions in the image, composing the trace. A criterion is formulated here that recognizes unambigu-
ously the trace pattern, based upon the principle of kinematic similarity. A combinatorial algorithm is proposed whereby 
a signal-to-noise ratio is introduced for every candidate trace. The approach is combined with an additional criterion that 
favors trace regularity (minimum velocity fluctuations). The algorithm is illustrated making use of particle motion examples. 
Furthermore, it is assessed using 3D experimental data produced with time-resolved analysis (single-frame, single-exposure) 
using the Shake-the-Box method. Traces with a three-pulse sequence yield a detection rate of 85%. The latter declines with 
the number of pulses. Conversely, the error rate rapidly vanishes with the samples number, which confirms the reliability of 
trace detection criterion when more pulses are comprised in the sequence.

Graphical abstract

1  Introduction

With the advent and diffusion of 3D velocimetry techniques, 
we are witnessing a rapid transition from the PIV measure-
ment mode (high image density, cross-correlation motion 
analysis, double-frame recordings) toward the PTV mode 
(low image density, particle detection and pairing, multi-
frame recordings). Numerous clear advantages are at the 
basis of such transition (see, for instance, the work from 
Kahler et al. 2012a, 2012b, 2012, and Cierpka and Kahler, 
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2012, among others), which is not expected to be reversed, 
but further accomplished due to the advancement of high-
quality scientific imagers (e.g., sCMOS), highly scattering 
tracers (e.g., HFSB, Bosbach et al. 2009), safer and more 
versatile volumetric illumination devices (e.g., LED, Willert 
et al. 2010) and not least, more advanced algorithms for the 
particles motion analysis.

State-of-the-art three-dimensional particle tracking is 
founded on the iterative 3D particle detection method (IPR, 
Wieneke 2012). Particle pairing, initially based on predic-
tor–corrector techniques (Malik and Drakos, 1993), has been 
profoundly revised and coupled within the image process-
ing analysis, resulting in a powerful and computationally 
efficient method (Shake the Box, Schanz et al. 2016). Most 
of the current research focuses on single-pulse, double- or 
multi-frame recordings, which requires high-speed illumi-
nation and imaging for the latter. Techniques based on mul-
tiple-exposure analysis have been practiced in conjunction 
with the photographic PIV recording technique, but rapidly 
declined with the advent of kilohertz rate illumination and 
imaging systems (Raffel et al. 2018). The recording and 
analysis of streaks, obtained with long-pulse illumination, 
have also been practiced, and a recent review article surveys 
developments of particle streak velocimetry (Zhang et al. 
2024).

The main motivation for using single-frame ME record-
ing relates to the simplicity of the hardware required. Fur-
thermore, the latter may become relevant, again, in view of 
developments toward multi-camera redundant systems (Hysa 
et al. 2024; Wieneke and Rokstroh, 2024; Hendriksen et al. 
2024), where a multitude of imagers need to be employed. 
Furthermore, time-resolved analysis of particle motion 
requires increasingly high imaging rates when aerodynamic 
flows at velocity higher than 10 m/s are to be investigated. 
In those situations, one reverts to double-frame recording, 
to detriment of the velocity dynamic range  (Lynch and 
Scarano, 2013), unless one combines multiple measurements 
with different pulse separation using a predictor–corrector 
approach (Saredi et al. 2020).

ME recording can potentially solve the above trade-off, 
provided that the information lost in the single-frame record-
ing (particle image time tag) can be restored in some way. 

The analysis of ME recordings has been and still remains 
an open, challenging problem, due to the strong ambiguity 
of the time tag of particles images all featuring identical 
properties. For instance, Utami and Ueno (1984) performed 
a manual analysis of four-pulse recordings (Fig. 1). Yet, the 
direction of motion needed to be determined by additional 
criteria (Adrian and Westerweel, 2011). Early works dealt 
with planar illumination, mostly, and the problem of trun-
cated traces by out-of-plane motion was approached using 
a dot–streak–dot encoding of the particle image (Agüí and 
Jimenez, 1987). A solution to the problem of directional 
ambiguity was proposed by Grant and Liu (1990), with the 
pulse tagging technique, whereby the preceding and fol-
lowing pulses were differing in intensity. Qureshi and Tien 
(2022) and most recently Zhang et al. (2024) illustrated 
techniques for streak analysis. Yet, a conclusive statement 
is missing on how to address the directional ambiguity in a 
systematic way and demonstrate the principle beyond planar 
experiments.

A specific development of the Shake-the-Box technique 
for double-exposure recordings has been proposed, whereby 
a total of four exposures are collected on a double-frame 
recording. The directional ambiguity is approached here 
making use of either a tentative search or making use of a 
particle–space correlation to produce a statistical velocity 
predictor (Novara et al. 2019).

In conclusion, for a multiply exposed recording, the two 
main problems are the time tag determination (i.e., establish-
ing the correspondence of each dot or 3D particle sample to 
a time instant) and the trajectory tag assignment (i.e., asso-
ciating multiple particle samples to the same physical tracer 
and defining its trajectory). The latter also exists for single-
exposure systems and is more commonly known as the par-
ticle image pairing problem. When the density of particle 
images in the recording is increased such that the distance 
between particle occurrences falls below their traveled path 
between pulses, the probability of incorrect pairing grows 
exponentially, as discussed in the early works on PTV (Maas 
et al. 1993, among others). Finally for 3D measurements, 
for a given concentration of the tracers, recording multiple 
positions of the particle tracers on a single image increases 
the image density and the associated probability of ghost 

Fig. 1   Examples of ME recordings for PTV analysis of fluid flows. 
From left to right: four-pulse (repr. from Utami and Ueno, 1980); 
pulse–streak–pulse (repr. from Agui and Jimenez, 1990); pulse tag-

ging (repr. from Grant and Liu 1990); streak velocimetry (repr. from 
Qureshi and Tien 2022)
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particles. An additional problem of ME recordings is the 
overlap of exposures from the same particle, when traveling 
at vanishing velocity. This has been approached brilliantly 
for planar measurements with image-shifting devices (Lan-
dreth and Adrian, 1988). Extension of the method to 3D 
systems, however, is deemed of formidable complexity.

The present study examines the problem of time-tag and 
trajectory-tag determination for multiply exposed record-
ings. The principle to resolve the directional ambiguity is 
that of sequence tagging, i.e., a specific temporal sequence 
is utilized, where the time intervals are irregular and do not 
exhibit time symmetry. The result is an irregular sequence 
of dots, here called a trace, to be compared to the imposed 
sequence of illumination. This principle has been explored 
by Hysa et al. (2022), who examined the impact of the 
sequence structure on the trace detectability. In the present 
work, a concept from cross-correlation analysis used in PIV 
is borrowed: the signal-to-noise ratio, which enables detect-
ing a trace as a whole. This principle is applied here to a 
cost function (similar to the pixels product in cross-corre-
lation) applied to candidate sequence of dots. The similar-
ity between the time sequence and the spatial occurrence 
of dots is invoked as the kinematic similarity criterion that 
recognizes the trace as a sequence of dots along the particle 
trajectory (trajectory tag) and resolves the directional ambi-
guity of said dots (time tag).

An additional constraint on particle acceleration (trace 
regularity) is adopted and combined with the latter to yield 
a composite signal-to-noise ratio.

The working principle is first illustrated with some sim-
plified examples and then demonstrated, using an experi-
mental database of 3D time-resolved measurements around 
a wall-mounted cube immersed in a turbulent boundary layer 
at Re = 80,000 (Hendriksen et al. 2024).

2 � Some definitions

Let us consider a tracer particle moving along its trajectory 
Γ . Light is scattered by the tracer when subject to N illumi-
nation pulses separated with known time intervals, with N 
denoted as the sequence rank. Such sequence of illumination 
pulses is denoted as temporal template τ = {t1, t2, …, tN}, 
with t1 = 0 and tN = T, the latter being the duration of the 
entire sequence. We indicate the normalized vector of time 
instants as τ* = τ/T. It follows that τ* ∈[0, 1]. Figure 2 illus-
trates temporal templates and the corresponding normalized 
time of pulses, with some choices for a sequence or rank 4, 
with a uniform time separation (left), or non-uniform, yet 
time-symmetric (middle) and fully asymmetric (right).

As discussed in Hysa et al. (2022), the structure of the 
sequence is of importance to resolve the directional ambigu-
ity. A symmetric sequence of pulses cannot disambiguate the 
direction of motion because the particle can be interpreted 
as traveling forward as well as backward, with origin at n = 1 
or n = 4, respectively (Fig. 2 left). The same can be said for 
the non-uniform example (Fig. 2 middle).

Fig. 2   Examples of temporal templates of four-pulse sequences. Uniform time separation (left); non-uniform but symmetric (middle); asymmet-
ric sequence (right)

Fig. 3   Examples of spatial 
pattern, or trace, produced 
by a particle illuminated with 
asymmetric four-pulse sequence 
(left). Diagram of distance from 
first dot (right)
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Let us define the particle trajectory Γ(Fig. 3 left). Once 
the particle tracer is illuminated with a pulse sequence, a 
spatial pattern, or trace, ℑN is formed in the image, with dots 
(viz. marks) placed at a traveled distance from the first dot 
that corresponds with the elapsed time. The spatial arrange-
ment of dots depends upon the temporal template, along-
side the velocity and the acceleration of the tracer along the 
trajectory.

Let define the marks’ position vector by Xp = {x1, x2, 
…, xN) for ℑ N. Correspondingly, we indicate the vector of 
traveled distance as σ = {s1, s2, …, sN} with sn = xn—x1. It 
follows that s1 = 0 and sN approximates the path length. It 
follows that sN ~ V⋅T where V  is the average particle veloc-
ity along Γ . The normalized abscissa is σ* = σ/sN, resulting 
into σ* ∈[0, 1].

Figure 3 right shows the distance traveled by the particle 
during the illumination sequence. It is taken in this case the 
asymmetric sequence, for example.

For 3D imaging systems, the pattern and the distance 
traveled also depends upon the viewing direction. The cur-
rent discussion is exemplified here in two dimensions with 
no loss of generality and extended to three dimensions in the 
section presenting the experimental results. It is worth men-
tioning that once the particle position is reconstructed in 3D 
space, the dot sequence is turned in a sequence of particle 
samples and the effect of the viewing direction is eliminated.

3 � Trace detection principle

3.1 � Kinematic similarity

In the hypothesis that the particle tracer travels at approxi-
mately uniform and rectilinear velocity, the spatial pattern 
of dots ℑN will exhibit similarity with the temporal template. 
In other terms, the traveled distance will be proportional to 
the elapsed time and their normalized counterparts τ* and 
σ* should obey the criterion of kinematic similarity (KS):

The above equation appears as a definition. However, 
the pulse index n is only known for τ*, not for σ*. There-
fore, for a chosen set of N dots, the KS criterion needs to 
be evaluated for all possible choices of the pulse index 
(here also refereed as the time tag), which corresponds to 
N! permutations of the index.

The situation is illustrated in Table 1, for a three-pulse 
sequence of normalized time template τ* = {0, 1/3, 1}, 
where the order of the time tags (A–B–C) is varied accord-
ing to the permutations, each corresponding to a possible 
path. It is assumed that the trace marks are placed at dis-
tances σ = {0, 2, 6} mm (uniform rectilinear motion).

The first column yields the order of the combination 
according to the pulse number (1–2–3). For instance, the 
permutation B–A–C selects the second exposure (B) as 
origin of the trace and the third exposure (C) as the end 
of it. The following three columns represent the distance 
from the chosen first mark. The following three columns 
yield the same distance but normalized with respect to the 
path length s3.

By definition, the normalized distance is null for the 
first mark and of unit value for the last. However, the dis-
tance of the intermediate mark can vary widely along the 
permutation.

Evaluating Eq. 1 for these combinations yields the dis-
parity of the trace from kinematic similarity �

��
 , (see last 

column of Table 1). In the present case, the correct order 
pertains to the permutation A–B–C, yielding �

��
= 0 . All 

other permutations return nonzero value, to confirm that 
the current method does not suffer from directional ambi-
guity. It is worth mentioning that for a symmetric tem-
poral template (like in Fig. 2 left and middle), a second 
permutation, C–B–A also yields �

��
= 0 , introducing the 

directional ambiguity.
In most flow fields of interest, the velocity of a particle 

tracer does exhibit variations along the trajectory. There-
fore, the hypothesis of uniform rectilinear motion does 
not hold true, rendering the KS criterion not usable when 

(1)�
��

=

{

N
∑

n=1

[

(

�
∗
n
− �

∗
n

)2
]

}1∕2

= 0

Table 1   Combinatorial of 
distance, normalized distance 
and KS residual of a three-pulse 
trace

Trace Order Distance [mm] Normalized distance KS

1–2–3 s1 s2 s3 s1* s2* s3* �
��

A–B–C 0 2 6 0 1/3 1 0
A–C–B 0 6 2 0 3 1 8/3
B–A–C 0 2 4 0 1/2 1 1/6
B–C–A 0 4 2 0 2 1 5/3
C–A–B 0 6 2 0 3 1 8/3
C–B–A 0 4 6 0 2/3 1 1/3
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applied strictly according to Eq. 1. Yet, for any given set 
of N marks, a detection criterion for the trace ℑN can be 
based on finding the condition of minimum value for �

��

across the combinatorial set:

where K is the number of possible permutations from the N 
considered particle images (K = N!).

Here a concept is borrowed from the theory of cross-
correlation analysis of PIV images: The condition where all 
particle positions coincide in the image pair yields a correla-
tion maximum and the position of such peak corresponds to 
the velocity of the particles enclosed in the window. When 
normalized, the height of the correlation peak, relative to the 
secondary ones, depends upon the number of particle image 
pairs (Keane and Adrian 1992). A commonly used detection 
criterion for a valid vector is based on the ratio between the 
highest and second-highest peak in the correlation map.

In a similar way, the combinatorial analysis yields a set 
of values for the KS criterion. Here, the ratio between the 
second-lowest value and the minimum value of �

��
 is taken 

as indication of signal-to-noise ratio (SNR).

The above definition yields SNR�
��

 → ∞ when the mini-
mum of �

��
 is null. This condition, however, does not occur 

in real experiments, where the effects of spatiotemporal 
velocity variations and measurement noise render min{�

��
 } 

nonzero.

(2)min
ℑ

{

�
��

}

K
,

(3)SNR
��

=
2ndmin

{

�
��

}

min
{

�
��

}

3.2 � Trace regularity

The KS criterion is defined from a scalar equation and cannot 
distinguish between rectilinear and non-rectilinear paths. For 
that purpose, a criterion based on the variations of the velocity 
vector direction and magnitude is devised, as also frequently 
adopted in the literature for PTV analysis. The acceleration is 
estimated along the trace piecewise. The criterion is named 
after trace regularity (TR) and reads as:

Here εα is defined as the sum of the standard deviation 
from each component of the velocity vector along the trace. 
An example that applies this criterion is given in Table 2, for 
the simplified case of a three-pulse trace along a rectilinear 
trajectory.

The combination yields a similar result as for KS; however, 
the two criteria do not repeat the same ranking in terms of their 
residual. For KS, the second-lowest residual corresponds to the 
sequence B–A–C, whereas for TR the sequence C–B–A yields 
the second-lowest residual. The above circumstance proves 
that the two criteria are not redundant and provide comple-
mentary analysis, suited to trace detection.

Following the same approach proposed for KS, the ratio 
between the second-lowest value and the minimum value of εα 
is taken as indication of signal-to-noise ratio (SNRα).

The two signals are defined in the same combinatorial space 
and can be superimposed through their product 

∏

� = �
��

⋅ �
�
 

(composite residual), reported in the last column of Table 2. 
The composite residual is defined in the space of particle time-
tag permutations and sets the basis for a general definition a 

(4)min
ℑ

{

�
�

}

K
,

(5)SNR
�
=

2ndmin
{

�
�

}

min
{

�
�

}

Table 2   Combinatorial of 
velocity and its variation for a 
three-pulse trace

Trace Order Velocity [m/s] �
��

�
�

Π�

1–2–3 v1 v2 |Δv|

A–B–C 6 6 0 0 0 0
A–C–B 18 −6 24 8/3 24 64
B–A–C −6 9 15 1/6 15 2.5
B–C–A 12 −9 21 5/3 21 35
C–A–B −18 3 21 8/3 21 56
C–B–A −12 −3 9 1/3 9 3



	 Experiments in Fluids           (2025) 66:74    74   Page 6 of 16

trace detection criterion (TD) that combines kinematic similar-
ity and trace regularity:

The value of the residuals corresponding to the correct 
sequence in this example is zero, given that ideal conditions 
considered (no noise and zero acceleration). In realistic con-
dition, an estimate of such minimum can be estimated in the 
order of typically o(0.1), when considering the combined 
effect of measurement and trajectory modeling uncertain-
ties altogether not exceeding 10%. When the two criteria 
are multiplied, the composite criterion is expected to yield 
a minimum in the order of 10–2. The spurious permutations, 
instead, yield values of unit order or larger. As a result, the 
signal-to-noise ratio of the composite criterion is expected in 
the order of 100 or above, which indicates a favorable condi-
tion in terms of trace detectability. The above is corroborated 
by some numerical examples.

3.3 � Numerical assessment

With the purpose to illustrate the principle of the algorithm, 
a simplified numerical example is presented here, with typi-
cal categories of flow motions and particle image occurrence 
being considered.

3.3.1 � Uniform circular motion

A first category of particle motion is that of non-rectilinear 
trajectory. Here the simplified condition of uniform circular 
motion is considered, which may occur, for instance around 
the core of a vortex. The trace has its origin at the point (X, 
Y) = (10, 0) mm, with the particle traveling (counterclock-
wise) along a circle of radius R = 10 mm. The case is para-
metrized in terms of the particle path s(t) = V t, (V =ω R), 
where ω is the angular speed, expressed in rad/s. Figure 4 
illustrates the three conditions, namely s(T) = {π R/4, π R/2, 
π R} (1/8, 1/4 and 1/2 circle, respectively). Up to a path 
encompassing π R/2, the TD identifies the correct sequence 
order with a good level of confidence (SNR > 6). When the 
angular range is increased to 2π R/3, the detection remains 
correct, but SNR drops below 3, which is taken here as a 
limit condition. Finally, for a trace encompassing a half 
circle the method fails and it yields the incorrect sequence 
order.

Furthermore, Fig. 4 illustrates the separate distribution 
of residual (inverted for clarity) of kinematic similarity and 
trace regularity for each value of the permutation index k. It 
can be noticed that the highest value corresponds to the same 
index, but the clouds of the spurious values vary for the two 

(6)min
ℑ

{

∏

�

}

,

criteria, which generally produces a higher SNR when their 
combination is considered.

3.3.2 � Rectilinear motion with uniform acceleration

A similar analysis is made for the rectilinear motion with 
uniform acceleration. In this case, the equation of motion 
reads as s(t) = V t + ½ a t2. With a being the acceleration. 
Here the parameter of importance is the maximum veloc-
ity variation, normalized by the mean velocity ΔV/V  . Two 
conditions are illustrated in Fig. 5, with values taken from 
the experimental conditions presented in the remainder. 
In case of mild acceleration (V = 10 m/s and a = 100 m/
s2, ΔV/V  = 0.02), a correct detection is obtained with 
SNR ~ 103. In a region of rapid deceleration (stagnation, 
V = 5 m/s and a = −500 m/s2, ΔV/V  = 0.20), the detection 
is still possible, yet with lower confidence (SNR = 7). For 
even higher values of the acceleration (ΔV/V  > 0.25), the 
SNR falls below 3 and the incorrect order is given for the 
considered trace.

3.3.3 � Neighboring trajectories

In real experiments, traces from different particles will 
occur at some proximity. As a consequence, for a selected 
region of space, the search for a group of particle samples 
composing a trace will frequently include additional par-
ticle samples from other traces. Here the task of the detec-
tion algorithm is to identify those belonging to a specific 
trace unequivocally (trajectory tag).

Figure 6 illustrates two conditions: On the left, the 
marks from another (incomplete) trace lie at some dis-
tance from the trace, whereas on the right, they appear 
as intersecting and may be more easily confused with it.

The evaluation of the detection criteria is shown in Fig. 7. 
The top row displays the evaluation of the red trace on the 
left of Fig. 6. The first column displays the residual of the 
kinematic similarity, the second is the trace regularity and in 
the third column their produce (composite criterion).

In this case, the four marks composing the trace are 
selected correctly, given that the spurious marks are suf-
ficiently apart. The criteria are evaluated for all 24 per-
mutations (4!) of such four marks. It can be observed that 
the separation between best and second-best choice for KS 
and of TR is in the order of 10 and 100, respectively. The 
composite criterion is therefore a separation (i.e., SNR) 
exceeding 102.

The situation on the right of Fig. 6 features the spuri-
ous marks (green) in close proximity of the main trace (in 
red). In this case, the four marks selected for the analysis 
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contain one spurious mark and the results are shown in the 
bottom row of Fig. 7. Both KS and TR exhibit a minimum 
in the unit order of magnitude alongside the composite 
criterion SNR being of unit order. The latter informs that 
the selected set of marks does not belong to a physical 
particle trajectory and the trace should be rejected.

In the latter example, the importance of preselecting the 
sets of marks to form a trace is emphasized. From combi-
natorial analysis, the number of possible permutations of M 
marks by groups of N (M = 7 and N = 4 in Fig. 7) is given by:

(7)P =
(

M

N

)

=
M!

(M − N)!N!

It should be retained in mind that the value of P increases 
very rapidly with M. Thus, any algorithm using this approach 
requires a careful choice of the minimum neighborhood for 
trace evaluation. In the absence of additional criteria that 
limit the selection of the samples, it is therefore necessary 
that the number of marks considered to identify a trace are 
taken in relatively small subgroups by preselection (e.g., 
M < 10 and N < 5). For every candidate trace, the detectabil-
ity criteria need to be evaluated for every permutation of the 
time tag, with a total of K = N ! permutations, as illustrated 
in Fig. 2, with N = 3 and K = 6. Combining both require-
ments returns a total number of evaluations Q that reads as:

Fig. 4   Left: trace detection from uniform circular motion with paths 
of increasing angular range (π  R/4 (a), π  R/2 (b) and π  R (c)). The 
first exposure (origin) is labeled with a square, the actual trajectory 

in solid black line and trace segments with red dashed line. Right: 
inverted residual of KS, TR and composite
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Fig. 5   Trace detection from uniformly decelerated motion (left). Residual (inverted) of kinematic similarity, trace regularity and composite crite-
ria (right). |ΔV/V |= 2% (a) and 20% (b)

Fig. 6   A set of 7 candidate particle samples, of which 4 pertain to a trace (red labels) and 3 are from an incomplete, truncated, trace (green 
labels). Left: distance between traces is sufficiently large to detect the correct trace. Right: interference and spurious trace detection

Fig. 7   Values of inverted KS 
residual (εστ, left), TR residual 
(εα, middle) and their product 
(right) as a function of particle 
permutation within a set. Top 
row corresponds to Fig. 6 left, 
where all selected marks belong 
to a physical trace. The bottom 
row corresponds to Fig. 6 right, 
where marks from a nearby 
spurious trace are included in 
the quartet, failing the trace 
detection
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Due to the associated computational burden, methods that 
reduce the complexity of both the candidate trace selection and 
time-tag permutation are needed to make this approach afford-
able. Some approaches have been explored and their effect on 

(8)Q = PN! =
M!

(M − N)!N!
N! =

M!

(M − N)!

the computational time are discussed in Sect. 6 (Figs. 8, 9, 10, 
11, 12, 13, 14 and 15).

Fig. 8   Flowchart describing the main operations of the trace algorithm. Main blocks highlighted in the lower row

Fig. 9   Left: experimental arrangement and layout of the 3D particle tracking system. Right: time average, velocity color-coded, streamlines pat-
tern in the median plane (tick marks are spaced by 2 cm)

Fig. 10   Images of HFSB tracers from a single (left) and triple exposure recorded from one of the seven cameras. Exposures at τ = {0, 0.33, 1} 
ms
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4 � Numerical algorithm

The above principles are implemented in a numerical pro-
gram, schematically depicted in Fig. 8 and video-illus-
trated with an animation file appended as supplementary 
material. The process considers as input the recording of 
multiply exposed images of particles (box a) such as illus-
trated in Fig. 9 right. Particle image triangulation (e.g., 
IPR, box b) yields 3D particle positions, at unknown 
time instants (box c), of which an example is illustrated 
in Fig. 8. The algorithm interrogates particle exposures 
selecting them one after the other (sequential, box d). A 

search region is chosen around the exposure (box e), based 
either on the maximum expected velocity or a local esti-
mate of the velocity, when available (Fig. 10 right), and 
the total time elapsed between the first and the last pulse. 
The minimum search diameter ds must include the entire 
trace, which turns into the condition that ds ≥ VṪ  . In this 
case, when marks at the edge of a trace are selected, the 
search region does not include the whole trace and the 
search fails. When a mark in the middle of the trace is 
considered, the search region includes the whole trace, 
which may be detected if it obeys the composite detection 
criterion. This is schematically illustrated in Fig. 11 right.

Fig. 11   3D particles positions from the experimental database. Color coded depth position (in mm). Left two time instants separated with 1 ms. 
Right: six time instants with 0.33 ms uniform time separation. Direction of motion is ambiguous, due to the choice of uniform pulse separation

Fig. 12   Particles positions from the experimental database. Color 
coded depth position (in mm). Left: Four-exposure recording with 
irregular (increasing) time separation. Right: zoomed view from the 
shaded square in the left picture Isotropic (circles) and adapted (rec-

tangle) neighborhoods are shown. The green color indicates that all 
exposures from the trace are captured. The red color indicates incom-
plete set of exposures
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Fig. 13   Particle selection and 
trace detection in a sample 
region. Top left: particles and 
velocity vectors from the STB 
analysis. Top right: selected 
particles (denoted by a black 
cross) that do not lead to a 
trace because their neighbor-
hood does not include enough 
samples. Bottom left: when 
a particle’s neighborhood 
contains sufficient samples, the 
set is subject to the composite 
detection criterion. Two traces 
are detected (around the large-
circled particle), of which one 
is erroneous (in red). Bottom 
right: the process advances for 
all the particles. Most errors 
occur in regions of nearly over-
lapping traces

Fig. 14   Left: three-pulse 
sequence temporal template 
and the corresponding trace 
(bottom). Middle: search region 
and neighborhood around the 
selected mark. Right: linear fit 
evaluation of all trace possibili-
ties, with the residuals shown 
in red

Fig. 15   Left: three-pulse 
sequence temporal template 
and the corresponding trace 
(bottom), together with the dis-
placement vector Δx1 and Δx2. 
Right: time-tag permutation list, 
corresponding paths (blue for 
the first displacement and red 
for the second one), direction 
disambiguation and output of 
the detectability criteria for the 
appropriate permutations
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Assuming that M marks fall within the search region 
(box f) around the selected mark, the combinations with 
N-1 candidate marks is considered (each group of N marks 
must include the selected mark too). All combinations of 
M-1 marks by groups of N-1 are considered (box g).

For each combination, all possible time-tag permutations 
are considered (box h, see also Fig. 11 right), over which the 
TD criterion from Eq. 6 is applied (box i). The value of the 
SNR with respect to a chosen threshold value (box j) deter-
mines accepting the set as a trace (box k) or discarding it and 
move back (to box d). The process terminates when all parti-
cle exposures have been considered or assigned. As for many 
interrogation techniques, the method can be imagined with a 
single pass or by multiple iterations, where some parameters 
(search diameter, SNR threshold) are varied along the itera-
tions. For sake of conciseness, variants of the algorithm are 
not discussed here.

5 � Experimental database

Experiments are conducted in the W-tunnel, a low-speed 
open jet facility at the aerodynamics laboratories of the 
Aerospace Engineering Department of TU Delft. A cube 
of side length 12 cm is installed on a flat plate immersed 
in a stream at 10 m/s. A turbulent boundary layer devel-
ops along the plate with approximately 2 cm thickness. The 
cube Reynolds number is Reh = 80,000 where h is the cube 
height. The flow is seeded with helium filled soap bub-
bles (HFSB, neutrally buoyant, 300 μm median diameter) 
released by a 200-generator seeding rake integrated in the 
wind tunnel (Jux et al. 2020). The tracers’ concentration is 
approximately 1 bubble/cm3. The layout of illumination and 
imaging systems is shown in Fig. 10: two LED-Flashlight 
300 arrays from LaVision produce pulsed illumination at a 
rate of 3 kHz. Seven high-speed CMOS cameras (Photron 
FastCam SA-1, 1 Mpx, 5400 fps, 12 bits) capture the light 
scattered by the HFSB tracers. The 7 cameras are distributed 
with their view such to cover the entire object and the flow 
field around it, to study accurate object position registra-
tion (Hendriksen et al. 2024) and its integration within the 
3D particle tracking measurement (Wieneke and Rockstroh 
2024). The whole volumetric dataset encompasses a domain 
of 40 × 40 × 30 cm3. Ground-truth data are obtained mak-
ing use of the Lagrangian Particle Tracking Shake-the-Box 
algorithm (available in the LaVision DaVis 10 software) for 
the full time-resolved sequence. In the above database, the 
particles position is measured every 333 μs and the trajec-
tory tag (also known as track ID) is known from the STB 
algorithm. The particle positions measured every 333 μs are 
under-sampled skipping some pulses, to simulate the asym-
metric sequence of pulses. This approach allows a direct 
comparison of the trace detection algorithm with the ground 

truth provided by the single-exposure, time-resolved analysis 
performed with STB. For the present analysis, a 4-cm-thin 
slab of particles position data is considered and the data 
domain encompasses the (X, Y, Z) range ([–15, 20], [–2, 2], 
[–12, 12]) cm3, respectively.

It is worth mentioning that the current assessment begins 
directly from the particle positions (box c in Fig. 8). This is 
chosen to avoid that the effect of ghost particles and missed 
detections due to particle image overlap play a role in the 
comparison. As a matter of illustration, Fig. 12 compares 
the original (single-exposure) particle image recording (left) 
and that obtained summing up four exposures (right) in a 
sequence of pulses at τ = {0, 0.33, 1.0, 2.0} ms.

As mentioned above, the current analysis is performed 
simulating the ME recordings and analyzing directly the 
reconstructed 3D position of particles. Figure 12 presents 
the 3D particle tracers positions for the case of 2 and 6 expo-
sures recording with uniform time separation, to illustrate 
the problem of directional ambiguity.

6 � Results

In Fig. 11, the example of a four-pulse single-frame record-
ing is shown, according to the time instants sequence τ = {0, 
0.33, 1.0, 2.0} ms. An enlarged view (Fig. 11 right) gives 
details of particles position and their arrangement into traces 
with unique arrangement, similar to the template of light 
pulses. The illustration also shows the example of a few par-
ticles taken for the neighborhood analysis. Clearly a spheri-
cal search region conservatively admits a larger number of 
particles in the set for the analysis. The minimum radius can 
be put to half of the expected traveled distance. As a result, 
only when the particle sample in the middle of the trace is 
considered, the trace can be fully comprised and detected 
(green shaded circle). Instead, when particle samples at the 
edge of the trace are considered, the search will fail (red 
shaded circle). It can be easily seen that any a priori knowl-
edge of the local velocity will significantly reduce the search 
volume and the corresponding number of particle samples 
included in the analysis (green shaded rectangle).

An illustration of the detection process is given in Fig. 13, 
where particles are displayed along the velocity vector (top 
left), as obtained from the time-resolved analysis of STB. 
The velocity vector information, however, is not used in the 
detection process here. When the particle samples at the 
edge of the trace are considered, the search region does not 
include the entire trace and most detections fail (top right). 
For samples inside the trace, depending on the local velocity, 
some sets return a correct trace or a spurious one (bottom 
left). Finally, the particle samples close to the trace midpoint 
mostly include the full set of samples comprised in the trace 
and return a correct measurement (bottom right).
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When the trace rank N is increased, the probability of 
erroneously detection further decreases as a result of the 
increased uniqueness of the sequence. This aspect can be 
regarded as the analogous of increasing the number of par-
ticle tracers in the correlation window for PIV analysis, 
known to increase the SNR of cross-correlation. However, 
adding more pulses to the sequence has two important short-
comings: (1) the overall number of particle images in the 
recording increases and the probability of ghost particles 
with it; and (2) adding pulses and increasing the total time 
of the sequence increase exponentially the computational 
burden associated with a large search region for the trace.

The number of pulses is varied from 3 to 6 adopting a 
simple rule for the time separation, which increases linearly 
between pulses. This is realized by skipping frames from 
the time-resolved sequence. The case with N = 3 considers 
frames 0, 1 and 3. Furthermore, for N = 4, frames 0, 1, 3 
and 6 are considered. The longest sequence (N = 6) has been 
taken with a different rule for the time separation, which 
avoids the excessive length of the trace and at the same time 
gives an indication of the effect of N maintaining the same 
traveled path as for the case N = 5.

The corresponding pulse time and their separation are 
given in the first rows of Table 3. The original single-expo-
sure recordings feature approximately a density of particle 
images of 0.02 particles-per-pixel (ppp). Therefore, the den-
sity of particle images for the ME recordings is obtained 
multiplying the single-exposure value by the number of 
exposures N. The detection criterion (box j in Fig. 8) has 
been set conservatively at SNR > 100. Varying this threshold 
in the range 30 to 300 has shown not to bring considerable 
differences in the results.

The number of detected particles Np in the measurement 
domain is approximately 1360, corresponding to the trajec-
tories identified with STB. When considering multiple expo-
sures, the number of particle samples increases linearly with 

N. The number of traces detected by the current algorithm 
is given as a function of the number of pulses N comprised 
in the sequence. The relative detection rate is defined as the 
number of detected traces compared to those returned by the 
STB algorithm applied to the time-resolved single-exposure 
recordings.

The results indicate that for the minimum trace, com-
posed of three samples, a relatively high rate of detection 
is obtained (81%), with the number of spurious detections 
amounting to 5.6%. Increasing the number of pulses to 4 
yields a significant benefit in terms of reliability, with the 
error rate dropping below 1%. The detection rate, however, 
also reduces to 68%. Further increases in the exposures 
involve more computations. Yet, the detection rate declines 
to a minimum of 60% for N = 6 and a negligible error rate 
(0.1%). The latter effect is ascribed to the hypotheses of 
constant velocity, at the basis of the detection criterion. As 
discussed before, dynamic thresholding and/or multi-pass 
interrogation are expected to solve or mitigate for these 
effects, but their implementation and assessment is consid-
ered beyond the current scope.

7 � Algorithm accelerators

One of the challenges of the proposed methodology is the 
computational burden associated to the combinatorial nature 
of the trace detector. The requirements quickly increase 
when considering more exposures due to the associated 
larger neighborhood search radius, the number of trace can-
didates (Eq. 8) and time-tag permutations.

7.1 � Non‑isotropic search region

An effective technique to mitigate the computational require-
ments is the use of a velocity predictor to adapt the search 

Table 3   Settings of ME 
recording and summary of 
results from the experimental 
database

i Based on estimated ppp = 0.02 from single exposure (Hendriksen et al. 2024)
ii Number of detected particle exposures, based on TR-STB
iii Criterion for erroneous trace ErrU > 0.3 V∞

N 3 4 5 6

Frame index IF
ΔIF

0–1–3
1–2

0–1–3–6
1–2–3

0–1–3–6–10
1–2–3–4

0–1–3–6–7–10
1–2–3–1–3

Time [ms] 0–0.33–1.0 0–0.33–1.0–2.0 0–0.33–1.0–2.0–3.3 0–0.33–1.0–2.0–2.33–3.3
ippp 0.06 0.08 0.1 0.12
iiNp
Ntraces (TR-STB)

4147
1370

5233
1358

6814
1363

8176
1362

Ntraces (ME-PTV) 1144 926 861 826
Detection rate 81% 68% 63% 60%
iiiErroneous 62 27 2 1
Error rate 5.6% 2.9% 0.3% 0.1%
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region around a particle sample, as sketched in Figs. 12, 
14—left: three-pulse sequence temporal template and the 
corresponding trace (bottom); middle: search region and 
neighborhood around the selected mark; right: linear fit 
evaluation of all trace possibilities, with the residuals shown 
in red; and right: where an elongated shape (along the local 
flow direction) may be considered, instead of the isotropic 
search radius. The use of a predictor would require an itera-
tive implementation of the method, which is subject to fur-
ther research.

7.2 � Linear fit pre‑selector

Besides the use of a predictor, two different strategies have 
been explored to reduce the cost of the candidate trace 
selection (box g in Fig. 5) and time-tag permutation (box 
h), respectively. The first approach consists of preselecting 
a particle trace based on their straight alignment, evaluated 
with a least squares linear fit (linear fit pre-selector). Assum-
ing that M marks fall within the search region around the 
selected mark, the combinations with N-1 candidate marks 
are considered. (Each group of N marks includes the selected 
mark.) The set with the lowest residual is considered as 
candidate trace and undergoes the time-tag permutation 
analysis. This simplifies the evaluations of the detectability 
criteria from Q possibilities (Eq. 8) to P evaluations (Eq. 7) 
of the linear fit followed by N ! time-tag permutations. The 
approach is illustrated in Fig. 14 for a three-pulse sequence.

7.3 � Direction regularity

A lighter and computationally less intensive version of the 
TR criterion is based on the principle that a particle does 
not invert the direction of motion within the trace. Once a 
candidate trace has been selected, the time-tag permutation 
analysis (blok h) can be simplified by restricting the search 
only to those combinations where the velocity direction 
between subsequent illuminations does not vary beyond 90 
degrees. The latter is considered a conservative criterion, 
considering that for most cases, a spurious time-tag per-
mutation results in displacement reversal along the trace. 
The operation is computationally efficient, considering that 
the trajectory has been approximated as rectilinear and the 
criterion is coded as sign reversal detection (dot product of 

subsequent displacement vectors, Fig. 15). The result yields 
only two possible permutations (instead of N !). The two 
candidates are then inquired with the composite detection 
criterion, as illustrated in the last column of Fig. 15, for a 
three-pulse sequence.

7.4 � Computational effort

The effect of the above accelerators in terms of compu-
tational effort is summarized in Table 4, by comparing 
the CPU time required to evaluate the recordings. The 
analysis compares the trace detection criterion with and 
without the linear fit pre-selector followed by the direc-
tion regularity. All computations have been performed in 
a workstation equipped with an Intel Xeon W-2223 CPU 
running a MATLAB script (without parallelization of the 
computation). A simplified version of the script and a sam-
ple of the data used for the present study are provided as 
supplementary material.

The results indicate rapidly increasing computational 
burden with trace length/rank when the evaluation makes 
no use of accelerators. The linear fit pre-selector provides 
already a strong reduction of the number of combinations, 
resulting in a substantial reduction of the computational 
effort for the longer traces. Finally, the one-directional 
time tag brings a modest reduction of computational effort, 
yet appreciable for the longer sequences. It must be noted 
that the additional restrictions posed by the accelerators 
(straight trajectory, no direction reversal) may not hold 
true in highly turbulent regions, where the tracers follow 
highly curved trajectories. This may increase the occur-
rence of false negatives (missed detections) of such tra-
jectories. Still, the accelerators represent a powerful tool 
to produce a first estimate of the velocity field, for use as 
a predictor in an iterative algorithm.

8 � Potential and bottlenecks of ME‑PTV

Several aspects deserve attention for the further pursuit of 
this technique. The main positive points are that the use of 
traces from ME recordings significantly lowers hardware 
requirements: The ME-PTV does not require high-speed 
imagers, neither short interframe separation time. It is there-
fore expected that experiments can be conducted using ordi-
nary single-frame monochrome cameras.

A second positive aspect is the reduction of data storage, 
as the velocity measurement is based on a single image. 
Furthermore, the free choice of the number of exposures N 
also allows to tune the information density on each image.

Finally, when compared with double frame single 
exposure, traces of 3 or more exposures offer a higher 

Table 4   CPU time required for trace detection of one recording from 
the experimental database

N 3 ( s) 4( s) 5 6

TD (no accelerators) 0.3 3 14 h  > 1 day
Linear fit pre-selector 0.3 1 1 min 15 min
Linear fit + directional regularity 0.2 0.5 20 s 3 min
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measurement dynamic range (Novara et al. 2023), which 
compares to state-of-the-art techniques based on time-
resolved single-exposure recordings (e.g., STB).

Among the most problematic aspects of this technique is 
that of particle images overlapping in regions with declining 
velocity. The current technique fails to detect traces under 
such conditions, and additional criteria will be needed for 
the treatment of low-to-zero velocity conditions. A second 
point of attention is the limit of seeding concentration: The 
ME recording multiplies the number of particle images in 
a single recording, and as such, it aggravates the problem 
of ghost particles formation. This aspect can be mitigated 
with the use of a multitude of cameras (e.g., Ncam > 10) such 
as practiced in studies that require redundancy of imaging 
directions.

9 � Conclusions

A novel measurement approach is proposed, to analyze 
the 3D motion of particle tracers, based on multi-exposed 
recordings (ME-PTV). Irregular timing of illumination pro-
duces unique patterns, or traces from particle images, with 
a specific, asymmetric pattern. The latter is easy to recog-
nize and solves for the well-known problem of directional 
ambiguity hampering single-frame recording techniques. 
The detection of a trace from a group of particle samples 
is based on kinematic similarity (KS) and reinforced with a 
trace regularity (TR) criterion that penalizes particle accel-
eration. Altogether these two criteria allow identifying traces 
from clusters of 3D particle samples. A signal-to-noise 
ratio (SNR) is introduced, which implements the criterion 
for trace detection. The latter yields relatively high values 
(10–100) for traces where the velocity varies within 20% of 
the mean value.

The assessment based on an experimental database shows 
a maximum detection rate above 80% for the lowest number 
of exposures (N = 3), declining to approximately 60% for 
N = 6. Conversely, the error rate decreases from 6 to 0.1%, 
respectively, with more than 90% of the detected traces 
exhibiting SNR > 100, indicating the robustness of the com-
posite detection criterion.

The computational effort limits the sequence length due 
to the combinatorial approach to trace detection. It is con-
cluded that traces with 3 to 4 pulses guarantee a high detec-
tion rate and error probability in the order of 1%. Finally, 
the lower limit of measurable velocity is hampered by 

overlapping particle images, which solution is left open to 
further research.
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