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Human decision-making at roundabouts: The role of
gaze movements, velocity and distance to gap in gap

acceptance
Mohamed Elsayed

Department of Cognitive Robotics, Delft University of Technology, Faculty of ME

Abstract—Understanding how human drivers interact in dynamic traffic situations is a crucial step toward the safe and seamless
integration of automated vehicles (AVs) into everyday traffic. A common setting for these interactions is the four way single-lane
roundabout. Here, drivers must make quick decisions about who yields and who proceeds, based not just on traffic rules but also on
subtle cues and shared expectations. These decisions rely heavily on gap acceptance, where each driver evaluates whether there is
enough space and time to enter the roundabout safely. It often depends on mutual negotiation and split-second judgments, shaped by
visual contact and behavioral feedback. While earlier studies have explored driver gaze behavior in controlled environments, little is
known about how gaze correlates with decision-making in continuous and mutual encounters, especially at roundabouts. This study
fills that gap by studying human-human interactions during roundabout entry in a novel experimental setup. Using a coupled virtual
reality driving simulator, two participants navigated a single-lane roundabout under varying approach speeds and distances.
Eye-tracking was used to measure where and how long each driver fixated at the other vehicle. Control input data captured how drivers
reacted in the seconds following these gaze events. The results show that both entry distance and speed had a strong influence on
who proceeded first. Drivers who started closer to the roundabout or moved faster were more likely to take priority. Drivers positioned
closer to the conflict zone looked at the other vehicle for longer durations, indicating stronger visual engagement. Furthermore, drivers
often responded with throttle or brake inputs shortly after looking at the other vehicle, especially when distance to the roundabout was
small. This study offers insight into how gaze behavior, positioning and control decisions shape mutual negotiation at roundabouts.
These findings move beyond the idea of gap acceptance as a one-sided decision and highlight the importance of real-time interaction.

Index Terms— Roundabout, Human-Human interaction, Decision-making, Driving simulator, Coupled simulator

✦

1 INTRODUCTION

The rise of automation and intelligent systems has started to
transform the way transportation systems are designed and
used. In recent years, technological advances in automated
vehicles (AVs) have opened new possibilities for reshaping
how we move, with the potential to make transportation
safer, more efficient and accessible to a broader range of
users [1–4]. Governments and industry leaders increasingly
view AVs as a key solution to long-standing and future
transportation challenges [5]. Although early advances sug-
gest that AVs could improve road safety by reducing human
error, it is not yet clear to what extent they can eliminate
traffic risks [6]. Human error is frequently cited as the
primary factor in up to 94 percent of traffic accidents [7].
But this statistic oversimplifies the complexity of driver
behavior [7, 8]. Many accidents attributed to human error
do not result solely from impaired driving. They also stem
from factors such as driver inattention, limited situational
awareness or errors in judgment that automated vehicles
may also fail to resolve [9]. To successfully integrate AVs
into existing traffic systems, it is essential to gain a deeper
understanding of human driving behavior. Since AVs must
operate alongside human drivers, this requires the ability
to interpret and anticipate human decisions in dynamic
situations such as unprotected left turns, lane merges and
entries into roundabouts [10]. This understanding also plays
a key role in addressing ongoing concerns about AV safety

[11, 12].
While AV technology continues to evolve, roundabouts

have long played a central role in road design and have seen
wider implementation in recent years as a proven method
to improve traffic flow and safety [13, 14]. This effectiveness
results from their ability to reduce vehicle delays and force
drivers to lower their speed when approaching the intersec-
tion. These effects lead to measurable safety improvements.
Compared to traditional intersections, roundabouts reduce
injury-related crashes by 72 to 80 percent and lower total
crash numbers by 35 to 47 percent [15, 16]. As both AV
technology and roundabout use grow, their successful in-
tegration into existing infrastructure remains necessary to
fully realize their benefits and to build public confidence in
their implementation [17, 18].

In roundabout maneuvering, gap acceptance is a critical
decision-making process where drivers must judge whether
traffic gaps are sufficient for safe entry. Traditional studies
often treat gap acceptance decisions as instantaneous, which
overlooks their complex and time-dependent nature [19, 20].
In practice, drivers base their judgments on a combination
of factors such as relative speed, approach distance and the
actions of other road users [21]. Importantly, gap acceptance
is not the result of an isolated judgment by a single driver
but results from the interaction between at least two road
users, each influencing the other’s decision through their
actions and responses. These interactions depend on con-
tinuous mutual awareness. This dynamic process reflects
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the broader nature of traffic interactions, which evolve
constantly in response to cues [22]. These cues can include
both explicit forms of communication such as indicators,
vehicle speed and trajectory and implicit ones such as gaze
direction, head movements and subtle vehicle positioning
[23, 24].

Despite the central role of communication in driver
interactions, existing research often treats decision-making
as a one-sided process and gives limited attention to the
communicative cues that guide mutual behavior. This nar-
row focus restricts our understanding of the complexity
involved in real-world human-human interactions, partic-
ularly in scenarios like roundabouts [25]. While direct com-
munication between drivers at a roundabout is limited,
much of the interaction depends on how drivers interpret
the movements and positioning of surrounding vehicles. In
this context, gaze behavior offers valuable insight into how
drivers gather information, track other vehicles and make
split-second decisions based on their perception of the traffic
environment [26].

Previous studies has examined how factors such as
speed and environment influence gaze allocation and driver
attention [27, 28], as well as the duration and timing of
fixations during specific driving tasks [29, 30]. Additional
work has explored traffic flow, safety and driving comfort
of automated vehicles at roundabouts [31], but no studies
have investigated how gaze behavior and mutual driver
interaction occur within this specific context. Research that
considers how drivers influence one another in shared traffic
situations remains limited, partly because these interactions
are difficult to study and safely reproduce in real-world
conditions. A study by Scarí et al. [32] tried to overcome
this limitation by using a coupled driving simulator to
examine mutual driver behavior and driver workload, but
this work focused solely on highway merging. Although
existing studies provide valuable insights into driver gaze
behavior [33], little attention has been given to its role
in roundabout scenarios that involve multiple interacting
drivers. Addressing this gap is essential for developing
more accurate and realistic models that better reflect real-
world traffic dynamics. These improvements can ultimately
support the integration and acceptance of AVs in mixed
traffic environments such as roundabouts [10, 12].
To address the gap identified in the research, this study
investigates the following main research question:

How does driver gaze behavior correlate with mutual decision-
making and driver control during gap acceptance at roundabouts?

To explore this question comprehensively, this study an-
alyzes how human drivers make gap acceptance decisions
at roundabouts by examining the role of gaze behavior in
mutual interactions. It considers the influence of head and
eye movements, the effects of varying approach speeds and
distances to the yield line and how driver control inputs
change following gaze fixations on other vehicles. Further-
more, the study investigates the following sub-questions:

1) How do variations in entry speed and approach
distance influence driver gap acceptance behavior?

2) How does the frequency and duration of fixations
on other vehicles vary with entry speed and ap-
proach distance?

3) What is the relationship between gaze data and
a driver’s decision to accept or reject a gap at a
roundabout?

4) How does driver control change after a fixation on
another vehicle?

To answer these research questions, we conducted a con-
trolled human-human interaction experiment in a coupled
Virtual Reality (VR) environment. This setup allowed two
participants to interact with each other in simulated driving
scenarios, which provides detailed insights into how drivers
assess gaps, interact with each other and decide whether to
yield or proceed at roundabouts.

2 METHOD
2.1 Sample characteristics
Approval for this study was granted by the Human Re-
search Ethics Committee of Delft University of Technology.
A total of ten healthy adult participants (Mean = 23.6 years,
SD = 3.0 years) took part in the study, divided into pairs over
five sessions. Each session involved a randomly assigned
pair of participants. The pairs did not know each other
before the experiment, which minimized potential biases
due to familiarity. The group consisted of six males and
four females. All participants held a valid Dutch driver’s
license, with an average driving experience of 4.5 years
(SD = 2.5 years). Prospective participants were screened for
eligibility based on their susceptibility to motion sickness.
Participants reporting susceptibility to motion sickness did
not participate in the study. After meeting the criteria,
participants received a detailed consent form and provided
informed consent before participation. Most participants
were students or researchers affiliated with TU Delft.

2.2 Experimental design
To gather experimental data, a controlled human-human
experiment was conducted using a VR environment, see
Figure 1 for a detailed top-down overview and explana-
tion of the map. Participants were explicitly instructed to
drive according to their typical driving behavior during
roundabout maneuvers and informed that their interaction
would occur solely with their assigned partner. Participants
could not see each other until reaching a specific point
near the roundabout. Participants were also prohibited from
communicating verbally during the trials. To enforce this
restriction, participants wore noise-cancelling headphones
throughout the experiment.

Before starting the actual experiment, participants per-
formed several practice trials to familiarize themselves with
the vehicle dynamics, the experimental setup and the vir-
tual environment. These practice trials featured slightly
varied and randomized conditions compared to the actual
experiment to account for potential learning effects and to
minimize the influence of uncontrolled variables.

The experiment featured a first-person perspective
within a virtual vehicle, see Figure 2. This was done to
provide participants with the immersive feeling of being
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Figure 1: Top-down view of the single-lane, four-way roundabout map. The Figure illustrates the red vehicle approaching from Road A (the south
road) and the blue vehicle from Road B (the west road). A wall positioned next to Road B restricts the visibility of both drivers towards each other.
This wall simulates a realistic scenario where drivers can see each other only when approaching the roundabout. The interaction zone is defined
as the area within the roundabout, behind the yield lines. The conflict zone is the specific area immediately after the yield line of Road A. The
dimensions of the conflict zone are 10 m in width and 5 m in length. This location determines which vehicle enters first, concluding the interaction
between drivers.

inside an actual vehicle. The virtual environment was de-
signed as a single-lane, four-way roundabout. Each trial
began from one of two predetermined entry roads. The
two entry roads were from the south and west. In Figure
1 the roads are illustrated as Road A and Road B. The
trials were randomized as part of the experimental design.
Participants received instructions to always take the second
exit, as illustrated in Figure 1, where the second exit is
marked with an X corresponding to the color of each car.
This procedure aimed to reduce motion sickness potentially
caused by excessive turns.

Figure 2: A first-person perspective from within the virtual vehicle used
during the experiment. In this Figure, the driver, coming from Road A,
whose point of view is depicted is yielding at the roundabout to the
other driver who is circulating within it.

Initially, participants controlled only the steering of their
vehicle on the straight roadway segment leading up to the
roundabout, with the vehicles operating under cruise con-

trol. At a specific moment (see Section 2.4) before reaching
the roundabout, both participants received simultaneous
an auditory cue. This cue signals the transition to full
manual control. This includes throttle, brake and steering.
Participants then approached and navigated the roundabout
using full manual control. Participants were able to see their
velocity in front of them on the car dashboard. Each trial
ended when one participant reached a predetermined dis-
tance beyond the roundabout. After each trial, participants
re-initialized at the designated starting location for the next
trial.

Each trial involved three controlled variables: the ap-
proach distance, the approach velocity to the yield line
at the roundabout as well as the designated road. These
variables resulted in a fully factorial 2 x 2 x 2 design, cre-
ating 8 unique experimental conditions. Trials were evenly
distributed across four sessions, each consisting of 20 trials.
Each session lasted approximately 10 minutes and included
a 5-minute break between sessions to allow participants
time to recover and reduce fatigue and potential motion
sickness.

2.3 Setup
The experiment was conducted in a driving simulator at
the Cognitive Robotics Department of Delft University of
Technology. Participants controlled the virtual vehicle using
a Logitech G923 TRUEFORCE sim racing wheel and pedals.
To provide an immersive, high-resolution visual environ-
ment and advanced eye-tracking capabilities, a Varjo VR3
VR headset was employed. The virtual driving environment
was created using Unreal Engine 4.26 in combination with
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CARLA 0.9.13, an open-source autonomous driving simu-
lation platform [34]. The environment map was designed
using Mathworks RoadRunner 2024 [35] and subsequently
imported into CARLA. Data recording and experiment man-
agement were handled through JOAN [36], an open-source
software framework that captures experimental data at a
sampling rate of 100 Hz. Figure 4 illustrates the complete
experimental setup.

2.4 Experimental conditions

Two drivers simultaneously approached the roundabout
from two different directions. Driver 1 approached from
Road A and driver 2 approached from Road B, see Figure
1 as an example of the first condition. Both drivers started
from a stationary position, accelerated and continued
under cruise control until one of the participants reached a
predefined distance of 50 meters from their initial starting
point. The driver who reached this reference point first
was always the one traveling at a higher initial velocity.
The other driver reached a distance of 40 meters. At this
moment, both drivers simultaneously gained full control
of their vehicles. Steering inputs, braking and acceleration
were then permitted. During the experiment, participants
were instructed to drive around 25 km/h when navigating
the roundabout, to combat motion sickness when turning.

The initial conditions for each trial included two
controlled variables: the drivers’ starting positions (distance
to the yield line) and the vehicle speed upon reaching the
reference point. Drivers began either at 85 meters or 72
meters from their respective yield lines, creating a spatial
offset of either +6 meters (back) or -6 meters (front) from
the reference point at 78.5 meters. Additionally, vehicle
speeds were adjusted relative to a baseline of 40 km/h,
resulting in one driver traveling at 44 km/h (+4 km/h, fast)
and the other at 36 km/h (-4 km/h, slow). These initial
conditions were defined through trial and error to ensure
that approximately half of the scenarios led to a challenging
interaction, where it was not clear who would go first. The
other half formed less ambiguous situations that acted as
control conditions. This approach produced a mix of cases:
in some, it was clear which driver had priority; in others,
the outcome depended on the actions and interactions of
the drivers.

This resulted in the two experimental manipulations to
be defined as:

1) Spatial Offset ( 12∆d): adjusted by either −6 meters
(front) or +6 meters (back), resulting in either a
decreased or increased gap.

2) Velocity Offset ( 12∆v): adjusted by either −4 km/h
(slow) or +4 km/h (fast), resulting in velocities of
36 km/h or 44 km/h.

The drivers always experienced opposite conditions.
When one driver started closer to the yield line (front),
the other started further away (back). Similarly, when one
driver approached at a higher velocity (fast), the other
approached at a lower velocity (slow). Table 1 summarizes
these experimental conditions.

Table 1: Conditions from the perspective of both drivers. The conditions
for both drivers are always flipped. 4 conditions × 2 configurations due
to road switching

Condition Driver Road A Driver Road B

c1 −6m, −4 km/h +6m, +4km/h
c2 −6m, +4km/h +6m, −4 km/h
c3 +6m, −4 km/h −6m, +4km/h
c4 +6m, +4km/h −6m, −4 km/h

Figure 3 illustrates a top-down view of the different
configurations during the experiment and the end goal of
the drivers.

Figure 3: Top-down view of the experimental conditions. Each driver
experienced opposite conditions. Drivers started at either position d1 or
d2 and approached with velocities v1 or v2, representing two distance
and two velocity settings

In total, the experimental design consisted of 8 unique ex-
perimental conditions (4 conditions × 2 configurations due
to road switching). Each condition was repeated 10 times in
randomized order, resulting in 80 trials per participant and
a total of recorded 800 trials across all five experiments (80
trials × 5 experiments × 2 participants per trial). The Latin
Square method was employed throughout the experiment to
ensure balanced representation and controlled experimental
conditions. For clarity and readability, in the remainder of
this paper, we refer to -6 m as front, +6 m as back, -4 km/h
as slow and +4 km/h as fast.

2.5 Exclusion criteria
Trials that involved collisions (n = 8, representing 1% of
the total data) were excluded from the analysis. This de-
cision was made because the research specifically focused
on successful driver interactions at roundabouts. Collisions
represented fundamental breakdowns in interaction and
provided limited insights into typical driver behavior.

Additionally, data analysis was limited to the period
between the moment participants gained vehicle control and
the entry of one driver into the conflict zone. After this point,
the interaction outcome became clear and thus offered no
further insight into mutual driver reactions or gaze patterns.



5

Figure 4: Experimental setup depicting two participants seated facing opposite directions, separated by curtains to prevent visual contact. Each
participant had access to a steering wheel and gas and brake pedals positioned directly in front of them. Participants wore Varjo Base headsets
and noise-cancelling headphones throughout the experiment. Both participants’ views were continuously monitored through separate displays to
ensure proper system functioning and participant compliance.

2.6 Data collection

2.6.1 Vehicle data
Vehicle data were recorded using JOAN at a sampling
frequency of 100 Hz. The collected data included times-
tamps and driver inputs such as steering angle, throttle and
brake. Additionally, vehicle-specific data was recorded. This
includes velocity and acceleration in both vehicle and world
reference frames, along with positional coordinates (X, Y, Z)
and rotational angles (Yaw, Pitch, Roll) for each vehicle.

2.6.2 Gaze data
Eye-tracking data were recorded using the Varjo Base head-
set at a sampling frequency of 100 Hz. The collected data
included timestamps, head rotation angles and gaze posi-
tions. The head rotation angles were provided in degrees,
where positive values corresponded to rightward head
movements. Gaze data were recorded initially as positional
coordinates (X, Y, Z) and subsequently transformed into
gaze angles to represent the driver’s left and right visual
orientation.

2.6.3 Data synchronization
Vehicle data from JOAN and the gaze data from the Varjo
Base headset were collected at an frequency of 100 Hz.
JOAN recorded each trial separately, with timestamps initi-
ated at the start of each trial. In contrast, the Varjo Base head-
set recorded continuous data for each session of 20 trials,
with a timestamp initiated at the start of the initialization
script. A post-processing script matched and synchronized

JOAN trial data to the corresponding Varjo data based on
timestamps. Rows without corresponding data from both
JOAN and Varjo were removed. After synchronization, data
from all four sessions were combined into a single dataset
per participant. This synchronization process was repeated
separately for each participant, resulting in two synchro-
nized datasets per participant pair.

2.7 Gaze data validation
This study aimed to determine when a driver’s fixation was
directed precisely toward the other vehicle. This information
reveals the frequency and duration of fixations while drivers
approached and navigated the roundabout. To accurately
measure this behavior, two criteria were defined:

1) Visibility Criterion: To prevent drivers from view-
ing each other prematurely, a static wall was posi-
tioned next to the road, as illustrated in Figure 1.
Due to the static nature of this barrier, the moment
the drivers could see each other could analytically
be determined through two calculations. First, the
relative angle between the two vehicles was com-
puted. Then, the relative angle from the vehicle on
Road A to the outer edge of the wall was calculated.
Drivers could see each other once the vehicle-to-
wall angle was equal to or greater than the vehicle-
to-vehicle relative angle. An assumption made here
is that both drivers can see each other at the same
time. In reality, a small time difference may exist,
but this was considered negligible.
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2) Gaze Angle Criterion: To analyze driver gaze be-
havior, both the central gaze, which includes head
rotation and eye movement and the peripheral vi-
sion that contributes to situational awareness were
considered. Drivers rely on foveal vision for sharp
focus and peripheral vision to detect environmen-
tal changes [37]. However, identifying whether a
driver’s gaze was precisely focused on the other
vehicle required accounting for the size of the ob-
ject within the driver’s foveal vision, which varied
based on distance. Specifically, objects farther away
occupied smaller gaze angles, while closer objects
occupied larger gaze angles.

To determine if a driver’s gaze was precisely focused on the
other vehicle, the effective gaze angle was calculated as:

Geffective = H + E + 2θ (1)

where:

• H = Head rotation angle (degrees)
• E = Eye rotation angle (degrees)
• θ = Angular range (degrees, per side)

To calculate the angular range within which the other
vehicle falls into a driver’s effective gaze, the following
formula was used:

θ = 2× arctan

(
s

2× d

)
(2)

where:

• θ = Angular range of the driver’s effective gaze
(degrees)

• s = Width of the car (meters)
• d = Euclidean distance between the two vehicles

(meters)

This calculation was performed continuously from the
moment drivers first became visible to each other until one
vehicle entered the conflict zone. The angular range is thus
dynamically scaled with distance. This enables a precise
determination of when a driver was precisely fixating on
the other vehicle. This calculated angular range constituted
the driver’s effective gaze. Figure 5 illustrates the definitions
of head rotation angle, eye rotation angle and the angular
range corresponding to the effective gaze.

2.8 Metrics

Four primary metrics were defined to quantify driver inter-
actions during the experiment:

1) The order in which the drivers entered the conflict
zone (see Figure 1) was used to determine which
driver went first and which one yielded.

2) The number of fixations each driver made toward
the other vehicle.

3) The total fixation duration each driver directed to-
ward the other vehicle throughout each trial.

4) The control input by each driver. This includes using
the throttle, brake or not giving any input.

Figure 5: The figure illustrates the components that constitute the
effective gaze angle. The eye angle is marked in green and the head
angle in dark blue. The combined head and eye angle is represented
in red. The angular range is displayed on both sides in coral. Together,
these three components form the effective gaze angle of a driver. The
illustration is adapted from Scarí et al. [32] and adjusted accordingly.

2.9 Fixation count and duration extraction

For every trial, we collected the fixation counts and total
fixation time. Figure 6 shows an example of the processed
data. The explanation refers only to the upper part of the
figure, since the same logic applies to the lower part as
well. The relative angle between the vehicles on Road A
and Road B is shown as a blue line. The raw head and
eye gaze data were combined and smoothed to produce
a continuous combined gaze angle. The range around the
combined gaze angle, representing the functional field of
view, varied in size. This variation followed the method de-
scribed in Section 2.7 under the second criterion. The black
dashed line marks the moment when both drivers received
manual control of their vehicles. This occurred when one of
the drivers, always the one with the higher velocity, reached
a distance of 50 meters. The orange line indicates when both
drivers could see each other. This moment depended on the
experimental conditions and followed the visibility criterion
in Section 2.7. The grey dashed line shows when one of the
participants entered the conflict zone.
All event markers were added to the plot. Between the
orange and grey lines, the functional field of view is scaled
dynamically based on the distance between the vehicles. In
Figure 6, the range is small at the beginning and increases
rapidly. Fixation intervals were determined by identifying
times when the relative angle between the vehicles fell
within the scaled range. A dot marks the start of each
fixation and a cross marks the end. The script counted the
number of fixations and calculated their total duration. Both
values are shown in the figure. The durations of individual
fixations were also saved but are not shown in the plot.
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Figure 6: Combined gaze angle and relative angle between the vehicles over time. The red line shows the combined gaze angle, while the shaded
red area indicates the functional field of view (effective gaze). The driver in the upper part of the figure, approaching from Road B, is looking to
the right, which corresponds to a positive gaze angle. The driver in the lower part of the figure, approaching from Road A, is looking to the left.
To facilitate comparison, negative combined gaze values were converted to absolute values. The blue line represents the relative angle between
the vehicles from roads A and B, which was also converted to an absolute value. Vertical dashed lines indicate key events: the moment drivers
gained control of the vehicles (black), the point at which they became visible to each other (orange) and the moment the first driver entered the
conflict zone (grey). Fixation intervals were defined based on the overlap between the relative angle and the functional field of view. In this figure,
two fixations were identified for the driver on Road B, marked by black circles (start) and black crosses (end). One fixation was identified for the
driver approaching from Road A. The data shown correspond to trial 121 which corresponds to the third condition, see Table 1

2.10 Control input extraction

The control input data used in this study , which includes
only braking and accelerating, follows from the fixation data
extracted as described in Section 2.9. The recorded fixation
time served as the basis for identifying the relevant control

input from each driver. The first point of extraction corre-
sponded to the start of the fixation. The second point repre-
sented the driver’s reaction time to the observed stimulus.
This study assumes a reaction time of 0.75 seconds, based on
values reported in [38, 39], which identified reaction times
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Figure 7: This figure shows driver 1’s pedal inputs (brake in blue, throttle in orange) from one second before the start of the fixation at 7.34s
until two seconds afterward. The red dashed line marks the start of the fixation, the purple dashed line indicates 0.75s later when the driver first
applies a control input as a result of the fixation and the green dashed line indicates an additional 0.75s later. The throttle rises from 0.06 at the
start of the fixation to 0.70 at 8.09s and then to 0.98 at 8.84s, while the brake remains at 0.0 throughout this interval. This control input corresponds
to the first fixation shown in Figure 6 for driver 1.

of 0.732 and 0.77 seconds respectively for attentive drivers.
The average of these values was adopted for consistency.
The final point was recorded 0.75 seconds after the first
control input. These three key time points were extracted
to compare the driver’s control actions before and after
fixation. An example of the extracted control input is shown
in Figure 7.

2.11 Statistical analysis
We conducted statistical analyses using mixed-effects
regression models to account for the repeated measures
structure of the data. To model the binary outcome of which
driver entered the conflict zone first, we employed logistic
regression with a Bernoulli family using Bambi [40]. The
fixed effects included spatial offset (∆d), speed offset (∆v)
and road. The road variable was included to account for
potential asymmetries in driver behavior between Road A
and Road B. We also incorporated random intercepts
and slopes per participant, which allowed the model to
capture individual variability in baseline decisions and
sensitivity to spatial and velocity changes. Including these
random effects improved the model fit by accounting for
dependencies among repeated observations per participant.
The z-values and associated p-values were derived from
posterior distributions.

To analyze the number of fixations drivers made toward
the other vehicle, we applied a linear mixed-effects model
with statsmodels [41]. Spatial offset (∆d), speed offset
(∆v), road and whether the driver went first were treated
as fixed effects. A random intercept for each participant
was included to control for individual differences in gaze
behavior across trials. We used a similar linear mixed-
effects approach to model the total fixation duration and
employed an identical structure of fixed and random effects.

For the control inputs, histograms were generated
and transformed into probability densities to display the

distribution of the inputs made by the driver following
the fixations. This was done separately for different but
equal distances from the conflict zone. These histograms
provided a visual representation of the drivers’ control
actions, allowing us to compare how control inputs vary
relative to spatial proximity to the conflict zone.

We summarized the results by calculating coefficient
estimates, standard errors, z-values and p-values. The sig-
nificance level was set at p < 0.05.

3 RESULTS
This chapter shows the results of driver behavior at the
roundabout. It includes which driver passed first through
the conflict zone, the number of fixations, total fixation time
and control inputs by the drivers. The outcomes for driver
priority are shown separately for Road A and Road B. The
number of fixations and their duration were extracted as
shown in Section 2.7. Control inputs were used to assess
how drivers changed their behavior after fixating towards
the other vehicle. Eight trials were excluded due to colli-
sions. These represented about 1% of the data.

3.1 Driver priority at the conflict zone

A total of 392 trials were included in the analysis. The
probability that a driver proceeded first through the conflict
zone was influenced by both spatial and velocity offsets.
Figure 8 illustrates how changes in initial distance ( 12∆d)
and speed ( 12∆v) affected yielding behavior. Drivers with
an initial speed advantage were more likely to proceed
first, particularly when also positioned closer to the conflict
zone. This pattern held for drivers on both Road A and
Road B. For example, when the driver on Road A had both
spatial and velocity advantage, the probability of going first
reached 0.90. However, when both factors were unfavorable,
the probability dropped to 0.08.
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Figure 8: Effect of 1
2
∆d and 1

2
∆v on yielding behavior. The left plot shows the probability of the driver on Road A going first. The right plot

shows the probability of the driver on Road B going first. Red squares indicate the condition with increased velocity ( 1
2
∆v = +4 km/h) and blue

triangles indicate the condition with decreased velocity ( 1
2
∆v = −4 km/h).

These patterns are statistically supported by the logistic
mixed-effects model shown in Table 2. Spatial offset had a
strong negative effect on the likelihood of proceeding first
(z = −8.143, p < 0.001), with a 95% confidence interval of
[−0.141, −0.087]. Velocity offset had a significant positive
effect (z = 3.846, p < 0.001), with a 95% confidence interval
of [0.049, 0.151]. These findings confirm that both proximity
and speed advantage significantly increase the probability
of a driver taking priority at the roundabout.

Table 2: Results of the Logistic Mixed-Effects Model Predicting Driver
Priority at the Conflict Zone. The Model Included Spatial Offset,
Velocity Offset and Road As Fixed Effects, with Random Slopes per
Participant for Spatial and Velocity Offsets.

Variable Estimate Std. Error z-value p-value

Intercept 0.148 0.123 1.203 0.229
∆d -0.114 0.014 -8.143 < 0.001
∆v 0.100 0.026 3.846 < 0.001
Road B -0.297 0.154 -1.929 0.0538

3.2 Fixation count and duration

Across both roads, drivers who went first and those who
yielded showed similar numbers of fixations. Figure 9
presents the total number of fixations per trial, separated
by whether the driver proceeded first and by road. Median
values and interquartile ranges are comparable across all
conditions. While outliers are present, they are distributed
relatively evenly. The data includes all recorded trials from
all participants.

In contrast, total fixation time showed more visible varia-
tion across conditions. Drivers who yielded tended to spend
slightly more time fixating on the other vehicle, although
variation remained high across both roads. These differences
are illustrated in Figure 10, where individual data points
highlight the spread within each group. The distributions
reflect all participants and trials, grouped by road and driver
priority.

Figure 9: Number of fixations per road, separated by whether the driver
went first through the conflict zone. Green bars represent trials in which
the driver went first and red bars represent trials in which the driver
yielded. The dashed black lines indicate the mean number of fixations.

Figure 10: Total fixation time per road, separated by whether the driver
went first through the conflict zone. Green bars represent trials in which
the driver went first and red bars represent trials in which the driver
yielded. Individual data points for each trial are shown and the dashed
black lines indicate the mean fixation time.

Fixation behavior did not significantly predict which
driver proceeded first. In the model predicting the number
of fixations, the variable indicating who went first was not
a significant predictor (p = 0.685). Similarly, in the model
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Figure 11: Total fixation time for Road A, grouped by condition and whether the driver went first.

Figure 12: Total fixation time for Road B, grouped by condition and whether the driver went first.

predicting total fixation time, going first did not have a
significant effect either (p = 0.941). These findings indicate
that, within the context of this experiment, gaze behavior
measured by fixation count and total fixation duration did
not meaningfully differentiate between drivers who yielded
and those who proceeded through the roundabout first.

To further explore these results, Figures 11 and 12 break
down total fixation time by condition, driver priority and
road. These plots focus on combinations of spatial and ve-
locity advantage or disadvantage. Across both Road A and
Road B, slower drivers with a spatial disadvantage often
fixated for longer durations, especially when they yielded.
These patterns extend the general findings by highlighting
how initial conditions shaped visual behavior.

These patterns are supported by the linear mixed-effects
models. Table 3 shows that spatial offset had a signifi-

cant negative effect on total fixation time (z = −2.304,
p = 0.0212), suggesting that drivers positioned further from
the intersection fixated for shorter periods. Neither road
identity nor velocity offset significantly influenced fixation
duration.

In contrast, fixation count showed no significant dif-
ferences across conditions. Table 4 confirms that neither
road identity nor velocity offset significantly predicted the
number of fixations. Spatial offset showed a marginal effect
(z = −1.947, p = 0.0515), but did not meet the threshold
for significance.

Figures illustrating fixation count for condition, compa-
rable to the fixation time plots shown in Figures 11 and 12,
are included in Appendix 4.8. Since no significant effects
were found for fixation count, these additional visualiza-
tions support transparency but are not central to the main
findings.
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Figure 13: Average input of driver pedal input for drivers on Road B who proceeded first through the conflict zone. The left panel shows control
input 0.75 seconds after the onset of the fixation; the right panel shows input after 1.50 seconds. Pedal input values range from full brake (left) to
full throttle (right), with “No Input” at the center. Each line represents a spatial bin based on the driver’s distance to the conflict zone at the time
of fixation: 0–15 m (blue), 15–30 m (orange) and 30–45 m (green). The y-axis indicates the average driver input, estimated across all drivers and
fixations in each condition. A larger version of this figure can be found in Appendix 4.8

Table 3: Results of the Linear Mixed-Effects Model Predicting Total Fix-
ation Time per Trial. The model included spatial offset, velocity offset
and Road A’s fixed effects, with a random intercept per participant.

Variable Estimate Std. Error z-value p-value

Intercept 0.938 0.0690 13.601 < 0.001
Road B 0.022 0.0538 0.409 0.682
∆d -0.0103 0.0045 -2.304 0.0212
∆v 0.0039 0.0067 0.587 0.557
goes first 0.004 0.058 0.074 0.941
Group Var 0.0571 0.0330 1.730 0.0836

Table 4: Results of the Linear Mixed-Effects Model Predicting Number
of Fixations per Trial. The model included spatial offset, velocity offset
and Road A’s fixed effects, with a random intercept per participant.

Variable Estimate Std. Error z-value p-value

Intercept 1.550 0.0567 27.321 < 0.001
Road B -0.040 0.0565 -0.708 0.479
∆d -0.0092 0.0047 -1.947 0.0515
∆v 0.0081 0.0071 1.151 0.250
goes first -0.025 0.061 -0.405 0.685
Group Var 0.0254 0.0180 1.414 0.157

3.3 Driver control input

To investigate how gaze behavior translated into control
decisions, we examined the driver’s pedal input following
gaze fixations. Figure 13 shows the distribution of pedal
inputs for drivers on Road B who proceeded first. The left
panel reflects input 0.75 seconds after fixation, while the
right panel shows input after 1.5 seconds. Data are grouped
into three distance bins from the conflict zone. Drivers at
closer distances (0–15 m) responded more decisively, show-

ing a small increase in throttle input and reduced braking
compared to the other distances. This pattern suggests a
commitment to proceed or brake after fixating on the other
vehicle. This is also the case for the median distance (15–
30 m). At greater distances, particularly in the 30–45 m
range, drivers were more likely to maintain neutral input
shortly after fixation, followed by a broader distribution of
responses after 1.5 seconds. Likely because of assessing the
environment and situation. This shift indicates that initial
fixations were followed by a short period of observation
before drivers adjusted their behavior. Additional plots for
Road A (both going first and yielding), as well as Road B
yielding, are provided in Appendix 4.8.

3.3.1 Vehicle trajectories
To illustrate how driver interactions unfold during the ex-
periment as a result of the control inputs, Figure 14 presents
the vehicle trajectories for a single trial. This is trial 121,
which corresponds to the same trial shown in Figures 10
and 9. The plot highlights the trajectories of both vehicles
as well as key interaction events such as control handover,
mutual visibility and gaze fixations. In this example, Car 1
(from Road B) proceeds through the roundabout first, while
Car 2 yields by braking before the yield line. This change in
control behavior follows shortly after visual contact between
the drivers was established. A contrasting example with the
same condition—where Car 2 goes first can be found in
Appendix 4.8.
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Figure 14: Vehicle trajectories for trial 121, with condition 3. Each dot represents a sampled vehicle position (0.35-second intervals). The blue and
orange lines show the trajectories of Car 1 and Car 2, with light segments representing cruise control and dark segments representing manual
control. Triangles indicate when mutual visibility occurred, black markers show the fixations and the green dashed circle denotes the interaction
zone. The yellow star marks which car entered the conflict zone first. A larger version can be found in Appendix 4.8

4 DISCUSSION
The primary objective of this study was to investigate how
human drivers make gap acceptance decisions at round-
abouts during mutual interactions. Using a coupled virtual
reality driving simulator, we examined which driver pro-
ceeded first through the conflict zone and how this outcome
related to gaze behavior and control input. Specifically,
we quantified the number of fixations and total fixation
duration directed precisely at the other vehicle. These gaze
metrics, combined with driver control actions following
fixation, provided insight into how drivers visually assess
the situation and translate this perception into action.

4.1 Driver priority at the conflict zone
The results show that spatial and velocity advantages influ-
enced which driver entered the conflict zone first. Drivers
who started closer to the roundabout or had a higher initial
velocity were more likely to proceed ahead of the other
driver. This outcome shows that drivers used distance and
relative speed to evaluate whether they could safely enter
the roundabout ahead of the other vehicle.

This behavior aligns with broader findings in the gap
acceptance literature, which describe how drivers contin-
uously assess relative speed and distance to determine

whether a maneuver is feasible [21]. In roundabout sce-
narios, this process requires drivers to interpret both the
available gap and the potential behavior of nearby vehi-
cles. The current findings support this understanding by
showing that the combination of initial position and speed
influenced perceived priority.

Studies focused specifically on roundabouts, such as Li
et al. [16] and Retting et al. [15], highlight how roundabout
geometry and approach speed influence driver decision-
making. The spatial and velocity offsets applied in this
study reflect these real-world dynamics. The findings offer
controlled evidence that, even in a symmetric and simplified
roundabout environment, drivers make decisions based on
their spatial positioning and motion relative to the other
vehicles.

Individual differences may also have contributed to vari-
ability in yielding behavior. In some situations, drivers may
have chosen to yield despite holding positional advantage,
possibly due to differences in confidence, experience or
caution.

These insights are particularly relevant for the design
of automated systems that must interpret and anticipate
human driver behavior at intersections
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4.2 Fixation count and total fixation time
This study also examined how gaze behavior varied under
different spatial and velocity offsets, with a focus on the
number of fixations and the total fixation time directed
toward the other vehicle. These gaze metrics offered insight
into how drivers monitored and interpreted the behavior of
the other road user during the decision-making phase.

The results showed that only spatial offset had a statisti-
cally significant effect on gaze behavior. Total fixation time
decreased when drivers approached from a longer distance
to the yield line, suggesting that proximity to the intersec-
tion increased the urgency to observe the other vehicle. No
significant effect appeared for fixation count, indicating that
drivers did not shift their gaze more frequently, but instead
maintained their gaze for a longer period when positioned
closer to the intersection. These findings align with prior
research showing that drivers allocate more visual attention
when the situation involves greater uncertainty or when
interactions occur at closer range. For instance, Ma et al. [42]
found that closer proximity to conflict points led to longer
periods of visual monitoring in driving tasks. The effect of
spatial offset on fixation duration reported here supports
that interpretation.

More broadly, these findings contribute to ongoing dis-
cussions on the role of visual attention in mutual driving
interactions. While much of the existing literature has fo-
cused on individual gaze behavior in isolated tasks [29, 30],
this study considered gaze as a component of continuous
mutual adaptation between two drivers. The results support
the idea that gaze in these interactions functions not only
to gather information but also to regulate coordination by
monitoring the other driver’s motion and intent [23].

The recent study by Scarí et al. [32] explored this human-
human interaction in a dynamic merging scenario using a
coupled driving simulator. Their work demonstrated how
this setup makes it possible to investigate the mutual be-
havior between two drivers, particularly under conditions
that involve shared gap negotiation. Although their focus
was on merging and this study examined roundabout entry,
both scenarios required drivers to assess gaps and monitor
the behavior of another vehicle.

These findings contribute to the broader literature on
human-human decision-making in traffic. While traditional
models treat gap acceptance as an individual, instantaneous
process [19, 20], the results underscore the mutual nature
of driver interaction. Gaze behavior reflects this ongoing
monitoring, although it does not directly predict which
driver proceeds first. Instead, gaze serves as part of a
larger, adaptive process shaped by timing, control input
and spatial context. Total fixation time, rather than fixation
count, proved to be the more informative metric, offering
insight into how drivers regulate their attention during
these interactions.

4.3 Control input
The control input data provide additional insight into how
drivers translated visual monitoring into action. Drivers
who were closer to the conflict zone at the time of fixation
often responded quickly with a clear control decision, such
as acceleration or braking. In contrast, drivers at greater

distances showed more variability and introduced delays
in their responses. These results suggest a close temporal
link between gaze behavior and control input in situations
where time pressure was higher due to proximity.

Gaze fixations did not reflect passive observation but
appeared to trigger immediate behavioral adjustments. This
pattern points to a strong coupling between perception and
control during interactions at roundabouts. These findings
underscore the need to account for gaze-driven control
behavior when designing AV systems for environments
that demand rapid mutual decision-making, such as round-
abouts.

4.4 Limitations

This study has several limitations that should be considered
when interpreting the results. The first limitation is the small
sample size. The data of five experiments or ten participants
was included in the final analysis. Halfway through the
experiment, an error was discovered in the implementation
of the experimental conditions. As a result, half of the data
had to be discarded. This reduced the statistical power of the
study and may have influenced the final outcomes. A larger
sample size, ideally with at least twenty or more partici-
pants, would have provided more robust and generalizable
results.

The participant pool consisted of students and re-
searchers affiliated with TU Delft. Their average age was
23.6 years (SD = 3.0 years). This narrow demographic may
not be fully representative of the general driving population.
Additionally, as participants were affiliated with a technical
university, they may have been more familiar with auto-
mated driving technologies, which could have influenced
their behavior in the simulation.

Another limitation relates to the use of a virtual reality
headset. Wearing a VR headset introduced minor physical
discomfort for some participants, especially during the final
trials. This discomfort may have limited head movements,
particularly toward the end of the experiment when fatigue
likely increased. Reduced head movement may have in-
fluenced the gaze data, particularly the fixation measures.
This limitation is critical, as the study aimed to determine
whether participants directed their gaze precisely at the
other vehicle. However, participants may have relied more
on eye movements and specifically their peripheral vision,
rather than turning their heads, to observe the other driver.

Another limitation concerns the realism of the simulation
and participant engagement. Participants knew beforehand
they would always interact with the same other driver.
Although this did not affect early trials, repeated exposure
to the experimental conditions may have influenced behav-
ior. Anticipating the actions of the other driver does not
reflect the uncertainty found in real traffic. Additionally, the
absence of real-world consequences such as injury or vehicle
damage may have encouraged more aggressive or risk-
tolerant decisions. The environment was also highly simpli-
fied, with only two vehicles, no other traffic, no pedestrians
and no external distractions such as signage or weather.
Participants also faced no time constraints or secondary
tasks, which reduced cognitive load. While the controlled
setup focused on specific variables like gaze and decision-
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making, it did not reflect the full range of challenges drivers
face in real traffic conditions.

The virtual environment also introduced challenges in
accurately replicating longitudinal vehicle dynamics. Par-
ticipants often underestimated their velocity, believing they
were driving slower than they actually were. This mismatch
caused some participants to accelerate more often when
circulating within the roundabout. Such behavior altered
the interaction dynamics and would likely not occur in real
driving scenarios.

Finally, the lack of prior research on human-human
interactions at roundabouts is another limitation. Existing
studies have primarily focused on individual driver behav-
ior or interactions with automated vehicles. As a result, little
empirical data exists on how two human drivers respond to
each other in roundabout scenarios. This limited reference
base makes it difficult to compare the current findings to
established patterns or to validate the experimental setup
against real-world observations.

4.5 Future works
Future studies should include a larger and more diverse
participant sample to improve the generalizability of the
findings. Participants with varying driving experience and
a broader age range would allow for analysis of how indi-
vidual differences affect gaze behavior and gap acceptance
at roundabouts.

Future studies should also increase the complexity of the
simulation environment. Adding other vehicles, pedestri-
ans, road signage and varying weather conditions would
help capture how drivers adapt to more realistic and dy-
namic traffic situations. Introducing time constraints or sec-
ondary tasks would reflect real-world cognitive load, which
may influence both gaze patterns and decision-making.

Future studies should compare human-human inter-
actions with human-autonomous interactions in similar
roundabout scenarios. This would provide insights into
how the presence of autonomous vehicles affects mutual
decision-making and visual attention. The role of explicit
communication cues, such as turn indicators or vehicle po-
sitioning, should also be explored as these were not applied
during this study.

Finally, future studies should improve the accuracy of
perceived speed and vehicle dynamics in virtual environ-
ments. More realistic feedback would ensure that observed
behaviors closely reflect real-world driving and support
the development of better human-human driver behavior
models.

4.6 Conclusions
In this study, we analyzed the interaction dynamics between
two human drivers during roundabout approach and entry
scenarios. This was done by evaluating the outcome of
driver priority at the conflict zone the corresponding gaze
behavior and control inputs. Based on the experimental con-
ditions and statistical analyses, we assessed and concluded
the following:

1) Drivers who approached from a shorter distance or
at a higher velocity were more likely to proceed first
through the roundabout.

2) Drivers fixated longer on the other vehicle when
they were closer to the conflict zone.

3) Fixation count remained stable across conditions,
suggesting that gaze duration rather than fre-
quency—reflected engagement in the interaction.

4) Gaze behavior alone did not predict who proceeded
first, implying that mutual decisions emerged from
a broader set of factors beyond eye movements.

5) Drivers closer to the conflict zone responded more
decisively after fixating by pressing the gas or brake
pedal compared to drivers further away from the
conflict zone.

These findings highlight the value of incorporating hu-
man factors, such as visual attention and decision-making
cues, into the design and evaluation of autonomous vehicles
to support their integration into real traffic environments.
Insights into human gaze behavior and gap acceptance can
help ensure that AVs respond in ways that match driver
expectations. This can support safer and more intuitive
interactions between AVs and human drivers.

4.7 Acknowledgments
We would like to thank Arkady Zgonnikov for the valuable
discussions, insightful suggestions and support throughout
the project. We would also like to thank Federico Scarí for
his support during the entire project. This includes but is not
limited to experiment development, execution and technical
support for CARLA and JOAN.

4.8 Declaration of AI assistance in writing
During the preparation of this work, we used OpenAI’s
ChatGPT for grammar refinement, typo correction and ter-
minology adjustments. The tool was not used to generate
content. Following its use, we carefully reviewed and edited
the material as necessary and assume full responsibility for
the final content.

REFERENCES

[1] Dimitris Milakis, Bart Van Arem, and Bert Van Wee.
“Policy and society related implications of automated
driving: A review of literature and directions for fu-
ture research”. In: Journal of intelligent transportation
systems 21.4 (2017), pp. 324–348.

[2] Peter A Hancock, Illah Nourbakhsh, and Jack Stewart.
“On the future of transportation in an era of auto-
mated and autonomous vehicles”. In: Proceedings of the
National Academy of Sciences 116.16 (2019), pp. 7684–
7691.

[3] Monika Stoma et al. “The future of autonomous ve-
hicles in the opinion of automotive market users”. In:
Energies 14.16 (2021), p. 4777.

[4] Darsh Parekh et al. “A review on autonomous vehi-
cles: Progress, methods and challenges”. In: Electronics
11.14 (2022), p. 2162.

[5] Todd Litman. “Autonomous vehicle implementation
predictions”. In: (2017).

[6] Amit Chougule et al. “A comprehensive review on
limitations of autonomous driving and its impact on
accidents and collisions”. In: IEEE Open Journal of
Vehicular Technology 5 (2023), pp. 142–161.



15

[7] Safe Autonomy. A Reality Check on the 94 Percent Hu-
man Error Statistic for Automated Cars. Accessed: 2024-
10-10. 2018. URL: https : / / safeautonomy. blogspot .
com/2018/06/a-reality-check-on-94-percent-human.
html.

[8] Ken Allen Law. Myth That Driver Error Causes 94% of
Car Crashes: The Complexities of Motor Vehicle Accident
Causation. May 2024. URL: https://www.kenallenlaw.
com/2024/05/myth- that - driver- error- causes - 94-
of - car- crashes- the- complexities - of - motor- vehicle-
accident-causation/.

[9] Ramin Arvin et al. “Safety evaluation of connected
and automated vehicles in mixed traffic with conven-
tional vehicles at intersections”. In: Journal of Intelligent
Transportation Systems 25.2 (2020), pp. 170–187.

[10] Wilko Schwarting et al. “Social behavior for au-
tonomous vehicles”. In: Proceedings of the National
Academy of Sciences 116.50 (2019), pp. 24972–24978.

[11] Hananeh Alambeigi, Anthony D McDonald, and
Srinivas R Tankasala. “Crash themes in automated
vehicles: A topic modeling analysis of the Califor-
nia Department of Motor Vehicles automated vehicle
crash database”. In: arXiv preprint arXiv:2001.11087
(2020).

[12] Wilbert Tabone et al. “Vulnerable road users and the
coming wave of automated vehicles: Expert perspec-
tives”. In: Transportation research interdisciplinary per-
spectives 9 (2021), p. 100293.
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[38] Kristián Čulík, Alica Kalašová, and Vladimíra Štefan-
cová. “Evaluation of driver’s reaction time measured
in driving simulator”. In: Sensors 22.9 (2022), p. 3542.

[39] Robert Stojan et al. “Effect of additional tasks on
the reaction time of braking responses in simulated
car driving: beyond the PRP effect”. In: Psychological
research 88.7 (2024), pp. 2096–2106.

[40] Eshin Jolly. “Pymer4: Connecting R and Python for
linear mixed modeling”. In: Journal of Open Source
Software 3.31 (2018), p. 862.

[41] Skipper Seabold and Josef Perktold. “Statsmodels:
Econometric and statistical modeling with python”.
In: 9th Python in Science Conference. 2010.

[42] Yanli Ma et al. “Drivers’ visual attention characteris-
tics under different cognitive workloads: An on-road
driving behavior study”. In: International journal of
environmental research and public health 17.15 (2020),
p. 5366.

https://de.mathworks.com/videos/automated-driving-in-the-urban-environment-with-roadrunner-scenario-1717504404725.html
https://de.mathworks.com/videos/automated-driving-in-the-urban-environment-with-roadrunner-scenario-1717504404725.html
https://doi.org/10.21105/joss.04250
https://doi.org/10.21105/joss.04250
https://doi.org/10.1109/IV55152.2023.10186746


17

APPENDIX A: NUMBER OF FIXATIONS BY ROAD, PRIORITY AND CONDITION

Appendix A shows the number of fixations made by drivers toward the other vehicle. The data is grouped by whether the
driver went first through the conflict zone and by experimental conditions. The box plots below display the fixation counts
for Road A and Road B. Each colored bar corresponds to a different combination of spatial and velocity offset. The results
show that fixation count stayed relatively stable across all conditions, with only minor variation between drivers who went
first and those who yielded.

Figure 15: Number of fixations for Road A drivers, grouped by whether the driver went first and by condition.

Figure 16: Number of fixations for Road B drivers, grouped by whether the driver went first and by condition.
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APPENDIX B: CONTROL INPUTS

Appendix B presents the distribution of driver pedal inputs after gaze fixations, separated by road, priority and distance
to the conflict zone. The figures compare average control behavior for drivers who either proceeded first or yielded. Each
plot distinguishes between three distance bins at the moment of fixation: 0–15 m, 15–30 m and 30–45 m from the conflict
zone. The left panels show control input 0.75 seconds after the start of the fixation; the right panels show input 1.50 seconds
after. These distributions provide insight into how gaze was followed by throttle or brake responses under different spatial
conditions.

Figure 17: Average pedal input for drivers on Road A who proceeded first through the conflict zone. The left panel shows input 0.75 seconds
after fixation onset; the right panel shows input 1.50 seconds after. Each line reflects a distance bin at the time of fixation: 0–15 m (blue), 15–30 m
(orange) and 30–45 m (green). The y-axis shows the average driver control input.
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Figure 18: Average pedal input for drivers on Road A who yielded at the conflict zone. The left panel shows input 0.75 seconds after fixation
onset; the right panel shows input 1.50 seconds after. Each line reflects a distance bin at the time of fixation: 0–15 m (blue), 15–30 m (orange) and
30–45 m (green). The y-axis shows the average driver control input.

Figure 19: Average pedal input for drivers on Road B who proceeded first through the conflict zone. The left panel shows input 0.75 seconds
after fixation onset; the right panel shows input 1.50 seconds after. Each line reflects a distance bin at the time of fixation: 0–15 m (blue), 15–30 m
(orange) and 30–45 m (green). The y-axis shows the average driver control input.
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Figure 20: Average pedal input for drivers on Road B who yielded at the conflict zone. The left panel shows input 0.75 seconds after fixation
onset; the right panel shows input 1.50 seconds after. Each line reflects a distance bin at the time of fixation: 0–15 m (blue), 15–30 m (orange) and
30–45 m (green). The y-axis shows the average driver control input.
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APPENDIX B.2: CONTROL INPUT HISTOGRAMS BY CONDITION

This section presents a series of histograms that show the distribution of normalized control inputs—throttle and brake—for
all experimental conditions. Each figure corresponds to one of the eight condition pairs defined by initial vehicle position
(front/back) and speed (fast/slow), observed separately for drivers on Road A and Road B. For each condition, the control
input is shown for trials where the driver went first (green) and where the driver yielded (red). These distributions provide
insight into how control behavior differed based on the driver’s spatial position, approach speed, and whether they claimed
priority at the roundabout.

The opposing condition is included in each figure for comparison. For example, when Road A is back and fast, the
corresponding Road B condition is front and slow. This pairing allows a side-by-side interpretation of how drivers from
both directions behaved in scenarios with the same relative geometry but different outcomes.

Figure 21: Average control input distribution for the condition where Car 1 on Road A starts back and fast. The x-axis represents normalized pedal
input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic scale.
The top left plot shows control input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second
(red). The right plots show the opposite condition—Car 2 on Road B starting front and slow. In the top right, Car 2 goes second (red), and in the
bottom right, it goes first (green).
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Figure 22: Average control input distribution for the condition where Car 1 on Road A starts back and slow. TThe x-axis represents normalized
pedal input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic
scale. The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second
(red). The right side reflects the opposite condition—Car 2 on Road B starts front and fast. The top right shows Car 2 when yielding (red), and the
bottom right when going first (green).

Figure 23: Average control input distribution for the condition where Car 1 on Road A starts front and fast. The x-axis represents normalized pedal
input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic scale.
The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second (red). The
right side reflects the opposite condition—Car 2 on Road B starts back and slow. The top right shows Car 2 when yielding (red), and the bottom
right when going first (green).
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Figure 24: Average control input distribution for the condition where Car 1 on Road A starts front and slow. The x-axis represents normalized
pedal input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic
scale. The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second
(red). The right side reflects the opposite condition—Car 2 on Road B starts back and fast. The top right shows Car 2 when yielding (red), and the
bottom right when going first (green).

Figure 25: Average control input distribution for the condition where Car 1 on Road B starts back and fast. The x-axis represents normalized pedal
input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic scale.
The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second (red). The
right side reflects the opposite condition—Car 2 on Road A starts front and slow. The top right shows Car 2 when yielding (red), and the bottom
right when going first (green).
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Figure 26: Average control input distribution for the condition where Car 1 on Road B starts back and slow. The x-axis represents normalized pedal
input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic scale.
The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second (red). The
right side reflects the opposite condition—Car 2 on Road A starts front and fast. The top right shows Car 2 when yielding (red), and the bottom
right when going first (green).

Figure 27: Average control input distribution for the condition where Car 1 on Road B starts front and fast. The x-axis represents normalized pedal
input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic scale.
The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second (red). The
right side reflects the opposite condition—Car 2 on Road A starts back and slow. The top right shows Car 2 when yielding (red), and the bottom
right when going first (green).
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Figure 28: Average control input distribution for the condition where Car 1 on Road B starts front and slow. The x-axis represents normalized
pedal input, with positive values indicating throttle and negative values indicating braking. The y-axis shows average frequency on a logarithmic
scale. The top left plot shows input for Car 1 when it goes first (green), and the bottom left shows the same condition when Car 1 goes second
(red). The right side reflects the opposite condition—Car 2 on Road A starts back and fast. The top right shows Car 2 when yielding (red), and the
bottom right when going first (green).
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APPENDIX C: TRAJECTORIES

Appendix C illustrates the vehicle trajectories from two trials under the same condition. The first figure (Figure 30) in this
appendix illustrates a case where Car 1 proceeds first, while the second figure (Figure 29) shows a trial in which Car 2 goes
first. The differences in the sampled positions clearly demonstrate how drivers altered their trajectories based on what they
observed from the other vehicle.

Figure 29: This figure is a larger version of Figure 14 for clarity. Vehicle trajectories for trial 121, with condition 3. Each dot represents a sampled
vehicle position (0.35-second intervals). The blue and orange lines show the trajectories of Car 1 and Car 2, with light segments representing cruise
control and dark segments representing manual control. Triangles indicate when mutual visibility occurred, black markers show the fixations and
the green dashed circle denotes the interaction zone. The yellow star marks which car entered the conflict zone first. In this figure, Car 2 slows
down before entering the conflict zone to allow Car 1 to pass first. This behavior follows the moment when the driver in Car 2 fixates on Car 1,
indicating that the yielding decision was made after visual contact was established.
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Figure 30: Alternative vehicle trajectory for trial 121, using the same condition as in Figure 14. In this trial, Car 2 proceeds first through the conflict
zone. Each dot represents a sampled vehicle position (0.35-second intervals). Cruise control and manual control phases are shown in light and
dark segments, respectively. Triangles mark when drivers gained mutual visibility, black markers indicate fixations and the green dashed circle
outlines the interaction zone. The yellow star shows which car entered the conflict zone first. Here, Car 2 accelerates after fixating on Car 1, who
yields by braking or slowing down. This suggests that the decision to proceed was made shortly after visual contact.
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APPENDIX D: PROMPT USE OF LARGE LANGUAGE MODELS

During the writing process of this thesis, I used large language models (LLMs), such as ChatGPT, to improve language
quality and to remove spelling and grammar mistakes. My usage followed the steps below:

1) Wrote the content
I wrote each paragraph without focusing on grammar, spelling or sentence structure.

2) Requested corrections
I inserted the text into ChatGPT and asked it to fix grammar mistakes, correct spelling and connect sentences more
clearly.

3) Adjusted sentence style
I asked the model to remove words ending in –ing, since those often reduced readability and flow. Specifically I
asked to model to remove the use of the present participle.

4) Checked the output
I read the revised paragraph sentence by sentence to confirm that the meaning matched my original intent and
adjusted accordingly if needed.

5) Applied the method throughout
I used this method for most of the paragraphs in the thesis to maintain consistent quality.

All AI-assisted changes were reviewed manually before adding them to the final version.


