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Abstract

In this thesis, the behaviour and application of a one-dimensional model describing blood flow through compliant
vessels is investigated. The one-dimensional model is derived using the physical laws of conservation of momentum
and conservation of mass and uses a Finite Volume Method in combination with a high resolution flux difference
splitting. First, the behaviour of the model is compared with established models in a network of 55 main arteries
and then in a network of 111 main arteries including in vivo results. Finally, the model with the 111-artery network
as a baseline is combined with inflow boundary conditions and a scaling factor provided by MRI blood flow data
to make it patient-specific. The adapted model is used to investigate how well characteristics in the distal part of
the network can be predicted. It is found that the Finite Volume Method in combination with the high resolution
flux difference splitting produces results that are highly comparable to those of established models both in the 55-
and 111-artery network. The patient-specific model proves to be capable of predicting the pressure value in the arm
to a reasonable degree. The flow in distal parts in the aorta is underestimated for all patients, but the degree of this
underestimation varies per patient. Combining the results with a novel colour representation of pressure and velocity,
it is possible to show patient specific evolution of pressure and velocity in their arteries. Further research should
focus on adapting baseline networks with different key characteristics to increase the accuracy of the predictions for
patients with different characteristics than the baseline model used in this study. Such characteristics include the
number of bifurcations in the aortic arch (three or two) and the tapering of the aorta.
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1 Introduction

Investigating the workings of the human body has always been difficult. The underlying mechanisms are incredibly
complex and often have millions or even billions of individual components all working together. Moreover, ethical
concerns make in vivo research very difficult. Our ever increasing computational power might solve both these
problems at once. We are constantly pushing boundaries of the complexity of models describing the systems of the
human body. These models simultaneously make it possible to investigate and diagnose with minimal surgical risk.

In developed countries cardiovascular diseases are responsible for as much as 20-25% of annual deaths. This makes
researching the workings of the blood circulation of incredible value. Ideally, a patient specific model of the blood
circulation can help make potentially life-saving decisions if a medical expert is interested in the cardiovascular
state of a patient. There are two big problems to developing patient specific models. First is the still formidable
computational time when using 3D models based on the Navier-Stokes equations. Second is the lack of enough patient
specific data to comprise a detailed enough model. Under reasonable circumstances, a simplified one-dimensional
model can be used to immensely cut computational time whilst enjoying highly comparable results to 3D models
Mynard [4]. Using a baseline network that is scaled for each individual patient could reduce the amount of parameters
needed to estimate for a patient from hundreds to a handful.

The aim of this thesis consists of two parts. First, we will further develop the Finite Volume Method developed
in Rozendaal [7] and investigate its performance. Secondly, we will use data from the Leids Universitair Medisch
Centrum (LUMC) retrieved with a MRI scan to investigate the possibility of scaling a baseline method to produce
partially patient-specific models.

First, as recommended by [7] we will change the treatment of bifurcations to achieve more realistic results when
dealing with arterial trees. We will then investigate results obtained when simulating an arterial network of 55
arteries.

Next, the model will be expanded. Inflow and outflow boundary conditions from the original model will be changed to
be more in alignment with literary standards. Again the behaviour of the Finite Volume Method will be investigated.
The results will be compared to results obtained in literature and in vivo measurements.

Finally, we will investigate the use of a baseline model and MRI data to make a partially patient-specific model. The
111-artery network is used as a baseline network. The flow data from the MRI scan will be used as an inflow boundary
condition and the model will be scaled to be in agreement with measurements of the cross-sectional area of the aorta
by the MRI. Two scaling methods are researched. A simple single-factor scaling method and a more complicated
multi-factor scaling. Flow data in distal parts of the aorta and pressure measurements in the left and right arm will
be used to investigate performance. We will simultaneously research if the model is capable of making reasonable
predictions and which scaling method is preferred.

This thesis is structured as follows. First, a summary of the current work in the field of one-dimensional models of
blood flow is given.

Then, the mathematical basis for the model is given in sections 3-6. Sections 3-5 concern the derivation of the model
and numerical method which was already covered in [[7]] and we will provide for completeness. Conservation of mass
and momentum is used to derive the equations that describe blood flow in compliant vessels. After this, the equations
are transformed into the characteristic equations that provide important insight into the workings of the model. The
numerical method is subsequently described. Following this, several methods to model the circulation, for example
a model for a heart, are presented and discussed. This concludes the mathematical basis.

We continue with the validation of the model in sections 7-8. The 55-artery network results are discussed and are
followed by the discussion of the 111-artery network results. This concludes the validation of the model.

The making of a partially patient-specific model is discussed and its performance investigated in section 9. This section
contains many novel implementations of one-dimensional models. Finally, conclusions about the performance of the
Finite Volume Method and the method of creating partially patient-specific models are drawn.



2 Literature survey

A short summary containing the current work of one-dimensional models of the human vascular system.

A system of Partial Differential Equations (PDEs) can be derived using the conversation of mass and momentum.
There are two general forms of this system of PDEs, one based on the volumetric flow () and mean velocity « and
another one based on the cross-sectional area A and u. The two forms are equivalent for smooth solutions. For
discontinuous solutions then the form with () and u is the proper form, see Sherwin et al. [15]]. Thus this is the form
we will use. Under normal physiological conditions, the solutions remains smooth.

The system must be completed by a relation between pressure p and the cross-sectional area A. Several relationships
have been proposed, for a list see Mynard [4]. We will use the relationship adopted in [2| 3[4, [15]. This relationship
requires an estimation of the stiffness of the artery. This can be done experimentally or by using the formula proposed
by Olufsen [9].

Bifurcations, or more generally branching points, are treated by solving a nonlinear system of equations consisting
of continuation of the characteristic variables, pressure and the conservation of mass. The system is solved using the
Newton-Raphson method, see [4] 5 [15]. We will adopt the same treatment.

There have been many models of the heart. Some are part of a closed loop model as in Mynard and Smolich [10]. We
will use the model used in Sherwin [15] when dealing with the 55-artery model and the model proposed by [4] when
dealing with the 111-artery network.

Due to the high complexity of the human arterial network, it has to be truncated at a certain point. This is done by
using an outflow boundary condition. In the 55-artery network, a reflection coefficient is used as in Sherwin et al.
[15]. In the 111-artery a windkessel model is used. The windkessel model is a 0D analogy from electrical circuits and
was first used in [11]]. It is the most used outflow boundary condition and is used in [[2,[3l[16], a variant that is suitable
for closed-loop models is used in [10].

In literature, Finite Elements Methods (FEM) are often used such as the Taylor Galerkin scheme or the Discontinuous
Galerkin. We will thus use the FEM schemes as a way of validating our Finite Volume Method (FVM) approach.
Bale and LeVeque [1]] describe a Finite Volume Method that is designed for spatially varying flux functions.

The application of one-dimensional blood flow models has mostly focused on simulating various diseased states. For
example Sherwin et al. [15] studied the effect of implanted stents, Fossan et al. [3] studied the effect of a stenosis (a
narrowing of the blood vessel). For more applications, a comprehensive summary is given in Malatos et al. [8]. Most
applications focus on a more general analysis of a diseased state and are not patient-specific, they mostly offer only
qualitatively accurate results but still offer important clinical insight.

Although the flow at the beginning of the Ascending Aorta has been used as an inlet boundary condition in [16], we
are not aware of the coupling of MRI scans with MRI data to produce partially patient-specific models.



3 Derivation of the model

We begin with the mathematical basis by deriving the basic one-dimensional flow model. We model blood vessels as
being composed of strictly circular cross-sections with the x axis serving as the cylindrical axis. The velocity profile
is assumed to be flat. The area of the cross-section is given by A(x,t). The mean velocity across a cross-section is
denoted by u(z,t). A schematic overview of a blood vessel is given in Figure

A(x,t)

Figure 1: Schematic overview of a blood vessel with A and u from Peir6 et al. [12].

3.1 Conservation of mass

We consider a control volume from = a to = b. The mass in this control volume is given by fab plx, t)Ax, t)dx.
Here A(x,t) is the area of a cross-section at position x and time ¢ in m? and p(z, t) in kg/m?. Blood is modelled as
an incompressible fluid, p(z,t) = p = 1021kg/m3. Now the change of the mass in the control volume is dependent
on how much mass flows in at the interface at + = a and how much flows out at + = b per unit time. This flow
is known as the mass flux. The mass flux at © = a is given by pA(a,t)u(a,t), the mass flux at z = b is given by
pA(b, t)u(b,t). Here u(z, t) is given in m/s. We can therefore write

b

& [ oAde = pA(a, yu(a, 1) — pAG, Hu(b, 1) )

It is reasonable under normal conditions to assume that A and u are sufficiently smooth. The right-hand side can be
rewritten as

b
0(A
pA(a,t)u(a,t) — pA(b, t)u(b,t) = —p/ (8 v) dx 2)
a z
Since p is independent of time we can combine equation (1) and (2) to give
b
0A  0OAu
— + ——dx =0 3
p . Ot + oz ©®)

The generality of this equation allows us to state that

0A  OAu

ot T 0 @)

This is the first equation of the general model.



3.2 Conservation of momentum

We again use the control volume from x = a to x = b. The conservation of momentum tells us that the only
way momentum inside the control volume, given by f; pAudz, can change is through the momentum flux at the
boundaries, given by pA(a, t)u(a,t)* and pA(b, t)u(b, t)* respectively, and applied forces F. Thus

d

b
pr / pAudz = pA(a, t)u(a,t)> — pA(b, t)u(b,t)® + F (5)

The forces F' consist of several forces. First the body forces, which we assume to be zero. Secondly, the surface forces
at the boundary given by A(a, t)p(a,t) — A(b, t)p(b, t) where p(x, t) denotes the pressure at « and ¢ in Pa. The side

wall pressure force, f p%A dz and a viscous resistance force, — f 2rRrdx. Here 7 = ,u( “)| g is the shear stress,
~ 0.035 P is the viscosity, r is the radial direction and R is the vessel radius. This leads to

b b
F = A(a,t)p(a,t) — A(b, t)p(b,t) + / pg—Adx - / 2rRrdx (6)
a €T a

Combining equations (5) and (6) and rewriting the boundary terms as integrals, we get

b
p/ e [ 22 dx—/ 22 g +/ p5tds— [ o )

a

Simplifying yields

il S R A
5 + o +p o p8x+ Rr)dx =0 (8)

Again, generality leads to the conclusion that

/b(aAu dAu?  10Ap poA 1

0Au  0Au? 10Ap poA 1
P T L 9
ot * Ox + p O0x  pox + = ©)

Making use of the product rule for differentiation,

JAu 0A ou . OAu? _ 0Au ou A 0Ap  0A dp A

= — = — Au, —= 1
I TR T P P P PR A (10)
we can simplify equation @) to
ou ou 10p 12 0A  OAu,
A(E+“%+pax+p1{)+(ﬁ+7am)_o (11)

Now the last term equals zero due to the conservation of momentum. Flow in the major arteries is often considered
to be laminar and the expression for Poiseuille flow, which is fully developed (% = 0) and steady (% =0)is

Rdp R8u@Q R8muu

TS Sdr  2xRY 2 4 (12)

This does not hold for turbulent flow or non-Newtonian flow. Note that assuming Poiseuille flow means assuming a
parabolic velocity profile. With this assumption we arrive at

Ou n Ou 10p  8muu
at "o ,0(“)96 Ap

=0 (13)



3.3 The final system

To complete the system of equations, we assume a relationship between the pressure of a blood vessel and its cross-
sectional area. This relationship is the same as in Sherwin et al. [15], given by

P = Pext + BVA — /Ag) (14)

Where peyt is the external pressure in Pa, Ag(z) is the cross-sectional area in m?

_ JThoE
e <15>

in equilibrium. S is given by

Here FE(z) is the Young modules in Pa, hq is the vessel thickness at equilibrium (p, u) = (pext, 0). v is the Poisson
ratio, for biological tissue it is most commonly taken as v = 1.

For the 55-artery model, the values of 5 have been experimentally determined and those values will be used. For the
111 artery model, we will use the empirical formula suggested by Olufsen [9]] to determine hy and E

2 Eh 2
=2 200 — [k1exp(karo) + k3] (16)

2 _
cO_3p 0 3p

Where ¢j and r( are the pulse wave velocity and radius of the vessel at rest. The values of ki, ks and k3 are set to
3-10¢gs72cm™!, —9 cm~! and 33.7 - 10* g s72 em ™! respectively.

3.4 Conservative form

Now that we have derived the system (non-linear) partial differential equations given by

0A + 94Au _
Su . Bu . 10p " (17)
§+U%+;%+8ﬂ'ufp =0
completed by
P = Pext + BVA — \/Ay)
We want to write the system in a conservative form, so that it is better to handle. To that end, we write
A Au 0
o-[2] o[yt ] o [ahy]
So that the system of equations can be written as
ou  OF(U)
— =S(U 19
ot ox () (19)

Where U is the conserved quantity, F'(U) is the flux function and S(U) denotes the source term. If we integrate
equation from x = a to x = b, we see why it is known as the conservative form

b ou b oF(U b
/a Edaﬁ—l—/a 8; )dx:/a S(U)dx (20)

If U is sufficiently smooth, this leads to

b b
%/ Udm:F(U)|a—F(U)|b+/ S(U)dx (21)

Here we recognise that U is a conserved quantity in a control volume from a to b. It can only change in time through
the fluxes through the boundaries F'(U) and/or the source function S(U) that acts within the control volume.



4 Characteristic equations

Our goal is now to describe the nonlinear system of partial differential equations we derived earlier using a system of
characteristic equations. These equations, supplemented with the required characteristic variables, should describe
the behaviour of the nonlinear system fully. An advantage of these characteristic equations is that they provide
meaningful insights into how the system works. They are also of interest when setting boundary conditions for the
system.

4.1 Derivation of the characteristic equations

Whilst deriving the characteristic equations, we assume pext = 0, 8 = (z) and Ay = Ag(x). Applying the chain
rule to equation

Op Op0A 0Opdp  Op 0Ap 8 0A op 8 04
— =+ == = — A—Ay)=— — —_— 22
5z = 940z "250s T oA Bx ~avgae T VAT VA i (22)
This result is now substituted into the system of partial differential equations and the chain rule is once more
applied to arrive at a quasi-linear form

ou ou u A
+H(U)[A} +| 5 {A} — K(U) (23)
ot Ox uoJy 2pVA “ wls
Where K (U) is defined by
K(U) ’ (24)
= u 2] 24
sty (VA )]
The Jacobian of the flux function is given by
OF(U) u A
H(U) = 8 (25)
ou VA

The eigenvalues of H(U) are found to be AL = u % c. Here c is the velocity of a wave when the fluid is at rest and

is know as the basic wave speed and is given by ¢ = 4/ Q%Al/ 4. If the fluid is not at rest, the waves are travelling at
A =uxec
As was found in [15], normal physiological conditions result in ¢ > w. Thus the system consists of waves running

forward at a speed of \; = u + ¢, and waves running backward at A\_ = u — c¢. Furthermore the eigenvalues are real
and distinct, and the system is strictly hyperbolic.
Diagonalizing H yields
A _A <
H=RAR'=| % g [[uFc O 1 (26)

Substituting this into equation and rewriting results in

Yl

_ —1
= o = RK(U) 27)

The system is now rewritten in terms of the characteristic variables W = { wl ] . To this end we implicitly define
2

W such that %—Vg = R~ Thus

9 (w1, wa) [ Qus  Ow1 ] [ < 1 ]
= Wo ul)l/z = c (28)
(A, u) 0A azu —x 1



From this we can derive the expressions of the characteristic variables. They are given by

w1=u+4c=u+4A1/4\/?, wy = u — 4c = u — 4AY* £ (29)
2p 2p

Inverting the expressions yields

Ao (i w\T o\ w s 50)
N 4 28) 772

Substituting the expression for R~! into equation

oW oU oW oU 1
WEJFA@U o =R "K(U) (31)
The chain rule is used to state
ow oW ou (32)
ot~ oU ot

and for the spacial derivative

oW oW OU OWaB _ OWOU oW oW 9B

Br " oU0s T 08 0c U Os 0w 0B oz 9
We can use this identities to write the system as
ow ow oW 9p
s Aa— RK + Aaﬁ o (34)

Using the relations in we can write this equation completely in terms of w; and ws, thus completing the trans-
formation.

If we assume inviscid flow, p = 0 P, and look at regions where the elasticity and the cross-sectional area are not
space-dependent, 5(z) = 8 and Ap(x) = A(z), the equation can be simplified even further.

ow ow
or component wise
8w1 8w1 811}2 an
+ A =0 + A =0 36
ot "Yoxr 7 ot P ox (36)
Noting that A\ = u+c= w1+w2 + % % = M and A_ = M , we have arrived at a coupled

system of quasi-linear Partial leferentlal Equations. If we assume Ay to be constant, the solution consists of two
transport equations where the velocity is given by AL.

The transformation of the original system of PDEs into the characteristic equations with characteristic variables w;
and wy shows that throughout the domain of the system information is carried by w; in the positive direction and
by ws in the negative direction. This important insight will be used to state boundary conditions and handle the
branching of arterial networks.



5 Numerical Method

We will now describe the numerical method used to evaluate the system of nonlinear PDEs. We begin by assuming
the frictional force to be small and negligible. Thus we set y to zero in equation (18). This results in

U  OF(U,x)

o T o 37

_o,U_[;ﬂ, F(U,x)_[ Au ]

l.,2.pP
2u+p

The system is strictly Hyperbolic. Hyperbolic PDEs are often found describing wave propagation and transport
phenomena. They are closely related to conservation laws. In fact, the current system of PDEs was derived using
the conservation of mass and momentum. It thus makes sense to pick a scheme that naturally has the property of
satisfying these conservation laws. Finite Volume Methods (FVM) have this property and thus seem a natural choice
to describe our system of PDEs.

5.1 Stability

As we are dealing with a hyperbolic PDE, the CFL condition must be met to ensure stability in the time domain. The
condition for the time step that follows from the CFL condition is

Ax
At< == ie{1,2} (38)
|Ail
In this case, the CFL condition can be interpreted as ensuring that waves originating at cell interfaces can only
influence the bordering cells. This can be seen from s = |\;| At < Az.

5.2 Linear case

To better understand how to use FVM methods for this nonlinear problem, we first look at a linear case. This test
case only serves the purpose of inspiring our approach to the original problem and the variables have no physical

meaning.
dq 9 | aq a b e | |0
ot +Aax N { % |, b oa @), |0 (39)

Since A is symmetric, it has two distinct real eigenvalues if b # 0. It then is strictly hyperbolic. To solve this linear
case with an FVM method, we discretize the domain in equidistant intervals (volumes) of Az as in LeVeque [13].
Each individual cell, C; is centered around x; and is given by (x; — %Am, i + %Al‘) We denote the average value
of @ in Cj; at time n by Q7 = ﬁ /. o, Q(x,t"™)dx. For this average we use the following scheme

t
T

A — n
QI =Qf - Ar (A+AQ?—1/2 +A AQH—I/Q) (40)

In this equation, AiAQ?xl /2 Tepresent the fluctuations through the boundaries of ;. ATAQ! | /2 Tepresents the
effect of all right flowing waves at the left boundary of C;, namely z;_; />. In the same way A~ AQ7 | /2 Tepresents
all left flowing waves at the right boundary, ;| | /». Thus if there is no net inflow or outflow, (); does not change with
time, as is expected when inspecting system as there is no source term. When A is diagonalized as A = RAR™!,

we can calculate the fluctuations with
A+AQ?71/2 = RATR™! (Q? - ?71)

A 1 (m n (41)
A AQiJrl/Z:RA R 1( i+1_Qi)

Here A™ are given by

A O o0 o0
A+:[010}’ A:[o AQ} (42)



5.3 Riemann problem

Since we are dealing with a nonlinear problem, we can not use the numerical scheme in combined with and
directly. However, we can use the general method of solving for the next time-average by using the inflow and
outflow through the two boundaries of a cell. We will thus investigate how the time average changes as a function
of these inflows and outflows for our nonlinear problem. To this end we investigate the Riemann problem.

The Riemann problem is an initial value problem of a conservation law with piece wise constant initial data and a
single discontinuity. The goal is to understand how the solution behaves as a function of the discontinuity at the
boundaries of cells. When this is known, the scheme of can be adapted to solve for the entire domain.

We study the situation on the interface of cell i and cell i -1. For the initial data we choose at time t"

ny ) Uy, @ <xi_1y
Ulat ){ Uy, T >Ti1/2

Here x;_1 /5 is the border between the two cells. We will use a couple of linearizations to simplify the problem and
to approximate the cell averages at t" .

First we approximate the flux function F'(U,x) as being constant in each cell. The value of this discretized flux
function is determined at the center of the cell, for cell C; this is the point x;. We write F;(U) = F (U, x;).

The solution for the Riemann problem now splits into two domains

(43)

F;_
87U+8‘71(U):07 ifx<xi,1/2
ot or oz >x;_1/2

This solution is only valid for 2 € (x;_3/2,;41/2) due to the CFL condition. To better understand the behaviour of
the solution, the domain is represented in Figure 2l On the y-axis we see the evolution of time from ¢" to t"*!. On
the x-axis we see the two cells C';_; and C; and their interface at z;_; /5. At any point in time, the x-coordinate of
the tilted lines tells us how far the information from the interface has travelled. Thus the value of U is constant in all
enclosed volumes.

rn-l—l

T
E"'.i—J.

yn
i—1

Tit1/2

U+ Fiy(U)z =0 ! Uy + Fi(U)e =0

Figure 2: Domain of the Riemann problem solution, from [7].



For bounded solutions we expect the flux to be conserved across the cells interface at z;_1 5.

Fi—l(Uz‘l—uz) = Fi(Ul_15) (45)
Where the superscript [ and r denotes the value just left of the cell interface and just right of the cell interface
respectively. Since in general F;_;(U) # F;(U) we have Uz'l—1/2 # U], jo- There is thus a spatial discontinuity of
U at cell interfaces.
When we apply the chain rule to we get
oU  OF,_1(U)oU )
— + —————=0,if i
o T T ou gp o RTSToe
oU | OR(U)OU _
ot ou oz

(46)

0, ifz > :Ei—l/Z

Here % = H;(U) is the flux Jacobian as introduced in .

The next simplification is the assumption that the flux Jacobian is constant in each cell H;(U) = H}" in cell C; at t™.
Thus we arrive at a system of two linear PDEs for the Riemann problem.

This 2 x 2 linear system of strictly hyperbolic PDEs has two characteristic variables with corresponding constant
eigenvectors and constant eigenvalues. As we have assumed that the problem is subcritical, there is one characteristic
variable moving to the left and one to the right. We are interested what happens at the discontinuity as this will affect
the value of U 1. At#" we have piecewise continuous initial data, U ; and U}*. We thus expect the leftward flowing
characteristic variable that starts at the cell interface to move at speed Ay ;_; into the C;_; domain. Similarly the
rightward flowing characteristic variable moves at A} ; into the C; domain. So at t"*+1 the U domain is piecewise
constant with four values, namely U ;, U Ll /Q,Ui[l /2 and U". How much the values of U;_; and U, change
over time, depends on the two added discontinuities. These discontinuities are the waves. We will investigate their
behaviour more thoroughly.

The eigenvectors and eigenvalues of the flux Jacobian are given by

A _A
A =u+c, 7"1:{29], Ao =u—c, 7'2:[ 12C] (47)
2
Using our insight from above as justification, we will use for the rightward flowing waves

n _An n _.n
Lici2 =Als T1is12=T1, (48)

And for the leftward flowing wave we use
Sic1j2 =A2i—1s Ta,_1/2 =T34 1 (49)

We will now solve for the strength of these waves, and thus determine U™ ! by averaging the effects of the waves.
To solve this problem, one could try to find Ul.l_1 /2 and U J /2 This, however, proves to be a difficult task. Focusing
on the flux is the simpler approach. To this end, we will use the continuity of the flux at the cell interface and
decompose the flux difference F*(U) — F{* | (U) into f-waves, this is the flux difference splitting. To achieve this, we
use that the first f-wave, Z',_; ,, is proportional to r{ ; and the second f-wave, Z3'; ; ,, is proportional to 13 ; ;.
Decomposing the flux difference is done as follows

F,(U)-F1(U)= Ziz‘—1/2 + 231—1/2 = Bii—l/Qrii + 5g,i—1/27’3,i—1

Ar " n
= R 1)2Bi 1) = e e 61{1_1/2 e0
21 1 1 By i 12

Here the factor 57, , , is the relative strength of the eigenvector 77, , o By /2 contains both eigenvectors as
columns. Solving for é{l_l/Q

AP
n i—1
6171‘—1/2 _ 2 1 -,
n oAr A7 AT
ﬂz,i71/2 A il =%

(£ (U) = Fi—1 (U)) (51)

10



We can now calculate the f-waves via Z;Li—l/2 = 5}7¢_1/27”§L¢_1/2-
The f-waves we have calculated are the effect of all waves flowing through the boundary, it thus comes as no surprise

that we can incorporate them in the formalism introduced in the linear test case solution via

A+AUZL—1/2 = Zﬁi—1/2

S n (52)
A AUi—1/2 = Z2,z'—1/2
Now we can formulate the method for the nonlinear case, it is given by
n n At n n
Ut = U = o (Elicajp + Bfvape) (53)

5.4 High Resolution method

Flux differencing methods as the one described above have the undesirable trait that they smear out solutions and
thus do not have a high resolution. To improve the solution found, we would like to increase the resolution. How-
ever, Godunov’s order barrier theorem states linear methods higher than first order cannot provide non-oscillatory
solutions. To increase the resolution, we are thus required to use a nonlinear method. We will use flux limiters. Flux
limiters work by switching between different spatial discretization schemes. Solutions containing a steep gradient
are solved using a first order scheme so as to not have oscillations. When the gradient is less steep, a higher order
spatial discretization is used to improve resolution. It is not a hard on/off switching that takes place, but more like a
spectrum that the flux limiter uses. The method is formulated as

n n At n n At ™n ™n
Uptt=up - Ar ( Li-1/2 T ZZ,i+1/2) T Az ( i+1/2 -7'—2'—1/2) (54)
Here J:'Z i /2 is a flux correction term given by
X 1< At .
Filaje = 5 ZSign (Ag,i—l/z) (1 T Ar /\Z,i—1/2D Z;L,i—l/2 (55)
p=1
ZN;L’FI/Q is a modified version of Z;L’Fl/Q
Z;,iq/z =¢ (92,1;1/2) Z;?,iq/z (56)

Where ¢(0) is the flux limiter. In this case the minmod limiter is used, this is second order Total Variation Diminishing
(TVD). This is a sufficient condition to guarantee stability

Gmm (0) = max {0, min {29, %, 2}} (57)

The argument of the flux limiter is a measure of the strength of the waves that will reach the cell in the next time step
relative to Z7, /2 This depends on the propagating directions of the waves, given by A, /2-In [13]], a method is
proposed to determine the wave strength.

n ZTL

n J—1/2 “pi—1/2
Oricys = gn " Ziz . (58)
pi—1/2 “pi—1/2
Here the dot represents the dot product between vectors. [ is given by
I z -1 ifAR, 4,5 >0 (59)
i+1 AT, <0

This method only works if the solution is smooth enough. If the solution changes extremely rapidly, more sophisti-
cated methods are needed, an example is presented in Lax and Liu [6]].
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5.5 Frictional forces

If we assume the frictional forces to be non-negligible, we have to include them in our numerical method. This will
be the case in the 111-artery model. In this case y = 0.035 P for blood and the frictional force is included via a first
order discretization, giving a third term. Then the method is given by

n n At n n At ~n n n
Urtt = - Ar ( li-1/2 T Zz,z'+1/2> T Ar ( it1/2 — ‘Fi—l/Q) + At S7(U) (60)
With S?(U) given by
0
Si (U) = _8,”#:;; ] (61)

5.6 Boundary conditions

We perform an analysis to determine which variables we can describe at the boundaries. Here the characteristic
variables are useful, since the variables at a given point in the system are a combination of forward and backward
travelling waves. At the boundary we thus only need to prescribe the incoming wave front from outside the compu-
tational domain. Since the characteristic variable w; corresponds to A; > 0 and wy corresponds to Ay < 0, we need
to prescribe w; at the left boundary and wy, at the right boundary. To determine which variable we can describe, we

compute
2 w1 — Wy 3
lefmwl(;ﬁ) () ] )

awl

2
And

2
Jwy = T - l ) <%) 1(1“2“)2)3 ] (63)
2

8’11}2

We can use a variable to prescribe a characteristic if the corresponding element of .J,,; is nonzero. For wu this is
obviously the case. We can prescribe A whenever w; # wso. This is the case when —4c # 4¢ = ¢ # —c = ¢ # 0.

Since under normal physiological circumstances 5 > 0,p > 0,4 > 0 it follows from ¢ = ,/Q%Al/ 4 that indeed

¢ > 0. We can thus prescribe A or u or any function of the two such as p or Q.

5.7 Forward prescription

When dealing with boundary conditions, one usually chooses to prescribe a certain variable such that a specific
condition is met at the boundary. However, if one would bluntly prescribe p, A, u or @, at the inlet boundary, you
would need to have knowledge of the backward running waves. Stents, bifurcations and their location in the sys-
tem affect these waves among other things. Lacking this knowledge, it would be more natural to prescribe variables
using the forward propagating characteristic w; and fixing ws in its initial state. The forward prescription ensures
that the boundary conditions are not sensitive to the backward running waves. It is important to note that when
forward prescription is used, the value at the boundary is not exactly equal to the given value. However, the dif-
ference between actual prescribed value and the forward prescription is at most a few per cent, while having good
non-reflective properties.

It is important to note that in the section Partially Patient-Specific Model, we will be dealing with absolute, not
forward, flow rates.

In Appendix D, a test case with a stented artery is presented that provides insights into the basic workings of the
model.
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6 Modelling the circulation

In the preceding section, we have constructed a method of simulating pulse propagation through a single artery with
possible discontinuous material properties. To properly model flow through the human arterial network, we need
to have a way to model the heart (inflow boundary conditions), outflow boundary conditions and branching points.
Various methods are used for the 55-artery network and the 111-artery network and we will explain the methods
used.

6.1 Heart model

The heart is the driving factor of blood flow and is thus an extremely important part of every model. Two methods
are used, a simple sinusoidal increase in cross-sectional area, and a more complicated model including the opening
and closing of the aortic valve.

6.1.1 Sinusoidal model

The heart causes an increase in pressure at the beginning of the Ascending Aorta and in this way drives flow through-
out the arterial network. Via equation (14) an increase in pressure is related to an increase in cross-sectional area.
Thus the heart can be modelled as an increase of the area at the beginning of the Ascending Aorta. This method is
used in the 55-artery model. The equation describing the cross-sectional area at the start of the Ascending Aorta as
a function of time is given by

A(t) = Aoj + 1.587 - 6()H(6(t)),  d(t) = sin(wt + 0.628) — 0.588 (64)

The model is plotted in Figure

UL

Figure 3: The heart model used for the 55-artery network using equation l|

This model is easy to implement and does a good job of capturing the very basic properties of a heart.
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6.1.2 Ventricular Pressure and Aortic Valve model

We will be using the model proposed by [4]]. A schematic overview of this model is given in Figure

Ventricle Valve Ascending Aorta

Figure 4: A schematic overview of the Ventricular Pressure and Aortic Valve model.

The heart is modelled by two components. First a predetermined cycle of ventricular (forward) pressure resembling
the cycle of contraction and relaxation of the heart is considered. Second, a transmission/reflection function that
resembles the aortic valve is used. The opening and closing of this valve is determined by local pressure and flow, as
it would be in the human body. During systole, the phase where pressure increases in the aorta, the valve is open and
the ventricular pressure pressure drives aortic flow. During diastole, when the pressure is decreasing in the aorta,
the valve is closed and the aorta and ventricle are isolated.

The valve function is given by
(e -1)
e~k —1

Where k = 3. For 0 < ¢ < 1 this function increases from 0 to 1. This function is transformed to simulate the opening
and closing of the valve. The motion of the valve is assumed to change rapidly at first and more slowly when it
reaches its new position. The valve opens when the difference between ventricular and aortic pressure crosses 0 Pa.
When the velocity of blood in the Ascending Aorta falls below —0.01 cm /s the valve starts to close rapidly. The Rapid
Valve Opening Time (RVOT) is set 57 ms, the Rapid Valve Closing Time (RVCT) is set to 40 ms, both determined by
Leyh et al. [14]. The opening and closing of the valve as modelled by V is illustrated in Figure 5]

The reflection coefficient, R, is defined as the fraction of backwards running waves that get reflected when they reach
the aortic valve. It is defined as

V(t) = (65)

n+1 0
R Awy  wy" —wy 66
- _A T T o+l 0 ( )
wa Wy ' — Wy
Here w} ™ can be approximated by
n+1 _ n
Wy |z:m0 = Wy ‘w:xo—/\g'At (67)

The transmission coefficient, T, is defined as the fraction of forward running waves that get transmitted through the
valve.
We relate the reflection and the transmission coefficient to V' via

T=V,R=1-V (68)
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The heart cycle in the ventricle is described by four phases. First, the isovolumic contraction, the heart is contracting
and pressure is building but the aortic valve is closed. Second, the ejection phase, the ventricular pressure rises above
the aortic pressure and the valve opens. Blood flows from the ventricle through the aorta. The ventricle pressure
is now driving aortic pressure. Thirdly, the isovolumic relaxation phase, the heart muscle relaxes causing a drop in
pressure and flow. The aortic flow drops until it reaches zero when the valve closes. In this phase there is a small
amount of reverse flow before the valve closes fully. Lastly, the diastolic filling, the heart relaxes and the ventricle
increases in volume. This prepares the heart for another full cycle.

1 1
0.8 0.8
0.6 0.6
~ ~
0.4 0.4
0.2 0.2
0 0 ‘ ‘
0 0.02 0.04 0 0.01 0.02 0.03 0.04

Figure 5: Left, opening of the valve and right closing of the valve.
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Figure 6: Top, the prescribed ventricular pressure used in the 111-artery network. Bottom, the two sigmoids used to
create the prescribed pressure function. Pressure is given in mmHg,.

The ventricular pressure is represented by a combination of two sigmoid functions. They have the form of

(a2 —a1)
psig(t) =a1 + W (69)

with the coeflicients given by
a1 = Peq — 9.11 X 10’4ppeak

a2 = Ppeak
as = 7tc (70)
ayq = tc

Where, ppeak is the peak pressure and peq is the end diastolic pressure. t. is a time constant that determines the slope
of the isovolumic contraction and the isovolumic relaxation. One whole cycle is described by one sigmoid describing
the contraction phase and another, translated, sigmoid, describing the relaxation. In the 111-artery model we will
be using two sigmoids with the same ¢, in this case fusing the sigmoids can be achieved by calculating where they
intersect at peak pressure and switching at this point. Copying one cycle in time results in a heartbeat. A discontinuity
at the end of the diastolic filling phase will not affect the system as the valve is already closed at that point. We set
t. = 0.01 s and shift the second sigmoid 0.54 to the left.
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The two sigmoids are presented in the bottom row of Figure[6] The pressure is given in mmHg, the standard unit for
pressure in medical fields. 1 mmHg ~ 133.322 Pa.

To achieve flow, the heart must overcome aortic pressure. If aortic pressure increases the ventricle increases its
pressure accordingly to sustain flow. This phenomenon is known as afterload pry«(t). This afterload pressure is
caused by backwards running waves. Combining equations and we can calculate the pressure change due
to a change in wp, it is weighted by R to yield

prve(t) = (L= R) 7 [wa(®)” = ()" + 20 (t) (w§ — wa(1))] 7

The total pressure in the ventricle is then

prv(t) = prv(t) + prve(t) (72)
Where pry (t) denotes the prescribe pressure.
The total value of wy i, is given by

W1 ,in = Awlp + Awq, + w? (73)

Where w9 is the initial value, Awj,, is the change in the incoming characteristic variable caused by the pressure
difference between ventricle and aorta. Awy, is the change in characteristic associated with the backwards running
wave being reflected by the valve. Awy, is given by

Awlp = TAw1 (74)

Where Aw; denotes the change in the characteristic due to the pressure difference, which is then weighed with 7.
Furthermore, Aw;, is given by
Awlr == 7RAU/2 (75)

Where Awj is the change in the backward running characteristic which is weighed by R to simulate waves being
reflected.

This comprises the whole Ventricular Pressure and Aortic Valve model. It will be used for the 111-artery model
with parameters pcqg = 5 mmHg, ppea = 85 mmHg, t. = 0.01 ms and a heart rate of 70 beats/min.
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6.2 Outlet boundary conditions

In principle, the human arterial tree is a circular system. It consists, however, out of immensely many small arteries
that are impossible to measure individually. The number of branches increases dramatically at the terminal end of
the network and consists of millions of capillaries. Thus when modelling the arterial network it must be truncated
at a certain point. There have been many different approaches. Researches have developed close loop models that
have the benefit of being physiologically more realistic Mynard and Smolich [10]. They use a model for a vascular
bed that is filled and drained by respectively arteries and veins.

Models that exclude the veins and thus the circular nature of the arterial network can still produce realistic results.
These models truncate after a few generations of branching. A creative way to treat terminal vessels has been using
tapering arteries as terminal elements [4]]. The methods that we will use are a terminal reflection coefficient and the
three-element windkessel model.

6.2.1 Terminal reflection coefficient

As waves propagate through the arterial network, they will partially be reflected the further they travel. A simple
model assumes these effects are only resistive and approximates their combined effect at the terminal vessels of the
network. It is possible then to define the reflection coefficient as

Aws wytt —w
Awy witt — Wl
Here w{’“ can be approximated by
n+1 _ n
wy ‘I::EL = wy r=xr—A}At (77)

Here x = z, denotes the end of a vessel. w and w9 are the initial values of the characteristics. Solving for wj "

gives
wit = wd — Ry (w?'H — w?) (78)

A reflection coefficient of 1 corresponds to 100% reflection whilst a coefficient of 0 corresponds to a free outflow
condition. We have of course R, € [0, 1]. The value of R; needs to be documented for every terminal vessel. This
approach is reasonably accurate but does not take into account the known capacitive properties of a vascular bed. It
will be used in the 55-artery network.

6.2.2 Windkessel model

The windkessel model has a rich history in simulating blood flow. It is an electrical circuit analogy to blood flow
where Pressure (P) takes the role of Voltage (V), and flow (Q)) takes on the role of current (/). The first analysis of
a windkessel model was performed by Frank [11]]. This concerned a two-element windkessel element consisting of a
capacitor in parallel to a resistor. The resistor models the resistive properties in blood vessel whilst the capacitor ac-
counts for compliance. Since then multiple variations have been composed, the most popular being the three-element
version. There is however also a four-element windkessel that includes an inductor to account for fluid inertia.

With the rise of computation power the windkessel model ceased to be used for simulations of sizeable parts of
the network. The three-element version is used extensively as a boundary condition as it does account for the com-
pliance of blood vessels.

In Figure|[7]it is shown how a windkessel element is coupled to a 1D network. Cy}, and R,}, need to be determined
experimentally, Z is the characteristic impedance of the 1D blood vessel and is given by

Zip = (79)

In general, a windkessel element is governed by the following PDE which can be easily retrieved using standard
voltage and current division rules

Ry dq dp p— P>
14 e L T 80
( +R2>H0R’1dt a4t (80)
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Figure 7: A three-element windkessel modelled coupled to a terminal vessel, from Mynard [[].

To determine the boundary conditions the following procedure is used. First continuity of flow is assumed, ¢y, =
@10 = A1puip. Then, using the equation for flow in the three-element windkessel

dpvb Dvb — pee
vb = CVv 81
Qvb b + Tn (81)

Using a first order discretisation gives an expressing for p;*

At p — P>
n+1 vb
= + — | Aipuip - —2—— 82
Py =Dy Con ( 1DU1D Row > (82)
The vascular bed flow can be found via
+1 +1
gt = ATyl = Pin — P (83)
Z1p
Now using w?jrl) we can write this as
+1 +1
A?H wﬁé _ 4An+11/4 B P?D — Py (84)
2p Z1p
Which, using equation is a nonlinear expression for A’fg ! and is solved using the Newton-Raphson method.

n+1 . : n+1
Afterwards, uj7) " can be retrieved using wi'1p-

The three-element windkessel boundary condition model is used in the 111-artery network.
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6.3 Branching points

A characteristic feature of the human arterial tree is the many branching points where one or multiple parent vessels
connect to one or multiple daughter vessels. The most common branching point is a bifurcation where one parent
vessel flows into two daughter vessels. Physically, any other combination of number of parent and daughter vessels
is possible. The treatment of branching points is integral to having a realistic model outcome.

In Rozendaal [7] it was tried to combine the first element of both daughter vessels into one element and afterwards
performing a splitting of the flux. The results were not unreasonable whilst dealing with a single bifurcation but the
method had problems with simulating large networks of arteries. We will thus try a different approach.

We will treat branching points analogously to boundary conditions. More specifically, at the branching points we will
force continuation of the characteristic variables as well as mass and pressure. The values obtained in this process
will then be used to set boundary conditions for the parent and daughter vessels.

Figure 8: An illustration of a bifurcation with adjacent cells from Sherwin et al. [15]].

If we look at Figure [8| we see a bifurcation along with its neighboring parent and daughter cells. With help of the
continuation requirements, the boundary conditions are set in the gray area to both the parent and daughter vessel.
In this case we have 6 variables we need to determine, namely the A and u couple for each vessel. We thus need 6
equations to solve the system. If we generalize this to I parent and J daughter vessels, we need 2(I + J) equations.
The first half is determined by the outgoing characteristics, for the parent vessels we have

wips = u; + 441, /2% (85)

Where w1,; is determined at the cell bordering the branching point. For the daughter vessel we have

1/4 ﬂ
Wagj = U — 4Aj i (86)

Here wsg; is determined analogously to w1,;. The following equations are determined by forcing continuity of mass
and pressure. Conservation of mass requires

I J
i=1 j=1

The remaining equations are provided by continuity of momentum, which for every parent-daughter pair reads

2 2
PoL 4 pont + (VA = V/Ai) = 2+ s + B/ = v/ Ao) (85)

2
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The equations can be written in the following way
fr =y + 441 52— wy, =
fran=u —4AYY Br —wy; = (89)
Jrvg+1 = Zf=1 ui Ay — Zj:l ujA; =0
foraay = §ui + Br(VAr — VAor) — 5ub — B1(VA; — VAos) =0

T L
We now define f = [ i faasn ] . The Jacobian is given by
of1 of1 of1 of1 of1 9f1
Oui=1 Oui=2 B’U«j:J 0A;=1 0A;=2 6A_]’:J
J= : : : : : : : : (90)
Ofa(14.0) Ofar+.0) . Ofar+a) Ofa(14.0) Ofa(1+.0) . Ofar+.0)
Ouj=1 Ouj—2 Ouj—g A1 OA,—» dA;—,

The system of equations can then be solved using the Newton-Raphson method for higher dimension which is given
by

S N [Jk]*l £k (91)
Where x contains the variables and k is the iteration number. As a stopping requirement the norm of f needs to fall
below a certain value e.

We will now present two test cases for the branching points. We will compare this method to the one used in
[7]. To this end we will look at two kinds of bifurcations. It is important to state that our treatment of bifurcations is
complemented by the formula for /3 given by equation (16). The inlet boundary condition is provided by

A(t) = Agp + 0.1 107017 (92)

The outflow boundary condition is given by a free outflow condition (R; = 0).
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6.3.1 Test case - Bifurcation, constant total A,
All test cases are performed in the Centimetre Gram Seconds (CGS) unit system as is costumary in literature. A

conversion table can be found in Appendix A.

First we observe a bifurcation where Agp = 6 cm? and Agp, = Aop, = 3 cm? Thus at the branching
point the sum of the area of the daughter vessels is equal to that of the parent vessel. The values for 5 used

in [7] are 3p = Bp, = Pp, = 10° dyne/cm?. Equation results in Bp = 1.8345 - 10° dyne/cm? and
Bp, = Bp, = 2.5977 - 10°> dyne/cm?®. The results are compared in Figure
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Figure 9: Results of wave propagation at a bifurcation with constant total Ag shown for ¢t = 0.014 s, t = 0.0186 s
and at t = 0.023 s. The top row contains our model and the bottom row the one from [[7].

Comparing the results from both models we see that the pressure in our model is higher, this is due to the higher
values for 3. Since the total cross-sectional area of the parent vessel and the sum of the daughter vessels are equal,
we do not expect a reflected pressure wave of any kind. In the model of [7]] there is such a wave present. In our model

it is absent which points to a more realistic wave propagation at bifurcations.
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6.3.2 Test case - Bifurcation, varying total A,

Now we look at a bifurcation where Agp = 6 cm?, Aop, =6 cm? and Aop, =3 cm?. Now the sum of the cross-
sectional area of the daughter vessel is larger than that of the parent vessel. The values for 5 used in [7]] are unchanged
and given by 8p = fBp, = Bp, = 10° dyne/cm3. This time equation results in fp = 1.8345 - 105 dyne/cm?,
Bp, = 1.8345 - 10° dyne/cm? and Bp, = 2.5977 - 105 dyne/cm?>. The results are compared in Figure
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Figure 10: Results of wave propagation at a bifurcation with varying total Ay shown for ¢ = 0.014 s, ¢ = 0.0186 s
and at t = 0.023 s. The top row contains our model and the bottom row the one from [7]].

Both models show a negative pressure wave propagating back into the parent vessel. That of our model is larger
however. Another difference is the maximum of the pressure wave in both daughter vessels. Due to the method used
in [[7], the pressure in the smaller vessel is lower than that of the larger vessel. In our model this is not the case.

From these test cases it is evident that the models produce somewhat comparable result. It is not hard to see however

that small difference at individual bifurcations can lead to big difference when dealing with a whole arterial network.
All other branching points show similar behaviour and are not worth investigating on their own.
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7 55-artery network

We have now discussed every aspect of our model. We will turn to the 55-artery model as a way of verifying the
treatment of branching points in combination with the flux difference splitting method. Although it is not a verifi-
cation with results obtained in vivo , which would be preferable, the Discontinuous Galerkin [4][15] is a widely used
method for 1D arterial network simulations and producing comparable results would be verification of the models
capabilities. The connectivity of the network is given by a parent pointer matrix where a value of ¢ at place j means
that ¢ is the parent vessel of vessel j. A 0 means that this vessel is adjacent to the inlet. It is given by Table[1].

Table 1: Parent pointer of the 55-artery network. The top row represents the daughter vessels and the bottom row
represents the parent vessels.

1 2 3 4 5 6 7 8 9 |10 | 11 | 12 | 13 | 14 | 15| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28
0 1 1 3 3 4 4 7 7 9 9 5 5 2 2 15|15 | 14 | 14 | 19 |19 | 21 | 21 | 23 | 23 | 18 | 18 | 27
29 |30 | 31 | 32| 33 |34 |35 |36 |37 |38 |39 |40 |41 |42 |43 |44 | 45| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55
27 |29 |29 | 30 | 30 | 28 | 28 | 35 | 35 |37 | 37 |39 |39 | 41 |41 | 42 | 42 | 44 | 44 | 46 | 46 | 43 | 43 | 50 | 50 | 52 | 52

A visual representation of the arteries, their connectivity and place in the body is given in Figure (11| The physiolog-
ical data is given in Table[6|and Table[7]in appendix B. The model is run for 7" = 10 s as to ensure a steady cycle is
reached. The results are then represented for the last second of this 10 second period.

We will compare the results of our model, the model by Rozendaal [7]] and the model by Sherwin et al. [15]. The
results for the velocity, pressure wave forms and the characteristic variables are shown. In Figure [12| the results are
shown at the start of the Ascending Aorta, artery 1. In Figure [13| the results are shown at the beginning of the L.
Anterior Tibial, artery 49.

At the Ascending Aorta, we see the prescribed increase in Ag in the shape of the w;. Because we are prescribing
forward variables, this is to be expected. Furthermore, the terminal reflection coefficients create backwards running
wave of significant magnitude. As no bifurcation has yet been passed, the w; variables of all models behave the same.
However, there is a notable difference in ws, which has passed through bifurcations, between the model by [7] and
the other two. The result is a complex velocity and pressure graph diverging significantly from prescribed values. The
difference in results is then explained by the difference in wo which can be attributed to the bifurcation treatment.

At the 1. anterior tibial we see that the forward running wave has increased dramatically in complexity. It has now
passed several bifurcations which has resulted in different wave forms for 7] and the other two models. As the artery
is a terminal artery we can see the behaviour of the terminal reflection coefficient well. It is clear that an increase in
wi results in a scaled decrease of wo just as expected. Now the difference in results is primarily caused by w;, which
is then translated to w, by the terminal reflection coefficient. This again can be attributed to the bifurcation treatment.

The model from [7] produces the same overall shape as the one from [15]. It is clear from our analysis that the
differences are caused by the bifurcation treatment. Changing the way bifurcations are treated has resulted in the
flux difference splitting method producing highly comparable results to the Discontinuous Galerkin. The results from
the 55-artery network provide a mathematical verification of our model. The quantities used (cross-sectional area
and velocity of the blood) are not widely used in the medical field however. To investigate the models capability of
producing medically applicable results we turn to the 111-artery network.
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Figure 11: Connectivity of the 55 arteries and their location. The circles indicate where results are compared. Middle,
Ascending Aorta and right the L. Anterior Tibial.
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Figure 12: Results of the 55-artery network at the start of the Ascending Aorta. Left, the model from [7], middle, our
model , right, the Discontinuous Galerkin, from [15]].
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Figure 13: Results of the 55-artery network at the start of the L. Anterior Tibial. Left, the model from [7], middle, our
model , right, the Discontinuous Galerkin, from [15]].
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8 111-artery network

We now turn our attention to the more detailed 111-artery network. The most notable difference is the addition of
the circle of Willis of arteries in the brain and face/neck. The data from [10] forms the basis of this network. The
study focuses on a circular model (including veins). The data is copied in the following way

« All non-coronary arteries were included with the exception of the the intercostal arteries.

« All terminal arteries were modelled as having their own windkessel boundary condition, as opposed to a col-
lective vascular bed.

+ Because of the exclusion of the intercostal arteries the Descending Thoracic Artery I & II were modelled as one
single artery.

The coronary arteries and the intercostal arteries are relatively small and have a small mean flow. Their exclusion
will not impact results in a meaningful way.

The data for the windkessel models is retrieved in the following way. If a terminal artery is present in the model and
data from Stergiopulos et al. [16]], the data is copied. If it is not, compliance values were taken directly from [10] and
the vascular bed resistance is set to Ry, = Rcap + Zo, Where Rc,p, is the reference value reported by [10] and Z is
the characteristic impedance of the terminal vessel. This approach is warranted since [10] based his data on [16] and
using Ry, = Rcap + Zo ensures the highest agreement between the vascular bed model and the windkessel model.
For more information about vascular bed models, the reader is invited to [5].

The connectivity of the 111-artery network is shown in Figure The circles indicate where in the network the
results were compared. The physiological data for the 111-artery network is available in Appendix C.

For the 111-artery network we will change the variables we investigate to () in ml/s and P (mmHg). This is done
as these are the viable quantities and units in the medical field and thus it makes the results more understandable
for medical experts. We will be comparing results to Mynard and Smolich [10]. Differences will be inevitable due
to the vastly different approaches to network components and the differences between closed/open loop models.
The variables for our artery network come from this study and thus it is still a viable comparison to investigate our
model. They also provide in vivo results which are of extra interest. It is important to note that the in vivo results are
taken from different sources and thus do not originate from the same person. Results from [[10] are given in Figure[15]

The model is run for 10 periods to achieve a steady cycle. Results are shown in Figure
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Figure 14: Connectivity of the 111 arteries. The circles indicate arteries where the results were compared, from left
to right, Right Radial Artery, Ascending Aorta and the Left Brachial Artery.
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8.1 Initial results

From Figure[16]it is immediately clear that the 111-artery network produces more complex results than the 55-artery
network. Observing the incoming characteristic variable at the Ascending Aorta, we see the shape of the prescribed
pressure returning in the systolic part of the cycle. First a rapid increase followed by a plateau.

When the ventricle pressure starts to drop, the valve plays an important role in shaping the pressure wave form.
As soon as the flow becomes negative, the valve starts to close. Before it fully closes, there is a period of net negative
flow, during this period the pressure drops. When the valve fully closes, flow returns to zero and this is accompanied
by an increase in pressure. This phenomena is known as a dicrotic notch. After the dicrotic notch, the pressure
gradually starts to come down.

Further down into the network, we see both at the Right Radial Artery and the Left Brachial Artery that the di-
astolic (minimum) pressure has dropped as a consequence of the frictional forces. At these terminal vessels we see
that the windkessel element acts in about the same way as the reflection coefficient. Namely, an increase in w; is
turned into a scaled decrease in ws. In the windkessel case, we see a smoothing of the curve however. This is due to
the windkessel element being frequency sensitive and reflecting lower frequency waves more.

We will now compare our results with that of the closed loop model and the in vivo measurements given in Fig-
ure [15 We will compare our results at the Ascending Aorta to results at the Aortic Root from [10]. There are only
two small arteries that branch of the Aortic Root before it turns into the Ascending Aorta so a comparison is justi-
fied. At the Aortic Root/Ascending Aorta we see a comparable shape of the pressure wave of same magnitude. The
differences can be best understood by observing the flow wave. We see that our model has a relatively fast increase
to peak flow, resulting in a short fast increase of pressure at the beginning of systole. The gradual decrease after peak
pressure takes a longer time, resulting in a longer slow increase in pressure to peak pressure. Lastly, there is more
negative flow, resulting in a bigger dip in pressure right after peak pressure.

At the Right Radial Artery and the Left Brachial Artery the difference is more profound. The shape of the pres-
sure wave at the Right Radial is somewhat comparable. However, peak pressure value is significantly lower and the
second peak is relatively large.

At the Left Brachial we do not see a peak in pressure of any kind as the pressure plateaus at around 120 mmHg. This
behaviour is also seen in w;. If we look at the Ascending Aorta we see this same plateau in w.

Both differences are likely to be attributed to the difference of boundary conditions at the Aortic Root/Ascending
Aorta and are not caused by any big differences in the numerical methods used. If we wish to achieve more com-
parable results, we thus need to change our inflow boundary conditions. The difference in pressure at the Aortic
Root/Ascending Aorta hints at a more slowly rising boundary condition during systole. The difference at the Left
Brachial suggest prescribing ventricular pressure with a peak value instead of a plateau.
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Figure 15: Results from the closed loop model and in vivo measurements, both from [10].
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Figure 16: Results of the 111-artery network at the start of the Ascending Aorta, left, the Right Radial Artery, right,
and the Left Brachial Artery, bottom. Results are shown for one period.
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8.2 Adjusted ventricular pressure

Learning from the initial results, we strive to prescribe ventricular pressure to better match our results to that ob-
tained in vivo. To this end we set t, = 0.055 s, this will make the curve look more like a peak instead of a plateau.
Because peak pressure is reached slower, we set ppcax = 90 mmHG so as to ensure mean pressure does not drop.
We shifted the first curve 0.15 to the left and the second curve 1.1 to the left. The result is shown in Figure[17] There
is a discontinuity at the start of a new period, this is of no concern however since the valve is closed at this point
thus isolating the system from the prescribed ventricular pressure.

120

—New prescribed pressure

100 = = Old prescribed pressure
80

60

P (mmHg)

40

20

Figure 17: Newly prescribed pressure.

The results obtained by prescribing this ventricular pressure are shown in Figure [18] We have left out the character-
istic variables as we have already analysed their behaviour.

The results obtained with the newly prescribed ventricular pressure bear a closer resemblance to in vivo results.
At the Ascending Aorta the flow graph is more in line with results from [[10], we also indeed see a more gradual in-
crease of pressure at the Ascending Aorta. At the Right Radial the form and magnitude of the pressure wave closely
resembles the in vivo results. At the Left Brachial there is also more of an appearance of a peak in pressure.

We can conclude that the newly prescribed pressure is a more realistic inflow boundary condition. Using the in
vivo results we can again verify the models capability of producing realistic results.

Using the prescribed ventricular heart model combined with valve action and the windkessel model, we are capable
of simulating realistic pressure and flow graphs. To ensure more realistic results, we could try to use more compli-
cated models for the heart. This, however, often results in having to determine more values for more parameters. This
not only increases uncertainty but also defeats the purpose of having a simple 1D model to begin with. If a model
becomes ever more complex, it can not easily be used for patient-specific predictions.

To keep the simple nature of the model and be usable for patient-specific pressure predictions, we will transition

from prescribed pressure, which is hard to measure inside an aorta, to prescribed flow, which can more easily be

retrieved.
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Figure 18: Results of the 111-artery network with the adjusted prescribed ventricular pressure at the start of the

Ascending Aorta, left, the Right Radial Artery, middle, and the Left Brachial Artery, right. Results are shown for 1.1
period.
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9 A partially patient-specific model

There are many potential applications of 1D blood flow model. One such application is noninvasive pressure mea-
surement in the aorta. As an example, decisions to operate on an arterial condition known as aortic rupture are
currently made by simply measuring the diameter with an MRI scan and comparing with a predetermined condition.
If the aortic diameter is determined to be too large, it is decided to operate. This condition is not patient-specific
however and it would be beneficiary to know the pressure cycle to determine if it is stable and safe.

It is possible however, with the same MRI scan, to determine the flow rate in the aorta. If the flow rate at the begin-
ning of the Ascending Aorta is measured, a 1D model can in theory be used to determine pressure. Here a 1D model
has a distinct advantage over a 3D model, namely that it produces absolute pressure values and not just a pressure
gradient. Moreover, it has a far superior running time (circa 10 minutes versus a couple of days). In this section, we
will attempt to produce such a partially patient-specific model using data acquired at the Leids Universitair Medisch
Centrum (LUMC).

9.1 Method

We will describe the method we used to build the partially patient-specific model. There are two types of methods
that were investigated. The single-factor scaling method and the multi-factor scaling method.

9.1.1 Inlet boundary conditions

Figure 19: MRI scan used in the research of patient 0463.

As illustrated in Figure [19] each patient has their flow rate measured at various planes with a trigger delta ranging
from 29 — 38s, the first plane is at the beginning of the Ascending Aorta. At peak systolic cardiac phase (¢;), the
time when the variation of 3D speed of the entire MRI data set is greatest, the area of the planes are determined (Ay).
Cubic spline interpolation in the time dimension is used to fit a curve through the flow data of the plane at the start
of the Ascending Aorta. This curve is then used as inflow boundary condition.
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As we are not dealing with forward prescription, the flow rate Q;,, (t) is forced using

At
Aptt = Af - Az (@it ATt — et (93)
n+1
where Q0! is Qi (t"11). Velocity is then determined by uft! = A?}“ .

9.1.2 Single-factor Scaling

The single-factor scaling method ensures that at ¢;,, when the MRI measure the cross-sectional area of the Ascending
Aorta to be A, the model also returns Ap. To achieve this, the 1D model is run for 10 cycles to ensure a stable
cycle. Afterwards, the last cycle is used to determine pg, the diastolic pressure, at plane 1. We then also determine
the pressure py, at .

We assume flow to be zero at (pq), which in practice is a reasonable assumption. Equation only holds when
Ap is determined at static equilibrium, meaning no flow. If this condition is met, it is also often written with a
reference pressure, (Dy¢f) in our case, as

P = Pext + Pref + ﬁ(\/z - \/A>d) (94)

See for example [3]] and [2]]. We now set pycr to pq.

Next, the Newton-Raphson method is used to find an A, the cross-sectional area of the Ascending Aorta at diastolic
pressure, such that for area A, equation returns p,. The function that is minimized is given by

f = Pext + pa — pv + B(Ad) (VA — VAg) (95)

Which results in a new value for A3. We now define

/(/) o Ad,new

= 96
Ad,old (6)

and multiply the dimensions of all arteries by ).

The model is now ran again to determine a new pq and py,. After a couple iterations, this method approaches a steady
cycle. This ensures the agreement between the model and the MRI data that we want.

At the first run we take as initial guesses p; = 110 mmHg and pg = 80 mmHg. This method is repeated until the
change in p; and pq is less than 1 mmHg.
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9.1.3 Multi-factor Scaling

The goal of the multi-factor scaling method is to better match the dimensions of the scaled network to that of the
MRI scan. The biggest difference between the single-factor scaled networks and the MRI data is the amount the
cross-section of the aorta decreases in the Descending Thoracic Aorta (DTA). In the baseline model the cross-section
at the beginning of the DTA is 2.5 times greater than at the end of the DTA. In the MRI data this tapering (decreasing
of the cross-section of an artery) was less.

When performing the multi-factor scaling we also measure py, at ¢, at plane 3 (begin DTA) and plane 5 (end DTA).
We now determine Ay for these two planes and also define

o Ad,plane,new
qpplane - A (97)
d,plane,old

for each plane. We then multiply all arteries distal to plane 5 by % to account for the lesser tapering.

9.1.4 Outflow conditions

We also need to perform scaling of the outflow conditions. For the scaling of R,1,, we define

_ ZlD,ncw (98)
Z1D,0ld

for every terminal vessel and multiply R., by k. Since Z1p and R}, both have the same unit this is a viable scaling
factor.

For C, we note that the compliance of a vessel can be estimated by
1 [ta
Cy =~ / “Lia (99)
P Jo €

as in 23], where [ denotes the length of the vessel and c? is given by equation , where 7 is replaced by r4. We
simplify and look at an artery with constant A;. Then we define

Ad new

y = Cv,new _ i;zi,new (100)
CV,()ld 72(]’01(1
€d,old

for every terminal vessel and then multiply C by .

9.1.5 Validation

To investigate the model performance, the flow at distal planes in the aorta is compared with the model output at
these locations. After the MRI scan, the pressure in the right and left arm were also measured for each patient. These
values, although not determined simultaneously with the MRI scan, will also be used to compare with the pressure
results of the model.

There are two patients who have two bifurcation in the aortic arc instead of three. This is deemed to be a too large

deviation from our baseline network to be able to make a meaningful comparison and these patients are thus not
investigated.

37



9.2 Results
9.2.1 Patient 1 - 0463

The data is from patient 0463 in the supplemental file. The cross-section at the beginning of the DTA is around 1.74
larger than at the end of the DTA. We will first show results for the single-factor scaling method. Results for the pres-
sure at the beginning of the Left and Right Brachial Artery and flow at the beginning and the end of the Ascending
Aorta and the Descending Thoracic Aorta are shown in Figure[20] Observing the flow, we see that the flow from the
model output and from the MRI data is exactly the same at the start of the Ascending Aorta since this is the inflow
boundary condition. At the end of the Ascending Aorta there already is a small difference. We see that the model
retains the same shape whilst the shape from the MRI data changes. This indicates that the MRI data is not perfect
and has an error. At the start of the Descending Thoracic Aorta the flow shape is still the same, however the flow in
the model is a bit lower. At the end of the Thoracic the flow in the model is substantially lower, this is exactly where
the tapering takes place.

The results for the pressure in the left and right arm are summarized in Table

Table 2: Results for the pressure in the left and right arm for patient 1.

Left arm Right arm
Measured | Model | Measured | Model
Heart rate (bpm) 44 48 45 48
Diastolic pressure (mmHg) 75 72 70 72
Systolic pressure (mmHg) 134 144 124 143

The fact that the pressure measurements were taken at a different time than the MRI scan makes comparing harder.
Ignoring this complication, We see that the model produces comparable results to the measurement for the diastolic
pressure. The systolic pressure is a bit higher in the model output. There is also a difference between systolic pressure
for the right and left arm in the model but this is not as substantial as was measured.

Next, the results of the multi-factor scaling method are discussed. Results for the pressure at the beginning of the
Left and Right Brachial Artery and flow at the beginning and end of the Descending Thoracic Aorta are shown in
Figure [21] We have excluded the flow values at the Ascending Aorta as those are in high agreement with each other.
As we can see from Figure 21| the flow values are better matched than the single-factor scaling method. This is to be
expected as a wider artery means more room for the blood to flow through, thus a higher blood flow.

The pressure is vastly underestimated however. The widening of the aorta has created more room for the blood
to flow through. Thus the overall pressure is significantly lower. If we only apply a widening, it is only logical to see
a drop in pressure. By only scaling one part of the network, we have disrupted the way the network interacts with
itself. If we were to scale the network correctly, we would need to know the dimensions of all arteries (or at least for
a few generations of bifurcations).

We conclude that there is not enough information to perform a multi-factor scaling of the network. In fact, hav-
ing enough information to perform a multi-factor scaling probably means having enough information to build a
whole new network. This defeats the purpose of using a baseline network to not have to collect all this information.
The single-factor scaling method thus seems to be preferable as it leaves the inner-workings of the network intact.
We will investigate the method further for different patients.

To illustrate the propagation of pressure and velocity in the blood vessels, we have made a plot of the whole network
at different times, which is shown in Figure[22] Figure[22]is constructed by representing each individual cell as an edge
in a graph. That edge is then coloured by assigning a colour to its pressure value. Thus, Figure 24| shows the pressure
in all 4600 cells. The representation is not up to scale. This kind of visualisation, which is novel to our understanding,
makes it easy to see how the pressure propagates and allows for a better understanding of the underlying dynamics
than the static plots that were used so far.
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Figure 20: Results for the first patient (0463) using the single-factor scaling method. Top, from left to right: flow and
pressure at the Left Brachial and Right Brachial. Bottom left, flow at the beginning (top) and end of the Ascending
Aorta (bottom). Bottom right, flow at the beginning (top) and end of the Descending Thoracic Aorta (bottom).
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Figure 22: Visual representation of pressure and velocity propagation in the full 111-artery network for patient 0463.

From left to right, first row ¢ = 11.35 sand ¢t = 11.48 s. Second row ¢t = 11.60 s and ¢t = 11.73 s. Third row
t=11.85sandt = 11.98s.
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9.2.2 Patient 2 - 0314

Here we only applied the single-factor method. In the supplemental file, this data is from patient 0314. The cross-
section at the beginning of the DTA is around 1.76 larger than at the end of the DTA. Results for the pressure at the
beginning of the Left and Right Brachial Artery and flow at the beginning and end of the Descending Thoracic Aorta
are shown in Figure

Firstly, the flow at the beginning of the Descending Thoracic Aorta has roughly the same shape and magnitude as the
MRI data. At the end of the Descending Thoracic Aorta the model output again has a lower flow due to the tapering.
It still is in reasonable agreement however.

The results for the pressure are summarized in Table

Table 3: Results for the pressure in the left and right arm for patient 2.

Left arm Right arm
Measured | Model | Measured | Model
Heart rate (bpm) 64 73 67 73
Diastolic pressure (mmHg) 91 92 85 92
Systolic pressure (mmHg) 144 144 138 143

From Table[3|we can conclude that the model makes a reasonable prediction of the overall pressure and the pressure
drop in the left and right arm. It is hard to say what the effect of the difference in heart rate is, since the heart rate is
higher when measuring the right arm pressure, but the determined pressure is lower, which one might not expect.

In this patient the aorta is less tapered and the model better predicted flow and pressure. It seems that having a
baseline network that has the same ratios as the patient results in better predictions. With the errors in MRI mea-
surement and uncertainties when measuring the pressures in both arms in mind, we can conclude that the 1D model
produces reasonable results. Its output can not be used to perform precise predictions. However, it does capture the
overall shape and magnitude of flow and pressure wave forms. A colour plot of the blood pressure and velocity is
shown in Figure
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Figure 23: Results for the second patient 0314. Top, left to righ: flow and pressure at the Left Brachial and right Right
Brachial. Bottom, flow at the beginning (top) and end of the Descending Thoracic Aorta (bottom).
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Figure 24: Visual representation of pressure and velocity propagation in the full 111-artery network for patient 0314
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9.2.3 Patient 3 - 0215

This concerns the data from patient 0215 in the supplemental file. The cross-section at the beginning of the DTA is
around 1.74 larger than at the end of the DTA. The diastolic pressure in the left and right arm is around 60 mmHg
whilst the systolic pressure is around 90 mmHg. This hints at hypotension (low blood pressure). To account for this,
we experimentally set 3 to 0.7 of its original value. Results are shown in Figure[25]

Results for the pressure are summarized in Table

Table 4: Results for the pressure in the left and right arm for patient 3.

Left arm Right arm
Measured | Model | Measured | Model
Heart rate (bpm) 67 61 56 61
Diastolic pressure (mmHg) 62 56 60 56
Systolic pressure (mmHg) 93 99 92 97

We again see an underestimation of flow and a relatively comparable pressure value. A colour plot is given in Figure
26]

From our results we can conclude that the single-scaling factor estimates pressure in the left and right arm with
reasonable accuracy. Depending on the patient, it underestimates the flow in the distal part of the aorta. Patient 2
has the best estimation of flow and pressure simultaneously, indicating a correlation between the two. It is probable
that if our baseline network had a lesser tapered aorta, the flow in the aorta and thus the pressure in the arm of
patient 1 and 3 would have been better estimated by the model. Research into a baseline model with a lesser tapering
of the aorta is therefore desirable. One can imagine a system where a few key characteristics of a patient, for example
having three or two bifurcation in the aortic arch and the amount of tapering of the aorta, are determined. Then,
a baseline model is selected with the same characteristics as the patient. This would require a handful of detailed
arterial networks, each with its own unique combination of characteristics, to be documented. This way accurate
non-invasive and multi-location pressure prediction would be possible for a high number of patients with only a
single MRI scan. Patient 3 shows us that the model can be adapted to account for diseased states.

The combination of a well-matched baseline model, MRI scan data and the colour plots can give an accurate and
easily understandable representation of the pressure propagation in an individual patient.
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Figure 25: Results for the third patient 0215. Top, from left to right: flow and pressure at the Left Brachial and Right
Brachial. Bottom, flow at the beginning(top) and end of the Descending Thoracic Aorta (bottom).
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Figure 26: Visual representation of pressure and velocity propagation in the full 111-artery network for patient 0215.
From left to right, first row t = 8.90 s and ¢t = 9.00 s. Second row ¢t = 9.10 s and ¢t = 9.20 s. Third row ¢t = 9.30 s
and t = 9.40 s.
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10 Conclusions

We will structure our conclusions in the following way. First, a list is given that details the changes to the model of
Rozendaal [[7]. Then the validation of the model is discussed. Next, the results of the scaled model combined with the
MRI data is discussed. Finally, recommendations for future work are presented.

The changes to the model of [7] are presented.
« The treatment of bifurcations was changed.
+ The model now includes the high resolution method at the branching points.
+ The model now includes several types of branching points.
« The network was changed from a 55-artery to a 111-artery network.

« The inlet boundary condition was changed from a simple sinusoidal model to a more complicated model in-
cluding prescribed ventricular pressure and a model for the aortic valve.

« The outlet boundary condition was changed from a reflection coefficient to a windkessel model.
+ The model implementation was made roughly 10 times faster by including sparse matrices.

It was shown that the high resolution flux difference splitting method combined with the new treatment of bifur-
cations produces highly comparable results to the Discontinuous Galerkin method from Sherwin et al. [15] in the
55-artery network with a simple sinusoidal heart model as inlet boundary condition and a terminal reflection coeffi-
cient as outlet boundary condition.

Next, a more extensive 111-artery network is studied. A heart model consisting of a prescribed ventricular pressure
cycle and a heart valve that opens and closed based on local pressure/velocity conditions is used. The three-element
windkessel model, an analogy from electric circuits, is used as an outflow boundary condition. The high resolution
flux difference splitting method proved to be capable of producing results highly comparable to a more elaborate
closed loop model from Mynard and Smolich [10] and to in vivo measurements.

The one-dimensional model with the 111-artery network as a baseline network is combined with MRI scan results
obtained at the Leids Univesitair Medisch Centrum (LUMC) to investigate its capability of predicting pressure and
flow wave forms in individual patients. The novel aspects of this approach are represented.

« The use of MRI acquired flow data as inflow boundary condition.

« The use of a scaling method to conform the dimensions of the model with that of the MRI scan.
« The use of a scaling method for the outlet boundary conditions.

« The use of the colour plots to present results.

The flow measured at the inlet of the Ascending Aorta with the MRI scan is used as the inflow boundary condition. To
make the model partially patient-specific, two types of scaling method are researched. With the single-factor scaling
method, the model is scaled such that the area of the Ascending Aorta in the model equals the area determined at
the LUMC at the time of measurement. Outlet boundary conditions were scaled accordingly. With the multi-factor
scaling method, the tapering of the aorta, meaning the amount it decreases in size further from the heart, in the
baseline model is reduced to better match LUMC measurements, all arteries distal to this tapering were also scaled.
The results were compared with flow measurements at various locations in the aorta and pressure measurements in
the right and left arm.

The multi-factor scaling proved incapable of producing realistic pressure results despite producing realistic flow
results. It can be concluded that a multi-factor scaling can only be applied to change local dimensions of the network
and not global dimensions as this changes the characteristics of the network too much.
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It was shown that the model is capable of producing realistic results for an individual patient with a single-factor
scaling method and that the accuracy of these results in all probability depends on the agreement of the ratios of the
baseline network and the arterial network of the patient. The single-factor scaling is combined with a novel colour
plot of the entire network to show pressure and velocity propagation in the 111-artery network of the patient in the
MRI scan. A high agreement of ratios between the baseline network and the arterial network of the patient could
lead to accurate non-invasive, multi-location pressure prediction.

Following are recommendations for future study. The recommendations concerning the mathematical basis for the
study are represented.

« Including a more sophisticated pressure-area relation.

« Including a more sophisticated description of the frictional force by assuming a different velocity profile.
« Changing the blood density to 1.06 g/cm? which is a more widely used value.

« Researching the effect of including gravitational forces.

All the previous recommendations stand to improve the model. We should stress however, that the acquired results
show that the model is already accurate. Since the application in this paper is novel and has a lot of potential, it may
be of more interest to pursue this path of further research. The recommendations concerning the development of
partially patient-specific models are represented.

« Expanding the number of patients analysed using the 111-artery network.

« Documenting a handful of detailed arterial networks, each with its own unique combination of characteristics,
to be used for scaling.

« Research into modelling patients with a diseased aorta with the possibility of using a multi-factor scaling
method to change local dimensions (a local bulge in the aorta for example).
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A CGS conversion table

In Table[5 the conversion from CGS units to SI units is shown.

Table 5: Conversion Table for the CGS system to SI units.

Quantity CGS unit Definition SI
length centimetre (cm) 1/ 100 of metre =10—2m
mass gram (g) 1/1000 of kilogram =10"3kg
time second (s) 1 second =1s
velocity centimetre per second (cm/s) cm/ s =10"%m/s
acceleration gal (Gal) cm / s2 =10"2m/s?
force dyne (dyn) g -cm/s? =107°N
energy erg (erg) g -cm?/s? =10"7J
power erg per second (erg/s) g -cm?/s? =10""W
pressure barye (Ba) g/ cm -s? =10"'Pa
dynamic viscosity poise (P) g/cm s =10"1Pa-s
kinematic viscosity stokes (St) cm? /s =10"*m?/s
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B Physiological data for the 55 arteries

The physiological data from Sherwin et al. [15] for the 55 arteries are shown in Table[6|and in Table 7]

Table 6: Physiological data for the 55 arteries from [[15] (1).

i Artery Length (cm) Area (cm?) Plkgs™2 em™2) R,
1 Ascending Aorta 4.0 5.983 97 -
2 Aortic Arch [ 2.0 5.147 87 -
3 Brachiocephalic 34 1.219 233 -
4 R. Subclavian [ 34 0.562 423 -
5 R. Carotid 17.7 0.432 516 -
6 R. Vertebral 14.8 0.123 2590 0.906
7 R. Subclavian II 422 0.510 466 -
8 R. Radial 235 0.106 2866 0.82
9 R. Ulnar I 6.7 0.145 2246 -
10 R. Interosseous 79 0.031 12894 0.956
11 R. Ulnar II 17.1 0.133 2446 0.893
12 R. Internal Carotid 17.6 0.121 2644 0.784
13 R. External Carotid 177 0.121 2467 0.79
14 Aortic Arch II 39 3.142 130 —
15 L. Carotid 20.8 0.430 519 -
16 L. Internal Carotid 17.6 0.121 2644 0.784
17 L. External Carotid 17.7 0.121 2467 0.791
18 Thoracic Aorta I 52 3.142 124 -
19 L. Subclavian 1 34 0.562 416 -
20 Vertebral 14.8 0.123 2590 0.906
21 L. Subclavian II 422 0.510 466 -
22 L. Radial 235 0.106 2866 0.821
23 L. Ulnar | 6.7 0.145 2246 —
24 L. Interosseous 79 0.031 12894 0.956
25 L. Ulnar 1I 17.1 0.133 2446 0.893
26 Intercostals 8.0 0.196 885 0.627
27 Thoracic Aorta II 104 3.017 117 -
28 Abdominal [ 5.3 1.911 167 -
29 Celiac I 2.0 0.478 475 -
30 Celiac II 1.0 0.126 1805 -
31 Hepatic 6.6 0.152 1142 0.925
32 Gastric 7.1 0.102 1567 0.921
33 Splenic 6.3 0.238 806 0.93
34 Superior Mesenteric 59 0.430 569 0.934
35 Abdominal II 1.0 1.247 227 -
36 L. Renal 32 0.332 566 0.861
37 Abdominal IIT 1.0 1.021 278 -
38 R. Renal 32 0.159 1181 0.861
39 Abdominal IV 10.6 0.697 381 -
40 Inferior Mesenteric 5.0 0.080 1895 0.918
41 Abdominal V 1.0 0.578 399 -
42 R. Common lliac 5.9 0.328 649 o
43 L. Common lliac 5.8 0.328 649 o
44 L. External iliac 144 0.252 1493 -
45 L. Internal Iliac 50 0.181 3134 0.925
46 L. Femoral 443 0.139 2559 o
47 L. Deep Femoral 12.6 0.126 2652 0.885
48 L. Posterior Tibial 32.1 0.110 5808 0.724
49 L. Anterior Tibial 34.3 0.060 9243 0.716
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Table 7: Physiological data for the 55 arteries from [15] (2).

# Artery Length (cm) Area (cm?) B (kgs?em™?) R,
50 R. External Iliac 14.5 0.252 1493 -
51 R. Internal Iliac 5.1 0.181 3134 0.925
52 R. Femoral Ahd 0.139 2559 -
53 R. Deep Femoral 12.7 0.126 2652 0.888
54 L. Posterior Tibial 322 0.110 5808 0.724
55 R. Anterior Tibial 34.4 0.060 9243 0.716
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C Physiological data for the 111 arteries

The physiological data from Mynard and Smolich [10] for the 11 arteries are shown in Table ] Table[9|and Table[10]

Table 8: Physiological data for the 111 arteries from [[10] (1).

Segment Mame

Systemic Arnteries

OO0 00 - R L

iy

12,1314
15
15
17
18
13
20
21
22
23
24
25
26
27
28
29
30
Y
32
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Left Carotid Artery LCA
Left Internal Carotid Artery LICA
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Descending Thoracic Aorta OTA
Left Subclavian Arerul LSubil)
Left Wertebral Arery Lwert
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Table 9: Physiological data for the 111 arteries from [[10] (2).

HeadlNeck Arteries

51 Right Renal Artery RRenal
22 Abdaminal Aora Y Abdfolli)
53 Inferior Mesenteric Artery InfMe=
54 Abdominal Aora Abdfali)
55 Left Commen lliac Artery LCmllizc
56 Right Common lliac Artery RCmlliac
ST Left External liac Arery LExliac
58 LeftInternal liac Artery Linlliac
59 Left Femoral Artery LFem
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E1 Left Posterior Tibial Artery LPTib
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Table 10: Physiological data for the 111
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D Stented artery, test case

Here we provide a test case with a stented artery, as originally presented in Rozendaal [7]. It provides insight into
the basic workings of the model.

A stent is a metal or plastic tube inserted into the bloodstream to widen narrowed arteries to increase blood flow.
The stent is generally stiffer than the surrounding blood vessel. We investigate the influence of the stent on the blood
flow. To this end we model the stent as an increase in § with the same Ag. The stiffness is a factor of k greater than
that of the surrounding artery, 3y. A schematic overview is given in Figure [27] The blood vessel has a length [, from

B=P B=xB, . BB

[ | il |

[ 1

x=0.251 x=0.51 x=0.751
.......................................... ...
P M D
I |
7 |
x=0 x=a, xX=a, x=I

Figure 27: A schematic representation of an artery with a stent, from Sherwin et al.[15]].

* = ay to x = ag a stent is placed with length L. At three points in the blood vessel the pressure is measured, P at
x =1/4, M at x = [/2 and at D = 3] /4. The difference in /3 is made continuous using a C'! continuous piecewise
polynomial over a width of 20 as is illustrated in Figure [28] All parameters are given in Table

Table 11: Variables for the stented artery test case.

Ao (cm?) | lem) | ai(cm) [ az(em) | Liem) [ p (g/cm?®) [ 6(cm) | Bo (dyne/cm?) [ x(=) | T(s)
0.5 15 5 10 5 1 0.5 451352 100 0.33

) |

Figure 28: Variation of 3, from Sherwin et al.[15].
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D.1 Initial condition

As the initial condition, we choose a system completely at rest. This means that A(t = 0) = Ap and u(t = 0) = 0.

In vector form N
o= [489]- (%]

D.2 Boundary conditions

As discussed before, we need to describe boundary conditions at the inlet and outlet of the system. In this case there
is one inlet and one outlet. At the inlet we prescribe pressure as

2wt T
p(t) = 20000sin | — | H | = —t¢ 102
p(t) sin ( T ) (2 ) (102)
Where H (t) denotes the Heaviside step function define as
1 t>a
H(t—a)—{ 0 iea (103)

In this case it allows half a sine period to pass. Using equation (14) we can write (102) as a condition for A

_ 2
D= Peat + BVA = /Ag) = A = <g+\/fo> (104)

Where we have used that peyxy = 0. Since we are using the forward prescription, we need to solve for w;. Using
we get

2
wy = wy + 4 —5/11/4 (105)
p
Fixing ws in its initial state and using (104) we arrive at
W2 [
w1 (0, t) = 'w2(0, 0) + — p(t) + Lo/ Ao (106)

NG

These values for w; and w, are used to calculate A and u using equation (30). A and u are then used as values for
boundary ghost cell.

At the outlet we use a non-reflective boundary condition. This is achieved by
wa(l,t) = wy(l,0) = constant (107)

At t = 0 the system is at rest at + = [. This means there is no net left flowing wave. The boundary condition ensures
that this is always the case. This leads to the boundary ghost cell being a copy of the last cell.

D.3 Stability
A grid of 400 cells is used. To ensure stability the CFL condition is met at each time ¢".

Az
At =
|A™]

(108)

max
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D.4 Results
We now compare results for a normal artery and a stented artery obtained by the flux difference splitting and the

Discontinuous Galerkin as described in Sherwin et al. [15]. All variables for the normal artery are the same as the
stented artery, only f is constant over the whole artery.

Flux difference spliting

p (dyne/em?)
p (dyne/em?)

-0.5
0

0.05 015 0.2 025
t(s)
Discontinuous Galerkin
ot 4
25 210 pg 210
2 2
15 E 15
g =
5 S
o 2
E 2
@05 3 05
= =4
0 [
0.5 05 - L L - .
0 0.05 01 015 0o 0.5 0 0,05 0.1 0.15 0.2 025

Time (secsh Times (secs)
Figure 29: Results of the normal artery, left column, and the stented artery, right column. The top row contains

results from the flux difference splitting, the bottom row contains results from the Discontinuous Galerkin method
from Sherwin et al. [15]].

The results from the normal artery shown in the left column show the half sine wave propagating non-distorted
through the artery. There is no noticeable difference between the two methods.

The initial condition combined with the constant material properties ensures that w; and ws are constant at ¢ = 0.
Since the right boundary condition prescribes that ws is fixed at the outlet, ws is in fact constant for every = and ¢.
This is consistent with a trivial constant solution for PDE . This also means that the wave speed A} = w
does not depend on ws. Thus the coupled quasi-linear system of PDEs decouples into two quasi-linear PDEs. Since
w is not constant in time it has a non trivial solution of its PDE. The small change in w;, however, results in the
quasi-linear effects being negligible. In fact, the difference in w; is at most 1 % and thus the difference in wave speed
also at most 1%. The wave speed is large in comparison to the length of the artery (% ~ 100). Thus the wave has
long passed the end of the vessel when anything quasi-linear becomes noticeable.

Inserting a stent effectively splits the vessel into three domains, namely the vessel before the stent, the stent itself
and the vessel after the stent. In each of these regions there are no sources and the model is governed by (36). Since
the vessel is too short for quasi-linear effects to show, the model behaves as a scalar transport model. This means
the shape of the wave is to a very good approximation preserved and the wave propagates through the vessel. In the
stent, 3 is larger and thus ), is also larger. Thus the points M and D are reached earlier by the pressure wave.
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Figure 30: A 3D visualisation of the wave propagation through the normal artery, left, and the stented artery, right.
Vessels are shown at t = 0.01s, t = 0.075s, ¢ = 0.175s from left to right. The displacement from equilibrium is
magnified by a factor 30. From [7].

There is a different situation at the boundaries of these models. There is a change in 5. At the inlet % > 0, resulting
in a positive source term for A. This results in the pressure increasing in P, this can be seen by the higher amplitude
at P att = 0.08s. At the outlet, the situation is reversed and we get a negative left running wave, this can be seen at
Patt=0.18s.

Overall, the flux difference splitting method produces comparable results to the Discontinuous Galerkin. There are
differences though, as can be seen in the slightly lower peak pressure at P in the stented artery. This difference is
minute however. In Figure [30] there is a 3D visualisation of the wave propagation from [7].

For more single artery test cases comparing the flux difference method and the Discontinuous Galerkin the reader is

referred to [7]. They look at an abnormal long artery to investigate non-linearity and a tapered artery. In general it
is shown that the two methods produce very similar results.
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