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Abstract
In this thesis, the behaviour and application of a one-dimensional model describing blood �ow through compliant
vessels is investigated. �e one-dimensional model is derived using the physical laws of conservation of momentum
and conservation of mass and uses a Finite Volume Method in combination with a high resolution �ux di�erence
spli�ing. First, the behaviour of the model is compared with established models in a network of 55 main arteries
and then in a network of 111 main arteries including in vivo results. Finally, the model with the 111-artery network
as a baseline is combined with in�ow boundary conditions and a scaling factor provided by MRI blood �ow data
to make it patient-speci�c. �e adapted model is used to investigate how well characteristics in the distal part of
the network can be predicted. It is found that the Finite Volume Method in combination with the high resolution
�ux di�erence spli�ing produces results that are highly comparable to those of established models both in the 55-
and 111-artery network. �e patient-speci�c model proves to be capable of predicting the pressure value in the arm
to a reasonable degree. �e �ow in distal parts in the aorta is underestimated for all patients, but the degree of this
underestimation varies per patient. Combining the results with a novel colour representation of pressure and velocity,
it is possible to show patient speci�c evolution of pressure and velocity in their arteries. Further research should
focus on adapting baseline networks with di�erent key characteristics to increase the accuracy of the predictions for
patients with di�erent characteristics than the baseline model used in this study. Such characteristics include the
number of bifurcations in the aortic arch (three or two) and the tapering of the aorta.
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1 Introduction
Investigating the workings of the human body has always been di�cult. �e underlying mechanisms are incredibly
complex and o�en have millions or even billions of individual components all working together. Moreover, ethical
concerns make in vivo research very di�cult. Our ever increasing computational power might solve both these
problems at once. We are constantly pushing boundaries of the complexity of models describing the systems of the
human body. �ese models simultaneously make it possible to investigate and diagnose with minimal surgical risk.
In developed countries cardiovascular diseases are responsible for as much as 20-25% of annual deaths. �is makes
researching the workings of the blood circulation of incredible value. Ideally, a patient speci�c model of the blood
circulation can help make potentially life-saving decisions if a medical expert is interested in the cardiovascular
state of a patient. �ere are two big problems to developing patient speci�c models. First is the still formidable
computational time when using 3D models based on the Navier-Stokes equations. Second is the lack of enough patient
speci�c data to comprise a detailed enough model. Under reasonable circumstances, a simpli�ed one-dimensional
model can be used to immensely cut computational time whilst enjoying highly comparable results to 3D models
Mynard [4]. Using a baseline network that is scaled for each individual patient could reduce the amount of parameters
needed to estimate for a patient from hundreds to a handful.
�e aim of this thesis consists of two parts. First, we will further develop the Finite Volume Method developed
in Rozendaal [7] and investigate its performance. Secondly, we will use data from the Leids Universitair Medisch
Centrum (LUMC) retrieved with a MRI scan to investigate the possibility of scaling a baseline method to produce
partially patient-speci�c models.
First, as recommended by [7] we will change the treatment of bifurcations to achieve more realistic results when
dealing with arterial trees. We will then investigate results obtained when simulating an arterial network of 55
arteries.
Next, the model will be expanded. In�ow and out�ow boundary conditions from the original model will be changed to
be more in alignment with literary standards. Again the behaviour of the Finite Volume Method will be investigated.
�e results will be compared to results obtained in literature and in vivo measurements.
Finally, we will investigate the use of a baseline model and MRI data to make a partially patient-speci�c model. �e
111-artery network is used as a baseline network. �e �ow data from the MRI scan will be used as an in�ow boundary
condition and the model will be scaled to be in agreement with measurements of the cross-sectional area of the aorta
by the MRI. Two scaling methods are researched. A simple single-factor scaling method and a more complicated
multi-factor scaling. Flow data in distal parts of the aorta and pressure measurements in the le� and right arm will
be used to investigate performance. We will simultaneously research if the model is capable of making reasonable
predictions and which scaling method is preferred.
�is thesis is structured as follows. First, a summary of the current work in the �eld of one-dimensional models of
blood �ow is given.
�en, the mathematical basis for the model is given in sections 3-6. Sections 3-5 concern the derivation of the model
and numerical method which was already covered in [7] and we will provide for completeness. Conservation of mass
and momentum is used to derive the equations that describe blood �ow in compliant vessels. A�er this, the equations
are transformed into the characteristic equations that provide important insight into the workings of the model. �e
numerical method is subsequently described. Following this, several methods to model the circulation, for example
a model for a heart, are presented and discussed. �is concludes the mathematical basis.
We continue with the validation of the model in sections 7-8. �e 55-artery network results are discussed and are
followed by the discussion of the 111-artery network results. �is concludes the validation of the model.
�e making of a partially patient-speci�c model is discussed and its performance investigated in section 9. �is section
contains many novel implementations of one-dimensional models. Finally, conclusions about the performance of the
Finite Volume Method and the method of creating partially patient-speci�c models are drawn.
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2 Literature survey
A short summary containing the current work of one-dimensional models of the human vascular system.
A system of Partial Di�erential Equations (PDEs) can be derived using the conversation of mass and momentum.
�ere are two general forms of this system of PDEs, one based on the volumetric �ow Q and mean velocity u and
another one based on the cross-sectional area A and u. �e two forms are equivalent for smooth solutions. For
discontinuous solutions then the form with Q and u is the proper form, see Sherwin et al. [15]. �us this is the form
we will use. Under normal physiological conditions, the solutions remains smooth.
�e system must be completed by a relation between pressure p and the cross-sectional areaA. Several relationships
have been proposed, for a list see Mynard [4]. We will use the relationship adopted in [2, 3, 4, 15]. �is relationship
requires an estimation of the sti�ness of the artery. �is can be done experimentally or by using the formula proposed
by Olufsen [9].
Bifurcations, or more generally branching points, are treated by solving a nonlinear system of equations consisting
of continuation of the characteristic variables, pressure and the conservation of mass. �e system is solved using the
Newton-Raphson method, see [4, 5, 15]. We will adopt the same treatment.
�ere have been many models of the heart. Some are part of a closed loop model as in Mynard and Smolich [10]. We
will use the model used in Sherwin [15] when dealing with the 55-artery model and the model proposed by [4] when
dealing with the 111-artery network.
Due to the high complexity of the human arterial network, it has to be truncated at a certain point. �is is done by
using an out�ow boundary condition. In the 55-artery network, a re�ection coe�cient is used as in Sherwin et al.
[15]. In the 111-artery a windkessel model is used. �e windkessel model is a 0D analogy from electrical circuits and
was �rst used in [11]. It is the most used out�ow boundary condition and is used in [2, 3, 16], a variant that is suitable
for closed-loop models is used in [10].
In literature, Finite Elements Methods (FEM) are o�en used such as the Taylor Galerkin scheme or the Discontinuous
Galerkin. We will thus use the FEM schemes as a way of validating our Finite Volume Method (FVM) approach.
Bale and LeVeque [1] describe a Finite Volume Method that is designed for spatially varying �ux functions.
�e application of one-dimensional blood �ow models has mostly focused on simulating various diseased states. For
example Sherwin et al. [15] studied the e�ect of implanted stents, Fossan et al. [3] studied the e�ect of a stenosis (a
narrowing of the blood vessel). For more applications, a comprehensive summary is given in Malatos et al. [8]. Most
applications focus on a more general analysis of a diseased state and are not patient-speci�c, they mostly o�er only
qualitatively accurate results but still o�er important clinical insight.
Although the �ow at the beginning of the Ascending Aorta has been used as an inlet boundary condition in [16], we
are not aware of the coupling of MRI scans with MRI data to produce partially patient-speci�c models.
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3 Derivation of the model
We begin with the mathematical basis by deriving the basic one-dimensional �ow model. We model blood vessels as
being composed of strictly circular cross-sections with the x axis serving as the cylindrical axis. �e velocity pro�le
is assumed to be �at. �e area of the cross-section is given by A(x, t). �e mean velocity across a cross-section is
denoted by u(x, t). A schematic overview of a blood vessel is given in Figure 1.

Figure 1: Schematic overview of a blood vessel with A and u from Peiró et al. [12].

3.1 Conservation of mass
We consider a control volume from x = a to x = b. �e mass in this control volume is given by

∫ b
a
ρ(x, t)A(x, t)dx.

Here A(x, t) is the area of a cross-section at position x and time t in m2 and ρ(x, t) in kg/m3. Blood is modelled as
an incompressible �uid, ρ(x, t) = ρ = 1021kg/m3. Now the change of the mass in the control volume is dependent
on how much mass �ows in at the interface at x = a and how much �ows out at x = b per unit time. �is �ow
is known as the mass �ux. �e mass �ux at x = a is given by ρA(a, t)u(a, t), the mass �ux at x = b is given by
ρA(b, t)u(b, t). Here u(x, t) is given in m/s. We can therefore write

d

dt

∫ b

a

ρAdx = ρA(a, t)u(a, t)− ρA(b, t)u(b, t) (1)

It is reasonable under normal conditions to assume that A and u are su�ciently smooth. �e right-hand side can be
rewri�en as

ρA(a, t)u(a, t)− ρA(b, t)u(b, t) = −ρ
∫ b

a

∂(Au)

∂x
dx (2)

Since ρ is independent of time we can combine equation (1) and (2) to give

ρ

∫ b

a

∂A

∂t
+
∂Au

∂x
dx = 0 (3)

�e generality of this equation allows us to state that

∂A

∂t
+
∂Au

∂x
= 0 (4)

�is is the �rst equation of the general model.
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3.2 Conservation of momentum
We again use the control volume from x = a to x = b. �e conservation of momentum tells us that the only
way momentum inside the control volume, given by

∫ b
a
ρAudx, can change is through the momentum �ux at the

boundaries, given by ρA(a, t)u(a, t)
2 and ρA(b, t)u(b, t)

2 respectively, and applied forces F . �us

d

dt

∫ b

a

ρAudx = ρA(a, t)u(a, t)
2 − ρA(b, t)u(b, t)

2
+ F (5)

�e forces F consist of several forces. First the body forces, which we assume to be zero. Secondly, the surface forces
at the boundary given by A(a, t)p(a, t)−A(b, t)p(b, t) where p(x, t) denotes the pressure at x and t in Pa. �e side
wall pressure force,

∫ b
a
p∂A∂x dx and a viscous resistance force, −

∫ b
a

2πRτdx. Here τ = µ(∂u∂r )|R is the shear stress,
µ ≈ 0.035 P is the viscosity, r is the radial direction and R is the vessel radius. �is leads to

F = A(a, t)p(a, t)−A(b, t)p(b, t) +

∫ b

a

p
∂A

∂x
dx−

∫ b

a

2πRτdx (6)

Combining equations (5) and (6) and rewriting the boundary terms as integrals, we get

ρ

∫ b

a

∂Au

∂t
dx = −ρ

∫ b

a

∂Au2

∂x
dx−

∫ b

a

∂Ap

∂x
dx+

∫ b

a

p
∂A

∂x
dx−

∫ b

a

2πRτdx (7)

Simplifying yields

ρ

∫ b

a

(
∂Au

∂t
+
∂Au2

∂x
+

1

ρ

∂Ap

∂x
− p

ρ

∂A

∂x
+

1

ρ
2πRτ)dx = 0 (8)

Again, generality leads to the conclusion that

∂Au

∂t
+
∂Au2

∂x
+

1

ρ

∂Ap

∂x
− p

ρ

∂A

∂x
+

1

ρ
2πRτ = 0 (9)

Making use of the product rule for di�erentiation,

∂Au

∂t
=
∂A

∂t
u+

∂u

∂t
A,

∂Au2

∂x
=
∂Au

∂x
u+

∂u

∂x
Au,

∂Ap

∂x
=
∂A

∂x
p+

∂p

∂x
A (10)

we can simplify equation (9) to

A(
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+

1

ρ

2

R
τ) + (

∂A

∂t
+
∂Au

∂x
) = 0 (11)

Now the last term equals zero due to the conservation of momentum. Flow in the major arteries is o�en considered
to be laminar and the expression for Poiseuille �ow, which is fully developed (∂u∂x = 0) and steady (∂u∂x = 0) is

τ = −R
2

dp

dx
=
R

2

8µQ

πR4
=
R

2

8πµu

A
(12)

�is does not hold for turbulent �ow or non-Newtonian �ow. Note that assuming Poiseuille �ow means assuming a
parabolic velocity pro�le. With this assumption we arrive at

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+

8πµu

Aρ
= 0 (13)
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3.3 �e �nal system
To complete the system of equations, we assume a relationship between the pressure of a blood vessel and its cross-
sectional area. �is relationship is the same as in Sherwin et al. [15], given by

p = pext + β(
√
A−

√
A0) (14)

Where pext is the external pressure in Pa, A0(x) is the cross-sectional area in m2 in equilibrium. β is given by

β =

√
πh0E

(1− ν2)A0
(15)

Here E(x) is the Young modules in Pa, h0 is the vessel thickness at equilibrium (p, u) = (pext, 0). ν is the Poisson
ratio, for biological tissue it is most commonly taken as ν = 1

2 .
For the 55-artery model, the values of β have been experimentally determined and those values will be used. For the
111 artery model, we will use the empirical formula suggested by Olufsen [9] to determine h0 and E

c20 =
2

3ρ

Eh0

r0
=

2

3ρ
[k1exp(k2r0) + k3] (16)

Where c0 and r0 are the pulse wave velocity and radius of the vessel at rest. �e values of k1, k2 and k3 are set to
3 · 106 g s−2 cm−1, −9 cm−1 and 33.7 · 104 g s−2 cm−1 respectively.

3.4 Conservative form
Now that we have derived the system (non-linear) partial di�erential equations given by{

∂A
∂t + ∂Au

∂x = 0
∂u
∂t + u∂u∂x + 1

ρ
∂p
∂x + 8πµ u

Aρ = 0
(17)

completed by
p = pext + β(

√
A−

√
A0)

We want to write the system in a conservative form, so that it is be�er to handle. To that end, we write

U =

[
A
u

]
, F (U) =

[
Au

1
2u

2 + p
ρ

]
, S(U) =

[
0

−8πµ u
Aρ

]
(18)

So that the system of equations can be wri�en as

∂U

∂t
+
∂F (U)

∂x
= S(U) (19)

Where U is the conserved quantity, F (U) is the �ux function and S(U) denotes the source term. If we integrate
equation (19) from x = a to x = b, we see why it is known as the conservative form∫ b

a

∂U

∂t
dx+

∫ b

a

∂F (U)

∂x
dx =

∫ b

a

S(U)dx (20)

If U is su�ciently smooth, this leads to

∂

∂t

∫ b

a

Udx = F (U)|a − F (U)|b +

∫ b

a

S(U)dx (21)

Here we recognise that U is a conserved quantity in a control volume from a to b. It can only change in time through
the �uxes through the boundaries F (U) and/or the source function S(U) that acts within the control volume.
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4 Characteristic equations
Our goal is now to describe the nonlinear system of partial di�erential equations we derived earlier using a system of
characteristic equations. �ese equations, supplemented with the required characteristic variables, should describe
the behaviour of the nonlinear system fully. An advantage of these characteristic equations is that they provide
meaningful insights into how the system works. �ey are also of interest when se�ing boundary conditions for the
system.

4.1 Derivation of the characteristic equations
Whilst deriving the characteristic equations, we assume pext = 0, β = β(x) and A0 = A0(x). Applying the chain
rule to equation (14)

∂p

∂x
=
∂p

∂A

∂A

∂x
+
∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x
=

β

2
√
A

∂A

∂x
+ (
√
A−

√
A0)

∂β

∂x
− β

2
√
A0

∂A0

∂x
(22)

�is result is now substituted into the system of partial di�erential equations (19) and the chain rule is once more
applied to arrive at a quasi-linear form

∂U

∂t
+H(U)

∂U

∂x
=

[
A
u

]
t

+

[
u A
β

2ρ
√
A

u

] [
A
u

]
x

= K(U) (23)

Where K(U) is de�ned by

K(U) =

[
0

−8πµ u
Aρ −

1
ρ

{
(
√
A−
√
A0)∂β∂x −

β
2
√
A0

∂A0

∂x

}] ] (24)

�e Jacobian of the �ux function is given by

H(U) =
∂F (U)

∂U

[
u A
β

2ρ
√
A

u

]
(25)

�e eigenvalues of H(U) are found to be λ± = u ± c. Here c is the velocity of a wave when the �uid is at rest and
is know as the basic wave speed and is given by c =

√
β
2ρA

1/4. If the �uid is not at rest, the waves are travelling at
λ± = u± c.
As was found in [15], normal physiological conditions result in c > u. �us the system consists of waves running
forward at a speed of λ+ = u+ c, and waves running backward at λ− = u− c. Furthermore the eigenvalues are real
and distinct, and the system is strictly hyperbolic.
Diagonalizing H yields

H = RΛR−1 =

[
A
2c − A

2c
1
2

1
2

] [
u+ c 0

0 u− c

] [
c
A 1
− c
A 1

]
(26)

Substituting this into equation (23) and rewriting results in

R−1 ∂U

∂t
+ ΛR−1 ∂U

∂x
= R−1K(U) (27)

�e system is now rewri�en in terms of the characteristic variables W =

[
w1

w2

]
. To this end we implicitly de�ne

W such that ∂W∂U = R−1. �us

∂ (w1, w2)

∂(A, u)
=

[
∂w1

∂A
∂w1

∂u
∂w2

∂A
∂w2

∂u

]
=

[
c
A 1
− c
A 1

]
(28)
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From this we can derive the expressions of the characteristic variables. �ey are given by

w1 = u+ 4c = u+ 4A1/4

√
β

2ρ
, w2 = u− 4c = u− 4A1/4

√
β

2ρ
(29)

Inverting the expressions yields

A =

(
w1 − w2

4

)2(
ρ

2β

)2

, u =
w1 + w2

2
(30)

Substituting the expression for R−1 into equation (27)

∂W

∂U

∂U

∂t
+ Λ

∂W

∂U

∂U

∂x
= R−1K(U) (31)

�e chain rule is used to state
∂W

∂t
=
∂W

∂U

∂U

∂t
(32)

and for the spacial derivative

∂W

∂x
=
∂W

∂U

∂U

∂x
+
∂W

∂β

∂β

∂x
=⇒ ∂W

∂U

∂U

∂x
=
∂W

∂x
− ∂W

∂β

∂β

∂x
(33)

We can use this identities to write the system as

∂W

∂t
+ Λ

∂W

∂x
= R−1K + Λ

∂W

∂β

∂β

∂x
(34)

Using the relations in (30) we can write this equation completely in terms of w1 and w2, thus completing the trans-
formation.
If we assume inviscid �ow, µ = 0 P, and look at regions where the elasticity and the cross-sectional area are not
space-dependent, β(x) = β and A0(x) = A(x), the equation can be simpli�ed even further.

∂W

∂t
+ Λ

∂W

∂x
= 0 (35)

or component wise
∂w1

∂t
+ λ1

∂w1

∂x
= 0,

∂w2

∂t
+ λ2

∂w2

∂x
= 0 (36)

Noting that λ+ = u+ c = w1+w2

2 +
√

β
2ρ
w1−w2

4

√
ρ

2β = 5w1+3w2

8 and λ− = 3w1+5w2

8 , we have arrived at a coupled
system of quasi-linear Partial Di�erential Equations. If we assume λ± to be constant, the solution consists of two
transport equations where the velocity is given by λ±.

�e transformation of the original system of PDEs into the characteristic equations with characteristic variables w1

and w2 shows that throughout the domain of the system information is carried by w1 in the positive direction and
by w2 in the negative direction. �is important insight will be used to state boundary conditions and handle the
branching of arterial networks.
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5 Numerical Method
We will now describe the numerical method used to evaluate the system of nonlinear PDEs. We begin by assuming
the frictional force to be small and negligible. �us we set µ to zero in equation (18). �is results in

∂U

∂t
+
∂F (U, x)

∂x
= 0, U =

[
A
u

]
, F (U, x) =

[
Au

1
2u

2 + p
ρ

]
(37)

�e system (37) is strictly Hyperbolic. Hyperbolic PDEs are o�en found describing wave propagation and transport
phenomena. �ey are closely related to conservation laws. In fact, the current system of PDEs was derived using
the conservation of mass and momentum. It thus makes sense to pick a scheme that naturally has the property of
satisfying these conservation laws. Finite Volume Methods (FVM) have this property and thus seem a natural choice
to describe our system of PDEs.

5.1 Stability
As we are dealing with a hyperbolic PDE, the CFL condition must be met to ensure stability in the time domain. �e
condition for the time step that follows from the CFL condition is

∆t ≤ ∆x

|λi|
, i ∈ {1, 2} (38)

In this case, the CFL condition can be interpreted as ensuring that waves originating at cell interfaces can only
in�uence the bordering cells. �is can be seen from s = |λi|∆t ≤ ∆x.

5.2 Linear case
To be�er understand how to use FVM methods for this nonlinear problem, we �rst look at a linear case. �is test
case only serves the purpose of inspiring our approach to the original problem and the variables have no physical
meaning.

∂q

∂t
+A

∂q

∂x
=

[
q1

q2

]
t

+

[
a b
b a

] [
q1

q2

]
x

=

[
0
0

]
(39)

Since A is symmetric, it has two distinct real eigenvalues if b 6= 0. It then is strictly hyperbolic. To solve this linear
case with an FVM method, we discretize the domain in equidistant intervals (volumes) of ∆x as in LeVeque [13].
Each individual cell, Ci is centered around xi and is given by (xi − 1

2∆x, xi + 1
2∆x). We denote the average value

of Q in Ci at time n by Qni = 1
∆x

∫
Ci
Q(x, tn)dx. For this average we use the following scheme

Qn+1
i = Qni −

∆t

∆x

(
A+∆Qni−1/2 +A−∆Qni+1/2

)
(40)

In this equation, A±∆Qni∓1/2 represent the �uctuations through the boundaries of xi. A+∆Qni−1/2 represents the
e�ect of all right �owing waves at the le� boundary of Ci, namely xi−1/2. In the same way A−∆Qni+1/2 represents
all le� �owing waves at the right boundary, xi+1/2. �us if there is no net in�ow or out�ow,Qi does not change with
time, as is expected when inspecting system (39) as there is no source term. WhenA is diagonalized asA = RΛR−1,
we can calculate the �uctuations with

A+∆Qni−1/2 = RΛ+R−1
(
Qni −Qni−1

)
A−∆Qni+1/2 = RΛ−R−1

(
Qni+1 −Qni

) (41)

Here Λ± are given by

Λ+ =

[
λ1 0
0 0

]
, Λ− =

[
0 0
0 λ2

]
(42)
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5.3 Riemann problem
Since we are dealing with a nonlinear problem, we can not use the numerical scheme in (40) combined with (41) and
(42) directly. However, we can use the general method of solving for the next time-average by using the in�ow and
out�ow through the two boundaries of a cell. We will thus investigate how the time average changes as a function
of these in�ows and out�ows for our nonlinear problem. To this end we investigate the Riemann problem.

�e Riemann problem is an initial value problem of a conservation law with piece wise constant initial data and a
single discontinuity. �e goal is to understand how the solution behaves as a function of the discontinuity at the
boundaries of cells. When this is known, the scheme of (40) can be adapted to solve for the entire domain.

We study the situation on the interface of cell i and cell i -1. For the initial data we choose at time tn

U (x, tn) =

{
Uni−1, x < xi−1/2

Uni , x > xi−1/2
(43)

Here xi−1/2 is the border between the two cells. We will use a couple of linearizations to simplify the problem and
to approximate the cell averages at tn+1.
First we approximate the �ux function F (U, x) as being constant in each cell. �e value of this discretized �ux
function is determined at the center of the cell, for cell Ci this is the point xi. We write Fi(U) = F (U, xi).
�e solution for the Riemann problem now splits into two domains

∂U

∂t
+
∂Fi−1(U)

∂x
= 0, if x < xi−1/2

∂U

∂t
+
∂Fi(U)

∂x
= 0, if x > xi−1/2

(44)

�is solution is only valid for x ∈ (xi−3/2, xi+1/2) due to the CFL condition. To be�er understand the behaviour of
the solution, the domain is represented in Figure 2. On the y-axis we see the evolution of time from tn to tn+1. On
the x-axis we see the two cells Ci−1 and Ci and their interface at xi−1/2. At any point in time, the x-coordinate of
the tilted lines tells us how far the information from the interface has travelled. �us the value of U is constant in all
enclosed volumes.

Figure 2: Domain of the Riemann problem solution, from [7].

9



For bounded solutions we expect the �ux to be conserved across the cells interface at xi−1/2.

Fi−1(U li−1/2) = Fi(U
r
i−1/2) (45)

Where the superscript l and r denotes the value just le� of the cell interface and just right of the cell interface
respectively. Since in general Fi−1(U) 6= Fi(U) we have U li−1/2 6= Uri−1/2. �ere is thus a spatial discontinuity of
U at cell interfaces.
When we apply the chain rule to (44) we get

∂U

∂t
+
∂Fi−1(U)

∂U

∂U

∂x
= 0, if x < xi−1/2

∂U

∂t
+
∂Fi(U)

∂U

∂U

∂x
= 0, if x > xi−1/2

(46)

Here ∂Fi(U)
∂U = Hi(U) is the �ux Jacobian as introduced in (25).

�e next simpli�cation is the assumption that the �ux Jacobian is constant in each cell Hi(U) = Hn
i in cell Ci at tn.

�us we arrive at a system of two linear PDEs for the Riemann problem.
�is 2 x 2 linear system of strictly hyperbolic PDEs has two characteristic variables with corresponding constant
eigenvectors and constant eigenvalues. As we have assumed that the problem is subcritical, there is one characteristic
variable moving to the le� and one to the right. We are interested what happens at the discontinuity as this will a�ect
the value ofUn+1. At tn we have piecewise continuous initial data,Uni−1 andUni . We thus expect the le�ward �owing
characteristic variable that starts at the cell interface to move at speed λn2,i−1 into the Ci−1 domain. Similarly the
rightward �owing characteristic variable moves at λn1,i into the Ci domain. So at tn+1, the U domain is piecewise
constant with four values, namely Uni−1, U li−1/2,Uri−1/2 and Uni . How much the values of Ui−1 and Ui change
over time, depends on the two added discontinuities. �ese discontinuities are the waves. We will investigate their
behaviour more thoroughly.
�e eigenvectors and eigenvalues of the �ux Jacobian are given by

λ1 = u+ c, r1 =

[
A
2C
1
2

]
, λ2 = u− c, r2 =

[
− A

2c
1
2

]
(47)

Using our insight from above as justi�cation, we will use for the rightward �owing waves

λn1,i−1/2 = λn1,i, rn1,i−1/2 = rn1,i (48)

And for the le�ward �owing wave we use

λn2,i−1/2 = λn2,i−1, rn2,i−1/2 = rn2,i−1 (49)

We will now solve for the strength of these waves, and thus determine Un+1 by averaging the e�ects of the waves.
To solve this problem, one could try to �nd U li−1/2 and Uri−1/2. �is, however, proves to be a di�cult task. Focusing
on the �ux is the simpler approach. To this end, we will use the continuity of the �ux at the cell interface and
decompose the �ux di�erence Fni (U)−Fni−1(U) into f-waves, this is the �ux di�erence spli�ing. To achieve this, we
use that the �rst f-wave, Zn1,i−1/2, is proportional to rn1,i and the second f-wave, Zn2,i−1/2, is proportional to rn2,i−1.
Decomposing the �ux di�erence is done as follows

Fi (U)− Fi−1 (U) = Zn1,i−1/2 + Zn2,i−1/2 = βn1,i−1/2r
n
1,i + βn2,i−1/2r

n
2,i−1

= Rni−1/2β
n
i−1/2 =

1

2

[
An

i

cni
−A

n
i−1

cni−1

1 1

][
βn1,i−1/2

βn2,i−1/2

]
(50)

Here the factor βnj,i−1/2 is the relative strength of the eigenvector rnj,i−1/2. Rni−1/2 contains both eigenvectors as
columns. Solving for βni−1/2[

βn1,i−1/2

βn2,i−1/2

]
=

2
An

i

cni
+

An
i−1

cni−1

[
1

An
i−1

cni−1

−1
An

i

ci

]
(Fi (U)− Fi−1 (U)) (51)
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We can now calculate the f-waves via Znj,i−1/2 = βnj,i−1/2r
n
j,i−1/2.

�e f-waves we have calculated are the e�ect of all waves �owing through the boundary, it thus comes as no surprise
that we can incorporate them in the formalism introduced in the linear test case solution via

A+∆Uni−1/2 = Zn1,i−1/2

A−∆Uni−1/2 = Zn2,i−1/2

(52)

Now we can formulate the method for the nonlinear case, it is given by

Un+1
i = Uni −

∆t

∆x

(
Zn1,i−1/2 + Zn2,i+1/2

)
(53)

5.4 High Resolution method
Flux di�erencing methods as the one described above have the undesirable trait that they smear out solutions and
thus do not have a high resolution. To improve the solution found, we would like to increase the resolution. How-
ever, Godunov’s order barrier theorem states linear methods higher than �rst order cannot provide non-oscillatory
solutions. To increase the resolution, we are thus required to use a nonlinear method. We will use �ux limiters. Flux
limiters work by switching between di�erent spatial discretization schemes. Solutions containing a steep gradient
are solved using a �rst order scheme so as to not have oscillations. When the gradient is less steep, a higher order
spatial discretization is used to improve resolution. It is not a hard on/o� switching that takes place, but more like a
spectrum that the �ux limiter uses. �e method is formulated as

Un+1
i = Uni −

∆t

∆x

(
Zn1,i−1/2 + Zn2,i+1/2

)
− ∆t

∆x

(
F̃ni+1/2 − F̃

n
i−1/2

)
(54)

Here F̃ni−1/2 is a �ux correction term given by

F̃ni−1/2 =
1

2

2∑
p=1

sign
(
λnp,i−1/2

)(
1− ∆t

∆x

∣∣∣λnp,i−1/2

∣∣∣) Z̃np,i−1/2 (55)

Z̃np,i−1/2 is a modi�ed version of Znp,i−1/2

Z̃np,i−1/2 = φ
(
θnp,i−1/2

)
Znp,i−1/2 (56)

Where φ(θ) is the �ux limiter. In this case the minmod limiter is used, this is second order Total Variation Diminishing
(TVD). �is is a su�cient condition to guarantee stability

φmm(θ) = max

{
0,min

{
2θ,

2 + θ

3
, 2

}}
(57)

�e argument of the �ux limiter is a measure of the strength of the waves that will reach the cell in the next time step
relative to Znp,i−1/2. �is depends on the propagating directions of the waves, given by λnp,i−1/2. In [13], a method is
proposed to determine the wave strength.

θnp,i−1/2 =
Znp,I−1/2 · Z

n
p,i−1/2

Znp,i−1/2 · Z
n
p,i−1/2

(58)

Here the dot represents the dot product between vectors. I is given by

I =

{
i− 1 if λnp,i−1/2 > 0

i+ 1 if λnp,i−1/2 < 0
(59)

�is method only works if the solution is smooth enough. If the solution changes extremely rapidly, more sophisti-
cated methods are needed, an example is presented in Lax and Liu [6].
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5.5 Frictional forces
If we assume the frictional forces to be non-negligible, we have to include them in our numerical method. �is will
be the case in the 111-artery model. In this case µ = 0.035 P for blood and the frictional force is included via a �rst
order discretization, giving a third term. �en the method is given by

Un+1
i = Uni −

∆t

∆x

(
Zn1,i−1/2 + Zn2,i+1/2

)
− ∆t

∆x

(
F̃ni+1/2 − F̃

n
i−1/2

)
+ ∆t Sni (U) (60)

With Sni (U) given by

Sni (U) =

[
0

−8πµ
un
i

An
i ρ

]
(61)

5.6 Boundary conditions
We perform an analysis to determine which variables we can describe at the boundaries. Here the characteristic
variables are useful, since the variables at a given point in the system are a combination of forward and backward
travelling waves. At the boundary we thus only need to prescribe the incoming wave front from outside the compu-
tational domain. Since the characteristic variable w1 corresponds to λ1 > 0 and w2 corresponds to λ2 < 0, we need
to prescribe w1 at the le� boundary and w2 at the right boundary. To determine which variable we can describe, we
compute

Jw1 =
∂(A, u)

∂w1
=

[ (
ρ

2β

)2 (
w1−w2

4

)3
1
2

]
(62)

And

Jw2
=
∂(A, u)

∂w2
=

[
−
(
ρ

2β

)2 (
w1−w2

4

)3
1
2

]
(63)

We can use a variable to prescribe a characteristic if the corresponding element of Jwj is nonzero. For u this is
obviously the case. We can prescribe A whenever w1 6= w2. �is is the case when −4c 6= 4c ⇒ c 6= −c ⇒ c 6= 0.
Since under normal physiological circumstances β > 0, ρ > 0, A > 0 it follows from c =

√
β
2ρA

1/4 that indeed
c > 0. We can thus prescribe A or u or any function of the two such as p or Q.

5.7 Forward prescription
When dealing with boundary conditions, one usually chooses to prescribe a certain variable such that a speci�c
condition is met at the boundary. However, if one would bluntly prescribe p, A, u or Q, at the inlet boundary, you
would need to have knowledge of the backward running waves. Stents, bifurcations and their location in the sys-
tem a�ect these waves among other things. Lacking this knowledge, it would be more natural to prescribe variables
using the forward propagating characteristic w1 and �xing w2 in its initial state. �e forward prescription ensures
that the boundary conditions are not sensitive to the backward running waves. It is important to note that when
forward prescription is used, the value at the boundary is not exactly equal to the given value. However, the dif-
ference between actual prescribed value and the forward prescription is at most a few per cent, while having good
non-re�ective properties.

It is important to note that in the section Partially Patient-Speci�c Model, we will be dealing with absolute, not
forward, �ow rates.

In Appendix D, a test case with a stented artery is presented that provides insights into the basic workings of the
model.
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6 Modelling the circulation
In the preceding section, we have constructed a method of simulating pulse propagation through a single artery with
possible discontinuous material properties. To properly model �ow through the human arterial network, we need
to have a way to model the heart (in�ow boundary conditions), out�ow boundary conditions and branching points.
Various methods are used for the 55-artery network and the 111-artery network and we will explain the methods
used.

6.1 Heart model
�e heart is the driving factor of blood �ow and is thus an extremely important part of every model. Two methods
are used, a simple sinusoidal increase in cross-sectional area, and a more complicated model including the opening
and closing of the aortic valve.

6.1.1 Sinusoidal model

�e heart causes an increase in pressure at the beginning of the Ascending Aorta and in this way drives �ow through-
out the arterial network. Via equation (14) an increase in pressure is related to an increase in cross-sectional area.
�us the heart can be modelled as an increase of the area at the beginning of the Ascending Aorta. �is method is
used in the 55-artery model. �e equation describing the cross-sectional area at the start of the Ascending Aorta as
a function of time is given by

Ā(t) = A0,1 + 1.587 · δ(t)H(δ(t)), δ(t) = sin(ωt+ 0.628)− 0.588 (64)

�e model is plo�ed in Figure 3.

Figure 3: �e heart model used for the 55-artery network using equation (64).

�is model is easy to implement and does a good job of capturing the very basic properties of a heart.
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6.1.2 Ventricular Pressure and Aortic Valve model

We will be using the model proposed by [4]. A schematic overview of this model is given in Figure 4.

Figure 4: A schematic overview of the Ventricular Pressure and Aortic Valve model.

�e heart is modelled by two components. First a predetermined cycle of ventricular (forward) pressure resembling
the cycle of contraction and relaxation of the heart is considered. Second, a transmission/re�ection function that
resembles the aortic valve is used. �e opening and closing of this valve is determined by local pressure and �ow, as
it would be in the human body. During systole, the phase where pressure increases in the aorta, the valve is open and
the ventricular pressure pressure drives aortic �ow. During diastole, when the pressure is decreasing in the aorta,
the valve is closed and the aorta and ventricle are isolated.

�e valve function is given by

V (t) =

(
e−kt − 1

)
e−k − 1

(65)

Where k = 3. For 0 < t < 1 this function increases from 0 to 1. �is function is transformed to simulate the opening
and closing of the valve. �e motion of the valve is assumed to change rapidly at �rst and more slowly when it
reaches its new position. �e valve opens when the di�erence between ventricular and aortic pressure crosses 0 Pa.
When the velocity of blood in the Ascending Aorta falls below−0.01 cm/s the valve starts to close rapidly. �e Rapid
Valve Opening Time (RVOT) is set 57 ms, the Rapid Valve Closing Time (RVCT) is set to 40 ms, both determined by
Leyh et al. [14]. �e opening and closing of the valve as modelled by V is illustrated in Figure 5.
�e re�ection coe�cient,R, is de�ned as the fraction of backwards running waves that get re�ected when they reach
the aortic valve. It is de�ned as

R = −∆w1

∆w2
= −w

n+1
1 − w0

1

wn+1
2 − w0

1

(66)

Here wn+1
2 can be approximated by

wn+1
2

∣∣
x=x0

= wn2 |x=x0−λn
2 ∆t (67)

�e transmission coe�cient, T , is de�ned as the fraction of forward running waves that get transmi�ed through the
valve.
We relate the re�ection and the transmission coe�cient to V via

T = V,R = 1− V (68)
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�e heart cycle in the ventricle is described by four phases. First, the isovolumic contraction, the heart is contracting
and pressure is building but the aortic valve is closed. Second, the ejection phase, the ventricular pressure rises above
the aortic pressure and the valve opens. Blood �ows from the ventricle through the aorta. �e ventricle pressure
is now driving aortic pressure. �irdly, the isovolumic relaxation phase, the heart muscle relaxes causing a drop in
pressure and �ow. �e aortic �ow drops until it reaches zero when the valve closes. In this phase there is a small
amount of reverse �ow before the valve closes fully. Lastly, the diastolic �lling, the heart relaxes and the ventricle
increases in volume. �is prepares the heart for another full cycle.

Figure 5: Le�, opening of the valve and right closing of the valve.
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Figure 6: Top, the prescribed ventricular pressure used in the 111-artery network. Bo�om, the two sigmoids used to
create the prescribed pressure function. Pressure is given in mmHg.

�e ventricular pressure is represented by a combination of two sigmoid functions. �ey have the form of

psig(t) = a1 +
(a2 − a1)

1 + e(a3−t)/a4
(69)

with the coe�cients given by
a1 = ped − 9.11× 10−4ppeak

a2 = ppeak

a3 = 7tc
a4 = tc

(70)

Where, ppeak is the peak pressure and ped is the end diastolic pressure. tc is a time constant that determines the slope
of the isovolumic contraction and the isovolumic relaxation. One whole cycle is described by one sigmoid describing
the contraction phase and another, translated, sigmoid, describing the relaxation. In the 111-artery model we will
be using two sigmoids with the same tc, in this case fusing the sigmoids can be achieved by calculating where they
intersect at peak pressure and switching at this point. Copying one cycle in time results in a heartbeat. A discontinuity
at the end of the diastolic �lling phase will not a�ect the system as the valve is already closed at that point. We set
tc = 0.01 s and shi� the second sigmoid 0.54 to the le�.
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�e two sigmoids are presented in the bo�om row of Figure 6. �e pressure is given in mmHg, the standard unit for
pressure in medical �elds. 1 mmHg ≈ 133.322 Pa.

To achieve �ow, the heart must overcome aortic pressure. If aortic pressure increases the ventricle increases its
pressure accordingly to sustain �ow. �is phenomenon is known as a�erload pLV a(t). �is a�erload pressure is
caused by backwards running waves. Combining equations (14) and (30) we can calculate the pressure change due
to a change in w2, it is weighted by R to yield

pLV a(t) = (1−R)
ρ

32

[
w2(t)2 −

(
w0

2

)2
+ 2w1(t)

(
w0

2 − w2(t)
)]

(71)

�e total pressure in the ventricle is then

pLV (t) = p̄LV (t) + pLV a(t) (72)

Where p̄LV (t) denotes the prescribe pressure.

�e total value of w1,in is given by
w1,in = ∆w1p + ∆w1r + w0

1 (73)

Where w0
1 is the initial value, ∆w1p is the change in the incoming characteristic variable caused by the pressure

di�erence between ventricle and aorta. ∆w1r is the change in characteristic associated with the backwards running
wave being re�ected by the valve. ∆w1p is given by

∆w1p = T∆w1 (74)

Where ∆w1 denotes the change in the characteristic due to the pressure di�erence, which is then weighed with T .
Furthermore, ∆w1r is given by

∆w1r = −R∆w2 (75)

Where ∆w2 is the change in the backward running characteristic which is weighed by R to simulate waves being
re�ected.

�is comprises the whole Ventricular Pressure and Aortic Valve model. It will be used for the 111-artery model
with parameters ped = 5 mmHg, ppeak = 85 mmHg, tc = 0.01 ms and a heart rate of 70 beats/min.
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6.2 Outlet boundary conditions
In principle, the human arterial tree is a circular system. It consists, however, out of immensely many small arteries
that are impossible to measure individually. �e number of branches increases dramatically at the terminal end of
the network and consists of millions of capillaries. �us when modelling the arterial network it must be truncated
at a certain point. �ere have been many di�erent approaches. Researches have developed close loop models that
have the bene�t of being physiologically more realistic Mynard and Smolich [10]. �ey use a model for a vascular
bed that is �lled and drained by respectively arteries and veins.
Models that exclude the veins and thus the circular nature of the arterial network can still produce realistic results.
�ese models truncate a�er a few generations of branching. A creative way to treat terminal vessels has been using
tapering arteries as terminal elements [4]. �e methods that we will use are a terminal re�ection coe�cient and the
three-element windkessel model.

6.2.1 Terminal re�ection coe�cient

As waves propagate through the arterial network, they will partially be re�ected the further they travel. A simple
model assumes these e�ects are only resistive and approximates their combined e�ect at the terminal vessels of the
network. It is possible then to de�ne the re�ection coe�cient as

Rt = −∆w2

∆w1
= −w

n+1
2 − w0

2

wn+1
1 − w0

1

(76)

Here wn+1
1 can be approximated by

wn+1
1

∣∣
x=xL

= wn1 |x=xL−λn
1 ∆t (77)

Here x = xL denotes the end of a vessel. w0
1 and w0

2 are the initial values of the characteristics. Solving for wn+1
2

gives
wn+1

2 = w0
2 −Rt

(
wn+1

1 − w0
1

)
(78)

A re�ection coe�cient of 1 corresponds to 100% re�ection whilst a coe�cient of 0 corresponds to a free out�ow
condition. We have of course Rt ∈ [0, 1]. �e value of Rt needs to be documented for every terminal vessel. �is
approach is reasonably accurate but does not take into account the known capacitive properties of a vascular bed. It
will be used in the 55-artery network.

6.2.2 Windkessel model

�e windkessel model has a rich history in simulating blood �ow. It is an electrical circuit analogy to blood �ow
where Pressure (P ) takes the role of Voltage (V ), and �ow (Q) takes on the role of current (I). �e �rst analysis of
a windkessel model was performed by Frank [11]. �is concerned a two-element windkessel element consisting of a
capacitor in parallel to a resistor. �e resistor models the resistive properties in blood vessel whilst the capacitor ac-
counts for compliance. Since then multiple variations have been composed, the most popular being the three-element
version. �ere is however also a four-element windkessel that includes an inductor to account for �uid inertia.

With the rise of computation power the windkessel model ceased to be used for simulations of sizeable parts of
the network. �e three-element version is used extensively as a boundary condition as it does account for the com-
pliance of blood vessels.
In Figure 7 it is shown how a windkessel element is coupled to a 1D network. Cvb and Rvb need to be determined
experimentally, Z is the characteristic impedance of the 1D blood vessel and is given by

Z1D =
ρc1D

A1D
(79)

In general, a windkessel element is governed by the following PDE which can be easily retrieved using standard
voltage and current division rules (

1 +
R1

R2

)
q + CR1

dq

dt
= C

dp

dt
+
p− P∞

R2
(80)
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Figure 7: A three-element windkessel modelled coupled to a terminal vessel, from Mynard [5].

To determine the boundary conditions the following procedure is used. First continuity of �ow is assumed, qvb =
q1D = A1Du1D. �en, using the equation for �ow in the three-element windkessel

qvb = Cvb
dpvb

dt
+
pvb − P∞

Rvb
(81)

Using a �rst order discretisation gives an expressing for pn+1
vb

pn+1
vb = pnvb +

∆t

Cvb

(
A1Du1D −

pnvb − P∞

Rvb

)
(82)

�e vascular bed �ow can be found via

qn+1
vb = An+1

1D un+1
1D =

pn+1
1D − pn+1

vb

Z1D
(83)

Now using wn+1
1,1D we can write this as

An+1
1D

[
wn+1

1,1D − 4An+1
1D

1/4

√
β

2ρ

]
=
pn+1

1D − pn+1
vb

Z1D
(84)

Which, using equation (14) is a nonlinear expression for An+1
1D and is solved using the Newton-Raphson method.

A�erwards, un+1
1D can be retrieved using wn+1

1,1D.

�e three-element windkessel boundary condition model is used in the 111-artery network.
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6.3 Branching points
A characteristic feature of the human arterial tree is the many branching points where one or multiple parent vessels
connect to one or multiple daughter vessels. �e most common branching point is a bifurcation where one parent
vessel �ows into two daughter vessels. Physically, any other combination of number of parent and daughter vessels
is possible. �e treatment of branching points is integral to having a realistic model outcome.

In Rozendaal [7] it was tried to combine the �rst element of both daughter vessels into one element and a�erwards
performing a spli�ing of the �ux. �e results were not unreasonable whilst dealing with a single bifurcation but the
method had problems with simulating large networks of arteries. We will thus try a di�erent approach.

We will treat branching points analogously to boundary conditions. More speci�cally, at the branching points we will
force continuation of the characteristic variables as well as mass and pressure. �e values obtained in this process
will then be used to set boundary conditions for the parent and daughter vessels.

Figure 8: An illustration of a bifurcation with adjacent cells from Sherwin et al. [15].

If we look at Figure 8 we see a bifurcation along with its neighboring parent and daughter cells. With help of the
continuation requirements, the boundary conditions are set in the gray area to both the parent and daughter vessel.
In this case we have 6 variables we need to determine, namely the A and u couple for each vessel. We thus need 6
equations to solve the system. If we generalize this to I parent and J daughter vessels, we need 2(I + J) equations.
�e �rst half is determined by the outgoing characteristics, for the parent vessels we have

w1pi = ui + 4A
1/4
i

√
βi
2ρ

(85)

Where w1pi is determined at the cell bordering the branching point. For the daughter vessel we have

w2dj = uj − 4A
1/4
j

√
βj
2ρ

(86)

Here w2dj is determined analogously to w1pi. �e following equations are determined by forcing continuity of mass
and pressure. Conservation of mass requires

Q =

I∑
i=1

Aiui =

J∑
j=1

Ajuj (87)

�e remaining equations are provided by continuity of momentum, which for every parent-daughter pair reads

ρu2
i

2
+ pext + βi(

√
Ai −

√
Ai0) =

ρu2
j

2
+ pext + βj(

√
Aj −

√
Aj0) (88)
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�e equations can be wri�en in the following way

f1 = up + 4A
1/4
p

√
βp

2ρ − w1p = 0

fI+1 = ui − 4A
1/4
i

√
βi

2ρ − w2i = 0

fI+J+1 =
∑I
i=1 uiAi −

∑J
j=1 ujAj = 0

f2(I+J) = ρ
2u

2
I + βI(

√
AI −

√
A0I)− ρ

2u
2
J − βJ(

√
AJ −

√
A0J) = 0

(89)

We now de�ne f =
[
f1 · · · f2(I+J)

]T. �e Jacobian is given by

J =


∂f1
∂ui=1

∂f1
∂ui=2

· · · ∂f1
∂uj=J

∂f1
∂Ai=1

∂f1
∂Ai=2

· · · ∂f1
∂Aj=J

...
...

...
...

...
...

...
...

∂f2(I+J)

∂ui=1

∂f2(I+J)

∂ui=2
· · · ∂f2(I+J)

∂uj=J

∂f2(I+J)

∂Ai=1

∂f2(I+J)

∂Ai=2
· · · ∂f2(I+J)

∂Aj=J

 (90)

�e system of equations can then be solved using the Newton-Raphson method for higher dimension which is given
by

xk+1 = xk −
[
Jk
]−1

fk (91)

Where x contains the variables and k is the iteration number. As a stopping requirement the norm of f needs to fall
below a certain value ε.

We will now present two test cases for the branching points. We will compare this method to the one used in
[7]. To this end we will look at two kinds of bifurcations. It is important to state that our treatment of bifurcations is
complemented by the formula for β given by equation (16). �e inlet boundary condition is provided by

Ā(t) = A0,p + 0.1e−106(t−0.1)2 (92)

�e out�ow boundary condition is given by a free out�ow condition (Rt = 0).
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6.3.1 Test case - Bifurcation, constant total A0

All test cases are performed in the Centimetre Gram Seconds (CGS) unit system as is costumary in literature. A
conversion table can be found in Appendix A.

First we observe a bifurcation where A0,P = 6 cm2 and A0,D1
= A0,D2

= 3 cm2. �us at the branching
point the sum of the area of the daughter vessels is equal to that of the parent vessel. �e values for β used
in [7] are βP = βD1 = βD2 = 105 dyne/cm3. Equation (16) results in βP = 1.8345 · 105 dyne/cm3 and
βD1

= βD2
= 2.5977 · 105 dyne/cm3. �e results are compared in Figure 9.

Figure 9: Results of wave propagation at a bifurcation with constant total A0 shown for t = 0.014 s, t = 0.0186 s
and at t = 0.023 s. �e top row contains our model and the bo�om row the one from [7].

Comparing the results from both models we see that the pressure in our model is higher, this is due to the higher
values for β. Since the total cross-sectional area of the parent vessel and the sum of the daughter vessels are equal,
we do not expect a re�ected pressure wave of any kind. In the model of [7] there is such a wave present. In our model
it is absent which points to a more realistic wave propagation at bifurcations.
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6.3.2 Test case - Bifurcation, varying total A0

Now we look at a bifurcation where A0,P = 6 cm2, A0,D1
= 6 cm2 and A0,D2

= 3 cm2. Now the sum of the cross-
sectional area of the daughter vessel is larger than that of the parent vessel. �e values for β used in [7] are unchanged
and given by βP = βD1

= βD2
= 105 dyne/cm3. �is time equation (16) results in βP = 1.8345 · 105 dyne/cm3,

βD1 = 1.8345 · 105 dyne/cm3 and βD2 = 2.5977 · 105 dyne/cm3. �e results are compared in Figure 10.

Figure 10: Results of wave propagation at a bifurcation with varying total A0 shown for t = 0.014 s, t = 0.0186 s
and at t = 0.023 s. �e top row contains our model and the bo�om row the one from [7].

Both models show a negative pressure wave propagating back into the parent vessel. �at of our model is larger
however. Another di�erence is the maximum of the pressure wave in both daughter vessels. Due to the method used
in [7], the pressure in the smaller vessel is lower than that of the larger vessel. In our model this is not the case.

From these test cases it is evident that the models produce somewhat comparable result. It is not hard to see however
that small di�erence at individual bifurcations can lead to big di�erence when dealing with a whole arterial network.
All other branching points show similar behaviour and are not worth investigating on their own.
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7 55-artery network
We have now discussed every aspect of our model. We will turn to the 55-artery model as a way of verifying the
treatment of branching points in combination with the �ux di�erence spli�ing method. Although it is not a veri�-
cation with results obtained in vivo , which would be preferable, the Discontinuous Galerkin [4, 15] is a widely used
method for 1D arterial network simulations and producing comparable results would be veri�cation of the models
capabilities. �e connectivity of the network is given by a parent pointer matrix where a value of i at place j means
that i is the parent vessel of vessel j. A 0 means that this vessel is adjacent to the inlet. It is given by Table 1 .

Table 1: Parent pointer of the 55-artery network. �e top row represents the daughter vessels and the bo�om row
represents the parent vessels.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0 1 1 3 3 4 4 7 7 9 9 5 5 2 2 15 15 14 14 19 19 21 21 23 23 18 18 27
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
27 29 29 30 30 28 28 35 35 37 37 39 39 41 41 42 42 44 44 46 46 43 43 50 50 52 52

A visual representation of the arteries, their connectivity and place in the body is given in Figure 11. �e physiolog-
ical data is given in Table 6 and Table 7 in appendix B. �e model is run for T = 10 s as to ensure a steady cycle is
reached. �e results are then represented for the last second of this 10 second period.

We will compare the results of our model, the model by Rozendaal [7] and the model by Sherwin et al. [15]. �e
results for the velocity, pressure wave forms and the characteristic variables are shown. In Figure 12 the results are
shown at the start of the Ascending Aorta, artery 1. In Figure 13 the results are shown at the beginning of the L.
Anterior Tibial, artery 49.

At the Ascending Aorta, we see the prescribed increase in A0 in the shape of the w1. Because we are prescribing
forward variables, this is to be expected. Furthermore, the terminal re�ection coe�cients create backwards running
wave of signi�cant magnitude. As no bifurcation has yet been passed, thew1 variables of all models behave the same.
However, there is a notable di�erence in w2, which has passed through bifurcations, between the model by [7] and
the other two. �e result is a complex velocity and pressure graph diverging signi�cantly from prescribed values. �e
di�erence in results is then explained by the di�erence in w2 which can be a�ributed to the bifurcation treatment.
At the l. anterior tibial we see that the forward running wave has increased dramatically in complexity. It has now
passed several bifurcations which has resulted in di�erent wave forms for [7] and the other two models. As the artery
is a terminal artery we can see the behaviour of the terminal re�ection coe�cient well. It is clear that an increase in
w1 results in a scaled decrease of w2 just as expected. Now the di�erence in results is primarily caused by w1, which
is then translated tow2 by the terminal re�ection coe�cient. �is again can be a�ributed to the bifurcation treatment.

�e model from [7] produces the same overall shape as the one from [15]. It is clear from our analysis that the
di�erences are caused by the bifurcation treatment. Changing the way bifurcations are treated has resulted in the
�ux di�erence spli�ing method producing highly comparable results to the Discontinuous Galerkin. �e results from
the 55-artery network provide a mathematical veri�cation of our model. �e quantities used (cross-sectional area
and velocity of the blood) are not widely used in the medical �eld however. To investigate the models capability of
producing medically applicable results we turn to the 111-artery network.
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Figure 11: Connectivity of the 55 arteries and their location. �e circles indicate where results are compared. Middle,
Ascending Aorta and right the L. Anterior Tibial.
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Figure 12: Results of the 55-artery network at the start of the Ascending Aorta. Le�, the model from [7], middle, our
model , right, the Discontinuous Galerkin, from [15].
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Figure 13: Results of the 55-artery network at the start of the L. Anterior Tibial. Le�, the model from [7], middle, our
model , right, the Discontinuous Galerkin, from [15].
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8 111-artery network
We now turn our a�ention to the more detailed 111-artery network. �e most notable di�erence is the addition of
the circle of Willis of arteries in the brain and face/neck. �e data from [10] forms the basis of this network. �e
study focuses on a circular model (including veins). �e data is copied in the following way

• All non-coronary arteries were included with the exception of the the intercostal arteries.

• All terminal arteries were modelled as having their own windkessel boundary condition, as opposed to a col-
lective vascular bed.

• Because of the exclusion of the intercostal arteries the Descending �oracic Artery I & II were modelled as one
single artery.

�e coronary arteries and the intercostal arteries are relatively small and have a small mean �ow. �eir exclusion
will not impact results in a meaningful way.
�e data for the windkessel models is retrieved in the following way. If a terminal artery is present in the model and
data from Stergiopulos et al. [16], the data is copied. If it is not, compliance values were taken directly from [10] and
the vascular bed resistance is set to Rvb = Rcap + Z0, where Rcap is the reference value reported by [10] and Z0 is
the characteristic impedance of the terminal vessel. �is approach is warranted since [10] based his data on [16] and
using Rvb = Rcap + Z0 ensures the highest agreement between the vascular bed model and the windkessel model.
For more information about vascular bed models, the reader is invited to [5].

�e connectivity of the 111-artery network is shown in Figure 14. �e circles indicate where in the network the
results were compared. �e physiological data for the 111-artery network is available in Appendix C.

For the 111-artery network we will change the variables we investigate to Q in ml/s and P (mmHg). �is is done
as these are the viable quantities and units in the medical �eld and thus it makes the results more understandable
for medical experts. We will be comparing results to Mynard and Smolich [10]. Di�erences will be inevitable due
to the vastly di�erent approaches to network components and the di�erences between closed/open loop models.
�e variables for our artery network come from this study and thus it is still a viable comparison to investigate our
model. �ey also provide in vivo results which are of extra interest. It is important to note that the in vivo results are
taken from di�erent sources and thus do not originate from the same person. Results from [10] are given in Figure 15.

�e model is run for 10 periods to achieve a steady cycle. Results are shown in Figure 16.
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Figure 14: Connectivity of the 111 arteries. �e circles indicate arteries where the results were compared, from le�
to right, Right Radial Artery, Ascending Aorta and the Le� Brachial Artery.
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8.1 Initial results
From Figure 16 it is immediately clear that the 111-artery network produces more complex results than the 55-artery
network. Observing the incoming characteristic variable at the Ascending Aorta, we see the shape of the prescribed
pressure returning in the systolic part of the cycle. First a rapid increase followed by a plateau.

When the ventricle pressure starts to drop, the valve plays an important role in shaping the pressure wave form.
As soon as the �ow becomes negative, the valve starts to close. Before it fully closes, there is a period of net negative
�ow, during this period the pressure drops. When the valve fully closes, �ow returns to zero and this is accompanied
by an increase in pressure. �is phenomena is known as a dicrotic notch. A�er the dicrotic notch, the pressure
gradually starts to come down.

Further down into the network, we see both at the Right Radial Artery and the Le� Brachial Artery that the di-
astolic (minimum) pressure has dropped as a consequence of the frictional forces. At these terminal vessels we see
that the windkessel element acts in about the same way as the re�ection coe�cient. Namely, an increase in w1 is
turned into a scaled decrease in w2. In the windkessel case, we see a smoothing of the curve however. �is is due to
the windkessel element being frequency sensitive and re�ecting lower frequency waves more.

We will now compare our results with that of the closed loop model and the in vivo measurements given in Fig-
ure 15. We will compare our results at the Ascending Aorta to results at the Aortic Root from [10]. �ere are only
two small arteries that branch of the Aortic Root before it turns into the Ascending Aorta so a comparison is justi-
�ed. At the Aortic Root/Ascending Aorta we see a comparable shape of the pressure wave of same magnitude. �e
di�erences can be best understood by observing the �ow wave. We see that our model has a relatively fast increase
to peak �ow, resulting in a short fast increase of pressure at the beginning of systole. �e gradual decrease a�er peak
pressure takes a longer time, resulting in a longer slow increase in pressure to peak pressure. Lastly, there is more
negative �ow, resulting in a bigger dip in pressure right a�er peak pressure.

At the Right Radial Artery and the Le� Brachial Artery the di�erence is more profound. �e shape of the pres-
sure wave at the Right Radial is somewhat comparable. However, peak pressure value is signi�cantly lower and the
second peak is relatively large.
At the Le� Brachial we do not see a peak in pressure of any kind as the pressure plateaus at around 120 mmHg. �is
behaviour is also seen in w1. If we look at the Ascending Aorta we see this same plateau in w1.

Both di�erences are likely to be a�ributed to the di�erence of boundary conditions at the Aortic Root/Ascending
Aorta and are not caused by any big di�erences in the numerical methods used. If we wish to achieve more com-
parable results, we thus need to change our in�ow boundary conditions. �e di�erence in pressure at the Aortic
Root/Ascending Aorta hints at a more slowly rising boundary condition during systole. �e di�erence at the Le�
Brachial suggest prescribing ventricular pressure with a peak value instead of a plateau.
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Figure 15: Results from the closed loop model and in vivo measurements, both from [10].
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Figure 16: Results of the 111-artery network at the start of the Ascending Aorta, le�, the Right Radial Artery, right,
and the Le� Brachial Artery, bo�om. Results are shown for one period.
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8.2 Adjusted ventricular pressure
Learning from the initial results, we strive to prescribe ventricular pressure to be�er match our results to that ob-
tained in vivo. To this end we set tc = 0.055 s, this will make the curve look more like a peak instead of a plateau.
Because peak pressure is reached slower, we set ppeak = 90 mmHG so as to ensure mean pressure does not drop.
We shi�ed the �rst curve 0.15 to the le� and the second curve 1.1 to the le�. �e result is shown in Figure 17. �ere
is a discontinuity at the start of a new period, this is of no concern however since the valve is closed at this point
thus isolating the system from the prescribed ventricular pressure.

Figure 17: Newly prescribed pressure.

�e results obtained by prescribing this ventricular pressure are shown in Figure 18. We have le� out the character-
istic variables as we have already analysed their behaviour.

�e results obtained with the newly prescribed ventricular pressure bear a closer resemblance to in vivo results.
At the Ascending Aorta the �ow graph is more in line with results from [10], we also indeed see a more gradual in-
crease of pressure at the Ascending Aorta. At the Right Radial the form and magnitude of the pressure wave closely
resembles the in vivo results. At the Le� Brachial there is also more of an appearance of a peak in pressure.

We can conclude that the newly prescribed pressure is a more realistic in�ow boundary condition. Using the in
vivo results we can again verify the models capability of producing realistic results.

Using the prescribed ventricular heart model combined with valve action and the windkessel model, we are capable
of simulating realistic pressure and �ow graphs. To ensure more realistic results, we could try to use more compli-
cated models for the heart. �is, however, o�en results in having to determine more values for more parameters. �is
not only increases uncertainty but also defeats the purpose of having a simple 1D model to begin with. If a model
becomes ever more complex, it can not easily be used for patient-speci�c predictions.

To keep the simple nature of the model and be usable for patient-speci�c pressure predictions, we will transition
from prescribed pressure, which is hard to measure inside an aorta, to prescribed �ow, which can more easily be
retrieved.
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Figure 18: Results of the 111-artery network with the adjusted prescribed ventricular pressure at the start of the
Ascending Aorta, le�, the Right Radial Artery, middle, and the Le� Brachial Artery, right. Results are shown for 1.1
period.
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9 A partially patient-speci�c model
�ere are many potential applications of 1D blood �ow model. One such application is noninvasive pressure mea-
surement in the aorta. As an example, decisions to operate on an arterial condition known as aortic rupture are
currently made by simply measuring the diameter with an MRI scan and comparing with a predetermined condition.
If the aortic diameter is determined to be too large, it is decided to operate. �is condition is not patient-speci�c
however and it would be bene�ciary to know the pressure cycle to determine if it is stable and safe.

It is possible however, with the same MRI scan, to determine the �ow rate in the aorta. If the �ow rate at the begin-
ning of the Ascending Aorta is measured, a 1D model can in theory be used to determine pressure. Here a 1D model
has a distinct advantage over a 3D model, namely that it produces absolute pressure values and not just a pressure
gradient. Moreover, it has a far superior running time (circa 10 minutes versus a couple of days). In this section, we
will a�empt to produce such a partially patient-speci�c model using data acquired at the Leids Universitair Medisch
Centrum (LUMC).

9.1 Method
We will describe the method we used to build the partially patient-speci�c model. �ere are two types of methods
that were investigated. �e single-factor scaling method and the multi-factor scaling method.

9.1.1 Inlet boundary conditions

Figure 19: MRI scan used in the research of patient 0463.

As illustrated in Figure 19, each patient has their �ow rate measured at various planes with a trigger delta ranging
from 29 − 38s, the �rst plane is at the beginning of the Ascending Aorta. At peak systolic cardiac phase (tp), the
time when the variation of 3D speed of the entire MRI data set is greatest, the area of the planes are determined (Ap).
Cubic spline interpolation in the time dimension is used to �t a curve through the �ow data of the plane at the start
of the Ascending Aorta. �is curve is then used as in�ow boundary condition.
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As we are not dealing with forward prescription, the �ow rate Qin(t) is forced using

An+1
0 = An0 −

∆t

∆x

(
ūn+1

1 An+1
1 −Qn+1

0

)
(93)

where Qn+1
0 is Qin(tn+1). Velocity is then determined by un+1

0 =
Qn+1

0

An+1
0

.

9.1.2 Single-factor Scaling

�e single-factor scaling method ensures that at tp, when the MRI measure the cross-sectional area of the Ascending
Aorta to be Ap, the model also returns Ap. To achieve this, the 1D model is run for 10 cycles to ensure a stable
cycle. A�erwards, the last cycle is used to determine pd, the diastolic pressure, at plane 1. We then also determine
the pressure pp at tp.

We assume �ow to be zero at (pd), which in practice is a reasonable assumption. Equation (14) only holds when
A0 is determined at static equilibrium, meaning no �ow. If this condition is met, it is also o�en wri�en with a
reference pressure, (pref ) in our case, as

p = pext + pref + β(
√
A−

√
Ad) (94)

See for example [3] and [2]. We now set pref to pd.

Next, the Newton-Raphson method is used to �nd an Ad, the cross-sectional area of the Ascending Aorta at diastolic
pressure, such that for area Ap, equation (94) returns pp. �e function that is minimized is given by

f = pext + pd − pt + β(Ad)(
√
Ap −

√
Ad) (95)

Which results in a new value for Ad. We now de�ne

ψ =
Ad,new

Ad,old
(96)

and multiply the dimensions of all arteries by ψ.
�e model is now ran again to determine a new pd and pp. A�er a couple iterations, this method approaches a steady
cycle. �is ensures the agreement between the model and the MRI data that we want.
At the �rst run we take as initial guesses pt = 110 mmHg and pd = 80 mmHg. �is method is repeated until the
change in pt and pd is less than 1 mmHg.
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9.1.3 Multi-factor Scaling

�e goal of the multi-factor scaling method is to be�er match the dimensions of the scaled network to that of the
MRI scan. �e biggest di�erence between the single-factor scaled networks and the MRI data is the amount the
cross-section of the aorta decreases in the Descending �oracic Aorta (DTA). In the baseline model the cross-section
at the beginning of the DTA is 2.5 times greater than at the end of the DTA. In the MRI data this tapering (decreasing
of the cross-section of an artery) was less.
When performing the multi-factor scaling we also measure pp at tp at plane 3 (begin DTA) and plane 5 (end DTA).
We now determine Ad for these two planes and also de�ne

ψplane =
Ad,plane,new

Ad,plane,old
(97)

for each plane. We then multiply all arteries distal to plane 5 by ψ5

ψ3
to account for the lesser tapering.

9.1.4 Out�ow conditions

We also need to perform scaling of the out�ow conditions. For the scaling of Rvb, we de�ne

κ =
Z1D,new

Z1D,old
(98)

for every terminal vessel and multiply Rvb by κ. Since Z1D and Rvb both have the same unit this is a viable scaling
factor.

For C , we note that the compliance of a vessel can be estimated by

Cv =
1

ρ
·
∫ l

0

Ad
c2d
dx (99)

as in [2, 3], where l denotes the length of the vessel and c2d is given by equation (16), where r0 is replaced by rd. We
simplify and look at an artery with constant Ad. �en we de�ne

γ =
Cv,new

Cv,old
=

Ad,new

c2d,new

Ad,old

c2d,old

(100)

for every terminal vessel and then multiply C by γ.

9.1.5 Validation

To investigate the model performance, the �ow at distal planes in the aorta is compared with the model output at
these locations. A�er the MRI scan, the pressure in the right and le� arm were also measured for each patient. �ese
values, although not determined simultaneously with the MRI scan, will also be used to compare with the pressure
results of the model.

�ere are two patients who have two bifurcation in the aortic arc instead of three. �is is deemed to be a too large
deviation from our baseline network to be able to make a meaningful comparison and these patients are thus not
investigated.

37



9.2 Results
9.2.1 Patient 1 - 0463

�e data is from patient 0463 in the supplemental �le. �e cross-section at the beginning of the DTA is around 1.74
larger than at the end of the DTA. We will �rst show results for the single-factor scaling method. Results for the pres-
sure at the beginning of the Le� and Right Brachial Artery and �ow at the beginning and the end of the Ascending
Aorta and the Descending �oracic Aorta are shown in Figure 20. Observing the �ow, we see that the �ow from the
model output and from the MRI data is exactly the same at the start of the Ascending Aorta since this is the in�ow
boundary condition. At the end of the Ascending Aorta there already is a small di�erence. We see that the model
retains the same shape whilst the shape from the MRI data changes. �is indicates that the MRI data is not perfect
and has an error. At the start of the Descending �oracic Aorta the �ow shape is still the same, however the �ow in
the model is a bit lower. At the end of the �oracic the �ow in the model is substantially lower, this is exactly where
the tapering takes place.

�e results for the pressure in the le� and right arm are summarized in Table 2.

Table 2: Results for the pressure in the le� and right arm for patient 1.

Le� arm Right arm
Measured Model Measured Model

Heart rate (bpm) 44 48 45 48
Diastolic pressure (mmHg) 75 72 70 72
Systolic pressure (mmHg) 134 144 124 143

�e fact that the pressure measurements were taken at a di�erent time than the MRI scan makes comparing harder.
Ignoring this complication, We see that the model produces comparable results to the measurement for the diastolic
pressure. �e systolic pressure is a bit higher in the model output. �ere is also a di�erence between systolic pressure
for the right and le� arm in the model but this is not as substantial as was measured.

Next, the results of the multi-factor scaling method are discussed. Results for the pressure at the beginning of the
Le� and Right Brachial Artery and �ow at the beginning and end of the Descending �oracic Aorta are shown in
Figure 21. We have excluded the �ow values at the Ascending Aorta as those are in high agreement with each other.
As we can see from Figure 21, the �ow values are be�er matched than the single-factor scaling method. �is is to be
expected as a wider artery means more room for the blood to �ow through, thus a higher blood �ow.

�e pressure is vastly underestimated however. �e widening of the aorta has created more room for the blood
to �ow through. �us the overall pressure is signi�cantly lower. If we only apply a widening, it is only logical to see
a drop in pressure. By only scaling one part of the network, we have disrupted the way the network interacts with
itself. If we were to scale the network correctly, we would need to know the dimensions of all arteries (or at least for
a few generations of bifurcations).

We conclude that there is not enough information to perform a multi-factor scaling of the network. In fact, hav-
ing enough information to perform a multi-factor scaling probably means having enough information to build a
whole new network. �is defeats the purpose of using a baseline network to not have to collect all this information.
�e single-factor scaling method thus seems to be preferable as it leaves the inner-workings of the network intact.
We will investigate the method further for di�erent patients.

To illustrate the propagation of pressure and velocity in the blood vessels, we have made a plot of the whole network
at di�erent times, which is shown in Figure 22. Figure 22 is constructed by representing each individual cell as an edge
in a graph. �at edge is then coloured by assigning a colour to its pressure value. �us, Figure 24 shows the pressure
in all 4600 cells. �e representation is not up to scale. �is kind of visualisation, which is novel to our understanding,
makes it easy to see how the pressure propagates and allows for a be�er understanding of the underlying dynamics
than the static plots that were used so far.
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Figure 20: Results for the �rst patient (0463) using the single-factor scaling method. Top, from le� to right: �ow and
pressure at the Le� Brachial and Right Brachial. Bo�om le�, �ow at the beginning (top) and end of the Ascending
Aorta (bo�om). Bo�om right, �ow at the beginning (top) and end of the Descending �oracic Aorta (bo�om).
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Figure 21: Results for the �rst patient (0463) using the multi-factor scaling method. Top, from le� to right: �ow
and pressure at the Le� Brachial and Right Brachial. Bo�om, �ow at the beginning (top) and end of the Descending
�oracic Aorta (bo�om).
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Figure 22: Visual representation of pressure and velocity propagation in the full 111-artery network for patient 0463.
From le� to right, �rst row t = 11.35 s and t = 11.48 s. Second row t = 11.60 s and t = 11.73 s. �ird row
t = 11.85 s and t = 11.98 s.
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9.2.2 Patient 2 - 0314

Here we only applied the single-factor method. In the supplemental �le, this data is from patient 0314. �e cross-
section at the beginning of the DTA is around 1.76 larger than at the end of the DTA. Results for the pressure at the
beginning of the Le� and Right Brachial Artery and �ow at the beginning and end of the Descending �oracic Aorta
are shown in Figure 23.
Firstly, the �ow at the beginning of the Descending �oracic Aorta has roughly the same shape and magnitude as the
MRI data. At the end of the Descending �oracic Aorta the model output again has a lower �ow due to the tapering.
It still is in reasonable agreement however.

�e results for the pressure are summarized in Table 3.

Table 3: Results for the pressure in the le� and right arm for patient 2.

Le� arm Right arm
Measured Model Measured Model

Heart rate (bpm) 64 73 67 73
Diastolic pressure (mmHg) 91 92 85 92
Systolic pressure (mmHg) 144 144 138 143

From Table 3 we can conclude that the model makes a reasonable prediction of the overall pressure and the pressure
drop in the le� and right arm. It is hard to say what the e�ect of the di�erence in heart rate is, since the heart rate is
higher when measuring the right arm pressure, but the determined pressure is lower, which one might not expect.

In this patient the aorta is less tapered and the model be�er predicted �ow and pressure. It seems that having a
baseline network that has the same ratios as the patient results in be�er predictions. With the errors in MRI mea-
surement and uncertainties when measuring the pressures in both arms in mind, we can conclude that the 1D model
produces reasonable results. Its output can not be used to perform precise predictions. However, it does capture the
overall shape and magnitude of �ow and pressure wave forms. A colour plot of the blood pressure and velocity is
shown in Figure 24.

42



Figure 23: Results for the second patient 0314. Top, le� to righ: �ow and pressure at the Le� Brachial and right Right
Brachial. Bo�om, �ow at the beginning (top) and end of the Descending �oracic Aorta (bo�om).
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Figure 24: Visual representation of pressure and velocity propagation in the full 111-artery network for patient 0314.
From le� to right, �rst row t = 7.37 s and t = 7.45 s. Second row t = 7.54 s and t = 7.62 s. �ird row t = 7.70 s
and t = 7.78 s.
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9.2.3 Patient 3 - 0215

�is concerns the data from patient 0215 in the supplemental �le. �e cross-section at the beginning of the DTA is
around 1.74 larger than at the end of the DTA. �e diastolic pressure in the le� and right arm is around 60 mmHg
whilst the systolic pressure is around 90 mmHg. �is hints at hypotension (low blood pressure). To account for this,
we experimentally set β to 0.7 of its original value. Results are shown in Figure 25
Results for the pressure are summarized in Table 4.

Table 4: Results for the pressure in the le� and right arm for patient 3.

Le� arm Right arm
Measured Model Measured Model

Heart rate (bpm) 67 61 56 61
Diastolic pressure (mmHg) 62 56 60 56
Systolic pressure (mmHg) 93 99 92 97

We again see an underestimation of �ow and a relatively comparable pressure value. A colour plot is given in Figure
26.

From our results we can conclude that the single-scaling factor estimates pressure in the le� and right arm with
reasonable accuracy. Depending on the patient, it underestimates the �ow in the distal part of the aorta. Patient 2
has the best estimation of �ow and pressure simultaneously, indicating a correlation between the two. It is probable
that if our baseline network had a lesser tapered aorta, the �ow in the aorta and thus the pressure in the arm of
patient 1 and 3 would have been be�er estimated by the model. Research into a baseline model with a lesser tapering
of the aorta is therefore desirable. One can imagine a system where a few key characteristics of a patient, for example
having three or two bifurcation in the aortic arch and the amount of tapering of the aorta, are determined. �en,
a baseline model is selected with the same characteristics as the patient. �is would require a handful of detailed
arterial networks, each with its own unique combination of characteristics, to be documented. �is way accurate
non-invasive and multi-location pressure prediction would be possible for a high number of patients with only a
single MRI scan. Patient 3 shows us that the model can be adapted to account for diseased states.

�e combination of a well-matched baseline model, MRI scan data and the colour plots can give an accurate and
easily understandable representation of the pressure propagation in an individual patient.
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Figure 25: Results for the third patient 0215. Top, from le� to right: �ow and pressure at the Le� Brachial and Right
Brachial. Bo�om, �ow at the beginning(top) and end of the Descending �oracic Aorta (bo�om).
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Figure 26: Visual representation of pressure and velocity propagation in the full 111-artery network for patient 0215.
From le� to right, �rst row t = 8.90 s and t = 9.00 s. Second row t = 9.10 s and t = 9.20 s. �ird row t = 9.30 s
and t = 9.40 s.
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10 Conclusions
We will structure our conclusions in the following way. First, a list is given that details the changes to the model of
Rozendaal [7]. �en the validation of the model is discussed. Next, the results of the scaled model combined with the
MRI data is discussed. Finally, recommendations for future work are presented.

�e changes to the model of [7] are presented.

• �e treatment of bifurcations was changed.

• �e model now includes the high resolution method at the branching points.

• �e model now includes several types of branching points.

• �e network was changed from a 55-artery to a 111-artery network.

• �e inlet boundary condition was changed from a simple sinusoidal model to a more complicated model in-
cluding prescribed ventricular pressure and a model for the aortic valve.

• �e outlet boundary condition was changed from a re�ection coe�cient to a windkessel model.

• �e model implementation was made roughly 10 times faster by including sparse matrices.

It was shown that the high resolution �ux di�erence spli�ing method combined with the new treatment of bifur-
cations produces highly comparable results to the Discontinuous Galerkin method from Sherwin et al. [15] in the
55-artery network with a simple sinusoidal heart model as inlet boundary condition and a terminal re�ection coe�-
cient as outlet boundary condition.
Next, a more extensive 111-artery network is studied. A heart model consisting of a prescribed ventricular pressure
cycle and a heart valve that opens and closed based on local pressure/velocity conditions is used. �e three-element
windkessel model, an analogy from electric circuits, is used as an out�ow boundary condition. �e high resolution
�ux di�erence spli�ing method proved to be capable of producing results highly comparable to a more elaborate
closed loop model from Mynard and Smolich [10] and to in vivo measurements.

�e one-dimensional model with the 111-artery network as a baseline network is combined with MRI scan results
obtained at the Leids Univesitair Medisch Centrum (LUMC) to investigate its capability of predicting pressure and
�ow wave forms in individual patients. �e novel aspects of this approach are represented.

• �e use of MRI acquired �ow data as in�ow boundary condition.

• �e use of a scaling method to conform the dimensions of the model with that of the MRI scan.

• �e use of a scaling method for the outlet boundary conditions.

• �e use of the colour plots to present results.

�e �ow measured at the inlet of the Ascending Aorta with the MRI scan is used as the in�ow boundary condition. To
make the model partially patient-speci�c, two types of scaling method are researched. With the single-factor scaling
method, the model is scaled such that the area of the Ascending Aorta in the model equals the area determined at
the LUMC at the time of measurement. Outlet boundary conditions were scaled accordingly. With the multi-factor
scaling method, the tapering of the aorta, meaning the amount it decreases in size further from the heart, in the
baseline model is reduced to be�er match LUMC measurements, all arteries distal to this tapering were also scaled.
�e results were compared with �ow measurements at various locations in the aorta and pressure measurements in
the right and le� arm.
�e multi-factor scaling proved incapable of producing realistic pressure results despite producing realistic �ow
results. It can be concluded that a multi-factor scaling can only be applied to change local dimensions of the network
and not global dimensions as this changes the characteristics of the network too much.
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It was shown that the model is capable of producing realistic results for an individual patient with a single-factor
scaling method and that the accuracy of these results in all probability depends on the agreement of the ratios of the
baseline network and the arterial network of the patient. �e single-factor scaling is combined with a novel colour
plot of the entire network to show pressure and velocity propagation in the 111-artery network of the patient in the
MRI scan. A high agreement of ratios between the baseline network and the arterial network of the patient could
lead to accurate non-invasive, multi-location pressure prediction.

Following are recommendations for future study. �e recommendations concerning the mathematical basis for the
study are represented.

• Including a more sophisticated pressure-area relation.

• Including a more sophisticated description of the frictional force by assuming a di�erent velocity pro�le.

• Changing the blood density to 1.06 g/cm3 which is a more widely used value.

• Researching the e�ect of including gravitational forces.

All the previous recommendations stand to improve the model. We should stress however, that the acquired results
show that the model is already accurate. Since the application in this paper is novel and has a lot of potential, it may
be of more interest to pursue this path of further research. �e recommendations concerning the development of
partially patient-speci�c models are represented.

• Expanding the number of patients analysed using the 111-artery network.

• Documenting a handful of detailed arterial networks, each with its own unique combination of characteristics,
to be used for scaling.

• Research into modelling patients with a diseased aorta with the possibility of using a multi-factor scaling
method to change local dimensions (a local bulge in the aorta for example).
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A CGS conversion table
In Table 5, the conversion from CGS units to SI units is shown.

Table 5: Conversion Table for the CGS system to SI units.

�antity CGS unit De�nition SI
length centimetre (cm) 1 / 100 of metre =10−2m
mass gram (g) 1 / 1000 of kilogram =10−3kg
time second (s) 1 second =1 s

velocity centimetre per second (cm/s) cm / s =10−2m/s
acceleration gal (Gal) cm / s2 =10−2m/s2

force dyne (dyn) g ·cm/s2 =10−5N
energy erg (erg) g ·cm2/s2 =10−7J
power erg per second (erg/s) g ·cm2/s3 =10−7W

pressure barye (Ba) g / cm ·s2 =10−1Pa
dynamic viscosity poise (P) g / cm ·s =10−1Pa · s

kinematic viscosity stokes (St) cm2/s =10−4m2/s
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B Physiological data for the 55 arteries
�e physiological data from Sherwin et al. [15] for the 55 arteries are shown in Table 6 and in Table 7.

Table 6: Physiological data for the 55 arteries from [15] (1).
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Table 7: Physiological data for the 55 arteries from [15] (2).
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C Physiological data for the 111 arteries
�e physiological data from Mynard and Smolich [10] for the 11 arteries are shown in Table 8, Table 9 and Table 10.

Table 8: Physiological data for the 111 arteries from [10] (1).
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Table 9: Physiological data for the 111 arteries from [10] (2).

Table 10: Physiological data for the 111 arteries from [10] (3).
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D Stented artery, test case
Here we provide a test case with a stented artery, as originally presented in Rozendaal [7]. It provides insight into
the basic workings of the model.

A stent is a metal or plastic tube inserted into the bloodstream to widen narrowed arteries to increase blood �ow.
�e stent is generally sti�er than the surrounding blood vessel. We investigate the in�uence of the stent on the blood
�ow. To this end we model the stent as an increase in β with the same A0. �e sti�ness is a factor of κ greater than
that of the surrounding artery, β0. A schematic overview is given in Figure 27. �e blood vessel has a length l, from

Figure 27: A schematic representation of an artery with a stent, from Sherwin et al.[15].

x = a1 to x = a2 a stent is placed with length L. At three points in the blood vessel the pressure is measured, P at
x = l/4, M at x = l/2 and at D = 3l/4. �e di�erence in β is made continuous using a C1 continuous piecewise
polynomial over a width of 2δ as is illustrated in Figure 28. All parameters are given in Table 11.

Table 11: Variables for the stented artery test case.

A0

(
cm2

)
l(cm) a1(cm) a2(cm) L(cm) ρ

(
g/cm3

)
δ(cm) β0

(
dyne/cm2

)
κ(−) T(s)

0.5 15 5 10 5 1 0.5 451352 100 0.33

Figure 28: Variation of β, from Sherwin et al.[15].

56



D.1 Initial condition
As the initial condition, we choose a system completely at rest. �is means that A(t = 0) = A0 and u(t = 0) = 0.
In vector form

U(x, 0) =

[
A(x, 0)
u(x, 0)

]
=

[
0.5
0

]
(101)

D.2 Boundary conditions
As discussed before, we need to describe boundary conditions at the inlet and outlet of the system. In this case there
is one inlet and one outlet. At the inlet we prescribe pressure as

p̄(t) = 20000 sin

(
2πt

T

)
H

(
T

2
− t
)

(102)

Where H(t) denotes the Heaviside step function de�ne as

H(t− a) =

{
1 t > a
0 t < a

(103)

In this case it allows half a sine period to pass. Using equation (14) we can write (102) as a condition for A

p̄ = pext + β(
√
A−

√
A0)⇒ A =

(
p̄

β
+
√
A0

)2

(104)

Where we have used that pext = 0. Since we are using the forward prescription, we need to solve for w1. Using (30)
we get

w1 = w2 + 4

√
2β

ρ
A1/4 (105)

Fixing w2 in its initial state and using (104) we arrive at

w1(0, t) = w2(0, 0) +
4
√

2
√
ρ

√
p̄(t) + β0

√
A0 (106)

�ese values for w1 and w2 are used to calculate A and u using equation (30). A and u are then used as values for
boundary ghost cell.

At the outlet we use a non-re�ective boundary condition. �is is achieved by

w2(l, t) = w2(l, 0) = constant (107)

At t = 0 the system is at rest at x = l. �is means there is no net le� �owing wave. �e boundary condition ensures
that this is always the case. �is leads to the boundary ghost cell being a copy of the last cell.

D.3 Stability
A grid of 400 cells is used. To ensure stability the CFL condition is met at each time tn.

∆tn =
∆x

|λn|max

(108)
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D.4 Results
We now compare results for a normal artery and a stented artery obtained by the �ux di�erence spli�ing and the
Discontinuous Galerkin as described in Sherwin et al. [15]. All variables for the normal artery are the same as the
stented artery, only β is constant over the whole artery.

Figure 29: Results of the normal artery, le� column, and the stented artery, right column. �e top row contains
results from the �ux di�erence spli�ing, the bo�om row contains results from the Discontinuous Galerkin method
from Sherwin et al. [15].

�e results from the normal artery shown in the le� column show the half sine wave propagating non-distorted
through the artery. �ere is no noticeable di�erence between the two methods.
�e initial condition combined with the constant material properties ensures that w1 and w2 are constant at t = 0.
Since the right boundary condition prescribes that w2 is �xed at the outlet, w2 is in fact constant for every x and t.
�is is consistent with a trivial constant solution for PDE (36). �is also means that the wave speed λ1 = 5w1+3w2

8
does not depend on w2. �us the coupled quasi-linear system of PDEs decouples into two quasi-linear PDEs. Since
w1 is not constant in time it has a non trivial solution of its PDE. �e small change in w1, however, results in the
quasi-linear e�ects being negligible. In fact, the di�erence in w1 is at most 1 % and thus the di�erence in wave speed
also at most 1%. �e wave speed is large in comparison to the length of the artery (λ1

l ≈ 100). �us the wave has
long passed the end of the vessel when anything quasi-linear becomes noticeable.
Inserting a stent e�ectively splits the vessel into three domains, namely the vessel before the stent, the stent itself
and the vessel a�er the stent. In each of these regions there are no sources and the model is governed by (36). Since
the vessel is too short for quasi-linear e�ects to show, the model behaves as a scalar transport model. �is means
the shape of the wave is to a very good approximation preserved and the wave propagates through the vessel. In the
stent, β is larger and thus λ1 is also larger. �us the points M and D are reached earlier by the pressure wave.
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Figure 30: A 3D visualisation of the wave propagation through the normal artery, le�, and the stented artery, right.
Vessels are shown at t = 0.01s, t = 0.075s, t = 0.175s from le� to right. �e displacement from equilibrium is
magni�ed by a factor 30. From [7].

�ere is a di�erent situation at the boundaries of these models. �ere is a change in β. At the inlet ∂β∂x > 0, resulting
in a positive source term for A. �is results in the pressure increasing in P , this can be seen by the higher amplitude
at P at t = 0.08s. At the outlet, the situation is reversed and we get a negative le� running wave, this can be seen at
P at t = 0.18s.

Overall, the �ux di�erence spli�ing method produces comparable results to the Discontinuous Galerkin. �ere are
di�erences though, as can be seen in the slightly lower peak pressure at P in the stented artery. �is di�erence is
minute however. In Figure 30 there is a 3D visualisation of the wave propagation from [7].

For more single artery test cases comparing the �ux di�erence method and the Discontinuous Galerkin the reader is
referred to [7]. �ey look at an abnormal long artery to investigate non-linearity and a tapered artery. In general it
is shown that the two methods produce very similar results.
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