
Design of an Autonomous
Wireless Weather Station
EE3L11- Bachelor Graduation Thesis

T.A. Brasser
D.J. Offerhaus
I.P. Tesselaar

D
elf

t
Un

iv
er

sit
y

of
Te

ch
no

lo
gy

ABSTRACT

With increasingly changing climates, measuring the weather on remote, off-grid locations has become more
important in order to accurately track emerging weather patterns. Cheap and easy access to meteorological
information allows communities and individuals to better manage agricultural development, track localised
extreme weather events, and expand knowledge of ground-true weather conditions for remote or hard
to access locations. Nowadays, with the growth of modern technology and the rise of the Internet-of-
Things, it has become possible to design a long range, low maintenance, affordable, continuously operating
autonomous wireless weather station powered off-grid by renewable resources. This thesis explores the
feasibility of such a self-supporting wireless station, and attempts to construct a prototype to support the
findings. A multitude of solutions are discussed to tackle the different subsystems and their functions,
culminating in a proposal for a weather station design. Low maintenance sensors are used to acquire weather
data and LoRaWAN is used to send that data over long ranges with a low power draw. The station uses
solar energy and li-ion batteries to sustain the system, which are scaled to prevent loss of power. A simple
microcontroller unit manages the power and data flows of the system. Long term simulations of the design
show the proposed system would be able to operate continuously throughout the year, while measuring
every minute. The report also discusses the apparent strengths and shortcomings of the system, and suggests
potential improvements that could help the system achieve a better long-term performance.

iii

CONTENTS

1 Introduction 1
1.1 State-of-art analysis . 1

1.1.1 History and applications . 1

1.1.2 Current status . 1

1.2 Problem definition . 2

1.3 Thesis synopsis . 3

2 Programme of requirements 5
2.1 Mandatory requirements . 5

2.1.1 Functional requirements. 5

2.1.2 Functional requirements regarding weather measurements 6

2.1.3 Cost requirements . 6

2.1.4 Safety, ethical and environmental requirements . 6

2.2 Trade-off requirements . 7

2.2.1 Autonomy requirements . 7

3 Design process 9
3.1 Conceptual design . 9

3.1.1 System analysis . 9

3.1.2 Conceptual design of the sensor platform . 11

3.1.3 Conceptual sensor configuration . 13

3.1.4 Resulting conceptual design . 14

3.2 Embodiment design . 15

3.2.1 Final sensor configuration . 15

3.2.2 Determining the transmission payload and protocol. 16

3.2.3 Layout of the data structure . 18

3.2.4 Layout of the energy subsystems. 18

3.2.5 Analysis on the power draw . 20

3.3 Detailed design . 24

3.3.1 Software on the data and power management . 25

3.3.2 Expectation of the power draw . 26

3.3.3 Dimensioning of the energy subsystems . 29

3.3.4 Final design specifications . 30

4 Prototype 31
4.1 Proof of concept . 31

4.1.1 The viability of a LoRaWAN communication stack . 31

4.2 Implementation . 32

4.2.1 MCU & LoRa Module . 32

4.2.2 Solar Panel . 33

4.2.3 Solar charge controller . 33

4.2.4 Battery & battery management system. 34

4.2.5 Back end . 35

4.3 Validation . 36

4.3.1 Measured power consumption. 37

4.3.2 Long term state of charge simulation of the battery . 37

v

vi CONTENTS

5 Conclusions, Discussion and future work 39
5.1 Conclusions. 39

5.1.1 Results of the Conceptual design. 39
5.1.2 Embodiment design . 39
5.1.3 Detailed design . 40
5.1.4 Prototype and validation . 40

5.2 Future work . 41
5.2.1 Utilising LoRa’s full potential . 41
5.2.2 Adaptive power management . 42
5.2.3 The sensor modularity aspect . 42
5.2.4 Environmental concerns and disposal . 43

5.3 Discussion on the Autonomous Wireless Weather Station. 43

A Additional specifications and schematics 45

B Simulations 49

C Source Code 53

D LoRa 87
D.1 Link Budget . 87
D.2 LoRa, the Physical Layer . 87

Bibliography 89

1
INTRODUCTION

Before the rise of modern telecommunication technologies, the only way to acquire data on outdoor activities
was to physically monitor the events. The rise of low-power, long-range communication systems [1] and
the "Internet of Things" (IoT) [2] has made it possible to collect data from autonomous sensors without
human presence and without a wired power- and communication infrastructure. The goal of this project
is to synthesise such a weather system.

1.1. STATE-OF-ART ANALYSIS

1.1.1. HISTORY AND APPLICATIONS
The history of autonomous wireless weather stations goes all the way back to 1939, when Brooks (1940) and
Wood (1946) built an instrumental shelter on top of a cabin. The instruments were powered by a 1000 W,
115 V petrol generator. The size of the fuel tank enabled it to make 8 observations per day for 4 months,
which were transmitted back via radio [3].

Modern day autonomous wireless weather stations or more commonly called Automatic Weather Stations
(AWS) are present in two main areas of application. The first one is in the form of Personal Weather Stations
(PWS), which are mainly directed at amateur meteorologists. The second is in the broader form of Wireless
Sensor Nodes (WSN), most commonly used for research. These WSN’s can usually capture one or several
environmental parameters and are usually deployed in great numbers [4]. By having a lot of autonomous
wireless nodes, researchers can gather data about an environment at a rate never before seen. With the rise
of Internet-of-Things (IoT) applications and autonomous systems, it has become easier to extract data from
the environment [5].

Data collected by wireless sensors or network of sensors have a very wide range of applications [6, 7],
for example air pollution measurement in big cities, (soil) humidity measurements for farmers and aiding
in prediction models for the weather. With the rise of global warming and the changing of the weather,
conventional wisdom on the timing of crop rotation and periods of rain can no longer be relied upon. It
is now more important than before to measure these weather parameters.

1.1.2. CURRENT STATUS
There is a large amount of slightly different weather stations available for almost any modern application.
Two common examples of consumer oriented products are

1. short range (∼ 30m) models where a battery powered sensor node uses Wi-Fi or short-range RF to
display measurements on a nearby LCD;

2. models using large rechargeable battery packs or grid power. A datalogger is used to store and/or send
data over cellular, long-range, networks;

While the essential design does not differ greatly, the diversity of available sensor, communication and power
supply combinations result in a large variety of types and models. These designs are oriented toward having

1

2 1. INTRODUCTION

the weather station in relative close proximity to a power grid and network access. This implies people
use it to have easily available data on weather parameters in a nearby area. Another application area is
amateur meteorology, making use of data loggers, which don’t necessarily communicate data as it becomes
available but can store large quantities of data on the device. Mechanical rain sensors and wind gauges
commonly show up in these models. Although these provide adequate measurements, but are maintenance
intensive relative to alternative (solid state) sensor types and can break down more easily due to wear and tear.

The range of weather station solutions is even more diverse when looking at business oriented models,
especially for agricultural businesses. Being able to keep track of precipitation, frost and soil data provides
valuable information on crop growth and yield predictions. Modern agriculture in many countries also has
grown in how much area a single farm manages. If an entrepreneur needs to keep track of a large amount of
crops over an increasingly large area, a distributed sensor network can help in gathering and processing more
information than a human observer will ever be able to. Weather stations in this category employ a wider
range of measurements than those targeted at households. Models exist which, in addition to using just a
battery, extend operational capabilities by including solar panels. Mechanical sensors are still common, but
these are often more sturdy and failure proof than the consumer counterparts. Non-mechanical alternatives
also exist. Although existing business models expand the application possibilities of weather stations [8],
compared to consumer oriented models, these business oriented models are significantly more expensive,
especially with the inclusion of better and more sensors, long range deployment, or self-sufficient power
supply.

1.2. PROBLEM DEFINITION
So far technology of weather stations has greatly supported the field of meteorology by providing solutions
to measure and predict weather patterns. As wireless communication improve and sensors become cheaper,
it is now relatively easy and cheap to acquire a sensor station to measure relevant weather parameters on a
location. This makes it possible for people to rely on quantified weather information instead of estimates
and predictions for weather data. This is a great advantage to developing agriculture, observing climate, or
tracking unpredictable localised weather. Current weather stations however have included design decisions
that restrict the freedom of application. The location where such a station can be deployed is restricted
considerably by including sensors that need to be maintained regularly, requiring the station to run on grid
power, or using a telecommunications network that has limited coverage in rural areas. More professional
solutions can be deployed at a larger range, but the additional costs associated can be significant, while
coverage and maintenance can still be issues that reduce the effectiveness of a station in a remote location.

The benefits of these weather sensing solutions could be much greater to developing communities and other
research opportunities. A solution is to provide simple but accurate weather measurement were designed
specifically to run autonomously without power grid, capable of long range communication in remote areas
and have as few possible ways of requiring regular maintenance unless failure occurs. In that case, a large
section of locations that before were too ineffective or expensive for placing a weather station could then
also be observed accurately for the benefits that weather stations can provide.

To this end, this project has been proposed to explore the design of a weather station specifically for long
distance, off grid, maintenance low operation. If successful, this research could be expanded upon by others
to make further improvements and boost progress toward having a cheap and robust solution for people
and initiatives that so far have not been able to profit off the useful information such a station provides.
The proposal was put forth by ir. R.M.A. van Puffelen and the Electronic Instrumentation department at the
Delft University of Technology as part of the Bachelor Graduation Project. As part of the accepted proposal,
the research will also be used to construct a functional prototype to confirm the viability of the design choices.

There are three main objectives to tackle in this project. First, the large design space for weather stations
should be explored to find which component solutions improve on the current models’ weaknesses as
described here. Second, to design a new weather station that runs as autonomously as possible while
minimising costs of the total system. Lastly, to develop a prototype that matches the final design as closely
as possible in order to validate it. After discussing with the project coordinators, agreements have been
made on the expected functions and conditions the design and prototype should take into account. The

1.3. THESIS SYNOPSIS 3

design will feature different types of sensors, as the project will explore measuring the weather parameters
of air temperature, humidity, atmospheric pressure, wind speed, wind direction and precipitation volume.
To allow the department to use the research and prototype effectively, it was also decided that the system
would be expected to run in the Netherlands. Finally, the system is to be designed to be able to gather a set
of measurements every minute. The effectiveness of the final design can be assessed in several manners, but
for any design to be successful it should obey the conditions set, look to support autonomy by maximising
the mean time to failure of individual components and the system as a whole, and minimise its power
consumption in order to operate off-grid effectively.

1.3. THESIS SYNOPSIS
The rise of the Internet of Things and increasingly affordable renewable energy make it possible to design an
autonomous wireless weather station, which operates long range and on low power. Modern weather stations
commonly operate connected to the power grid, use high maintenance sensors or use power intensive
technologies such as Wi-Fi or Cellular communication. In this thesis, the feasibility of a self-supporting
and wireless weather station is explored. The constraints and requirements of this design are charted. The
design process consists of three stages and begins with the conceptual design. In it, all the possible, feasible
solutions are compared, of which a conceptual design is chosen. The next step, the embodiment design, will
finalise the choice of components, as well as the connections between the components and the power draw
of the system. The detailed design will scale the energy harvesting with the power draw calculated, as well as
feature software to manage its energy and any other details regarding the design. A final design is proposed,
after which a prototype is built to test that design for continuous operation of the system.

2
PROGRAMME OF REQUIREMENTS

The list of requirements follows from the problem definition in 1.2. In short, the final version of the
"Autonomous Wireless Weather Station" must be able to

• measure and collect data from weather parameters;

• transfer collected data without wires;

• collect and use energy without being connected to the power grid;

• efficiently distribute energy in order to operate continuously;

• require no regular maintenance when operating within specified weather conditions;

• have a high mean time to failure when operating within specified weather conditions.

From the first three items of the list, a list of mandatory requirements directly follows. For this specific
design, the weather parameters that need to be measured are temperature, air pressure, humidity, amount
of precipitation, wind speed and wind direction. Continuous operation is defined in the mandatory
requirements. The latter two items of the list result in trade-off requirements.

2.1. MANDATORY REQUIREMENTS

2.1.1. FUNCTIONAL REQUIREMENTS
[1.1] The system must be able to collect temperature data from its environment.

[1.2] The system must be able to collect air pressure data from its environment.

[1.3] The system must be able to collect humidity data from its environment.

[1.4] The system must be able to collect precipitation data from its environment.

[1.5] The system must be able to collect wind speed data from its environment.

[1.6] The system must be able to collect wind direction data from its environment.

[1.7] The system must be able to transfer data to an external database without wires.

[1.8] The system must be able to operate without being connected to a power grid.

5

6 2. PROGRAMME OF REQUIREMENTS

2.1.2. FUNCTIONAL REQUIREMENTS REGARDING WEATHER MEASUREMENTS
[2.1] The system must be able to collect environmental data regarding requirement [1.1] to [1.4] at least
once per minute.

[2.2] The system must be able to collect wind data regarding requirement [1.5] and [1.6] five consecutive
seconds per minute, averaging the collected data.

[2.3] The system must be able to collect temperature data from its environment within the range of −50
to 70 ◦C.

[2.4] The system must be able to collect temperature data from its environment, with a resolution of
0.04 ◦C.

[2.5] The system must be able to collect temperature data from its environment with an accuracy of at
least 0.5 ◦C.

[2.6] The system must be able to collect air pressure data from its environment within the range of 900
to 1100 hPa.

[2.7] The system must be able to collect air pressure data from its environment with an accuracy of
4 hPa.

[2.8] The system must be able to collect air pressure data from its environment with an resolution of
1.5 Pa.

[2.9] The system must be able to collect humidity data from its environment with a range between 0
and 100 %RH.

[2.10] The system must be able to collect humidity data from its environment with an accuracy of
3.5 %RH.

[2.11] The system must be able to collect humidity data from its environment with a resolution of 0.03
%RH.

[2.12] The system must be able to collect the amount of precipitation data from its environment above
a temperature of 0 ◦C.

[2.13] The system must be able to measure a maximum wind speed of 25 m/s.

[2.14] The system must be able to collect wind speed data with a relative accuracy of 1 %.

[2.15] The system must be able to collect wind direction data between 0° and 359°.

[2.16] The system must be able to collect wind direction data with an absolute accuracy of 1°.

2.1.3. COST REQUIREMENTS

[3.1] The maximum production cost of the system should not exceede300,-1.

[3.2] The maximum prototype cost of the system should not exceede500,-2.

2.1.4. SAFETY, ETHICAL AND ENVIRONMENTAL REQUIREMENTS
[4.1] The system should be able to operate in the Netherlands.

[4.2] The system should not weigh more than 10 kg, in order to be deployable by a single person.

[4.3] The packaged system should be able to fit in a box of 0.5 m by 0.33 m by 0.33 m, the average
dimensions of a moving box.

1In order to remain economically competitive.
2As agreed upon with the project coordinators.

2.2. TRADE-OFF REQUIREMENTS 7

[4.4] The system should be able to installed by an individual with no previous experience, when
supported with basic instructions.

[4.5] The system should not contaminate the environment while deployed by adhering to
environmental law.

[4.6] The system must be removed from the environment when broken or disfunctional.

[4.7] The system must be disassembled into its constituent parts to allow separate processing for
recycling and disposing.

2.2. TRADE-OFF REQUIREMENTS

2.2.1. AUTONOMY REQUIREMENTS
[5.1] The system should guarantee continuous functioning by minimising the chance the system fails
due to not being able to autonomously supply enough power to operate.

[5.2] The system should require the least amount of maintenance possible within the specified lifetime.

[5.3] The system should have a lifetime of at least 3 years.

3
DESIGN PROCESS

The design process used follows the design procedure of [9], which describes a systematic approach to
engineering design. The process can be split up in three phases: conceptual design, embodiment design
and detailed design.

CHAPTER OVERVIEW

The conceptual design describes the basic functions of the system and divides the system into subsystems.
Each solution of the subsystem is reviewed for the relevant criteria and a conceptual design is created. The
embodiment design goes deeper into the design process. It takes into account estimations for the expected
loads, as well as a preliminary choice of components and the layout between those. In the detailed design,
the system is finalised. In that stage, software will regulate the data flows and the power flows after which the
rest of the system is dimensioned. The chapter concludes with a look on the final design specifications.

3.1. CONCEPTUAL DESIGN
One approach to visualise and present implementations or ’solutions’ is by the use of a morphological chart,
in which the columns represent various problems or functions that are under consideration, which are filled
with any possible implementation that would fulfil the individual function or solve the individual problem
[9]. A combination of individual solutions is required for the complete design. As a result, combinations
of the individual subsystem implementations that are incompatible are undesired and can be eliminated.
Furthermore, similar subsystem implementations can be compared to each other. By weighing the positive
and negative aspects of the implementations, a division can be made between implementations that are
more consistent with the desired system properties formulated in chapter 2 or less consistent with those
properties. The initial task is to formulate all conceivable solutions that could separately fulfil the functions
of the subsystems.

3.1.1. SYSTEM ANALYSIS
The design process begins with identifying what the system has to do and what the relevant inputs and
outputs are. In principle, the system has to collect weather data continuously and send that weather data
without human interaction. Since the system has to collect data, it has to (temporary) store that data. In
order for the system to work autonomously, it has to collect energy from its surrounding to support its
functions. Furthermore, if the system has to operate continuously, the system has to store the energy and
distribute that energy for when the source of energy is not available or unpredictable. A conceptual system
overview of the system with the specified subsystems can be found in figure 3.1. In table 3.1, a morphological
table has been constructed with a list of viable solutions for each of the subsystems.

In this design approach, the sensor platform, which gathers energy and sensor data, and transmit that data,
can be viewed as separate from the sensors that could be attached to it. As long as the energy gathering
and storage is sufficient for the load, the platform should be able to operate sensors for any number of
measurements. Considering this, completing the weather station requirement is mainly determined by
the properties of the sensors, instead of the platform. In order to not constrain the design of the platform,

9

10 3. DESIGN PROCESS

Harvest
energy Store energy Distribute

energy

Collect
weather data

Store weather
data

Transmit
weather data

Ambient
energy

Weather
parameters Weather data

Autonomous Wireless Weather Station

Sensor platformWeather sensors

Figure 3.1: A diagram describing the conceptual system overview of the Autonomous Wireless Weather
Station divided in a set of subsystems with the expected inputs and outputs. The system can be split up into
two sets of subsystems: the sensors which measure the weather parameters and the platform which houses
these sensors. The red lines represent power flows, the black lines represent data flows.

its subsystem solutions will be graded and selected separate from the sensors attached. In doing so the
criteria for the platform and sensors can be more accurately tuned to what purpose they serve. Impactful
choices are mostly the type of microcontroller and board. This leaves a very wide selection of options where
a broad set of criteria and grades does not provide a conclusive answer. The selection and management of
the microcontroller will be an important part in the later embodiment and detailed design and get discussed
later in those chapters.

To summarise, in this section subsystem solutions will be graded using a weighted list of criteria in order to
find one or more sets of options that are better suited to the design. Because of how the different subsystems
interact and can be looked at as separate, the consideration is first made for the components of the sensor
platform: the energy harvesting, storage, data storage and data transmission subsystems. For the sensor
types a similar set of criteria will also be used to select a set of preferred sensors. Since the expected power
draw of the rain sensor and the wind sensor are much higher than those of the temperature sensor, humidity
sensor and air pressure sensor, the latter three are not considered here as major design choices, as explored
in section 3.2.5.

Table 3.1: Morphological table of the possible solutions to the different subsystems.

Sensor Platform Weather Sensors

Energy Data Sensing

Harvesting Storage Communication Storage Wind Precipitation

Solar Battery Cellular On chip Mechanical Tipping bucket
Wind Super capacitor LPWAN External Thermal Solid-State Disdrometer
Hybrid Hybrid Wi-Fi Sonic Solid-State Optical

Sonar

3.1. CONCEPTUAL DESIGN 11

3.1.2. CONCEPTUAL DESIGN OF THE SENSOR PLATFORM

ENERGY HARVESTING AND STORAGE

The main function of the energy harvesting subsystem is to generate enough energy to let the system run by
only using ambient energy. Possible forms of energy that can be harvested from the environment include
wind, solar, vibrations, streaming water or RF. The considered systems are graded in table 3.2. These sources
are ranked according to their expected predictability, maintenance, lifetime, and cost.

Table 3.2: Comparison of the energy harvesting options.

Weight Solar Wind Hybrid (Wind/Solar) Vibration Streaming water RF

Availability 20 % 4 5 5 1 2 1
Predictability 30 % 4 1 5 1 4 2
Maintenance 25 % 4 3 2 4 1 5
Lifespan 20 % 5 3 3 4 1 4
Cost 5 % 3 3 2 4 1 4

Average Score 4.00 3.0 3.4 2.8 1.8 3.2
Weighted Score 4.15 2.8 3.7 2.5 2.1 3.05

As can be seen from the table, vibration and RF are rated with a low availability. RF will be more abundant in
urban environments and less in rural ones. Moreover, the expected power that can be harvested from these
sources is in the order of micro watts, which is expected to be too low for this application. Streaming water
has a high potential for energy, but the source is highly location dependent and the application will likely
need moving parts like turbines, which is not desired.

Solar energy harvesting with the use of a PV-cell has some advantages relative to a mechanical wind energy
harvesting system. A PV-module has a typical lifetime of more than 10 yr [10] and has no moving parts,
while a mechanical wind energy harvesting system has moving parts, making it more prone to wear. Solar
energy is also more predictable than wind energy, making it easier to make prediction models for the
energy distribution. Wind energy however is usually always present. A hybrid system is also considered, but
complexity and cost of the system will rise when implementing two very different sources.

Storing energy is paramount when there is a desire to make the system operate continuously. The energy
sources discussed are usually unpredictable, or predictable, but non-continuous, making the storage of
energy a key feature. Available options of this subsystem include batteries, super capacitors or some
mechanical solution. Fast charge and discharge are not necessary for this system, as the expected energy
supply and draw are relatively low. The main concerns with storage are the cost and storage capacity, as well
as lifetime and decay properties of the device. The comparison of different energy storing types is given in
table 3.3.

Table 3.3: Comparison of the energy storage options.

Weight Battery Supercap Hybrid

Capacity 45 % 5 2 4
Lifespan 30 % 4 2 3
Cost 25 % 3 3 2

Average Score 4 2.33 3
Weighted Score 4.2 2.25 3.2

DATA TRANSFER AND STORAGE

The data gathered by the sensors will be transmitted to a database. However, before the data is transmitted
it has to be stored (or buffered) somewhere. This can be done either on the chip or on an external storage
medium. The fastest and least power-consuming way is to hold the data in RAM, but since RAM is volatile,
a loss of power will result in data loss. Furthermore, while the amount of data buffered is not huge, the time

12 3. DESIGN PROCESS

before data-transmission may prove to be too long to store all the sensor data. External (flash) storage can
be used to overcome this limit, but every bit stored and read adds power losses that could be avoided by
keeping data in volatile memory. Luckily, most SoC’s (System on a Chip) come with on-board flash storage in
addition to RAM, providing a cheap and readily available nonvolatile data buffer option. The choice of data
storage is however not a significant choice for the sensor platform, since most available microprocessors
and boards feature both memory systems. The power draw and costs associated with the memory are small
compared to the other subsystems. The use of memory will be part of the chosen microprocessor and will
therefore be discussed in section 3.3.

Collected data must be accessible by the end user without requiring them to be in the proximity of the
device. Additionally, the device is required to be wireless, meaning a wireless communication module should
transmit the data at which point it can be accessed through a conventional network (either via the internet or
locally). Possible solutions include cellular communication in licensed bands and different Low-Power WAN
(LPWAN) solutions operating mostly in unlicensed and sub-GHz bands. Properties of importance for these
systems include power-draw and range. A relative comparison is tabulated in table 3.4. The use of existing
(cellular) networks seems attractive since these provide ubiquitous and transparent coverage, however, these
were not designed to handle the type of asymmetrical and low-power service that is optimal for Wide Sensor
Area Networks (WSN) and Internet of Things (IoT) device deployment such as the weather station.[1]

Table 3.4: Comparison of communication systems.

Cellular LPWAN

Power consumption 2 5
Range 3 4

Average Score: 2.5 4.5

THE RESULTING SENSOR PLATFORM

The difficulty in any design is to make a choice concerning the many options. While better options may be
available, the best option is chosen with the help of the morphological tables, while keeping in mind the
complexity of the resulting system design. The resulting sensor platform is summarised in table 3.5.

For the energy harvesting, the solar panel is the best option according to table 3.2. This is the option
which will be implemented. The solar panel os expected to provide a more reliable source of energy, as well
as being more autonomous due to having no moving parts and a long expected lifetime.

The battery is the best option for the energy storage, according to table 3.3. The expected lifetime of a
battery will be according to the requirements. A battery is better suited for long term energy storage than
a supercapacitor, making it the better option for energy storage in combination with the solar panel. The
battery will be implemented in the system.

The last design choice for the sensor platform is the communication system, which is graded in table
3.4. The desired choice is LPWAN. For this application, the power draw needs to be as low as possible and
the required bit-rate will not have to be high. With the implementation of a base station, the range of a
LPWAN-based system can be extended even further.

Table 3.5: The resulting sensor platform.

Subsystem Design choice

Energy harvesting Solar panel
Energy storage Battery
Data transfer LPWAN

3.1. CONCEPTUAL DESIGN 13

3.1.3. CONCEPTUAL SENSOR CONFIGURATION

Sensors have a wide range of applications, data types and power draws, the specifics of which must be
taken into further consideration for each relevant weather parameter. Considerations include the type
of communication with the overall system, power draw when measuring and when not, start-up time,
calibration requirements, size, average lifespan, accuracy of measurements and supply voltage. In the end,
an optimal sensor would require the least amount of power per measurement when adding all possible
additional draws combined with a minimum required accuracy of measurement. Sensors measuring
temperature, humidity and air pressure have a relative low draw compared to wind speed and direction
sensors and rainfall sensors, which can be a relative high draw on the system. The various implementation
of the latter sensors have a significant effect on the criteria relevant to the system. When incorporating
measurements for these parameters, comparing the various sensor types is essential for making a choice that
does not put unnecessary strain on the system. The other sensors can be discussed during the embodiment
design phase under the assumption that the design of the rainfall sensor and wind sensor both have a large
impact on the final system. To that end, the weighted criteria can be applied specifically to the different
types of precipitation and wind sensors in this conceptual stage, since deciding on the type of temperature,
humidity and atmospheric pressure sensor has only marginal impact on the sensor loads as a whole.

PRECIPITATION SENSING

Starting with the precipitation sensing, following research on the current types of sensors used for rainfall
measurements, 4 different types which could be viable in the application were identified. In order to select
a sensor, the tipping bucket, optical solid state, acoustic disdrometer and radar solid state will be compared
by using the criteria derived from chapter 2. In table 3.6, the four types of precipitation sensors are weighted
according to which criteria is more important. Two sets of weighing factors are considered as the choice of
prioritising the production cost or the fully autonomous properties is a decision with a large impact on the
final design.

Table 3.6: Comparison of the precipitation sensors.

Weight |Cost Weight |Autonomy Tipping bucket Optical Radar Ac. Disdro

Power consumption 25 % 25 % 5 2 1 1
Cost 45 % 5 % 4 3 1 4
Maintenance 5 % 25 % 1 5 5 4
Lifespan 5 % 25 % 2 4 4 3
Accuracy 20 % 20 % 4 3 5 1

Average Score 2.8 3.4 3 2.6
Weighted Score |Cost 3.6 2.9 1.95 2.6

Weighted Score |Autonomy 2.6 3.5 3.35 2.4

From the table it is apparent that due to the cost and power consumption, a radar based sensor is unlikely
to be an optimal choice, as an optical sensor can have similar advantages but a lower cost and load. Early
findings on the acoustic disdrometer indicated that these models have a high error between measured
volume and actual volume of rainfall for smaller drops. While sensor stations with a disdrometer do exist,
reference material for the sensor itself with respect its properties are difficult to find or unavailable. The
consideration is then between a tipping bucket and an optical solid state sensor. The tipping bucket is a
simple and cheap device, but its funnel collector for the rain means it needs to regularly be checked for
clogging and a mechanical switch (reed switch for instance) is relatively prone to failure. Both sensors are
only able to measure precipitation in normal modes above 0 ◦C. The sensors are able to measure below 0
◦C if they have a heating function, but power draw can increase by 100 % to 500 % if required to operate for
long times in low temperatures, depending on the model. When deploying the system in the Netherlands, it
is important to consider that the low availability of sunlight in the colder winter months can force a choice
between no precipitation measurements in winter or an oversized energy harvesting system. This location of
deployment is also an indicator of how much impact the distribution of temperature and sunlight per month
will have. In the end, it seems an optical solid state sensor should satisfy the requirements more often than
the tipping bucket and radar alternatives, and this type can be used to formulate a final conceptual design.

14 3. DESIGN PROCESS

WIND SENSING

The weather parameters relevant for wind sensing are the wind speed and wind direction. The considered
options for measuring both are mechanical, sonic solid-state or thermal solid-state. The mechanical wind
sensor consist of a weather vane for the direction and a mechanical anemometer for the wind speed. The
main advantage of a mechanical set-up is its low power draw. The main disadvantage is that this type of
sensor has moving parts, which have to be maintained in order to secure operation. Models do exist however
which have a higher reliability with lower maintenance, but these are more expensive. The other options
are both solid-state. While the initial costs are slightly higher, solid-state sensors don’t typically require
maintenance. They do however draw a higher amount of power than their mechanical counter-part, even
when operating in ’low-power’ mode. A comparative table concerning the three options can be found in
table 3.7.

Table 3.7: Comparison of the wind sensors.

Weight |Cost Weight |Autonomy Mechanical Sonic S.S. Thermal S.S.

Power consumption 30 % 30 % 5 3 2
Cost 50 % 10 % 3 2 2
Maintenance 10 % 30 % 4 5 5
Lifespan 10 % 30 % 3 5 5

Average Score 3.75 3.75 3.5
Weighted Score |Cost 3.8 2.9 2.6

Weighted Score |Autonomy 3.9 4.1 3.8

3.1.4. RESULTING CONCEPTUAL DESIGN
In the previous sections different options were compared which result in multiple options for the system
design, each of which would comply with the requirements, but differ slightly in prioritisation of trade-offs.

The main trade-off in this conceptual design is autonomy and a more expensive system versus maintenance
and a less expensive system. In order to prevent the need for regular maintenance due to mechanical
sensors, an all-solid-state overall system design is preferred and will be further fleshed out in the rest
of the design phase. Even though a mechanical wind sensor would result in a more affordable weather
station, the sonic solid-state wind sensor provides a sensible trade-off between maintenance and power draw.

Since autonomy is favoured above any maintenance, and since the costs of the system are expected to be
within the set limits, the design with the least expected maintenance is chosen. The design choices are
presented in table 3.8

Table 3.8: Resulting conceptual design choice.

Subsystem Design choice

Energy Harvesting PV
Energy Storage Battery
Data Transmission LPWAN
Wind Sensor Sonic Solid-State
Precipitation Sensor Optical Solid-State

3.2. EMBODIMENT DESIGN 15

3.2. EMBODIMENT DESIGN
In separating the platform from the sensors in the conceptual design, it is similarly possible to approach it
separately in the embodiment design phase. In embodiment design, the structure of the components of the
design are finalised. This structure indicates how the final product should function as a whole and how the
components interact to perform that function. If the platform can be separated, the function it performs is
itself also independent of the components attached to the platform.

This section focuses on specific components, the layout between the subsystems and where and how
much power draw is expected. In doing so, an overview of the entire system as a collection of interacting
components is conceived. The sensor platform is divided into two subsections: data processing and energy
processing. As a final step this embodiment design of the platform can then be combined with the selected
sensors giving a broad indication of power flow in the system, which leads to estimates that can give clarity
to the required size of the photovoltaic array and battery. The detailed design stage is used to pick specific
implementations of the components that are still undefined at that point.To finalise the design in every detail,
using the trade-offs properties found in the design to select a desired optimum that can be considered to be
within the final requirements.

3.2.1. FINAL SENSOR CONFIGURATION
In sensor configuration, two of the most important aspects concerning embodiment design is the amount
of energy used by each sensor and the amount of data each sensor delivers regarding the requirements of
chapter 2. The total data size that results from these measurements are listed in table 3.10. The precipitation
and wind sensors have been selected. The temperature sensor, atmospheric pressure sensor and humidity
sensor have minimum requirements stated in chapter 2. The final sensor configuration can be found in table
3.9 and figures 3.2.

Table 3.9: Overview of the sensors

Weather Parameter Brand Name Manual

Temperature & Relative Humidity Sensirion SHT30 [11]
Atmospheric Pressure Bosch BMP180 [12]
Precipitation Volume Hydreon RG-11 [13]
Wind Speed & Direction Meter Group ATMOS 22 [14]

(a) Sensirion SHT30 (b) Bosch BMP180 (c) Hydreon RG-11 (d) Meter Group ATMOS 22

Figure 3.2: Resulting sensors in embodiment design.

16 3. DESIGN PROCESS

3.2.2. DETERMINING THE TRANSMISSION PAYLOAD AND PROTOCOL

DETERMINING THE TRANSMISSION PAYLOAD

Before determining the type of LPWAN communication system, it is important to know the payload of a
transmission concerning the requirements. Requirements [2.1] to [2.16] are of concern. In table 3.10, the
minimum requirements of the sensor measurements are given and the resulting minimum of bits needed.
The exception is the precipitation sensor, which has no requirements concerning its resolution. This is
because the precipitation is measured in volume and generally is measured with a (simulated) tipping bucket.
The sensor would then trigger when a certain amount of precipitation is collected. In this calculation, the
sensor is assumed to trigger after every 0.2 mm of precipitation. The maximum size in bits then is determined
by the maximum amount of expected precipitation in a minute. The maximum precipitation is determined
by a phenomenon called a ’cloudburst’. The Royal Netherlands Meteorological Institute (KNMI) defines a
cloudburst as a minimum precipitation volume of 25 mm per hour or 10 mm per 5 minutes. Cloudbursts
of 38.1 mm in 1 minute have been reported [15]. It is not expected that these amounts of precipitation
volumes will be measured in the Netherlands, where the highest volume short burst rain was reported as
25-30mm in 5 minutes [16], but it is nevertheless good to dimension the system in order to make it possible
to measure. In order to measure these kinds of volumes, 6 bits are needed per minute. This results in a
maximum precipitation volume sensing of 12.6 mm per minute. This maximum is much higher than the
average precipitation volume expected, but now the system has the ability to measure these events. This
results in a total minimum payload of 56 bits of data collected per minute.

Table 3.10: Amount of bits needed per weather parameter with respect to the requirements given in chapter
2.

Weather Parameter Range Resolution Distinct values Bits needed

Temperature [◦C] −50 to 70 0.04 3001 12
Atmospheric Pressure [hPa] 900 to 1100 0.1 2001 11
Precipitation Volume [mm/min] 0 to 12.6 0.2 64 6
Wind Direction [°] 0 to 359 1 360 9
Wind Speed [m/s] 0 to 25 0.1 251 8
Relative Humidity [%RH] 0 to 100 0.1 1001 10

Total 56

CHOICE OF LOW POWER WAN COMMUNICATION SYSTEM

In section 3.1.2 of the conceptual design, a LPWAN communication system is considered. Multiple
LPWAN solutions exist of which the most popular/relevant are SigFox, Long Range WAN (LoRaWAN) and
Narrowband-IoT (NB-IoT)[1, 17–20]. The options with its properties are tabulated in table 3.11. In order to
choose one over the other, the requirements given in section 2.1 are considered. Each of the measurement
range and resolution requirements result in a minimal amount of bits of information that has to be send,
as presented in table 3.10, which results in a data rate of 502 bytes per hour. This means that a SigFox
communication link is unable to keep up with the stream of data leaving NB-IoT and LoRaWAN as the
remaining options. NB-IoT has the best uplink characteristics. However the network is not easily extendable
as it operates in the licensed LTE bands, this in contrast to LoRaWAN, which allows for the deployment
of additional gateways and therefore the extension of coverage where none is available. LoRaWAN is the
preferred choice for the application.

PROPERTIES OF LORAWAN
In order to move forward with the design process, the properties and limits of LoRaWAN need to be explored.
LoRaWAN is the protocol for long range, low power data communications developed by the LoRa-Alliance.
LoRa is the physical layer developed by Semtech which has datasheets on the subject [21] and documentation
on the limits are described in [22].

1ISM stands for the Industrial, Scientific and Medical radio bands reserved internationally for applications other than licensed
telecommunications.

2Long-Term Evolution (LTE) is a cellular standard for wireless communications.

3.2. EMBODIMENT DESIGN 17

Table 3.11: Comparison of leading LPWANs based on [18].

Weight SigFox LoRaWAN NB-IoT

Frequency 30 % Unlicensed ISM1 5 Unlicensed ISM 5 Licensed LTE2 1
Private network 50 % Not allowed 3 Allowed 5 Not allowed 3
Uplink rate 10 % 70 B/h 1 765− 18360 B/h 4 1600 B per TX 5

Average Score 3 3.25 2.75
Weighted Score 3.8 3 1.7

LoRa sends data by modulating the data signal with a chirp spread spectrum (CSS) with a center frequency of
868 MHz in the EU (EU 868). The data rate is highly dependent on the spreading factor of CSS, which for LoRa
is between 7 and 12, with 7 being the best case scenario and 12 the worst. This Spreading Factor corresponds
to the rate of the frequency sweep, a SF of 7 results in faster sweeps, meaning it takes a shorter amount of
time to send the same information, a SF of 12 is a slow sweep, which makes it more resilient to interference
and noise, but results in a slower data-rate. The effective data rate is also determined by the unlicensed EU
868 ISM band, on which the EU defined a maximum duty cycle of 1% time on air as to minimise packet loss.
For the worst case scenario, i.e. spreading factor 12, the usable payload for a transmission is 51 bytes. LoRa
data rates go from 27 kbit/s with spreading factor 7 to 0.3 kbit/s with a spreading factor of 12 [18, 19].

There are a couple of factors determining the parameters of concern when designing. The factors most
important to know for the system are the time on air and the maximum payload in order to meet
requirements. When the time on air is known, the duty cycle of the LoRa-module is known. The spreading
factor causes the sent signal to have more energy, meaning it will travel more distance, but also requires more
energy and time for the same information to be sent. This subsystem is treated at its worst condition in order
to scale the power subsystems. The time on air is determined by the length of a packet sent. A typical packet
is described in [21] and is determined by the number of symbols sent, which is determined by the overhead
and the payload. The factors are: the bandwidth (BW) of the signal, which is 125 kHz in the EU, the code
rate (C R), here assumed to be 1, the spreading factor (SF), which for the worst case scenario is 12, the header
of the packet (H), the option for low data rate optimisation enabled (DE), which enables when SF ≥ 11 and
the payload which in the worst case is 51 bytes. The worst case scenario payload in symbols and preamble in
symbols is then calculated by equations 3.1 [21].

payloadSymN b = 8+max

(
cei l

(
8PL−4SF +28+16−20H

4(SF −2DE)
(̇C R +4)

)
,0

)
(3.1)

where H = 0 when the header is enabled and DE = 1 when data rate optimisation is enabled. This results in a
symbol payload of 63 symbols. The symbol time is calculated by equation 3.2 [21].

Ts ymb = 2SF

BW
(3.2)

All packets commonly have a preamble (npr eamble). For a standard LoRa packet, this is equal to 8 symbols.
The time on air can then be calculated by equation 3.3 [21].

Tonai r = (payloadSymN b +4.25 ·npr eamble) ·Ts ymb (3.3)

which results in a worst case time on air of 2.4658 s. This means the minimum duty cycle the system has
to adhere to has a period of at least 246.5 s. In this period, a total of 51 bytes can be sent. For simplicity
of the design, a period of 300 s is taken. It was calculated in table 3.10 that the minimum payload to
meet requirements is 56 bits per minute or 35 bytes per 5 minutes. This means that LoRaWAN can meet
the requirements. Of the payload, 16 bytes per 5 minutes are unused which can be used for additional
information, which is further elaborated on in subsection 5.2.1. Further details and special cases (some
sensors require continuous sensing) will be discussed in section 3.3.

18 3. DESIGN PROCESS

3.2.3. LAYOUT OF THE DATA STRUCTURE
In the embodiment design of the data structure of the system, the layout and the data flows will be explored.
From that, the power consumptions of the data subsystems can be approximated, after which a better
approximation can be made on the design of the energy subsystems. An overview of the data subsystems
is given in figure 3.3. In this figure, the layout of the expected components and connections are given, styled
after the conceptual design of figure 3.1. The two subsystems concerning data and the sensor platform are
the microcontroller and the LoRa-module, the first of which will be discussed here.

Microcontroller Sensors LoRa-module

Collect weather data Store data Transmit weather data

Embodiment of the data structure

Sensor platform w.r.t. dataWeather sensors

Weather
parameters

Figure 3.3: An overview of the layout of the subsystems concerning data flow. The exact type of interfaces are
not known at this stage. Each component is connected to an energy source, to be discussed in subsection
3.2.4.

MICROCONTROLLER

In the completed system, strict control must be exercised over the sensors and communication systems to
ensure few enough losses are incurred in the process of frequent measurements. The decisions of when and
how long to measure, and handling incoming and outgoing data streams are made by a microcontroller. The
microcontroller is responsible how much total power is being consumed by the load (board, microcontroller,
sensors and communication) at any given time. This gives the opportunity to use this control to be able to
respond to situations when the supplied power exceeds or falls below the values for nominal operation. The
microcontroller and development board can therefore be considered by how they can improve on these two
fronts. First, in minimising the total power the system would need over long periods of time, three points of
focus mainly affect the result: determining the smallest amount of measurements required to provide enough
data to satisfy the system requirements, reducing the energy used by the entire system when not actively
measuring or communicating, and running the sensors and LoRa module in a duty-cycle mode. Second, the
microcontroller is in control of what changes can be made to the process of measuring and communicating in
the event that the average power supplied by the PV module over a long period is significantly larger or smaller
than the consumed power. This leads to either an empty or full battery, in which case the microcontroller
can reduce or increase the consumed power to better match the supply. Effectively this increases the time
it takes for the system to fail if the power supply is insufficient during extended periods with low solar
irradiation, as well as increasing the measurement capabilities beyond nominal when power is available and
would otherwise be wasted. The exact implementation of the second type of control however should be a
direct result of the trade-offs that are presented by the situations of insufficient or abundant supply power, as
comparing the (dis)advantages of scaling measurement accuracy, frequency, or communication delay to the
availability of power are considerations that must be compared and agreed upon later.

3.2.4. LAYOUT OF THE ENERGY SUBSYSTEMS
Continuing from the conceptual design of figure 3.1, the relevant subsystems that harvest and regulate
the energy flows of the system are harvest energy, store energy and distribute energy. Distribution of the
available energy is highly dependant on the load and demands and will be discussed in section 3.3. The focus
of this piece of design is on the energy harvesting and the energy storage.

From section 3.1, the design choice for the energy harvesting is a solar panel and the choice for energy

3.2. EMBODIMENT DESIGN 19

storage is a battery. In this section, a choice will be made on the type of solar panel and battery. In order to
connect a solar panel to the system, a DC to DC converter needs to be inserted in order to secure a steady
voltage for the battery and the rest of the load. The connection between the solar panel and the battery has a
maximum power point tracker (MPPT), which uses a feedforward loop in order to improve efficiency of the
solar panel. Then, before the energy can be used for the load or stored in the battery, a battery protection
circuit is inserted. The main function of the circuit is to prevent energy overflow in the battery, when the
battery is fully charged and the solar panel provides energy. The DC/DC-converter, MPPT and battery
protection circuit are readily available and together are commonly called a solar charge controller. A diagram
describing the energy harvesting and energy storage in more detail with the relevant subsystems can be
found in figure 3.4.

Li-ion
battery Solar panel

Battery
protection

circuit

V_bat

Harvest energy Store energy

V_solar

Embodiement of the energy structure

Solar energy
DC/DC-

converter with
MPPT

Solar charge controller

V_bat

V_bat

Sensors,
MCU,

LoRa-module

Precipitation
and wind
sensor

Buck
converter

3.3 V

Figure 3.4: A diagram describing the energy harvesting and energy storage of figure 3.1 with its connections
in more detail.

PHOTOVOLTAICS AND SOLAR CHARGE CONTROLLER

A few components are under consideration in the energy harvesting part, where a photovoltaic module is
used to provide power to the system, as well as storing excess energy in a battery. A first consideration or
comparison to make is on the preferred type of PV cell. Most small size commercially available PV modules
fall under one of two classes; Monocrystalline, or Polycrystalline, based on the purity of silicon and its
processing during production. Primarily it is important to find a solar module for which the rated power is
closest to the required minimum supply, which can be determined in the detailed design as a function of the
power draw of the connected load, but the difference in production process influences properties besides
efficiency and peak power output. If there is the possibility to then choose between similar peak power
modules of different types, table 3.12 compares this set of properties that have an impact on the weather
station design results apart from the electrical characteristics of the power supply.

The clear support for a polycrystalline panel are in part due to the advantages of monocrystalline panels,
such as spatial efficiency and aesthetics, are not as relevant to the requirements of this project as long as the
peak power output is large enough. Contrary, the monocrystalline disadvantages of higher financial cost per
Watt and the high quality silicon used leading to a more environmentally damaging production process, have

20 3. DESIGN PROCESS

Table 3.12: Comparison of available PV module types.

Monocrystalline Polycrystalline

Resilience 5 4
Average cost per Wp 3 2
Environmental impact 3 1

Average score 3.7 2.3

a more direct correlation to the requirements and constraints of the system. To conclude, if comparable PV
modules of the different types are suitable for the design, considering the costs and environmental impact of
production, preference will be given to a polycrystalline module.

It is important to realise that simply connecting a PV cell to a battery does not constitute a proper setup
to act as a reliable supply. A PV cell does not supply a fixed voltage or current, as these parameters also
depend on the temperature and effective irradiance of the cell. To charge a battery or supply a load, the
output voltage of the module should be fixed. Allowing the battery in question to act as a buffer for when
PV power at this voltage is insufficient. This means a DC/DC power converter should be used to convert the
varying output of the PV cell to one with fixed output voltage and varying power. For an application where
the supply power should be carefully balanced to the load, any losses in this converter should be considered
and minimised. The efficiency of the converter is a factor that increases the required daily average harvested
power for the entire system. Both Koutrolis et al. [23], and Reverter and Gasulla [24] discuss inefficiencies
in these converters and designing to minimise the losses for low-power PV systems. An important efficiency
improvement in especially [23] is the concept of maximum power point tracking. The idea that with a variable
source voltage and power depending on environmental conditions, an optimum switching duty-cycle can be
obtained by using a feed-forward network or iterative approach to find the the operating point where δP

δV = 0.
A DC/DC converter operating on this point of the curve then induces the smallest possible power losses for
the conversion of a variable Vsol ar ,Psol ar to a fixed Vbat . Conclusively, what is considered as the PV module
should be a PV cell connected to a DC/DC converter with maximum power point tracking and a high overall
efficiency. Cursory research suggests efficiency upwards of 90% is obtainable for low-power applications, and
commercially available MPPT converter circuits show similar efficiency in their respective specifications.

BATTERY

For the battery, the first concern is picking the type of battery. Common battery types include lithium-based
batteries. For PV-powered systems, lead-acid batteries tend to be a dominant technology in small-scale
domestic PV-systems. Main concerns when picking the type of battery are the costs per energy, lifetime or
life cycles, efficiency and operating range, which all depend on each other. Comparisons are made in [25]. It
suggests li-ion batteries are the best option for stationary applications, outperforming lead-acid batteries in
life cycles, costs, charging capabilities and efficiency.

Charging below 0 ◦C is however not recommended, since irreversible damage can occur to the battery. To
handle with this, the design should have all its components isolated to shield from the freezing temperatures.
Energy dissipation of the components can be used for marginal heating. Discharging can occur even at
temperatures as low as −20 ◦C. However, safety measures must be included, which will be discussed in
chapter 5.

3.2.5. ANALYSIS ON THE POWER DRAW

In order for the system to operate continuously, it is essential that the power consumption over long periods of
time does not exceed power generation over the same period. The difference in generation and consumption
is buffered by the battery, and when the battery charge is 0 while more power is consumed than the PV system
can generate, the system fails. If an operating period of a full day is considered, the expressions of equation

3.2. EMBODIMENT DESIGN 21

3.4 would need to hold.

Pg en(t)−Pcon(t) = dEbat (t)

dt
(3.4)∫ T

0
Pg en(t)−Pcon(t)dt = Ebat (T) (3.5)∫ T

T−24h
Pg en(t)−Pcon(t)dt = Ebat (T) ≥ 0 (3.6)

where Pg en is the power generated by the energy harvesting, Pcon is the power consumed by the system
and Ebat is the energy stored in the battery. The critical analysis that must therefore be made is either to
scale the power consumption in order to be smaller than the generation, or the generation to be larger than
the consumption. In addition, if the time dependence of the Power flow can be made predictable by finding
average power consumption over the 24h period instead of immediate power P (t), the integral can be reduced
to

24h · (Pav g ,g en −Pav g ,con) = Ebat (T) ≥ 0 (3.7)

where Pav g ,g en and Pav g ,con are the average values of the generated and consumed power, respectively.
This is under the condition that the size of the battery is large enough to contain (24h∗Pav g ,g en) Wh of energy.

In the current stage of the design, because of the considerations in the conceptual design, a selection of
sensors has already been made.With respect to available time and choice, scaling the PV module to equal the
absolute maximum power consumption for a 24 h period is the preferred option. The first stage in balancing
the power generation and consumption is to find the absolute maximum average power consumption
expected from the selected sensors.

SENSORS

Before moving on to the detailed design phase and the beginning of the prototype, a rough estimation
is made on how much power is consumed in the 1 minute measurement duty cycle and the 5 minute
communications cycle. These estimations are the first step to finding an accurate representation of how the
expected power is distributed and how much maximum power consumption is expected. Beginning with
the sensors, one of six stands out in that its mode of operation is not a duty-cycled like the rest. The RG-11
optical rain gauge pulses an output signal each time a set volume of precipitation has been detected and
therefore is only active during rain. The other sensors take a minimum of one measurement per minute, and
are idle most of the time. The anemometer, because of the properties of wind, measures for a minimum of
5 seconds per minute and provides an average. Other sensors are capable of this for improving accuracy,
but this is more a marginal trade-off of accuracy and power and not required for this estimate. Estimates are
made by using the time it takes for 1 measurement and the active and passive currents for a measure/idle
cycle, and an overview of the power draws are given in table 3.13. It is determined from this that the power
usage of the Decagon ATMOS 22 anemometer outweighs the other duty-cycle sensors by a factor 10 to 100.
Resulting from this analysis, for now it is assumed these sensors will consume on average 1.01 mW.

Table 3.13: Preliminary average power draw estimations of the four sensors which are bound by a duty cycle
of 1%.

Is [µA] Pav g [µW]

Sensor Active Idle Average at 1/60 Hz at rated VDD

Sensyrion SHT30 800 0.2 0.23 0.8
Bosch BMP180 40 2 2.6 9
Meter Group ATMOS 22 500 150 200 1000

The rain sensor is different in that it has both a high rated voltage and power compared to the other sensors,
and that it is only in active mode during rainfall events. The selected Hydreon RG-11 has three modes of
operation when simulating a tipping bucket, one when no rain has detected and the sensor is sleeping, one
where rain was recently detected and the device is sensing, and one where the tipping bucket triggers and the

22 3. DESIGN PROCESS

Table 3.14: Hydreon RG-11 power draws

Weather Conditions Mode Current draw [mA] Power draw [mW]

Dry period Sleeping 1.5 18
Raining Active 15 180
Raining Output pulse (50 ms) 50 600

output is pulsed for 50 ms. When in active mode the device waits 20 minutes before switching to sleep if no
rain was detected. The power draw of the Hydreon RG-11 for its different modes can be found in table 3.14.
It is important to note that although the peak power draw is up to 600 mW, this only lasts for 50 ms each
time 0.2 mm of rainfall is detected, which means that in the case of the highest precipitation intensity ever
measured in the Netherlands, 79 mm in one hour, the peak power would still only add to the consumed
energy, a total of

79mm

0.2mm
·0.05s · (600mW−180mW) = 8.295J (3.8)

which means it would only increase the total power consumption by 1.28 % during an event that has a chance
of occurring once every 1000 years.

Clearly both the sleeping and active average consumption are significantly higher than any of the other
sensors, even when no rain is being detected. As the RG-11 is rated between 10 V to 15 V, it will be connected
directly to the battery at Vbat . As far as the sensors go, table 3.15 approaches the absolute maximum of what
the sensors will require.

Table 3.15: Power estimation of the total sensor array during differing weather conditions.

Weather Conditions Power draw [mW]

Dry period 19
Precipitation 181

This gives a clear idea of how to figure out how much power the entire sensor array will require. Because of
the precipitation sensor outweighing the load of other sensors by a factor of 10 up to 100 based on rainfall, the
approximation can be made with the following parameter: How frequent and long are precipitation events
on average. The probability distributions of the occurrence of different types and volumes of rainfall can
therefore be used in combination with these thwo power draws to determine the required supply power (and
from that the size of the PV module and battery) in a realistic simulation.

LORA

The power estimation of the LoRa Module is a lot simpler in practice than for the sensors. The module
currently used in the proof-of-concept model has three levels of consumed power, for Sending, Idle, and
Sleep mode, and will run with a fixed duty cycle of 1 % sending, 99 % idle/sleep as a result of the LoRa
communication airtime rules. The power for the three modes can be found in table 3.16.

Table 3.16: LoRa power consumption

Status Power draw [mW]

Sending 132
Idle 9.24
Sleep 0.0053

Deriving from this and the fixed duty cycle, the estimate for the LoRa-module is as follows in equation 3.9.
It is expected the start up and shut down times to be less than an additional 1 % of the duty cycle (3 s total).
This time-average power draw is comparable to the sum of the non-precipitation set of sensors, and although

3.2. EMBODIMENT DESIGN 23

not insignificant in a dry period does not contribute significantly to the power draw in the event of current or
recent rainfall.

PLoRa = 0.01 ·132mW+0.01 ·9.24mW+0.98 ·0.0053mW = 1.42mW (3.9)

MICROCONTROLLER UNIT

Because of the acquisition and use of the SODAQ ONE development board with LoRa-module for the proof-
of-concept development in the early stages of the design, the same board is considered here as the expected
microcontroller unit (MCU) guiding the sleep/active measurement cycle and data flows. By using a USB
power monitor, two power states could be measured quickly, giving the estimates in table 3.17.

Table 3.17: Preliminary power draw measurement on SODAQ ONE.

Status USB Power draw [mW] Expected Power draw [mW]

Active 90 90
Idle 40 0.66

The Active measurement being obtained while having the processor performing a simple calculation on
a loop, and the Idle by suspending processor operation until interrupt using the __WFI() command. An
additional resource for more information was found on the sodaq developer forums, where multiple people
had already shared resources in an attempt to reliably obtain an as low as possible power draw by entering
the deep sleep mode and unpowering all unnecessary peripherals. A conclusion that can be drawn is
that measuring the Idle (or Deep Sleep) power consumption can not be done properly over a USB bus, as
several systems on the MCU will be engaged and consuming power as a part of not turning off the USB.
Therefore, only the high power consumption measured can be used as an indication of reality, until current
measurements can be done with the MCU running all necessary code on a separate power supply instead of
USB. Suggestions indicate that the low power draw of the MCU in deep sleep can be expected to be anywhere
between 50 mA to 200 mA. It is important that in developing and reporting the prototype, a clear view can be
given of the real effective power consumption of the MCU in deep sleep mode, and how much the average
consumption over one measurement cycle would be. For now, until conclusive measurements can be made,
using the theoretical upper limit of 200µA at 3.3 V supplied yields an expected power consumption of 660µW
in deep sleep.

24 3. DESIGN PROCESS

3.3. DETAILED DESIGN

The detailed design continues were the embodiment design left off. The intermediate system overview is
given in figure 3.5. The expected maximum power draw of the system is given in table 3.18. These estimations
are necessary in order to get insight on the dimensioning of the energy supply and storage subsystems, since
a system designed for these worst-case conditions will function nominally in real-world conditions.

Table 3.18: Preliminary power draw estimations of the different subsystems.

Maximum estimated
Subsystem power draw [mW]

Sensors (during rain) 181
MCU 90
LoRa-module 1.5

Total estimated maximum power draw: 272.5 mW

Estimated 24h power draw: 6.6 Wh/day

MCU Sensors

Battery
protection

circuit
Solar panel

Solar
charge

controller

LoRa-module

V_bat

I²C, UART, SDI
Analog, Interrupt/Event

3.3 V

Harvest energy Store energy

Collect weather data Distribute energy
Store data

Transmit weather data

SPI

V_solar

Autonomous Wireless Weather Station

Sensor platformWeather sensors

Weather
parameters

Solar energy

Buck
converter

V_bat

Li-Ion battery
V_bat

Modulated
signal using CSS

Figure 3.5: A diagram describing the system of the Autonomous Wireless Weather Station. The diagram is
modelled after figure 3.1 in order to show the design process. The red lines represent power flows with their
most important parameters, the black arrows represent data flows with their type of possible connections.

The detailed design will feature the rest of the design process. The software concerning the energy
management and the data flows will be elaborated on, as well as the expected power draws of the rain sensor
and the communication system. After that, the exact design of the dimensions of the power supply and
storage are calculated, taking in consideration all the losses from the converters necessary in the supply.
Finally, a complete design is presented.

3.3. DETAILED DESIGN 25

3.3.1. SOFTWARE ON THE DATA AND POWER MANAGEMENT
The detailed design is the first design phase in which the software will be discussed. The software components
of the design are required for management of when the system is active or in deep sleep and management on
the data flows of the system. The software is designed with the requirements of chapter 2 and the limitations
of LoRa of chapter 3.2.2 in mind. Requirement [2.1] states that for all sensor data except precipitation,
the system should be able to measure every minute. Chapter 3.2.2 states that in the worst case scenario
for transmission, the system can send out data at a rate of 1 transmission per 5 minutes in which all the
measurement data can be fitted. Furthermore, the precipitation sensor works by sending an 50 ms pulse
when 0.2 mm of precipitation has fallen. When that happens, a counter should increment as to collect the
precipitation data. This means there are 3 reasons the system activates. Considering minimising the energy
consumption of the platform is a part of fulfilling the requirements, designing the software in order to run
with minimal power in sleep mode and minimal time spent in active mode is a priority. An overview of the
functionality of the software is given in figure 3.6. The figure displays the three functions the MCU should
perform, and the modes in which these can performed. Every minute a measurement is done during active
mode, followed by entering sleep mode as soon as measurements finish. Every 5 measurements the result is
sent using the LoRa-module during active mode. Finally, in either active or sleep mode, if a pulse arrives
from the rain gauge, the MCU increments a counter. If this happens during active mode, it should not
intervene with the other measurements, and if it happens during sleep mode the system should not wake
up unnecessarily. During the next active mode, the counter should be read, saved, and reset as part of the
measurements.

Pr
ec

ip
ita

tio
n

pu
ls

e

Precipitation pulse

Timer interrupt

previous state =
measure sensors

pr
ev

io
us

 s
ta

te
 =

 s
le

ep

Continue with measuring

C
on

tin
ue

 s
le

ep
in

g Measure sensors
i++;
if i = 5
{
Send data
 i = 0;
}
Check and reset precipitation

Measure sensors

Measure precipitation

Count 0.2 mm of precipitation

Wait for interrupt
Sleep

Figure 3.6: An overview of the software systems in play.

The first function of the software structured here is to command and receive measurements from the 3
sensors which are run on a duty cycle, which is set up as follows. A measurement cycle of 60 s is set up on
an internal timer named the Real Time Counter (RTC) which can trigger an interrupt after the minute is
over. Following this, using I2C a single shot measurement command is issued to the SHT30 and BMP180
sensors which will start taking temperature, humidity, pressure measurements. After the sensors start a
measurement, there is a delay of a few milliseconds until the data is ready. The ATMOS-22 wind sensor
can return an average of its most recent measurements which are taken each 10 s, which is very preferable
to a single measurement, as the wind speed and direction are much more varied with time and a single
data point provides significantly less insight than an average of 6 measurements over a minute. The sensor
communicates using a different standard, SDI-12, and consists of sending a request, and after 15 ms the
sensor will return all available data back. Because the communication with the ATMOS must be active during
this period, and the 15 ms reply delay exceeds the measurement delay of the SHT30 and BMP180 sensor the
data acquisition part of the MCU cycle can be structured sequentially as follows in figure 3.7.

The LoRa-module is also activated during the measurement cycle, and sends one packet consisting of 5 data
sets every 5 minutes, since the maximum expected time between transmissions is 4 minutes and 7 seconds.
As the packet consists of the last 5 measurements, and the LoRa-module uses the same active cycle as the
data acquisition part, these two should be combined to run concurrently where possible to decrease time

26 3. DESIGN PROCESS

Figure 3.7: Pseudocode on the measurement sequence.

spent in the active cycle. The LoRa-module is luckily able to operate independent of the MCU once the
data packet is presented. It is also important to take into account that the LoRa-module takes time to start
up and shut down form deep sleep mode, where it should be powered down to minimise losses during the
sleep cycle. The sequence for running the LoRa-module (as well as measuring) then can be expected to be
structured as such in figure 3.8.

The last function to perform is a measurement of the cumulative volume of rainfall in the same 60 s cycle of
the other sensors. The RG-11 optical sensor in the system provides data in the same way a typical 0.2 mm
rain gauge would. As it senses drops on its surface and the immediate area, it triggers a 50 ms long pulse
that occurs for every 0.2 mm of measured rain. Because of this principle, the rain gauge is not cycled like the
other sensors but must be checked constantly for output in order to catch all pulses in the event of rain. If
this were to be done by using the interrupt controller it would unfortunately be able to disrupt the processor
during communication with other sensors or interrupt an outgoing data packet. Additionally, it is possible
that interrupts would need to be blocked during certain sensor communications, which could then result in
rain triggers going unnoticed . A more useful solution is to run a general counter as a background process to
count rising or falling edges on an external pin, and use the register to keep track of the cumulative amount
of rainfall at a given time. To count a rising or falling edge, a clock must be supplied to the counter. Additional
clocks running increase power consumption, but the 1 kHz clock of the RTC module can be used for the
counter simultaneously. Finally, by running the counter to keep track of incoming pulses but not trigger
an interrupt, the MCU only needs to read from and set to 0 the counter value registers at the end of a the
measurement cycle and the software should now be able to perform all of its main functions.

3.3.2. EXPECTATION OF THE POWER DRAW

Continuing from the embodiment design phase, it is possible to conclude that the immediate power draw of
the system at any given time is determined mostly by the rate and volume of precipitation over the half hour
preceding it. In order to get a complete view of the power draw of the system it is also important to get a clear
view of the average power draw over a period of T as a result of this immediate power draw. In the design
of a stand-alone photovoltaic powered load, a period which is very important for consideration is T = 24h.
To calculate this, first the predictable sources of power consumption are determined in detail, these are the
sensors which run on a set measurement cycle and the MCU. Second, a closer look is taken at the probability
distribution of the length of precipitation events by frequency of occurrence, to find an expected average load
of the precipitation sensor normalised for T = 24h. By combining these two results, a better representation

3.3. DETAILED DESIGN 27

Figure 3.8: Pseudocode on the behaviour of the LoRa-module while sending data.

of the expected average daily system power can be achieved. In estimating the predictable sources, most
loads already have disclosed the active and passive power draws in the respective data sheets, including all
3 sensors and the LoRa-module. The MCU’s load is dependent on the size of the duty cycle and the power
consumption in active and deep sleep mode and is as a result dependent on the software it runs. In order to
determine it, the MCU was connected to a power supply and run firstly in a simulated active mode, secondly
in a deep sleep mode with minimal processes running, and finally in a duty cycle between both to account for
losses in entering and exiting the active mode. To determine an estimate of the duty cycle the length of the
SDI-12 communication is required, which can be determined from its integrators guide[26]. The data rate of
the communication is 1200 baud, and a reply from the sensor has a length of 8 data sets of 4 characters and
4 extra separation characters. A reply comes at most 15 ms after requesting a measurement. This results in a
rough estimate of 30 ms for a wind measurement to complete. The I2C request and receive communications
that occur before and after the ATMOS request are run at 100 kHz and contain at most 40 bytes of data for
an additional 3 ms. Even when start up and shut down timings for the sensors are observed, it is likely that
the active part of the duty cycle will take 50 ms on average, meaning the MCU would run on a duty cycle of
0.083 % if measurements are taken every minute. This results in the estimation of table 3.19 for the MCU to
be combined with the rest of the predictable loads.

Table 3.19: Expected power supply and draw of the different subsystems.

Subsystem Active power [mW] Sleep power [mW] Average Power [mW]

Sensors excl. Rain 2.5 0.970 1
MCU 80 0.660 0.73
LoRa 132 0.053 1.5

Cumulative predicted load: 3.23 mW

Total load for T24h : 0.077 Wh/day
T24h Load incl. Rain sensor: 4.4 Wh/day

This highlights the stark difference between the predictable loads and the rain sensor, as the load of the rain
sensor in passive mode is more than 5 times as large as all other loads combined. When it is raining, the rain
sensor is up to 60 times more power intensive than the rest of the system combined. Finally, this amount falls
short of the initially expected 6.6 Wh/day because the new calculation takes into account the duty cycle of

28 3. DESIGN PROCESS

the MCU with an active and sleeping state, whereas the 6.6Wh prediction was made with a constant 90mW
power draw from the MCU.

Figure 3.9: A map plotting the yearly average amount
of days with rain events

For this reason, an estimate on average power
consumption must also contain an assessment to
the average occurrence of rainfall. Fortunately, the
Dutch national meteorological institution (KNMI)
has been actively observing the weather in the
Netherlands for decades and has a vast amount
of data on the volume, intensity and frequency of
rainfall in their database. Delving through all of
this information would of course be far to time
consuming, but the analysis of this data has already
been done by national and local government
agencies, yielding the following estimations. As can
be seen in figure 3.9, days with rainfall exceeding
1 mm occur between 130 and 145 times a year,
which results in a 35 % to 40 % chance of having
a day with rain. This does not account for most
smaller rain events where more than 1mm can fall
within an hour. If the yearly average total amount
of rainfall is taken and divided by the yearly average
intensity of rainfall per hour, the estimate is around
7 % to 10 %, so it rains 10 % of the time. As weather
data is available logged by hour1 , including the
condition ’did it rain during this hour’, the most
accurate approach is to analyse this data by simply
expressing the percent of hours with rain over the
course of decades. This yields the expected chance
of any hour having rainfall, therefore triggering the
precipitation sensor and multiplying the system
power consumption by 10. It takes 20 minutes for the rain sensor to return to sleep mode after detecting
rain, so rainfall events shorter than 20 minutes will cause this estimate to be somewhat higher than the real
value. The expected average power draw of the precipitation sensor is the average value of a Bernoulli event,
which is to say:

PRG ,av g = Pr(r ai n) ·PRG ,acti ve +Pr(dr y) ·PRG ,sl eep

= Pr(r ai n) ·PRG ,acti ve + (1−Pr(r ai n)) ·PRG ,sl eep

(3.10)

Where Pr(X) is the chance of event X occurring and PRG ,Y is the power consumed by RG during state Y .
The hour by hour analysis of the rain occurrence at De Bilt for the period Jan 1st, 2000 to Dec 31st, 2017, is
33417 hours with rain over a total of 6574 days, meaning Pr(r ai n) = 21%. This is more than considering the
total the percentage of time it rains, but with the delayed sleep mode of the sensor, this estimate should give
an accurate absolute upper limit of how much the system is expected to be active versus asleep. The final
expected average daily power consumption over long periods of time is thus:

Es y stem,av g = (Pc ycle +PRG ,av g) ·24h

= Ec ycle +Pr(r ai n) ·ERG ,acti ve + (1−Pr(r ai n)) ·ERG ,sl eep

= 0.077Wh+ERG ,av g = 0.077Wh+0.21 ·4.32Wh+ (1−0.21) ·0.43Wh

= 0.077Wh+1.248Wh = 1.325Wh

⇒ Ps y stem,av g = 1.325Wh/day

(3.11)

1https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi

https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi

3.3. DETAILED DESIGN 29

3.3.3. DIMENSIONING OF THE ENERGY SUBSYSTEMS
From the expected daily and instantaneous power draw the process of dimensioning the various energy
system components can begin. In order to realise continuous operation, the photovoltaic subsystem should
be able to charge the battery with a days worth of energy on a day with the least expected effective solar
hours and with continuous rainfall.

In order to minimise losses, a design with as few converters and regulators as possible is preferred. From the
components discussed in chapter 3 it follows that a supply of 3.3 V is needed for the MCU, humidity, pressure
and temperature sensors, and 10 V to 15 V for the wind and precipitation sensors. An overview is given in
figure 3.10.

Maximum Power
Point Tracking
Solar Charge

Controller

Wind and
Precipitation

Sensors

Battery
Management and

Protection
System

3S Lithium Ion
BatterySolar Panel

Battery Voltage
to 3.3V Buck
Regulator

MCU+LoRa

Temp, Pressure
& Humidity
Sensors

P_batteryP_solar

P_load

Figure 3.10: An overview of the power flows.

BATTERY

Lithium Ion battery cells have a nominal voltage of 3.7 V, which ranges between 3.4 V to 4.2 V depending on
the state of charge. This means that a 3-series (3S) combination results in a battery voltage that lies within
the range needed for nominal operation of the system.

With an expected daily energy consumption of 6.6 Wh (table 3.18), a battery of that capacity is needed for
each day of storage. In order to maximise the lifetime of the battery, a depth of discharge (DoD) below 10 %
and a state of charge (SoC) above 90 % should be avoided, resulting in a battery the size of:

Ebat = SoC F actor ·Ed ai l y ·Td ay s

Ebat =
100%

90%−10%
·6.6Wh/day ·Td ay s

= 1.25 ·6.6Wh/day ·Td ay s

= 8.25Wh/day ·Td ay s

(3.12)

Because unprotected Li-Ion cells can behave catastrophically [27], protection is needed to prevent
overcharging, depletion, and other situations that result in unusable batteries or even runaway thermal
events. This can easily be achieved by the numerous protection circuits available on the market and for
series-cascaded cells these circuits also take care of balancing the relative voltages in the battery pack.

30 3. DESIGN PROCESS

SOLAR PANEL AND CHARGER

In order to be able to provide the (maximally) required daily energy supply of 6.6 Wh, the solar panel (and
solar charge circuit) is dimensioned to be able to pull this of on the worst day that can be expected solar wise.
The Dutch Royal Meteorological Institute (KNMI) defines this as a day in December with only 30 minutes of
effective solar hours. To provide an upper limit for the peak power the solar panel must be able to provide,
this hypothetical day with 30 minutes of 1000 Wm−2 of solar irradiance and 23.5 hours of total darkness is
used. In order to generate the needed amount of watt hours on such a day, a solar panel with a watt-peak of
Wp = 6.6Wh

0.5h = 13.2W is needed.

In order to extract as much energy as possible from the solar panel, a Maximum Power Point Tracker is
required. An IC that combines both an MPPT and a Charge Controller is the LT3652 by Analog Devices. With
a 13.2 W peak solar panel, the theoretical maximum charge current (when the conversion would be 100 %
efficient, and the battery is almost depleted at Vbat ≈ 10V) is 13.2W/10V = 1.32A, which both the LT3652 and
any Li-Ion battery larger than 1320 mAh can handle. In figure 3.10, the LT3652 and its surrounding circuitry
are shown as the ’Maximum Power Point Tracking Solar Charge Controller’ block.

3.3.4. FINAL DESIGN SPECIFICATIONS
Specifications of the final design with respect to measurement parameters are given in table 3.20.

Table 3.20: Specification of the weather sensors on the final design.

Parameter Min Max Typ. Resolution Typ. Accuracy Unit Ref

Temperature −40 125 0.01 ±0.2 ◦C [11]
Humidity 0 100 0.01 ±2 %RH [11]
Air pressure 300 1100 0.01 ±1 hPa [12]
Precipitation 0 12.6 0.2 N.A. mm/min [13]
Wind speed 0 30 0.01 max(±0.03,±3%) m/s [14]
Wind direction 0 359 1 ±5 ° [14]

Operating Temperature Range Min Max

With Rain detection 0 ◦C 45 ◦C
Without Rain detection −20 ◦C 45 ◦C

4
PROTOTYPE

The system build up in the design phase needs to make it to the real world. In this chapter, actual hardware,
corresponding with the detailed design, is used to construct a prototype. While an eventual product, ready
for mass production, should be fully optimized for cost and as integrated as possible, the prototype serves as
a testing and validation platform. It is build with time, cost and debugging in mind and therefore makes use
of developer and consumer grade hardware.

CHAPTER OVERVIEW

This chapter covers the prototyping of the system, as well as an analysis on that prototype and an early
prototype version. Section 4.1 consists of an early prototype in order to test the communications. Section 4.2
describes the implementation of the system based on the detailed design of chapter 3. Section 4.3 describes
the validation of the prototype.

4.1. PROOF OF CONCEPT
In the embodiment design phase, different options for various system components were compared which
converged to a single global system design. Before starting on the detailed design in which the subsystems
and later the whole system are dimensioned, a LoRa development board is used to do some real-life testing
on different aspects of the preliminary system design to try to prevent setbacks when implementing the
detailed design into a prototype.

The proof of concept consists of a development board made by SODAQ, based on an ATSAMD21G18, 32-Bit
ARM Cortex M0+ MCU and features a 1Wp solar panel, 1200mAh single cell battery, solar charge controller,
LoRa-module, and different sensors including GPS, Accelerometer, Board Temperature and Battery Voltage.

4.1.1. THE VIABILITY OF A LORAWAN COMMUNICATION STACK
In order to test the viability of LoRaWAN, the PoC was connected to "The Things Network", which is a publicly
available, worldwide, LoRaWAN to which users can add their own gateways to extend coverage. Testing the
connectivity in Delft, Gilze and Jabbeke (Belgium) showed that relying on existing TTN Gateways is not always
possible, meaning that in order to guarantee a connection, the weatherstation would need to come with a
gateway as well. However, commercial LoRaWAN networks are being built all around the world and in The
Netherlands, KPN provides a LoRaWAN network with nation-wide coverage. Connecting the PoC to KPN’s
network worked flawlessly and to that extend, the choice for LoRa communication is validated for use in the
detailed design.

31

32 4. PROTOTYPE

4.2. IMPLEMENTATION

In this section, the prototype is built using the final detailed design of 3. Any differences in the design and
prototype are explained here. The list of prototype parts is given in table 4.1.

Table 4.1: Prototype part list

Type Brand Model Cost

Solar Panel Enjoy Solar Eco Line ES10P36 € 21.95
Battery Panasonic 3S combination of NCR18650B 3350 mAh € 15.00
BMS N.A. HX-3S-FL25A-A € 6.90
Wind Sensor Meter Group ATMOS 22 € 540.001

Precipitation Sensor Hydreon RG-11 € 50.77
Antenna N.A. Center-Fed half-wave dipole 868 MHz € 7.40
Solar Charge Controller SparkFun Sunny Buddy (LT3652) € 27.95
DC Buck Regulator N.A. LM2596 € 4.50
Humidity (& Temp) Sensor WEMOS SHT30 Shield € 4.00
Pressure (& Temp) Sensor Bosch GY-68 BMP180 € 4.50
Level Converter SparkFun Bi-Directional Logic Level Converter € 2.75
MCU & LoRa Module SODAQ ONE (Cortex M0+ and Microchip RN2483) € 95.00

Prototype Cost with Wind sensor: € 780.721

Prototype Cost without Wind sensor: €240.72

4.2.1. MCU & LORA MODULE

The prototype uses the SODAQ One board which includes a SAMD21 ARM Cortex M0+ and the RN2483
LoRa module, which was obtained to support the use of LoRa through the Proof of Concept developed after
the conceptual design. This board has also been included as the MCU and LoRa combination in the final
design, but this was done mostly out of convenience more than the result of a comparative search for an
optimal board for the proposed system. Simply put, the design requires an MCU with the capacity to run
continuously with very low power power consumption and the capacity to have I2C communication, SPI and
SDI-12 serial communication and use external pins as an interrupt, which means a very large selection of
suitable replacements can be used to make the design not rely on this board, but another preferred MCU
instead. Similarly, a LoRa module can be selected separately to further optimise for cost or performance, but
the convenience of SODAQ having all necessities in an affordable package, complete with LoRa module and
online support for using the board as a low-power measurement node, means it was an obvious pick to use
in these circumstances. The consistency between design and prototype also supports using the prototype to
validate as much of the detailed design as possible. The SODAQ ONE is shown in figure 4.1.

Figure 4.1: SODAQ ONE LoRa Development board

1Discussion on the wind sensor and its cost in chapter 5.

4.2. IMPLEMENTATION 33

4.2.2. SOLAR PANEL
Other than a peak power output of 13.2 W, section 3.3.3 provides no further requirements for the photovoltaic
panel. The physical size relates to the peak power output with the efficiency of the panel. Although a high-
efficiency, small-size panel would result in a more compact overall system, the cost increases greatly with
efficiency. Commercially, solar module with conversion efficiency above 15 % were found to be priced
significantly higher than lower efficiency models.

In order to capture 13.2 W when the solar irradiance is 1000 Wm−2 with a solar panel that is 15 % efficient, it
needs to have an area of 13.2W

0.15·1000Wm−2 = 0.088m2. The specifications of the used solar panel can be found in
table 4.2.

Table 4.2: Prototype solar panel specifications

Brand Enjoy Solar
Model Eco Line ES10P36

Rated max power 10 W
Voltage at max power 18.1 V
Current at max power 0.56 A

As can be seen from table 4.2, the chosen panel is a 10 W peak power panel, which is adequate for use in the
prototype, since the 13.2 W peak is dimensioned on the basis that it rains for 24 hours, and only 30 minutes
of effective solar hours are available, which in reality could occur, but will not pose an immediate problem
when these conditions occur for a period shorter than the amount of days the battery can buffer for. The
panel chosen is the model Eco Line ES10P36 and is shown in figure 4.2. Its specifications can be found in
appendix A.

Figure 4.2: Enjoy Solar Eco Line ES10P36

4.2.3. SOLAR CHARGE CONTROLLER
As discussed at the end of the detailed design phase, in order to maximise the power from the solar panel, a
solar charge controller with maximum power point tracking is to be implemented by using the LT3652 charge
controller. The Prototype uses the same charge controller in a package provided by Sparkfun, called the Sunny
Buddy. The Sunny Buddy has a simple layout, but was designed to convert the the output of the solar panel
down to 3 V to 4 V, so it could be used without alterations in tandem with the battery and microcontroller
systems Sparkfun designs for solar applications [28]. The LT3652 fortunately is capable of managing much
higher rated voltages both on the input and on the output of the charge controller, and by replacing the
voltage divider circuit that determined the effective battery float voltage, it has been modified to supply the
12.15 V on its output for the Battery Management system. This does mean the efficiency of the system is

34 4. PROTOTYPE

reduced, as the circuit around the converter is optimised to have the highest efficiency for lower voltages, but
in the final design the LT3652 can be placed in a circuit that is most efficient around the operating point of
the power supply to minimise leakage and obtain in theory 90 % conversion efficiency. The Sunny Buddy is
shown in figure 4.3.

Figure 4.3: Sparkfun Sunny Buddy MPPT SCC.

4.2.4. BATTERY & BATTERY MANAGEMENT SYSTEM
In the detailed design phase, a 3S (3 in Series) configuration of Lithium-Ion cells was determined, in order
to provide a voltage Vbat between 10 V to 12.15 V, corresponding with a state of charge from 10 % to 90 %
respectively. While numerous Li-Ion cells are available on the market, the most popular, the 18650 package
is used in the prototype [29]. The main difference between the various 18650 cells are supported maximum
charge and discharge rate & cell capacity. The expected maximum charge and discharge rate of the batteries
when employed in prototype are so low, that any of the available cells would suffice, the choice then remained
between different capacities and different brands, resulting in the purchase of Panasonic 3350 mAh cells. The
combined capacity is thus 3 ·3.7V ·3.35Ah = 37.185Wh, resulting in a buffer of 37.185Wh/ 8.25Wh/day ≈ 4.5
days.

While the discharge and charge currents aren’t expected to surpass the recommended maxima for these cells,
additional protection in the form of a Battery Management System (BMS) is recommended, as described in
section 3.3.3. To this end, the BMS HX-3S-25A is used to disconnect the batteries when a short would occur
in the system or when the SoC drops below minimum level. The resulting combination of 3 Li-Ion cells in
series with the BMS connected is shown in figure 4.4.

Figure 4.4: HX-3S-25A connected to a 3S configuration of Panasonic 18650 Cells.

4.2. IMPLEMENTATION 35

4.2.5. BACK END
In order to receive data from the weather station, a LoRa Application server has to receive the data. The
application server then has to store the received data in a database, which a graphing application will then
query to present graphs to the end user. An overview of the (free and open-source) software used to fulfil
these functions is presented in table 4.3.

Table 4.3: Overview of software used to receive, store and present data.

Name Type Function

Node-RED Flow based programming tool LoRa Application Server, Payload Decoder
InfluxDB Time-Series Database
Grafana time series analytics and visualisation

In order to act as a LoRa Application Server, Node-RED listens for payloads send by the weather station
via the KPN LoRa network at https://nodered.weatherstation.link/. At arrival, the payload is then
decoded and its contents send as measurements to the InfluxDB database. Grafana, which is accessible at
https://weatherstation.link/, then queries the database in order to present the measurements in user-
friendly graphs on a dashboard, of which a working concept can be seen in figure 4.5, which utilizes test
data in order to provide a preview. A live version of this Dashboard is available at https://tinyurl.com/
weatherstationdashboard.

Figure 4.5: Live Grafana Prototype Dashboard with test data.

https://nodered.weatherstation.link/
https://weatherstation.link/
https://tinyurl.com/weatherstationdashboard
https://tinyurl.com/weatherstationdashboard

36 4. PROTOTYPE

DECODING THE LORA PAYLOAD

The payload has a size of 51 bytes, in which the 5 measurement points are laid out sequentially. Node-RED
decomposes this payload into its corresponding keys and values and stores them in the InfluxDB database.
An example of such a decoding operation, the one which is used in the Proof of Concept, is shown in listing
4.1.

1 // Application server payload decoder PoC
2 var bytes = new Buffer (msg . payload . DevEUI_uplink . payload_hex , ’hex’) ;
3 var epoch = (bytes [3] << 24) | (bytes [2] << 16) | (bytes [1] << 8) | bytes [0] ;
4 var batt = (3000+10* bytes [4]) /1000;
5 var temp = bytes [5] ;
6 var l a t = (bytes [9] << 24) | (bytes [8] << 16) | (bytes [7] << 8) | bytes [6] ;
7 var lon = (bytes [1 3] << 24) | (bytes [1 2] << 16) | (bytes [1 1] << 8) | bytes [1 0] ;
8 var a l t = (bytes [1 5] << 8) | bytes [1 4] ;
9 var speed = (bytes [1 7] << 8) | bytes [1 6] ;

10 var course = bytes [1 8] ;
11 var sats = bytes [1 9] ;
12 var t t f = bytes [2 0] ;
13 msg . payload = [
14 {
15 course : course ,
16 s a t e l l i t e s : sats ,
17 t ime_to_fix : t t f ,
18 battery : batt ,
19 speed : speed ,
20 temperature : temp } ,
21 {
22 l a t i t u d e : l a t ,
23 longitude : lon ,
24 epoch : epoch }
25] ;
26 return msg

Listing 4.1: PoC Payload Decoder

KPN DEVELOPER PORTAL LIMITATIONS

The prototype is connected to the KPN LoRaWAN via their developer portal, this is the same network that
commercial LoRa devices connect to, but makes use of a free trial period in order to test and debug during
the development process. There are a few limitations that result from the use of this developer portal, the first
is that OTAA (Over The Air Activation) is disabled, such that authentication keys have to be entered manually
in the LoRa Node. The second has a bit more impact, because the amount of uplink messages are capped at 6
per hour. Which means that instead of the designed measurement resolution of 1 minute, and a payload every
5, the prototype will take measurements every 2 minutes, and send them every 10. For power measurements
the default 1 min / 5 min cycle is used, resulting in data being received by the LoRa Application server for only
the first 30 minutes of every hour. However for demonstration purposes the internal counter of the MCU will
be doubled to demonstrate ’continuous’ operation.

4.3. VALIDATION
One of the main purposes of the prototype is to validate the viability of the detailed design. In order to
consider the design successful, it has to be shown that the system can be assembled to work as described,
and shown to behave as expected. Unfortunately, a large part of the problem definition and a key focus of
this project is the continued operation of the device without grid-supplied power or regular maintenance.
Even if the prototype was ready to be deployed, sufficient data to provide a confirmation of the autonomy of
the system would take longer to gather than the project allows for. The reality is that with respect to the mean
time to failure of the system and the extent to which maintenance needed, no data can credibly be obtained
outside of lifespan guarantees and maintenance instructions of the selected components as presented by
their data sheets. A validation of immediate power draw of the system is something that can be obtained
however. Using the real active and sleep power of the system in the calculations from embodiment and
detailed design the real average power consumption is approached. If the prototype does not exceed the
estimated values of average power consumption, the power estimates used to calculate the required battery
and solar panel capacity can be considered valid as well.

4.3. VALIDATION 37

4.3.1. MEASURED POWER CONSUMPTION
One subsystem which was difficult to analyse in terms of power consumption is the MCU. Its power
estimation has been reliant on how much of the chip can be powered down in deep sleep mode, how much it
consumed while measuring, and how long waking up and going into sleep mode took. Unfortunately, early in
the embodiment design phase, measurements were taken when the device was powered over USB bus, which
prevented powering down the USB bus itself. The measurements were therefore a bad indication especially
of how much the MCU consumed in deep sleep mode, which it would be 99.9 % of the time. In the detailed
design, the theoretical lowest current draw, which was provided by the developer platform was used, but
this amount of 200µA, or 660µW power, was expected to be much lower than the real consumption as the
prototype runs at least 6 extra clocks in deep sleep to support timing the measurement cycle and detecting
rain pulses. By connecting the device with a power supply at 3.3 V instead of a 5 V USB bus, an accurate
measurement of the real consumption is obtained and worked into the expected power consumption to
approach the real consumption.

Table 4.4: Power draw measurement on SODAQ ONE.

Status Current draw [mA] Power consumption [mW]

Active 12.4 42.1
Deep Sleep 0.6 1.98

Average per measurement cycle: 2.01 mW

Table 4.5: Measured consumption of the different subsystems.

Subsystem Active power [mW] Sleep power [µW] Average power [mW]

Sensors 2.5 970 1
MCU 41.2 1980 2
LoRa 132 53 1.5

Cumulative predicted load: 4.5 mW
Total load for T24h : 0.11 Wh/day

This shows that with the current prototype the system will consume 0.05 Wh more per day than was
calculated in the original design 3.19. This might seem significant, as its duty cycled loads turn out to
consume almost twice the expected amount, but an important factor to consider is that the system and its
power supply were scaled not to supply the 0.077 Wh/day duty cycle loads, but to ensure operation when
the 6.6 Wh/day rain sensor is active for the full 24 hours. This means the difference between expected and
measured loads has only meant a marginal increase on the consumption side of balancing the supply and
load of less than 1 %. Furthermore, this increase is mostly due to a high power consumption in the MCU
during sleep mode, which can still be reduced further by disabling unnecessary clocks and systems inside the
microcontroller. This was however too time-consuming an optimisation to be done in time for the Thesis. In
conclusion the measured real power consumption of the system exceeds estimations, but the difference of
magnitude between the rain sensor and the rest of the system with respect to power consumption ensures
the power supply can support the system regardless of this.

4.3.2. LONG TERM STATE OF CHARGE SIMULATION OF THE BATTERY
The validation of the system can be aided by proper simulation as well. In the case of long-term off-grid
solar applications, if the peak power output, available battery capacity and expected average or immediate
load are known, it is possible to simulate the effective solar irradiation on the panel at a given location. By
iteratively calculating the incoming and outgoing power in the system, the battery charge at a given month,
week or day only depends on the correlation in irradiation between any set of successive days. The higher
the chance an overcast day will be followed by more overcast days, the more a PV system is unable to supply
a full day load cycle and the more battery is drained between charging. The Loss of Power probability is the
result, where this data combined gives a probability distribution of the entire system failing due to continued
lack of solar power [30]. This is thereby also the percentage of time the system is inoperable. To consider the

38 4. PROTOTYPE

design valid, continuous operation by support of solar power was a primary aspect, and therefore simulation
should indicate whether or not this design can continue operating in winter without fully draining its battery.
To do so a simulation suite provided by the European Commission to aid solar power development turned
out very suited to provide all required data, models and expertise [31]. The results of the simulation can be
found in appendix B, and can be summarised with table 4.6.

Table 4.6: Loss of Power Probability / Percentage of time with empty battery

Size of PV [Wp] Battery [Wh] Estimated Load [Wh] Expected LPP [%]

10 30 6.6 1.25
10 50 6.6 0.05
10 30 2 0

As shown the prototype is already almost never unable to keep the battery charged while the load is estimated
at its maximum draw for 24 hours/day. When looking at the possibility to effectively reduce the loss of
load probability to 0 %, doubling the available battery in size should definitely ensure operation under any
reasonable conditions for the occurrence of rain and the availability of sun in the Netherlands. This itself
would increase system complexity and costs only marginally, and having more capacity than required can
help abate the degradation Li-Ion and Li-Po experience when charged or discharged fully. Additionally, when
the more realistic rainfall probability weighted power consumption of 2 Whday−1 is used as a load estimate,
the 30 Wh effective battery capacity of the prototype is abundantly sufficient in sustaining the system, as
5 Wh would be just enough. Of course since the system should work in the least favourable of possibilities
when concerning the weather, scaling the battery to have 0 % chance of draining is the better choice. This
then should be a good validation of the capability of the system as designed and prototyped in this project to
perform according to the power balance requirements.

5
CONCLUSIONS, DISCUSSION AND FUTURE

WORK

5.1. CONCLUSIONS
In this project the goal has been to scientifically explore the possibility of, design, and prototype a weather
station that would function as autonomously as possible, including sustainable off-grid power supply and
long-range communication, with minimal costs to the system. The design and prototype more specifically
are required to

• measure air temperature, atmospheric pressure, wind speed, wind direction, and volume of
precipitation each minute

• be able to function in the Netherlands with minimal chance of losing power

• minimise the required regular maintenance to ensure proper functioning

• prioritise low production costs of the final system in addition to other requirements

In this chapter the results of the conceptual, embodiment, and detailed design process, and the success of
the realised prototype will be summarised and discussed. The original program of requirements gives clear
targets to reach for the design and prototype to be considered successful.

5.1.1. RESULTS OF THE CONCEPTUAL DESIGN
The conceptual design focuses on creating considerations to assess the wide variety of components
and subsystem solutions that can perform the required functions of collecting and storing energy,
sensing weather parameters, directing operations, and communicating data back to the end user. These
considerations were then used to comparatively select the best combination of solutions in order to as well as
possible comply with the requirements. The most important choices made at this stage were to supply power
reliably using a photovoltaic module instead of a wind source generator, and to similarly prioritise sensors
with a solid state operating principle over mechanically functioning sensors. These choices were made in
order to comply best with the autonomy requirements set in the programme. The solid state preference for
both the sensors and supply is in order to minimise regular maintenance requirements, for a higher mean
time to failure if regular maintenance would be lacking. For the supply, the high predictability of available
daily solar irradiation for power compared to the more stochastic availability of wind outweighed the high
seasonal correlation meaning few effective sun hours during winter in the Netherlands. The knowledge of
how much solar irradiation is present during winter was found much easier to calculate than determining
what a reasonable probability and duration would be for a long time lack of wind, these being worst case
scenarios under which the system would need to guarantee operation.

5.1.2. EMBODIMENT DESIGN
The Embodiment design phase was used in order to accomplish a clear overview of the technological
limitations and properties that resulted from the choices made in the conceptual design in order to define

39

40 5. CONCLUSIONS, DISCUSSION AND FUTURE WORK

a clear boundary on the capabilities of the system. This was necessary in order to verify the choices of
conceptual design before moving on to implementing the choices in the prototype and describing detailed
design. To ensure achieving the requirements in the final design, this design phase first had to take into
account the relevant requirements for sensors in order to select a set of sensor models, and similarly a
communications module and microcontroller, before using the electrical characteristics of the selected
devices to estimate the viability of the design with respect to power balance and communications framework.
This allowed moving to the detailed design phase with an indication of the largest amount of supplied
power these subsystems would need while under normal operating circumstances, which helped set the
resulting requirements for the electrical properties of the PV module to be selected for the detailed design
and prototyping. It also provided a timing framework that allowed the system measure to all parameters
each minute in accordance with the system requirements, and transmit this data under the constraints of the
selected LoRaWAN communications protocol.

5.1.3. DETAILED DESIGN
All components and subsystems choices which have not been made specifically in the earlier design phases
are to be decided upon in the detailed design phase. This means that phase includes determining the size
of the PV module and battery capacity based on the power calculations from embodiment design, which
are refined as well in the detailed design. Another part of this stage is defining the code structure used to
sequence and time measurements, process data and properly transmit the information from the system to
the data servers for online processing and visual presentation. Where in the early design phases choices
were made that supported the trade-off requirements for autonomy through low maintenance sensors that
complied with the functional requirements for these sensors, during the detailed design the other side of
this trade-off had to be upheld by the requirement of continuous operation. The selected solid-state sensors
and photovoltaic module could only be used successfully in the system if it can be proven the design holds
to the requirement of continuously functioning under the worst reasonable environmental conditions. This
has been accomplished by calculating the worst case power draw of each of the subsystems combined, and
determining what size, efficiency, and rated peak power is required for the PV module to produce that much
power during the winter months. This ensures that in any winter the PV module on average supplies as much
or more energy than the other subsystems dissipate. The battery can act as a buffer to ensure that any daily
available energy is an average of an amount of preceding days proportional to battery size. The trade off
requirement of reducing the chance of supply failure can thus be met by increasing battery size of the system.

5.1.4. PROTOTYPE AND VALIDATION
In this project one of the primary tasks has been to develop a prototype of the final design, both to test
and validate the choices made in the design stages and to present a working prototype for the contractor
to use at the end of the project. As soon as the embodiment en detailed design phase provided a detailed
view of which components and sensors would be in the weather station, a prototype was constructed
to match the design choices as much as possible. This allowed limited testing of the final design, but
unfortunately due to the nature of the problem analysis, both the long term power balance of the system and
low maintenance requirements cannot be assessed in realistic operating conditions properly. Fortunately
developing the prototype has shown the functionality and helped to clarify the subsystem layout of the final
design, and provided conclusive measurements that supported the power calculations from earlier design
steps. In addition to this, the Photovoltaic Geographical Information Sysytem research project, a research
group EU Commision Joint Research Centre, was vital in providing a complete set of simulations of the final
system design which proved invaluable in assessing the long term energy balance of the system. Finally, in
developing the prototype along the design stages, the financial costs of different components can be more
accurately determined to give a preliminary figure to prototyping costs. The final design and prototype were
not within the initially required costs, but the single ATMOS 22 wind sensor included was over half of the total
expenses, and was included only after this decision was approved by the contractor.

5.2. FUTURE WORK 41

5.2. FUTURE WORK
A significant portion of this project and thesis has been working towards the design and validation of a
weather station that used current technological advancements to expand the application possibilities of the
system by supporting long range, low maintenance autonomy. The resulting design and prototype were able
to confirm the viability of such a system operating in the Netherlands, but over the course of research and
development much more has been discovered with respect to additional technologies that can further expand
the functionality of the device, or improve its current effectiveness. In this chapter, before fully discussing the
complete design, process and results of the project, first a selection of system additions or improvements is
discussed that may provide immediate gains to the performance of the system. Immediate improvements
that are described here consist of increasing the data efficiency of the LoRa module, adding to the selection
of available sensors, and dynamically observing and adapting power consumption.

5.2.1. UTILISING LORA’S FULL POTENTIAL

In section 3.2.2 the basic properties and limitations of the LoRaWAN-protocol were explained along with the
data transferred. As stated, 7 bytes/minute were needed in order to meet requirements, meaning that an
additional 16 bytes per 5 minutes are unused and can be used for other purposes. This empty space can be
used in numerous ways, a few of which are discussed here.

REQUESTING MISSING DATA

While LoRaWAN is able to provide 2-way communication, the limitations on downlink messages are very
severe. The reason for this is that during the transmission of a downlink message by the LoRa Gateway,
receiving uplink LoRa messages from end-devices is blocked. In order to maximise the network’s QoS (Quality
of Service), as few downlink messages as possible should be sent. Acknowledgements also count as downlink
messages, which makes acknowledging every uplink impossible. This results in the loss of messages in case
of collisions, since the end-device can’t know whether the message it has send is received successfully.
In order to improve the reliability without the use of acknowledgements, a "missing data request" scheme
can be implemented. The server knows which payloads are missing, since they should contribute to a
measurement resolution of 1 minute, allowing the server to compile a list of time-stamps corresponding with
the missing payloads which it can downlink to the weather station. The weather station can then use the
available 16 bytes per payload to send a missing measurement (including a timestamp) and in this way can
provide the server with up to 1 missing payload every 25 minutes. (1 missing measurement per 5 minutes.)

PROVIDING SYSTEM STATUS

When there are no missing payloads, this empty space can be used to provide additional, non-meteorological,
data to the end-user / server. This can include, but is not limited to, battery state-of-charge, brown-out
detection (whether the system has experienced a loss of power), sensor status and potential errors.

DYNAMIC TRANSMISSION

While a minimum duty-cycle of 4 minutes and 7 seconds is used in the Design phase to meet LoRa
specifications under all circumstances, which is rounded up to 5 minutes for elegant division of
measurements per transmission. This delay between transmissions is only needed when a spreading
factor of 12 is required to obtain a connection with the gateway. Instead of hard-coding a spreading factor,
ADR (Adaptive Data Rate) can be used to find the optimum (lowest) spreading factor. A lower spreading
factor results in a shorter transmission duration (time-on-air), which in turn results in the ability to do more
uplink transmissions without exceeding the LoRaWAN specifications. These ’extra’ transmissions could be
filled by measuring more often (depending on available system power), and by providing missing payloads
or system status information in separate transmissions instead of in the discussed unused bits.

In conclusion, a combination of these measures results in a system that:

• Can provide missing data and other information by utilising the available payload space with a SF of
12.

• Can measure more often and provide missing data and other information by transmitting more often
when the SF falls below 12.

42 5. CONCLUSIONS, DISCUSSION AND FUTURE WORK

5.2.2. ADAPTIVE POWER MANAGEMENT

SOLAR TRACKING

Another optimization that could have merit is physically tracking the solar angle with the solar panel. The
trade-off that comes into play is between the increase in available power on the one hand, which could result
in a cheaper (lower rated) panel, and increased complexity due to the tracking hardware needed on the other,
which result in a shorter time to failure, increased cost and increased power dissipation. Expected gains
relative to a fixed solar panel vary between 15 % to 35 % [32, 33], meaning that in order to benefit the system, a
≈ 35% larger solar panel should at least be more expensive than the total cost of dual-axis solar tracking. With
the trend of ever decreasing prices of photovoltaic panels, it is unlikely that this results in a trade-off favouring
solar tracking over fixed panels for low-power and low-maintenance systems. However, novel developments
in solar tracking hardware could change this perspective making it an interesting prospect for future work.

DYNAMIC MEASUREMENT DUTY-CYCLES

When discussing possible ’extra’ transmissions in section 5.2.1, it is noted that whether or not such extra
transmissions are possible not only relies on limitations of the communication stack, but also on the available
amount of energy. Two methods of dynamically handling changing weather conditions, and with that, a
change in the amount of energy that can be harvested, can be thought of. The first applies algorithms to data
acquired by the system, past and present, in order to predict and manage the power flows, described in [34–
36]. Another that tries to estimate the amount of effective sun hours in advance by using the weather forecast,
which are described in [37–39]. In that case, the system must be able to receive transmissions to calculate with
a weather forecast. Of course, these methods are not mutually exclusive, and an implementation of 1 or both
would allow the system to rise above its worst-case conditions performance.

BATTERY CHARGING IN SUB ZERO AMBIENT TEMPERATURES

As stated in 3.2.4, li-ion batteries should not normally be charged when the batteries are below a temperature
of 0 ◦C. This can cause irreversible lithium build-up on the anode of the battery. There are several solutions
to combat this, which can be used simultaneously. The first is to huddle all the electrical components of the
sensor platform into a single casing, insulating that casing from the ambient temperatures. The dissipated
energy of those components could heat the components marginally. It is also expected that at most sub zero
temperatures, the battery would not charge, since most cases of sub zero temperatures occur in the winter
during the night. Depending on the power balance of the system in winter, a low power heater could act
as a safety measure should insulation not suffice. The first solution might not be sufficient, since in the
Netherlands there is a nonzero number of winter days where temperature does not rise above 0 ◦C. The
second solution uses the solar charge controller, which can be connected to a 10 kΩ thermistor, which cuts off
the charge current when the battery temperature reaches a temperature below 0 ◦C. Although this is effective
in protecting the battery, preventing all charging during a sub zero day disrupts the power balance of the
system significantly. It is thus recommended to primarily explore possible heating or insulation methods
to prevent this issue with a reasonable degree of certainty, and use the charging shutoff backstop to ensure
safety parallel to this. Long term testing on the internal temperature of the sensor platform is necessary in
order to verify these solutions.

5.2.3. THE SENSOR MODULARITY ASPECT

This project mainly focused on the design and prototyping of an autonomous wireless weather station. This
design was taken in to parts: the sensors, and the sensor platform which supports those sensors. One benefit
of the sensor platform is that its design can be taken separately from the sensors. The sensor platform can
then be taken in order to support any sensor in order to fit the demands of varying customers.

In the current design, the sensors communicate by SDI, I2C and by reading a digital pin. The microcontroller
can also support sensors which use UART and analog communication. There are currently two ways in order
to make the system modular to fit any sensor a consumer desires. The modularity will of course result in
trade offs, which will be discussed. The first is by use of I2C only. In this model, the designers of the system
will select a number of I2C sensors which the consumer can choose from. These sensors can then be used on
the system in a plug-and-play fashion. The system then knows which sensor is being connected by storing
the I2C slave addresses of the selected sensors and sweeping the sensors for those addresses. The second
option for modularity is when the consumer selects a sensor with a different type of communication. The

5.3. DISCUSSION ON THE AUTONOMOUS WIRELESS WEATHER STATION 43

designer can then modify the platform in order to fit the consumer demands.

Any addition of sensors will of course result in a number of trade offs. While it will not always be the case,
LoRa has a worst case scenario of 51 bytes per 5 minutes, limiting the amount data which can be sent per time.
More sensors implies a higher power draw, which can be compensated for by scaling the energy subsystems
accordingly. When using more sensors, a careful consideration must be made between amount of sensors,
size of the energy systems, the rate at which data is acquired and the rate at which data is sent.

5.2.4. ENVIRONMENTAL CONCERNS AND DISPOSAL

Because the system is designed for remote weather sensing, it is important to note that the system should not
interfere with its environment and vice versa. The systems should be cased in such a way that its components
are shielded from hazards to prevent damage and possible pollution to the environment. When the system
has reached the end of its lifetime, the system should removed from its environment. The system should be
taken apart into comparable sets of similar disposable components and recycled when possible.

5.3. DISCUSSION ON THE AUTONOMOUS WIRELESS WEATHER STATION
From the conclusions, the viability of an autonomous and wireless weather station was proven to be not only
theoretically possible, but has shown to be realistic in practice. There is no way to bypass the correlation
between increased autonomy and financial cost, but due to the ever evolving technologically advancement
and decreasing cost of solar power due to mass production, the reasons for weather stations to be connected
by wire to the power grid or the internet are becoming less significant. Advancements especially in LoRaWAN
have in the project allowed the use of this technology effectively to support both the long range and low
power requirements, whereas previous technologies such as cellular networks would be less effective. An
important feature of the research and design is also the separation between platform and sensors, which
allows the design process to be applied similarly to a selection of different or improved sensors. As long as
the payload conditions of the LoRa-module are met, the current design in theory supports any combination
of sensors with a combined load of 6 Wh/day. This also means that flaws that can be found with the current
sensors can be addressed when alternatives are available. The two sensors that stand out from the start are
the wind and precipitation sensor, and both are sources of considerable added costs to the system. Especially
the selection of a precipitation sensor seemed to have no right answer, and caused the resulting choice to
outscale all other sensors with respect to power draw. This was decided on after other choices proved even
less compatible with the program of requirements or did not have enough information on commercially
available models to compare with clarity. A direct example was the acoustic disdrometer rain sensor, for
which commercially available sensor packages could not be considered with the depth of other sensor types
as no datasheet or quantitive information on the specifications for this model sensor could be found. The
selected rain sensor as a result was the lesser of 3 bad options, as the mechanical gauge would run opposed
to requirement [5.2], and the radar based sensor had an even larger power draw than the optical gauge. It is
therefore a recommendation of this report that the first and foremost priority for improving the performance
of the system is to find or develop a solid state rain sensor that requires less power, either by improving on
the design of the RG-11 sensor, which was not made with this specific low power application in mind, or by
exploring the possibility of replacing it with a more efficient disdrometer.

In a similar, but less forced trade off the selected model acoustic wind sensor, the ATMOS 22, was initially
considered too expensive to incorporate in the design or prototype, but after clarification by the contractor
was added as it was agreed the model should be included regardless of the cost requirements. However, if
costs are a more mandatory requirements a replacement model can be used in the system instead. Aside
from replacing the model with a cheaper sonic anemometer, cheaper high-end mechanical wind sensors
like the Davis 6410 anemometer have been also found which according to specifications can operate without
maintenance in accordance with requirement [5.2] and [5.3].

Despite the fact that clear improvements can still be made to the specific sensors attached to the platform,
the possibilities of the platform as a separate product and as a unified design that can be scaled and adapted
to the needs of the customer are numerous. The project challenge has revolved around both balancing the
power and data flowing through the system, and that balance, both of power draw and supply, and gathered
data and transmission payload size, can be maintained even with larger or smaller sets of sensors. The room

44 5. CONCLUSIONS, DISCUSSION AND FUTURE WORK

left in the LoRa payload can support more, or more accurate, sensors, and as long as the power remains
balanced, the design principles demonstrated in this project should hold. Balancing the power flow does not
strictly have to mean attaching a larger panel, and optimising the scale of the panel and battery has multiple
equally valid solutions for the same Loss of Load Probability [40]. This also means the increased financial
costs of expanding power supply can be adaptive to market forces and available models, as more than one
combination of battery/pv sizes are equally valid solutions.

A
ADDITIONAL SPECIFICATIONS AND

SCHEMATICS

SPECIFICATIONS ECO LINE ES10P36 SOLAR PANEL

Table A.1: Specifications for the Eco Line ES10P36 solar panel.

Parameter Symbol Unit Value

Rated Max Power Pmax [W] 10
Power Tolerance Range [%] 0 to 3
Voltage at Pmax Vmp [V] 18.1
Current at Pmax Imp [A] 0.56
Open-circuit Voltage Voc [V] 22.3
Short-circuit Current Isc [A] 0.60
Normal Operating Cell Temp NOT C [◦C] 50
Maximum System Voltage VDC [V] 1000
Dimension [mm] 350x260x25
Cell quantity and array 36 (4x9)

45

46 A. ADDITIONAL SPECIFICATIONS AND SCHEMATICS

SCHEMATICS PROTOTYPE

47

SCHEMATICS SODAQ ONE VERSION 3

B
SIMULATIONS

49

50 B. SIMULATIONS

Performance of off-grid PV systems

PVGIS-5 estimates of solar electricity generation

Provided inputs
Latitude/Longitude: 51.999, 4.374
Horizon: Calculated
Database used: PVGIS-CMSAF
PV installed: 10 Wp
Battery capacity: 30 Wh
Cutoff limit: 0 %
Consumption per day: 6.6 Wh

Slope angle: 35 °
Azimuth angle 0 °
Simulation outputs
Percentage days with full battery: 78.53 %
Percentage days with empty battery: 1.26 %
Average energy not captured: 23.08 Wh
Average energy missing: 2.12 Wh

Outline of horizon at chosen location:

Power production estimate for off-grid PV:

Battery performance for off-grid PV system:

Probability of battery charge state at the end of the day:

Monthly average performance

Month Ed El Ff Fe
January 6.86 2.6 32 4
February 6.55 6.4 69 0
March 6.68 20 98 0
April 6.61 29.8 100 0
May 6.6 31.1 100 0
June 6.6 31.9 100 0
July 6.6 31.4 100 0
August 6.59 27.3 100 0
September 6.59 20.5 99 0
October 6.58 11.6 83 0
November 6.4 3.3 45 0
December 6.14 1.1 18 11

Ed: Average energy production per day [Wh/day].
El: Average energy not captured per day [Wh/day].
Ff: percentage of days when battery became full [%].
Fe: percentage of days when battery became empty [%].

Cs Cb
0-10 1
10-20 0
20-30 0
30-40 1
40-50 1
50-60 2
60-70 3
70-80 4
80-90 29
90-100 55

Cs: Charge state at the end of each day [%].
Cb: percentage of days with this charge state [%].

PVGIS ©European Union, 2001-2017.
Reproduction is authorised, provided the source is acknowledged,
save where otherwise stated.

The European Commission maintains this website to enhance public access to information about its initiatives and European
Union policies in general. Our goal is to keep this information timely and accurate. If errors are brought to our attention, we will
try to correct them.
However the Commission accepts no responsibility or liability whatsoever with regard to the information on this site.
This information is: i) of a general nature only and is not intended to address the specific circumstances of any particular
individual or entity; ii) not necessarily comprehensive, complete, accurate or up to date; iii) sometimes linked to external sites
over which the Commission services have no control and for which the Commission assumes no responsibility; iv) not
professional or legal advice (if you need specific advice, you should always consult a suitably qualified professional).
Some data or information on this site may have been created or structured in files or formats that are not error-free and we
cannot guarantee that our service will not be interrupted or otherwise affected by such problems. The Commission accepts no
responsability with regard to such problems incurred as a result of using this site or any linked external sites.

Report generated on 2018/06/12

51

Performance of off-grid PV systems

PVGIS-5 estimates of solar electricity generation

Provided inputs
Latitude/Longitude: 51.999, 4.374
Horizon: Calculated
Database used: PVGIS-CMSAF
PV installed: 10 Wp
Battery capacity: 50 Wh
Cutoff limit: 0 %
Consumption per day: 6.6 Wh

Slope angle: 35 °
Azimuth angle 0 °
Simulation outputs
Percentage days with full battery: 78.2 %
Percentage days with empty battery: 0.05 %
Average energy not captured: 23.14 Wh
Average energy missing: 0.18 Wh

Outline of horizon at chosen location:

Power production estimate for off-grid PV:

Battery performance for off-grid PV system:

Probability of battery charge state at the end of the day:

Monthly average performance

Month Ed El Ff Fe
January 7.11 2.4 29 0
February 6.55 6.4 69 0
March 6.68 20 98 0
April 6.61 29.8 100 0
May 6.6 31.1 100 0
June 6.6 31.9 100 0
July 6.6 31.4 100 0
August 6.59 27.3 100 0
September 6.59 20.5 99 0
October 6.58 11.6 83 0
November 6.4 3.3 45 0
December 6.2 1 17 1

Ed: Average energy production per day [Wh/day].
El: Average energy not captured per day [Wh/day].
Ff: percentage of days when battery became full [%].
Fe: percentage of days when battery became empty [%].

Cs Cb
0-10 0
10-20 0
20-30 0
30-40 0
40-50 0
50-60 1
60-70 1
70-80 3
80-90 7
90-100 82

Cs: Charge state at the end of each day [%].
Cb: percentage of days with this charge state [%].

PVGIS ©European Union, 2001-2017.
Reproduction is authorised, provided the source is acknowledged,
save where otherwise stated.

The European Commission maintains this website to enhance public access to information about its initiatives and European
Union policies in general. Our goal is to keep this information timely and accurate. If errors are brought to our attention, we will
try to correct them.
However the Commission accepts no responsibility or liability whatsoever with regard to the information on this site.
This information is: i) of a general nature only and is not intended to address the specific circumstances of any particular
individual or entity; ii) not necessarily comprehensive, complete, accurate or up to date; iii) sometimes linked to external sites
over which the Commission services have no control and for which the Commission assumes no responsibility; iv) not
professional or legal advice (if you need specific advice, you should always consult a suitably qualified professional).
Some data or information on this site may have been created or structured in files or formats that are not error-free and we
cannot guarantee that our service will not be interrupted or otherwise affected by such problems. The Commission accepts no
responsability with regard to such problems incurred as a result of using this site or any linked external sites.

Report generated on 2018/06/12

52 B. SIMULATIONS

Performance of off-grid PV systems

PVGIS-5 estimates of solar electricity generation

Provided inputs
Latitude/Longitude: 51.999, 4.374
Horizon: Calculated
Database used: PVGIS-CMSAF
PV installed: 10 Wp
Battery capacity: 30 Wh
Cutoff limit: 0 %
Consumption per day: 2 Wh

Slope angle: 35 °
Azimuth angle 0 °
Simulation outputs
Percentage days with full battery: 96.44 %
Percentage days with empty battery: 0 %
Average energy not captured: 23.53 Wh
Average energy missing: 0 Wh

Outline of horizon at chosen location:

Power production estimate for off-grid PV:

Battery performance for off-grid PV system:

Probability of battery charge state at the end of the day:

Monthly average performance

Month Ed El Ff Fe
January 2 7.5 88 0
February 2 10.9 99 0
March 2 24.6 100 0
April 2 34.4 100 0
May 2 35.7 100 0
June 2 36.5 100 0
July 2 36 100 0
August 2 31.9 100 0
September 2 25.1 100 0
October 2 16.1 100 0
November 1.99 7.7 97 0
December 2 5.2 75 0

Ed: Average energy production per day [Wh/day].
El: Average energy not captured per day [Wh/day].
Ff: percentage of days when battery became full [%].
Fe: percentage of days when battery became empty [%].

Cs Cb
0-10 0
10-20 0
20-30 0
30-40 0
40-50 0
50-60 0
60-70 0
70-80 0
80-90 0
90-100 99

Cs: Charge state at the end of each day [%].
Cb: percentage of days with this charge state [%].

PVGIS ©European Union, 2001-2017.
Reproduction is authorised, provided the source is acknowledged,
save where otherwise stated.

The European Commission maintains this website to enhance public access to information about its initiatives and European
Union policies in general. Our goal is to keep this information timely and accurate. If errors are brought to our attention, we will
try to correct them.
However the Commission accepts no responsibility or liability whatsoever with regard to the information on this site.
This information is: i) of a general nature only and is not intended to address the specific circumstances of any particular
individual or entity; ii) not necessarily comprehensive, complete, accurate or up to date; iii) sometimes linked to external sites
over which the Commission services have no control and for which the Commission assumes no responsibility; iv) not
professional or legal advice (if you need specific advice, you should always consult a suitably qualified professional).
Some data or information on this site may have been created or structured in files or formats that are not error-free and we
cannot guarantee that our service will not be interrupted or otherwise affected by such problems. The Commission accepts no
responsability with regard to such problems incurred as a result of using this site or any linked external sites.

Report generated on 2018/06/12

C
SOURCE CODE

MAIN.CPP

1 #include <Arduino . h> // Include Arduino Library
2 #include <Wire . h> // Include I2C Library
3 #include <Sodaq_RN2483 . h> // Include LoRa Module Library
4 #include <Sodaq_wdt . h> // Include SODAQ WatchDogTimer Library
5

6 #include "LedColor . h" // for USBstreamless debugging
7 #include "BMP180. h" // imported Library for communicating with the pressure sensor
8 #include "LoRaFunc . h" // separated lora functions to clean up main . cpp
9 #include " regSetup . h" // separated r e g i s t e r operations to i n i t i a l i s e hardware functions

10 #include "SDI12func . h" //SDI−12 functions and d e f i n i t i o n s . imports and makes use of the
enviroDIY SDI12 l i b r a r y

11 #include "SHT30 . h" // imported l i b r a r y for communicating with the humidity sensor
12 #include " dataBuffer . h" // our functions for managing the data and formatting i t c o r r e c t l y for

transmission
13

14 //Most headers include these d e f i n i t i o n s themselves for debugging , but these must e x i s t in main i f no
previous similar d e f i n i t i o n s e x i s t

15 # i fndef DEBUG_STREAM
16 #define DEBUG_STREAM SerialUSB // Define SerialUSB as debug stream
17 #define DEBUG_BAUD 9600 // Define S e r i a l BAUD
18 #endif
19 # i fndef LORA_STREAM
20 #define LORA_STREAM S e r i a l 1 // Define S e r i a l 1 as LoRa stream
21 #endif
22

23 # i fndef SDI_DATA_PIN
24 #define SDI_DATA_PIN 10 // The pin of the SDI−12 data bus
25 #endif
26

27 // these are a l l the individual c l a s s i n i t i a l i s a t i o n s for communicating with the ATMOS22, SHT30, and BMP180
28 extern SDI12 mySDI12 ;
29 ClosedCube_SHT31D sht3xd ;
30 BMP180 bmp;
31

32 SHT31D r e s u l t ; //used to c o l l e c t and use the r e s u l t from SHT30 as i t s c l a s s defines a special s t r u c t for
returning information

33

34 dataBuffer databuf ; // i n i t i a l i s e the databuffer object to encode , store and concactenate a l l measurement
data

35

36 char atmosAddress ; // address at which the SDI12 i n i t i a l i s a t i o n has detected the ATMOS22 sensor
37

38 f l o a t temperature , hPa , windSpeed , windDir , humidity , rainVolume ; // the relevant var iables for the weather
parameters being measured

39

40 long pressure , t2 ; // temporary variable since the BMP180 l i b r a r y returns long instead of f l o a t , whereas we
process measurements as f l o a t i n g point values

41 i n t bmperror ; //used to check i f BMP measurement was performed and communicated c o r r e c t l y

53

54 C. SOURCE CODE

42 i n t measureflag = 0 ; // pol l ing f l a g that gets checks continuously during loop () to indicate s t a r t of
measurement . set by RTC, r eset by measurement

43 i n t i t e r a t i o n = 0 ; // keeps track of the current i t e r a t i o n , to c o r r e c t l y synchronise the measurement and
transmission cycles

44

45

46 void setup ()
47 {
48 # i f defined (LORA_RESET) // Enable LoRa module by Hard reset the RN module
49 pinMode(LORA_RESET, OUTPUT) ;
50 d i g i t a l W r i t e (LORA_RESET, LOW) ;
51 delay (100) ;
52 d i g i t a l W r i t e (LORA_RESET, HIGH) ;
53 delay (100) ;
54 #endif
55

56 /*
57 bugs were detected when i n i t i a l i s i n g the Wire l i b r a r y a f t e r data streams and/ or SDI communication
58 only i n i t i a l i s e Wire once , check that l i b r a r i e s do not also use begin ()
59 the Wire object i s external and can be used by a l l functions across f i l e s that include the l i b r a r y
60 */
61 Wire . begin () ;
62

63 while ((!DEBUG_STREAM) && (m i l l i s () < 10000)) { } // Wait for SerialUSB or s t a r t a f t e r 10
seconds

64 //DO NOT REMOVE. This function makes sure that under any conditions the board can be re set to
bootloader mode (for f lashing new code) in the f i r s t 10 second

65

66 DEBUG_STREAM. begin (DEBUG_BAUD) ;
67 LORA_STREAM. begin (LoRaBee . getDefaultBaudRate ()) ;
68 // DEBUG_STREAM. print ln (" s e t t i n g up LoRa") ;
69 setupLoRaABP () ;
70

71 LoRaBee . setSpreadingFactor (12) ; // Set i n i t i a l Spreading Factor SF to 12
72

73 // i n i t i a t e the I2C connections with t h e i r respective l i b r a r i e s
74 SHT31D_ErrorCode err = sht3xd . begin (0 x45) ; // I2C address : 0x44 or 0x45 , depends the sht package
75 i f (err) {DEBUG_STREAM. print (" Error on SHT30 connect") ; }
76

77 i n t errcode = bmp. begin () ;
78 i f (errcode) {DEBUG_STREAM. print (" Error on BMP180 connect") ; }
79

80 // setup the Real Time Counter
81 rtcSetup () ;
82

83 // setup the external event counting f u n c i o n t a l i t y for counting rain gauge pulses
84 evsSetup () ;
85 eicSetup () ;
86 tcSetup () ;
87

88 // setup SDI communication , returns ’ ’ on unsuccessful i n i t i a t i o n , f i r s t detected responsive address
otherwise

89 atmosAddress = sdiSetup () ;
90 setLedColor (NONE) ;
91 i f (atmosAddress == ’ ’) {DEBUG_STREAM. print ln (" Error on ATMOS22 connect") ; }
92

93

94 DEBUG_STREAM. print ln (" setup complete") ;
95 RTC−>MODE0.CTRL. b i t .ENABLE = 1 ; // s t a r t the Real Time Counter at the end of setup
96

97 }
98

99 void RTC_Handler (void) // Function to clear f lag , then make sensor measurement
100 {
101 RTC−>MODE0. INTFLAG . b i t .CMP0 = 1 ; // i f f l a g high and IRQ handler i s called , write a 1 to remove f l a g
102 measureflag = 1 ; // t h i s f l a g indicates a measurement should be taken
103 }
104

105

106 // Returns and r e s e t s to 0 the current value of the event counting Timer/Counter r e g i s t e r , to find the
preci pi tat ion volume

55

107 //
108 uint16_t tcRead (void)
109 {
110 while (TC3−>COUNT16.STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
111 uint16_t count = TC3−>COUNT16.COUNT. reg ;
112 TC3−>COUNT16.COUNT. reg = 0 ;
113 while (TC3−>COUNT16.STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
114 return count ;
115 }
116

117 void loop ()
118 {
119

120 i f (measureflag == 1) // we only s t a r t a measurement a f t e r the RTC has reached a minute , s e t t i n g the ’
take measurement ’ f l a g

121 {
122 // take a combined temperature and humidity measurement with the SHT3X l i b r a r y
123 r e s u l t = sht3xd . readTempAndHumidity (SHT3XD_REPEATABILITY_HIGH, SHT3XD_MODE_POLLING, 15) ;
124 i f (r e s u l t . error == SHT3XD_NO_ERROR)
125 {
126 /*
127 i n s e r t debugging functions to convey correct operation , or print r e s u l t s over the USB stream
128 */
129 }
130 else
131 {
132 /*
133 indicate error in the SHT30 measuremet
134 */
135 }
136

137 // take a combined temperature/ pressure measurement with the BMP180 l i b r a r y
138 bmperror = bmp. readTP(&t2 , &pressure , OVERSAMPLING_HIGH_RESOLUTION) ;
139 humidity = r e s u l t . rh ;
140

141 i f (bmperror == 0)
142 {
143 /*
144 i n s e r t debugging functions to convey correct operation , or print r e s u l t s over the USB stream
145 */
146 }
147 else
148 {
149 /*
150 indicate error in the BMP180 measurement
151 */
152 }
153

154 // read out the counter keeping track of how many rain pulses have been detected
155 rainVolume = tcRead () * 0 . 2 ;
156

157 // currently the only indication of a bad SDI connection i s a f a u l t y setup , so we check for that before
measuring wind speed/ direction

158 i f (atmosAddress ! = ’ ’) sdiMeasure(&windSpeed,&windDir , atmosAddress) ;
159 // ! ! I f a measurement i s taken without a proper SDI connection , t h i s can freeze the system into waiting

for a reply ! !
160

161 // a f t e r a l l measurements have been taken , construct a new dataset out of i t
162 databuf . newDataset(&temperature ,&hPa,&windSpeed,&windDir ,&humidity ,&rainVolume , 0) ;
163 //and place i t in the correct position of the f u l l 5 measurement buffer for transmission l a t e r
164 databuf . f i l l B u f f e r (i t e r a t i o n) ;
165

166 /*
167 t h i s sequencing of increments means our f i r s t measurement i s placed into the buffer with position 0 ,
168 and successive measurements are placed correct ly , while also ensuring that a f t e r 5 measurements
169 i t e r a t i o n = 5 in order to c o r r e c t l y t r i g g e r a transmission and reset
170 */
171 i t e r a t i o n ++;
172

173 i f (i t e r a t i o n >= 5) // at 5 measurements the system i s ready for a data transmission , r e s e t t i n g the
cycle

56 C. SOURCE CODE

174 {
175

176 i t e r a t i o n = 0 ;
177 i n t error = LoRaBee . send (1 , databuf . head , 4 0) ; // transmit the databuffer by pointing to head and

sending the 40 bytes inside
178

179 i f (error) {DEBUG_STREAM. print ("A LoRa error has occurred ") ;DEBUG_STREAM. print ln (error) ; }
180 else {DEBUG_STREAM. print ("LoRa Tx successful ") ; }
181 }
182 measureflag = 0 ; // a f t e r a f u l l measurement cycle , the f l a g i s rese t and the system waits i d l y for the

Real Time Counter to set i t again
183 }
184 }

pages/sourcecode/main.cpp

REGSETUP.H AND .CPP

1 # i fndef REGSETUP_h
2 #define REGSETUP_h
3 // Real Time Counter controls duty cycle , i n i t i a t e s clocks to t r i g g e r measurement at 1/60Hz
4 void rtcSetup (void) ; // s e t s up r e g i s t e r s for Real Time Counter of 1 minute
5 void rtcSetup (i n t timer) ; // s e t s up r e g i s t e r s for a counter of * timer * ms
6 /*
7 In order to count external pulses from raingauge , external pin i s used to generate an event instead of an

interrupt ,
8 which can be passed without waking the CPU and does not i n t e r f e r e with other external interrupts , for

instance
9 the SDI−12 communication (which blocks a l l other external interrupts while expecting to receive a message)

10 */
11

12 void eicSetup (void) ; // s e t s up r e g i s t e r for external pin event generation , l inking a pin to an
interrupt and then generating an event instead

13 void evsSetup (void) ; // s e t s up r e g i s t e r s for event handler system , which passes the generated event
along a channel to a counter

14 void tcSetup (void) ; // s e t s up r e g i s t e r s for the event counter , which increments when EIC generates
an event which i s passed on by EVSYS

15

16 #endif

pages/sourcecode/regSetup.h

1 #include <Arduino . h> // Include Arduino Library
2 #include <Sodaq_RN2483 . h> // Include LoRa Module Library
3 #include <Sodaq_wdt . h> // Include SODAQ WatchDogTimer Library
4 #include " regSetup . h" // Include function declarations
5

6 void rtcSetup (void) // Function to Setup the RTC & Timers
7 {
8 // Set RTC source clock to always be running , even in standby , enable i t and wait for r e g i s t e r changes to

sync
9 SYSCTRL−>OSC32K . b i t .ONDEMAND = 0 ;

10 SYSCTRL−>OSC32K . b i t .RUNSTDBY = 1 ;
11 SYSCTRL−>OSC32K . b i t . EN32K = 1 ;
12 SYSCTRL−>OSC32K . b i t .ENABLE = 1 ;
13 while ((SYSCTRL−>PCLKSR . b i t .OSC32KRDY) == 0) { }
14

15 //Use the source clock to generate a Generic Clock signal of 1kHz (Divide by 32) . Uses the default RTC
ID number to s e l e c t which GCLK. wait for sync

16 GCLK−>GENDIV. reg = (GCLK_GENDIV_DIV(32) | GCLK_GENDIV_ID(RTC_GCLK_ID)) ;
17 GCLK−>GENCTRL. reg = (GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSC32K | GCLK_GENCTRL_ID(RTC_GCLK_ID)) ;
18 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
19

20 // enable the GCLK signal and connect the RTC to the GCLK with i t s ID , enable clock . Wait for sync
21 GCLK−>CLKCTRL. reg = (GCLK_CLKCTRL_ID(GCLK_CLKCTRL_ID_RTC) | GCLK_CLKCTRL_GEN(RTC_GCLK_ID) |

GCLK_CLKCTRL_CLKEN) ;
22 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
23

24 RTC−>MODE0.COUNT. reg = 0 ; // rese t counter bc a software reset no longer c l e a r s the value (due to
sleep mode running)

57

25 RTC−>MODE0.CTRL. reg = 0x0080 ; // s e l e c t Mode0, no clock divider for 1kHz , Clear on match
26 RTC−>MODE0. INTENSET . reg = 0x01 ; //compare interrupt enabled
27 RTC−>MODE0.COMP[0] . reg = 118000; // timer period in ms (small bias to o f f s e t unknown f deviation from

1000 Hz)
28 NVIC_EnableIRQ (RTC_IRQn) ;
29 }
30

31 void rtcSetup (i n t timer) // Function to Setup the RTC & Timers
32 {
33

34 SYSCTRL−>OSC32K . b i t .ONDEMAND = 0 ;
35 SYSCTRL−>OSC32K . b i t .RUNSTDBY = 1 ;
36 SYSCTRL−>OSC32K . b i t . EN32K = 1 ;
37 SYSCTRL−>OSC32K . b i t .ENABLE = 1 ;
38 while ((SYSCTRL−>PCLKSR . b i t .OSC32KRDY) == 0) { }
39

40

41 GCLK−>GENDIV. reg = (GCLK_GENDIV_DIV(32) | GCLK_GENDIV_ID(RTC_GCLK_ID)) ;
42 GCLK−>GENCTRL. reg = (GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSC32K | GCLK_GENCTRL_ID(RTC_GCLK_ID)) ;
43 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
44

45 GCLK−>CLKCTRL. reg = (GCLK_CLKCTRL_ID(GCLK_CLKCTRL_ID_RTC) | GCLK_CLKCTRL_GEN(RTC_GCLK_ID) |
GCLK_CLKCTRL_CLKEN) ;

46 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
47

48 RTC−>MODE0.COUNT. reg = 0 ; // rese t counter bc a software reset no longer c l e a r s the value
49 RTC−>MODE0.CTRL. reg = 0x0080 ; // s e l e c t Mode0, no clock divider for 1kHz , Clear on match
50 RTC−>MODE0. INTENSET . reg = 0x01 ; //compare interrupt enabled
51 RTC−>MODE0.COMP[0] . reg = timer ; // timer period in ms
52 NVIC_EnableIRQ (RTC_IRQn) ;
53 }
54

55 void evsSetup (void)
56 {
57 PM−>APBCMASK. reg | = (PM_APBCMASK_EVSYS) ;
58

59 GCLK−>CLKCTRL. reg = (GCLK_CLKCTRL_ID(GCLK_CLKCTRL_ID_EVSYS_1) | GCLK_CLKCTRL_GEN(RTC_GCLK_ID) |
GCLK_CLKCTRL_CLKEN) ;

60 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
61

62 EVSYS−>USER. reg | = (uint16_t) (EVSYS_USER_CHANNEL(2) | EVSYS_USER_USER(0 x12)) ; // connect User TC3 to
event with Channel 1 (s e l e c t i n g channel n−1)

63 EVSYS−>CHANNEL. reg | = (uint32_t) (EVSYS_CHANNEL_EDGSEL_RISING_EDGE | EVSYS_CHANNEL_PATH_SYNCHRONOUS |
EVSYS_CHANNEL_EVGEN(0 x13) | EVSYS_CHANNEL_CHANNEL(1)) ;

64 }
65

66 void tcSetup (void)
67 {
68 PM−>APBCMASK. reg | = (PM_APBCMASK_TC3) ; // enable TC3 in clock power manager
69 // attach clock to TC3
70 GCLK−>CLKCTRL. reg = (GCLK_CLKCTRL_ID_TCC2_TC3 | GCLK_CLKCTRL_GEN(RTC_GCLK_ID) | GCLK_CLKCTRL_CLKEN) ;

//Use the same Generic Clock as RTC
71 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
72

73 TC3−>COUNT16.CTRLA. reg | = (TC_CTRLA_RUNSTDBY | TC_CTRLA_MODE_COUNT16) ;
74 TC3−>COUNT16.EVCTRL. reg | = (TC_EVCTRL_TCEI | TC_EVCTRL_EVACT_COUNT) ;
75 TC3−>COUNT16.READREQ. reg | = (TC_READREQ_RCONT | TC_READREQ_ADDR(0 x10)) ;
76 while (TC3−>COUNT16.STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
77

78 TC3−>COUNT16.CTRLA. b i t .ENABLE =1; //dont forget to turn on the counter dummy
79 }
80

81 void eicSetup (void)
82 {
83 PM−>APBAMASK. reg | = (PM_APBAMASK_EIC) ; // enable EIC APB clock in the respective power manager (A)
84 //Use the same Generic Clock as RTC (since t h i s saves s e t t i n g up more clocks) to run the interrupt

c o n t r o l l e r
85 GCLK−>CLKCTRL. reg = (GCLK_CLKCTRL_ID_EIC | GCLK_CLKCTRL_GEN(RTC_GCLK_ID) | GCLK_CLKCTRL_CLKEN) ;
86 while (GCLK−>STATUS. reg & GCLK_STATUS_SYNCBUSY) ;
87 // Configure External Interrupt Controller
88 EIC−>EVCTRL. reg | = EIC_EVCTRL_EXTINTEO7 ; // Enable Event t r i g g e r when detecting something on External

58 C. SOURCE CODE

Interrupt port 7
89 EIC−>CONFIG[0] . reg = 0x11111111 ; // Detect r i s i n g edge
90

91 //EIC must be disabled when changing sett ings , f i n i s h by enabling and waiting for sync to clear
92 EIC−>CTRL. b i t .ENABLE = 1 ;
93 while (EIC−>STATUS. b i t .SYNCBUSY) ;
94

95 // Use the PORT rounting r e g i s t e r s to configure Pin A7 as a d i g i t i a l input (pul l down) and assign to
External Interrupt port 7

96 PORT−>Group [0] . DIRCLR . reg | = (1 << 7) ;
97 PORT−>Group [0] .OUTCLR. reg | = (1 << 7) ;
98 PORT−>Group [0] . PINCFG [7] . reg | = (PORT_PINCFG_PULLEN | PORT_PINCFG_INEN | PORT_PINCFG_PMUXEN) ; // Input

Enable , MUX on , Pul l Resistor
99 // Pin MUX forwarding i s asynchronous and has no delay , as opposed to synchronised forwarding

100 PORT−>Group [0] .PMUX[3] . reg | = (PORT_PMUX_PMUXO_A) ; //PinMux to EXTINT7
101 }

pages/sourcecode/regSetup.cpp

DATABUFFER.H AND .CPP

1 # i fndef DATABUFFER_h
2 #define DATABUFFER_h
3

4 #include <Arduino . h>
5

6 # i fndef DEBUG_STREAM
7 #define DEBUG_STREAM SerialUSB // Define SerialUSB as debug stream
8 #define DEBUG_BAUD 9600 // Define S e r i a l BAUD
9 #endif

10

11 // the following s t r u c t i s use to store the encoded values of the weather measurements each minute
12

13 s t r u c t weatherData {
14 unsigned i n t temperature : 12;
15 unsigned i n t pressure : 11;
16 unsigned i n t windSpeed : 9 ;
17 unsigned i n t windDirection : 8 ;
18 unsigned i n t humidity : 10;
19 unsigned i n t rainVolume : 6 ;
20 unsigned i n t status : 8 ;
21 } ;
22

23 c l a s s dataBuffer {
24 public :
25

26 // constructor
27 dataBuffer () ;
28

29 // destructor
30 ~dataBuffer () ;
31

32 /* t h i s function gets cal led each minute and processes the weather parameters to f i t in the 8 byte
dataSet s t r u c t

33 tmp = temperature
34 bap = atmospheric pressure
35

36 */
37 void newDataset (f l o a t * tmp, f l o a t * bap , f l o a t * spd , f l o a t * dir , f l o a t * hum, f l o a t * vol , i n t errcode) ;
38

39 void f i l l B u f f e r (i n t position) ;
40

41 String createLoRaPayload () ;
42

43 uint8_t * head ;
44

45 private :
46 weatherData set ;
47 uint8_t f u l l B u f f e r [4 0] ;
48 } ;

59

49

50 #endif

pages/sourcecode/dataBuffer.h

1 #include " dataBuffer . h"
2

3 dataBuffer : : dataBuffer ()
4 {
5 dataBuffer : : head = &dataBuffer : : f u l l B u f f e r [0] ;
6 }
7

8 dataBuffer : : ~ dataBuffer () { }
9

10 void dataBuffer : : newDataset (f l o a t * tmp, f l o a t * hpa , f l o a t * spd , f l o a t * dir , f l o a t * hum, f l o a t * vol , i n t
errcode)

11 {
12 uint16_t tmpu = 0 ;
13 f l o a t tmpf = 0 . 0 ;
14

15 dataBuffer : : set . status = 0 ;
16

17 i f (errcode)
18 {
19 dataBuffer : : set . status | = (errcode & 0x03) ; // or some 2 b i t s of information
20 }
21

22

23 tmpf = (*tmp) ;
24 i f (tmpf <= −50.0) { tmpf = −50.0; dataBuffer : : set . status | = (1 << 7) ; }
25 i f (tmpf >= 70.0) { tmpf = 7 0 . 0 ; dataBuffer : : set . status | = (1 << 7) ; }
26 tmpu =(unsigned i n t) ((tmpf + 50.0) *((1 < <12)−1) / 120) ;
27 dataBuffer : : set . temperature = tmpu ;
28 // DEBUG_STREAM. print (" temperature encoded to : ") ;
29 // DEBUG_STREAM. print ln (tmpu, BIN) ;
30

31 tmpf = *hpa ;
32 i f (tmpf <= 900.0) { tmpf = 900; dataBuffer : : set . status | = (1 << 6) ; }
33 i f (tmpf >= 1100.0) { tmpf = 1100; dataBuffer : : set . status | = (1 << 6) ; }
34 tmpu =(unsigned i n t) ((tmpf − 900) *((1 < <11)−1) / 200) ;
35 dataBuffer : : set . pressure = tmpu ;
36 // DEBUG_STREAM. print (" pressure encoded to : ") ;
37 // DEBUG_STREAM. print ln (tmpu, BIN) ;
38

39 tmpf = *spd ;
40 i f (tmpf <= 0 . 0) { tmpf = 0 . 0 ; dataBuffer : : set . status | = (1 << 5) ; }
41 i f (tmpf >= 25.0) { tmpf = 2 5 . 0 ; dataBuffer : : set . status | = (1 << 5) ; }
42 tmpu =(unsigned i n t) ((tmpf) *((1 < <9)−1) / 25.0) ;
43 dataBuffer : : set . windSpeed = tmpu ;
44 // DEBUG_STREAM. print (" wind spd encoded to : ") ;
45 // DEBUG_STREAM. print ln (tmpu, BIN) ;
46

47 tmpf = * dir ;
48 i f (tmpf <= 0 . 0) { tmpf = 0 . 0 ; dataBuffer : : set . status | = (1 << 4) ; }
49 i f (tmpf >= 360.0) { tmpf = 3 6 0 . 0 ; dataBuffer : : set . status | = (1 << 4) ; }
50 tmpu =(unsigned i n t) ((tmpf) *((1 < <8)−1) / 360) ;
51 dataBuffer : : set . windDirection = tmpu ;
52 // DEBUG_STREAM. print (" wind dir encoded to : ") ;
53 // DEBUG_STREAM. print ln (tmpu, BIN) ;
54

55 tmpf = *hum;
56 i f (tmpf <= 0 . 0) { tmpf = 0 . 0 ; dataBuffer : : set . status | = (1 << 3) ; }
57 i f (tmpf >= 100.0) { tmpf = 1 0 0 . 0 ; dataBuffer : : set . status | = (1 << 3) ; }
58 tmpu =(unsigned i n t) ((tmpf) *((1 < <10)−1) / 100.0) ;
59 dataBuffer : : set . humidity = tmpu ;
60 // DEBUG_STREAM. print (" humidity encoded to : ") ;
61 // DEBUG_STREAM. print ln (tmpu, BIN) ;
62

63 tmpf = * vol ;
64 i f (tmpf <= 0 . 0) { tmpf = 0 . 0 ; dataBuffer : : set . status | = (1 << 2) ; }

60 C. SOURCE CODE

65 i f (tmpf >= 12.6) { tmpf = 1 2 . 6 ; dataBuffer : : set . status | = (1 << 2) ; }
66 tmpu =(unsigned i n t) ((tmpf) *((1 < <6)−1) / 12.6) ;
67 dataBuffer : : set . rainVolume = tmpu ;
68 // DEBUG_STREAM. print (" rain volume encoded to : ") ;
69 // DEBUG_STREAM. print ln (tmpu, BIN) ;
70

71 }
72

73 void dataBuffer : : f i l l B u f f e r (i n t position)
74 {
75 i n t o f f s e t ;
76 o f f s e t = 8* position ;
77

78 dataBuffer : : f u l l B u f f e r [o f f s e t] = ((dataBuffer : : set . temperature & 0xFF0) >> 4) ;
79 dataBuffer : : f u l l B u f f e r [o f f s e t +1] = (((dataBuffer : : set . temperature & 0x00F) << 4) | ((dataBuffer : : set .

pressure & 0x780) >> 7)) ;
80 dataBuffer : : f u l l B u f f e r [o f f s e t +2] = (((dataBuffer : : set . pressure & 0x07F) << 1) | ((dataBuffer : : set .

windSpeed & 0x100) >> 8)) ;
81 dataBuffer : : f u l l B u f f e r [o f f s e t +3] = (dataBuffer : : set . windSpeed & 0x0FF) ;
82 dataBuffer : : f u l l B u f f e r [o f f s e t +4] = (dataBuffer : : set . windDirection & 0xFF) ;
83 dataBuffer : : f u l l B u f f e r [o f f s e t +5] = ((dataBuffer : : set . humidity & 0x3FC) >> 2) ;
84 dataBuffer : : f u l l B u f f e r [o f f s e t +6] = (((dataBuffer : : set . humidity & 0x003) << 6) | (dataBuffer : : set .

rainVolume & 0x3F)) ;
85 dataBuffer : : f u l l B u f f e r [o f f s e t +7] = (dataBuffer : : set . status) ;
86 }
87

88 String dataBuffer : : createLoRaPayload ()
89 {
90 String payload ;
91 payload = (char *) dataBuffer : : f u l l B u f f e r ;
92 DEBUG_STREAM. print ln ("Lora Payload created ") ;
93 for (unsigned i n t i = 0 ; i < s i z e o f (f u l l B u f f e r) ; i ++)
94 {
95 i f (i == 8 | | i == 16 | | i == 24 | | i == 32) DEBUG_STREAM. print ln (" ") ;
96 DEBUG_STREAM. print (f u l l B u f f e r [i] ,HEX) ;
97 }
98 DEBUG_STREAM. print ln (" ") ;
99 return payload ;

100 }

pages/sourcecode/dataBuffer.cpp

LORAFUNC.H AND .CPP

1 # i fndef LORAFUNC_h
2 #define LORAFUNC_h
3 #include <Arduino . h> // Include Arduino Library
4

5 #define DEBUG_STREAM SerialUSB // Define SerialUSB as debug stream
6 #define LORA_STREAM S e r i a l 1 // Define S e r i a l 1 as LoRa stream
7 #define DEBUG_BAUD 9600 // Define S e r i a l BAUD
8

9 const uint8_t devAddr [4] = { 0x14 , 0x20 , 0x39 , 0x1E } ; // Define LoRa ABP Adresses and Keys
10 const uint8_t appSKey [1 6] = { 0xb3 , 0xb3 , 0xc1 , 0xc0 , 0xa7 , 0xbd , 0x12 , 0x83 , 0x1d , 0xe2 , 0xe7 , 0x16 , 0x17

, 0x69 , 0xea , 0xbe } ;
11 const uint8_t nwkSKey[1 6] = { 0xfd , 0x3e , 0xf5 , 0x8e , 0x3c , 0x44 , 0xb7 , 0x5d , 0x46 , 0xbf , 0xa1 , 0x18 , 0x2a

, 0xda , 0x5c , 0x4c } ;
12

13 const uint8_t DevEUI [8] = { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 } ; // Define LoRa OTAA Adresses
and Keys

14 const uint8_t AppEUI[8] = { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 } ;
15 const uint8_t AppKey2[1 6] = { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00

, 0x00 , 0x00 , 0x00 } ;
16

17

18 void setupLoRaABP (void) ;
19 void sendPacket (Str ing packet) ;
20 #endif

pages/sourcecode/LoRaFunc.h

61

1 #include <Sodaq_RN2483 . h> // Include LoRa Module Library
2 #include "LoRaFunc . h"
3 #include "LedColor . h"
4

5

6 void setupLoRaABP (void) // Function to connect to LoRaWAN (KPN) via ABP
7 {
8 //DEBUG_STREAM. print ln (" Sett ing up communication with LoRa Module") ;
9 i f (LoRaBee . initABP (LORA_STREAM, devAddr , appSKey , nwkSKey , f a l s e))

10 {
11 //DEBUG_STREAM. print ln ("Communication with LoRa Module successful . ") ;
12 delay (500) ;
13 setLedColor (GREEN) ;
14 delay (500) ;
15 setLedColor (NONE) ;
16 }
17 else
18 {
19 //DEBUG_STREAM. print ln ("Communication with LoRa Module f a i l e d ! ") ;
20 delay (500) ;
21 setLedColor (RED) ;
22 delay (500) ;
23 setLedColor (NONE) ;
24 }
25 }
26

27 void sendPacket (Str ing packet) // Function to send LoRa packet
28 {
29 switch (LoRaBee . send (1 , (uint8_t *) packet . c _ s t r () , packet . length ()))
30 {
31 case NoError :
32 DEBUG_STREAM. print ln (" Successful transmission . ") ;
33 break ;
34 case NoResponse :
35 DEBUG_STREAM. print ln ("There was no response from the device . ") ;
36 setupLoRaABP () ;
37 break ;
38 case Timeout :
39 DEBUG_STREAM. print ln ("Connection timed−out . Check your s e r i a l connection to the device ! Sleeping for

20sec . ") ;
40 delay (20000) ;
41 break ;
42 case PayloadSizeError :
43 DEBUG_STREAM. print ln ("The s i z e of the payload i s greater than allowed . Transmission f a i l e d ! ") ;
44 break ;
45 case InternalError :
46 DEBUG_STREAM. print ln ("Oh No! This shouldn ’ t happen . Something i s r e a l l y wrong ! Try r e s t a r t i n g the

device ! \ r \nThe network connection w i l l rese t . ") ;
47 setupLoRaABP () ;
48 break ;
49 case Busy :
50 DEBUG_STREAM. print ln ("The device i s busy . Sleeping for 10 extra seconds . ") ;
51 delay (10000) ;
52 break ;
53 case NetworkFatalError :
54 DEBUG_STREAM. print ln ("There i s a non−recoverable error with the network connection . You should re−

connect . \ r \nThe network connection w i l l r eset . ") ;
55 setupLoRaABP () ;
56 break ;
57 case NotConnected :
58 DEBUG_STREAM. print ln ("The device i s not connected to the network . Please connect to the network

before attempting to send data . \ r \nThe network connection w i l l rese t . ") ;
59 setupLoRaABP () ;
60 break ;
61 case NoAcknowledgment :
62 DEBUG_STREAM. print ln ("There was no acknowledgment sent back ! ") ;
63 break ;
64 default :
65 break ;
66 }

62 C. SOURCE CODE

67 }

pages/sourcecode/LoRaFunc.cpp

BMP180.H AND .CPP

1 # i fndef BMP180_H
2 #define BMP180_H
3

4 /* BMP180 D i g i t a l Pressure Sensor Class for use with Mbed LPC1768 and other platforms
5 * BMP180 from Bosch Sensortec
6 * Copyright (c) 2013 Phi l ip King Smith
7 *
8 * Permission i s hereby granted , free of charge , to any person obtaining a copy
9 * of t h i s software and associated documentation f i l e s (the " Software ") , to deal

10 * in the Software without r e s t r i c t i o n , including without l i m i t a t i o n the r i g h t s
11 * to use , copy , modify , merge , publish , distr ibute , sublicense , and/ or s e l l
12 * copies of the Software , and to permit persons to whom the Software i s
13 * furnished to do so , subject to the following conditions :
14 *
15 * The above copyright notice and t h i s permission notice s h a l l be included in
16 * a l l copies or substantia l portions of the Software .
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 * Bosch data sheet at : http : / / ae−bst . resource . bosch .com/media/ products /dokumente/bmp180/BST−BMP180−DS000

−09.pdf
27 * Some parts of the calculat ions used are i n f a c t from Rom Clement published Mbed code here : https : / /mbed.

org / users /Rom/code/Barometer_bmp085/
28 * I only used snippets of the Rom’ s code because i was making t h i s into a c l a s s and so t h i s i s

structured t o t a l y d i f f e r e n t then his code example i s .
29 * I also used the Bosch data sheet showing the calculat ions and adjusted everything accordingly !
30 */
31

32 #include <Arduino . h>
33 #include <Wire . h>
34 #include <Sodaq_wdt . h>
35

36 #define EEprom 22 // The EEPROM has 176 b i t s of c a l i b r a t i o n data (176/8 = 22 Bytes)
37 #define BMP180ADDR 0x77 // I2C address of BMP180 device
38 #define BMP180FREQ 1000000 // Data sheet says 3.4 MHz i s max but not sure what mbed can do here !
39 #define CMD_READ_VALUE 0xF6
40 #define CMD_READ_CALIBRATION 0xAA
41 #define CMD_RESET_VALUE 0xB6
42 #define CMD_RESET_REG 0xE0
43 #define OVERSAMPLING_ULTRA_LOW_POWER 0 // these are the constants used in the oversample variable in the

below code !
44 #define OVERSAMPLING_STANDARD 1
45 #define OVERSAMPLING_HIGH_RESOLUTION 2
46 #define OVERSAMPLING_ULTRA_HIGH_RESOLUTION 3
47

48 # i fndef DEBUG_STREAM
49 #define DEBUG_STREAM SerialUSB // Define SerialUSB as debug stream
50 #define DEBUG_BAUD 9600 // Define S e r i a l BAUD
51 #endif
52

53 /* * BMP180 D i g i t a l Pressure Sensor c l a s s using mbed ’ s i2c c l a s s
54 *
55 * Example :
56 * @code
57 * // show how the BMP180 c l a s s works
58 * #include "mbed. h"
59 * #include "BMP180. h"
60 *

63

61 * i n t main ()
62 * {
63 *
64 * long temp ;
65 * long pressure ;
66 * i n t error ;
67 * BMP180 mybmp180(p9 , p10) ;
68 * while (1) {
69 * error = mybmp180. readTP(&temp,& pressure ,OVERSAMPLING_ULTRA_HIGH_RESOLUTION) ;
70 * p r i n t f ("Temp i s %ld \ r \n" ,temp) ;
71 * p r i n t f (" Pressure i s %ld \ r \n" , pressure) ;
72 * p r i n t f (" Error i s %d\ r \n\ r \n" , error) ;
73 * wait (2) ;
74 * }
75 * }
76 * @endcode
77 */
78

79 c l a s s BMP180
80 {
81 public :
82 /* * Create object connected to BMP180 pins (remember both pins need pull up r e s i s t e r s)
83 *
84 * Ensure the pull up r e s i s t o r s are used on these pins . Also note there i s no checking on
85 * i f you use these pins p9 , p10 , p27 , p28 so ensure you only use these ones on the LPC1768 device
86 *
87 * @param sda pin that BMP180 connected to (p9 or p28 as defined on LPC1768)
88 * @param s l c pin that BMP180 connected to (p10 or p27 ad defined on LPC1768)
89 */
90 BMP180() ; // Constructor
91

92 ~BMP180() ; // Destructor
93

94 i n t begin (void) ; // I n i t i a l i s e communications and receive c a l i b r a t i o n data from EEPROM
95

96 /* * Read Temperature and Pressure at the same time
97 *
98 * This function w i l l only return when i t has readings . This means that the time w i l l vary depending

on oversample s e t t i n g !
99 * Note i f your code can not wait for these readings to be taken and calculated you should use the

functions below .
100 * These other functions are designed to allow your code to do other things then get the f i n a l

readings .
101 * This function i s only designed as a one shot give me the answer function .
102 *
103 * @param t the temperature f u l l y compensated value i s returned in t h i s variable . Degrees c e l s i u s with

one decimal so 253 i s 25.3 C.
104 * @param p the barometric pressure f u l l y compensated value i s returned in t h i s variable . Pressure i s

in Pa so 88007 i s 88.007 kPa .
105 * @param oversample i s the method method for reading sensor . OVERSAMPLING_ULTRA_HIGH_RESOLUTION i s

used i f an incorrect value i s passed to t h i s function .
106 * @param returns 0 for no errors during i2c communication . Any other number i s j u s t a i2c

communication f a i l u r e of some kind !
107 */
108 uint16_t readTP (long * t , long *p , i n t oversample) ; // get both temperature and pressure f u l l y

compensated values ! Note t h i s only returns when measurements are complete
109

110 /* * S t a r t the temperature reading process but return a f t e r the commands are issued to BMP180
111 *
112 * This function i s ment to s t a r t the temperature reading process but w i l l return to allow other code

to run then a reading could be made at a l a t e r time .
113 * Note the maximum time needed for t h i s measurment i s 4.5 ms.
114 *
115 * @param returns 0 for no errors during i2c communication . Any other number i s j u s t a i2c

communication f a i l u r e of some kind !
116 */
117 uint8_t startTemperature () ; // S t a r t temperature measurement
118

119 /* * Reads the l a s t temperature reading that was started with startTemperature () function
120 *

64 C. SOURCE CODE

121 * This function w i l l return the f u l l y compensated value of the temperature in Degrees c e l s i u s with one
decimal so 253 i s 25.3 C.

122 * Note t h i s function should normaly follow the startTemperature () function and should also preceed
the startPressure () and readPressure () commands!

123 * Note t h i s function should follow startTemperature () a f t e r 4.5 ms minimum has elapsed or reading
w i l l be incorrect .

124 *
125 * @param t the temperature f u l l y compensated value i s returned in t h i s variable .
126 * @param returns 0 for no errors during i2c communication . Any other number i s j u s t a i2c

communication f a i l u r e of some kind !
127 */
128 uint8_t readTemperature (long * t) ; // Get the temperature reading that was taken in

startTemperature () but ensure 4.5 ms time has elapsed
129

130 /* * S t a r t the pressure reading process but return a f t e r the commands are issued to BMP180
131 *
132 * This function i s ment to s t a r t the pressure reading process but w i l l return to allow other code to

run then a reading could be made at a l a t e r time .
133 * Note the time needed for t h i s reading pressure process w i l l depend on oversample s e t t i n g . The

maximum time i s 25.5 ms and minimum time i s 4.5 ms.
134 *
135 * @param oversample i s the method for reading sensor . OVERSAMPLING_ULTRA_HIGH_RESOLUTION i s used i f

an incorrect value i s passed to t h i s function .
136 * @param returns 0 for no errors during i2c communication . Any other number i s j u s t a i2c

communication f a i l u r e of some kind !
137 */
138 uint8_t startPressure (i n t oversample) ; // S t a r t pressure measurement ! Note oversample w i l l vary the

time to complete t h i s measurement . See defines above for oversampling constants to use !
139

140 /* * Reads the l a s t barometric pressure reading that was started with startPressure () function
141 *
142 * This function w i l l return the f u l l y compensated value of the barometric pressure in Pa .
143 * Note t h i s function should follow startPressure () a f t e r the time needed to read the pressure . This

time w i l l vary but maximum time i s 25.5 ms and minimum time i s 4.5 ms.
144 * Note that t h i s reading i s dependent on temperature so the startTemperature () and readTemperature ()

functions should proceed t h i s function or the pressure value w i l l be incorrect !
145 *
146 * @param p the barometric pressure f u l l y compensated value i s returned in t h i s variable . Pressure i s

in Pa so 88007 i s 88.007 kPa .
147 * @param returns 0 for no errors during i2c communication . Any other number i s j u s t a i2c

communication f a i l u r e of some kind !
148 */
149 uint8_t readPressure (long *p) ; // Get the pressure reading that was taken in startPressure ()

but ensure time for the measurement to complete
150

151 uint8_t softReset () ;
152

153 protected :
154 long x1 ;
155 long x2 ;
156 long x3 ;
157 short ac1 ;
158 short ac2 ;
159 short ac3 ;
160 unsigned short ac4 ;
161 unsigned short ac5 ;
162 unsigned short ac6 ;
163 short b1 ;
164 short b2 ;
165 long b3 ;
166 unsigned long b4 ;
167 long b5 ;
168 long b6 ;
169 unsigned long b7 ;
170 short mb;
171 short mc;
172 short md;
173 i n t oversampling_setting ;
174 char rReg [3] ;
175 char wReg [2] ;
176 char cmd;

65

177 char data [EEprom] ;
178 char w[2] ;
179

180 i n t oversampleCheck (i n t oversample) ;
181 } ;
182

183 #endif

pages/sourcecode/BMP180.h

1 #include "BMP180. h"
2

3 BMP180 : : BMP180()
4 {
5 }
6

7 BMP180: : ~BMP180()
8 {
9 }

10

11 i n t BMP180 : : begin ()
12 {
13 // Wire . begin () ;
14 oversampling_setting = OVERSAMPLING_HIGH_RESOLUTION;
15 rReg [0] = 0 ;
16 rReg [1] = 0 ;
17 rReg [2] = 0 ;
18 wReg[0] = 0 ;
19 wReg[1] = 0 ;
20 w[0] = 0xF4 ;
21 w[1] = 0xF4 ;
22

23 cmd = CMD_READ_CALIBRATION; // EEPROM c a l i b r a t i o n command
24 Wire . beginTransmission (BMP180ADDR) ; // check device = ready
25 Wire . write (0xD0) ;
26 Wire . endTransmission () ;
27 Wire . beginTransmission (BMP180ADDR) ;
28 Wire . requestFrom (BMP180ADDR, 1) ;
29 rReg [0] = Wire . read () ;
30 Wire . endTransmission () ;
31 i f (rReg [0] != 0x55) return 1 ;
32 rReg [0] = 0 ;
33

34 for (i n t i = 0 ; i < EEprom ; i ++) // read the 22 r e g i s t e r s of the EEPROM
35 {
36 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
37 Wire . write (cmd) ; // sends r e g i s t e r address to read from
38 Wire . endTransmission () ; // end transmission
39

40 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
41 Wire . requestFrom (BMP180ADDR, 1) ; // send data n−bytes read
42 data [i] = Wire . read () ;
43 Wire . endTransmission () ; // end transmission
44 cmd += 1 ;
45 }
46

47 // parameters AC1−AC6
48 //The c a l i b r a t i o n i s partioned in 11 words of 16 bits , each of them representing a c o e f f i c i e n t
49 ac1 = (data [0] <<8) | data [1] ; // AC1(0xAA , 0xAB) . . . and so on
50 ac2 = (data [2] <<8) | data [3] ;
51 ac3 = (data [4] <<8) | data [5] ;
52 ac4 = (data [6] <<8) | data [7] ;
53 ac5 = (data [8] <<8) | data [9] ;
54 ac6 = (data [1 0] <<8) | data [1 1] ;
55 // parameters B1 , B2
56 b1 = (data [1 2] <<8) | data [1 3] ;
57 b2 = (data [1 4] <<8) | data [1 5] ;
58 // parameters MB,MC,MD
59 mb = (data [1 6] <<8) | data [1 7] ;
60 mc = (data [1 8] <<8) | data [1 9] ;

66 C. SOURCE CODE

61 md = (data [2 0] <<8) | data [2 1] ;
62

63 return 0 ;
64 }
65

66 uint8_t BMP180 : : startTemperature () // S t a r t temperature measurement
67 {
68 uint8_t error = 0 ;
69 wReg[0] = 0xF4 ;
70 wReg[1] = 0x2E ;
71 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
72 Wire . write (wReg, 2) ; // transmit to conversion control (0 xF4) the instruct ion to

s t a r t T measurement (0 x2E)
73 error | = Wire . endTransmission () ; // end transmission
74 return error ;
75 }
76

77

78 uint8_t BMP180 : : readTemperature (long * t) // Get the temperature reading that was taken in
startTemperature () but ensure 4.5 ms time has elapsed

79 {
80 uint8_t error = 0 ;
81 rReg [0] = 0 ;
82 rReg [1] = 0 ;
83 cmd = CMD_READ_VALUE;
84 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
85 Wire . write (cmd) ; // set pointer on 0xF6 before reading i t
86 error | = Wire . endTransmission () ;
87 error <<= 2 ;
88

89 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
90 Wire . requestFrom (BMP180ADDR, 2) ; // read 0xF6 (MSB) and 0xF7 (LSB)
91 rReg [0] = Wire . read () ;
92 rReg [1] = Wire . read () ;
93 error | = Wire . endTransmission () ; // end transmission
94

95 * t = (rReg [0] << 8) | rReg [1] ; // UT = MSB << 8 + LSB
96

97 x1 = (((long) * t − (long) ac6) * (long) ac5) >> 15; // aka (ut−ac6) * ac5/pow(2 ,15)
98 x2 = ((long) mc << 11) / (x1 + md) ; // aka mc * pow(2 , 11) / (x1 + md)
99 b5 = x1 + x2 ;

100 * t = ((b5 + 8) >> 4) ; // (b5+8) /pow(2 , 4) => Temperature in 0.1C
101 return error ;
102 }
103

104 uint8_t BMP180 : : s tartPressure (i n t oversample) // S t a r t pressure measurement ! Note oversample w i l l vary
the time to complete t h i s measurement . See defines above for oversampling constants to use !

105 {
106 uint8_t error = 0 ;
107 i n t uncomp_pressure_cmd ;
108 oversampling_setting = BMP180 : : oversampleCheck (oversample) ;
109 uncomp_pressure_cmd = 0x34 + (oversampling_setting <<6) ;
110 wReg[0] = 0xF4 ;
111 wReg[1] = uncomp_pressure_cmd ;
112 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
113 Wire . write (wReg, 2) ; // transmit to conversion control (0 xF4) the instruct ion to

s t a r t P measurement w oversampling
114 error | = Wire . endTransmission () ; // end transmission
115 return error ;
116 }
117

118 uint8_t BMP180 : : readPressure (long *p) // Get the pressure reading that was taken in startPressure () but
ensure time for the measurement to complete

119 {
120 uint8_t error = 0 ;
121 rReg [0] = 0 ;
122 rReg [1] = 0 ;
123 cmd = CMD_READ_VALUE;
124 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
125 Wire . write (cmd) ; // set pointer on 0xF6 before reading i t
126 error | = Wire . endTransmission () ;

67

127 error <<= 2 ;
128

129 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
130 Wire . requestFrom (BMP180ADDR, 2) ; // read 0xF6 (MSB) to 0xF8 (LSB)
131 rReg [0] = Wire . read () ;
132 rReg [1] = Wire . read () ;
133 rReg [2] = Wire . read () ;
134 error | = Wire . endTransmission () ; // end transmission
135

136 *p = ((rReg [0] << 16) | (rReg [1] << 8) | rReg [2]) >> (8 − oversampling_setting) ;
137

138 b6 = b5 − 4000; // r e a l i s e b5 i s set in readTemperature () function so that needs to be
done f i r s t before t h i s function !

139 x1 = (b6*b6) >> 12; // f u l l formula (b2 * (b6*b6) /pow(2 ,12)) /pow(2 ,11)
140 x1 *= b2 ;
141 x1 >>= 11;
142

143 x2 = (ac2 *b6) ;
144 x2 >>= 11;
145

146 x3 = x1 + x2 ;
147

148 b3 = (((((long) ac1) *4 + x3) <<oversampling_setting) + 2) >> 2 ;
149

150 x1 = (ac3 * b6) >> 13;
151 x2 = (b1 * ((b6*b6) >> 12)) >> 16;
152 x3 = ((x1 + x2) + 2) >> 2 ;
153 b4 = (ac4 * (unsigned long) (x3 + 32768)) >> 15;
154

155 b7 = ((unsigned long) *p − b3) * (50000>> oversampling_setting) ;
156 i f (b7 < 0x80000000) {
157 *p = (b7 << 1) / b4 ;
158 } e lse {
159 *p = (b7 / b4) << 1 ;
160 }
161

162 x1 = *p >> 8 ;
163 x1 *= x1 ; // pressure /pow(2 , 8) * pressure /pow(2 , 8)
164 x1 = (x1 * 3038) >> 16;
165 x2 = (*p * −7357) >> 16;
166 *p += (x1 + x2 + 3791) >> 4 ; // pressure in Pa
167 return error ;
168 }
169

170

171 uint16_t BMP180 : : readTP (long * t , long *p , i n t oversample) // get both temperature and pressure
calculat ions that are compensated

172 {
173 uint16_t errors = 0 ;
174 errors | = BMP180 : : startTemperature () ;
175 sodaq_wdt_safe_delay (4 . 5) ;
176 errors <<= 4 ;
177 errors | = BMP180 : : readTemperature (t) ;
178 errors <<= 4 ;
179 errors | = BMP180 : : s tartPressure (oversample) ;
180 errors <<= 4 ;
181 switch (oversample) {
182 case OVERSAMPLING_ULTRA_LOW_POWER:
183 sodaq_wdt_safe_delay (5) ;
184 break ;
185 case OVERSAMPLING_STANDARD:
186 sodaq_wdt_safe_delay (85) ;
187 break ;
188 case OVERSAMPLING_HIGH_RESOLUTION:
189 sodaq_wdt_safe_delay (14) ;
190 break ;
191 case OVERSAMPLING_ULTRA_HIGH_RESOLUTION:
192 sodaq_wdt_safe_delay (26) ;
193 break ;
194 }
195 errors | = BMP180 : : readPressure (p) ;

68 C. SOURCE CODE

196 errors <<= 4 ;
197 return (errors) ;
198 }
199

200 i n t BMP180 : : oversampleCheck (i n t oversample)
201 {
202 switch (oversample) {
203 case OVERSAMPLING_ULTRA_LOW_POWER:
204 break ;
205 case OVERSAMPLING_STANDARD:
206 break ;
207 case OVERSAMPLING_HIGH_RESOLUTION:
208 break ;
209 case OVERSAMPLING_ULTRA_HIGH_RESOLUTION:
210 break ;
211 default :
212 oversample = OVERSAMPLING_ULTRA_HIGH_RESOLUTION;
213 break ;
214 }
215 return (oversample) ;
216 }
217

218 uint8_t BMP180 : : softReset ()
219 {
220 uint8_t error = 0 ;
221 wReg[0] = CMD_RESET_REG;
222 wReg[1] = CMD_RESET_VALUE;
223 Wire . beginTransmission (BMP180ADDR) ; // s t a r t transmission to device
224 Wire . write (wReg, 2) ; // set pointer on 0xE0 , write 0xB6 to i n i t i a t e a s o f t Reset

to f i x repeat errors
225 error | = Wire . endTransmission () ;
226 return error ;
227 }

pages/sourcecode/BMP180.cpp

SHT30.H AND .CPP

1 /*
2

3 Arduino Library for Sensirion SHT3X−DIS D i g i t a l Humidity & Temperature Sensors
4 Written by AA
5 −−−
6

7 The MIT License (MIT)
8

9 Copyright (c) 2015−2017 ClosedCube Limited
10

11 Permission i s hereby granted , free of charge , to any person obtaining a copy
12 of t h i s software and associated documentation f i l e s (the " Software ") , to deal
13 in the Software without r e s t r i c t i o n , including without l i m i t a t i o n the r i g h t s
14 to use , copy , modify , merge , publish , distr ibute , sublicense , and/ or s e l l
15 copies of the Software , and to permit persons to whom the Software i s
16 furnished to do so , subject to the following conditions :
17

18 The above copyright notice and t h i s permission notice s h a l l be included in
19 a l l copies or substantia l portions of the Software .
20

21 THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25 LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 THE SOFTWARE.
28

29 */
30

31 # i fndef CLOSEDCUBE_SHT31D
32 #define CLOSEDCUBE_SHT31D

69

33

34 /* SHT30 Humidity and Temperature Sensor Class
35 *
36 * for use with Atmel SAM D MCU’ s such as the SODAQ ONE
37 * SHT30 from Sensirion
38 * Library b u i l t from Phil ip King Smith ’ s BMP280 Library
39 */
40

41 #include <Arduino . h>
42

43 typedef enum {
44 SHT3XD_CMD_READ_SERIAL_NUMBER = 0x3780 ,
45

46 SHT3XD_CMD_READ_STATUS = 0xF32D ,
47 SHT3XD_CMD_CLEAR_STATUS = 0x3041 ,
48

49 SHT3XD_CMD_HEATER_ENABLE = 0x306D ,
50 SHT3XD_CMD_HEATER_DISABLE = 0x3066 ,
51

52 SHT3XD_CMD_SOFT_RESET = 0x30A2 ,
53

54 SHT3XD_CMD_CLOCK_STRETCH_H = 0x2C06 ,
55 SHT3XD_CMD_CLOCK_STRETCH_M = 0x2C0D ,
56 SHT3XD_CMD_CLOCK_STRETCH_L = 0x2C10 ,
57

58 SHT3XD_CMD_POLLING_H = 0x2400 ,
59 SHT3XD_CMD_POLLING_M = 0x240B ,
60 SHT3XD_CMD_POLLING_L = 0x2416 ,
61

62 SHT3XD_CMD_ART = 0x2B32 ,
63

64 SHT3XD_CMD_PERIODIC_HALF_H = 0x2032 ,
65 SHT3XD_CMD_PERIODIC_HALF_M = 0x2024 ,
66 SHT3XD_CMD_PERIODIC_HALF_L = 0x202F ,
67 SHT3XD_CMD_PERIODIC_1_H = 0x2130 ,
68 SHT3XD_CMD_PERIODIC_1_M = 0x2126 ,
69 SHT3XD_CMD_PERIODIC_1_L = 0x212D ,
70 SHT3XD_CMD_PERIODIC_2_H = 0x2236 ,
71 SHT3XD_CMD_PERIODIC_2_M = 0x2220 ,
72 SHT3XD_CMD_PERIODIC_2_L = 0x222B ,
73 SHT3XD_CMD_PERIODIC_4_H = 0x2334 ,
74 SHT3XD_CMD_PERIODIC_4_M = 0x2322 ,
75 SHT3XD_CMD_PERIODIC_4_L = 0x2329 ,
76 SHT3XD_CMD_PERIODIC_10_H = 0x2737 ,
77 SHT3XD_CMD_PERIODIC_10_M = 0x2721 ,
78 SHT3XD_CMD_PERIODIC_10_L = 0x272A ,
79

80 SHT3XD_CMD_FETCH_DATA = 0xE000 ,
81 SHT3XD_CMD_STOP_PERIODIC = 0x3093 ,
82

83 SHT3XD_CMD_READ_ALR_LIMIT_LS = 0xE102 ,
84 SHT3XD_CMD_READ_ALR_LIMIT_LC = 0xE109 ,
85 SHT3XD_CMD_READ_ALR_LIMIT_HS = 0xE11F ,
86 SHT3XD_CMD_READ_ALR_LIMIT_HC = 0xE114 ,
87

88 SHT3XD_CMD_WRITE_ALR_LIMIT_HS = 0x611D ,
89 SHT3XD_CMD_WRITE_ALR_LIMIT_HC = 0x6116 ,
90 SHT3XD_CMD_WRITE_ALR_LIMIT_LC = 0x610B ,
91 SHT3XD_CMD_WRITE_ALR_LIMIT_LS = 0x6100 ,
92

93 SHT3XD_CMD_NO_SLEEP = 0x303E ,
94 } SHT31D_Commands;
95

96

97 typedef enum {
98 SHT3XD_REPEATABILITY_HIGH,
99 SHT3XD_REPEATABILITY_MEDIUM,

100 SHT3XD_REPEATABILITY_LOW,
101 } SHT31D_Repeatability ;
102

103 typedef enum {

70 C. SOURCE CODE

104 SHT3XD_MODE_CLOCK_STRETCH,
105 SHT3XD_MODE_POLLING,
106 } SHT31D_Mode;
107

108 typedef enum {
109 SHT3XD_FREQUENCY_HZ5,
110 SHT3XD_FREQUENCY_1HZ,
111 SHT3XD_FREQUENCY_2HZ,
112 SHT3XD_FREQUENCY_4HZ,
113 SHT3XD_FREQUENCY_10HZ
114 } SHT31D_Frequency ;
115

116 typedef enum {
117 SHT3XD_NO_ERROR = 0 ,
118

119 SHT3XD_CRC_ERROR = −101,
120 SHT3XD_TIMEOUT_ERROR = −102,
121

122 SHT3XD_PARAM_WRONG_MODE = −501,
123 SHT3XD_PARAM_WRONG_REPEATABILITY = −502,
124 SHT3XD_PARAM_WRONG_FREQUENCY = −503,
125 SHT3XD_PARAM_WRONG_ALERT = −504,
126

127 // Wire I2C translated error codes
128 SHT3XD_WIRE_I2C_DATA_TOO_LOG = −10,
129 SHT3XD_WIRE_I2C_RECEIVED_NACK_ON_ADDRESS = −20,
130 SHT3XD_WIRE_I2C_RECEIVED_NACK_ON_DATA = −30,
131 SHT3XD_WIRE_I2C_UNKNOW_ERROR = −40
132 } SHT31D_ErrorCode ;
133

134 typedef union {
135 uint16_t rawData ;
136 s t r u c t {
137 uint8_t WriteDataChecksumStatus : 1 ;
138 uint8_t CommandStatus : 1 ;
139 uint8_t Reserved0 : 2 ;
140 uint8_t SystemResetDetected : 1 ;
141 uint8_t Reserved1 : 5 ;
142 uint8_t T_TrackingAlert : 1 ;
143 uint8_t RH_TrackingAlert : 1 ;
144 uint8_t Reserved2 : 1 ;
145 uint8_t HeaterStatus : 1 ;
146 uint8_t Reserved3 : 1 ;
147 uint8_t AlertPending : 1 ;
148 } ;
149 } SHT31D_RegisterStatus ;
150

151 s t r u c t SHT31D {
152 f l o a t t ;
153 f l o a t rh ;
154 SHT31D_ErrorCode error ;
155 } ;
156

157 c l a s s ClosedCube_SHT31D {
158 public :
159 ClosedCube_SHT31D () ;
160

161 SHT31D_ErrorCode begin (uint8_t address) ;
162 SHT31D_ErrorCode c l e a r A l l () ;
163 SHT31D_RegisterStatus readStatusRegister () ;
164

165 SHT31D_ErrorCode heaterEnable () ;
166 SHT31D_ErrorCode heaterDisable () ;
167

168 SHT31D_ErrorCode softReset () ;
169 SHT31D_ErrorCode r eset () ; // same as softReset
170

171 SHT31D_ErrorCode generalCallReset () ;
172

173 SHT31D_ErrorCode artEnable () ;
174

71

175 uint32_t readSerialNumber () ;
176

177 SHT31D readTempAndHumidity (SHT31D_Repeatability r e p e a t a b i l i t y , SHT31D_Mode mode, uint8_t timeout) ;
178 SHT31D readTempAndHumidityClockStretch (SHT31D_Repeatability r e p e a t a b i l i t y) ;
179 SHT31D readTempAndHumidityPolling (SHT31D_Repeatability r e p e a t a b i l i t y , uint8_t timeout) ;
180

181 SHT31D_ErrorCode periodicStart (SHT31D_Repeatability r e p e a t a b i l i t y , SHT31D_Frequency frequency) ;
182 SHT31D periodicFetchData () ;
183 SHT31D_ErrorCode periodicStop () ;
184

185 SHT31D_ErrorCode writeAlertHigh (f l o a t temperatureSet , f l o a t temperatureClear , f l o a t humiditySet , f l o a t
humidityClear) ;

186 SHT31D readAlertHighSet () ;
187 SHT31D readAlertHighClear () ;
188

189 SHT31D_ErrorCode writeAlertLow (f l o a t temperatureClear , f l o a t temperatureSet , f l o a t humidityClear , f l o a t
humiditySet) ;

190 SHT31D readAlertLowSet () ;
191 SHT31D readAlertLowClear () ;
192

193

194 private :
195 uint8_t _address ;
196 SHT31D_RegisterStatus _status ;
197

198 SHT31D_ErrorCode writeCommand(SHT31D_Commands command) ;
199 SHT31D_ErrorCode writeAlertData (SHT31D_Commands command, f l o a t temperature , f l o a t humidity) ;
200

201 uint8_t checkCrc (uint8_t data [] , uint8_t checksum) ;
202 uint8_t calculateCrc (uint8_t data []) ;
203

204 f l o a t calculateHumidity (uint16_t rawValue) ;
205 f l o a t calculateTemperature (uint16_t rawValue) ;
206

207 uint16_t calculateRawHumidity (f l o a t value) ;
208 uint16_t calculateRawTemperature (f l o a t value) ;
209

210 SHT31D readTemperatureAndHumidity () ;
211 SHT31D readAlertData (SHT31D_Commands command) ;
212 SHT31D_ErrorCode read (uint16_t * data , uint8_t numOfPair) ;
213

214 SHT31D returnError (SHT31D_ErrorCode command) ;
215 } ;
216

217

218 #endif

pages/sourcecode/SHT30.h

1 /*
2

3 Arduino Library for Sensirion SHT3X−DIS D i g i t a l Humidity & Temperature Sensors
4 Written by AA
5 −−−
6

7 The MIT License (MIT)
8

9 Copyright (c) 2015−2017 ClosedCube Limited
10

11 Permission i s hereby granted , free of charge , to any person obtaining a copy
12 of t h i s software and associated documentation f i l e s (the " Software ") , to deal
13 in the Software without r e s t r i c t i o n , including without l i m i t a t i o n the r i g h t s
14 to use , copy , modify , merge , publish , distr ibute , sublicense , and/ or s e l l
15 copies of the Software , and to permit persons to whom the Software i s
16 furnished to do so , subject to the following conditions :
17

18 The above copyright notice and t h i s permission notice s h a l l be included in
19 a l l copies or substantia l portions of the Software .
20

21 THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

72 C. SOURCE CODE

22 IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25 LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 THE SOFTWARE.
28

29 */
30 #include <Wire . h>
31

32 #include "SHT30 . h"
33

34 ClosedCube_SHT31D : : ClosedCube_SHT31D ()
35 {
36 }
37

38 SHT31D_ErrorCode ClosedCube_SHT31D : : begin (uint8_t address) {
39 SHT31D_ErrorCode error = SHT3XD_NO_ERROR;
40 _address = address ;
41 return error ;
42 }
43

44 SHT31D_ErrorCode ClosedCube_SHT31D : : rese t ()
45 {
46 return softReset () ;
47 }
48

49 SHT31D ClosedCube_SHT31D : : periodicFetchData ()
50 {
51 SHT31D_ErrorCode error = writeCommand(SHT3XD_CMD_FETCH_DATA) ;
52 i f (error == SHT3XD_NO_ERROR)
53 return readTemperatureAndHumidity () ;
54 else
55 returnError (error) ;
56 }
57

58 SHT31D_ErrorCode ClosedCube_SHT31D : : periodicStop () {
59 return writeCommand(SHT3XD_CMD_STOP_PERIODIC) ;
60 }
61

62 SHT31D_ErrorCode ClosedCube_SHT31D : : per iodicStart (SHT31D_Repeatability r e p e a t a b i l i t y , SHT31D_Frequency
frequency)

63 {
64 SHT31D_ErrorCode error ;
65

66 switch (r e p e a t a b i l i t y)
67 {
68 case SHT3XD_REPEATABILITY_LOW :
69 switch (frequency)
70 {
71 case SHT3XD_FREQUENCY_HZ5:
72 error = writeCommand(SHT3XD_CMD_PERIODIC_HALF_L) ;
73 break ;
74 case SHT3XD_FREQUENCY_1HZ:
75 error = writeCommand(SHT3XD_CMD_PERIODIC_1_L) ;
76 break ;
77 case SHT3XD_FREQUENCY_2HZ:
78 error = writeCommand(SHT3XD_CMD_PERIODIC_2_L) ;
79 break ;
80 case SHT3XD_FREQUENCY_4HZ:
81 error = writeCommand(SHT3XD_CMD_PERIODIC_4_L) ;
82 break ;
83 case SHT3XD_FREQUENCY_10HZ:
84 error = writeCommand(SHT3XD_CMD_PERIODIC_10_L) ;
85 break ;
86 default :
87 error = SHT3XD_PARAM_WRONG_FREQUENCY;
88 break ;
89 }
90 break ;
91 case SHT3XD_REPEATABILITY_MEDIUM:

73

92 switch (frequency)
93 {
94 case SHT3XD_FREQUENCY_HZ5:
95 error = writeCommand(SHT3XD_CMD_PERIODIC_HALF_M) ;
96 break ;
97 case SHT3XD_FREQUENCY_1HZ:
98 error = writeCommand(SHT3XD_CMD_PERIODIC_1_M) ;
99 break ;

100 case SHT3XD_FREQUENCY_2HZ:
101 error = writeCommand(SHT3XD_CMD_PERIODIC_2_M) ;
102 break ;
103 case SHT3XD_FREQUENCY_4HZ:
104 error = writeCommand(SHT3XD_CMD_PERIODIC_4_M) ;
105 break ;
106 case SHT3XD_FREQUENCY_10HZ:
107 error = writeCommand(SHT3XD_CMD_PERIODIC_10_M) ;
108 break ;
109 default :
110 error = SHT3XD_PARAM_WRONG_FREQUENCY;
111 break ;
112 }
113 break ;
114

115 case SHT3XD_REPEATABILITY_HIGH :
116 switch (frequency)
117 {
118 case SHT3XD_FREQUENCY_HZ5:
119 error = writeCommand(SHT3XD_CMD_PERIODIC_HALF_H) ;
120 break ;
121 case SHT3XD_FREQUENCY_1HZ:
122 error = writeCommand(SHT3XD_CMD_PERIODIC_1_H) ;
123 break ;
124 case SHT3XD_FREQUENCY_2HZ:
125 error = writeCommand(SHT3XD_CMD_PERIODIC_2_H) ;
126 break ;
127 case SHT3XD_FREQUENCY_4HZ:
128 error = writeCommand(SHT3XD_CMD_PERIODIC_4_H) ;
129 break ;
130 case SHT3XD_FREQUENCY_10HZ:
131 error = writeCommand(SHT3XD_CMD_PERIODIC_10_H) ;
132 break ;
133 default :
134 error = SHT3XD_PARAM_WRONG_FREQUENCY;
135 break ;
136 }
137 break ;
138 default :
139 error = SHT3XD_PARAM_WRONG_REPEATABILITY;
140 break ;
141 }
142

143 delay (100) ;
144

145 return error ;
146 }
147

148 SHT31D ClosedCube_SHT31D : : readTempAndHumidity (SHT31D_Repeatability r e p e a t a b i l i t y , SHT31D_Mode mode,
uint8_t timeout)

149 {
150 SHT31D r e s u l t ;
151

152 switch (mode) {
153 case SHT3XD_MODE_CLOCK_STRETCH:
154 r e s u l t = readTempAndHumidityClockStretch (r e p e a t a b i l i t y) ;
155 break ;
156 case SHT3XD_MODE_POLLING:
157 r e s u l t = readTempAndHumidityPolling (r e p e a t a b i l i t y , timeout) ;
158 break ;
159 default :
160 r e s u l t = returnError (SHT3XD_PARAM_WRONG_MODE) ;
161 break ;

74 C. SOURCE CODE

162 }
163

164 return r e s u l t ;
165 }
166

167

168 SHT31D ClosedCube_SHT31D : : readTempAndHumidityClockStretch (SHT31D_Repeatability r e p e a t a b i l i t y)
169 {
170 SHT31D_ErrorCode error = SHT3XD_NO_ERROR;
171 SHT31D_Commands command;
172

173 switch (r e p e a t a b i l i t y)
174 {
175 case SHT3XD_REPEATABILITY_LOW :
176 error = writeCommand(SHT3XD_CMD_CLOCK_STRETCH_L) ;
177 break ;
178 case SHT3XD_REPEATABILITY_MEDIUM:
179 error = writeCommand(SHT3XD_CMD_CLOCK_STRETCH_M) ;
180 break ;
181 case SHT3XD_REPEATABILITY_HIGH :
182 error = writeCommand(SHT3XD_CMD_CLOCK_STRETCH_H) ;
183 break ;
184 default :
185 error = SHT3XD_PARAM_WRONG_REPEATABILITY;
186 break ;
187 }
188

189 delay (50) ;
190

191 i f (error == SHT3XD_NO_ERROR) {
192 return readTemperatureAndHumidity () ;
193 } e lse {
194 return returnError (error) ;
195 }
196

197 }
198

199

200 SHT31D ClosedCube_SHT31D : : readTempAndHumidityPolling (SHT31D_Repeatability r e p e a t a b i l i t y , uint8_t timeout)
201 {
202 SHT31D_ErrorCode error = SHT3XD_NO_ERROR;
203 SHT31D_Commands command;
204

205 switch (r e p e a t a b i l i t y)
206 {
207 case SHT3XD_REPEATABILITY_LOW :
208 error = writeCommand(SHT3XD_CMD_POLLING_L) ;
209 break ;
210 case SHT3XD_REPEATABILITY_MEDIUM:
211 error = writeCommand(SHT3XD_CMD_POLLING_M) ;
212 break ;
213 case SHT3XD_REPEATABILITY_HIGH :
214 error = writeCommand(SHT3XD_CMD_POLLING_H) ;
215 break ;
216 default :
217 error = SHT3XD_PARAM_WRONG_REPEATABILITY;
218 break ;
219 }
220

221 delay (timeout) ;
222

223 i f (error == SHT3XD_NO_ERROR) {
224 return readTemperatureAndHumidity () ;
225 } e lse {
226 return returnError (error) ;
227 }
228

229 }
230

231 SHT31D ClosedCube_SHT31D : : readAlertHighSet () {
232 return readAlertData (SHT3XD_CMD_READ_ALR_LIMIT_HS) ;

75

233 }
234

235 SHT31D ClosedCube_SHT31D : : readAlertHighClear () {
236 return readAlertData (SHT3XD_CMD_READ_ALR_LIMIT_HC) ;
237 }
238

239 SHT31D ClosedCube_SHT31D : : readAlertLowSet () {
240 return readAlertData (SHT3XD_CMD_READ_ALR_LIMIT_LS) ;
241 }
242

243 SHT31D ClosedCube_SHT31D : : readAlertLowClear () {
244 return readAlertData (SHT3XD_CMD_READ_ALR_LIMIT_LC) ;
245 }
246

247

248 SHT31D_ErrorCode ClosedCube_SHT31D : : writeAlertHigh (f l o a t temperatureSet , f l o a t temperatureClear , f l o a t
humiditySet , f l o a t humidityClear) {

249 SHT31D_ErrorCode error = writeAlertData (SHT3XD_CMD_WRITE_ALR_LIMIT_HS, temperatureSet , humiditySet) ;
250 i f (error == SHT3XD_NO_ERROR)
251 error = writeAlertData (SHT3XD_CMD_WRITE_ALR_LIMIT_HC, temperatureClear , humidityClear) ;
252

253 return error ;
254 }
255

256 SHT31D_ErrorCode ClosedCube_SHT31D : : writeAlertLow (f l o a t temperatureClear , f l o a t temperatureSet , f l o a t
humidityClear , f l o a t humiditySet) {

257 SHT31D_ErrorCode error = writeAlertData (SHT3XD_CMD_WRITE_ALR_LIMIT_LS, temperatureSet , humiditySet) ;
258 i f (error == SHT3XD_NO_ERROR)
259 writeAlertData (SHT3XD_CMD_WRITE_ALR_LIMIT_LC, temperatureClear , humidityClear) ;
260

261 return error ;
262 }
263

264 SHT31D_ErrorCode ClosedCube_SHT31D : : writeAlertData (SHT31D_Commands command, f l o a t temperature , f l o a t
humidity)

265 {
266 SHT31D_ErrorCode error ;
267

268 i f ((humidity < 0 . 0) | | (humidity > 100.0) | | (temperature < −40.0) | | (temperature > 125.0))
269 {
270 error = SHT3XD_PARAM_WRONG_ALERT;
271 } e lse
272 {
273 uint16_t rawTemperature = calculateRawTemperature (temperature) ;
274 uint16_t rawHumidity = calculateRawHumidity (humidity) ;
275 uint16_t data = (rawHumidity & 0xFE00) | ((rawTemperature >> 7) & 0x001FF) ;
276

277 uint8_t buf [2] ;
278 buf [0] = data >> 8 ;
279 buf [1] = data & 0xFF ;
280

281 uint8_t checksum = calculateCrc (buf) ;
282

283 Wire . beginTransmission (_address) ;
284 Wire . write (command >> 8) ;
285 Wire . write (command & 0xFF) ;
286 Wire . write (buf [0]) ;
287 Wire . write (buf [1]) ;
288 Wire . write (checksum) ;
289 return (SHT31D_ErrorCode) (−10 * Wire . endTransmission ()) ;
290 }
291

292 return error ;
293 }
294

295

296 SHT31D_ErrorCode ClosedCube_SHT31D : : writeCommand(SHT31D_Commands command)
297 {
298 Wire . beginTransmission (_address) ;
299 Wire . write (command >> 8) ;
300 Wire . write (command & 0xFF) ;

76 C. SOURCE CODE

301 return (SHT31D_ErrorCode) (−10 * Wire . endTransmission ()) ;
302 }
303

304 SHT31D_ErrorCode ClosedCube_SHT31D : : softReset () {
305 return writeCommand(SHT3XD_CMD_SOFT_RESET) ;
306 }
307

308 SHT31D_ErrorCode ClosedCube_SHT31D : : generalCallReset () {
309 Wire . beginTransmission (0 x0) ;
310 Wire . write (0 x06) ;
311 return (SHT31D_ErrorCode) (−10 * Wire . endTransmission ()) ;
312 }
313

314 SHT31D_ErrorCode ClosedCube_SHT31D : : heaterEnable () {
315 return writeCommand(SHT3XD_CMD_HEATER_ENABLE) ;
316 }
317

318 SHT31D_ErrorCode ClosedCube_SHT31D : : heaterDisable () {
319 return writeCommand(SHT3XD_CMD_HEATER_DISABLE) ;
320 }
321

322 SHT31D_ErrorCode ClosedCube_SHT31D : : artEnable () {
323 return writeCommand(SHT3XD_CMD_ART) ;
324 }
325

326

327 uint32_t ClosedCube_SHT31D : : readSerialNumber ()
328 {
329 uint32_t r e s u l t = SHT3XD_NO_ERROR;
330 uint16_t buf [2] ;
331

332 i f (writeCommand(SHT3XD_CMD_READ_SERIAL_NUMBER) == SHT3XD_NO_ERROR) {
333 i f (read (buf , 2) == SHT3XD_NO_ERROR) {
334 r e s u l t = (buf [0] << 16) | buf [1] ;
335 }
336 }
337

338 return r e s u l t ;
339 }
340

341 SHT31D_RegisterStatus ClosedCube_SHT31D : : readStatusRegister ()
342 {
343 SHT31D_RegisterStatus r e s u l t ;
344

345 SHT31D_ErrorCode error = writeCommand(SHT3XD_CMD_READ_STATUS) ;
346 i f (error == SHT3XD_NO_ERROR)
347 error = read(& r e s u l t . rawData , 1) ;
348

349 return r e s u l t ;
350 }
351

352 SHT31D_ErrorCode ClosedCube_SHT31D : : c l e a r A l l () {
353 return writeCommand(SHT3XD_CMD_CLEAR_STATUS) ;
354 }
355

356

357 SHT31D ClosedCube_SHT31D : : readTemperatureAndHumidity ()
358 {
359 SHT31D r e s u l t ;
360

361 r e s u l t . t = 0 ;
362 r e s u l t . rh = 0 ;
363

364 SHT31D_ErrorCode error ;
365 uint16_t buf [2] ;
366

367 i f (error == SHT3XD_NO_ERROR)
368 error = read (buf , 2) ;
369

370 i f (error == SHT3XD_NO_ERROR) {
371 r e s u l t . t = calculateTemperature (buf [0]) ;

77

372 r e s u l t . rh = calculateHumidity (buf [1]) ;
373 }
374 r e s u l t . error = error ;
375

376 return r e s u l t ;
377 }
378

379 SHT31D ClosedCube_SHT31D : : readAlertData (SHT31D_Commands command)
380 {
381 SHT31D r e s u l t ;
382

383 r e s u l t . t = 0 ;
384 r e s u l t . rh = 0 ;
385

386 SHT31D_ErrorCode error ;
387

388 uint16_t buf ;
389

390 error = writeCommand(command) ;
391

392 i f (error == SHT3XD_NO_ERROR)
393 error = read(&buf , 1) ;
394

395 i f (error == SHT3XD_NO_ERROR) {
396 r e s u l t . rh = calculateHumidity (buf & 0xFE00) ;
397 r e s u l t . t = calculateTemperature (buf << 7) ;
398 }
399

400 r e s u l t . error = error ;
401

402 return r e s u l t ;
403 }
404

405 SHT31D_ErrorCode ClosedCube_SHT31D : : read (uint16_t * data , uint8_t numOfPair)
406 {
407 uint8_t buf [2] ;
408 uint8_t checksum ;
409

410 const uint8_t numOfBytes = numOfPair * 3 ;
411 Wire . requestFrom (_address , numOfBytes) ;
412

413 i n t counter = 0 ;
414

415 for (counter = 0 ; counter < numOfPair ; counter ++) {
416 Wire . readBytes (buf , (uint8_t) 2) ;
417 checksum = Wire . read () ;
418

419 i f (checkCrc (buf , checksum) ! = 0)
420 return SHT3XD_CRC_ERROR;
421

422 data [counter] = (buf [0] << 8) | buf [1] ;
423 }
424

425 return SHT3XD_NO_ERROR;
426 }
427

428

429 uint8_t ClosedCube_SHT31D : : checkCrc (uint8_t data [] , uint8_t checksum)
430 {
431 return calculateCrc (data) != checksum ;
432 }
433

434 f l o a t ClosedCube_SHT31D : : calculateTemperature (uint16_t rawValue)
435 {
436 return 175.0 f * (f l o a t) rawValue / 65535.0 f − 45.0 f ;
437 }
438

439

440 f l o a t ClosedCube_SHT31D : : calculateHumidity (uint16_t rawValue)
441 {
442 return 100.0 f * rawValue / 65535.0 f ;

78 C. SOURCE CODE

443 }
444

445 uint16_t ClosedCube_SHT31D : : calculateRawTemperature (f l o a t value)
446 {
447 return (value + 45.0 f) / 175.0 f * 65535.0 f ;
448 }
449

450 uint16_t ClosedCube_SHT31D : : calculateRawHumidity (f l o a t value)
451 {
452 return value / 100.0 f * 65535.0 f ;
453 }
454

455 uint8_t ClosedCube_SHT31D : : calculateCrc (uint8_t data [])
456 {
457 uint8_t b i t ;
458 uint8_t crc = 0xFF ;
459 uint8_t dataCounter = 0 ;
460

461 for (; dataCounter < 2 ; dataCounter++)
462 {
463 crc ^= (data [dataCounter]) ;
464 for (b i t = 8 ; b i t > 0 ; −−b i t)
465 {
466 i f (crc & 0x80)
467 crc = (crc << 1) ^ 0x131 ;
468 else
469 crc = (crc << 1) ;
470 }
471 }
472

473 return crc ;
474 }
475

476 SHT31D ClosedCube_SHT31D : : returnError (SHT31D_ErrorCode error) {
477 SHT31D r e s u l t ;
478 r e s u l t . t = 0 ;
479 r e s u l t . rh = 0 ;
480 r e s u l t . error = error ;
481 return r e s u l t ;
482 }

pages/sourcecode/SHT30.cpp

SDI12FUNC.H AND .CPP

1 # i fndef SDI12FUNC_H
2 #define SDI12FUNC_H
3 #include "SDI12 . h"
4 #include "LedColor . h"
5

6 # i fndef DEBUG_STREAM
7 #define DEBUG_STREAM SerialUSB // Define SerialUSB as debug stream
8 #define DEBUG_BAUD 9600 // Define S e r i a l BAUD
9 #endif

10 #define SDI_DATA_PIN 10 // The pin of the SDI−12 data bus
11

12

13 byte charToDec (char i) ;
14 char decToChar (byte i) ;
15 void printBufferToScreen () ;
16 void printInfo (char i) ;
17 void takeMeasurement (char i , Str ing * value) ;
18 boolean checkActive (char i) ;
19 boolean isTaken (byte i) ;
20 boolean setTaken (byte i) ;
21 boolean setVacant (byte i) ;
22 char sdiSetup (void) ;
23 void sdiMeasure (char address) ;
24 void sdiMeasure (f l o a t * spd , f l o a t * dir , char address) ;
25 #endif

79

pages/sourcecode/SDI12func.h

1 #include <Arduino . h> // Include Arduino Library
2 #include <Wire . h> // Include I2C Library
3

4 #include "SDI12func . h" // Include Header
5

6 byte addressRegister [8] = { // I n i t i a l i s e "Empty" SDI12 Adress Register
7 0B00000000 ,
8 0B00000000 ,
9 0B00000000 ,

10 0B00000000 ,
11 0B00000000 ,
12 0B00000000 ,
13 0B00000000 ,
14 0B00000000
15 } ;
16

17 uint8_t numSensors = 0 ; // I n i t i a l i s e the number of sensors to 0
18

19 SDI12 mySDI12(SDI_DATA_PIN) ;
20

21 // keeps track of act ive addresses
22 // each b i t represents an address :
23 // 1 i s act ive (taken) , 0 i s inact iv e (a v a i l a bl e)
24 // setTaken (’A ’) w i l l set the proper b i t for sensor ’A ’
25

26 // converts allowable address characters ’0 ’ − ’9 ’ , ’ a ’− ’z ’ , ’A’− ’Z ’ ,
27 // to a decimal number between 0 and 61 (i ncl u s i v e) to cover the 62 possible addresses
28 byte charToDec (char i) {
29 i f ((i >= ’ 0 ’) && (i <= ’ 9 ’)) return i − ’ 0 ’ ;
30 i f ((i >= ’ a ’) && (i <= ’ z ’)) return i − ’ a ’ + 10;
31 i f ((i >= ’A ’) && (i <= ’Z ’)) return i − ’A ’ + 37;
32 else return i ;
33 }
34

35 // THIS METHOD IS UNUSED IN THIS EXAMPLE, BUT IT MAY BE HELPFUL.
36 // maps a decimal number between 0 and 61 (i n cl u si v e) to
37 // allowable address characters ’0 ’ − ’9 ’ , ’ a ’− ’z ’ , ’A’− ’Z ’ ,
38 char decToChar (byte i) {
39 i f ((i >= 0) && (i <= 9)) return i + ’ 0 ’ ;
40 i f ((i >= 10) && (i <= 36)) return i + ’ a ’ − 10;
41 i f ((i >= 37) && (i <= 62)) return i + ’A ’ − 37;
42 else return i ;
43 }
44

45 void printBufferToScreen () {
46 String buffer = " " ;
47 mySDI12 . read () ; // consume address
48 while (mySDI12 . av a i l a b l e ()) {
49 char c = mySDI12 . read () ;
50 i f (c == ’+ ’) {
51 buffer += ’ , ’ ;
52 }
53 else i f ((c != ’ \n ’) && (c ! = ’ \ r ’)) {
54 buffer += c ;
55 }
56 while (! (mySDI12 . a v a i l a b l e () > 0)) ;
57 }
58 DEBUG_STREAM. print (buffer) ;
59 }
60

61 // gets i d e n t i f i c a t i o n information from a sensor , and prints i t to the s e r i a l port
62 // expects a character between ’0 ’ − ’9 ’ , ’ a ’− ’z ’ , or ’A’− ’Z ’ .
63 void printInfo (char i) {
64 String command = " " ;
65 command += (char) i ;
66 command += " I ! " ;
67 mySDI12 .sendCommand(command) ;

80 C. SOURCE CODE

68 delay (50) ;
69

70 printBufferToScreen () ;
71 }
72

73 void takeMeasurement (char i , Str ing * value)
74 {
75 String command = " " ;
76 command += i ;
77 command += "R0 ! " ; // SDI−12 measurement command format [address] [’ R0 ’] [!]
78

79 mySDI12 .sendCommand(command) ;
80

81 mySDI12 . c learBuffer () ;
82

83 // in t h i s example we w i l l only take R0 measurement no . 1 and 2 (avg speed , avg direction)
84 String sdiResponse = " " ;
85 String *p ;
86 p = value ;
87 i n t k =0;
88

89 while (! (mySDI12 . a v a i l a b l e () > 1)) ; // wait for acknowlegement
90 mySDI12 . read () ;
91 while (! (mySDI12 . a v a i l a b l e () > 1)) ;
92 mySDI12 . read () ;
93 while (mySDI12 . a v a i l a b l e ()) // build reply s t r i n g
94 {
95 char c = mySDI12 . read () ;
96 DEBUG_STREAM. print (c) ;
97 DEBUG_STREAM. print (’ ’) ;
98 DEBUG_STREAM. print ln (" ") ;
99 i f (c == ’+ ’)

100 {
101 k ++;
102 i f (k >=2)
103 {
104 break ;
105 }
106 sdiResponse += ’ ’ ;
107 value += ’ ’ ;
108 while (! (mySDI12 . a v a i l a b l e () > 0)) ;
109 }
110 else i f ((c != ’ \n ’) && (c ! = ’ \ r ’))
111 {
112

113 sdiResponse += c ;
114 while (! (mySDI12 . a v a i l a b l e () > 0)) ;
115 }
116 }
117

118 DEBUG_STREAM. print ln (" f inished message") ;
119 //DEBUG_STREAM. print ln (sdiResponse) ;
120 mySDI12 . c learBuffer () ;
121 *p = sdiResponse ;
122

123 }
124

125 // t h i s checks for a c t i v i t y at a p a r t i c u l a r address
126 // expects a char , ’0 ’ − ’9 ’ , ’ a ’− ’z ’ , or ’A’− ’Z ’
127 boolean checkActive (char i) {
128

129 String myCommand = " " ;
130 myCommand = " " ;
131 myCommand += (char) i ; // sends basic ’ acknowledge ’ command [address] [!]
132 myCommand += " ! " ;
133

134 for (i n t j = 0 ; j < 3 ; j ++) { // goes through three rapid contact attempts
135 mySDI12 .sendCommand(myCommand) ;
136 unsigned long timerStart = m i l l i s () ;
137 while ((m i l l i s () − t imerStart) < (30))
138 {

81

139 i f (mySDI12 . a v a i l a bl e ())
140 { // I f we here anything , assume we have an act ive sensor
141 printBufferToScreen () ;
142 mySDI12 . c learBuffer () ;
143 return true ;
144 }
145 }
146 }
147 mySDI12 . c learBuffer () ;
148 return f a l s e ;
149 }
150

151 // t h i s quickly checks i f the address has already been taken by an act ive sensor
152 boolean isTaken (byte i) {
153 i = charToDec (i) ; // e . g . convert ’0 ’ to 0 , ’ a ’ to 10 , ’Z ’ to 61.
154 byte j = i / 8 ; // byte #
155 byte k = i % 8 ; // b i t #
156 return addressRegister [j] & (1<<k) ; // return b i t status
157 }
158

159 // t h i s s e t s the b i t in the proper location within the addressRegister
160 // to record that the sensor i s act ive and the address i s taken .
161 boolean setTaken (byte i) {
162 boolean i n i t S t a t u s = isTaken (i) ;
163 i = charToDec (i) ; // e . g . convert ’0 ’ to 0 , ’ a ’ to 10 , ’Z ’ to 61.
164 byte j = i / 8 ; // byte #
165 byte k = i % 8 ; // b i t #
166 addressRegister [j] | = (1 << k) ;
167 return ! i n i t S t a t u s ; // return f a l s e i f already taken
168 }
169

170 // THIS METHOD IS UNUSED IN THIS EXAMPLE, BUT IT MAY BE HELPFUL.
171 // t h i s unsets the b i t in the proper location within the addressRegister
172 // to record that the sensor i s act ive and the address i s taken .
173 boolean setVacant (byte i) {
174 boolean i n i t S t a t u s = isTaken (i) ;
175 i = charToDec (i) ; // e . g . convert ’0 ’ to 0 , ’ a ’ to 10 , ’Z ’ to 61.
176 byte j = i / 8 ; // byte #
177 byte k = i % 8 ; // b i t #
178 addressRegister [j] &= ~(1 << k) ;
179 return i n i t S t a t u s ; // return f a l s e i f already vacant
180 }
181

182

183 char sdiSetup (void) {
184 mySDI12 . begin () ;
185 setLedColor (BLUE) ;
186 delay (800) ; // allow things to s e t t l e
187

188 boolean found = f a l s e ;
189

190 i f (checkActive (’A ’)) { numSensors++; setTaken (’A ’) ; found = true ; }
191

192

193 i f (! found) {
194 setLedColor (YELLOW) ;
195 for (byte i = ’ 0 ’ ; i <= ’ 9 ’ ; i ++) i f (checkActive (i)) { numSensors++; setTaken (i) ; } // scan address

space 0−9
196

197 for (byte i = ’ a ’ ; i <= ’ z ’ ; i ++) i f (checkActive (i)) { numSensors++; setTaken (i) ; } // scan address
space a−z

198

199 for (byte i = ’A ’ ; i <= ’Z ’ ; i ++) i f (checkActive (i)) { numSensors++; setTaken (i) ; } // scan address
space A−Z

200

201 /*
202 See i f there are any act ive sensors .
203 */
204 found = f a l s e ;
205

206 for (byte i = 0 ; i < 62; i ++)

82 C. SOURCE CODE

207 {
208 i f (isTaken (i))
209 {
210 found = true ;
211 DEBUG_STREAM. print (" F i r s t address found : ") ;
212 DEBUG_STREAM. print ln (decToChar (i)) ;
213 DEBUG_STREAM. print (" Total number of sensors found : ") ;
214 DEBUG_STREAM. print ln (numSensors) ;
215 setLedColor (GREEN) ;
216 return decToChar (i) ;
217 }
218 }
219 DEBUG_STREAM. print ln () ;
220 setLedColor (RED) ;
221 return ’ ’ ;
222 }
223 else {
224 DEBUG_STREAM. print ln ("ATMOS22 found at ’A ’ ") ;
225 setLedColor (GREEN) ;
226 return ’A ’ ;
227 } // stop here
228

229 }
230

231

232

233 void sdiMeasure (f l o a t * spd , f l o a t * dir , char address)
234 {
235 f l o a t spd2 , dir2 ;
236 String spdS , dirS ;
237 String value = " " ;
238 takeMeasurement (address ,& value) ;
239

240 for (uint i = 0 ; i < value . length () ; i ++)
241 {
242 i f (value . charAt (i) == ’ ’)
243 {
244 spdS = value . substring (0 , i −1) ;
245 dirS = value . substring (i) ;
246 }
247 }
248

249 spd2 = spdS . toFloat () ;
250 dir2 = dirS . toFloat () ;
251 *spd = spd2 ;
252 * dir = dir2 ;
253

254 }
255

256 void sdiMeasure (char address)
257 {
258 f l o a t spd , dir ;
259 String spdS , dirS ;
260 String value = " " ;
261 takeMeasurement (address ,& value) ;
262 for (uint i = 0 ; i < value . length () ; i ++)
263 {
264 i f (value . charAt (i) == ’ ’)
265 {
266 spdS = value . substring (0 , i −1) ;
267 dirS = value . substring (i) ;
268 }
269 }
270 spd = spdS . toFloat () ;
271 dir = dirS . toFloat () ;
272 DEBUG_STREAM. print ln (spd) ;
273 DEBUG_STREAM. print ln (dir) ;
274 }

pages/sourcecode/SDI12func.cpp

83

SDI12.H AND .CPP

The code functions described in SDI12func make use of the EnviroDIY SDI12 library for Arduino. Since the
library is used without any changes, and the .cpp accounts for over 1000 lines of code, it has been decided to
just include the header file which contains licence and developer’s credits, as well as function descriptions.

1 /* ======================== Arduino SDI−12 =================================
2

3 Arduino l i b r a r y for SDI−12 communications to a wide v a r i e t y of environmental
4 sensors . This l i b r a r y provides a general software solution , without requiring
5 any additional hardware .
6

7 ======================== Attr ibution & License =============================
8

9 Copyright (C) 2013 Stroud Water Research Center
10 Available at https : / / github .com/EnviroDIY/Arduino−SDI−12
11

12 Authored i n i t i a l l y in August 2013 by :
13

14 Kevin M. Smith (http : / / ethosengineering . org)
15 Inquir ies : SDI12@ethosengineering . org
16

17 Modified 2017 by Manuel Jimenez Buendia to work with ARM based processors
18 (Arduino Zero)
19

20 Maintenance and merging 2017 by Sara Damiano
21

22 based on the SoftwareSerial l i b r a r y (formerly NewSoftSerial) , authored by :
23 ladyada (http : / / ladyada . net)
24 Mikal Hart (http : / /www. arduiniana . org)
25 Paul Stoffregen (http : / /www. pjrc .com)
26 Garrett Mace (http : / /www. macetech .com)
27 Brett Hagman (http : / /www. roguerobotics .com/)
28

29 This l i b r a r y i s free software ; you can r e d i s t r i b u t e i t and/ or
30 modify i t under the terms of the GNU Lesser General Public
31 License as published by the Free Software Foundation ; ei ther
32 version 2.1 of the License , or (at your option) any l a t e r version .
33

34 This l i b r a r y i s distr ibuted in the hope that i t w i l l be useful ,
35 but WITHOUT ANY WARRANTY; without even the implied warranty of
36 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
37 Lesser General Public License for more d e t a i l s .
38

39 You should have received a copy of the GNU Lesser General Public
40 License along with t h i s l i b r a r y ; i f not , write to the Free Software
41 Foundation , Inc . , 51 Franklin Street , F i f t h Floor , Boston , MA 02110−1301 USA
42 */
43

44 # i fndef SDI12_h
45 #define SDI12_h
46

47 // Import Required L i b r a r i e s
48 #include <inttypes . h> // integer types l i b r a r y
49 #include <Arduino . h> // Arduino core l i b r a r y
50 #include <Stream . h> // Arduino Stream l i b r a r y
51

52 typedef const __FlashStringHelper * FlashString ;
53

54 #define NO_IGNORE_CHAR ’ \x01 ’ // a char not found in a v al id ASCII numeric f i e l d
55 #define SDI12_BUFFER_SIZE 64 // max Rx buffer s i z e
56

57 c l a s s SDI12 : public Stream
58 {
59 protected :
60 // hides the version from the stream to allow custom timeout value
61 i n t peekNextDigit (LookaheadMode lookahead , bool detectDecimal) ;
62

63 private :
64

65 // For the various SDI12 s t a t e s

84 C. SOURCE CODE

66 typedef enum SDI12_STATES
67 {
68 DISABLED = 0 ,
69 ENABLED = 1 ,
70 HOLDING = 2 ,
71 TRANSMITTING = 3 ,
72 LISTENING = 4
73 } SDI12_STATES ;
74

75 s t a t i c SDI12 * _activeObject ; // s t a t i c pointer to act ive SDI12 instance
76

77 void setPinInterrupts (bool enable) ; // Turns pin interrupts on or o f f
78 void s e t S t a t e (SDI12_STATES s t a t e) ; // s e ts the s t a t e of the SDI12 objects
79 void wakeSensors () ; // used to wake up the SDI12 bus
80 void writeChar (uint8_t out) ; // used to send a char out on the data l i n e
81 void startChar () ; // creates a blank s l a t e for a new incoming character
82 void receiveISR () ; // the actual function responding to changes in rx l i n e s t a t e
83 void charToBuffer (uint8_t c) ; // puts a finished character into the SDI12 buffer
84

85 # i fndef __AVR__
86 s t a t i c uint8_t parity_even_bit (uint8_t v) ;
87 #endif
88

89 uint8_t _dataPin ; // reference to the data pin
90

91 s t a t i c uint8_t _rxBuffer [SDI12_BUFFER_SIZE] ; // A si ngl e buffer for ALL SDI−12 objects
92 s t a t i c v o l a t i l e uint8_t _ r x Bu ffe r T ai l ;
93 s t a t i c v o l a t i l e uint8_t _rxBufferHead ;
94 bool _bufferOverflow ; // buffer overflow status
95

96 public :
97 SDI12 () ; // constructor − without argument , for better l i b r a r y integrat ion
98 SDI12 (uint8_t dataPin) ; // constructor
99 ~SDI12 () ; // destructor

100 void begin () ; // enable SDI−12 object
101 void begin (uint8_t dataPin) ; // enable SDI−12 object − i f you use the empty constuctor , USE THIS
102 void end () ; // disable SDI−12 object
103 i n t TIMEOUT; // value to return i f a parse times out
104 void setTimeoutValue (i n t value) ; // s e t s the value to return i f a parse i n t or parse f l o a t times out
105 uint8_t getDataPin () ; // returns the data pin for the current instace
106

107 void forceHold () ; // s e t s l i n e s t a t e to HOLDING
108 void forceListen () ; // s e t s l i n e s t a t e to LISTENING
109 void sendCommand(Str ing &cmd) ; // sends the Str ing cmd out on the data l i n e
110 void sendCommand(const char *cmd) ; // sends the Str ing cmd out on the data l i n e
111 void sendCommand(FlashString cmd) ; // sends the Str ing cmd out on the data l i n e
112 void sendResponse (Str ing &resp) ; // sends the Str ing resp out on the data l i n e (for slave use)
113 void sendResponse (const char * resp) ; // sends the String resp out on the data l i n e (for slave use)
114 void sendResponse (FlashString resp) ; // sends the Str ing resp out on the data l i n e (for slave use)
115

116 i n t av a i l a b l e () ; // returns the number of bytes a v a i l a b l e in buffer
117 i n t peek () ; // reveals next byte in buffer without consuming
118 i n t read () ; // returns next byte in the buffer (consumes)
119 void clearBuffer () ; // c l e a r s the buffer
120 void f lush () { } ; // Waits for sending to f i n i s h − because no TX buffering , does nothing
121 v i r t u a l s i z e _ t write (uint8_t byte) ; // standard stream function
122

123 // hide the Stream equivalents to allow custom value to be returned on timeout
124 long parseInt (LookaheadMode lookahead = SKIP_ALL , char ignore = NO_IGNORE_CHAR) ;
125 f l o a t parseFloat (LookaheadMode lookahead = SKIP_ALL , char ignore = NO_IGNORE_CHAR) ;
126

127 bool setAct ive () ; // set t h i s instance as the act ive SDI−12 instance
128 bool i s A c t i v e () ; // check i f t h i s instance i s act ive
129

130 s t a t i c void handleInterrupt () ; // intermediary used by the ISR
131

132 // #define SDI12_EXTERNAL_PCINT // uncomment to use your own PCINT ISRs
133

134 } ;
135

136 #endif // SDI12_h

85

pages/sourcecode/SDI12.h

D
LORA

This appendix is included to provide additional information about LoRa and LoRaWAN.
LoRa is a wireless data communications IoT technology. The technology was developed by Cycleo of
Grenoble, which was later acquired by Semtech. With the use of LoRa, data can be communicated over long
ranges with little power consumption. The technology makes use of license free sub-Gigahertz RF bands or
the so called ISM-bands (Industrial, Scientific and Medical bands), which in Europe includes 868 MHz.

D.1. LINK BUDGET
A link budget is the amount of power that can be attenuated before losing the ability to communicate. This
means that it’s the difference between the transmitters TX power and the receivers RX sensitivity.
In the case of LoRa, the TX power is maximally 14 dBm, while the receiver sensitivity is at −137 dBm, resulting
in a link budget of 151 dBm! Meaning LoRa is able to operate below the noise floor. This is really high when
compared with other Wireless Communication Networks as tabulated in table D.1

Table D.1: Comparison of Link Budgets of different technologies.

TX Power [dBm] RX Sensitivity [dBm] Link Budget [dBm]

Wi-Fi 20 −75 95
Sub-GHz 6LoWPAN 11 −110 121
LoRa 14 −137 151

D.2. LORA, THE PHYSICAL LAYER
LoRa is an abbreviation of Long Range. To achieve this Long Range (Longer than the widely used FSK
modulation (Frequency Shift Keying)) LoRa makes use, among onther techniques, of a modulation scheme
called Chrip Spread Spectrum (CSS). To receive or transmit LoRa signals, hardware that supports this
modulation scheme is needed and is only made by Semtech, since they have the patent on LoRa.
Due to this fact, rigorous documentation about the inner workings of this physical layer are not available,
however, reverse-engineering attempts have been made and via this way some more insight can be acquired
on the workings of this physical layer.[41, 42]
In addition to the reverse engineering work, the LoRa-Alliance itself provides an explaining document.[43]

87

BIBLIOGRAPHY

[1] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communications in unlicensed
bands: the rising stars in the iot and smart city scenarios,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 60–67, October 2016.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: A survey
on enabling technologies, protocols, and applications,” IEEE Communications Surveys Tutorials, vol. 17,
no. 4, pp. 2347–2376, Fourthquarter 2015.

[3] J. K. Hart and K. Martinez, “Environmental sensor networks: A revolution in the earth system
science?” Earth-Science Reviews, vol. 78, no. 3, pp. 177 – 191, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0012825206000511

[4] A. Förster, Designing and Deploying WSN Applications. Wiley-IEEE Press, 2016, pp. 186–. [Online].
Available: https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7906230

[5] M. T. Lazarescu, “Design of a wsn platform for long-term environmental monitoring for iot applications,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 1, pp. 45–54, March 2013.

[6] J. Devaraju, K. Suhas, H. Mohana, and V. A. Patil, “Wireless portable microcontroller based
weather monitoring station,” Measurement, vol. 76, pp. 189 – 200, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0263224115004406

[7] S. C. Padwal, M. Kumar, P. Balaramudu, and C. K. Jha, “Analysis of environment changes using wsn for
iot applications,” in 2017 2nd International Conference for Convergence in Technology (I2CT), April 2017,
pp. 27–32.

[8] Holfuy Meteorology. About Holfuy. Accessed: [11-6-2018]. [Online]. Available: https://holfuy.com/en/
about

[9] G. Pahl, W. Beitz, J. Feldhusen, and K. Grote, Engineering Design: A Systematic Approach,
ser. Solid mechanics and its applications. Springer London, 2007. [Online]. Available: https:
//books.google.nl/books?id=57aWTCE3gE0C

[10] J. H. Wohlgemuth, D. W. Cunningham, P. Monus, J. Miller, and A. Nguyen, “Long term reliability of
photovoltaic modules,” in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2,
May 2006, pp. 2050–2053.

[11] Sensirion, Datasheet SHT3x-DIS, May 2018, rev 5. [Online]. Available: https:
//www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/
Humidity/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf

[12] Bosch Sensortech, BMP180 Digital pressure sensor, April 5th 2013, rev 2.5. [Online]. Available:
https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf

[13] Hydreon Corporation, MODEL RG-11 OPTICAL RAIN GAUGE, rev 016. [Online]. Available: http:
//hydreon.com/wp-content/uploads/sites/3/2015/documents/rg-11_instructions.pdf

[14] METER Group, ATMOS 22, 2018. [Online]. Available: http://library.metergroup.com/Manuals/20419_
ATMOS22_Manual_Web.pdf

[15] Encyclopædia Britannica, “Cloudburst,” October 25, 2016, accessed 17-6-2018. [Online]. Available:
https://www.britannica.com/science/cloudburst

[16] A. Buishand and J. Wijngaard, “Statistiek van extreme neerslag voor korte neerslagduren,” Koninklijk
Nederlands Meteorologisch Instituut, Tech. Rep. TR-295, January 2007.

89

http://www.sciencedirect.com/science/article/pii/S0012825206000511
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7906230
http://www.sciencedirect.com/science/article/pii/S0263224115004406
https://holfuy.com/en/about
https://holfuy.com/en/about
https://books.google.nl/books?id=57aWTCE3gE0C
https://books.google.nl/books?id=57aWTCE3gE0C
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Humidity/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
http://hydreon.com/wp-content/uploads/sites/3/2015/documents/rg-11_instructions.pdf
http://hydreon.com/wp-content/uploads/sites/3/2015/documents/rg-11_instructions.pdf
http://library.metergroup.com/Manuals/20419_ATMOS22_Manual_Web.pdf
http://library.metergroup.com/Manuals/20419_ATMOS22_Manual_Web.pdf
https://www.britannica.com/science/cloudburst

90 BIBLIOGRAPHY

[17] P. S. Cheong, J. Bergs, C. Hawinkel, and J. Famaey, “Comparison of lorawan classes and their power
consumption,” in 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT), Nov
2017, pp. 1–6.

[18] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of lpwan technologies for large-scale
iot deployment,” ICT Express, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2405959517302953

[19] J. P. Bardyn, T. Melly, O. Seller, and N. Sornin, “Iot: The era of lpwan is starting now,” in ESSCIRC
Conference 2016: 42nd European Solid-State Circuits Conference, Sept 2016, pp. 25–30.

[20] H. Mroue, A. Nasser, S. Hamrioui, B. Parrein, E. Motta-Cruz, and G. Rouyer, “Mac layer-based evaluation
of iot technologies: Lora, sigfox and nb-iot,” in 2018 IEEE Middle East and North Africa Communications
Conference (MENACOMM), April 2018, pp. 1–5.

[21] Semtech, SX1272/3/6/7/8: LoRa Modem Designer’s Guide AN1200.13, July 2013. [Online]. Available:
https://www.semtech.com/uploads/documents/LoraDesignGuide_STD.pdf

[22] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne, “Understanding
the limits of lorawan,” IEEE Communications Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[23] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic
maximum power point tracking control system,” IEEE Transactions on Power Electronics, vol. 16, no. 1,
pp. 46–54, Jan 2001.

[24] F. Reverter and M. Gasulla, “Optimal inductor current in boost dc/dc converters regulating the input
voltage applied to low-power photovoltaic modules,” IEEE Transactions on Power Electronics, vol. 32,
no. 8, pp. 6188–6196, Aug 2017.

[25] H. Keshan, J. Thornburg, and T. S. Ustun, “Comparison of lead-acid and lithium ion batteries for
stationary storage in off-grid energy systems,” in 4th IET Clean Energy and Technology Conference (CEAT
2016), Nov 2016, pp. 1–7.

[26] METER Group, ATMOS 22 Integrators Guide, 2018. [Online]. Available: http://library.metergroup.com/
Integration\Guides/18195\ATMOS\22\Integrators\Guide.pdf

[27] J. Zhang, L. Zhang, F. Sun, and Z. Wang, “An overview on thermal safety issues of lithium-ion batteries
for electric vehicle application,” IEEE Access, vol. 6, pp. 23 848–23 863, 2018.

[28] Linear Technology Corporation, “Lt3652- power tracking 2a battery charger for solar power,” 2010, rev
D. [Online]. Available: https://cdn.sparkfun.com/datasheets/Prototyping/LT3652.pdf

[29] Panasonic Corporation, NCR18650B, 2012, rev 13.11. [Online]. Available: https://www.batteryspace.
com/prod-specs/NCR18650B.pdf

[30] S. Klein and W. Beckman, “Loss-of-load probabilities for stand-alone photovoltaic systems,” Solar
Energy, vol. 39, no. 6, pp. 499 – 512, 1987. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0038092X87900570

[31] Photovoltaic Geographical Information System. "performance of off-grid pv systems". Accessed:
[12-6-2018]. [Online]. Available: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#SA

[32] N. Khanduri, A. Kukreti, and N. Shah, “Implementation of solar time based sun tracking systems for
mobile platforms and smart cities,” in 2017 IEEE Region 10 Symposium (TENSYMP), July 2017, pp. 1–5.

[33] J. S. Reddy, A. Chakraborti, and B. Das, “Implementation and practical evaluation of an automatic solar
tracking system for different weather conditions,” in 2016 IEEE 7th Power India International Conference
(PIICON), Nov 2016, pp. 1–6.

[34] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in energy harvesting
sensor networks,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 4, Sep. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1274858.1274870

http://www.sciencedirect.com/science/article/pii/S2405959517302953
http://www.sciencedirect.com/science/article/pii/S2405959517302953
https://www.semtech.com/uploads/documents/LoraDesignGuide_STD.pdf
http://library.metergroup.com/Integration\ Guides/18195\ ATMOS\ 22\ Integrators\ Guide.pdf
http://library.metergroup.com/Integration\ Guides/18195\ ATMOS\ 22\ Integrators\ Guide.pdf
https://cdn.sparkfun.com/datasheets/Prototyping/LT3652.pdf
https://www.batteryspace.com/prod-specs/NCR18650B.pdf
https://www.batteryspace.com/prod-specs/NCR18650B.pdf
http://www.sciencedirect.com/science/article/pii/0038092X87900570
http://www.sciencedirect.com/science/article/pii/0038092X87900570
http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#SA
http://doi.acm.org/10.1145/1274858.1274870

BIBLIOGRAPHY 91

[35] C. Moser, L. Thiele, D. Brunelli, and L. Benini, “Adaptive power management in energy harvesting
systems,” in 2007 Design, Automation Test in Europe Conference Exhibition, April 2007, pp. 1–6.

[36] J. R. Piorno, C. Bergonzini, D. Atienza, and T. S. Rosing, “Prediction and management in energy harvested
wireless sensor nodes,” in 2009 1st International Conference on Wireless Communication, Vehicular
Technology, Information Theory and Aerospace Electronic Systems Technology, May 2009, pp. 6–10.

[37] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy, “Cloudy computing: Leveraging weather forecasts
in energy harvesting sensor systems,” in 2010 7th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON), June 2010, pp. 1–9.

[38] S. Janković and L. Saranovac, “Improving energy usage in energy harvesting wireless sensor nodes using
weather forecast,” in 2017 25th Telecommunication Forum (TELFOR), Nov 2017, pp. 1–4.

[39] Y. Li, Z. Jia, and X. Li, “Task scheduling based on weather forecast in energy harvesting sensor systems,”
IEEE Sensors Journal, vol. 14, no. 11, pp. 3763–3765, Nov 2014.

[40] R. Ayop, N. M. Isa, and C. W. Tan, “Components sizing of photovoltaic stand-alone system based on loss
of power supply probability,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2731 – 2743, 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032117310201

[41] Rev Space. Decodinglora. Accessed: [14-6-2018]. [Online]. Available: https://revspace.nl/DecodingLora

[42] M. Knight and B. Seeber. Decoding lora: Realizing a modern lpwan with sdr". Accessed: [14-6-2018].
[Online]. Available: https://pubs.gnuradio.org/index.php/grcon/article/download/8/7

[43] LoRa Alliance. "lorawan™: What is it? a technical overview of lora® and lorawan™". Accessed: [14-6-
2018]. [Online]. Available: https://www.lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.
pdf

http://www.sciencedirect.com/science/article/pii/S1364032117310201
https://revspace.nl/DecodingLora
https://pubs.gnuradio.org/index.php/grcon/article/download/8/7
https://www.lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://www.lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf

	Introduction
	State-of-art analysis
	History and applications
	Current status

	Problem definition
	Thesis synopsis

	Programme of requirements
	Mandatory requirements
	Functional requirements
	Functional requirements regarding weather measurements
	Cost requirements
	Safety, ethical and environmental requirements

	Trade-off requirements
	Autonomy requirements

	Design process
	Conceptual design
	System analysis
	Conceptual design of the sensor platform
	Conceptual sensor configuration
	Resulting conceptual design

	Embodiment design
	Final sensor configuration
	Determining the transmission payload and protocol
	Layout of the data structure
	Layout of the energy subsystems
	Analysis on the power draw

	Detailed design
	Software on the data and power management
	Expectation of the power draw
	Dimensioning of the energy subsystems
	Final design specifications

	Prototype
	Proof of concept
	The viability of a LoRaWAN communication stack

	Implementation
	MCU & LoRa Module
	Solar Panel
	Solar charge controller
	Battery & battery management system
	Back end

	Validation
	Measured power consumption
	Long term state of charge simulation of the battery

	Conclusions, Discussion and future work
	Conclusions
	Results of the Conceptual design
	Embodiment design
	Detailed design
	Prototype and validation

	Future work
	Utilising LoRa's full potential
	Adaptive power management
	The sensor modularity aspect
	Environmental concerns and disposal

	Discussion on the Autonomous Wireless Weather Station

	Additional specifications and schematics
	Simulations
	Source Code
	LoRa
	Link Budget
	LoRa, the Physical Layer

	Bibliography

