
El
ec

tr
on

ic
Sy

st
em

s
La

bo
ra

to
ry

Assessment of
Electrical Thruster
Configurations for
Lunar CubeSat Attitude
Control
Thesis Report

Master Thesis Aerospace Engineering
Pieter de Lange

Assessment of
Electrical Thruster
Configurations for

Lunar CubeSat
Attitude Control

Thesis Report

by

Pieter de Lange
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday February 6, 2025 at 13:45.

Student number: 4678362
Project duration: March 4, 2024 – February 6, 2025
Thesis committee: Dr. ir. A. Cervone, TU Delft, supervisor

Dr. ir. J. Guo, TU Delft, chair
Dr. ir. E. van Kampen, TU Delft, external supervisor

Cover: Illustration of the LUMIO mission, ESA

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

After having spent the past eleven months on the research that lies before you, and now finally hav-
ing put together all its individual pieces, one question popped into my head: why do people do this?
What is the intrinsic motivation of humankind to constantly be looking for the unknown? The answer is
quite simple, really. It is the same question of why WALL-E travelled into space with EVE, or why Paul
Artreides devoted himself to studying the Fremen: curiosity. As long as people remain curious about
the topics they are most fascinated about, we keep on innovating and reaching higher summits. As
long as we remain curious, unthinkable events like human colonisation of Mars and intergalactic travel
slowly come within grasp. In the world of curiosity, anything is possible.

The work before you could not have been written without the help of my supervisor, Angelo Cervone,
whom I would like to thank for his full support throughout the entire process. Your critical view on the
extensive information I kept sending your way was critical for the success of my thesis, and taught me
a great deal about conducting research. In addition, I would like to thank Willem Jordaan for his great
ideas, enthusiasm and further support during my time at the Electronic Systems Laboratory. Without
him, and all the other great people I met there, my thesis would not have become what it is today, and
would definitely not have been as much fun. Thank you all.

Pieter de Lange
Stellenbosch, January 2025

i

Contents

Preface i

List of Figures ix

List of Tables xi

Nomenclature xvi

Executive Summary xvii

Abstract xxi

1 Introduction and Problem Description 1
1.1 Background . 1
1.2 Problem Definition . 1
1.3 Thesis Layout . 2
1.4 Novelty . 2

2 Literature Review 3
2.1 Introduction . 3
2.2 Research Questions . 4
2.3 Spacecraft Attitude Control . 4

2.3.1 Basics . 4
2.3.2 Dynamics . 5

2.3.2.1 Rigid Body Dynamics . 6
2.3.2.2 Reference Frames . 6
2.3.2.3 Quaternions . 8
2.3.2.4 Disturbances . 10

2.3.3 Actuators . 12
2.3.3.1 Reaction Wheels . 12
2.3.3.2 Thrusters . 15

2.3.4 Controllers . 20
2.3.4.1 PID . 21
2.3.4.2 Phase plane analysis . 23

2.3.5 Integration . 25
2.3.5.1 Forward Euler method . 26
2.3.5.2 Runge-Kutta 4 method . 26

2.4 Lunar CubeSat Missions . 26
2.4.1 Overview of Existing Missions . 27
2.4.2 CAPSTONE . 28
2.4.3 LUMIO . 30

2.5 Embedded Systems . 34
2.5.1 Overview of Basic Principles . 35
2.5.2 CubeSat OBC . 36
2.5.3 STM32 Nucleo . 37

2.6 Vacuum Arc Thrusters . 38
2.6.1 Working Principle . 38
2.6.2 Pulse-Width Modulation . 39
2.6.3 Overview of Existing Modules . 41

2.7 Conclusion . 42

3 Research Questions & Hypotheses 43
3.1 Introduction . 43

ii

Contents iii

3.2 Research Questions . 43
3.3 Hypotheses . 44

4 Attitude Control Simulation 46
4.1 Introduction . 46
4.2 Context . 46

4.2.1 Orbit . 47
4.2.2 Spacecraft . 50
4.2.3 Thrusters . 52

4.3 Assumptions & Considerations . 56
4.4 Code . 60

4.4.1 Overview . 61
4.4.2 Data . 63
4.4.3 Visualisation . 64

4.5 Robustness . 64
4.5.1 Single Thruster Failure . 65
4.5.2 Solar Array Deployment . 66
4.5.3 De-tumbling Manoeuvrer . 66

5 Experimental Characterisation 68
5.1 Introduction . 68
5.2 Code Porting . 69

5.2.1 Experimental Framework . 69
5.2.2 Porting . 71

5.2.2.1 1/0 Test . 71
5.2.2.2 PD Control . 71
5.2.2.3 Reference Attitude . 72
5.2.2.4 Thruster Allocation . 72

5.3 Actuator Connection . 73

6 Results 77
6.1 Simulation . 77

6.1.1 Reaction Wheel Analysis . 78
6.1.2 Thruster Analysis . 89

6.1.2.1 Configuration 1 . 90
6.1.2.2 Configuration 2 . 96
6.1.2.3 Configuration 3 . 98
6.1.2.4 Configuration 4 . 100

6.1.3 Comparison . 102
6.2 Robustness . 105

6.2.1 Single Thruster Failure . 105
6.2.1.1 Approach 1 . 105
6.2.1.2 Approach 2 . 107

6.2.2 Solar Array Deployment . 110
6.2.3 De-tumbling Maneuver . 111

6.3 Experimental Characterisation . 117
6.3.1 Code Porting . 117
6.3.2 Actuator Connection . 118

6.4 Verification & Validation . 120
6.4.1 Verification . 121
6.4.2 Validation . 124

7 Discussion 127
7.1 Introduction . 127
7.2 Simulation . 127

7.2.1 General . 127
7.2.2 Reaction Wheel Analysis . 129
7.2.3 Thruster Analysis . 130

Contents iv

7.2.4 Mission Requirements . 135
7.2.5 Summary . 136

7.3 Experimental Characterisation . 136
7.4 Recommendations for Future Work . 137

8 Conclusion 140

References 145

A Simulation Results 149
A.1 Configuration 1 . 149
A.2 Configuration 2 . 152
A.3 Configuration 3 . 155
A.4 Configuration 4 . 159

B Python Source Code 166

C C Source Code 199
C.1 main.c . 199
C.2 func.c . 206

List of Figures

2.1 Body-centred reference frame depicted on an arbitrary rigid body, with the origin in the
body’s centre of mass and three orthogonal axes. 7

2.2 Newtonian inertial reference frame N and local horizontal local vertical (LVLH) reference
frames, depicted with orthogonal axes and origins in the centre of mass of the celestial
body and the spacecraft for both frames, respectively. 7

2.3 CubeWheel hardware in four different sizes. The three wheels on the right side are the
CW0162, CW0057 and the CW0017, seen from right to left. [32] 13

2.4 CubeWheel pyramid configuration, consisting of a four-wheel set-up that can directly be
acquired to act as part of the ADCS subsystem. [32] . 13

2.5 General spacecraft ACDS block diagram. 21
2.6 Block diagram of a PID controller block. xerr is the state error, which is inserted in

the proportional, integral and derivative control blocks, after which they are summed to
produce an output control variable u(t). 22

2.7 Phase plane controller method visualised, adapted from Jang, Plummer, and Jackson
[24]. 24

2.8 Phase plane controller method visualised with hysteresis regions. 25
2.9 Lagrange points in the Earth-Moon system. Top view of the Earth, looking at the orbital

plane of the Moon and Earth’s North Pole. 28
2.10 The northern L1 and southern L2 near-rectilinear halo orbits, in the Earth-Moon system. 30
2.11 Illustration of theMoon phases and the primary trajectories of incomingmeteoroids within

the Earth-Moon system. The dashed green line marks the segment of the Moon’s orbit
where Earth-based observations of the nearside are possible. The solid blue line high-
lights the time frame for space-based observations of the lunar far-side, while the solid
orange line denotes periods designated for other operations. Figure taken from Topputo
et al. [52]. 31

2.12 Three views on the LUMIO operative orbit, in all three Cartesian planes. The Moon and
Earth-Moon L2 point are clearly visible. Multiple orbits have been simulated. Note that
the axes are normalised. Figure taken from Topputo et al. [52]. 32

2.13 LUMIO system overview. 34
2.14 Stacked PC/104 form factor PCBs for CubeSat application, as shown in Nieto and Emami

[40]. 36
2.15 Photo of the STM32 Nucleo RE303RE development board, including an ST-LINK on the

top for communication via USB. 37
2.16 STM32IDE view of the microcontroller on the STM32F303RE board, including 37
2.17 Schematic overview of the components of a vacuum arc thruster. 38
2.18 Square wave signal of 10 [Hz] with a 50% duty cycle over 1 second. 40
2.19 Square wave signal of 10 [Hz] with a 25% duty cycle over 1 second. 40

4.1 Comparison of Moon-centred CAPSTONE orbits for two different timespans. 48
4.2 (a) Simplified spacecraft bus with body-centred reference frame. (b) Panel numbering

for attitude control simulation. 50
4.3 Four different thruster configurations used throughout this research, within the body axes

as defined previously. 53
4.4 SSL Pocket Rocket thrust versus input power relation, including the invariant specific

impulse of the vacuum arc thruster module. Adapted from (SSP) [1]. 56
4.5 Attitude control simulation code block diagram. Blue blocks indicate functions that are ex-

ecuted, the orange blocks contain additional information about the underlying principles
or relations of the function blocks. Arrows indicate the order of operations. 61

v

List of Figures vi

5.1 Photo of the STM32 Nucleo RE303RE development board, including an ST-LINK on the
top for communication via USB. 69

5.2 Systematic layout of the pin functionalities of the Nucleo-F303RE board. These pins
coincide with the pins seen in Figure 5.1. 69

5.3 Attitude control simulation code block diagram, similar to Figure 4.5 with the separation
of PC-based and MCU-based computations. Logos taken from open source, copyright
free internet sources. 73

5.4 AirTac Model 2V025-08 side view. 74
5.5 Two AirTac Model 2V025-08 attached to a power distribution board with a heat sink, main

input power cables and signal input cable for connection to the MCU. 74
5.6 Complete experimental valve set-up, including an oscilloscope, a personal computer, a

power supply, the STM32 Nucleo developer board, two valves and the power distribution
board they are connected to. 75

5.7 Example of the screen of the oscilloscope used in this research to analyse the charac-
teristics of the measured signals. 75

5.8 Schematic overview of Figure 5.5. 75

6.1 qe development over time for the four quaternion components, with proportional gain set
to 0.0002, derivative gain set to 0.02 and speed gain set to 1. Simulation over time period
[00:00:00 05-01-2023] to [08:00:00 05-01-2023]. 78

6.2 Reaction wheels: β, measured between the negative y-panel normal vector and the
Moon pointing vector and presented in absolute numbers, over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 79

6.3 qe development over time for the four quaternion components, with proportional gain set
to 0.05, derivative gain set to 0.05 and speed gain set to 10. Simulation over time period
[00:00:00 05-01-2023] to [08:00:00 05-01-2023]. 79

6.4 Reaction wheels: qw versus the reference quaternion over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 80

6.5 Reaction wheels: q1 versus the reference quaternion over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 80

6.6 Reaction wheels: q2 versus the reference quaternion over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 80

6.7 Reaction wheels: q3 versus the reference quaternion over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 81

6.8 Reaction wheels: qe (absolute) over time in days, analysed from [00:00:00 01-01-2023]
until [00:00:00 15-01-2023]. 81

6.9 Reaction wheels: qe (relative in %) over time in days, analysed from [00:00:00 01-01-
2023] until [00:00:00 15-01-2023]. 81

6.10 Reaction wheels: qe (relative in %) over time in days, analysed from [05:32:10 05-01-
2023] until [05:32:38 05-01-2023]. 82

6.11 Reaction wheels: ω for each of the spacecraft primary axes over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 82

6.12 Reaction wheels: TGG for each of the spacecraft primary axes over time in days, anal-
ysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 83

6.13 Reaction wheels: TSRP for each of the spacecraft primary axes over time in days, anal-
ysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 83

6.14 Reaction wheels: Tc for each of the spacecraft primary axes over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 84

6.15 Reaction wheels: Tc for each of the spacecraft primary axes over time in days, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 84

6.16 Reaction wheels: Tc for each of the spacecraft primary axes over time in days, analysed
from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 85

6.17 Reaction wheels: Trw for each of the four reaction wheels over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 85

6.18 Reaction wheels: Trw for each of the four reaction wheels over time in days, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 86

List of Figures vii

6.19 Reaction wheels: Trw for each of the four reaction wheels over time in days, analysed
from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 86

6.20 Reaction wheels: Prw for each of the four reaction wheels over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 87

6.21 Reaction wheels: Erw for each of the four reaction wheels over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 87

6.22 Reaction wheels: Prw for each of the four reaction wheels over time in days, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 87

6.23 Reaction wheels: Prw for each of the four reaction wheels over time in days, analysed
from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 88

6.24 Reaction wheels: hrw for reaction wheels 1, 2 and 3 over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. Saturation limits indicated. 88

6.25 Reaction wheels: hrw for reaction wheel 4 over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023]. Saturation limits indicated. 89

6.26 Reaction wheels: hrw for each of the spacecraft primary axes over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 89

6.27 Thrusters: qe (absolute) over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023]. 90

6.28 Thrusters: F1 output in configuration 1 over time in days, analysed from [00:00:00 01-
01-2023] until [00:00:00 15-01-2023]. 91

6.29 Thrusters: F2 output in configuration 1 over time in days, analysed from [00:00:00 01-
01-2023] until [00:00:00 15-01-2023]. 91

6.30 Thrusters: F3 output in configuration 1 over time in days, analysed from [00:00:00 01-
01-2023] until [00:00:00 15-01-2023]. 91

6.31 Thrusters: F4 output in configuration 1 over time in days, analysed from [00:00:00 01-
01-2023] until [00:00:00 15-01-2023]. 91

6.32 Thrusters: F5 output in configuration 1 over time in days, analysed from [00:00:00 01-
01-2023] until [00:00:00 15-01-2023]. 92

6.33 Thrusters: F6 output in configuration 1 over time in days, analysed from [00:00:00 01-
01-2023] until [00:00:00 15-01-2023]. 92

6.34 Thrusters: F output for all thrusters in configuration 1 over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 92

6.35 Thrusters: F output for all thrusters in configuration 1 over time in days, analysed from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 93

6.36 Thrusters: F output for all thrusters in configuration 1 over time in days, analysed from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 93

6.37 Thrusters: Jthrust output for all thrusters in configuration 1 over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 94

6.38 Thrusters: P required for all thrusters in configuration 1 over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 94

6.39 Thrusters: P required for all thrusters in configuration 1 over time in days, analysed from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 95

6.40 Thrusters: P required for all thrusters in configuration 1 over time in days, analysed from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 95

6.41 Thrusters: E required for all thrusters in configuration 1 over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 95

6.42 Thrusters: F output for all thrusters in configuration 2 over time in days, analysed from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 96

6.43 Thrusters: F output for all thrusters in configuration 2 over time in days, analysed from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 96

6.44 Thrusters: Jthrust output for all thrusters in configuration 2 over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 97

6.45 Thrusters: P required for all thrusters in configuration 2 over time in days, analysed from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 97

6.46 Thrusters: P required for all thrusters in configuration 2 over time in days, analysed from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 97

List of Figures viii

6.47 Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 98

6.48 Thrusters: F output for thrusters 7 and 8 in configuration 3 over time in days, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 98

6.49 Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days,
analysed from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 99

6.50 Thrusters: F output for thrusters 7 and 8 in configuration 3 over time in days, analysed
from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 99

6.51 Thrusters: Jthrust output for all thrusters in configuration 3 over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 100

6.52 Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 100

6.53 Thrusters: F output for thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in
days, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 100

6.54 Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days,
analysed from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 101

6.55 Thrusters: F output for thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in
days, analysed from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 101

6.56 Thrusters: Jthrust output for the first six thrusters in configuration 4 over time in days,
analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 101

6.57 Thrusters: Jthrust output for the last six thrusters in configuration 4 over time in days,
analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 102

6.58 Total power required for each thruster configuration over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 102

6.59 Total power required for each thruster configuration over time in days, analysed from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 103

6.60 Total power required for each thruster configuration over time in days, analysed from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 103

6.61 Total energy consumed by each thruster configuration over time in days, analysed from
[00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 103

6.62 Total power and energy consumed by each reaction wheels over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 104

6.63 Absolute difference in degrees between the reaction wheel and thruster analysis half-
cone angle offset, analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. . . 104

6.64 Single thruster failure 1: difference in F output, compared to the original simulation with
all working thruster, for thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 105

6.65 Single thruster failure 1: difference in F output, compared to the original simulation with
all working thruster, for thrusters 7 and 8 in configuration 3 over time in days, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 106

6.66 Single thruster failure 1: difference in F output, compared to the original simulation with
all working thruster, for thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 106

6.67 Single thruster failure 1: difference in F output, compared to the original simulation with
all working thruster, for thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in
days, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 106

6.68 Single thruster failure 2: qe (absolute) over time in days, for configuration 1, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 107

6.69 Single thruster failure 2: qe (absolute) over time in days, for configuration 2, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 108

6.70 Single thruster failure 2: difference in F output, compared to the original simulation with
all working thruster, for thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 108

6.71 Single thruster failure 2: difference in F output, compared to the original simulation with
all working thruster, for thrusters 7 and 8 in configuration 3 over time in days, analysed
from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 109

List of Figures ix

6.72 Single thruster failure 2: difference in F output, compared to the original simulation with
all working thruster, for thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 109

6.73 Single thruster failure 2: difference in F output, compared to the original simulation with
all working thruster, for thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in
days, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 109

6.74 Single thruster failure 2: half-cone offset angle for configuration 3, 4 and the base case,
compared to the system requirement, analysed from [05:33:20 05-01-2023] until [14:46:40
05-01-2023. 110

6.75 Single thruster failure: β, measured between the negative y-panel normal vector and the
Moon pointing vector and presented in absolute numbers, over time in days, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023]. 111

6.76 De-tumble test 1: ω for each of the spacecraft primary axes over time in days, analysed
from [00:00:00 01-01-2023] until [00:02:00 01-01-2023]. 112

6.77 De-tumble test 1: qe (absolute) for each quaternion error component over time in days,
analysed from [00:00:00 01-01-2023] until [00:02:00 01-01-2023]. 113

6.78 De-tumble: qe (relative) for each quaternion error component over time in days, analysed
from [00:00:00 01-01-2023] until [00:02:00 01-01-2023]. 113

6.79 De-tumble test 1: F output for all thrusters over time in days, analysed from [00:00:00
01-01-2023] until [00:02:00 01-01-2023]. 113

6.80 De-tumble test 1: P required for all thrusters over time in days, analysed from [00:00:00
01-01-2023] until [00:02:00 01-01-2023]. 114

6.81 De-tumble test 1: E required for all thrusters over time in days, analysed from [00:00:00
01-01-2023] until [00:02:00 01-01-2023]. 114

6.82 Connectivity: F output for all thrusters in configuration 1 over time in days, calculated by
the Nucleo MCU, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. . . 119

6.83 Connectivity: duty cycle in % for thruster 1 in configuration 1, as measured from the
output signal to the valve, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-
2023]. 119

6.84 Connectivity: difference between the commanded duty cycle in % and the actual duty
cycle in %, as measured from the output signal to the valve, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023]. 120

6.85 Connectivity: duty cycle in% for all thrusters in configuration 1, asmeasured from the out-
put signals of the PWM channels, analysed from [05:33:20 05-01-2023] until [14:46:40
05-01-2023]. 120

6.86 Results for the integrated values of the Euler method, the RK-4 method and the ana-
lytical solution of the ordinary differential equation δy

δt = −y. Total time span was 5 [s],
integration time step was 0.1 [s]. 122

6.87 CAPSTONE orbit used for this research based on JPL Horizons retrieved ephemeris
data, plotted from [05:33:20 05-01-2023] until [14:46:40 05-01-2023]. 122

6.88 CAPSTONE orbit used for this research based on JPL Horizons retrieved ephemeris
data, plotted from [00:00:00 12-01-2023] until [05:26:40 12-01-2023]. 122

6.89 qw versus qw,ref over time. 123
6.90 q1 versus q1,ref over time. 123
6.91 q2 versus q2,ref over time. 123
6.92 q3 versus q3,ref over time. 123
6.93 Control torque over time for a 600-second simulation with disturbance torques exerted

over the x-, y- and z-axes, at 80, 160 and 240 seconds, respectively. 125
6.94 Angular velocity over time for a 600-second simulation with disturbance torques exerted

over the x-, y- and z-axes, at 80, 160 and 240 seconds, respectively. 125
6.95 Figure 6.93 with adjusted gains for the y-axis. 126

List of Tables

2.1 Specifications of the CW017, CW057, and CW162 CubeWheels. 13
2.2 Existing micro-propulsion systems with their thruster type, thrust level, specific impulse

and sizes. This table serves as an overview of the system performance parameters. [7]
[56] [8] [28] [33] . 18

2.3 Subsystem requirements for the LUMIO mission, adapted from [52]. 33
2.4 LUMIO mission mass budget, adapted from Topputo et al. [52]. 34
2.5 LUMIO mission power budget, adapted from Topputo et al. [52]. 34
2.6 Existing vacuum arc thruster characteristics overview. [1] [29] 39

3.1 Hypothesis table containing hypothesis ID, related research questions and hypothesis. . 45

4.1 Overview of three target bodies for this research, including their JPL Horizons ID and
validity. 47

4.2 Maximum disturbance torque magnitude values for the LUMIO spacecraft located in
extreme-case positions, for the solar radiation pressure and the gravity gradient torque,
along with position coordinates in a Moon-centred reference frame. 49

4.3 Unit torque cross product components for thruster configuration 1. 54
4.4 Unit torque cross product components for thruster configuration 2. 54
4.5 Unit torque cross product components for thruster configuration 3. 54
4.6 Unit torque cross product components for thruster configuration 4. 55
4.7 SSL Pocket Rocket specifications, adapted from (SSP) [1]. 56
4.8 Physical constants used in the simulation . 60
4.9 Summary of robustness tests and simulations with priority levels. 65
4.10 Initial angular velocities in degrees per second for the de-tumbling robustness test of the

attitude control algorithm. 67
4.11 Overview of the analyses performed, along with its time frames, configurations of interest

and expected results. 67

6.1 Results for single thruster failure simulations, approach 1 and 2, for both configuration 3
and 4. The maximum power requirement (Ptot,max) and total energy consumption (Etot)
for the first fly-by are shown, and compared to the base case. 107

6.2 Results for thruster configurations, showing maximum power requirement (Ptot,max) and
total energy consumption (Etot) for the two-week simulation analysis. 111

6.3 Initial angular velocities in degrees per second for the de-tumbling robustness test of the
attitude control algorithm. Values found based on tests for feasibility within the thruster
allocation algorithm. 112

6.4 Results for the de-tumbling manoeuvre tests, indicating active thrusters, settling times,
maximum power requirement, and total energy consumption. Results are shown for
configuration 1. 115

6.5 Results for de-tumbling manoeuvre test, indicating active thrusters, settling times, max-
imum power requirement, and total energy consumption, for the last test as shown in
Table 6.3. Results are shown for configuration 2, 3 and 4. 115

6.6 Results for algorithm-only de-tumbling tests. The table shows the initial angular velocity,
the settling time, and the maximum control torque vector. 116

6.7 Results for the de-tumbling manoeuvre tests, maximum initial angular rate, settling times,
maximum power requirement, and total energy consumption. Results are shown for the
reaction wheel configuration, making use of the four reaction wheels only. 117

6.8 Numerical results for the code porting process in the practical experiment. 118

x

List of Tables xi

6.9 Maximum difference in duty cycle between commanded, theoretical, and output from
PWM, disregarding MIB requirement differences. 120

6.10 Gravity gradient torque and solar radiation pressure torque values for regular CAPSTONE
orbit and extreme situations. 124

7.1 Relative differences of the maximum total power and total energy consumed per config-
uration, compared to configuration 1. 132

7.2 Adjusted mass budget for the four different vacuum arc thruster set-ups. 133

Nomenclature

Abbreviations

ADC Analogue-to-Digital Convert

ADCS Attitude Determination and Control System

API Application Programming Interface

C&DH Command and Data Handling

CAD Computer Aided Design

CoM Centre of Mass

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

DC Duty Cycle

DSM Deep Space Manoeuvres

EKF Extended Kalman Filter

EPS Electrical Power System

ESA European Space Agency

GPIO General-Purpose In/Out

HIL Hardware-In-the-Loop

I2C Inter-Integrated Circuit

IMU Inertial Measurement Unit

JAXA Japan Aerospace Exploration Agency

LQ Literature Question

LRO Lunar Reconnaissance Orbiter

LVLH Local Vertical Local Horizontal

MCU Micro Controller Unit

MIB Minimum Impulse Bit

NA Not Applicable

NASA National Aeronautics and Space Administration

OBC On-Board Computer

ODE Ordinary Differential Equation

PCB Printed Circuit Board

PID Proportional-Integral-Derivative

xii

Nomenclature xiii

PPT Pulsed Plasma Thruster

PWM Pulse Width Modulation

PWPFM Pulse-Width-Pulse-Frequency Modulation

RCS Reaction Control System

RK4 Runge-Kutta 4

RO Research Objective

ROB Robustness

RQ Research Question

RTOS Real-Time Operating System

SE Systems Engineering

SIM Simulation

SLIP Serial Line Internet Protocol

SLS Space Launch System

SPI Serial Peripheral Interface

SQ Sub-Question

SRP Solar Radiation Pressure

TRL Technology Readiness Level

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VAT Vacuum Arc Thruster

WSB Weak Stability Boundary

Symbols

α Optimal solar array angle w.r.t. the Sun [rad]

β Half-cone offset angle [rad]

∆ Change in ...[-]

ṁ Mass flow [kg/s]

ϵ Integrator error

ηion Ion thruster efficiency [-]

ω Angular velocity [rad/s]

ωrw Angular velocity of reaction wheel [rad/s]

ϕ Roll angle [rad]

ψ Yaw angle [rad]

ρd Diffuse reflection coefficient [-]

ρs Specular reflection coefficient [-]

Nomenclature xiv

θ Pitch angle [rad]

θn Euler angles [rad]

an Orthogonal unit vector axes in the LVLH frame [-]

Apanels Spacecraft panel areas, matrix [m2]

Arw Reaction wheel configuration matrix [-]

Athrust Thruster mixing matrix [-]

B Magnetic field [T]

bn Orthogonal unit vector axes in the body frame [-]

C Direction cosine matrix [-]

cp Spacecraft panel centre of pressure locations, matrix [m]

D Diameter of holes in ion thruster charged grids [m]

E Energy [J]

e State error

F Force [N]

fnatural Natural frequency [Hz]

Fthrust Thrust force [N]

h Angular momentum [Nms]

hrw Angular momentum of reaction wheel [Nms]

I Mass moment of inertia matrix [kgm2]

Is Total solar irradiance [W/m2]

Irw Mass moment of inertia matrix of reaction wheel [kgm2]

Isp Specific impulse [s]

J Linear impulse [Ns]

Kd Derivative gain [-]

Ki Integral gain [-]

kn Runge-Kutta 4 intermediate terms

Kp Proportional gain [-]

L Distance between holes in ion thruster charged grids [m]

m Mass [kg]

mO Initial spacecraft mass [kg]

mP Propellant mass [kg]

Mres Spacecraft residual magnetic moment [Am2]

nn Orthogonal unit vector axes in the Newtonian inertial frame [-]

ns Unit vectors pointing normal to panel, matrix [-]

Nomenclature xv

P Power [W]

pa Ambient pressure [Pa]

pe Pressure at nozzle exit [Pa]

qe Error quaternion vector [rad]

qn Quaternion vector [rad]

qref Reference quaternion vector [rad]

r Position vector [m]

rS/M Position of the Sun with respect to the Moon [m]

rSC/M Position of the spacecraft with respect to the Moon [m]

S Unit vectors from Sun to spacecraft panel, matrix [-]

t Time [s]

Tc Control torque [Nm]

Td Disturbance torque [Nm]

TGG Gravity gradient torque [Nm]

Tmag Magnetic disturbance torque [Nm]

TSRP Solar radiation pressure torque [Nm]

u Output control variable

v Velocity [m/s]

veq Equivalent exhaust velocity [m/s]

ve Exhaust velocity [m/s]

Physics constants

µEarth Gravitational parameter of Earth (3.986004418 · 1014 [m3 s−2])

µMoon Gravitational parameter of Moon (4.9048695 · 1012 [m3 s−2])

µSun Gravitational parameter of Sun (1.32712440018 · 1020 [m3 s−2])

π 3.1415926535 [-]

ε0 Permittivity of vacuum (8.8542 · 10−12 [F/m]

c Speed of light (2.99792458 · 108 [m/s])

G Universal Gravitational Constant (6.67428 · 10−11 [m3 kg−1 s−2])

g0 Standard acceleration of gravity (9.80665 [m/s2]

Psolar Power exerted by the Sun (3.842 · 1026 [W])

REarth Earth mean radius (6.3781 · 106 [m])

RMoon Moon mean radius (1.7374 · 106 [m])

RSun Sun mean radius (6.957 · 108 [m])

AU Astronomical unit (1.495978707 · 1011 [m])

Nomenclature xvi

p Standard PocketQube Unit (5× 5× 5 [cm])

U Standard CubeSat Unit (10× 10× 10 [cm])

Units
◦ degree

A Ampère

F Farad

Hz Hertz

J Joule

kg kilogramme

m meter

N Newton

Pa Pascal

rad radian

s second

T Tesla

V Volt

W Watt

% percent

Executive Summary

Over the past twenty years, miniaturisation in spacecraft technology has been a prominent topic of
interest; a smaller object introduces less mass and volume to be taken aboard a launch vehicle com-
pared to its larger counterpart, leading to significant cost benefits. In addition, rapid development is
possible for standardised units. Standard form factors (U, p) have been developed, with the CubeSat
and PocketQube models to be developed according to those sizes. The smaller sizes of overall space-
craft systems has led to equal miniaturisation of the subsystems, of which the propulsion system and
Attitude Determination and Control System (ADCS) are critical for mission success. The research laid
out in this report is looking at both of these aspects, and will attempt to introduce novelty by assessing
the application of electrical thrusters within ADCS, an under-explored topic that should be investigated
in order to take research on electrical micro-propulsion units a step further.

Before any technical research can commence, a literature study is carried out that tries to answer the
following literature questions:

LQ-01 : What are the past, current and future developments in lunar CubeSat missions?
LQ-02 : What spacecraft dynamics relations need to be taken into account for the development of a

CubeSat attitude control algorithm?
LQ-03 : For an electrical-thruster-based attitude control system applied to a CubeSat mission, in which

way can thruster configurations be assessed on their feasibility in the required mission profile?
LQ-04 : What are the critical factors to consider when testing thruster hardware modules to ensure

effective software-hardware integration for algorithm validation?
LQ-05 : What are the working principles of vacuum arc thrusters?
LQ-06 : What are the current vacuum arc thruster applications in CubeSat missions?

From the study, it was evident that a large number of lunar CubeSats have been launched in the past.
On the Artemis 1 mission, for example, NASA launched five 6U spacecraft to the Moon or in a lunar
orbit. Their applications ranged from collecting surface spectroscopy data to landing a small Moon
lander. More recently, NASA’s CAPSTONE mission was launched and operated in a near recti-linear
halo orbit about the Earth-Moon L2 Lagrange point. CAPSTONE’s mission is notable, since it assesses
the stability of this orbit for future use of NASA’s lunar Gateway, a space station that will become the
intermediate station for travel to the Moon. From recent data, the orbit is proven to be stable and the
CAPSTONEmission was an overall success. With respect to the future, the European Space Agency’s
LUMIO mission will be launched in 2027, with its primary goal to detect meteoroid impacts on the far
side of the Moon. The data collected by LUMIO will aid in developing meteoroid impact models that
can predict dangerous situations for human colonisation on the Moon, but also impacts into the Earth’s
atmosphere.

Next, the literature study dives into the Euler’s equation of rotational motion for a rigid body to describe
a spacecraft’s motion during attitude control. Disturbances in lunar orbit include the gravity gradient
torque and solar radiation pressure, and quaternions can be used to express the attitude of an object
without the singularities introduced by use of Euler angles. Different control laws are used within space-
craft applications, but simple proportional-integral-derivative laws pose benefits in terms of simplicity
and accuracy. An integrated algorithm that includes the adequate dynamics and control laws should
send signals to the appropriate actuators. Different types exist, such as magnetorquers, thrusters and
reaction wheels. Thrusters can be sub-divided in the electrical types, with the Hall Effect thruster, ion
thruster and vacuum arc thruster as examples. For non-electrical thrusters, mono-propellant, solid pro-
pellant and resistojet thrusters are examples.

Implementation of electrical thrusters as means for ADCS only can be assessed based on the pointing
accuracy of the spacecraft, which can be measured by the angle between the desired pointing vector

xvii

Executive Summary xviii

(e.g. a camera pointing towards the Earth) and the actual pointing vector. Moreover, angular velocity
limits can be tested against maximum value requirements, as well as the power and energy consump-
tion of the system compared to the overall system usage. Whenever these hardware modules are
tested in real-life, its accuracy of processing commands is of great importance and signal discrepan-
cies should be tested. Upon reviewing electrical thruster modules, the Vacuum Arc Thruster (VAT) was
further looked in to since their response to high-frequency signals allows for modification of the thrust
output. VATs have an anode and cathode, between which an electric arc is created due to sudden dis-
charges. This arc releases electrons from the cathode and are accelerated by the induced electric field,
creating thrust. By altering the frequency or duration of these discharges, thrust output can be varied,
which is convenient for usage in precise control algorithms. Such an application has been studied in
the UWE-4 mission by the University of Würzburg.

From the literature study, a knowledge gap is identified with respect to the ADCS of CubeSat missions:
most of the designs include reaction wheels as main actuators with non-electrical thrusters (mono-
propellant, cold gas, etc.) for angular momentum desaturation. Electrical micro-propulsion units should
be investigated and applied more often to increase their technology readiness level, and the ADCS of
ESA’s LUMIO mission offers an opportunity to completely replace its current design by an electrical-
thruster-only system. The lunar environment introduces an interesting test case. Based on this knowl-
edge gap, the following main research question has been established:

What is the impact of adjusting the ADCS configurations, consisting of electrical thrusters only, on
the LUMIO mission, a 12U lunar CubeSat, on its attitude control performance, robustness and connec-
tivity?

In order to assess the performance aspect of the question, as well as overall feasibility within the LU-
MIO mission, an attitude control algorithm is developed. The basis for this is a PD controller, including
Euler’s equation for rotational dynamics with the gravity gradient and solar radiation pressure torques
as disturbances. Since the orbital parameters for the LUMIOmission are not publicly available, the orbit
attained by the CAPSTONE mission is used, which is similar but poses larger stress on the analysis
due to its close fly-bys. Four different electrical thruster configurations are assessed, each contain-
ing at least three thruster pairs for attitude control. Differences between the configurations are based
on whether each pair controls one primary spacecraft axis, or multiple at the same time. In addition,
redundancy is introduced in configurations 3 and 4, to assess the effect of relaxing the performance
limits in this way. The hardware module that is tested in these configurations, is the Pocket Rocket
VAT developed by Solid State Propulsion from South Africa. Its maximum thrust output is 200 [µN],
operating at power levels between 0.25 - 20 [W] (equal to 10 [mN/kW]).

The thruster configurations will be assessed in the CAPSTONE orbit over a simulation time of two
weeks. During this period, the spacecraft will fly closely past the Moon twice, and attitude corrections
due to this close fly-by will be analysed. In addition to the electrical thruster configurations, reaction
wheels as presented in the original LUMIO mission design will also be tested as a base case, to make
effective power and energy consumption comparisons. Four wheels are used in total, of which three
are aligned perfectly with the spacecraft primary rotation axes, and one is aligned with all of these axes
equally. In order to test extreme cases with respect to the control algorithm, single thruster failure, solar
array deployment and de-tumbling manoeuvres will be introduced for the electrical thruster configura-
tions, to assess whether they are capable of handling the scenarios adequately, and if so, what the
induced accuracy, power and energy costs are. These robustness tests will further assess the thruster
configuration feasibility and behaviour.

Code verification and validation to ascertain the proper functioning of the control algorithm while testing
the reaction wheel and electrical thruster configurations is done based on multiple unit tests, integrator
comparisons, orbit visualisation and algorithm response behaviour. In addition, an experimental set-up
is created that validates the functioning of the code on existing hardware modules and testing their con-
nectivity. An STM32 Nucleo development board is introduced that acts as the spacecraft OBC, along
with a solenoid valve that acts as one of the thrusters within configuration 1. First of all, the calcula-
tion of the control torque, the reference quaternion and the thrust output values per thruster is ported

Executive Summary xix

from the simulation environment (Python) to the embedded environment (C). After proper verification of
these functions on the OBC is completed, connection towards the solenoid valve is made, and required
signals are pulse-width modulated so that the desired output thrust is achieved by adjusting the signal
duty cycle. Finally, when proper functioning of the valve is observed, the number of output signals is
extended to 6, so that signals for each thruster in the configuration are created. Throughout this exper-
iment, numerical comparison between the ported functions is performed, as well as duty cycle values
over time for hardware signalling. These duty cycle values stem directly from the signals sent from the
Nucleo board and can be compared to the desired signals.

The results from the nominal simulation duration proved to be successful with respect to implementation
of reaction wheels as well as for the vacuum arc thruster configurations. An important note to be taken
here is that both their resolutions may not be suitable for the relatively low required control torques
(order of magnitude of 10−7 [Nm]). With respect to the most important results, the following summary
can be given on the attitude control simulation and robustness results:

• Mission pointing requirement: The quaternion components of the spacecraft closely adhered
to the reference quaternion throughout the simulation, with relative quaternion errors remaining
below 0.001% during close fly-bys. The half-cone angle offset consistently met the LUMIO mis-
sion requirement of 0.18°.

• Reaction wheel performance: Reaction wheels successfully controlled the spacecraft without
saturating over the two-week simulation. The maximum angular momentum build-up of 6 · 10−4

[Nms] was well below the wheel capacity of 0.1 [Nms]. However, for extreme scenarios, such
as de-tumbling or long-term operation, additional momentum dumping actuators will likely be
required. The reaction wheel system operated efficiently within the power budget, consuming
only 2.5 · 10−4 [W] during nominal operations.

• Thruster configuration comparison: In nominal scenarios, electrical thruster configurations
successfully adhered to the control requirements, with configuration 4 showing the best perfor-
mance, reducing total energy consumption by 29%andmaximum power by 36% compared to con-
figuration 1. All configurations remained within the 0.18◦ half-cone offset angle requirement set
out by the LUMIO mission over the entire simulation time span. In general, it could be concluded
that adding redundant thrusters enhances the energy consumption of a configuration compared
to a determinate system, and that adding thruster pairs controlling multiple spacecraft primary
axes simultaneously is advantageous compared to thruster pairs only responsible for one axis.

• Mass budget: Thruster-based configurations offer potential mass savings compared to the cur-
rent LUMIO ADCS, with configurations 1 and 2 reducing the spacecraft’s wet mass by 4.06%.
However, these savings are valid only for nominal conditions and do not account for extreme
scenarios, which would require additional hardware or modifications.

• Single thruster failure: Approach 1 (with system awareness of failures) allowed the system to
maintain functionality, although redundancy (e.g., configuration 4) is essential to handle failures
without compromising control. Approach 2 (without system awareness) induced critically high
power and energy demands, rendering the system unfeasible. This highlights the necessity of
real-time thruster health monitoring and communication with the onboard computer.

• Disturbance torque reflection: Disturbance torques from gravity gradient and solar radiation
pressure were insignificant compared to the control torque. However, the disturbance torque from
main engine firings, not included in this research, could significantly affect the ADCS performance
and should be included in future analyses.

• Solar array deployment: Retracting solar arrays significantly reduced ADCS power and energy
requirements, with average reductions of 59% in power and 62% in energy across all configura-
tions. This scenario is highly beneficial for early mission phases or contingency cases.

• De-tumbling: The thruster-based ADCS struggled to control high initial angular velocities due to
instantaneous torque limitations. This performance deficit severely restricts their practical appli-
cation as a replacement for the reaction wheel system and would not be advised by this research.
Enhancing the control algorithm to distribute corrections over longer time spans is recommended
for future studies.

Executive Summary xx

The practical experimentation carried out in this research successfully validated the simulation-based
control algorithm on embedded hardware, demonstrating the feasibility of integrating electrical thruster
modules into real-world systems. Using an STM32 Nucleo development board and a solenoid valve
as a hardware proxy, the developed algorithm reliably generated control signals and modulated them
to achieve the desired thrust output. Minor deviations between simulated and experimental results
were attributed to solver precision and signal processing limitations but were within acceptable error
margins. The same behaviour was observed for the output of six individual signals for the thrusters in
configuration 1.

Based on the aforementioned conclusions, replacing the current LUMIO ADCS with electrical thruster
configurations as the only means of attitude control is only feasible within the nominal mission scenarios.
Within these, thruster configurations that are coupled to multiple axes simultaneously and redundant
systems pose the best options. Still, these nominal scenarios require excessive power and energy
from the system compared to the reaction wheel base case: total energy consumption was in range
1.5 to 2.0 [kJ] for the thruster configurations, whereas they were only a couple of Joules for the reaction
wheels. Unfortunately, realistic de-tumbling manoeuvres are not possible with any of the four configu-
rations which makes them unsuitable for use on board the LUMIO mission. The hardware validation
did, however, prove that the current attitude control algorithm is suitable for real-life application. Future
research should focus on including additional disturbances such as the main engine parasitic torque,
adjusting the VAT hardware modules to be more suitable within the mission limits, and focus on reaction
wheel systems in combination with electrical thrusters, for desaturation.

Ultimately, this work contributes to the broader goal of advancing CubeSat technology, emphasizing the
need for continued research into electrical propulsion systems. By addressing the identified gaps and
refining the approaches presented here, future missions may unlock the full potential of these systems,
enabling precise and efficient attitude control in lunar and deep-space environments.

Abstract

This research investigated the application of electrical thrusters within the Attitude Determination and
Control System (ADCS) of the European Space Agency’s LUMIO mission, a 12U CubeSat set to op-
erate in a quasi-periodic halo orbit around the Earth-Moon L2 point. While CubeSats have become
pivotal tools for lunar exploration, the use of electrical thrusters for ADCS, particularly in the lunar en-
vironment, remains under-explored. This study aimed to evaluate the impact of replacing LUMIO’s
current ADCS design by electrical thruster configurations on attitude control performance, robustness,
and connectivity, bridging a critical gap in current literature.

A simulation framework was developed to assess spacecraft performance over a two-week period, ex-
amining the LUMIO mission reaction wheel set-up, as well as four distinct thruster configurations. Key
metrics included thrust output, angular velocity, and pointing accuracy, represented by the half-cone
offset angle. In addition, power and energy requirements were investigated. Robustness tests eval-
uated system adaptability to single thruster failures, solar array deployment, and high initial angular
velocities. Physical validation was achieved by porting the control algorithm to an embedded STM32
Nucleo board, which was connected to a solenoid valve representing a dummy thruster. This setup
allowed for real-time testing of execution accuracy, signal fidelity, and system integration.

The results demonstrated that the control algorithm consistently maintained high pointing accuracy,
keeping the half-cone offset angle within the mission requirement of 0.18 [◦]. Reaction wheels and
electrical thrusters effectively generated the required control torques, with negligible angular momen-
tum build-up in the nominal simulation. Overdetermined thruster configurations showcased enhanced
energy efficiency, reducing total energy consumption by approximately 29% compared to determinate
setups. However, the study also highlighted challenges, such as the minimum impulse bit constraints
of the Pocket Rocket thrusters, which limited precise low-thrust operations.

Robustness tests revealed that determinate configurations failed to accommodate single thruster fail-
ures, while overdetermined systems adapted effectively, albeit with increased power demands. From
the results, it is recommended for any space mission to be certain that the on-board computer is aware
of any thruster fail occurring. The undeployed solar array configuration significantly reduced energy re-
quirements, supporting its feasibility for early mission phases. The thruster configurations showed not
to be able to realistically counteract de-tumbling manoeuvres, significantly degrading their feasibility in
the actual LUMIOmission. Additionally, the embedded system validation confirmed accurate command
signal generation and execution, bridging the gap between simulation and real-world implementation.

Although the electrical thruster configurations adhered to pointing accuracy requirements in nominal
simulation conditions, they impose significantly higher power and energy demands and are unable
to counteract high de-tumbling manoeuvrers compared to the current reaction wheel configuration in
the LUMIO ADCS design. Addressing main engine parasitic torques and exploring alternative, higher-
performance thrusters may offer a feasible solution for integrating electrical propulsion into lunar Cube-
Sat ADCS. While the reaction wheel and non-electrical thruster combination remains the preferable
option for now, this research demonstrates the potential for electrical thrusters in advancing CubeSat
capabilities. Future studies should build upon this foundation by addressing current limitations, extend-
ing simulation durations, and exploring innovative propulsion technologies to unlock their full potential
in deep-space missions.

xxi

1
Introduction and Problem Description

1.1. Background
Over the past two decades, miniaturisation has been a defining trend in the rapidly evolving field of
satellite technology. CubeSats, small satellites with a standardised form factor of a 10 [cm] cube, were
introduced in 1998 to provide university students with the opportunity to design, test, and operate space-
craft with capabilities similar to those of the Russian Sputnik, using primarily commercial-off-the-shelf
(COTS) components. Since their introduction, CubeSats have gained widespread adoption across uni-
versities worldwide, becoming a standard platform for a variety of space applications. The 2010s saw
a surge in CubeSat launches fuelled by the rise of commercial spacecraft, and national space agencies
are now incorporating CubeSats into numerous missions. To date, over 2,000 CubeSats have been
launched and other form factors, such as the PocketQube with standard form of 5 [cm] cube, have spun
off from its development.1 The relevance of CubeSats has grown far beyond their educational origins,
particularly in the context of lunar exploration. Recent advancements in technology have positioned
CubeSats as pivotal tools for a wide range of lunar applications, including observation, communication
relays, and scientific investigation. National space agencies and private entities alike are leveraging
CubeSats to explore lunar environments, search for resources, and test innovative space technologies
in the demanding conditions of deep space.

Subsystemminiaturisation remains a critical topic in the development of CubeSats, especially for propul-
sion systems. These systems, essential for orbital manoeuvrers, rendezvous operations, and attitude
control, typically employ different types of thruster modules. Non-electrical thrusters, which generate
linear impulse by expelling mass, have been extensively tested and widely used in space missions,
including CubeSat applications. More recently, advances in micro-propulsion have brought electrical
thrusters into the spotlight. While these thrusters have been less frequently deployed in space mis-
sions, their development shows significant promise for future CubeSat applications.

Another crucial subsystem in spacecraft development is the Attitude Determination and Control Sys-
tem (ADCS). Its primary function is to control the spacecraft’s orientation to meet the requirements of
scientific observation, power generation, or communication. The CubeSat industry has seen signifi-
cant advancements in miniaturised ADCS components, including reaction wheels and magnetorquers.
While the use of non-electrical thrusters within ADCS has been extensively studied and applied, the po-
tential of electrical thrusters in this domain remains under-explored. This research focuses on bridging
this gap by investigating the application of electrical thrusters within CubeSat ADCS design.

1.2. Problem Definition
The primary goal of this thesis is the assessment of different electrical thruster configurations, applied
to an existing space mission, for its attitude control performance, robustness and connectivity. The
steps that are taken to carry out this analysis, are listed below.

1URL: https://www.jpl.nasa.gov/topics/cubesats [Accessed 11 March 2024]

1

https://www.jpl.nasa.gov/topics/cubesats

1.3. Thesis Layout 2

• Identify the current trends in lunar CubeSat and electrical propulsion development.
• Construct the main dynamic and kinematic relations necessary for spacecraft attitude control.
• Convert all the necessary relations into a functional attitude control algorithm.
• Include different thruster set-ups within the control algorithm.
• Perform separate robustness tests and assess the system’s behaviour.
• Port the simulation to embedded software and connect with existing hardware modules as a
validation method.

The context of this research will be an existing lunar CubeSat mission, which will be the European
Space Agency’s LUMIO mission, set to launch in 2027 and analyse meteoroid impacts on the far-side
of the Moon. Its entire mission geometry will be analysed and adapted for this research, based on the
most recent information available.

1.3. Thesis Layout
The thesis research will be explained throughout this report in a structured manner. First of all, in
Chapter 2, a literature study will be presented, including recent studies into spacecraft attitude dynam-
ics, lunar CubeSats, embedded systems and electrical thrusters. Next, in Chapter 3, the research
objective will be formulated, as well as the main research question. Based on this main question, sev-
eral sub-questions and hypotheses will be proposed as well. Chapter 4 will elaborate on all the specific
steps taken in this research, explaining the context, the methods used and the resources required.
This chapter will solely focus on the simulation aspects within the research. Then, in Chapter 5, the
experimental validation part of the research will be explained, highlighting the steps taken towards a
practical set-up and indicating what results will be focused on. Chapter 6 shall present all the results
from the simulation as well as from the experiments, and provide brief observations and preliminary
conclusions from these results. After all these have been examined, a verification and validation sec-
tion is included, emphasising the methods used throughout simulation development, practical set-up
and result analysis. Based on the results, Chapter 7 will present an elaborate discussion and further
clarification of the results, after which the research is concluded in Chapter 8. Recommendations for
future work and assessment of the research questions and its hypotheses will also take place in these
two chapters, respectively.

1.4. Novelty
The literature review in Chapter 2 will demonstrate that no CubeSat ADCS currently exists that exten-
sively integrates electrical micro-thrusters for precision attitude control and manoeuvrability, whilst also
comparing different configurations. While non-electrical thrusters have been widely implemented for
attitude control in CubeSats, they pose challenges such as higher mass, propellant limitations, and
reduced flexibility for prolonged missions. Reaction wheels and magnetorquers are well-established
solutions for CubeSat attitude control, but their performance is limited in high-disturbance or reaction
wheel desaturation scenarios. The integration of electrical micro-thrusters within CubeSat ADCS sys-
tems presents a promising but under-explored opportunity to address these limitations. This thesis
aims to demonstrate novelty by:

• Investigating the integration of electrical micro-thrusters into CubeSat ADCS for enhanced preci-
sion and redundancy in attitude control.

• Developing a comprehensive control algorithm that combines traditional ADCS components with
electrical thrusters to meet demanding mission requirements.

• Designing and implementing simulation configurations to assess the performance of different
thruster setups under realistic mission conditions.

• Validating the feasibility of using electrical micro-thrusters for long-duration CubeSat missions by
analysing power, energy, and mass requirements.

• Validating the feasibility of using electrical micro-thrusters for long-duration CubeSat missions by
connecting existing hardware modules to the developed control algorithm.

2
Literature Review

2.1. Introduction
As documented in the Planetary Exploration Horizon 2061 (Lasue et al. [31] and Grande et al. [20]),
an increasing interest in Moon missions has been observed among space agencies all over the globe.
Notable is, of course, NASA’s Artemis missions, that will attempt human exploration of the Moon for
the first time since 1972. Other missions are driven by sample return, cartography, radiation, in-situ
resource utilisation and many more scientific goals. On the long term, for missions executed after 2035,
developments will take place concerning robotic and human infrastructures, so that a permanent Moon
Village may become a reality. Moon-based Earth observatories, astrobiological research centres and
astronomical observatories will be built so that the Moon may serve as the gateway for further deep
space exploration. [31]

As presented in Grande et al. [20], the miniaturisation of spacecraft introduce disruptive technologies
for the next four decades of space exploration. Future small satellites may be able to achieve the same
performance as what today’s satellites do that have approximately 5 to 10 times as much mass. It will
become increasingly more standard to add CubeSat and NanoSat missions to the main mission of a
launch, in order for risky close approximation measurements to be done, land on the surface of plane-
tary bodies and explore the subsurfaces of planetary bodies. These small satellites require low-thrust,
low-power propulsion systems, for which electrical system offer the ideal outcome; not only can they be
mass-produced via standardised CubeSat technology, inducing extreme cost reduction, but they also
offer quality and extensive lifetimes.

This chapter will pose as a basis of knowledge containing important developments within topics such as
lunar exploration, spacecraft miniaturisation, CubeSat technology and many more. For any research,
it is of importance to have the most up-to-date information as possible, so that overlaps and repetitions
are omitted.

For this research, it is crucial to thoroughly understand what spacecraft attitude control is, what its main
principles are and in which way it can be applied to existing or future space missions. Moreover, since
the context of this research will include a lunar CubeSat mission, it is necessary to gain knowledge on
past, current and future missions with a similar profile. Next, in order to understand how actual attitude
determination and control system function, embedded systems need to be examined, outlining their ba-
sic principles and applications in existing spacecraft. Finally, a closer look should be given to vacuum
arc thrusters, since this type of electrical propulsion system will be the main focus of this research.

This chapter will examine the topics explained above, so that no crucial information will be overlooked
before the start of the research. The information in this chapter will be presented in a general form, so
that it can easily be applied to the research at hand.

3

2.2. Research Questions 4

2.2. Research Questions
In order to effectively approach the literature review, a number of research questions specifically for the
review were developed. These are all indicated by the abbreviation ”LQ” (Literature Question) along
with a number to distinguish them for future reference. They form the basis for this chapter and clarify
the structure of information provided. The literature research questions are presented below.

LQ-01 : What are the past, current and future developments in lunar CubeSat missions?
LQ-02 : What spacecraft dynamics relations need to be taken into account for the development of a

CubeSat attitude control algorithm?
LQ-03 : For an electrical-thruster-based attitude control system applied to a CubeSat mission, in which

way can thruster configurations be assessed on their feasibility in the required mission profile?
LQ-04 : What are the critical factors to consider when testing thruster hardware modules to ensure

effective software-hardware integration for algorithm validation?
LQ-05 : What are the working principles of vacuum arc thrusters?
LQ-06 : What are the current vacuum arc thruster applications in CubeSat missions?

In Section 2.7, these research questions will be reviewed again in order to ascertain that they have
been fulfilled.

2.3. Spacecraft Attitude Control
In space, objects experience forces directly without the mitigating effects of an atmosphere or other
medium. In the vacuum of space, even small forces exerted on an object can result in significant
changes to its orientation, position, and velocity over time. Examples of external forces that influence
spacecraft include gravitational forces, solar radiation pressure, atmospheric drag (in low Earth orbit),
interactions with the Earth’s magnetic field, and collisions with micrometeoroids or other particles.

For most spacecraft, maintaining their orientation, or attitude, within specific bounds is essential. For
some missions, such as Earth observation, precise attitude control is critical to ensure that the satellite
observes the correct regions of the Earth and transmits meaningful data to ground stations. For other
missions, the requirement may simply be to prevent the spacecraft from spinning uncontrollably. The
subsystem responsible for maintaining the spacecraft’s attitude within these boundaries is called the At-
titude Determination and Control System (ADCS). This section will discuss the fundamentals of ADCS,
including its dynamics, actuators, controllers, and methods of integration. Since this research revolves
around CubeSat applications, special notice will be given to the main differences with regularly-sized
spacecraft, in terms of miniaturisation and other considerations.

2.3.1. Basics
A standard attitude determination and control system (ADCS) for a spacecraft consists of hardware and
software. Hardware components can be subdivided into sensors, actuators, and an on-board computer.
Software should be installed on the on-board computer (OBC) so that signals are received from the
sensors, and adequate commands are forwarded to the actuators. [54] A summary of regularly used
sensors is given below:

• Sun sensors: Provide data on the spacecraft’s orientation relative to the Sun, crucial for basic
attitude determination and especially useful in LEO.

• Magnetometers: Measure the nearby planet’s magnetic field strength and orientation, assisting
in determining the spacecraft’s attitude relative to the planet’s magnetic field.

• Star Trackers: Use images of star patterns to accurately determine the spacecraft’s orientation in
space. While they offer high accuracy, their size, power consumption, and cost might not always
be suitable for very small spacecraft.

• Inertial Measurement Units (IMUs): Include accelerometers and gyroscopes to measure linear
acceleration and angular velocity, respectively, providing data on the spacecraft’s motion and
rotation.

2.3. Spacecraft Attitude Control 5

• Horizon Sensors: Detect the edge of a planet against the backdrop of space, providing data on
the spacecraft’s orientation relative to the planet. These are particularly useful for Earth-orbiting
spacecraft.

• GPS Sensors: Use signals from navigation satellites to determine the spacecraft’s position and
velocity. This information can also indirectly support attitude determination when combined with
other data.

The actuators that can be used for attitude control within spacecraft are:

• Reaction wheels: Wheels that spin at controlled speeds to adjust the spacecraft’s orientation
through the conservation of angular momentum.

• Momentumwheels: Similar to reaction wheels but primarily used tomaintain a steady orientation
rather than making frequent adjustments by storing angular momentum. They are simpler in
design and suited for long-duration missions requiring stable attitude control.

• Magnetic torquers: Utilise the interaction between an onboard electromagnetic coil and a planet’s
magnetic field to exert control forces that can adjust the spacecraft’s attitude.

• Thrusters: Propulsion units that can provide precise control, using a non-electrical, electrical sys-
tem or hybrid system. Next to independent control, thrusters also provide a solution to momentum
wheel saturation.

• Solar sails: Relatively small sails can be used for minor corrections in attitude. This does not
require any fuel and only power to unfold.

• Control moment gyroscopes: These are gimbal-mounted rotors that can be used to control two
spin axes. They are complex components that are especially suited for large spacecraft.

An on-board computer will make sure all sub-components of the ADCS are connected and commands
are properly sent through. It uses a control strategy, or control law, in order to attain the desired attitude
for the spacecraft. Modern-day OBCs are designed to process and transmit digital signals with high
reliability, ensuring that commands are accurately executed by actuators and data from sensors are
processed efficiently. They operate with robust fault tolerance to handle the harsh environment of
space and typically include radiation-hardened components to prevent failures caused by high-energy
particles. Within spacecraft, the ADCS can be controlled by a central OBC, which is also responsible
for managing the other subsystems such as the thermal control system or the payload. Another option
is implementing an OBC that is specifically dedicated to the ADCS, in addition to the central OBC.
Examples of these two configurations include the following:

• Central OBC for all subsystems: The CubeSat mission ”Dove” by Planet Labs uses a central
OBC for all subsystems, including ADCS. This approach simplifies the system architecture and
reduces hardware costs but may impose limitations on processing capacity.1

• Dedicated OBC for ADCS: The OPS-SAT mission by the European Space Agency, a 3U Cube-
Sat designed to test and validate new tehcniques in satellite control, featured an experimental
platform with a powerful on-board computer, separate from the main bus systems, to manage
ADCS functions among other experimental tasks.2

In the context of CubeSats, OBC development has focused on miniaturisation, power efficiency, and
modularity. A notable example is the ISISpace On-Board Computer developed by Innovative Solutions
In Space (ISISpace).3 This OBC is compact, lightweight, and specifically tailored for small satellite
missions. It includes features like a low-power processor, ample storage, and multiple communication
interfaces, making it ideal for the tight power and volume constraints of CubeSats.

2.3.2. Dynamics
This section outlines the fundamental dynamic equations that govern the attitude behaviour of a rigid
object. The equations will be inspected, after which definitions regarding reference frames are given.
Next, the attitude state expressed in Euler angles and quaternions will be elaborated upon. Finally,
relevant disturbance torques will be explained.

1URL: https://www.eoportal.org/satellite-missions/dove [Accessed 06 January 2025]
2URL: https://www.esa.int/Enabling_Support/Operations/OPS-SAT [Accessed 06 January 2025]
3URL: https://www.isispace.nl/product/on-board-computer/ [Accessed 25 November 2024]

https://www.eoportal.org/satellite-missions/dove
https://www.esa.int/Enabling_Support/Operations/OPS-SAT
https://www.isispace.nl/product/on-board-computer/

2.3. Spacecraft Attitude Control 6

2.3.2.1 Rigid Body Dynamics
In order to understand the problem of spacecraft attitude dynamics, the reader must understand the
underlying equations. From Wertz [54], Euler’s dynamic equation of motion for a rigid-body dynamics
model is formulated as presented in Equation 2.1, in vector form. Throughout this report, bold-faced
symbols will indicate vectors.

T = ḣ+ ω × h (2.1)

T = T c + T d (2.2)

h = Iω (2.3)

First of all, it should be noted that this Euler equation is valid within a rotating reference frame (e.g.
spacecraft-centred frame, axes fixed to the body) with respect to an inertial reference frame, such as
the Earth-centred inertial (ECI) frame. Secondly, from the equation, the vector T is presented, which
consists of two individual torque vectors: the control torque vector (Tc) and the disturbance torque
vector (Td, Equation 2.2). The control torque vector is the imposed torque or moment by the attitude
control system (e.g. momentum wheels, thrusters, magnetorquers). The disturbance torque is caused
by external factors and used as an input to the system. Next, ḣ represents the time derivative of the
angular momentum, in units of [kg ·m2 · rad · s−2] or [Nm]. It can be determined by Equation 2.3, and
taking the time derivative of the angular velocity ω̇ instead. The angular velocity vector ω is expressed
in [rad · s−1] and represents the angular velocity with which the rotating coordinate frame is rotating
relative to an inertial frame. Finally, as presented in Equation 2.3, the angular momentum vector h is
defined, in which I represents the spacecraft rotational inertia matrix around the centre of mass (CoM)
with units [kg ·m2].

In order to further understand the Euler dynamic equation of motion, it should be noted that for a
spacecraft, the change in angular momentum of the body is equal to the torques applied to the body:
T = ḣ. The cross product of the angular velocity and the angular momentum in Equation 2.1 is a term
that represents the gyroscopic torque, which is the internal torque that arises when a rotating body
(which already has angular momentum) is subjected to a change in the direction of its angular velocity
vector. This is a result of the conservation of angular momentum and it does not change the magnitude
of the angular momentum, only its direction. Substituting Equation 2.3 in Equation 2.1, the equation
can be written as presented in Equation 2.4. This form of the equation can easily be used for satellite
attitude integration over time, for which different techniques will be elaborated upon in subsection 2.3.5.

ω̇ = I−1 (T c + T d − ω × Iω) (2.4)

2.3.2.2 Reference Frames
As mentioned previously, the equations above are defined in a spacecraft-centred frame, of which the
axes are fixed to the body of the spacecraft. For this reason, this reference frame shall be called the
body frame, with B as its indicator. The origin of this frame is at the centre of mass of the rigid body,
and the three axes should complete a right-hand system as displayed in Figure 2.1. Here, the axis are
denoted by b1 to b3, which are unit vectors in the directions indicated. In attitude control problems, the
orientation of these unit vectors with respect to an additional, inertial frame, is the issue to be solved.
A local vertical local horizontal (LVLH) reference frame A, with its axes a1 to a3 can now be defined
relative to the body frame. This is depicted in Figure 2.2. The axes are not fixed to the body of the
satellite, but rather fixed to the orbit around the Earth in this case. a1 is pointed in the orbit direction,
a2 is pointed perpendicular to the orbital plane and a3 is directed towards the centre of the Earth. In
addition to the LVLH frame, a Newtonian inertial frame is presented, depicted by n1 to n3, which can
be attached to the centres of any orbital element or desired location. While the inertial frame provides
a stable reference for long-term planning, the LVLH frame is particularly useful for describing satellite
motion relative to its orbit. For instance, the LVLH frame simplifies tasks such as Earth observation,
where instruments must point toward specific surface regions. The body frame, on the other hand, is
critical for on-board computations, such as actuator commands or gyroscopic measurements.

2.3. Spacecraft Attitude Control 7

Figure 2.1: Body-centred reference frame
depicted on an arbitrary rigid body, with the origin
in the body’s centre of mass and three orthogonal

axes.

Figure 2.2: Newtonian inertial reference frame N and local
horizontal local vertical (LVLH) reference frames, depicted with

orthogonal axes and origins in the centre of mass of the
celestial body and the spacecraft for both frames, respectively.

For all these references frames, the unit vectors that represent the axes are orthogonal and can be
expressed in terms of each other. This is shown in Equation 2.5 to Equation 2.7. Each of the terms Cij

in these equations are called the direction cosines and represent the cosine of the angle between the
two axes bi and aj , which can be seen in Equation 2.8. When writing Equation 2.5 to Equation 2.7 in
matrix form, the matrix CB/A represents the direction cosine matrix or coordinate transformation matrix
from A to B. These matrices can be used to transform the components of a vector from any coordinate
frame to another, and are therefore practical to use situations where different coordinate systems are
of interest. The matrix representation is shown in Equation 2.9. [25]

b1 = C11a1 + C12a2 + C13a3 (2.5)

b2 = C21a1 + C22a2 + C23a3 (2.6)

b3 = C31a1 + C32a2 + C33a3 (2.7)

Cij = bi · aj (2.8)

b1b2
b3

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

a1

a2

a3

 = CB/A

a1

a2

a3

 (2.9)

With this in mind, the definition of the Euler angles can be established. These are the angles between
a reference frame attached to a rigid body, with respect to a pre-defined inertial reference frame. The
Euler angles can be used to map an inertial reference frame (the Newtonian inertial frame in Figure 2.2)
to a body-fixed frame (the body frame in Figure 2.1). Three distinct rotations over the axes of the inertial
reference frame need to be carried out to achieve this, and this sequence is called the 3-2-1 Euler
rotation. [4] In order to properly understand how this relates to the Euler angles, it will be explained
step by step. Equation 2.10 shows the direction cosine matrix for rotation over axis n1, by angle θ1.
Therefore, applying this direction cosine matrix C1 in a similar fashion as CB/A in Equation 2.9 to the
inertial frame n, results in a coordinate frame c. This is shown in Equation 2.11. The new coordinate
frame c has its c2 and c3 axes oriented in a different direction compared to the previous n2 and n3

axes. Note that the c1 and n1 axes are in fact equal.

2.3. Spacecraft Attitude Control 8

C1(θ1) =

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

 (2.10)

c1c2
c3

 = C1(θ1)

n1

n2

n3

 =

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

n1

n2

n3

 (2.11)

Additional direction cosine matrices exist for the remaining two axes, which are displayed in Equa-
tion 2.12 for the n2 axis and displayed in Equation 2.13 for the n3 axis. Different rotations of axes can
also be combined, in order to obtain a desired, changed reference frame for pre-determined angles. In
the 3-2-1 Euler rotation sequence, this combination of rotations is applied to transform from any given
inertial frame to the desired body frame. This combination of rotations is displayed in Equation 2.14,
where it can be seen that the first rotation of the initial frame is placed closest to the frame vector. The
reason why this sequence exactly represents such a rotation, is because the rotation angles (Euler
angles) are defined as the angles between inertial and body frames.

C2(θ2) =

cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

 (2.12)

C3(θ3) =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

 (2.13)

b1b2
b3

 = C1(θ1)C2(θ2)C3(θ3)

n1

n2

n3

 (2.14)

The sequence is non-commutative, which means it does not yield the same result when the direction
cosine matrices are applied in a reverse order. This sequence is often also referred to as the yaw-pitch-
roll rotation, in which:

• The first rotation (yaw) rotates the inertial frame around the z-axis, reorienting the x- and y-axes
in the horizontal plane.

• The second rotation (pitch) tilts the frame around the new y′-axis, bringing the z-axis into align-
ment with the body frame’s intended orientation.

• The third rotation (roll) spins the body about the new x′′-axis, fully aligning the body frame with
the desired orientation.

The yaw angle is often displayed by the Greek ”psi” (ψ), the pitch angle by the Greek ”theta” (θ) and the
roll angle by the Greek ”phi” (ϕ). Euler angles are commonly used in spacecraft simulations to describe
and predict orientation changes. For instance, the yaw angle (ψ) might indicate how a satellite orients
its solar arrays toward the Sun, while pitch (θ) and roll (ϕ) may describe manoeuvrers required for Earth
observation or docking with another spacecraft.

2.3.2.3 Quaternions
While Euler angles provide an intuitive representation of orientation, they are prone to singularities,
such as gimbal lock, where two axes align, leading to a loss of a degree of freedom. To overcome
this, quaternions are often used in spacecraft attitude control due to their ability to represent rotations
without singularities and with lower computational cost for real-time applications. Quaternions are a
mathematical notation that extends complex numbers, consisting of one real part and three imaginary
parts, often written as q = qw + q1i + q2j + q3k, where qw is the real or scalar part. q1, q2 and q3
represent the imaginary or vector part. They provide a robust way to represent spatial rotations with-
out singularities associated with Euler angles. In satellite attitude determination, quaternions are used
to accurately and efficiently describe the satellite’s orientation in three-dimensional space. They are
particularly useful because they can represent large rotations with small, continuous changes in their

2.3. Spacecraft Attitude Control 9

values, and the quaternion multiplication operation directly corresponds to the composition of rotations.

This section will provide an extensive overview of quaternion mathematical operations, so that no mis-
takes can be made with respect to their definitions throughout this report. The operations are key for
the development of an attitude control algorithm, since applying quaternions to this end will provide the
most robust solution. The mathematical expressions will be used as seen in Fresk and Nikolakopoulos
[17]. First of all, as seen previously, quaternions can be noted as Equation 2.15 or Equation 2.16. The
distinction between the scalar and vector parts should be evident.

q = qw + q1i+ q2j + q3k (2.15)

q =
[
qw q1 q2 q3

]T (2.16)

Since quaternions also represent rotations between reference frames, these rotations can also be
combined as was seen in the Euler 3-2-1 sequence. In order to achieve this combination of rotations,
the Kronecker product can be applied (⊗) between quaternions p and q. Similar to combined Eu-
ler rotations, quaternion rotations are also non-commutative. The Kronecker product can be seen in
Equation 2.17.

p⊗ q = Q(p)q =


pw −p1 −p2 −p3
p1 pw −p3 p2
p2 p3 pw −p1
p3 −p2 p1 pw



qw
q1
q2
q3

 =


pwqw − p1q1 − p2q2 − p3q3
pwq1 + p1qw + p2q3 − p3q2
pwq2 − p1q3 + p2qw + p3q1
pwq3 + p1q2 − p2q1 + p3qw

 (2.17)

The norm of a quaternion is always equal to 1 exactly. This is displayed in Equation 2.18. In addition,
the complex conjugate of a quaternion is equal to the conjugate of regular complex numbers, as seen
in Equation 2.19.

Norm(q) = ∥q∥ =
√
q2w + q21 + q22 + q23 = 1 (2.18)

Conj(q) = q∗ =
[
qw −q1 −q2 −q3

]T (2.19)

The time derivative of a quaternion vector can be computed by using the angular velocity vector ω or[
ω1 ω2 ω3

]T . This time derivative can be used for numerical propagation / integration of the space-
craft attitude and is therefore a crucial parameter in attitude determination simulations. Equation 2.20
displays the equation, where Q(q) is equal to the notation used in Equation 2.17.

q̇ω(q,ω) =
1

2
q ⊗

[
0
ω

]
=

1

2
Q(q)

[
0
ω

]
(2.20)

Next, the Euler 3-2-1 rotation can be expressed in quaternion form, to convert an inertial Newtonian
frame n to a body-fixed frame b. This is represented in Equation 2.21. The full derivation can be
examined in Fresk and Nikolakopoulos [17].

b1b2
b3

 = C1(q)C2(q)C3(q)

n1

n2

n3

 =

1− 2(q22 + q23) 2(q1q2 + q3qw) 2(q1q3 − q2qw)
2(q1q2 − q3qw) 1− 2(q21 + q23) 2(q2q3 + q1qw)
2(q1q3 + q2qw) 2(q2q3 − q1qw) 1− 2(q21 + q22)

n1

n2

n3

 (2.21)

A given direction cosine matrix can directly be converted to the desired quaternion attitude. Each
instance of the direction cosine matrix is denoted by C11, C12, C13, etc. Note that the conversion is
based on the value of the trace of the matrix, defined as C11+C22+C33. The conversion formulae are
displayed in Equation 2.22, Equation 2.23, Equation 2.24 and Equation 2.25.

2.3. Spacecraft Attitude Control 10

If trace = C11 + C22 + C33 > 0 :

qw =
1

2

√
1 + C11 + C22 + C33 (2.22)

q1 =
C32 − C23

4qw
, q2 =

C13 − C31

4qw
, q3 =

C21 − C12

4qw

If C11 > C22 and C11 > C33 :

q1 =
1

2

√
1 + C11 − C22 − C33 (2.23)

qw =
C32 − C23

4q1
, q2 =

C12 + C21

4q1
, q3 =

C13 + C31

4q1

If C22 > C33 :

q2 =
1

2

√
1 + C22 − C11 − C33 (2.24)

qw =
C13 − C31

4q2
, q1 =

C12 + C21

4q2
, q3 =

C23 + C32

4q2

Otherwise (if C33 is largest):

q3 =
1

2

√
1 + C33 − C11 − C22 (2.25)

qw =
C21 − C12

4q3
, q1 =

C13 + C31

4q3
, q2 =

C23 + C32

4q3

Euler angles can easily be converted to the associated quaternion values using Equation 2.26, Equa-
tion 2.27, Equation 2.28 and Equation 2.29. In this equation, strict adherence need to be followed
regarding the definition of θ1, θ2 and θ3, which should remain equal to the angles described previously.

qw = cos
(
θ1
2

)
cos

(
θ2
2

)
cos

(
θ3
2

)
+ sin

(
θ1
2

)
sin

(
θ2
2

)
sin

(
θ3
2

)
(2.26)

q1 = sin
(
θ1
2

)
cos

(
θ2
2

)
cos

(
θ3
2

)
− cos

(
θ1
2

)
sin

(
θ2
2

)
sin

(
θ3
2

)
(2.27)

q2 = cos
(
θ1
2

)
sin

(
θ2
2

)
cos

(
θ3
2

)
+ sin

(
θ1
2

)
cos

(
θ2
2

)
sin

(
θ3
2

)
(2.28)

q3 = cos
(
θ1
2

)
cos

(
θ2
2

)
sin

(
θ3
2

)
− sin

(
θ1
2

)
sin

(
θ2
2

)
cos

(
θ3
2

)
(2.29)

The conversion can also be carried out in a reverse fashion, displayed in Equation 2.30 in matrix form.ϕθ
ψ

 =

atan2 (2(qwq1 + q2q3), q
2
w − q21 − q22 + q23

)
arcsin (2(qwq2 − q3q1))

atan2
(
2(qwq3 + q1q2), q

2
w + q21 − q22 − q23

)
 (2.30)

Finally, Equation 2.31 shows the calculation of the error quaternion qe, which is the offset between a
reference quaternion qref and the actual attitude quaternion q.

qe = qref ⊗ q∗ (2.31)

2.3.2.4 Disturbances
For any spacecraft, the distribution of its mass in combination with the presence of a gravitational field
will induce disturbance torques around its centre of mass. These torques are called gravity gradient
torques and should be incorporated in the Td term along with additional disturbance torques. From
Gottlieb [19], an equation is obtained for the gravity gradient torque at any point in time around any
celestial body. This equation is presented in Equation 2.32. rSC represents the position vector from the
centre of mass of the satellite to the centre of mass of the central celestial body. µ is the gravitational

2.3. Spacecraft Attitude Control 11

parameter in [m3s−2] of the celestial body, and I is the inertia matrix of the satellite. Note that this
equation is valid in the body reference frame and any vectors expressed in an inertial frame (for example,
the position of a satellite with respect to the centre of the Earth) should be converted by use of the Euler
or quaternion 3-2-1 sequence.

TGG = 3 · µ

∥rSC∥3
· (r̂SC × (I · r̂SC)) (2.32)

r̂SC =
rSC

∥rSC∥
(2.33)

In addition to the gravity gradient torque, the solar radiation pressure is a disturbance input that should
be considered in spacecraft control algorithm development. The solar radiation pressure is caused by
photons, particles that constitute the propagation of light, that physically interact with surfaces they are
travelling in to. These interactions or impacts cause a relatively small force to be exerted, which can
cause notable effect in space. A relation is obtained from Wertz [54], which is also applied in Romero-
Calvo, Biggs, and Topputo [43], that is presented in Equation 2.34 to Equation 2.36. Equation 2.34
shows the inverse power law for computing the solar radiation intensity at a given distance r from the
Sun. Psolar is the solar constant, equal to approximately 3.842 · 1026 [W]. The solar intensity in an Earth
orbit is approximately 1366.1 [W/m2].

For a spacecraft with a total number of k surface plates, Equation 2.35 shows the force exerted by
the solar radiation pressure on a flat surface, for the ith plate. Is is the solar intensity, c is the speed
of light, Ai is the surface area of the ith plate, S is a 3 × k matrix with unit vectors pointing from the
Sun to the surface in its columns. ns is a 3 × k matrix with unit vectors normal to the surface of each
plate and directed towards the interior of the spacecraft. Finally, ρs and ρd are the specularly and
diffusely reflected radiation. Their values are determined from experiments. All vectors are expressed
in the body frame, similar to the gravity gradient torque definition. With the calculated force vectors,
a disturbance torque can be calculated with Equation 2.36, which is a simplified model neglecting
interactions between the surfaces such as shadows and other reflections. In here, cpi denotes the
position vectors between the centre of mass of the spacecraft and the centre of pressure of the surfaces,
which are assumed to be equal to their geometrical centres for this research. The dot product between
Si and nsi checks whether this specific panel is in eclipse, and it will set the solar radiation pressure
torque to zero if it is.

Is =
Psolar
4πr2

(2.34)

F i =
Is
c
Ai (Si · nsi)

{
(1− ρs)Si +

[
2ρs (S · nsi) +

2

3
ρd

]
nsi

}
(2.35)

T SRP =


n∑

i=1

cpi × F i if Si · nsi > 0,

0 otherwise.
(2.36)

In addition to the aforementioned disturbance torques, the magnetic disturbance torque is also a sig-
nificant perturbation to be dealt with in attitude control systems. It is caused by the interaction of a
spacecraft’s residual magnetic moments with the magnetic field of a celestial body. Residual magnetic
moments are caused by onboard electronics, materials or magnetised components. A simple expres-
sion for the calculation of the magnetic disturbance torque is presented in Equation 2.37, in whichM res

denotes the spacecraft’s residual magnetic moment and B denotes the external magnetic field at the
spacecraft’s location. [54]

Tmag = M res ×B (2.37)

Finally, disturbance torques that could influence the attitude control strategy of a spacecraft are listed
below.

• Aerodynamic drag: For spacecraft in LEO, the thin atmosphere that is still present at their alti-
tudes can cause a significant disturbance torque and decelerating force due to drag.

2.3. Spacecraft Attitude Control 12

• Thruster misalignment: When thrusters are not aligned in their desired directions, disturbance
torques are created upon firing.

• Third-body gravity: Each celestial body has a gravitational influence on a spacecraft, regardless
of its position. In most simplified simulations, only the close celestial bodies are considered.

• Thermal radiation: The uneven thermal radiation emitted by spacecraft can cause an additional,
relatively small disturbance torque.

• Micro-meteoroid impact: High-velocity impact of micro-meteoroids can cause disturbance torques
(and significant damage) at the spacecraft’s surface.

2.3.3. Actuators
The on-board computer or specific ADCS computer of a spacecraft sends signals to actuators in order
for the spacecraft attitude to correct itself adequately. Actuators can be sub-divided in different types,
as was explained in subsection 2.3.1, and two distinct types that are relevant to this research will be
examined: reaction wheels and thrusters. In the context of this research, magnetic torquers will not
be possible for usage, since a magnetic field is required and the Moon is not in possession of one.
Additionally, control moment gyroscopes have similar functionality to reaction wheels, so no additional
chapter will be dedicated to this. Solar sails will not be considered for this research either.

2.3.3.1 Reaction Wheels
Reaction wheels are a type of flywheel commonly used in spacecraft for attitude control and maintaining
stability. These electrically powered devices can be commanded to spin when external disturbances
affect the spacecraft’s angular motion. The fundamental principle behind reaction wheel operation is
the conservation of angular momentum. When a spacecraft is undisturbed in space and a reaction
wheel is spun in a clockwise direction (with its rotational axis aligned with the spacecraft’s x-axis), the
spacecraft will rotate in the opposite direction (counter-clockwise) around its x-axis to conserve angular
momentum. This counteracting motion ensures precise attitude adjustments and stability without the
need for propellant.

There is an important difference between a reaction wheel and a momentum wheel, and this paragraph
serves as clarification. As described in Wertz [54], a momentum wheel differs from a reaction wheel
in its operational design. A momentum wheel typically operates with a constant spin rate (known as a
bias), providing a gyroscopic stability effect to the spacecraft. In contrast, a reaction wheel operates
with a variable spin rate, allowing it to produce torque for attitude adjustments, and is generally not
designed to maintain a constant bias.

When an external disturbance force alters the angular motion of a spacecraft, the reverse principle can
be applied. The increase in angular momentum the spacecraft experiences can be stored in the reac-
tion wheel by letting it rotate in the opposite direction. In this way, the spacecraft change in attitude
is compensated. Reaction wheels have a high pointing accuracy but can only make the spacecraft
rotate about its centre of mass. Also, translational motion is not possible by use of reaction wheels.
Full three-axis attitude control is only possible when at least three reaction wheels are placed on the
spacecraft. Stability around each of the axes is created due to the gyroscopic effect, which counter-acts
any inclination of the axis that is rotating. Advantages of the usage of reaction wheels in spacecraft are
that they do not require fuel and therefore an extra fuel tank, they are relatively power efficient and they
store angular momentum for stability. Disadvantages are the fact that they are mechanisms with vi-
brational limits and individual components. Moreover, they can become saturated when the maximum
achievable angular momentum has been stored in them. Desaturation strategies using different sets
of actuators are possible and should be considered in the design of the ADCS.

In order to gain a better understanding of reaction wheel performances, an example from industry will
be shown. The CubeWheel, developed by the South African company CubeSpace, and described in
Leibbrandt and Miller [32], is a balanced reaction or momentum wheel (bias excluded or included) and
can, at the time of writing, be acquired in three different sizes. It is specifically designed for application in
CubeSats up to 12U, and can be applied in a three-wheel set-up or a four-wheel pyramid set-up, with a
redundant fourth wheel. From small to large, the CubeWheel reference IDs are CW0017, CW0057 and
CW0162. In Figure 2.3, the CubeWheel (seond generation) is shown in four different sizes. Figure 2.4

2.3. Spacecraft Attitude Control 13

shows the pyramid set-up of four CubeWheels to be directly applied in spacecraft as ADCS subsystem.

Figure 2.3: CubeWheel hardware in four different
sizes. The three wheels on the right side are the
CW0162, CW0057 and the CW0017, seen from

right to left. [32]
Figure 2.4: CubeWheel pyramid configuration, consisting of a
four-wheel set-up that can directly be acquired to act as part of

the ADCS subsystem. [32]

Table 2.1 provides an overview of the characteristics of the aforementioned CubeWheel sizes. A num-
ber of characteristics stand out. First of all, it can be seen that for each of the reaction wheels, the
supply voltage for the maximum speed is lower than that of the nominal motor supply. The reason
for this lies in the back electromotive force, which is an induced voltage by the spinning motor that
opposes and therefore reduces the input voltage necessary for operation. The momentum at 6000
revolutions per minute defines the angular momentum that is stored in the wheels at this rate. More-
over, the saturation torque indicates the maximum torque possible of the wheels, within its thermal,
mechanical and electronic limits. Dynamic imbalance occurs when the mass or inertia axis does not
coincide with the rotational axis. Since a mechanical flywheel is never perfect in shape, an imbalance
will always be present. Imbalance has effects for the vibrational analysis of the structure. Finally, the
mass, dimensions and power characteristics are there to obtain an idea of the value magnitudes for
CubeSat applications.

Performance CW0017 CW0057 CW0162
Nominal Motor Supply Voltage [V] 8 12 12
Supply Voltage for Max Speed [V] 6.4 11 11
Max Speed [RPM] 10000 10000 10000
Momentum @ 6000 RPM [mNms] 1.77 5.7 16.2
Saturation Torque [mNm] 0.23 2 7
Dynamic Imbalance [g.cm2] <0.005 <0.014 <0.014
Physical
Mass [g] 60 115 144
Dimensions [WxHxL] [mm] 28x26x28 35x24x35 46x24x46
Power
Average Power @ 2000 RPM [mW] 180 336 480
Peak Power [Max Torque] [W] 0.85 2.7 7.2

Table 2.1: Specifications of the CW017, CW057, and CW162 CubeWheels.

2.3. Spacecraft Attitude Control 14

The addition of reaction wheels to the ADCS of a spacecraft has consequences for the dynamic equa-
tions that govern its attitude. Euler’s dynamic equation of rotational motion should be adjusted so that
an additional angular momentum term due to the reaction wheel is also considered. This is described
in Ismail and Varatharajoo [23] and can be written similar to Equation 2.1 and Equation 2.4, which is dis-
played in Equation 2.38 and Equation 2.39 below. It should be noted that the total angular momentum
is now equal to the angular momentum of the spacecraft (h) and the reaction wheels (hrw) combined.
The control torque T c is the torque necessary on the spacecraft body to counter-act the disturbance
torques; adhering to Newton’s third law of action-reaction systems, this means that the exerted torque
by the reaction wheels is equal in magnitude but opposite in direction to the control torque applied to
the spacecraft body. Ergo: T rw = −T c.

T = ḣ+ ω × (h+ hrw) (2.38)

ω̇ = I−1 (T c + T d − ω × (Iω + Irwωrw)) (2.39)

Now, T rw itself does not say much about the torque exerted by only one reaction wheel; this will
completely depend on the number of wheels present, and their respective configurations. A link must
therefore be made between the required torque and the individual torque that was actually exerted by
each wheel. The necessary parameter for this link is called the configuration matrix, and is denoted by
Arw as seen in Equation 2.40. The instances ai,rw are unit vectors in the direction of the central spin
axis of the ith reaction wheel, relative to the body axes of the satellite. As an example, Equation 2.41
shows the configurationmatrix for the usage of three reaction wheels, with their spin axis exactly aligned
with the primary or body axes of the satellite.

Arw =
[
a1,rw a2,rw a3,rw ... ak,rw

]
(2.40)

Arw =


1 0 0

0 1 0

0 0 1

 (2.41)

If another reaction wheel is added, for redundancy reasons, and it is tilted from the other three axis with
an equal angle, the configuration matrix becomes as shown in Equation 2.42.

Arw =


1 0 0 1√

3

0 1 0 1√
3

0 0 1 1√
3

 (2.42)

The configuration matrix is linking the required overall spacecraft torque to the required torque per
reaction wheel as shown in Equation 2.43, taking the four-wheel configuration from Equation 2.42 as
example.


Trw,x

Trw,y

Trw,z

 = Arw


T1

T2

T3

T4

 =


1 0 0 1√

3

0 1 0 1√
3

0 0 1 1√
3



T1

T2

T3

T4

 (2.43)

In most cases, the required combined control torque by the wheels Trw is known, and the control torque
per wheel is requested. Since Arw is not a square matrix, it cannot be inverted and the right pseudo-
inverse transformation as shown in Equation 2.44 should be taken instead. The calculation of individual
reaction wheel torques is then performed as shown in Equation 2.45. [48]

A+
rw = AT

rw

(
ArwA

T
rw

)−1 (2.44)

2.3. Spacecraft Attitude Control 15


T1

T2

T3

T4

 = A+
rw


Trw,x

Trw,y

Trw,z

 (2.45)

In order to conclude the theory on reaction wheels and their application, the reader should understand
that from an integrated control algorithm, based on Euler’s dynamic equations of rotational motion, a
required control torque is computed for the proper control of the spacecraft’s attitude. From this required
control torque, using the configuration matrix applicable to this specific spacecraft, the required torques
from each of the reaction wheels is determined. With these values, reaction wheels can be chosen that
fit within the torque limits, along with their mass and volume constraints. Consequently, a power budget
can be constructed that provides an overview of the total power needed for the entire spacecraft. In
this way, reaction wheel sizing becomes an integral part of the overall spacecraft design.

2.3.3.2 Thrusters
The second type of actuators that is relevant for a lunar spacecraft are thrusters. As mentioned previ-
ously, when using reaction wheels, at least one other type of actuators is necessary for reaction wheel
de-saturation. In general, thrusters can be sub-divided in electrical, non-electrical and hybrid variations.
Non-electrical thrusters are pure reaction systems that expel an amount of a substance, called the pro-
pellant, in the opposite direction of the flight path. Newton’s third law, which states that any action
should yield an opposite but equal in magnitude reaction, lies on the basis of this. Performance param-
eters that should always be considered in the design of thrusters are the thrust exerted, the specific
impulse and the obtained change in velocity, ∆v. [10]

The thrust produced by a rocket or a non-electrical thruster is calculated using Equation 2.46. The
thrust is expressed in Newtons and FT indicates the thrust as a scalar. ṁ is the mass flow rate of
the propellant, expressed in [kg/s]. ve is the exhaust velocity of the propellant in [m/s], which is the
velocity that the propellant leaves the nozzle of the thruster with, relative to the rest of the spacecraft.
pe is the pressure of the propellant at the exit of the nozzle, and pa is the pressure of the surroundings.
In space, where there is vacuum, pa will be equal to 0. Pressures are expressed in [Pa] or, equivalently,
[N/m2]. Finally, Ae is the area over which the propellant leaves the nozzle, or the thruster exit area in
[m2]. As can be seen from the equation, the total thrust consists of two separate parts, the momentum
term and the pressure term. The entire equation can be written in a more concise manner, combining
the momentum and pressure effects in one equivalent jet velocity term, veq.

FT = ṁ · ve + (pe − pa) ·Ae = ṁ · veq (2.46)

The specific impulse of a thruster, defined as the ratio of the total impulse generated by a thruster over
the propellant weight (not mass) for this impulse, is generally computed using Equation 2.47. In case
the effective exhaust velocity over time is constant, and substituting the right-hand side of Equation 2.46
in the equation, results in Equation 2.48. In here, g0 is the gravitational acceleration of the Earth at sea
level, which is equal to approximately 9.80665 [m/s2]. The specific impulse gives an indication of the
efficiency with which propellant is turned into velocity or into force. A higher specific impulse implies
that less mass is needed for the same thrust level.

FT = ṁ · Isp · g0 (2.47)

Isp =
veq
g0

(2.48)

Finally, using the Tsiolkovsky equation as shown in Equation 2.49, the increase in velocity (∆v) due
to the burning of a specific amount of propellant mass can be calculated. This equation is also called
the rocket equation and depends on the initial mass of the entire spacecraftm0 and the mass that was
burned during firing, mP . This equation is only valid under a number of assumptions: there are no
additional forces influencing the spacecraft, the thrust direction is opposite the direction of flight and ve
remains equal in magnitude over time.

2.3. Spacecraft Attitude Control 16

∆v = veq · ln
(

m0

m0 −mP

)
(2.49)

In order to obtain an overview of the available options within non-electrical thrusters, the list below
shows the most common types. Note that the mono-propellant, bi-propellant and solid propellant sys-
tems belong to the category of chemical thrusters.

• Cold gas thruster: In this type of thruster, the propellant is stored in a dedicated tank maintained
at a specific pressure. A valve controls the release of the propellant, generating thrust when
opened. No additional heating or pressurisation is required for operation. As the propellant is
consumed, the pressure in the tank gradually decreases, leading to a corresponding reduction in
thrust over time.

• Mono-propellant thruster: Propellant is stored in a propellant tank, which is pressurised with the
use of an additional pressurant. Upon opening the thrust valve, propellant will flow to the decom-
position chamber of the nozzle, where decomposition takes place and extra heat is generated. In
most cases, pre-heating occurs as well.

• Bi-propellant thruster: Bi-propellant systems are similar to mono-propellant system, although
two propellant types are now present: a fuel and an oxidiser. Both propellants chemically re-
act with each other in the combustion chamber, after having been released from their individual
storage tanks by activation of the valves. High thrust levels are often observed compared to
mono-propellant or cold gas systems.

• Solid propellant thruster: The working principles for this type is identical to that of bi-propellant
system, although the propellants are now stored in a solid phase (compared to the liquid or
gaseous state of the bi-propellant system). One major disadvantage of these systems is that,
after they have been ignited, they cannot be stopped until the propellant is depleted. Thrust
levels can be altered by changing the geometric shape of the grains.

Electrical propulsion is based on the acceleration of particles or propellants by means of electrostatic
or electromagnetic forces. Multiple different types of electrical thrusters exist and they all have different
working principles, which is why general equations for parameters such as the specific impulse and
thrust are not possible, but should rather be examined based on the type of thruster selected for a
mission. An overview of current and future electrical propulsion systems for satellites has been given
in Esho et al. [15]. Common types of electrical thrusters are:

• Ion thruster: Due to ionisation of the propellant, charged particles are created. Ionisation is
generally performed by shooting electrons at the propellant. These particles are then accelerated
by an electrostatic field, that is created by a voltage drop between two grids. This acceleration of
ions creates thrust.

• Radio-frequency thruster: The working principle of a RF thruster is the same to that of an ion
thruster, with the major difference the ionisation technique. In RF thrusters, electric coils create
an oscillating electric field, which in its turn creates ions from the propellant.

• Hall effect thruster: The working principle of Hall effect thrusters is also similar to that of ion
thrusters. The difference lies in the way of ion acceleration; mutually perpendicular magnetic and
electric fields in the ionisation chamber induce the required acceleration.

• Electrospray thruster: The acceleration of ions in this thruster happens from a liquid propellant.
Ionic liquids are used as propellant, and a strong electric field releases the ions from the liquid
and accelerates them.

• Magnetoplasmadynamic thrusters: The working principle in this type of thruster is the acceler-
ation of gaseous ions. Acceleration happens due to the Lorentz force exerted on them, induced
by a current that is passing through the gas or plasma, and a magnetic field. The magnetic field
can be created externally or by the current itself. Magnetoplasmadynamic thrusters distinguish
themselves from other electric thruster systems by their superior specific impulse values.

• Pulsed plasma thruster: PPTs work by using a high-current, pulsed arc discharge to ablate a
solid propellant, creating ionised gas. The ions are accelerated by a Lorentz force generated
by the interaction of the current and a self-induced magnetic field, producing thrust. The main

2.3. Spacecraft Attitude Control 17

advantage of using such thrusters is the fact that they rely on pulses; this creates precision in
manoeuvrers, and lets the user create a varying thrust level by varying its pulse frequency. A
specific type of PPT is the Vacuum Arc Thruster (VAT), for which the ablation takes place by use
of a vacuum arc, instead of a spark plug in regular PPTs. Also, the cathode material itself ablates
for VATs, instead of the additional material added in regular PPTs. More specific information on
VATs will be provided in Section 2.6.

From the above list, ion, RF and electrospray thrusters accelerate charged particles using an electro-
static field. For these types, simplified equations can be generated for their thrust and specific impulse,
as also presented in Cervone [10]. These equations will give an idea on what parameters are important
for these performance values. First of all, in Equation 2.50, the thrust of an ion thruster is presented,
with ϵ0 the permittivity of vacuum (which is equal to 8.8542 · 10−12 [F/m]), V the voltage difference be-
tween the two grids in [V] (Volts), n the number of holes in the charged grids, L the distance between
these holes and D the diameter of these holes.

FT =
2πε0
9

· V 2 · n
(
D

L

)2

(2.50)

The specific impulse of the electrical thruster can be calculated similar to the specific impulse of non-
electrical thrusters. This is shown in Equation 2.51, in which ηion represents the thruster efficiency. The
jet velocity of the ion thruster is dependent on the voltage between the two grids and the molecular
mass of the charged ions. The larger the molecular mass, the lower the jet velocity, and the higher the
potential between the grids, the higher the jet velocity.

Isp = ηion
veq
g0

(2.51)

A final type of thruster that is worth mentioning is the resistojet. It is a hybrid thruster, using electrical as
well as non-electrical thruster aspects. Propellant is electrically heated in the combustion chamber and
is then accelerated through a convergent-divergent nozzle. Liquid propellants are most widely used for
this application. Research is currently being performed for the usage of liquid water as propellant, and
the University of Tokyo has successfully executed an orbit transfer using their AQUARIUS propulsion
system on board the EQUULEUS mission, as described in Sekine et al. [45]. The specific application
of this resistojet was a 6U CubeSat, and it achieved a total thrust by two thruster heads of 6.0 [mN],
with a specific impulse of 91.0 [s].

When comparing the various thruster options discussed in this section for application within the ADCS
of a spacecraft, it becomes evident that each type has distinct advantages and limitations, influencing
their suitability as stand-alone systems or in combination with reaction wheels. Non-electrical thrusters,
such as cold gas, mono-propellant, bi-propellant, and solid propellant systems, generally offer simplicity
in design and rapid thrust response, which can be advantageous for attitude correction. Among these,
cold gas thrusters stand out for their straightforward operation and precise control, making them viable
for small attitude adjustments. However, their thrust levels are often insufficient for significant manoeu-
vres, especially as the propellant pressure decreases over time. Mono-propellant and bi-propellant
systems deliver higher thrust levels due to chemical reactions, but their complexity, need for addi-
tional pressurisation systems, and potential thermal challenges may complicate integration within a
CubeSat’s limited space and thermal budget. Solid propellant thrusters provide high thrust but lack
controllability once ignited, which make them significantly inconvenient for ADCS applications. Throttle
ability is also limited in these systems, which means the output thrust levels cannot be controlled as
smoothly as might be desired.

Electrical thrusters, such as ion, Hall effect, radio-frequency, and electrospray thrusters, provide pre-
cise and efficient thrust, with high specific impulses ideal for long-duration missions. However, their
relatively low thrust levels and dependency on electrical power make them less suitable for standalone
ADCS use, particularly in missions requiring rapid or frequent attitude adjustments. Magnetoplasma-
dynamic and pulsed plasma thrusters can deliver higher thrust compared to other electric options, but
their power requirements can become limiting. Pulsed plasma thrusters may offer a unique advantage
in ADCS applications by enabling precise, short bursts of thrust, which could complement reaction

2.3. Spacecraft Attitude Control 18

wheels or serve as a standalone system in some cases. Hybrid options like resistojets could bridge the
gap by combining non-electrical and electrical propulsion principles but their reliance on liquid propel-
lants and additional heating systems may pose integration challenges.

As has been introduced at the beginning of this report, miniaturisation is a common theme within space-
craft development nowadays. This miniaturisation automatically leads to advancements in the devel-
opment of micro-propulsion systems. The thruster types mentioned above are all also examples of
micro-thrusters and can be applied to micro-satellites, ranging from PocketQube sizes (5×5×5 [cm])
to 12U CubeSat sizes, dependent on specific mission requirements. In general, non-electrical propul-
sion units have a higher thrust level but lower specific impulse level compared to electrical thrusters.
Electrical thrusters only require a specific amount of power from the electrical power system, whereas
non-electrical thrusters require an infrastructure including tank volume. In CubeSat design, the latter
may not be beneficial. Also, toxic chemicals used in non-electrical thrusters should be replaced by
green propulsion types. Nowadays, these green propulsion types have not yet reached the Technol-
ogy Readiness Level (TRL) that is required for novel space missions to launch, which is why more
sustainable thrusters for attitude control of CubeSat applications are desired.

In order to provide a general overview of micro-propulsion system performance, Table 2.2 shows an
overview of different existing modules. From left to right, the columns of the table represent the module
name, the type of thrusters used, the average thrust level of each thruster, the specific impulse of the
thrusters and the system size. Note that the S-iEPS from MIT is an propulsion system consisting of
eight different thrusters. The other modules shown are single-thruster systems. Thrust-over-power
ratios for the electrical thrusters differ significantly per type as well, being in the 10 to 30 [mN/kW]
range for pulsed plasma thrusters, to the 50 to 70 [mN/kW] range for Hall Effect thrusters.

Name Thruster type Thrust level Vacuum specific Size
[mN] impulse [s]

Busek Co. BGT-X5 Chemical, 500 220 1U
mono-propellant

NASA JPL, MiXI Ion 3.0 3050 3 [cm] diameter
Busek Co. BHT-200 Hall effect 13 1390 Not specified

MIT, S-iEPS Electrospray 8 × 0.074 950 0.2U
Mars Space Ltd. PPTCUP Pulsed plasma 0.040 600 0.3U

Table 2.2: Existing micro-propulsion systems with their thruster type, thrust level, specific impulse and sizes. This table serves
as an overview of the system performance parameters. [7] [56] [8] [28] [33]

Past research into CubeSat attitude control using electrical thrusters was done by Kronhaus et al. [29],
in which vacuum arc thrusters were used for the attitude control of 1U CubeSats. Their proposed micro-
propulsion module, consisting of four separate thrusters each with a thrust level of 1 [µN] and integrable
with 1U LEO CubeSats, was capable of achieving a pointing accuracy of 0.5◦. Additional research was
conducted by King et al. [27], in which attitude control using VATs was analysed theoretically for a 3U
LEO CubeSat. Results included pointing accuracy in the order of 0.007◦, as well as significant ADCS
mass reduction from 300 to 1500 [g] to a maximum of 250 [g] (under 72% of the original wheel/torquer
system). Further improvements were gained with respect to volume and power requirement. Finally,
the research in Lian, Xiang, and Zhao [34] shows a novel attitude tracking control specifically designed
for the tracking and six-degrees-of-freedom control of CubeSats and larger spacecraft. Control accu-
racy was traded off with number of thrusters fired (in order to reduce power requirement) by tuning the
width and frequency of the pulse signals, a method that will be examined in subsection 2.6.2 of this
report as well.

Without using gimballing thrusters, any spacecraft needs a minimum number of thrusters in order to
maintain three-axis attitude control. In order to obtain a perfectly determinate system, a total of three
thruster pairs are required as a minimum, in order to provide for three-axis control without any resultant

2.3. Spacecraft Attitude Control 19

net thrust values. Thrusters in such pairs should be pointed opposite in direction of each other, and
create a torque about the primary axes of the spacecraft. Including fewer thrusters will result in an
under-determined system, whereas including more thrusters introduces redundancy, within an over-
determined system. [54]

Regarding the actual torque exerted by a specific thruster configuration, the placement and the angular
offset of the thrusters will contribute to the torque that is produced, as well as the thrust level of the
thruster. Equation 2.52 below shows the total torque produced by a system of an arbitrary number of
thrusters. ri is the position vector of thruster i in an arbitrary reference frame. rM denotes the position
vector of the centre of mass, in the same reference frame. Fi represents the force vector of each
thruster i, taking into account the thruster angular offset in the reference frame as indicates before.
The thrust is a function of time t and control signal fi(t), meaning that it will be exerted due to a specific
control signal from the controller, which in itself is based on the current time step. For this reason, the
total control torque T c is a function of time in this equation.

T c(t) =
∑
i

(ri − rM)× F i(fi(t), t) (2.52)

Within attitude control algorithms, a required spacecraft torque stems from the Euler equations for
rotational motion in order to gain attitude stability, as was seen in, among others, Equation 2.2. It was
previously found that this required torque could be converted to individual reaction wheel torques for
any reaction wheel configuration given. The same can be done for different thruster configurations, as
was described in Dennehy et al. [14]. This method is called the non-negative least-squares method.
The configuration of the thrusters on a specific spacecraft can be transformed into a thruster mixing
matrix. A thruster mixing matrix contains in its columns the unit torque vectors of each thruster in a
specific configuration. For example, the thruster mixing matrix of three thrusters that solely produce a
positive torque around the x-axis, would look like Equation 2.53.

Athrust =


1 1 1

0 0 0

0 0 0

 (2.53)

In order to construct a thruster mixing matrix for an arbitrary number of thrusters, with different positions
and angular offsets, an adaptation of Equation 2.52 can be used, which is shown in Equation 2.54. In
this equation, T̂ i is the unit torque produced by thruster i, ri is the position vector of the thruster with
respect to the centre of mass of the spacecraft (note that the rM vector is in this way omitted) and F̂ i is
the unit vector of the thrust exerted by the thruster. This equation is formulated in the spacecraft body
frame (origin is the centre of mass). The unit torque vectors of thruster 1 through n are appended to
the thruster mixing matrix as displayed in Equation 2.55.

T̂ i = ri × F̂ i (2.54)

Athrust =
[
T̂ 1 T̂ 2 ... T̂ n

]
(2.55)

In order to determine the force or thrust necessary from each of the thrusters to fulfil the control torque
requirement, the linear equation shown in Equation 2.56 has to be solved. In this equation, Fthrust is
an array of length n containing the thrust values of each thruster. A solution is guaranteed if the thruster
mixing matrix is full row rank, meaning that the matrix has linearly independent rows.

AthrustFthrust = T c,

Fthrust ≥ 0
(2.56)

In addition, the total thrust required from the thrusters should be minimised, so that a power- or fuel-
optimal approach is adhered to. Therefore, the sum of the instances in Fthrust should be minimised.
The above leads to the formalised linear programming model as displayed in Equation 2.57. ci is the
efficiency factor for thruster i, also note the symbol replacements for this generic form of the equation.
A number of algorithms exist to efficiently solve this problem.

2.3. Spacecraft Attitude Control 20

min
n∑

i=1

ciXi

s.t. AX = B

X ≥ 0

(2.57)

2.3.4. Controllers
Attitude information obtained from the Euler angles or quaternions as explained previously can be used
to construct a spacecraft attitude control system. The basics of control system theory can be examined
in literature such as Franklin, Powell, and Emami-Naeini [16] and has been adapted to this specific
spacecraft application. Spacecraft attitude control systems can be visualised using block diagrams.
Each of the blocks in these diagrams represents an operation that is performed, for which an input is
taken and an output is produced. Figure 2.5 represents a general form of such a block diagram, with a
closed-loop architecture.

In the figure, it can be seen that a commanded spacecraft state xcmd is fed as input. Before continuing,
it should be clear what a spacecraft state entails for orbit keeping or attitude control. For spacecraft
orbit propagation, its position and velocity are of primary importance. For this reason, the spacecraft
state consists of three Cartesian position coordinates, as well as the change of these coordinates over
time, ergo: the velocities in those directions. Such a state can be observed in Equation 2.58.

xorbit =
[
x y z vx vy vz

]T
(2.58)

For attitude control, not the position and velocity but rather the attitude and angular rate are of impor-
tance for the propagation of the state. In this way, the angle of the spacecraft body and the change of
this angle with respect to an inertial reference frame can be observed. The form of the specific state
depends on whether Euler angle analysis or quaternion analysis is carried out. They are displayed in
Equation 2.59 and Equation 2.60, respectively.

xEuler =
[
θ1 θ2 θ3 ω1 ω2 ω3

]T
(2.59)

xquat =
[
qw q1 q2 q3 ω1 ω2 ω3

]T
(2.60)

For attitude control, the input commanded state is then compared to a measured spacecraft state
xmeas, which is the result of sensors or an inertial measurement unit. Note that the plus and minus in-
dicate addition and subtraction, respectively. This results in a state error, xerr that is fed to the system
controller. This controller can take many different forms, such as a PID (proportional, integral and dif-
ferential) controller or a bang-bang (on/off) controller. This controller will use the state error to produce
a signal fi that is directly fed to the actuators, generating a change in the spacecraft state δxact. This
change is then added to the change due to external disturbances, such as the solar radiation pressure
or the gravity gradient torque, δxdist. The actuators and the external disturbance will actually impose
forces and moments on the spacecraft, which is now denoted by a change in state. The spacecraft dy-
namics block represents the spacecraft itself, which will behave according to the laws of physics under
the influence of forces and moments. As a result, a spacecraft state xsc will be the final output of the
system, which is then again measured by the sensors and the IMU, so that the error can be calculated
again. This loop repeats itself until the error is within pre-defined boundaries and remains within these
boundaries.

2.3. Spacecraft Attitude Control 21

Figure 2.5: General spacecraft ACDS block diagram.

A closer look to the different controller options will now be given. Bang-bang control or on/off control is
a simple controller that abruptly switches between two states (on and off) when a specific error value
is passed. The two states are extremes: a vacuum cleaner, for example, is either completely on or
completely off. In most bang-bang controller applications, time-optimal control is desired, achieving
the desired state within a minimum time frame. Problems that arise with these types of controllers is
usually an undesired state just before the switching happens. Also, when the hardware does not only
provide two extreme values (for example, an intensity-varying light bulb), this type of control is not op-
timal in terms of energy efficiency, overshoot and oscillatory patterns. Bang-bang control is applied in
spacecraft attitude control systems to activate thruster firing, in which non-electrical thrusters can only
be switched on or off.

2.3.4.1 PID
As mentioned previously, the Proportional-Integral-Derivative (PID) control is a control loop structure
that uses the error of the measured state to apply corrections. These corrections are calculated using
proportional, integral, and derivative relations with respect to the error, using gains to balance the control
output. Each component of the PID controller—proportional (P), integral (I), and derivative (D)—plays
a specific role in the control mechanism:

• Proportional (P): The proportional term generates an output that is proportional to the current
error value. The proportional gain (Kp) modulates the magnitude of the proportional response. A
high proportional gain results in a large change in the output for a given change in the error. If
the proportional gain is too high, the system can become unstable and oscillate, while a low gain
results in a sluggish response.

• Integral (I): The integral term focuses on the accumulation of past errors, providing a necessary
adjustment to the system that helps eliminate residual steady-state errors. The integral gain (Ki)
determines how strongly the accumulated sum of past errors influences the controller output. An
excessively high integral gain can lead to overshooting and oscillation, whereas too low a gain
might cause a slow corrective response to a bias or sustained error.

• Derivative (D): The derivative term predicts future error trends based on its current rate of change,
acting as a form of damping mechanism. This helps reduce the system’s overshoot and settling
time. The derivative gain (Kd) controls the extent to which this prediction influences the control
action. Too high a gain can make the control output too sensitive to rapid changes in error, poten-
tially leading to instability due to noise amplification; too low a gain may not adequately dampen
the response.

A block diagram of a general PID controller is presented in Figure 2.6. It can be seen that the state
error xerr is inserted into each of the three blocks, and that operations take place within these blocks
that are then summed to generate an output control variable u(t). The variables are formulated in
the time domain and can be transformed into the Laplace domain to analyse the system’s behavior,

2.3. Spacecraft Attitude Control 22

particularly its stability and frequency response. Equation 2.61 shows the summed control variable
output equation, including the previously mentioned gains and the proportional, integral and derivative
terms, respectively. Equation 2.62 shows this same equation in the Laplace domain, which is the
transfer function of the PID controller.

Figure 2.6: Block diagram of a PID controller block. xerr is the state error, which is inserted in the proportional, integral and
derivative control blocks, after which they are summed to produce an output control variable u(t).

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
(2.61)

L(s) = Kp +
Ki

s
+Kds (2.62)

For the control algorithm to work properly, the gains need to be adjusted to the specific situation. For
each situation, gains vary and a multitude of gain tuning techniques can be used to reach the best
system performance. Three of such methods are:

• Manual Tuning: Involves manually adjusting the gains based on trial and error while observing
the system’s response.

• Ziegler-NicholsMethod: A popular heuristic tuningmethod that provides a systematic procedure
for setting the gains.

• Software and Computational Tools: Utilise algorithms to determine optimal gain values that
conform to specific performance criteria.

Typically, tuning starts by setting the integral and derivative gains to zero and increasing the proportional
gain until the output of the loop oscillates, then the integral gain is increased until any offset is corrected
in the right amount of time, and finally, the derivative gain is adjusted to minimise overshoot. Effective
tuning of PID gains is crucial as it directly affects the stability, responsiveness, and performance of the
control system. Properly tuned PID parameters help ensure that the controlled system behaves in a
desirable manner, responding quickly to changes without significant overshoot or oscillations.

In the Ziegler-Nichols method [57], the integral and derivative gains are also set to zero at first, and
the proportional gain is increased and tested. When a specific ultimate gain Ku has been reached, in
which sustained oscillations (stable and consistent) are present, an oscillation period Tu can then be
determined. With these two parameters, tuning of the other gains is then carried out.

As a final note on PID controllers, Bello et al. [6] show experimental verification and comparison of
two distinct PID controller, with an additional control method called a fuzzy controller, for application
on nano-satellites. In this paper, two PID controllers are presented: one regular version with the three
distinct gains, taking as input the error angle over the z-axis of the spacecraft and the angular velocity

2.3. Spacecraft Attitude Control 23

over the z-axis of the spacecraft. It is mentioned that the error in the angular velocity is not taken,
due to low sampling frequency of this component. A required z-torque is then computed as output
(u(t)) which is passed on to the actuators. The second PID controller, the adaptive PID, includes a
logic block that sets the integral function to zero, every time the error value over the z-axis changes
sign. The reason this was implemented were two conditions regarding the size of the integral gain and
the response overshoot. The integral gain would otherwise be able to induce undesired windup effects.

For both PID controllers, the gain calibration was performed in an experimental way. The yaw angle
of the spacecraft was increased with a rotation of 179◦, after which the convergence times for different
gains were observed. These times should be minimised for the experiment. The process was divided
in a coarse and fine calibration part. The coarse part included using the previously explained Ziegler-
Nichols method to adjust the gains. The fine calibration part included three steps: first of all, the gains
were adjusted with ±1% from their value obtained from the coarse calibration. Then, the calibration
maneuver (179◦ yaw) was performed again to analyse its response. This process is finally repeated
for a large number of times and the gains that minimised the response times were chosen as the final
gains. More research into PID controllers for CubeSats has been published in recent years, such as
Alkatheeri et al. [3] and Kannan, Anitha, and Kumarasamy [26].

2.3.4.2 Phase plane analysis
In Lim [35], a spacecraft attitude controller for the Tactical Satellite 4 was proposed based on a phase
plane method. This method includes visualising certain characteristics of specific types of differential
equations. In general, the phase plane will be a coordinate plane with two axes, each representing
one state variable. As an example, the angular velocity in the x-direction (ωx) can be presented on
the x-axis of the phase plane, and the time derivative of the angular velocity in x-direction (ω̇x) can be
displayed on the y-axis of the phase plane. Creating these figures for all three Cartesian coordinates,
a set-up is formed for three-axis stability control. In the analysis of differential equations, limitations to
the solutions of these equations can be identified using the phase plane visualisation.

Within spacecraft attitude control, the phase plane is used to identify so-called ”switching lines”. Looking
at Figure 2.7, which was adapted from Jang, Plummer, and Jackson [24], for each axis, a certain starting
point can be identified that is different from the desired attitude. The attitude for the starting point is here
defined by the angle θx and the angular velocity ωx. When this starting point is outside of the switching
lines, a thruster firing is started. In the case of this figure, while being on the bottom left of the solid
lines around the origin, a positive thruster firing is started. This will increase the angular velocity and
also increase the angle. For each thruster firing time step, the current location within the phase plane
is re-evaluated, and a new thruster command is created again. Between the solid lines, two different
regions can be distinguished, where no thruster firing is initiated. One of these is called the drift zone,
in which the angular velocity remains constant and the attitude angle changes linearly over time. The
other region, the attitude hold channel, indicates a safe zone in which convergence towards the solution
takes place. As can be seen from the trajectory in the equation, a linear change over time of the attitude
angle is observed towards the right side of the graph. This continues until it reaches the right boundary
of the no-firing zone, after which a negative thruster fire is induced again. After a number of iterations
on the right side of the attitude hold channel, when the spacecraft state has reached the negative y-axis
zone of the diagram, the state will move back to the left border of the channel again. Here, it will now
enter an oscillatory trajectory around the origin and will convergence towards the solution. Note that,
as an example, the actual attitude angle and angular velocity are presented here, whereas the error
for these parameters (as seen in Figure 2.5) is the desired value to convergence towards the origin of
the phase plane.

2.3. Spacecraft Attitude Control 24

Figure 2.7: Phase plane controller method visualised, adapted from Jang, Plummer, and Jackson [24].

The major improvement made by Lim [35] is that the switching lines in its phase plane diagrams are
supplemented with an additional switching line each. This is depicted in Figure 2.8. When the space-
craft state is between the solid and dashed lines, also called the hysteresis region, the previous state
is maintained. This means that, coming from the drift zone, the non-firing thruster setting will be main-
tained, but coming from outside of the drift zone, the thruster firing setting will be maintained. The width
and height of the hysteresis region on the phase plane are defined by the attitude hysteresis (θhys) and
rate hysteresis (ωhys). The main reason for the inclusion of such a hysteresis region is the event that
flexible-body responses induce small state changes during firing. By doing so, the thruster switching
lines might be passed and unnecessary switching is activated.

Cilliers, Steyn, and Jordaan [12] present an improved version of the phase plane controller by Lim [35].
The research recognises the problem of the usage of commercial-off-the-shelf parts with regard to
thruster configurations on CubeSats. Control strategies for single axes, such as explained before with
the phase plane method, are not effective nor efficient in these cases, and a multi-axis control strategy
is therefore proposed. The primary idea of the research is that change in angular velocity around only
one axis can be obtained by firing multiple thrusters, of which some thrust components then cancel
each other out.

2.3. Spacecraft Attitude Control 25

Figure 2.8: Phase plane controller method visualised with hysteresis regions.

2.3.5. Integration
For any dynamics problem, setting up the equations of motion is not the end of the story. They need
to be used and propagated over time, in order to assess an object’s behaviour over that time span. In
some cases, analytical solutions exist that provide the exact answer to the problem. In most realistic
cases, however, the equations of motion are so detailed that propagation over time is only possible
with a numerical solution, which is the result of the integration of a differential equation over time.

In its most basic form, a differential equation can be written as shown in Equation 2.63, in which ẏ
denotes the time derivative of the state y, and f(y, t) is a function dependent on both y and t. In
addition, an initial state of the function has been given, namely y0. Since the exact solution cannot be
found, an approximation solution of the differential equation should be found for discrete time steps, as
shown in Equation 2.64. Note that the previously continuous function y has now been discretised in a
total of N time steps.

ẏ(t) = f(y, t)

y(t0) = y0
(2.63)

ȳ(ti) ≈ y(ti)

i = 0...N
(2.64)

From the approximation solution, an error is found, as displayed in Equation 2.65. This error can be
evaluated at each time step ti. In numerical integration, an integrator or solver for a differential equation
is used, that creates this approximation solution and with which the state on each time step can be
evaluated. A large number of integrators exist, and each have their own advantages and disadvantages
with respect to integration speed, error magnitude and adaptability to the problems at hand.

ϵ(ti) = ȳ(ti)− y(ti) (2.65)

Within spacecraft attitude control, different integrators can also be used for the integration of Euler’s
equations of rotational motion. The most common and computationally inexpensive integrator is the for-
ward Euler method. A more advanced and also widely-used integrator is the Runge-Kutta-4 integrator.
In this section, both integrators will be examined as solvers for spacecraft attitude control problems.

2.4. Lunar CubeSat Missions 26

2.3.5.1 Forward Euler method
As described in “The Forward Euler Method” [51], the forward Euler method is a simple and widely-used
numerical integrator for solving ordinary differential equations (ODEs). It approximates the solution by
using the derivative of the state at the current time step to estimate the state at the next time step. The
method is defined mathematically in Equation 2.66.

In words, the state at the next time step, y(tn+1), is calculated as the state at the current time step,
y(tn), plus the product of the time step size h = ∆t and the derivative of the state, ẏ(tn), at the current
step. Here, ẏ(tn) is derived from the governing differential equation, as shown in Equation 2.67.

y(tn+1) = y(tn) + hf(tn, y(tn)) (2.66)

ẏ(tn) = f(tn, y(tn)) (2.67)
The forward Euler method is computationally inexpensive and easy to implement, making it suitable
for simple problems or as a starting point for understanding numerical integration. However, it has
limitations: it is only first-order accurate (the global truncation error is O(h)) and may become unstable
when applied to stiff systems or when large time steps are used. The global truncation error consists
of the errors made for each time step, and accumulated over the entire time span. As can be expected,
the higher the order of the local and global truncation errors, the more accurate the solver is.

2.3.5.2 Runge-Kutta 4 method
The Runge-Kutta 4 (RK4) method is another popular numerical integrator, as described in Butcher [9].
It is a fourth-order method, meaning its global truncation error (GTE) is O(h4), where h is the time step
size. RK4 achieves this high accuracy by using intermediate steps to estimate the derivative at multiple
points within each time interval.

The numerical scheme for the RK4 method is derived from Taylor series expansion and is presented
in Equation 2.68.

k1 = hf
(
y(t), t

)
, (2.68)

k2 = hf
(
y(t) +

1

2
k1, t+

1

2
h
)
, (2.69)

k3 = hf
(
y(t) +

1

2
k2, t+

1

2
h
)
, (2.70)

k4 = hf
(
y(t) + k3, t+ h

)
. (2.71)

The next state, y(t+ h), is then computed as:

y(t+ h) = y(t) +
1

6
(k1 + 2k2 + 2k3 + k4). (2.72)

This method works by combining weighted contributions from the slope (f(y, t)) at the beginning, mid-
point, and end of the time interval. These contributions are calculated using four intermediate evalu-
ations (k1, k2, k3, k4), and their weighted average is used to advance the solution. The RK4 method
balances computational efficiency and accuracy, making it suitable for a wide range of problems. Its
fourth-order accuracy means it can achieve good results with relatively large step sizes compared to
lower-order methods like the forward Euler method.

2.4. Lunar CubeSat Missions
This section serves as a summary of lunar CubeSat developments over the past years, and an outlook
on missions that will take place in the future. A number of scientific feats will be highlighted, specifically
for the CAPSTONE and LUMIO missions from NASA and ESA, respectively. The reason these two
missions are highlighted, is because the CAPSTONE mission has attained a novel halo orbit, investi-
gating its stability and potential for a future lunar space station, and the LUMIO scientific papers contain
extensive information on its ADCS, including its main components.

2.4. Lunar CubeSat Missions 27

2.4.1. Overview of Existing Missions
This section shall provide a brief overview of past, current and future lunar CubeSat missions, in order
to provide more detailed insights into the context of the research at hand and the most recent develop-
ments. The missions’ applications and scientific goals will be elaborated upon.

The first notable lunar mission performed by a nano-satellite is NASA’s CAPSTONE (Cislunar Au-
tonomous Positioning System Technology Operations and Navigation Experiment) mission. It was
launched on 28 June 2022 by a Rocket Lab Electron booster and is currently performing tests and ver-
ification for the stability of the lunar orbit chosen for the Lunar Gateway space station, that is planned
to be launched by NASA as part of their Artemis program. [18]

In this way, CAPSTONE is an exploratory mission within the first phases of human travel to the Moon.
The CubeSat has a 12U volume and is inserted in a near-rectilinear halo orbit that was the result of
various computer simulations. It is the first spacecraft to ever attain such an orbit. Its positioning will
rely on the presence of a different NASA satellite, the Lunar Reconnaissance Orbiter (LRO), so that
no ground stations are needed for accurate navigation and future space missions can also rely on this
method of navigation. CAPSTONE’s initial mission lifetime of six months has already been expired,
and it is still operational in orbit. More information on the CAPSTONE mission and specifically its orbit
are provided in subsection 2.4.2.

On 16 November 2022, the Artemis 1 mission launched, containing as primary payload the Orion
spacecraft for in-flight testing. Next to the primary payload, ten low-cost 6U CubeSats were launched
as secondary payload [38], of which five were designed to investigate the Moon and attain lunar orbits.
The lunar CubeSat missions were the EQUULEUS (JAXA), OMOTENASHI (JAXA), LunIR (Lockheed
Martin), LunaH-Map (NASA) and Lunar IceCube (NASA). EQUULEUS was deployed to measure the
distribution of plasma surrounding the Earth, as well as perform multiple lunar flyby trajectories within
the Earth-Moon Lagrange points. Another Japanese CubeSat is OMOTENASHI, with its primary goal
to land on the Moon and show that low-cost lunar exploration is possible. The CubeSat was supposed
to measure the radiation environment near the Moon and on the lunar surface, but after separation from
the Space Launch System (SLS), communication was lost and the mission was terminated by JAXA.

LunIR is a CubeSat mission developed by Lockheed Martin with its primary goal to collect surface
spectroscopy and thermography data.4 As of December 2022, the mission has successfully been
completed. Notable about LunIR is the demonstration of an electrospray thruster in lunar orbit. The
LunaH-Map [21], or Lunar Polar Hydrogen Mapper, is a CubeSat in a lunar polar orbit around the south
pole in order to map the presence of hydrogen up to one meter beneath the surface. A neutron detector
was present as payload and it successfully completed its 96-day mission duration. Finally, the Lunar
IceCube mission [36] was designed to inspect the amount and composition of water ice deposits on
the lunar surface. It uses an infrared spectrometer instrument and was supposed to demonstrate a
miniature electric radio-frequency ion engine system as its propulsion system. Since February 2023,
contact with the Lunar IceCube mission was lost.

A CubeSat that was supposed to have launched with the Artemis 1 mission, was the Lunar Flashlight
mission designed by NASA.5 Having missed the launch integration mission, it launched on 11 Decem-
ber on a Falcon 9 Block 5 rocket along with the Japanese Hakuto-R Mission (commercial lunar landing
mission). Its primary objective was to determine the presence of water ice on the surface and its exact
physical state, along with the mapping of its concentration near the lunar south pole, that is located in
a permanent shadow. Using near infrared lasers within a spectrometer (infrared spectroscopy) as its
payload, it was supposed to measure surface reflection and composition. Due to a failure in the green
mono-propellant propulsion system, the mission was abandoned in May 2023, without having reached
the desired lunar orbit.

Another mission intended to be present within the Artemis 1 CubeSat batch is the Cislunar Explorers6,
4URL: https://terranorbital.com/missions/lunir/ [Accessed 11 March 2024]
5URL: https://www.jpl.nasa.gov/missions/lunar-flashlight [Accessed 11 March 2024]
6URL: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=CISLUNEXP [Accessed 11 March 2024]

https://terranorbital.com/missions/lunir/
https://www.jpl.nasa.gov/missions/lunar-flashlight
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=CISLUNEXP

2.4. Lunar CubeSat Missions 28

a pair of CubeSat spacecraft each of size 3U and L-shaped, that has its primary goal to assess the
viability of water electrolysis propulsion as well as interplanetary optical navigation to attain a lunar orbit.
The latter scientific goal is achieved by optical cameras, that measure the sizes of the Earth, the Moon
and the Sun whilst they are in an arbitrary lunar orbit. With these optical measurements, the spacecraft
are supposed to determine their locations. The launch date for this mission has not been established
yet. The CubeSat-based HiveR rover is proposed by Unwerth et al. [53], with the ability to carry a wide
array of scientific payloads, such as a 1U robotic arm.

Finally, the LUMIO mission as proposed by Topputo et al. [52] in collaboration with numerous European
universities and research institutions, is a 12U CubeSat mission designed to observe, quantify and
characterise the meteoroid impacts on the far side of the Moon by measuring optical flashes. The
CubeSat shall be deployed with a detector with a sensitivity toward the near-infrared spectrum and it
will attain a halo orbit about the Earth-Moon L2 (second Lagrange) point. The mission is expected to
launch in 2027. A more detailed mission description for the LUMIO mission is given in subsection 2.4.3.

2.4.2. CAPSTONE
As mentioned previously, the novelty of the orbit for CubeSat application in the CAPSTONE mission is
the reason this is further investigated in this literature review. From Gardner et al. [18], the CAPSTONE
mission had its primary goal to aid future participants in the cislunar (between the Earth and the Moon)
ecosystem. Its first mission objective was to validate and demonstrate the Near-Rectilinear Halo Orbit
(NRHO), a halo orbit that is close to the smaller of two bodies, in this case the Moon in the Earth-Moon
system. A halo orbit itself is a periodic orbit associated with one of the first three Lagrange points, L1,
L2 or L3, which are depicted in Figure 2.9 for clarification. Note that this is a top view, looking at the
orbital plane of the Moon around the Earth. In a two-body system, such as the Earth-Moon or Earth-Sun
system, Lagrange points are positions in space where the gravitational forces of the two large bodies,
combined with the centrifugal force felt by a smaller object (the spacecraft), create a situation where the
smaller object, despite being in motion, maintains a stable position relative to the two larger bodies. For
the halo orbit, near-rectilinear refers to the large curvatures seen in comparison to a standard elliptical
orbit with the same semi-major axis. The requirement for an NRHO to exist is the presence of at least
two other bodies with a third body of negligible mass. It poses a solution to the three-body-problem.
[46]

Figure 2.9: Lagrange points in the Earth-Moon system. Top view of the Earth, looking at the orbital plane of the Moon and
Earth’s North Pole.

2.4. Lunar CubeSat Missions 29

A number of issues and uncertainties arise from NRHO physics. First of all, the dynamics of NRHOs
are highly sensitive to perturbations due to their location in the gravitational potential of the Earth-Moon
system. Small changes in spacecraft velocity or position can lead to significant deviations from the
intended path over time. This sensitivity necessitates precise navigation and control strategies to de-
tect and correct for any diverging behavior in real-time. Mission constraints related to eclipsing and
communication requirements also complicate the dynamics of NRHOs. Designing trajectories that min-
imise shadow events due to eclipses by the Earth and Moon is critical for maintaining continuous solar
power and communication links. Spreen, Howell, and Davis [46] highlight the use of orbital resonance
and careful epoch selection to align the spacecraft’s path with periods of minimal eclipse risk. Finally,
NRHOs can be reached from LEO with reasonable propellant costs and flight times. However, de-
signing effective transfers requires a deep understanding of the multi-body dynamics and the ability to
navigate through the gravitational influences of the Earth, Moon, and other celestial bodies.

NRHOs can have four distinct shapes: they can either be centred around the L1 or L2 points, and can
attain southern or northern orbits. Two of these types are depicted in Figure 2.10, namely the northern
L1 orbit and the southern L2 orbit. The remaining two options follow logically from observing the figure.
Note that the north and south pole of the Earth are indicated, and the view is directed at the orbital
plane of the Moon. The NRHO attained by CAPSTONE was a southern L2 version with a 9:2 resonant
period with the lunar synodic period, meaning that for each two lunar synodic periods of approximately
30 days, CAPSTONE completed nine revolutions in NRHO. Southern refers to the apogee being on
the southern side of the lunar orbital plane. The orbit was specifically designed to not experience
Earth-induced solar eclipses during the mission and it provides the advantage of an unobstructed view
of Earth in addition to coverage of the lunar South Pole. In order to counter-act drift and stay in the
correct orbit, a number of orbit maintenance manoeuvrers were executed, in the order of 0.1 [m/s]. For
attitude control, the main disturbance factors are solar radiation pressure (SRP) and gravity gradient
torques near the Moon. SRP can exert forces and torques on the spacecraft due to the pressure of
sunlight on its surfaces. This effect can alter the spacecraft’s attitude and necessitates the use of
attitude control mechanisms to counteract these disturbances. The impact of SRP on the spacecraft’s
attitude depends on the spacecraft’s configuration, surface properties, and orientation relative to the
Sun. As the spacecraft passes close to the Moon (at perilune), the differential gravitational pull on the
spacecraft’s components can induce torques due to the gravity gradient. These torques can change
the spacecraft’s orientation and must be managed by the attitude control system. The magnitude of
the gravity gradient torques depends on the spacecraft’s altitude, configuration, and mass distribution.
Both disturbances can accurately be modelled using dedicated software. [39] [18]

2.4. Lunar CubeSat Missions 30

Figure 2.10: The northern L1 and southern L2 near-rectilinear halo orbits, in the Earth-Moon system.

2.4.3. LUMIO
The Lunar Meteoroid Impacts Observer (LUMIO) mission, as described in Topputo et al. [52], is a 12U
CubeSat mission with the goal to observe and analyse the meteoroid impacts on the lunar far-side. It is
the result of ESA’s LUCE SYSNOVA competition and has successfully the Preliminary Design Review,
currently awaiting for Phase C design. Meteoroid impacts are detected by the uniquely developed
LUMIO-Cam, which is able to detect impact flashes in the visible and near infrared spectrum. The
mission is set to launch in 2027, according to the latest ESA publication in June 20247. This section
will show an overview of the entire mission, including a brief description on its scientific goals and pay-
load, followed by a description of its target orbit. Next, the CubeSat platform will be examined, paying
specific attention to the ADCS and its latest requirements.

The meteoroid flux of the Earth-Moon system is the frequency with which meteoroid showers occur in
this environment. On Earth, humans are generally safeguarded for these showers due to the ablat-
ing effect of the atmosphere. On the Moon, in the absence of an atmosphere, meteoroids impact the
surface at full speed. Looking at future lunar exploration by humankind, as was also described in La-
sue et al. [31], it is important to have a thorough understanding of this meteoroid flux; its particle sizes,
speed of impact and affecting area should be well understood. Models have been built that describe the
fluxes, which are similar for the Earth and the Moon. The information provided by the LUMIO mission
will aid in improving these models, so that more accurate predictions can be made in the future. The
information will help answering questions regarding equipment damage on the lunar surface, which
defensive strategies would be needed for human habitats to be built, what the meteoroid distribution
over the lunar surface will be and how the lunar situational awareness program should be constructed.

A number of trends within the meteoroid impacts have already been established in literature and sum-
marised in Topputo et al. [52]. For the flux of meteoroids larger than 1 [kg], the number of impacts vary
from 1290 to 4000 per year. An updated figure states that approximately 23,000 impacts occur annually,
for meteoroids of 30 [g] or larger. A theory has also been established that states that the lunar nearside
receives 0.1% more impacts compared to the far-side due to the Earth’s gravitational field. Moreover,
the equatorial regions receive 10 to 20% more impacts due to the presence of more meteoroids in the
orbital plane or at low orbital inclinations, compared to the polar regions. Finally, the leading side of the

7URL: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/LUMIO_New_
CubeSat_Illuminating_Lunar_Impacts [Accessed 4 December 2024]

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/LUMIO_New_CubeSat_Illuminating_Lunar_Impacts
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/LUMIO_New_CubeSat_Illuminating_Lunar_Impacts

2.4. Lunar CubeSat Missions 31

Moon receives 37 to 80%more impacts, due to the tidally locked rotation of the Moon around the Earth.

When an object hits the surface of the Moon, its energy is distributed over four different activities: seis-
mic waves, crater creation, particle ejection and radiation. From these phenomena, particle ejection
and radiation will be the most beneficial to observe, since they only require remote observation of visible
and near infrared light, can be observed over a large surface area at the same time and contain themost
complete information about the meteoroid. Observations can only be performed while the lunar surface
is illuminated for less than 50%, which significantly obstructs observation from Earth. The absence of
an atmosphere, weather and day/night fluctuations are incentives to create space-based payloads for
impact observations. Moreover, lower background noise and being able to observe the fully dark lunar
surface on the far-side of the Moon makes observation from this far-side the most appealing for such
a mission. The combination of these space-based and readily-available ground-based observations
complement each other. The space observations performed by LUMIO are done within the 14-day
science phase, which is then followed by a 14-day engineering and navigation phase. These phases
are dependent on the lighting conditions on the lunar surface, as shown in Figure 2.11.

Figure 2.11: Illustration of the Moon phases and the primary trajectories of incoming meteoroids within the Earth-Moon system.
The dashed green line marks the segment of the Moon’s orbit where Earth-based observations of the nearside are possible.
The solid blue line highlights the time frame for space-based observations of the lunar far-side, while the solid orange line

denotes periods designated for other operations. Figure taken from Topputo et al. [52].

The LUMIO-Cam, the payload designed to observe the impact flashes of meteoroids, receives incom-
ing electromagnetic waves with wavelengths between 450 and 950 [nm]. The total mass of the payload
is 3.85 [kg] and its volume is confined within a 3U format. The maximum power required by the payload,
including its heaters, is 27.8 [W]. Impact flashes are received both in the visible band and the near
infrared band, making it possible to analyse the temperatures of the impacts. Furthermore, the detector
in the LUMIO-Cam has been adjusted so that it is ideal for imagery where lighting is limited and the
frame rate is high. A minimum field of view of 5.68◦ is required to be able to fully capture the Moon at
all times during the science phase, which resulted in a 6.0◦ field of view including margin.

Regarding the more broad mission geometry of LUMIO, an extensive trade-off for its operational orbit
selection has been performed and described in Cipriano, Tos, and Topputo [13]. As a result, the L2

halo family has been selected for the mission, offering the only realistic option in terms of technical ap-
plication and economical aspects for CubeSat deployment. Before reaching the halo orbit, LUMIO will
be launched, then guided towards the Moon into a Weak Stability Boundary (WSB) transfer, applying
multiple Deep Space Manoeuvrers (DSM) and inserted into the halo orbit. This process, up until inser-

2.4. Lunar CubeSat Missions 32

tion in the target orbit, takes approximately 150 days. After 1 year of operation in orbit, it will continue
into its end-of-life procedure by crashing into the surface of the Moon, poetically becoming what it was
meant to observe.

The halo orbit selected for the mission is a quasi-periodic halo orbit around the Earth-Moon L2 point.
The specifics of a halo orbit have been described in subsection 2.4.2, but there are crucial differences
between NRHOs and quasi-periodic halo orbits. Quasi-periodic means that there is a certain level of
periodicity, but the orbit will not precisely return back to its original position. The quasi-periodic orbit
is characterised by symmetry and has sinusoidal motions in multiple planes. It is centred around the
Lagrange point and are generally less stable thanNRHOs, requiringmore station-keepingmanoeuvrers.
As can be seen from Figure 2.12, the orbit is significantly more symmetric compared to the elongated
NRHO. In addition, the perigee of the orbit is not passing close to the lunar surface, but rather remains
at a distance from the Moon. For this reason, this type of orbit is more suited for Moon observations
and experiences fewer accelerating and decelerating motions. Finally, the Jacobi constant for this
orbit, detailing the sum of kinetic and potential energy of the spacecraft in orbit, is equal to Cj = 3.09.
With this constant, the so-called ”forbidden regions” for the spacecraft can be assessed, without the
application of additional forces.

Figure 2.12: Three views on the LUMIO operative orbit, in all three Cartesian planes. The Moon and Earth-Moon L2 point are
clearly visible. Multiple orbits have been simulated. Note that the axes are normalised. Figure taken from Topputo et al. [52].

In addition to the main scientific goals of LUMIO, it will execute an autonomous navigation experiment
using its images taken of the lunar surface. These images are processed so that the spacecraft posi-
tion with respect to the Moon is computed, in a Moon-centred reference frame. After this, an Extended
Kalman Filter (EKF) is used to estimate the current state of the spacecraft. From Monte Carlo simu-
lations, position accuracy in the z-axis lies below 100 [km] and below 10 [km] in the other two axes,
which is regarded sufficient for vision-based navigation.

The overall LUMIO system design will now be examined. A CAD image has been included in Fig-
ure 2.13a. An approach in which zero redundancy is tolerated was adhered to, and multiple scenarios
involving COTS have been approached. In Table 2.3 below, the most important system requirements
for this mission have been displayed. Also, the system requirements will provide insight into the size
and volume of the entire system. Two subsystems will be analysed in particular: the propulsion system
and the ADCS. Finally, a closer look will be given to the power and mass budgets of the system.

2.4. Lunar CubeSat Missions 33

ID Requirement
SYS-01 The mass of the spacecraft shall not be greater than 28 kg [52].
SYS-02 The spacecraft volume shall not exceed that of a 12U CubeSat [52].
SYS-03 The satellite shall be able to operate in the Lunar environment for at least 1 year [52].

PROP-04 The RCS propulsion system shall provide a Total Impulse for all RCS tasks of 110 Ns
[52].

ADCS-01 The spacecraft shall provide an absolute performance error of better than 0.18 deg
half-cone during Moon pointing for scientific acquisitions [52].

ADCS-02 The spacecraft shall provide a relative performance error of better than 5 arcsec over
66.7 ms during Moon pointing for scientific acquisitions [52].

ADCS-03 The ADCS shall provide a maximum slew rate of 0.5 deg/s [52].

EPS-01 The EPS shall have a power generation larger than 53.8W average and a peak power
capability of 68 W [52].

Table 2.3: Subsystem requirements for the LUMIO mission, adapted from [52].

LUMIO’s propulsion system consists of two distinct subsystems, namely the main propulsion system
for orbital manoeuvrers, and the reaction control system, which is part of the ADCS for torque com-
pensation during manoeuvrers and reaction wheel desaturation. The main thruster system has been
designed during the Phase B design but will most likely change during the following design phases. A
1 [N] green mono-propellant designed by ECAPS was chosen after an extensive trade-off (see Cer-
vone et al. [11]). More importantly for the research at hand, the Reaction Control System (RCS) is a
cold gas system that uses a refrigerant, R134a as propellant, in order to save tank volume compared
to completely gaseous propellants. R134a is present in liquid and gas state at the same time, which
makes it beneficial for this purpose. The RCS is equipped with four different thrusters, so that 3-axis
control of the spacecraft is possible.

In addition to the thruster control system, an ADCS system designed by Blue Canyon Technologies,
the XACT-100, has been chosen for the LUMIO mission. The LUMIO ADCS has been extensively
described in Rizza et al. [41]. A closer look to the XACT-100 system can be given in Technologies
[50]. The system consists of an electronic circuit board, star trackers and gyroscopes. In addition, two
external star trackers, three external sun sensors and four reaction wheels have been added. These
external components have also been chosen from Blue Canyon Technologies.8 Within the XACT-100,
the gyroscopes serve to compute the angular rate of the spacecraft and be able to assess the attitude
of the spacecraft in combination with the added star trackers. When the angular rate of the spacecraft
exceeds 2.0 [deg/s], however, the star trackers do not work adequately any more, and the gyroscopes
need to assess the angular rate on their own. Three of the external reaction wheels, the RWp100,
are aligned with the spacecraft body axes as shown in Figure 2.13b. They have a angular momentum
capacity of 100 [mNms]. The fourth reaction wheel, the RWp050, has a momentum capacity of 50
[mNms] and is aligned equally with all axes. The entire system is designed to adhere to the limits set
by the ADCS requirements as presented in Table 2.3.

8URL: https://www.bluecanyontech.com/components [Accessed 5 December 2024]

https://www.bluecanyontech.com/components

2.5. Embedded Systems 34

(a) Computer-aided design image of the LUMIO spacecraft after
Preliminary Design Review, as shown in Topputo et al. [52]. Main

thruster system and the reaction control system are shown, indicating
four distinct thrusters. Solar arrays are deployed.

(b) LUMIO spacecraft body axes, as shown in Topputo et al. [52].

Figure 2.13: LUMIO system overview.

The specific pointing strategy of LUMIO consists of two steps, which include Moon-pointing of the
LUMIO-Cam and power generation by the solar arrays. The z-axis of the spacecraft body frame is as-
sumed to be aligned with the optical instrument, the y-axis is aligned with the solar arrays and the x-axis
complements the coordinate system by use of the right-hand rule. Now, the z-axis has to be pointed
towards the Moon, using its own optical navigation-based capabilities for feedback of its attitude. Next,
sun sensors are used to let the solar arrays point perpendicularly to the Sun, whilst they can also turn
around their own axes. In this way, optimal attitude is attained by LUMIO.

Finally, the mass budget as shown in Table 2.4 and the power budget as shown in Table 2.5 will be
given a closer look to. Each subsystem is displayed for its absolute contribution towards to the total,
as well as its relative contribution to the total in %, taking the total wet mass as the final total for the
mass budget. The power budget is displayed for the science mode, during which impact flashes are
detected.

Subsystem Mass [kg] [%]
Payload 4.80 16.8

Data processing unit 0.25 0.9
Communication 1.43 5.0

Electrical power system 4.27 15.0
On-board computer 0.56 2.0

ADCS 2.13 7.5
Propulsion 5.34 18.7

Thermal control 0.21 0.7
Structure 4.29 15.0

Total dry mass 23.28 81.5
Margins 3.51 12.3
Propellant 1.77 6.2

Total wet mass 28.56 100

Table 2.4: LUMIO mission mass budget, adapted from
Topputo et al. [52].

Subsystem Power [W] [%]
Payload 19.0 21.4

Data processing unit 5.78 6.5
Communication 14.19 16.0

Electrical power system 10.9 12.3
On-board computer 5.78 6.5

ADCS 2.91 3.3
Propulsion 1.83 2.1

Thermal control 3.15 3.5
Required power 66.71 75.0
w/o primary loss

Margins 22.23 25.0
Total (margined) 88.94 100.0
Max. available 98.76 –

Table 2.5: LUMIO mission power budget, adapted from Topputo
et al. [52].

2.5. Embedded Systems
Throughout a broad range of industries, such as the automotive, aerospace, health equipment and
energy, devices or systems are used that contain computing devices and specialised software, but are
not externally observable and, in general, inaccessible to the user. Within spacecraft, for example, data
handling and navigation systems are embedded systems that are programmed to perform a specific

2.5. Embedded Systems 35

task within a given amount of time, using low power and having low size and cost. An important aspect
concerning embedded systems is the interface between hardware and software. Specific considera-
tions in the design of software need to be taken into account in order to successfully interact with the
hardware. In this section, a brief overview of these basic principles will be provided. In addition, a
number of spacecraft on-board computer systems will be presented, to provide the reader with current
developments in this field. Finally, a widely-used development platform, the STM32 Nucleo board, will
be elaborated upon.

2.5.1. Overview of Basic Principles
When creating software for a software-hardware interface, three main aspects need to be taken into
consideration: concurrency, scheduling and real-time operations. Co-design between the software and
hardware should always be applied. Moreover, compared to traditional programming, limited resources
in terms of, for example, power and memory size impose difficulties, as well as the fact that the code
should be event-driven, with interruptions and initiations.

Concurrency is a characteristic of systems in which several operations or computations are executed
at the same time, and could interact with each other. Each computation is called a thread, and multiple
threads can make up a process. Only one process is executed at the same time, but in case multiple
threads (multi-threading) are present within this process, multiple computations are being performed
and, therefore, concurrency is present in a Central Processing Unit (CPU). In order to handle this
concurrency, hardware also has multiple tools such as timers, power management devices and com-
munication devices. In this way, hardware and software work together to be able to process all threads.

Scheduling means that certain pieces of code have to be executed before other pieces of code are ex-
ecuted. A CPU can manage this by using event-triggered interrupts, which means that certain pieces
of code are activated when a specific hardware event occurs. An example of such an event-triggered
interrupt is a bike computer, which gives as output your velocity (activated code), after your wheel has
started turning (hardware event). Different techniques for scheduling are available: static scheduling
makes the tasks run in the same order each time, whereas dynamics scheduling mixes up the schedule
based on external factors. Also, decisions can be made about the requirement of completing one task
before the other. Different schedulers are common to use, such as the run-to-completion and round-
Robin schedulers.

As a final consideration in the design of the software-hardware interface, the usage of real-time oper-
ating systems (RTOS) needs to be explained. These operating systems generally have three require-
ments: their execution times should be predictable, they should manage timing and scheduling and
they should be working fast. As examples, RTOS have to be able to efficiently manage tasks, han-
dle interrupts and create priority-based scheduling formats. Also, error handling, power management
and communications and data exchange between tasks are primary functions of real-time operating
systems. All in all, an RTOS is a perfectly stream-lined operating system that, in contrast to regular
phones and computers, executes its tasks quickly and effectively. It can be seen as an ”efficient man-
ager of the embedded system”. [37]

To work properly, embedded devices need embedded software to function properly. An RTOS can aid
in the handling of all tasks, and could potentially be included in the software requirements. Typical soft-
ware languages include C or C++, but over the years a variety of high-level languages such as Python
or Java have also been included in this range. After the software has been created, the communication
line between the processor (on which the software is executed) and the other hardware components
should be established. These lines are called protocols and many different options exist, such as Uni-
versal Serial Bus (USB), Ethernets, serial ports or Serial Peripheral Interface (SPI).

Looking at serial ports specifically, modern-day implementations of these are established using a Uni-
versal Asynchronous Receiver-Transmitter (UART), a form of asynchronous serial communication. Se-
rial communication means that data is sent one bit at a time, sequentially. Asynchronous means that
the end points of the communication lines (for example, a computer and a thermometer) are not con-
tinuously synchronised by a specific predetermined signal. Instead, the data stream or the bits contain

2.5. Embedded Systems 36

information on the synchronisation by using start and stop signals. The data that is being sent and
received, should be formatted for transmission, so that signals such as these start and stop signals are
added to the original message. There exist different methods for this formatting, called data framing pro-
tocols. Examples of these data framing protocols are the Point-to-Point Protocol (PPP) and the Serial
Line Internet Protocol (SLIP). A different form of serial communication is I2C (Inter-Integrated Circuit),
which is synchronous in contrast to UART and is generally faster. It is typically used for communication
through different devices on the same bus.

2.5.2. CubeSat OBC
Each year, NASA publishes its State-of-the-Art of Small Spacecraft Technology report ([22]), highlight-
ing annual trends in small satellite developments. In the command and data handling system (C&DH)
of CubeSats, two general trends can be identified. First of all, reliability and performance of these sys-
tems need to be significantly increased for the scientific goals they serve nowadays; retrieving large
amounts of data and handling complex commands requests this of the systems. On the other hand,
affordable and easily developed systems leveraging open-source software and hardware are offering
a straightforward pathway into space system development, particularly for student teams or individuals
without specialised spacecraft knowledge.

Over the last years, a number of commercial vendors of small on-board computers have emerged,
offering the processors, memory storage devices, the electrical power system (EPS) and a number
of input/output (I/O) ports. In addition, these components are designed for radiation protection for mis-
sions of longer duration, in LEO or to deep space. A standard form factor has been adopted throughout
the board designs, called the PC/104 form factor, with dimensions 9×9.6 [cm] so that it fits within the
standard CubeSat form factor of 10×10 [cm]. In addition, these printed circuit boards (PCB) are often
stackable with other subsystem boards, allowing for easy integration and a modular design. An exam-
ple of stacked PC/104 form factor PCBs is shown in Figure 2.14.

Figure 2.14: Stacked PC/104 form factor PCBs for CubeSat application, as shown in Nieto and Emami [40].

The CPU of an OBC is a micro-controller, which has to be connected to power, memory and other
ports externally. Over the past years, commercial vendors are also offering micro-controllers (MCU),
which are compact, all-in-one systems that integrates a microprocessor, memory, and peripherals (e.g.,
GPIO, timers, ADCs, UART, I2C, SPI) on a single chip. Note that GPIO stands for General-Purpose
In/Out and ADC stands for Analog-to-Digital Converter. These MCUs are therefore ideal for the devel-
opment of embedded systems. For space system developers, the use of ready-made hardware and
software platforms that can be implemented without significant integration efforts with other systems is
highly preferred. Popular micro-processors used in spacecraft applications are the ARM processors.
Micro-controllers typically used in modern-day CubeSat applications are the STM32 controllers from
STMicrocontrollers and the Texas Instruments MSP430 series.

As a final example, the on-board computer of the LUMIO mission will be examined. The specific OBC

2.5. Embedded Systems 37

used is the Argotec Fermi OBC, as described in Argotec [5]. It contains a dual-core processor that
is radiation-hardened, has 256MB of random access memory, requires 5 [V] of input voltage and has
a typical power consumption of 5 [W]. It has a large number of digital peripherals, among which are
Serial Peripheral Interfaces, UART and GPIO ports. The TRL is 9 out of a total of 9 and the entire OBC
fits in a 0.4U volume.

2.5.3. STM32 Nucleo
The STM32 Nucleo boards9 are development platforms created by STMicroelectronics, designed to
accelerate the development of applications based on STM32 microcontrollers. These boards provide
an accessible way to experiment with STM32microcontrollers, allowing developers to quickly prototype
and test their applications. They feature an affordable and user-friendly design, making them suitable
for beginners, students, and professional engineers alike.

Figure 2.15 shows the STM32 Nucleo-F303RE board, a versatile development platform featuring an
ARM Cortex-M4 microprocessor. Nucleo boards are widely used for various applications, including
embedded system development, educational projects, and debugging and prototyping. They provide
an accessible way to test external sensors, actuators, and communication modules, making them
ideal for beginners and professionals alike. The STM32 Nucleo boards integrate seamlessly with
STM32CubeIDE (Integrated Development Environment), a software suite tailored for STM32 devel-
opment. STM32CubeIDE supports code development in C or C++, peripheral configuration using the
STM32CubeMX graphical interface, and firmware uploads via the onboard ST-LINK programmer/de-
bugger. The USB interface simplifies both power supply and communication, allowing efficient proto-
typing and real-time debugging.

Figure 2.15: Photo of the STM32
Nucleo RE303RE development board,
including an ST-LINK on the top for

communication via USB.

Figure 2.16: STM32IDE view of the microcontroller on the STM32F303RE
board, including .

The schematic view of the microcontroller shown in Figure 2.16 demonstrates the configuration of
peripherals within the STM32IDE environment. Multiple peripherals, such as UART for serial commu-
nication and timers for generating signals, have been configured. In this example, the timers are set to
output pulse-width modulated (PWM) signals, which can be used to control external devices, such as
electrical thrusters or motors, by modulating their response based on the received signal. The labelled

9URL: https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html [Accessed 5 December 2024]

https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html

2.6. Vacuum Arc Thrusters 38

connections surrounding the processor in the schematic are referred to as GPIO pins, grouped into
ports (e.g., PA, PB, PC). Each pin can be assigned to specific peripheral functions, such as UART com-
munication or PWM signal generation, depending on the application requirements. These GPIO pins
correspond to physical connections on the Nucleo board, allowing developers to interface with external
hardware like sensors, actuators, and communication modules.

2.6. Vacuum Arc Thrusters
This section can be viewed as an addition to subsubsection 2.3.3.2 and focuses on the specific type of
pulsed plasma thrusters formerly introduced as vacuum arc thrusters. First, the working principle be-
hind these thrusters will be examined in-depth, after which the variation in thrust within control systems
for VATs will be elaborated upon. Here, most aforementioned concepts come together and form a solid
basis for the research in this report. Finally, an overview of existing vacuum arc thruster modules is
provided to assess the state-of-the-art.

2.6.1. Working Principle
Asmentioned previously, a specific type of electrical micro-propulsion system is the vacuum arc thruster
(VAT), which operates with the components as shown in Figure 2.17. This thruster design includes an
anode and cathode separated by a thin layer of insulating material, all contained within a vacuum cham-
ber. When a sufficiently high voltage is applied between the anode and cathode, it initiates a vacuum
arc. This arc generates free electrons from the electrode surfaces, either through thermionic emission
due to heating or field emission driven by the strong electrical field. These electrons gain kinetic en-
ergy from the electric field and, upon colliding with the metal surfaces, cause localised heating and the
formation of so-called cathode spots. Material from these spots is ejected as a vapour, which quickly
becomes fully ionised to form a plasma. This plasma, conducting the current between the cathode and
anode, is accelerated by the electric field to velocities up to approximately 104 [m/s], thereby generat-
ing thrust. This acceleration of ions not only facilitates the expulsion of plasma but directly results in
the creation of thrust. By maintaining the voltage between the anode and cathode at a sufficient level,
and by modulating operational parameters, the thruster can continuously generate and control thrust,
making vacuum arc thrusters a versatile choice for micro-satellite propulsion. [29]

Figure 2.17: Schematic overview of the components of a vacuum arc thruster.

Miniaturisation of vacuum arc thrusters was only possible after the innovation of the triggerless oper-
ation. This included the addition of a layer of a specific material, for example graphite, on the outer
surface of the anode, cathode and insulation layer. The coating made sure that lower voltage levels
were needed for the creation of the vacuum arc, which could be reached in CubeSat designs. In re-
cent years, research has been dedicated to the development of more optimal VAT systems, as their
demonstrations in space are limited. One example of this is the Micro Cathode Arc Thruster (µCAT)
developed by the George Washington University [10], launched on board a 1.5U CubeSat in order to
de-tumble the CubeSat after deployment. Moreover, a vacuum arc thruster developed by Hypernova

2.6. Vacuum Arc Thrusters 39

Space Technologies was launched on board Endurosat’s Platform-2 mission, in order to demonstrate
in-orbit manoeuvrers. Research such as presented in Kühn and Schein [30] shows that insufficient
reliability is achieved in low-power modes below 1 [W], and that solutions exist by using a combination
of specific geometry and power supply.

In order to obtain a preliminary idea of the performance ranges of vacuum arc thrusters, Table 2.6 shows
an overview of existing modules, along with its maximum thrust level, specific impulse, size and mass.
Further specification on these modules will be presented in subsection 2.6.2 and subsection 2.6.3.

Name Thrust-to-power Max. thrust level Vacuum specific Size
ratio [mN/kW] [mN] impulse [s]

Pocket Rocket 10 0.2 700 45×45×25 [mm]
85 [g]

UWE-4 VAT 1.5 0.002 1000 50 [g]
AIS-VAT1-PQ 5 0.026 87 42×42×21 [mm]

56 [g]

Table 2.6: Existing vacuum arc thruster characteristics overview. [1] [29]

2.6.2. Pulse-Width Modulation
Since vacuum arc thrusters are electrical modules, they receive electrical signals from the OBC or
other control board for their activation. The thrusters themselves are connected to the EPS for their
basic power input, which is set to a standard voltage (usually 5 [V] or 3.3 [V] and power level. The final
power level determines the output thrust of the VAT, and is not able to vary throughout the mission. This
means that each vacuum arc thruster on board a spacecraft can only be turned on or off, implying that
a control algorithm based on, for example, PID control cannot be implemented. This can be compared
to the working of cold gas thrusters, which use valves that usually have no intermediary positions they
can deflect to, but only fully close or fully open. Continuous thrust outputs seem not to be possible in
this case. Luckily, a technique called pulse width modulation (PWM) can ascertain a varying thruster
output. [12]

VATs are ideal modules to use for PWM since their thrust comes from pulsed vacuum arc discharges.
The explanation can best be complemented with an example. (SSP) [1] shows the Pocket Rocket data
sheet from the company Solid State Propulsion. The maximum thrust output is 200 [µN] for an input
power of 20 [W], and the pulse repetition rate varies between 0.1 to 10 [Hz]. For this example, it is
assumed the maximum thrust is obtained by the power input and the repetition rate is set to 10 [Hz],
corresponding to 10 discharges every second. The discharges are activated by the electrical signals
going into the thruster, which should correspond to the desired thruster activations. The 10 repetitions
per second imply that the period of a signal is now set to 0.1 [s], and the signal does not necessarily
have to output its maximum value during that period. The duty cycle, given in percentages, indicates
for which part of that period the signal is on, and for which part the signal is off. In the exemplary
Figure 2.18 and Figure 2.19 below, the signals are shown with a 50% duty cycle and a 25% duty cycle,
respectively.

2.6. Vacuum Arc Thrusters 40

Figure 2.18: Square wave signal of 10 [Hz] with a 50% duty cycle over 1 second.

Figure 2.19: Square wave signal of 10 [Hz] with a 25% duty cycle over 1 second.

In order to vary the thrust output of the vacuum arc thruster as mentioned above, the duty cycle of the
signals need to be varied. A duty cycle of 100% would in this case result in the maximum thrust, so 200
[µN], whereas a duty cycle of 50% as indicated in the figure will result in a thrust output of 100 [µN].
The signals provided by the on-board computer or other control board can be modulated in their width
by adjusting the duty cycle, which in their turn results in varying thrust level outputs. For this reason, the
technique is called pulse-width modulation. In control problems, the desired control torque for keeping
the spacecraft at the correct (reference) attitude is computed at each time step. This computation is
done by the on-board or ADCS computer and results in the computation of desired thrust outputs per
thruster, based on their configuration, as was shown in subsubsection 2.3.3.2. Since the thrust level
at 100% duty cycle for each thruster is known, the desired thrust can be compared to the maximum
thrust, and a duty cycle is immediately computed based on their ratio. This duty cycle is converted into
the signals coming from the CPU, and directly converted to vacuum arc discharges at the desired rate,
resulting in the desired thrust output per thruster.

An important hardware parameter to take into account is theminimum impulse bit (MIB), which indicates
the minimum signal length the thruster responds to. A signal that has a duration smaller than the MIB
will not result in any thruster output, and should therefore always be considered in control algorithm
development. Finally, as was also analysed in Cilliers, Steyn, and Jordaan [12], a more advanced
method of varying the thrust level from thrusters is the use of Pulse-Width-Pulse-Frequency Modulation

2.6. Vacuum Arc Thrusters 41

(PWPFM), in which the frequency is also varied during the creation of signals from the control torque.
In this way, the MIB of the thrusters is less constraining, since it allows for smaller thrust outputs.

2.6.3. Overview of Existing Modules
The work presented by Kronhaus et al. [29] shows a suggested attitude control system for small satel-
lites that are flying in formation with the use of vacuum arc thrusters. In this research, small satellites
are expected to replace current large satellites for the space segment of a communications network
or Earth observation sensor network. Large satellites that can currently not keep a constant line of
sight with a ground network are then replaced by smaller satellites flying in a swarm, so that constant
communication is possible. Due to limitations on the resources available to such satellites, their relative
distances should be kept below a minimum value, for which orbital manoeuvrers as well as attitude con-
trol are of importance. For these actions, electrical propulsion shall be used, so that thrust and power
limitations are a prioritised consideration. The specific CubeSat investigated in this research was the
University ofWürzburg experimental 4 satellite (UWE-4), which include a number of identical CubeSats.

The orbital manoeuvrers tomaintain relative proximity between the satellites are done by applying thrust
in the in-track and anti-in-track directions. Drift due to the Earth Gravitational Model and drag effects
was taken as the test for the orbital control algorithm. Based on two-line element data of four existing
CubeSats, a worst-case and regular-case scenario was examined, in which a delta-V requirement of
15 [m/s] and 7.5 [m/s] was estimated. In addition to the orbital manoeuvrers, the thrust vector of the
UWE-4 CubeSat had to be pointed in the in-track direction. In order to achieve this, a two-axis attitude
control system was implemented based on four vacuum arc thrusters, all on the edges of one side of
the CubeSat and pointing in the same direction. It was assumed that one of the axes is allowed to be
uncontrollable. Reaction wheels were discarded in this analysis, since power, mass and volume de-
mands were too high in case electrical thrusters were also present. On-off control without modulation
was used for the thrusters, so that the highest possible thrust was applied continuously, and because
this led to a time-optimal manoeuvrer for attitude control based on thrusters. Due to energy limitations
on the CubeSat, only one thruster was allowed to fire at the same time with a maximum thrust level of
2 [µN].

A vacuum arc thruster developed by the University of Würzburg was tested for this research, and it was
found that using four of these thrusters would achieve the mission requirements. The required delta-V
in the general-case scenario could be reached using a tungsten cathode, with an Isp of approximately
1000 [s], and a total propellant / cathode mass of 1 [g] and 2 [W] of power available for the propulsion
system. The thrust-to-power ratio was found to be approximately 1.5 [µN/W]. Next to the successful
completion of formation flying proximity requirements, a pointing accuracy of 0.5◦ was achieved, using
single thrust values of 1 [µN]. The thrusters were used as part of the CubeSat structure and would
only require 1/4 of the volume and 1/5 of the mass of the entire CubeSat. With the research, CubeSat
formation flying using a vacuum arc thruster system was proved to be possible.

The company Applied Ion Systems, focused on research and development in advanced electrical
propulsion systems for small satellites, has developed the AIS-VAT1-PQ thruster, a micro vacuum
arc thruster that can be used in 1U CubeSats. Its size is 42×42×21 [mm], its maximum thrust is 26
[µN] for a total power input of 5 [W], resulting in a thrust-to-power ratio of approximately 5 [mN/kW].
Its total mass is 56 [g] and it has a specific impulse of 87 [s]. Note that this is a relatively small example,
but its modularity introduces great advantages for especially PocketQube design.10

On a final note, Saddul et al. [44] present the CubeSat De-orbiting All-Printed Propulsion System (Cube-
de-ALPS), a novel thin-film VAT developed by the University of Southampton in collaboration with the
European Space Agency. Designed to enhance the de-orbiting capabilities of CubeSats smaller than
3U, Cube-de-ALPS features a flexible base with coplanar arrays of vacuum arc micro-thrusters (micro-
VATs) and supporting electronic subsystems printed onto it. A key innovation highlighted in the paper is
the introduction of a novel 5x5 thruster setup, optimising the distribution and operation of micro-VATs to
effectively manage the CubeSat’s de-orbiting process. Next to this, a gyroscope and Faraday cup were

10URL: https://appliedionsystems.com/products/ [Accessed 09 January 2025]

https://appliedionsystems.com/products/

2.7. Conclusion 42

present in the new propulsion system for attitude determination. The system’s performance, particularly
its de-orbiting efficiency from a 1400 km orbit, was validated through a series of high-fidelity numerical
simulations that incorporated six degrees of freedom for coupled attitude and orbital dynamics. The re-
sults confirmed Cube-de-ALPS’s viability for ensuring the de-orbit of CubeSats from altitudes as high as
1400 km, significantly enhancing space debris mitigation efforts for small satellites. This advancement
in micro-propulsion technology represents a significant step forward in the sustainable management of
CubeSats, offering a practical solution for their end-of-life disposal.

2.7. Conclusion
This literature review provided the reader with information about developments within the field of six
distinct topics, based on six pre-determined literature review research questions. A broad overview
was given on the past, current and future lunar CubeSat missions in order to give a solid foundation
of the current developments and achievements and give an elaborate answer to LQ-01. These top-
ics were primarily discussed in Section 2.4 but also mentioned throughout the rest of the literature
review as exemplary insights. Next, an overview of spacecraft attitude dynamics and control was pro-
vided in Section 2.3, highlighting physics, control algorithm solutions and the lunar control environment,
effectively addressing LQ-02. Actuators for effective spacecraft control and specifically CubeSat con-
trol were discussed in much detail, as well as the integration methods for attitude state propagation.
In addition, in line with LQ-03, possibilities within thruster configurations were mentioned, as well as
conversion from required control torques to thruster output values. This information was provided in
subsubsection 2.3.3.2. Next, providing an answer to LQ-04, an introduction to embedded systems was
provided in Section 2.5 including all aspects to take into account when converting a developed algo-
rithm to a software-hardware interface. In addition, a current overview of on-board CubeSat computers
was provided with the specification of the widely-used STM32 Nucleo board. Finally, as a specific ex-
ample within electrical thrusters, vacuum arc thrusters were explained along with current developments
in their field. The modulation of signals for effective usage of VATs in control systems was explained
as well, all included in Section 2.6 of this report and giving answer to LQ-05 and LQ-06. Based on all
the information gathered from research and summarised in this chapter, it can be concluded that all
literature research questions have been answered sufficiently and that a firm basis for the start of the
research in the rest of this report has been established.

The final goal of this literature review is to identify knowledge gaps and therefore fields of interest for
research to provide answers for. From the information provided in this chapter, a number of topics were
selected in which current research does not suffice yet, or in which additional research is interesting for
future space missions. First of all, electrical thruster applications on CubeSats have been investigated
in the past but research to specific applications in attitude control lacks. In addition, the papers that
do analyse this do not present a wide range of configuration options to be tested, which can lead to a
more profound verification of algorithm robustness. Moreover, the Technology Readiness Levels of the
advantageous electrical micro-propulsion units is far behind that of conventional non-electrical modules,
calling for an increase in its application in missions, which starts in the inclusion in research. The lunar
environment, and specifically the near rectilinear halo orbit that is to be attained by the NASA Lunar
Gateway spacecraft, also poses an interesting application for CubeSat deployment in the future due
to its stable nature. Also, the future LUMIO mission is relevant for further investigation with respect to
its attitude control system, since accurate pointing is desired for this mission and research in this area
can add to the verification of the final attitude control system. Moreover, LUMIO’s final mass, volume
and power requirements for the system as a whole can be re-iterated upon using new ADC strategies.
Finally, the application of an ADCS simulation environment to existing hardware modules can add to
the validation of existing and new research and introduce educational opportunities in this area. These
topics all contribute to the research questions that have been established in Chapter 3.

3
Research Questions & Hypotheses

3.1. Introduction
In this chapter, the main research question and sub-questions are presented, stemming from the litera-
ture review in Chapter 2. These questions aim to address the identified knowledge gaps and contribute
to the broader body of knowledge. Each question and the research objective will have a unique identi-
fier for consistency throughout the report, with the research centered entirely around answering these
questions.

The knowledge gap identified in the previous chapter highlights opportunities in CubeSatmicro-propulsion
research, driven by advancements in miniaturization, cost reduction, and rapid deployment. While non-
electrical thrusters are widely used, electrical thrusters lag behind in Technology Readiness Level and
have rarely been studied for standalone ADCS applications. This gap offers potential benefits in cost,
mass, and volume for CubeSats. The ESA LUMIO mission, launching in 2027, provides an opportu-
nity to explore replacing its ADCS with an all-electrical thruster system, advancing both simulation and
real-world feasibility studies.

3.2. Research Questions
Based on the aforementioned research gap, the research objective can be described as written below.

Research Objective [RO-01]: Assess various electrical micro-thruster configurations on the LUMIO
mission, a meteoroid-detecting 12U CubeSat in cis-lunar environment, for their attitude control perfor-
mance, robustness and connectivity.

This main research objective automatically leads to the primary research question as described below.

Research Question [RQ-01]: What is the impact of adjusting the ADCS configurations, consisting of
electrical thrusters only, on the attitude control performance, robustness and connectivity of the LUMIO
mission, a 12U lunar CubeSat?

The last part of RQ-01 states three important terms: performance, robustness and connectivity. Each
of these three should be sub-divided in additional research questions, to obtain a sufficient idea of what
is meant with these terms and guide the research into the desired direction. With performance, the re-
search will attempt to assess whether replacing the current LUMIO ADCS with electrical thrusters will
work, and if so, what its response will be for different electrical thruster configurations. Replacement
means, removing all the reaction wheels and current thrusters, and placing electrical thrusters in their
place. Direct comparison between the old and new systems can then also be conducted, and feasibility
can be assessed. If the system works, it can be tested for robustness by introducing extreme situations,
so that the attitude response to these can be assessed. Finally, connectivity addresses the practical
application of the entire research; is it possible to adapt an ADCS simulation to existing hardware mod-

43

3.3. Hypotheses 44

ules and assess their performance in real life?

Sub-question 1 [SQ-01]: How do different electrical thruster configurations influence the pointing ac-
curacy capabilities and power requirements of a 12U meteoroid-detecting CubeSat in a near-rectilinear
halo orbit in the Earth-Moon L2 point using a PD-based control algorithm?

• [SQ-011]: Which orbital characteristics are relevant for the development of the attitude control
algorithm?

• [SQ-012]: Which and how many different electrical thruster configurations shall be taken into
account?

• [SQ-013]: Will the electrical-thruster-based attitude control system be able to adhere to the LU-
MIO ADCS requirements?

• [SQ-014]: What are the power requirements of using electrical thrusters for the ADCS?
• [SQ-015]: How does the usage of electrical thrusters for the ADCS compare to using reaction
wheels with a specific desaturation strategy in terms of power usage?

• [SQ-016]: How does the usage of electrical thrusters for the ADCS compare to using reaction
wheels with a specific desaturation strategy in terms of pointing accuracy?

Sub-question 2 [SQ-02]: What influence do single thruster failure, de-tumbling manoeuvrers and solar
array deployment have on the pointing accuracy of an ADCS consisting of electrical thrusters?

• [SQ-021]: What are the thruster failure modelling options?
• [SQ-022]: Are all previously developed configurations feasible within the robustness tests?
• [SQ-023]: What is the maximum angular rate for which accurate de-tumbling is possible?
• [SQ-024]: What are the driving factors behind the difference in pointing accuracy due to solar
array deployment?

Sub-question 3 [SQ-03]: How can the control algorithm be effectively transformed in embedded code
so that functional connectivity is established with an existing vacuum arc thruster hardware module?

• [SQ-031]: What is the influence of the hardware specifications on the software adaptation?
• [SQ-032]: To which extent can the software adaption be generalised for a broader range of hard-
ware modules?

• [SQ-033]: Which hardware module is suitable to serve as a satellite OBC?
• [SQ-034]: What is the difference in execution times between a hardware-integrated simulation
and a purely mathematical simulation?

• [SQ-035]: Which aspect within the hardware-integrated simulation causes the largest difference
in execution time?

3.3. Hypotheses
Based on the previous research questions and sub-questions, a number of hypotheses can be created
that are tested in this research work. Hypotheses adhere to rules set out by, for example, Williamson
[55], which are: good hypotheses should be stated in correct terminology, should be as brief and clear
as possible, describe a predicted association or distinction among two or more variables, can be tested
and are rooted in previous understanding, derived from a review of literature or theoretical frameworks.

The approach adhered to in hypothesis generation is firstly identifying themost critical sub-sub-questions,
and formulating informed hypotheses regarding them. From there, more general hypotheses can be
constructed for the sub-questions, which naturally leads to a hypothesis for the main research question.
In Table 3.1 below, each row represents a hypothesis for this research and the first column indicates
the unique identifier for the hypothesis. The second column indicates the research question it attempts
to make a prediction for, and the third column states the hypothesis.

3.3. Hypotheses 45

ID RQ Hypothesis

H-01 SQ-011

The position of the spacecraft with respect to the Moon is important for
determining its reference attitude as well as disturbance due to the grav-
ity gradient torque. The position of the spacecraft with respect to the
Moon, Sun and Earth is relevant for the solar radiation pressure exerted
on its panels.

H-02 SQ-013
As long as three-axis stabilisation of the thruster configuration is possi-
ble, the LUMIO ADCS requirements are adhered to using an electrical-
thruster-based ADCS.

H-03 SQ-014/015

It is expected that the average maximum power input for electrical
thrusters in an ADCS is 20 [W], since this was the maximum value ob-
served within the existing vacuum arc thruster modules. For thruster
configurations between 6 and 12 thrusters, the total could amount to
240 [W] of input power. Compared to the several Watts required by a
reaction wheel system, it is expected that this ADCS proposal will re-
quire significantly more power.

H-04 SQ-01

The overall pointing accuracy of a 12U meteoroid-detecting CubeSat
in cis-lunar environment will be increased for an increased number of
thrusters present for the ADCS, as long as three-axis stabilisation of the
spacecraft is possible.

H-05 SQ-022

Configurations with three thruster pairs, or equivalently six thrusters, or
fewer are not suitable for single thruster failure tests, since three-axis
stabilisation will not be possible with the malfunctioning of one of the
thrusters.

H-06 SQ-023
Within the operational limits of the hardware components, any angular
rate is feasible for balancing as long as three-axis spacecraft stabilisa-
tion is possible.

H-07 SQ-024
The most significant factor in performance difference between deployed
and undeployed solar arrays is the change in mass moment of inertia.
Solar radiation pressure increase will not be as significant.

H-08 SQ-02

All configurations as assessed for SQ-01 will be able to counteract de-
tumbling and show the required performance with deployed solar arrays,
but configurations that rely on the geometrical position of one of their
thrusters for three-axis stabilisation will not be able to counteract single
thruster failure.

H-09 SQ-035
The most critical execution time lengthening will occur due to the com-
munication line, since messages need to be encoded, sent, received,
and decoded again.

H-10 SQ-03

Transformation of on-board calculations as present in an ADCS simula-
tion have to be converted to code in C and uploaded to amicro-controller
unit, which in its turn is connected to thruster modules and has been gen-
erate and receive thruster signals.

H-11 RQ-01

Adjusting the electrical thruster configuration on the LUMIO mission’s
12U CubeSat will enhance its attitude control performance, robustness,
and connectivity by improving pointing accuracy with an optimised num-
ber of thrusters, ensuring resilience against de-tumbling and solar array
deployment, and enabling functional integration with hardware through
embedded code adaptation.

Table 3.1: Hypothesis table containing hypothesis ID, related research questions and hypothesis.

4
Attitude Control Simulation

4.1. Introduction
Within the scientific framework laid out in Chapter 2, a number of research topics to further investigate
could be introduced. In order to effectively scope this research within acceptable bounds, Chapter 3
proposed a main research question, with three sub-questions as guiding tools within this work. In or-
der to find answers to these, the research should also be divided in three distinct areas. This chapter
will cover the entire first and second sub-questions, which will dive into the different electrical thruster
configurations, their application to LUMIO and assess their performance and robustness to extreme sit-
uations. This is all done by means of an attitude control algorithm, that will be developed from scratch
and explained in this chapter.

First of all, in Section 4.2, the context of this research will be detailed, including explanation on which
important aspects of the LUMIO mission will be used, what the operational orbit will include and how
it is retrieved, and which thruster configurations will be assessed. Next, Section 4.3 will specify the
assumptions used within the numerical simulation, including the simplifications made and conventions
adhered to throughout the research. Next, Section 4.4 will present a step-by-step walk-through of the
developed attitude control code and highlight its individual programming blocks. Then, Section 4.5 will
introduce the robustness methods used within the research, explain the relevant parameters for the
result analysis, and explain how the original simulation code was modified to achieve this goal.

4.2. Context
For any simulation development research, the context of the simulation is of utmost important for cre-
ating a basis with which all different blocks are constructed. In view of the current developments in
CubeSat technology and the opportunity to analyse future missions, the ESA LUMIO mission has been
selected as the mission of context in this research, as elaborately detailed in subsection 2.4.3. Argu-
ments for this selection are threefold:

1. LUMIO is set to launch in 2027, and multiple research institutions are currently designing its
mission architecture and subsystems. Because of this, relevance is created by the current parallel
investigation done by this research and the LUMIO team.

2. LUMIO is a 12U CubeSat that will be in a halo orbit around the Earth-Moon L2 Lagrange point,
posing it as a unique research opportunity in a deep space environment. Electrical thruster appli-
cations have not been studied to a great extent in similar environments.

3. The current design of LUMIO’s ADCS is a conventional reaction wheel system with thrusters
for momentum wheel desaturation. Effective comparison with infrequently-studied full electrical
thruster ADCS is therefore easily possible, with its previously designed ADCS as benchmark.

In view of the near-future launch of the LUMIO mission, and its current rapid developments, paper pub-
lications regarding the mission have actively been monitored, with the help of the supervising professor
Mr A. Cervone, who was involved with the mission himself. Further contact was also established with
Mr F. Topputo from the Politecnico di Milano university.

46

4.2. Context 47

4.2.1. Orbit
Although the future LUMIO’s orbit has been described in papers and simulated in recent research such
as Topputo et al. [52], direct ephemeris data for the orbit was not openly available. This research is not
focused on orbit propagation or determination, which is why no effort has been made to reconstruct
the exact orbit using simulation software. Instead, investigation was done to orbits that could easily be
retrieved from stored ephemeris data. Before detailing the exact orbit that was chosen, the method of
data retrieval will be elaborated upon.

The online solar system database for ephemeris retrieval created by the Jet Propulsion Laboratory
(NASA) is called the Horizons System.1 It includes more than 290 planetary satellites, all 8 planets, the
Sun, selected spacecraft and more. Access is possible via their website, through the built-in command-
line on a personal computer, through email or via an Application Programming Interface (API). In addi-
tion, a dedicated Python package is available called astroquerywith a sub-class named jplhorizons.2
A crucial functionality that is used from this package, is the retrieval of vectors for specific objects.

The relevant objects for this research are the Moon, the Sun and the CAPSTONE spacecraft. Each of
these bodies has a specific ID within the JPL Horizons library, specified in Table 4.1. For each of the
bodies, the vectors include the Cartesian position coordinates (x, y and z) and their velocities (vx, vy and
vz), with respect to a selected celestial body or other location. In this way, Moon-centred ephemeris can
automatically be collected for the CAPSTONE spacecraft, for example. Moreover, a range of epochs
can be indicated, along with a pre-determined time step for data collection. The minimum time step
available is 1 minute, meaning that Cartesian positions and velocities for the bodies can be retrieved
at every single minute. The valid and accurate epochs for which data can be retrieved for each body
is also indicated in Table 4.1. Note that the CAPSTONE mission is still active, and its ephemeris is
propagated two weeks into the future (time of writing is 7 December 2024 14:15:00).

Body Sun Moon CAPSTONE
ID 10 301 -1176

Validity Infinite Infinite [10:06:06.277 28-06-2022] to [00:01:09.184 31-12-2024]

Table 4.1: Overview of three target bodies for this research, including their JPL Horizons ID and validity.

As introduced, the NASA’s CAPSTONE historic ephemeris data will be used as the context orbit for
the attitude control simulation in this chapter. As observed in Chapter 2, the near-rectilinear halo orbit
attained by CAPSTONE is different in various aspects to the desired halo orbit to be attained by LU-
MIO (see Figure 2.12). The CAPSTONE orbit is plotted in Figure 4.1a based on its ephemeris data,
between [00:00:00 01-01-2023] and [00:00:00 01-02-2023]. It can be seen that CAPSTONE performs
approximately four distinct orbits in this time span, which are characterised by a close fly-by of the
Moon and then a southern movement towards the Earth-Moon L2 point. Since this L2 point is fixed
with respect to an Earth-Moon reference frame, and the figure is produced in a Moon-centred reference
frame (non-rotating), it was to be expected that the southern apogee passes around the L2 point would
shift around the Moon in a period of one month, since the orbital period of the Moon around the Earth
is also approximately one month.

1URL: https://ssd.jpl.nasa.gov/horizons/ [Accessed 7 December 2024]
2URL: https://astroquery.readthedocs.io/en/latest/jplhorizons/jplhorizons.html [Accessed 7 December 2024]

https://ssd.jpl.nasa.gov/horizons/
https://astroquery.readthedocs.io/en/latest/jplhorizons/jplhorizons.html

4.2. Context 48

(a) Moon-centred CAPSTONE orbit, plotted using JPL Horizons
ephemeris data from [00:00:00 01-01-2023] to [00:00:00

01-02-2023].

(b) Moon-centred CAPSTONE orbit, plotted using JPL Horizons
ephemeris data from [00:00:00 01-01-2023] to [00:00:00

15-01-2023].

Figure 4.1: Comparison of Moon-centred CAPSTONE orbits for two different timespans.

For the attitude control simulation at hand, CAPSTONE’s orbit between [00:00:00 01-01-2023] and
[00:00:00 15-01-2023] will be used. The orbit during this time period is presented in Figure 4.1b. The
chosen timespan is ideal because it encompasses two complete orbits of CAPSTONE, during which
two close flybys of the Moon occur. Since the distances to the Moon’s centre during these flybys are
nearly identical, the attitude control simulation can be analysed under similar conditions for both events,
allowing for consistent and comparable responses. The inclusion of two fly-bys allows for the close ob-
servation of either one of them for quaternion response behaviour, for example. A second reason for
choosing these dates is the fact that the CAPSTONE mission officially started on 14 November 2022
and ended on 18 May 2023, which means this orbit is within its operational timespan.

As mentioned, the CAPSTONE southern L2 NRHO is different from the quasi-periodic halo orbit out-
lined in LUMIO research. The six reasons that this specific orbit is used throughout this research, are
detailed in the list below, addressing the important differences with LUMIO’s orbit and explaining why
the selected orbit is still relevant for this research.

1. Both the LUMIO and CAPSTONE orbits are located in cislunar environment, at a sufficient dis-
tance from to Earth to not be affected by its magnetic field or gravitational potential for significant
attitude disturbance.

2. The CAPSTONE orbit is proven to be stable (see Gardner et al. [18]) and therefore suitable for
CubeSat usage.

3. From its definition, the CAPSTONE orbit will always be able to observe the lunar far-side. During
close fly-bys, the far-side will always be in view as well. For LUMIO, the same holds, although its
disk area is larger due to its larger distance from the Moon.

4. CAPSTONE’s period is approximately 7 days, compared to the approximate 14-day period of
LUMIO. The common divider allows for easier extrapolation of conclusions.

5. CAPSTONE’s orbit provides a more extreme environment for attitude control testing, since its
close fly-by of the Moon requires its attitude to change significantly further than would be required
in LUMIO’s orbit, at an approximate constant distance from the Moon. Moreover, this close fly-by
induces an increase in the gravity gradient torque, which has an inverse relation with the cube
of the distance to the body (see Equation 2.32). For these two reasons, it is on a scientific level
more interesting to analyse the CAPSTONE orbit compared to the LUMIO orbit.

6. Due to the approximate same distance from the Sun, the solar radiation pressure will be equal.
Both orbits have been designed to be eclipse free ([18], [13]).

4.2. Context 49

From this list, the most important conclusions to be drawn are: the environments of both orbits do not
differ significantly, since they are both situated in cis-lunar environment and will, on average, experi-
ence the same degrees of incoming solar radiation and experience the same gravitational disturbances.
The clear benefit of analysing the CAPSTONE orbit, is the fact that it shows more extreme behaviour
compared to the LUMIO orbit, since it passes closely by the Moon. This will induce an increase in
gravity gradient torque compared to the regular LUMIO mission, and will also require more extreme
camera pointing manoeuvres. Now, one may conclude that the design of the LUMIO spacecraft was
not intended for this orbit, but the CAPSTONE orbit poses a great limit-case testing, since conditions
will be more extreme. If the system behaves well in the CAPSTONE orbit, it will also be suitable for the
LUMIO orbit.

As a numerical comparison, Table 4.2 shows average maximum values for the solar radiation pressure
and gravity gradient torque, as a comparison between the two orbits. In addition, the Moon-centred
position coordinates along the orbit have been posted for comparison as well. For these calculations,
the following conditions have been included:

• For the CAPSTONE orbit, an analysis time frame between [00:00:00 01-01-2023] and [00:00:00
15-01-2023] will be used.

• For the solar radiation pressure, the extreme case will be selected in which the Earth, Moon
and Sun are aligned, and the spacecraft is situated around the Earth-Moon L2 Lagrange point.
In this situation, the spacecraft is as close to the Sun as possible whilst also present in either
the CAPSTONE or LUMIO orbit. It is assumed that, in this Moon-centred reference frame, all
the bodies are aligned along the x-axis and the spacecraft coordinates are extrapolated for this
situation. For the CAPSTONE orbit, the spacecraft will be in apogee on the southern region of the
Lagrange point. For the LUMIO orbit, themost extreme case for the solar radiation pressure would
in this case be furthest from the Moon. The coordinates for this are extracted from Figure 2.12,
using a distance between the Moon centre of mass and the L2 Lagrange point of 64,500 [km].

• For the gravity gradient torque, the most extreme values stem from the closest approach to the
Moon, based on Equation 2.32. Therefore, the perigee coordinates for CAPSTONE will be used
as the spacecraft location. For the LUMIO orbit, coordinates will again be selected from Fig-
ure 2.12, closest to the Moon, which results in a position that is approximately on the y-axis of
the frame.

• Note that the calculations serve mainly to give an idea of the difference in magnitude for both
orbits and therefore verify the statement that the CAPSTONE orbit is more extreme compared to
the LUMIO orbit. These results will not be used for further analysis since they only serve as tests.
The CAPSTONE spacecraft position for analysis of the solar radiation pressure is also not one
from the actual ephemeris data, but rather interpolated to be exactly on the y-axis. It is, however,
equally far from the Moon as the actual ephemeris data state, with the same distance magnitude
as found in the orbit apolune

Orbit Position vectors [km] |TGG|max [N] |TSRP |max [N]
LUMIO GG: [30,100; 0; 21,500] 9.872 · 10−11 7.836 · 10−21

SRP: [64,500; 0; -55,900]
CAPSTONE GG: [437; -348; 3348] 6.168 · 10−8 7.855 · 10−21

SRP: [12,438; 0; -70,465]

Table 4.2: Maximum disturbance torque magnitude values for the LUMIO spacecraft located in extreme-case positions, for the
solar radiation pressure and the gravity gradient torque, along with position coordinates in a Moon-centred reference frame.

From Table 4.2, it can be concluded that the CAPSTONE orbit does indeed approach the Moon closer
than the LUMIO orbit, which is directly translated in the disturbance torque due to the gravity gradient.
For this reason, the CAPSTONE orbit can be considered as a more extreme test case. This is further
strengthened by the fact that close approaches require quicker attitude adjustments compared to or-
bits that remain at further distance. In addition, the solar radiation pressure values at their predicted

4.2. Context 50

maxima are only slightly different and their order of magnitude will not have an effect on the control
simulation results.

Finally, as mentioned previously, the CAPSTONE orbit allows for easy retrieval of ephemeris data
without the need of extensive orbit propagation. In this way, the main focus of the research can be
retained.

4.2.2. Spacecraft
The LUMIO spacecraft design has been shown in Figure 2.13a previously. In order to simplify the
analysis in the attitude control simulation, a number of simplifications will be made. First of all, the
LUMIO spacecraft will be a 12U CubeSat with sides of L×W×H equal to 20×20×30 [cm]. Moreover,
the physical positioning solar arrays will not be considered in the control system design of the spacecraft,
with the simple reason that this allows for more freedom in the thruster configuration design. In contrast
to the body axis definition as was proposed in Figure 2.13b, this research will adhere to the body axis
definition as shown in Figure 4.2a. The origin of the body reference frame coincides with the centre of
mass of the spacecraft, which is assumed to coincide with the geometrical centre as well. Furthermore,
the Cartesian axes as displayed in the figure coincide with the primary axes of rotation, assigning the
roll axis to be equal to rotation over the x-axis, the pitch angle to be equal to the y-axis and the yaw
angle to be equal to the z-axis. Roll angle will be denoted by ϕ, pitch by θ and yaw by ψ. The solar
arrays will be positioned along the negative and positive x-axes, attached at locations [10, 0, 0] [cm]
and [-10, 0, 0] [cm]. The LUMIO-Camwill be positioned in the centre of the negative y-panel (location [0,
-15, 0] [cm]), which means the attitude control algorithm should in any case point the negative y-panel
towards the Moon.

(a) Simplified spacecraft bus,
including its dimensions and

body-centred reference frame to be
used in the research. (b) Panel numbering as used throughout the attitude control simulation.

Figure 4.2: (a) Simplified spacecraft bus with body-centred reference frame. (b) Panel numbering for attitude control
simulation.

An important characteristic for the spacecraft bus to be used within the attitude control simulation, is
its inertia matrix (mass moment of inertia). Two different matrices can be distinguished, the deployed
solar array matrix and the undeployed solar array matrix, denoted Ideployed and Iundeployed, respectively.
Their values, as taken from Romero-Calvo, Biggs, and Topputo [43], are represented in Equation 4.1.
The larger values in the deployed state were to be expected and are the result of the definition of the
mass moment of inertia; the distribution of mass with respect to the centre of mass of the object.

4.2. Context 51

Ideployed =


100.9 0 0

0 25.1 0

0 0 91.6

 · 10−2 [kgm2]

Iundeployed =


30.5 0 0

0 20.9 0

0 0 27.1

 · 10−2 [kgm2]

(4.1)

For the analysis of the solar radiation pressure throughout the control simulation, the centre of pressure
and centre of mass of all the panels of the spacecraft are assumed to be located in their geometrical
centres as well. In order to be able to compute the solar radiation pressure on the spacecraft at any
given moment in time, the matrices S, ns,Apanels and cp should be constructed for the simplified space-
craft architecture. Before construction of these matrices is possible, it should be clear which spacecraft
panel is which, and a dedicated numbering system should be put in place. This numbering system
is shown in Figure 4.2b, in which the black numbers with a red background are associated with the
front panels, and the red numbers with a black background are associated with the backward panels,
which one cannot directly see from this angle. The solar panels are associated with panel 7 through 10.

With these panels defined, the position vectors of the centres of pressure for the spacecraft panels can
be constructed and column stacked in cp. Note that these vectors are all defined in the body frame, as
is required for calculation of the solar radiation pressure. The matrix is shown in Equation 4.2. From
the matrix, it can be concluded that the solar panels have a total length of 70 [cm]. Each column of
the matrix adheres to the location of the geometric centre of the panel equal to the column number in
Figure 4.2b.

cp =


0 0 −0.1 0.1 0 0 −0.45 −0.45 0.45 0.45

0 0 0 0 −0.15 0.15 0 0 0 0

0.1 −0.1 0 0 0 0 0 0 0 0

 [m] (4.2)

Next, the matrix containing all the panel surface areas can be constructed as seen in Equation 4.3.
Also, the matrix containing the unit vectors normal to the surfaces of the panel and pointing towards
the interior is presented in Equation 4.4. Note that α is the optimal angle for the solar arrays to be
pointed towards the Sun.

Apanels =
[
6 6 6 6 4 4 12 12 12 12

]
· 10−2 [m2] (4.3)

ns(α) =


0 0 1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 sin(α) − sin(α) sin(α) − sin(α)
−1 1 0 0 0 0 cos(α) − cos(α) cos(α) − cos(α)

 (4.4)

The matrix S can be constructed to represent the unit vectors pointing from the Sun to the surface of
each panel in the spacecraft body frame. This matrix is derived by subtracting the vector rS/SC, which is
the coordinate vector of the Sun with respect to the spacecraft, from the position vectors of the centres
of pressure in cp. Each column of the resulting matrix is normalised to ensure that it is a unit vector, as
shown in Equation 4.5. Note that all vectors are defined in the body frame again.

S =
[

cp1
−rS/SC

∥cp1−rS/SC∥
cp2

−rS/SC
∥cp2−rS/SC∥ · · · cp10

−rS/SC
∥cp10−rS/SC∥

]
(4.5)

Here, cpi
represents the i-th column of cp, corresponding to the centre of pressure for the i-th panel.

The resulting S inertial matrix is a 3 × 10 matrix, where each column is a unit vector pointing from the
Sun to the corresponding panel in the body frame. This matrix is crucial for determining the direction
of solar radiation pressure on each panel. Finally, the values for the specularly and diffusely reflected
radiation, ρs and ρd, will be equal to 0.6 and 0.1, similar to the values used in Romero-Calvo, Biggs,

4.2. Context 52

and Topputo [43].

In order to create a benchmark case within the research to electrical thruster configurations, the original
reaction wheel set-up as proposed in the LUMIO ADCS will be used. In this set-up, three reaction
wheels (RWp100) with a total angular momentum capacity of 100 [mNms] and a maximum torque of
0.007 [Nm] are aligned with the spacecraft primary axes, so that each of them is responsible for either
the roll, pitch or yaw angle. In addition, a slightly smaller reaction wheel (RWp050) with the same
maximum torque but an angular momentum capacity of 50 [mNms] is placed so that it contributes
towards the torque over all three axes equally. The power consumption of both types of reaction wheels
is similar and equal to 9[W] at peak operation, meaning at maximum torque. [49] The configuration
matrix for the reaction wheel set-up in the original LUMIO ADCS is the same as seen in Equation 2.42
and will be used for the reaction wheel analysis. It is displayed in Equation 4.6 again for the reader’s
convenience. Moreover, due to the addition of reaction wheels, the increase in total angular momentum
induces a gyroscopic term that should be included in the analysis, and creates an adjustment in the
Euler equations for rotational motion of a rigid body. This adjustment in the equations of motion was
previously shown in Equation 2.39.

Arw,LUMIO =


1 0 0 1√

3

0 1 0 1√
3

0 0 1 1√
3

 (4.6)

4.2.3. Thrusters
The main component of this research is the assessment of the electrical thruster configurations. An in-
finite number of configurations is possible, adjusting the number of thrusters, their locations, and their
angular offset with respect to one of the primary axes. In order to keep the scope of this research
within justifiable limits, only four different set-ups will be analysed throughout this work. In addition,
since the aforementioned linear programming approach (see Equation 2.57) minimises the total thrust
output subject to constraints ensuring the required control torque is met, it inherently seeks solutions
that optimise efficiency.

However, for configurations with exactly four thrusters, the system becomes underdetermined when
attempting to produce torques along all three axes simultaneously. This is due to the following key
constraints:

1. Geometric placement constraints: The positions and orientations of the thrusters relative to
the spacecraft centre of mass determine the torques they can generate. With only four thrusters,
the geometric arrangement often leads to linear dependence in the generated torque vectors,
making it impossible to create independent torques along all three axes.

2. Thrust magnitude constraints: Each thruster has physical limits on the minimum and maximum
thrust it can produce. These limits restrict the solver’s ability to find feasible combinations of thrust
magnitudes to satisfy the desired torques.

3. Operational constraints: Thrusters typically provide unidirectional thrust, meaning they can only
push in one direction. This reduces the feasible solution space since reverse thrust would require
repositioning or additional thrusters.

4. Coupled torque and force constraints: In a 4-thruster system, any thrust configuration de-
signed to produce torque also generates residual forces. These forces can conflict with the re-
quirement to maintain translational equilibrium (no net force), creating additional constraints that
may be impossible to satisfy simultaneously.

These constraints collectively restrict the feasible solution space required for the linear programming
solver. With only four control inputs (thrusters), the system lacks sufficient degrees of freedom to
resolve these conflicts while independently controlling torque in three dimensions. As a result, the
solver often fails to find valid solutions for certain required torque combinations.

4.2. Context 53

Figure 4.3: Four different thruster configurations used throughout this research, within the body axes as defined previously.

For this reason, the minimum number of thrusters used is six in this research. In Figure 4.3, the four
configurations are shown, and a brief explanation about each of them follows below, along with the
reasoning behind choosing this specific configuration.

1. For three-axis spacecraft control, this configuration is determinate. As can be seen from the
figure, each pair of thrusters is responsible for rotation about only one axis. Since the spacecraft
has six degrees of freedom (translation in any x, y and z direction, and rotation about any of the
primary axes), and each thruster gives a single scalar control variable (thrust magnitude), this
problem is determinate.

2. This configuration also employs six thrusters in total, although each pair does not contribute to the
rotation of only one axis. The two thrusters pointed into the positive z-direction will give rotation
over the roll angle, whereas the other four thrusters are responsible for the pitch angle as well
as the yaw angle. For the analysis at hand, a performance comparison with the first set-up is
interesting to assess, since the effect of axis coupling can be quantified by this. Similar to the first
set-up, this problem is determinate.

3. The third set-up is overdetermined, since it employs the exact same set-up as configuration 1
but has added two thrusters on the bottom, expelling particles in the negative y-direction. These
thrusters can create torque around the x-axis as well as z-axis. The reason for selecting this
configuration is also the comparison with configuration 1; it can be assessed whether the addition
of more thrusters leads to improvement in pointing accuracy and could lead to a reduction in
required power.

4. Configuration 4 is also overdetermined and employs 12 thrusters in total. Each of the bottom
(negative y) corners consists of a thruster module with three orthogonal thrusters. The reason for
inclusion of this configuration is a redundancy in the number of hardware modules used and the
modularity of the thruster systems. Also, the power requirement and pointing accuracy with such
an overdetermined system is relevant to analyse.

The mixing matrix for each of these thrusters, Athrust,1 to Athrust,4, can now be constructed using
the geometries presented in Figure 2.13b. Adhering to the definition of Equation 2.55, the unit torque
vector of each thruster has to be computed first. In Table 4.3 to Table 4.6, the components for the cross
product of each thruster in the four configurations are presented. In addition, these tables serve to
present the thruster numbering scheme used. Appending these cross products to the columns of the
mixing matrices results in Equation 4.7 to Equation 4.10.

4.2. Context 54

Thruster T̂i Location Vector [x, y, z] [m] Thrust Direction [x, y, z]

T̂1 [0.1, 0.15, 0] [-1, 0, 0]

T̂2 [-0.1, 0.15, 0] [1, 0, 0]

T̂3 [0, 0.15, 0.1] [0, 0, -1]

T̂4 [0, -0.15, 0.1] [0, 0, -1]

T̂5 [0.1, 0, 0.1] [-1, 0, 0]

T̂6 [-0.1, 0, 0.1] [1, 0, 0]

Table 4.3: Unit torque cross product components for thruster configuration 1.

Thruster T̂i Location Vector [x, y, z] [m] Thrust Direction [x, y, z]

T̂1 [0.1, 0.15, 0.1] [-1, 0, 0]

T̂2 [-0.1, 0.15, 0.1] [1, 0, 0]

T̂3 [0, 0.15, 0.1] [0, 0, -1]

T̂4 [0, -0.15, 0.1] [0, 0, -1]

T̂5 [0.1, -0.15, 0.1] [-1, 0, 0]

T̂6 [-0.1, -0.15, 0.1] [1, 0, 0]

Table 4.4: Unit torque cross product components for thruster configuration 2.

Thruster T̂i Location Vector [x, y, z] [m] Thrust Direction [x, y, z]

T̂1 [0.1, 0.15, 0] [-1, 0, 0]

T̂2 [-0.1, 0.15, 0] [1, 0, 0]

T̂3 [0, 0.15, 0.1] [0, 0, -1]

T̂4 [0, -0.15, 0.1] [0, 0, -1]

T̂5 [0.1, 0, 0.1] [-1, 0, 0]

T̂6 [-0.1, 0, 0.1] [1, 0, 0]

T̂7 [0.1, -0.15, -0.1] [0, 1, 0]

T̂8 [-0.1, -0.15, -0.1] [0, 1, 0]

Table 4.5: Unit torque cross product components for thruster configuration 3.

4.2. Context 55

Thruster T̂i Location Vector [x, y, z] [m] Thrust Direction [x, y, z]

T̂1 [0.1, -0.15, 0.1] [0, 1, 0]

T̂2 [0.1, -0.15, 0.1] [-1, 0, 0]

T̂3 [0.1, -0.15, 0.1] [0, 0, -1]

T̂4 [-0.1, -0.15, 0.1] [1, 0, 0]

T̂5 [-0.1, -0.15, 0.1] [0, 1, 0]

T̂6 [-0.1, -0.15, 0.1] [0, 0, -1]

T̂7 [0.1, -0.15, -0.1] [-1, 0, 0]

T̂8 [0.1, -0.15, -0.1] [0, 1, 0]

T̂9 [0.1, -0.15, -0.1] [0, 0, 1]

T̂10 [-0.1, -0.15, -0.1] [0, 0, 1]

T̂11 [-0.1, -0.15, -0.1] [0, 1, 0]

T̂12 [-0.1, -0.15, -0.1] [1, 0, 0]

Table 4.6: Unit torque cross product components for thruster configuration 4.

Athrust,1 =


0 0 −0.15 0.15 0 0

0 0 0 0 −0.1 0.1

0.15 −0.15 0 0 0 0

 (4.7)

Athrust,2 =


0 0 −0.15 0.15 −0 −0

−0.1 0.1 0 0 −0.1 0.1

0.15 −0.15 0 0 −0.15 0.15

 (4.8)

Athrust,3 =


0 0 −0.15 0.15 0 0 0.1 0.1

0 0 0 0 −0.1 0.1 0 0

0.15 −0.15 0 0 0 0 0.1 −0.1

 (4.9)

Athrust,4 =


−0.1 0 0.15 0 −0.1 0.15 0 0.1 −0.15 −0.15 0.1 0

0 −0.1 0.1 0.1 0 −0.1 0.1 0 −0.1 0.1 0 −0.1

0.1 −0.15 0 0.15 −0.1 0 −0.15 0.1 0 0 −0.1 0.15


(4.10)

In addition to the minimum thrust requirement of 0 [N] for the linear programming solution, a maximum
thrust value should also be in place in order to effectively perform the analysis for each of the thruster
configurations. This maximum thrust is determined by the hardware module used, and it was decided
to use the Pocket Rocket as developed by the company Solid State Propulsion from Pretoria, South
Africa. The reason for this decision is the collaboration established during the execution of this research
and the fact that the company produces vacuum arc thrusters, which are the ideal thrusters to use for
attitude control problems. As was discussed in Section 2.6, the frequent pulses given by VATs can
easily be commanded by signals at the same frequency, and the addition of pulse-width modulation
makes the thrust variation for precise control possible.

As observed in (SSP) [1], the maximum output thrust of the Pocket Rocket varies with the input power
supplied to the unit, and there is a linear relation between these two parameters as observed in Fig-
ure 4.4. Other specifications for the Pocket Rocket can be found in Table 4.7. Each thruster that is used

4.3. Assumptions & Considerations 56

in the aforementioned configurations will be a Pocket Rocket, and the power setting for each configura-
tion will be determined based on the results from the attitude control simulation so that a power-optimal
approach is adhered to. At first, however, the maximum thrust output will be allowed to assess whether
this module is possible for usage within the attitude control simulation. Moreover, the Minimum Impulse
Bit as shown will not be included at first, in order to give a level of flexibility on the problem boundaries.
After the first experiments, adjustments in the code based on the power input and MIB will be made.

Figure 4.4: SSL Pocket Rocket thrust versus input power relation, including the invariant specific impulse of the vacuum arc
thruster module. Adapted from (SSP) [1].

Specification Value
Voltage input 5V Power / 3.3V Logic

Size 4.5×4.5×2.5 [cm]
Pulse frequency 0.1 - 10 [Hz]
Input power 0.5 - 20 [W]

Thrust/Power ratio 10 [µN/W]
Maximum thrust 200 [µN]

Wet mass 85 [g]
Total impulse 8 [Ns]

Minimum Impulse Bit 1.18 [µNs]

Table 4.7: SSL Pocket Rocket specifications, adapted from (SSP) [1].

4.3. Assumptions & Considerations
As mentioned in the introduction of this chapter, the general approach towards the assessment of the
electrical thruster configurations is the creation of an attitude control algorithm from scratch. While
professional software such as the Ansys Systems Tool Kit3 exists to accomplish similar goals, this
study requires a deeper understanding of the underlying dynamics and the ability to tailor the control
system to specific research needs. Developing the simulation from the ground up provides the following
advantages:

3URL: https://www.ansys.com/products/missions/ansys-stk [Accessed 8 December 2024]

https://www.ansys.com/products/missions/ansys-stk

4.3. Assumptions & Considerations 57

• Comprehensive understanding: By implementing the dynamics and control equations manu-
ally, the relationships between the system’s physical parameters and its behavior can be fully
explored, providing a deeper understanding of the fundamental principles of attitude control.

• Customisation: Existing software often comes with predefined frameworks that may not accom-
modate unconventional or experimental configurations. A custom-built simulation allows for full
flexibility in testing various thruster configurations and exploring unique scenarios.

• Optimisation and Integration: Tailoring the simulation in Python enables seamless integration
with other tools, such as optimisation libraries or specific numerical solvers. This flexibility is
critical for iterating designs and fine-tuning performance metrics.

• Cost-Effectiveness: Utilising Python and open-source packages avoids the licensing costs as-
sociated with professional tools, making this approach more accessible and budget-friendly.

• Documentation and Reproducibility: A self-developed simulation ensures clear documentation
of all implemented steps, enhancing the reproducibility and transparency of the research.

Within the attitude control algorithm, use will be made of quaternions to propagate the spacecraft state,
using the state as described in Equation 4.11 which will be propagated over the desired time span.
Note that the angular rates for each axis is now denoted by the Cartesian axis, x, y or z. A number of
reasons can be given for using quaternions over Euler angles, but the main reasons are the avoidance
of gimbal lock in Euler angles (singularity due to alignment of two of the three rotation axes) and the
numerical stability of quaternions. Moreover, the convention used for expressing quaternions in this
research is [qw, q1, q2, q3], in which the first term denotes the scalar part and the other three the vector
part.

xLUMIO =
[
qw q1 q2 q3 ωx ωy ωz

]T
(4.11)

The propagation of the spacecraft state is achieved by integrating the spacecraft’s dynamic equations
of rotational motion. These equations of motion were observed in subsection 2.3.2 and will be adapted
for this research as well. It is crucial to understand its underlying assumptions, before applying them
to the LUMIO mission. These are:

1. The spacecraft bus is rigid, meaning that all particles belonging to the body are fixed relative to
each other and no elasticity takes place.

2. A body-fixed reference frame is adhered to, with its origin in the centre of mass of the spacecraft.
This body-fixed coordinate system rotates with the spacecraft body and therefore has a rotational
rate with respect to an inertial Newtonian frame.

3. The moment of inertia matrix of the spacecraft bus remains constant over the simulation timespan.
4. Torques, either internal or external, are summed around the spacecraft centre of mass, which

coincides with the origin of the body-fixed reference frame.
5. The inertial frame within this analysis has its origin in the centre of mass of the Moon. The

frame’s axes are aligned with the International Celestial Reference Frame, which is a standard
frame defined by the positions of distant quasars.

The torques that are part of Euler’s equation are the control torque exerted by the ADCS, the gravity
gradient torque and the solar radiation pressure exerted on the spacecraft. Other disturbance torques
do not have a significant influence to be included in this research. The gravity gradient torque is mod-
elled as Equation 2.32 and the solar radiation pressure as Equation 2.34 to Equation 2.36. The control
torque at each time step is determined using a PD control algorithm. The choice for a PD controller
was made primarily for the simplicity of calculation; it only requires the quaternion error of the current
state and the current angular rate of the body. Gain tuning needs to be performed to obtain the optimal
response, applied to the proportional (kp), derivative (kd) and speed (ks) gains. The integral term of the
control logic was left out, since this gave instability of the control algorithm upon testing due to integral
wind-up, meaning that errors were accumulated excessively over time.

For each axis (x, y, z), the control torque is given as shown in Equation 4.12. As can be seen, the
proportional gain amplifies each of the vector parts of the quaternion error (ergo: qe1, qe2 and qe3).
The quaternion errors are defined as seen in Equation 2.31. Moreover, the derivative gain amplifies

4.3. Assumptions & Considerations 58

the current angular rate around each of the spacecraft body axes (ωx, ωy or ωz). Finally, the speed
gain amplifies the entire control logic for faster convergence. Note that each gain is defined to have
components along a specific axis.

Tci = ksi (kpiqei − kdiωi) (4.12)

Although manual gain tuning will be executed to find the desired gains, a first estimation for kpi and
kdi can be made based on the angular natural rate (ωn) and the damping ratio (ζ) selected. Note that
the damping ratio will create an under-damped controller with oscillations for 0 < ζ < 1, and an over-
damped controller for ζ > 0. The critically damped system (ζ = 1) would be the best option considering
overshoot and rise time of the response. These first gain estimations can be calculated as shown in
Equation 4.13. The gain values will be equal for each axis and therefore Kd = kdiI and Kp = kpiI.

kdi = 2ζωn

kpi = 2ω2
n

ωn =

√
Tci
Iii

(4.13)

The desired state of LUMIO should be included in the simulation in order to compute the quaternion
errors at each time step throughout the integration. As observed in Romero-Calvo, Biggs, and Topputo
[43], the desired direction cosine matrix is dependent on the position of the Sun and the Moon with
respect to the LUMIO spacecraft. More specifically, the normalised Moon pointing vector as shown in
Equation 4.14 and the normalised Sun pointing vector as shown in Equation 4.15 are retrieved from
the position of the Sun with respect to the Moon (rS/M) and the position of the spacecraft with respect
to the Moon (rSC/M).

r̂M/SC =
−rSC/M
∥ rSC/M∥

(4.14)

r̂S/SC =
rS/M − rSC/M

∥ rS/M − rSC/M∥
(4.15)

The desired DCM can be constructed as shown in Equation 4.16, which is a rotation matrix between
the inertial Moon frame and the spacecraft body-fixed reference frame. This DCM optimises the power
generation by the solar arrays and also makes sure the LUMIO-Cam is always pointed towards the
Moon. The first column ensures the power generation criterion, the second column ensures the Moon
pointing with the negative y-panel, the third column completes the desired attitude by complementing
a right-hand coordinate system. This direction cosine matrix can now be converted to the required
quaternion vector, qref , by means of Equation 2.22, Equation 2.23, Equation 2.24 and Equation 2.25.

Cdesired =
[
c1 = r̂S/SC×r̂M/SC

∥ r̂S/SC×r̂M/SC∥ , c2 = −r̂M/SC, c3 = c2×c1

∥ c2×c1∥

]
(4.16)

The integration time step within the control simulation has been set to 1 [s], meaning the frequency
is equal to 1 [Hz]. The Nyquist criterion suggests that reconstruction in an attitude control problem
is accurate when the sampling frequency is at least twice the highest frequency in the dynamics to
be sampled. To ensure the Nyquist criterion is adhered to, the highest frequency in the spacecraft’s
rotational dynamics must be analysed. For this system, the highest frequency is determined by the
natural frequencies of the rigid body equations of motion, which depend on the applied torques and
the spacecraft’s moments of inertia. The relation shown in Equation 4.17 can be used to assess the
natural frequency of each rotational axis, obtained from Franklin, Powell, and Emami-Naeini [16].

fnatural,i =
1

2π

√
Tci
Iii
, (4.17)

In the equation, Tci represents the maximum applied torque around one the principal axes and Iii the
moment of inertia about one of the principal axes. Since the order of magnitude of the total control
torque is approximately 10−7 [Nm] and the moment of inertia values are in the order of magnitude
of 10−2 [kgm2], the natural frequencies for this spacecraft are estimated to be below 0.1Hz. This is
far below the Nyquist limit of fs/2 = 0.5Hz, ensuring that the 1-second time step provides accurate

4.3. Assumptions & Considerations 59

reconstruction of the dynamics. This low natural frequency arises from the large moments of inertia
typical of spacecraft and the damping effects of the control system, which suppress high-frequency
dynamics. Furthermore, external disturbance torques, such as those from solar radiation pressure and
the gravity gradient, are generally small, contributing to slower rotational dynamics. Therefore, the cho-
sen 1-second time step is sufficient for accurately capturing the spacecraft’s attitude behaviour while
adhering to the Nyquist criterion.

The integrator used for the simulation will be the Runge-Kutta-4 integrator as described in subsec-
tion 2.3.5. The reason for this selection is its relative simplicity compared to other more advanced
integrators like variable step-size and multi-step methods. Moreover, it is more accurate than the stan-
dard Euler integrator, which is also included in the simulation for comparison. The updates of the
quaternion part of the spacecraft state depends on the time derivative of the quaternion state at each
moment in time, denoted by q̇, and shown in Equation 2.20. The time derivative of the angular rate has
been presented in Equation 2.4 and is used in the RK4 integrator for integrating the angular velocity
around each axis of the spacecraft body. The integrator logic for the quaternion update becomes as
presented in Equation 4.18, with the updated quaternion state as computed in Equation 4.19.

kq1 = ∆t q̇
(
q(t),ω(t)

)
,

kq2 = ∆t q̇
(
q(t) +

1

2
kq1,ω(t+

1

2
∆t)

)
,

kq3 = ∆t q̇
(
q(t) +

1

2
kq2,ω(t+

1

2
∆t)

)
,

kq4 = ∆t q̇
(
q(t) + kq3,ω(t+∆t)

)
.

(4.18)

q(t+∆t) = q(t) +
1

6
(kq1 + 2kq2 + 2kq3 + kq4). (4.19)

For the angular rate, the same logic is presented in Equation 4.20 and Equation 4.21.

kω1 = ∆t ω̇
(
ω(t),T c(t)

)
,

kω2 = ∆t ω̇
(
ω(t) +

1

2
kω1,T c(t+

1

2
∆t)

)
,

kω3 = ∆t ω̇
(
ω(t) +

1

2
kω2,T c(t+

1

2
∆t)

)
,

kω4 = ∆t ω̇
(
ω(t) + kω3,T c(t+∆t)

)
.

(4.20)

ω(t+∆t) = ω(t) +
1

6
(kω1 + 2kω2 + 2kω3 + kω4). (4.21)

Now that the integrator set-up has been elaborated upon, more detailed simulation considerations can
be outlined. First of all, Table 4.8 shows a table with constants used throughout the simulation, along
with their symbols in this research and units. In addition, it should be clear that the base case for the
simulation is the deployed solar array state of the spacecraft, and the inertia matrix Ideployed shown in
Equation 4.1 will be adhered to for the simulation. Additionally, it is assumed that the reaction wheels
work perfectly (100% efficiency) and are able to store all required angular momentum at any point in
time. Wheel saturation will be studied in the benchmark scenario.

4.4. Code 60

Description Symbol Value Units
Speed of light c 2.99792458 · 108 m/s
Universal Gravitational Constant G 6.67428 · 10−11 m3s−2kg−1

Gravitational parameter of Earth µEarth 3.986004418 · 1014 m3s−2

Gravitational parameter of Moon µMoon 4.9048695 · 1012 m3s−2

Gravitational parameter of Sun µSun 1.32712440018 · 1020 m3s−2

Astronomical unit AU 1.495978707 · 1011 m
Earth mean radius REarth 6.3781 · 106 m
Moon mean radius RMoon 1.7374 · 106 m
Sun mean radius RSun 6.957 · 108 m
Power exerted by the Sun Psolar 3.842 · 1026 W

Table 4.8: Physical constants used in the simulation

The output thrust of the thrusters in this analysis will not be modelled as ideal, as real hardware systems
inherently exhibit uncertainty in their outputs. This uncertainty is modelled using a Gaussian (normal)
distribution, characterised by its mean, representing the desired thrust value, and its standard deviation,
σ. For this research, a standard deviation of 5% of the mean thrust value will be assumed, meaning
that thrust outputs are expected to deviate within one σ of the mean approximately 68% of the time,
as per the properties of a normal distribution. With the calculated thruster outputs, the linear impulse
exerted by them can be calculated as observed in Equation 4.22. This linear impulse will be used to
give an initial indication of the power and energy requirements of the configurations.

J =

∫
Fthrust(t) dt (4.22)

The power and energy consumption of the hardware will be based on the assumed linear relation be-
tween the power input and the output thrust or torque. For thrusters, this is validated by Figure 4.4.
For reaction wheels, a mathematical approach can be followed. Torque is defined as the change of
angular momentum over time. Angular momentum is defined as the mass moment of inertia of an
object times its angular velocity. Power is needed for a change in angular velocity, inducing a change
in angular momentum and therefore torque. Following this line of thought, it is assumed there exists
a linear relation between power input and torque. For the energy consumed, it will simply be seen as
the power function integrated over time for the simulation duration, and therefore accumulate over time.

As a final consideration, and looking at LUMIO requirement ADCS-03, the half-cone offset angle of
the spacecraft should be assessed throughout the simulation. This offset angle is defined as shown
in Equation 4.23, which computes the angle between the unit vector pointing from the spacecraft body
frame origin towards the panel located at [0, -0.15, 0] and the Moon pointing vector, which points from
the spacecraft body frame origin towards the centre of the Moon.

β = cos−1 (x̂y,panel · r̂Moon/SC) (4.23)

4.4. Code
With the research context, its underlying assumptions and further considerations for simulation develop-
ment, the code for the spacecraft attitude control simulation could be written. The main building blocks
of the code have all been created in a object-oriented programming approach; classes were defined
for the categories present in the code, which are:

• Constants: Includes all constants used throughout the simulation, as shown in Table 4.8.
• Rotation: Mathematical operations for rotations between reference frames.
• DisturbanceTorques: SRP and GG disturbance torques.
• EphemerisData: Retrieval of ephemeris data from JPL Horizons.

4.4. Code 61

• PID: Relevant control law functions, among which ω̇ and q̇ calculations.
• Visualisation: Visualisation tools based on matplotlib library.

These classes were all written in a Python file named classes.py. In addition, Jupyter notebook files
were created for code testing and simulation execution. In the file simulation.ipynb, a main simula-
tion function was created that executes the simulation with a number of input parameters. In this way,
the code has been written in a modular and logical way. The code is presented in Appendix B and can
be viewed in the online repository on https://github.com/Pieter1999/lunar_CubeSat.

This section provides an overview of the entire code for this research. It will give a step-by-step walk-
through, highlighting important sections in the code. Moreover, its data production, storage and ma-
nipulation conventions will be addressed, as well as the visualisation techniques for result generation.
This will give a thorough understanding of how the results from this research were created and used to
draw conclusions from.

4.4.1. Overview
A block diagram that shows the entire functioning of the code is presented in Figure 4.5 and contains
all relevant information for the control simulation. It should be noted that the blue blocks represent
functions, that typically consist of one of the functions in classes.py. The lines and arrows represent
values that are output from one function, and used as input again for the next function. The orange
blocks contain additional information for each function block, indicating for example which package is
used or which solver is used. Relevant variables are shown in the diagram as well.

Figure 4.5: Attitude control simulation code block diagram. Blue blocks indicate functions that are executed, the orange blocks
contain additional information about the underlying principles or relations of the function blocks. Arrows indicate the order of

operations.

In order to go through the code in an organised manner, each function block will be discussed in detail.
Before looking at these more closely, the general structure of the diagram should be understood. It
represents a closed-loop system, in which each time a loop is performed, one time step in the control
simulation is performed. This means that in the simulation at hand, each loop counts as one second in
the spacecraft mission, and each loop therefore propagates the attitude of the spacecraft one second
further in time. As a starting point for the state vector of the spacecraft, q0 and ω0 are fed to the system
as initialisation. In the simulation, the first quaternion vector is equal to the desired reference quaternion
and the first angular rate is equal to 0. After this, the state is updated each loop. It should be noted that
a choice can be made in the analysis that is performed: either the thruster analysis can be executed,
which is done by activating the Force per thruster calculator function, or the reaction wheel analysis is
executed, including only four reaction wheels, by the function Reaction wheel output torque. From left
to right, the functions are presented in the following list.

https://github.com/Pieter1999/lunar_CubeSat

4.4. Code 62

• Ephemeris generation & conversion: As discussed previously, the JPL Horizons database
will be queried from within the Python code to obtain the ephemeris data for the CAPSTONE
mission. In addition, the ephemeris data of the Sun will be collected as well, and both datasets
are retrieved with respect to the inertial frame defined through the centre of mass of the Moon.
In subsection 4.4.2, a more elaborate explanation will be given on the method of data collection,
manipulation and storage. As input to this function, the required bodies with the desired observer
location need to be given, which were specified in Table 4.1. In addition, the time frame for
retrieval needs to be given, in this case [00:00:00 01-01-2023] to [00:00:00 15-01-2023]. Also,
the time step for retrieval from JPL Horizons (∆tHorizons) needs to be provided in hours, with the
minimum value 1/60 for one minute. Finally, the desired control time step is also provided to this
function, which is 1 [s] for this control simulation. As output, two data sets with seven columns
are produced: the first column contains the time in seconds or the epochs since [00:00:00 01-01-
2023], the other six columns contain the Cartesian coordinates and velocities [x, y, z, vx, vy, vz]
in [m] and [m/s].

• qref calculation: Having obtained the required ephemeris data for CAPSTONE and the Sun,
each row in the dataset can be iterated over. In this way, propagation of the attitude of the
spacecraft can take place while the pre-determined orbit is being followed. Now, the reference
quaternion is calculated as shown in Equation 4.16 and takes the current positions of CAPSTONE
and the Sun as input. As output, a reference quaternion vector for that epoch is computed.

• TGG & TSRP calculation: Based on the spacecraft geometry factors and current position of the
spacecraft and the Sun, the gravity gradient torque and solar radiation pressure are calculated.
The output is a disturbance torque vector for both of them which can be combined in the total
disturbance torque vector T d. Special attention should be given to the determination of the angle
α, which was described in Equation 4.4 as the optimal angle for the solar arrays to be pointed
towards the Sun. To find this optimal angle, an optimisation problem has been implemented in the
code. Specifically, the objective is to maximise the sum of the dot products between the columns
of ns (the surface normal vectors) and S (the incident vectors). The value of α that maximises
this sum represents the solution to the optimisation problem.

• Control torque calculation: The control torque function takes as input a number of variables:
the current quaternion vector q, the reference quaternion vector qref , the current angular velocity
ω, and the vectors containing the gain values. First of all, the quaternion error is calculated, after
which the PD logic is applied and the control torque vector at that moment in time is computed.
From this point, the diagram is followed based on the reaction wheel or thruster analysis.

• Reaction wheel output torque: The reaction wheel configuration matrix as defined beforehand
will be fed into the function, as well as the desired control torque. Based on the reaction wheel
physical parameters, it is assessed whether the reaction wheels are able to adhere to the desired
torque or not based on the calculation of individual wheel torques. At the same time, the angular
momentum increase per momentum wheel is calculated and added to the total momentum wheel
stored in the wheels. This is denoted by the vector h.

• Force per thruster calculation: The thruster configurationmatrix for the desired electrical thruster
configuration (one of the four aforementioned options) is fed into the function, as well as the re-
quired control torque. The linear programming solution is then applied, yielding an array of all the
output thrust values for each thruster.

• Power & energy consumed: Either the reaction wheel torques per reaction wheel are inserted, or
the thrust values per thruster, and combinedwith the hardware specifics to compute the power and
energy consumption. Note that the power is a value in Watts at that specific timestep, whereas
the energy builds up for each computation loop.

• Update angular velocity: With the actual control torque exerted by the actuators, the integration
of the dynamic equations can take place. This integrator function takes as input the current
angular velocity, the time step, the disturbance torque vector and the control torque vector. In
combination with the relations for the current time derivative of the angular velocity, the current
state is updated using the RK4 integrator.

• Update quaternion: Similar to the previous function, the quaternions are updated with an RK4
integrator function. Having updated the angular velocity as well as the quaternion, the next time

4.4. Code 63

step can begin and the loop is finished. As starting point for the next iteration, the new ephemeris
data are retrieved and the new quaternion and angular velocity values are inserted.

It should be noted that the Euler dynamic equations of rotational motion are different for the reaction
wheel analysis compared to the thruster analysis. Therefore, the angular velocity and quaternion up-
date functions differ for each of those analyses. Furthermore, at the end of each control loop, all
relevant values are appended to arrays for later visualisation. The exact values will be discussed in
the next section.

An additional class that does not clearly come forward from the diagram is the Rotation class, in which
all important operations concerning direction cosine matrices, Euler angles and quaternions are posted.
It allows for reference frame rotations, changing vectors expressed in the Moon-centred inertial frame
to the spacecraft-fixed body reference frame, for example. The functions from this class are used
throughout the other classes in the code.

4.4.2. Data
As mentioned previously, the smallest time step between two adherent points in the ephemeris data
from JPL Horizons is one minute. In the attitude control simulation, the desired control time step is one
second. This means that the retrieved data from JPL should be manipulated in order to be useful for
the research. The unaltered data is first of all stored locally, stating the body name, the observer (e.g.
Moon-centred), the start date and time, the end date and time, and the retrieval time step. An example
of such a file name is:

ephemeris_data/cartesian_coordinates_CAPSTONE_Moon-centered_2023-01-01 00:00_to_2023
-01-01 00:30_1m.dat

These files contain the Julian date in the first column, and the Cartesian ephemeris coordinates in the
other six columns in units [AU] for position and [AU/day] for velocities. In the conversion, the AU
units are converted to [m] and [m/s] and the Julian date is converted to seconds from the start time,
and each minute that has been collected as the minimum possible time step is complemented with
the full 60 seconds that it consists of. Next, from the first second to the 60th second, the Cartesian
ephemeris coordinates are linearly interpolated. This is considered to be sufficiently accurate within
the scope of this research, since the entire length of the analysis is two weeks. To briefly explain the
linear interpolation functioning, an example is presented in Equation 4.24. It can be seen that for the
first minute in the data file, the gradient of the x-position is determined with respect to time. In this
way, the change for each time step of x is determined and can be used to calculate all the intermediate
values of x in the first minute.

δx

δt
=
x60 − x0

60

xn = x0 +
δx

δt
∗ (n− 0)

(4.24)

These newly created data files are then stored under a name similar to the one below (1s is the control
loop time step), and used within the control loop simulation.

converted_ephemeris_data/converted_1s_cartesian_coordinates_Sun_Moon-centered_2023-01-05
08:00_to_2023-01-05 15:00_1m.dat

A number of variables are stored in lists during each iteration of the control loop for visualisation at the
end of the simulation. These variables are qref, q, T d, TGG, T SRP , T c, T rw, Prw, Erw, ω, h, the half-
cone angle, F thrust, Pthrust and Ethrust. These lists are finally stored as data files as well, so that they
are easily accessible and usable for the visualisation code. In addition, references for maximum power
consumption, momentum wheel saturation and half-cone angle requirements are added for visual proof
of compliance or proper functioning.

4.5. Robustness 64

4.4.3. Visualisation
In the code, a visualisation class has also been added that contains multiple functions for quick and
clear result visualisation. Since the result data files will all be stored, time frame selection within the
two-week research period is also possible. First of all, the quaternions over time will be plotted against
their reference value to assess their compliance to the required attitude. Moreover, the quaternion
error will be plotted over time, to investigate the offset further. These quaternion values can then also
be converted to Euler angles for a different visualisation approach. In addition, the control torque
and disturbance torque values over time, for each of the rotation axes, can be shown. Power and
energy of the reaction wheels over time is also possible to visualise, as well as the specific thrust
and torque values of the components. The half cone offset can be plotted versus its requirement.
Crucial to understand is that the four different thruster configurations can be plotted simultaneously for
comparison. In this way, all relevant performance parameters can be visualised and assessed.

4.5. Robustness
The testing of the control algorithm for robustness and extreme situations is an essential aspect of its
validation process. In real-world applications, spacecraft often encounter conditions that deviate sig-
nificantly from nominal assumptions. These could include unexpected external disturbances, actuator
failures, sensor inaccuracies, or deviations in system dynamics due to environmental factors. Ensur-
ing the algorithm can maintain stability and performance under such conditions is crucial for mission
success. Robustness testing allows for the identification of vulnerabilities in the control logic, ensuring
the algorithm performs reliably across a wide range of scenarios. For instance, the algorithm may be
subjected to extreme conditions, such as high disturbance torques due to solar radiation pressure or
temporary loss of actuation in one or more thrusters. Testing these situations ensures the control sys-
tem can handle edge cases that, while rare, could otherwise jeopardise the spacecraft’s mission.

Moreover, testing in extreme situations aids in verifying the algorithm’s ability to recover from critical
scenarios, such as overshooting attitude targets, encountering high angular velocities, or dealing with
hardware degradation. This process ensures that the system is not only functional under nominal con-
ditions but also capable of responding effectively to unforeseen challenges. In addition, robustness
testing builds confidence in the control algorithm, especially for high-stakes missions where system
failure could lead to mission loss. By proactively identifying and mitigating potential points of failure,
such testing enhances the reliability, safety, and operational longevity of the spacecraft.

A wide range of robustness tests can be performed, but given the limited time of this research, these
could unfortunately not all be executed. After the main simulation code had been created and the first
results were produced, a table was created with ideas for improvement and addition to the code. Each
of these ideas was given a unique identifier and a priority from 1 to 5. The table is presented in Table 4.9.
Note that ROB stands for robustness, SIM to simulation and SE for systems engineering.

4.5. Robustness 65

Identifier Addition Priority (1-5)

ROB1 Simulate and assess single thruster failure be-
haviour 5

ROB2 Simulate and assess the systems’ reaction to imper-
fect sensors or sensor noise 3

ROB3 Simulate and assess the systems’ reaction to initial
momentum wheel bias 3

ROB4 Simulate micro-meteoroid impacts as additional dis-
turbance torque 2

ROB5 Simulate an extreme de-tumbling manoeuvrer 4

SIM1 Perform a direct performance comparison between
two distinct fly-bys 4

SIM2 Make a direct comparison between deployed solar
arrays versus undeployed solar arrays 5

SE1 Systems engineering power budget 4
SE2 Systems engineering mass budget 2
SE3 Cost analysis 2

Table 4.9: Summary of robustness tests and simulations with priority levels.

From the table, it is clear that the first five rows represent actual robustness tests, whereas the last
five rows represent additions that have also been identified as options for further completion of this
research. The SIM rows show options for the simulation results itself. SIM1 includes the analysis of
two distinct fly-bys, therefore comparing two perilune passings for the ADCS. Parameters such as the
total energy required for the fly-by and the half-cone angle offset can be compared between the two
cases. SIM2 has been explained clearly in the table and includes adjusting certain parameters in the
simulation so that solar arrays become undeployed. After this, the total maximum power consumption
of both cases can be compared, as well as the tot energy required for both cases, during the full simula-
tion. In addition, a comparison for the half-cone angle offset for both cases can be made. The SE rows
are connected to further systems engineering or overall spacecraft design tasks, such as creating an
adjusted power and mass budget based on the proposed ADCS in this report, as well as creating an
extensive cost analysis for the mission in case the electrical thruster configurations would replace the
current LUMIO ADCS. Direct comparisons between all previously mentioned electrical-thruster-only
configurations can be made, for all the SIM and SE tests described.

In this section, three of the additions to the code as presented in the table will be elaborated upon: the
single thruster failure behaviour (ROB1), the reaction to an extreme de-tumbling manoeuvrer (ROB5)
and the comparison between the deployed and undeployed solar arrays (SIM2). This table will be
revisited throughout the remainder of this report. Throughout these robustness tests, the thruster-
only configurations as were seen during the regular simulations will be used as the test cases, and
the reaction wheel analysis (with only the reaction wheels) will be used as a base case comparison.
Therefore, there is no simulation in which reaction wheels as well as thrusters are used.

4.5.1. Single Thruster Failure
Single thruster failure can be added to the simulation. Before the control loop starts iterating over the
epochs, one thruster should randomly be picked from the desired configuration and its thrust output
should become equal to zero. Two distinct approaches can now be followed:

1. The system is aware of the malfunction and corrects itself using the remaining thrusters. This
essentially means that the linear programming solution is found with n − 1 number of thrusters
instead of n. This approach will not give any valid solutions for thruster configuration 1 and 2, since
the system becomes underdetermined by the exclusion of one of the thrusters. The attitude will
be maintained similar to the original simulation for configuration 3 and 4.

4.5. Robustness 66

2. The system is unaware of the malfunction of one of the thrusters. In this approach, the thrust
outputs of the thrusters are computed, after which the randomly chosen failed thruster output is
set to zero. With this new thrust matrix, the new control torque is computed and fed back into the
control loop. Therefore, each control loop iteration does not meet the requirements for attaining
the correct attitude. The reference attitude, however, is computed again at each time step. It is
expected that the attitude error will remain approximately constant over time but will never return
to zero. It is expected that configurations 1 and 2 will again not produce any results for this
approach; this will be tested for confirmation.

In the code, for both approaches, a random thruster number needs to be selected based on the avail-
able number of thrusters from the selected configuration. Next, for approach 1, the linear programming
solution is given an extra constraint stating that this selected thruster has an output of zero. After this
the code is run similar to the original simulation. For approach 2, the linear programming solution is
found first, and after the thrust values have been found, the designated thruster output is set to zero.
Then, a new control torque is computed and fed to the rest of the control loop.

For either approach, different parameters are of interest to investigate. In approach 1, the performance
in terms of quaternion error over time will be exactly equal to the original simulation. Therefore, only
the power and energy consumption of the thrusters is of interest in this test. An increase in power and
energy is expected, and the increase can easily be quantified compared to the base case. Approach
2 will yield differences in terms of performance and pointing stability. The quaternion error over time,
along with the half-cone offset angle, can be compared to the base case. In addition, the power and
energy consumptions can be observed. The main question to answer for approach 2 is: will the system
be able to adequately control the attitude for the science pointing requirements as laid out in Table 2.3,
when it is unaware of one of the thrusters failing?

4.5.2. Solar Array Deployment
As mentioned previously, the solar arrays of the LUMIO spacecraft can be in a deployed state or in
an undeployed state. The differences between these two configurations is the mass moment of inertia
matrix of the spacecraft and the solar radiation pressure disturbance torque magnitude. The power
generation difference is not considered for this research. A quantitative comparison can be made for
both configurations. The deployed solar array case has been the base case for this research, since
this poses the largest strain on the attitude control system.

The undeployed case creates a simpler approach towards the solar radiation pressure calculations.
The matrices S, ns, Apanels and cp as seen in Equation 4.2 Equation 4.3 Equation 4.4 and Equa-
tion 4.5 can now be reduced by excluding the last 4 columns for each. Then, the exact same equations
for calculation of the solar radiation pressure can be used. In addition, throughout the code, Iundeployed
should be used instead of Ideployed.

Performance comparison for the quaternion error, half-cone offset angle, power and energy consump-
tion between the four thruster set-ups can now be performed. This will be shown as a numerical
comparison, from which it becomes evident how the undeployed case compares to the deployed case
for each of the thruster-only set-ups. Although the undeployed configuration will not generally be the
spacecraft situation, it adds to the completeness of the research to analyse its response in this case
as well.

4.5.3. De-tumbling Manoeuvrer
A de-tumbling manoeuvrer involves initialising the spacecraft with a high angular velocity to simulate
a scenario where it is spinning uncontrollably, often as a result of deployment from the launch vehicle
or an external disturbance. This simulation assesses whether the thruster-only-based control system
is capable of counteracting the angular velocity and stabilising the spacecraft to achieve the desired
attitude. The configuration that will be tested in this case, is configuration 1 as previously seen for the
regular simulation. The analysis helps to determine the system’s ability to handle extreme initial condi-
tions and recover to a stable state. The manoeuvrer aims to identify the boundaries for a completely
uncontrollable satellite, such as the maximum initial angular velocity beyond which the control system

4.5. Robustness 67

fails to stabilise the spacecraft. Additionally, the time required for the spacecraft to settle within a pre-
defined tolerance of the desired state is of interest, as it is a critical metric for operational readiness
and mission planning.

In the code, the only change that has to be made is initiating the angular velocity at a high rate. For this
analysis, a number of initial angular velocities will be tested, which are presented in Table 4.10 below.
For CubeSats, in general, angular velocities exceeding 50 [◦/s] or 0.87 [rad/s] is considered to be high
due to their limited de-tumbling capabilities. As can be seen from the table, tests 1, 2 and 3 will assess
the de-tumbling of one axis only, with a 180◦initial spin angular velocity. The other four tests will assess
the same angular rate over all axes, and increase from 50◦until 360◦per second. The last is clearly an
exaggerated scenario, but nonetheless valuable for assessment.

Test number [ω0,x, ω0,y, ω0,z] [deg/s]
1 [180, 0, 0]
2 [0, 180, 0]
3 [0, 0, 180]
4 [50, 50, 50]
5 [100, 100, 100]
6 [200, 200, 200]
7 [360, 360, 360]

Table 4.10: Initial angular velocities in degrees per second for the de-tumbling robustness test of the attitude control algorithm.

Results that are important from this research are again the quaternion error and half-cone offset over
time, as well as the required control torque for de-tumbling and, with this, the power and energy con-
sumption of the actuators. Reaction wheel as well as thruster analysis can be carried out again and
the settling times from the excessive angular rates can be analysed and compared to each other.

In order to summarise this chapter and gain a clear overview of the analyses, their time frames, the
configurations tested in them and the results for comparison, Table 4.11 is provided for convenient
reference.

Analysis Time frame Configurations Results
Regular [00:00:00 01-01-2023] to Reaction wheels qe(t), q(t), ω(t), TGG/SRP (t),
simulation [00:00:00 15-01-2023] Thruster conf. 1 – 4 T c(t), T rw(t), Prw(t), Erw(t),

Jthrust(t), hrw(t), F thrust(t),
Pthrust(t), Ethrust(t), β(t)

STF1 [05:33:20 05-01-2023] to Thruster conf. 3 & 4 ∆F thrust(t), Ptot,max, Etot

[14:46:40 05-01-2023]
STF2 [05:33:20 05-01-2023] to Thruster conf. 1 – 44 qe(t), β(t), ∆F thrust(t),

[14:46:40 05-01-2023] Ptot,max, Etot

Undeployed [00:00:00 01-01-2023] to Thruster conf. 1 – 4 β(t), Ptot,max, Etot

arrays [00:00:00 15-01-2023]
De-tumbling [00:00:00 01-01-2023] to Reaction wheels qe(t), ω(t), F thrust(t), , Prw(t),

[00:02:00 01-01-2023] Thruster conf. 1 – 4 Erw(t), Pthrust(t), Ethrust(t)

Table 4.11: Overview of the analyses performed, along with its time frames, configurations of interest and expected results.

4It is expected that configurations 1 and 2 will not yield any results.

5
Experimental Characterisation

5.1. Introduction
In any engineering industry, simulations are created to imitate the real world. For example, the simula-
tion of the acceleration in a race car should give the race car manufacturers an idea of the performance
of the actual car. The question that arises, is whether the simulation that is created, actually represents
the real system, if it were to be built. The link between the simulation and the real world is called vali-
dation and is an important part of any research performed in engineering practices.

For the attitude control simulation as presented in Chapter 4, a number of validation techniques could
be applied. The first option is creating the actual ADCS as it is proposed, and testing it in the same orbit
on the same spacecraft bus with the same specifications. If the results from the actual system would
be positive, the research can ascertain the developers of the LUMIO mission that it will work on their
mission as well. However, this is a very unpractical method of validation. First of all, one would build
the exact same spacecraft, which is a waste of time and an exaggeration for the level of validation nec-
essary. Furthermore, there are only a few options to launch spacecraft in their desired orbits, certainly
for missions to the Moon. Finally, it is very costly to build the entire system and have it launched. For
all of these reasons, this method of validation is not selected for this research.

An additional method of validation for such algorithms in space application is performing a Hardware-
In-the-Loop (HIL) simulation. Generally, a HIL simulation tests real-time embedded systems (which
contain the simulation software) by connecting to the actuators, or to the physical plant. In this way,
the hardware is tested for its response to the software, and real performance parameters can be eval-
uated. HIL simulations include accurate force gauges that measure the applied forces of the thrusters,
in this case. Moreover, the rest of the environment (vacuum, disturbance torques, spacecraft bus)
should also be recreated, and the bus should be able to rotate freely along its primary axes. All in
all, recreating the space environment on Earth is a possibility, but since a lot of hardware and other
practicalities need to be considered, it will not be the validation method for this research either. Cost
and the professionalism of the required equipment are too excessive for this research.

What validation method is then possible for this research to somehow prove its relevance in the real
world? Connecting the simulation software with a micro-controller hardware module is possible; this
would show the possibility of adapting the control logic to an on-board spacecraft computer. Moreover,
micro-controllers are able to generate signals, based on their pre-programmed rules, which means ac-
tuators could be commanded according to the requirements imposed by the attitude control algorithm.
Although the vacuum arc thrusters from SSL are not physically available for this research, their function-
ing can be mimicked by other hardware modules such as valves or LEDs. These hardware modules
can in their turn communicate the signal received, which paves the way for a comparison between
desired and actual signals. In this way, a simplified engineering model of the ADCS computer along
with the actuators is possible to construct and use for validation of the attitude control simulation.

68

5.2. Code Porting 69

Therefore, this chapter will completely focus on the validation of the attitude control simulation bymeans
of the recreation of an OBC with an MCU that generates and sends signals to the relevant actuators,
based on computations performed within the OBC itself. First of all, the MCU to be used will be elab-
orated upon in Section 5.2. The way in which software is written for the MCU and uploaded towards
the MCU will be explained, along with debugging conventions. Moreover, this section will make a dis-
tinction between the code blocks of the original simulation that would need to be part of the OBC in a
real space mission, and the ones that would be part of the environment. Then, a code overview will
be given, in which the approach to porting all relevant code to the MCU will be explained as well as
the interaction between the Python simulation environment and the embedded environment. Next, in
Section 5.3, the connection with the ”dummy” actuators will be explained, including the signal creation
and signal feedback reception. The different set-ups will be discussed in detail and the other expected
results will be shared.

5.2. Code Porting
5.2.1. Experimental Framework
The micro-controller unit to be used in this research is the STM32 Nucleo-F303RE development board,
shown in Figure 2.15. It features an ARM Cortex-M4 microprocessor and includes a module called
the ST-LINK, enabling USB connectivity for code uploading and debugging. The board has a total
of 76 pins that support various functionalities, such as sending electrical signals (PWM), transmitting
data (e.g., through UART or I2C), or providing power connections. These capabilities are collectively
referred to as peripherals. Detailed specifications of the STM32 can be found in STMicroelectronics
[47]. The pin ports are labeled PA, PB, and PC, numbered 1 to 15, as shown in Figure 5.2. Each
port can be assigned to a specific peripheral, such as a UART connection or a PWM timer. Important
abbreviations from the figure are clarified below.

• GND: Ground, where one of the connectors to the power supply should always be connected to
in order to raise a desired potential.

• +3V3 or +5V: Other connector to the power supply, providing either 3.3[V] or 5.0[V].
• NC: Not Connected, often included on the PCB for compatibility, future use, or mechanical stabil-
ity.

Figure 5.1: Photo of the
STM32 Nucleo

RE303RE development
board, including an

ST-LINK on the top for
communication via USB.

Figure 5.2: Systematic layout of the pin functionalities of the Nucleo-F303RE board. These pins
coincide with the pins seen in Figure 5.1.

While the STM32 Nucleo-F303RE is designed for prototyping and laboratory use, it is not flight-qualified
for spacecraft applications due to the lack of radiation hardening and long-term reliability in extreme
environments. However, its 72 MHz ARM Cortex-M4 processor, equipped with a floating-point unit
(FPU), provides sufficient computational performance for real-time control tasks in this research. This
makes it well-suited for validating and testing ADCS algorithms under simulated conditions.

Although the STM32 Nucleo-F303RE differs from the microcontroller typically used in a flight-ready
CubeSat, such as a radiation-hardened processor like the LEON series or a space-qualified ARM Cor-
tex variant, the research focuses on developing and validating hardware-agnostic algorithms. Once

5.2. Code Porting 70

validated, these algorithms can be optimised for the specific processor used in the spacecraft. The use
of the STM32 board ensures a practical and efficient development process while maintaining compati-
bility with the eventual transition to flight-ready hardware.

After connection of the Nucleo board to a personal computer, the STM32IDE program can be run and
a project can be created for this specific board. Before any code can be written or can be generated, it
should be clear what the goal is of working with the STM and which parts of the original simulation need
to be added to the board. Also, a brief overview of the differences in C code compared to Python should
be given. First of all, the STM32 board should be programmed so that, when connected to power, it
automatically and autonomously executes the required parts of the simulation. It should be noted that
this practical will only include the commanding of thrusters, and considers thruster configuration 1 as
its set-up. In real spacecraft OBCs, the calculations that would be done are:

• qref calculation: Normally, the spacecraft would now its own location based on star sensors and
Sun sensors (in cislunar environment). Potentially, communication with an Earth-based ground
station could be used, and a Kalman filter can be added to the measurements to create an ac-
curate estimation of the spacecraft state. Based on this estimation, it would determine its own
position with respect to the Moon and also have the position of the Sun with respect to the Moon.
Using these values as input, it calculates the desired attitude as was also performed in the original
simulation.

• Control torque calculation: Using the reference attitude qref , its current attitude (measured
with the help of a.o. gyroscopes) and angular velocity, and pre-determined gain values, the OBC
is able to compute the required control torque at each moment of time by using the relation as
described in Equation 4.12. This desired control torque can then be used to create signals the
thrusters.

• Force per thruster calculation: Based on the control torque from the previous step, the OBC
should be able to compute the desired torque per thruster. It has been pre-programmed with the
exact thruster configuration in order to properly do so and will be able to convert these values into
useful signals, as will be seen in the next section.

In addition, a number of functions from the Rotation class will also be programmed in the STM32
board, since these are necessary for execution of above functions. The other mathematical operations
that have been executed in the original simulation are all part of the environment on a space mission.

Code on an embedded system is typically designed to initialize various peripherals, such as timers (for
time-sensitive operations), GPIOs (for general input and output control), and UART connections (for
serial communication). After initialization, the system enters an infinite while-loop, which continuously
monitors andmanages the system’s operations when the PCB is powered. To enhance responsiveness
and efficiency, interrupts are implemented. Interrupts are special mechanisms that pause the main pro-
gram flow to execute specific code in response to predefined events, such as receiving a message, a
timer overflow, or a sensor signal. This event-driven approach ensures that the system reacts promptly
to critical inputs without continuously polling for changes, thereby avoiding unnecessary computational
overhead. By enabling the system to execute tasks only when needed, interrupts significantly reduce
power consumption and optimize memory usage. This is particularly important in resource-constrained
environments, such as battery-operated or low-power devices.

A main.c file is uploaded, which contains initialization functions, timer configuration settings, an error
handler, interrupt rules, and the infinite while-loop. To maintain clarity and organization, not all functions
are stored in this file. Instead, specific functions are placed in separate .c files and are called from the
main file when needed. In C programming, each variable is assigned a specific memory location, a
process managed using pointers. A pointer is essentially a variable that stores the memory address of
another variable, allowing direct access to the data stored there. Each variable has a unique pointer
that can be used throughout the code. Variables in C can be categorized as global or local. Global
variables are accessible across the entire program, while local variables are confined to specific func-
tions. Local variables are especially useful for iterative processes, as their values can be overwritten
with each iteration, ensuring they serve only their intended scope. Moreover, variables are assigned

5.2. Code Porting 71

the data type double, which is a floating point number capable of containing 64 bits of decimals. This
accuracy is equal to the float data type used in Python. Each .c file has an associated .h file, which
serves as its header file. In STM32IDE (or any C-based development environment), the .h file is used
to declare the functions, macros, constants, and sometimes global variables that are defined and im-
plemented in the corresponding .c file. The header files for the script are all included in the main C file.

An adjusted version of the Python file simulation.ipynb has been stored called embedded.ipynb,
which uses the serial package to send values to and receive values from the STM32 board. Necessary
values are all concatenated in one array and then converted to a string, which allows for quick UART
data transmission. In addition, code has been added that allows for receiving data via UART and
converts it back to floating point numbers again.

5.2.2. Porting
Now, a step-by-step code walkthrough can be provided. The entire code in C can be viewed in Ap-
pendix C. First of all, the peripheral allocation should be clear. Three different peripherals were ini-
tialised:

1. GPIO: Assigned to PA5 and used for the toggling of an LED on the board itself. This LED is identi-
fied by the abbreviation LD3, which is connected to pin PA5. As mentioned previously, the GPIO
simply sends a 3.3V signal through, and can therefore turn the LED on and off. This functionality
will be used to assess the proper code functioning in development; a visual confirmation of code
running is often used in embedded software engineering.

2. UART: Assigned to PA2 for transmission (Tx) and assigned to PA3 for reception (Rx). In order
to communicate with the personal computer, these pins need to be connected to, for example, a
USB-to-UART module. The USB connection established through the ST-LINK can also be used
for UART communication. UART is used in this research instead of I2C due to its simplicity and
existing Python libraries for connection.

3. PWM timer: The timer peripheral is connected to pin PC0 and will generate the required signals
for actuator activation. At first, only one PWM signal will be created, to ascertain its functioning.
After this has been proven, the set-up will be extended to the six thrusters present in thruster con-
figuration 1. The PWM timer settings will be as follows: the assumed Pocket Rocket operational
frequency is 10 [Hz]. Therefore, the period of the PWM signal is set to 100,000 [µs] and the duty
cycle is initially set to 25%. As will be seen in Section 5.3, the duty cycle will be adjusted based
on the internal OBC computations.

5.2.2.1 1/0 Test
Having assigned the peripherals, a first test of the connection between PC and MCU had to be im-
plemented. This was done with the 1/0 test and included a slight adaptation of the original Python
simulation code. The main idea behind this test is running the Python simulation as was done before,
but make the code stop at the beginning of each iteration. It will only continue after receiving a ”1” in
string format from the MCU. Then, at the end of the iteration, a ”0” is sent back to the MCU as confirma-
tion of finishing the iteration. After this message has been received by the MCU again, it will re-send
the ”1” and the iterations continue. In the C code, after initialisation of the peripherals, the first infinite
while-loop is started. It instantly transmits a ”1” to Python using the HAL_UART_Transmit function. HAL
is a library containing functions to be used on the embedded system. Next, another infinite while-loop
is entered that calls the HAL_UART_Receive function, and will continue to do so until the value of the
received data is a ”0”. Upon reception of this ”0”, the LED is toggled as visual confirmation. Then the
initial while-loop starts again. Next to the visual confirmation of the LED, the time for each iteration in
the Python code (so: time for the execution of one time step in the control simulation) is measured and
compared to the base case in which no connection with the MCU is made.

5.2.2.2 PD Control
The next step in the code porting process is the conversion of one of the functions that need to be
present in the MCU. The PD control function was implemented first, since this is the computationally
least expensive of the three functions. The function does require a number of inputs, as was discussed
previously, and these are for the moment all coming from the Python code. In the dedicated simulation

5.2. Code Porting 72

function in embedded.ipynb, the required values are concatenated into the same array and then con-
verted to a string with a comma as their separator and \n at the end of the string. Using the Python
serial package, these values are then transmitted to the C code and used for the calculation of T c.
The Python code is now paused until a new reception via UART is established. The torque vector is
then received in string format, and converted to a floating number vector again. On the MCU, the string
is first received bit by bit, meaning character by character. Then, a dedicated function converts the
string to floating point numbers (doubles) again, using the commas and \n signs as indicators. These
values are then used in a dedicated function for computing the proportional-derivative control law as
was seen in Equation 4.12 and uses the an additional function for computing the quaternion error, as
was seen in Equation 2.31. When the control torque vector comes out of this function as a result, it is
converted to string again to be sent back to the personal computer via UART. In contrast to the func-
tioning of the code for the 1/0 test, the infinite while-loop is now empty, but the reception of data via
UART will cause it to interrupt and do the computations. When the control torque has been sent back,
the LED will toggle again for visual confirmation. The calculations from the C code are compared to the
calculations in Python, and the accuracy is determined with this. Furthermore, the iteration computation
time is compared to the all-Python simulation case.

5.2.2.3 Reference Attitude
The next step in the porting process is migrating the qref function. This function takes as input the
position of the spacecraft with respect to the Moon and the position of the Sun with respect to the
Moon. For this reason, these position vectors (retrieved from CAPSTONE and Sun ephemeris in the
Python code) should be sent through UART to the MCU as well, and an extension of the function that
converts the values to string and sends them needs to take place. Also, the reference quaternion does
not need to be computed any more in the Python simulation and also does not need to be sent any
more. No other adjustments are needed on the Python part of the code at this moment. In the MCU,
the C code should receive the new variables and feed them to a function that computes the reference
quaternion. An additional function that converts the resultant direction cosine matrix to quaternions is
created as well. The reference quaternion value is now directly fed into the C-based control torque
calculation and the simulation runs the same as seen in the pervious porting step. Again, the values to
be measured and compared here are the floating point number accuracy and the iteration computation
time.

5.2.2.4 Thruster Allocation
Next, the thruster allocation algorithm as shown previously needs to be ported to main.c. On the Python
side of the code, not many changes are observed except the omission of the linear programming solu-
tion itself. The thruster output values for each time step are received again via UART for comparison to
the base case. In the C code, after the control torque has been computed, the mixing matrix, number
of thrusters, control torque vector and maximum allowable thrust are fed to the thrust solution function.
As mentioned previously, thruster configuration 1 will be included for analysis, but the thruster mixing
matrices for all four configurations will be included as global variables in case a different configuration
is tested. The thrust output solution is found using the ECOS solver, which is similar to the one used
in the Python code and was installed for this C environment. The thrust outputs are then sent back to
Python using UART, in string format again, for further power and energy calculation and for compari-
son with the base case. Again, for this function in C, the accuracy of the calculation and computation
times are compared. It is expected that the accuracy will remain similar as was seen previously, since
the same solver is used in the optimization problem. The computation time will significantly increase
compared to previous ported functions.

Now, all the relevant functions that an OBC should be able to execute have been ported to the STM32
Nucleo-F303RE development board and should be executed when plugged into powered, based on
the data received from the personal computer. A final code overview diagram, similar to the one seen
in Figure 4.5, is included in Figure 5.3, in which the distinction between Python code on the PC and
C code on the MCU is made clear. The next step in this practical is the conversion of the required
thrust values for the desired control torque to signals to be sent to hardware modules, a process that
is examined in the following section.

5.3. Actuator Connection 73

Figure 5.3: Attitude control simulation code block diagram, similar to Figure 4.5 with the separation of PC-based and
MCU-based computations. Logos taken from open source, copyright free internet sources.

5.3. Actuator Connection
The next step in this practical process is the connection to the hardware modules. The designated
hardware module for this experiment is a solenoid valve. Before diving into the hardware layout and
specifics, it should be understood why this specific scenario was selected for testing. First of all, in
order to validate the functioning of the OBC output signals, any hardware that responds to it would
suffice, and the solenoid valve used in this experiment was available. Also, valves are used within
chemical thrusters in order to control the thrust, and are therefore somewhat related to the actual mis-
sion geometry. It should be noted, however, that the minimum impulse bit (MIB) of solenoid valves
is typically much larger than that of vacuum arc thrusters (VATs). The impulse bit, which is measured
in Newton-seconds (Ns), represents the smallest achievable impulse for a device and is a constant
characteristic. For solenoid valves, the MIB is in the milli-Newton-second range, while for VATs, it is
in the micro-Newton-second range. This significant difference highlights that the experimental setup
does not physically emulate the connection used in VATs. Instead, the solenoid valve is solely used to
verify the proper functioning of the microcontroller unit (MCU) and assess its signal output.

Vacuum arc thrusters (VATs) are typically connected to the OBC through electrodes that transmit electri-
cal pulses. As explained in subsection 2.6.2, these pulses are often square waves derived from pulse-
width-modulated signals. These signals are delivered to the VATs at a pre-determined frequency, with
the width of each pulse modulated by the duty cycle. The duty cycle directly controls the pulse width,
determining the on-time of the thruster and the resulting impulse per firing. At the minimum achievable
duty cycle, the MIB is established, representing the smallest impulse the thruster can reliably deliver
over time. Attempting to further reduce the duty cycle beyond this minimum will cause the thruster’s
performance to fall below its resolution limit, leading to unreliable or improper operation.

The solenoid valve used in the first experimental test setup is the AirTac Model 2V025-08 from AirTac
International. Its key characteristics can be viewed in AirTAC and Trimantec [2]. The valve operates
with a 12 [V] supply voltage and consumes 3.0 [W] of input power from the power supply to actuate.
Additionally, the control signals that trigger the valve are logic-level signals requiring a 3.3 [V] input. The
physical valve characteristics can be seen in Figure 5.4 below; its total dimensions are approximately
W×L×H = 2.0×6.0×6.0 [cm].

5.3. Actuator Connection 74

Figure 5.4: AirTac Model 2V025-08 side view.
Figure 5.5: Two AirTac Model 2V025-08 attached to a power
distribution board with a heat sink, main input power cables

and signal input cable for connection to the MCU.

The solenoid valve was attached to a power distribution board along with an additional valve. The sec-
ond valve was disregarded for the experiment. A top view of this set-up is shown in Figure 5.5, in which
the two valves are seen on the the bottom, both connected to the power distribution board. The large
metallic plate acts as a heat sink for excess heat. The two cables on the top will be connected to the
main power supply, supplying 12[V] and 3.0[W]. The orange cable on the bottom of the power distribu-
tion board will be connect to the MCU PWM signal output pin, in order for the signals to be transmitted
to the valve. The exact lay-out of the power distribution board is not relevant to understand for this
research, and it should be understood that the second valve was not commanded with an additional
PWM signal.

Regarding the required software adaptation of this experiment, a minor addition has to be done in the
final code as seen in the previous chapter. Thruster configuration 1 will be used as a software input.
After the thruster allocation problemwas solved using the linear programming solution, the thrust values
for each thruster were output. Since only one valve is available in this experiment, only one thruster
output will be taken to create signals from, which for convenience will be the first thruster in the array.
Upon examination of the simulation results, it was seen that this thruster was indeed the most critical
thruster for configuration 1. Its thrust value is fed to a function that updates the PWM signal duty cycle
(DC), in which the duty cycle is computed as seen in Equation 5.1. In STM32IDE, the duty cycle needs
to be provided in micro-seconds, which is why it is multiplied with the timer period again. Furthermore,
when the thrust output of thruster 1 is smaller than the MIB, the duty cycle will be set to zero. In the code,
the duty cycle will be sent through UART to Python in order to obtain the settings for the commanded
PWM signal. Then, using the function HAL_TIM_SET_COMPARE, the timer duty cycle can be adjusted to
the value that has just been calculated. In this way, during each iteration time step, the duty cycle for
the valve is adjusted based on the required thrust output. In a real-world application, this would be the
exact same way as the thrust output would be varied. [42]

DC =
Fthrust,1

Fthrust,max
(5.1)

The final set-up can now be constructed and is shown in Figure 5.6. In the middle, the PC used for this
research can be seen, with the embedded.ipynb script open to run. It is connected to the STM32 Nucleo
board, via USB. A red light is toggled, indicating that the board is activated. The board is connected
to the valve power distribution board on pin PC0, which generates the PWM signal. A blue wire is
connecting the negative pole of the power supply to one of the ground pins on the Nucleo board, in
order to close the electrical circuit. The power distribution board is plugged into the power supply, which
is set to the correct settings (12[V] and 3.0[W]) and turned on. The Nucleo board will feed the 3.3[V]
logic signals. Upon activation, an LED within the valve was toggled to confirm its proper connection.

5.3. Actuator Connection 75

Figure 5.6: Complete experimental valve set-up, including an oscilloscope, a personal computer, a power supply, the STM32
Nucleo developer board, two valves and the power distribution board they are connected to.

Figure 5.7: Example of the screen of the
oscilloscope used in this research to analyse the

characteristics of the measured signals.
Figure 5.8: Schematic overview of Figure 5.5.

Finally, on the top left side of the image, an oscilloscope can be seen, that is connected to the PC0
pin and the negative pole of the power supply, in order to measure the electrical signals provided. The
oscilloscope has multiple buttons and switches that can be used to analyse the incoming signals; a
snapshot at a specific moment in time can be made, which can then be enlarged and played back
over time. Moreover, the frequency and period of the signal are estimated by the device, as well as
the amplitude of the signal. Two measurement lines are present, for dual signal measurements. An
example of an arbitrary square wave signal measured by this oscilloscope is shown in Figure 5.7. The
oscilloscope is used in this research to observe the incoming signals when the thrust output is larger
than the Minimum Impulse Bit, and therefore confirm visually that the valve activation occurs when the
signal are being sent. A schematic overview of the entire set-up can be seen in Figure 5.8, in which
all relevant components and voltages have been indicated. Note that the valve and power distribution

5.3. Actuator Connection 76

board can be seen as one component here. Also, the GND connection on the LUMIO board is, as
mentioned previously, connected to the negative pole of the power source.

The experiment is started by running the Python script that was also run for the last step during code
porting. After the required variables from the PC side have been transmitted and received by the MCU,
it will perform its calculation and send a pulse-width modulated signal to the valve. If this signal is
non-zero and therefore above the MIB, the thruster will respond and a clicking sound will be heard.
The iteration does not stop before the thruster is fired, which means a new signal can immediately be
created after the first duty cycle adjustment has taken place. The time span around which this exper-
iment is performed will be shorter than was examined during the Python-based simulation: the close
fly-bys will be especially of interest in this experiment, since these are the more extreme situations in
which the thrusters can be used. The time frame used is therefore between [05:33:20 05-01-2023] and
[14:46:40 05-01-2023]. This flyby time frame was found from the preliminary results

From this experiment, a number of results can be analysed. First of all, as was also seen in the code-
only approach, the time for each iteration can be measured and stored. Since the only addition to the
code length is the adjustment of the PWM duty cycle, it is expected to have similar iteration times as
the last test in subsection 5.2.2. Next, the oscilloscope attached to the set-up can be visually inspected
and a visual confirmation of the proper valve working can be given. Since the level of accuracy in this
method is very low, an additional signal creation will be incorporated. The output pin PC0 will internally
be connected to an Analogue-to-Digital Converter (ADC) peripheral, that samples the analogue PWM
signal and saves them. These values are then used to determine the actual duty cycle sent out by the
pin as well as the actual frequency. Comparing these values to the desired values gives an indication
of the accuracy of the system and the noise present. In addition, the duty cycle adjustments are com-
pared to the actual thruster firing and confirm its adherence to the MIB.

An important note needs to be taken on the Minimum Impulse Bit and the maximum thrust output. From
the preliminary results of the main simulation in this research, it was found that the maximum thrust
levels only lie in the order of magnitude of 10−7 [N], which is well below the maximum thrust threshold
of 200 [µN]. In addition, considering the imposed MIB of 1.18 [µNs] for the Pocket Rocket, this would
mean that these values would only be possible to continuously exert over a longer time period, which
cannot be implemented due to the 1-second accuracy of the control algorithm. For this reason, for the
hardware connection practical, the MIB value that is used will be 0.01 [µNs], and the maximum thrust
value Fthrust,max is set to 8.0 · 10−7 [N], so that duty cycle values are used that are realistic and that
can be visualised.

After completion of the experiment with one valve, additional PWM ports were created in STM32IDE,
so that signals for all 6 thrusters could be created. Although these could not be attached to physical
thruster hardware modules (only a number of LEDS were present), their outputs could be measured
and analysed. From these outputs, the duty cycles and frequencies over time could be obtained, along
with the adherent thrust values from the thrusters. As will be seen in the next chapter, these outputs
can be visualised and compared to each other, to ensure the proper functioning of the set-up.

6
Results

Having established the required simulation environment and robustness tests, the simulations were
conducted for each thruster configuration and the reaction wheel analysis. For the predetermined anal-
ysis period of two weeks, as explained in Chapter 4, a substantial amount of data was collected and
stored for visualisation. Additionally, the measured results from the experiment described in Chapter 5
have also been gathered. This comprehensive dataset allows for an in-depth inspection, further dis-
cussion, and the formulation of conclusions.

This chapter presents the visual and numerical results from the simulations and experiments in a chrono-
logical sequence. First, the results of the reaction wheel simulation are shown, in order to determine
the benchmark for the thruster research, as well as elaborate more clearly on the visualisation meth-
ods used and what can be seen in them. Next, the results for the thruster analysis are presented in a
similar format, followed by a comparative study between the reaction wheel and thruster systems. This
concludes Section 6.1, which focuses on the standard simulation results.

In Section 6.2, the robustness test results are discussed. Only relevant parameters critical to the algo-
rithm’s robustness are presented, omitting less significant simulation parameters. Then, Section 6.3
elaborates on the numerical and visual results from the practical experiment. Finally, Section 6.4 out-
lines the verification and validation methods applied to all simulations and experiments, as discussed in
the previous chapter. These verification and validation methods were executed after the initial results
were obtained.

It is important to note that this chapter serves primarily as a repository for all results. Discussions and
interpretations of the findings will follow in Chapter 7, with the relevant conclusions for the research
questions drawn in Chapter 8.

6.1. Simulation
As mentioned previously, the main simulation results can be divided in the reaction wheel analysis,
which serves as a benchmark, the thruster analysis, and the comparative study between them. Before
diving into the reaction wheel system, it should be clear that different gain values need to be used for
the two analyses. The reason for this difference is the fact that the dynamic equations are slightly dif-
ferent for both analyses, and the required control is therefore also different for each iteration time step.

For this reason, the control gain vectors Ks, Kp and Kd should be determined independently for the
two analyses. No distinction is made between the gains for the different Cartesian axes; in recent re-
search ([12] and [26]) this distinction was also not made since it did not improve the algorithm to any
significant amount. If the three axes were to be governed by completely different equations or systems,
this distinction would be relevant.

77

6.1. Simulation 78

6.1.1. Reaction Wheel Analysis
The analysis will start with the determination of the gains for the simulation. For the proportional and
derivative gains, an estimation of their order of magnitude could be made based on Equation 4.13. The
natural angular velocity of the system, for the highest torques predicted (order of magnitude of 10−6

[Nm] based on disturbance torque predictions) and considering the order of magnitude of the inertia
matrices (10−2 [kgm2]), is approximately 0.01 [rad/s]. Therefore, the first approximation towards the
proportional gain will be 0.0002 and for the derivative gain 0.02. Note that a critically-damped system
is considered, implying ζ to be equal to 1. The quaternion error, for a small time period during the first
fly-by in the simulation, is presented in Figure 6.1 in which these first gain values were used, with a
speed gain equal to 1.

Figure 6.1: qe development over time for the four quaternion components, with proportional gain set to 0.0002, derivative gain
set to 0.02 and speed gain set to 1. Simulation over time period [00:00:00 05-01-2023] to [08:00:00 05-01-2023].

From this point onward, slight adjustments of the proportional gain and derivative gain, in combina-
tion with setting different values for the speed gain, resulted in different convergence performance and
quaternion error magnitudes. The gain tuning method used was therefore the manual tuning, with the
help of visual inspection of the quaternion error over time. It is understood that for real spacecraft,
gains may be computed and uploaded before mission deployment, so that manual tuning is still pos-
sible. In most cases, however, a spacecraft employs adaptive control and updates its control gains
based on real-time measurements of the system’s behaviour and changes in operating conditions. So-
phisticated algorithms have been developed for this purpose. The final gains chosen for the reaction
wheel analysis, were:

Kp =
[
5 · 10−2 5 · 10−2 5 · 10−2

]
Kd =

[
5 · 10−2 5 · 10−2 5 · 10−2

]
Ks =

[
12 12 12

] (6.1)

With these new gains found, the quaternion error over time, for the same time span as was seen
previously, is presented in Figure 6.3. It should be noted that the magnitude of the error has significantly
improved (100×) and that further increase of the gains only led to unstable system response. To
determine whether these errors are acceptable, a benchmark was established based on requirement
ADCS-01 as seen in Table 2.3 from the LUMIO mission. Figure 6.2 shows the half-cone angle β
between the LUMIO-Cam and the Moon pointing vector for the entire simulation as will be presented
in the rest of this section. As mentioned previously, the LUMIO-Cam was assumed to be pointing out
of the negative y-panel of the spacecraft bus. It can be seen that the maximum offset is approximately
0.055[◦] and therefore well within the limit of 0.18[◦]. The final results indicate that the system meets
this benchmark, confirming the adequacy of the selected gains.

6.1. Simulation 79

Figure 6.2: Reaction wheels: β, measured between the negative y-panel normal vector and the Moon pointing vector and
presented in absolute numbers, over time in days, analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023].

It should also be noted that further increases in the gains led to an unstable system response. For this
study, ”unstable system response” is defined as oscillations in the half-cone offset angle β that exceed
the 0.18[◦] threshold for longer than 60 seconds. Such behaviour would compromise the stability and
reliability of the system, particularly during critical mission phases, and is therefore deemed unaccept-
able. The gains selected achieve a balance between error reduction and system stability, making them
the most suitable choice for the simulation.

Figure 6.3: qe development over time for the four quaternion components, with proportional gain set to 0.05, derivative gain set
to 0.05 and speed gain set to 10. Simulation over time period [00:00:00 05-01-2023] to [08:00:00 05-01-2023].

Now, the simulation results can be presented. In the reaction wheel section, all relevant results will be
shown in order to obtain an idea of the order of magnitude of the variables. First of all, qw, q1, q2 and
q3 are presented over time in Figure 6.4 to Figure 6.7. In these graphs, the commanded quaternion for
each component is also presented and it can be seen that due to the adequate PD control settings, the
attitude is followed accurately.

6.1. Simulation 80

Figure 6.4: Reaction wheels: qw versus the reference quaternion over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023].

Figure 6.5: Reaction wheels: q1 versus the reference quaternion over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023].

Figure 6.6: Reaction wheels: q2 versus the reference quaternion over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023].

6.1. Simulation 81

Figure 6.7: Reaction wheels: q3 versus the reference quaternion over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023].

In order to have a closer look to the performance of the quaternions over time, Figure 6.8 shows the ab-
solute quaternion error over time for the reaction wheel analysis, for each component individually. The
relative difference with respect to the current value of each of the components is shown in Figure 6.9,
in which the y-axis shows the absolute percentual offsets.

Figure 6.8: Reaction wheels: qe (absolute) over time in days, analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023].

Figure 6.9: Reaction wheels: qe (relative in %) over time in days, analysed from [00:00:00 01-01-2023] until [00:00:00
15-01-2023].

It can be observed that the relative error in the quaternions remains below 0.1% throughout the simu-

6.1. Simulation 82

lation, and shows a number of peaks in the areas where the quaternions themselves change rapidly.
These rapid changes are attributable to the aforementioned close fly-bys of the Moon, seen around
4.25 days and 11 days. Moreover, relative offset peaks for q1 and qw can be observed around 3 days
and 6.5 days as seen from epoch. This relative peak has to do with the switching of signs of both
quaternions, as can be seen in Figure 6.4 and Figure 6.5. Although one may suspect these quaternion
error peaks to last for a duration longer than a minute, it can be seen from Figure 6.10 that this only
covers several seconds, during which the sign changes or rapid attitude corrections take place. Only
the evident peak for the relative error of q3 has been shown here, but the same behaviour was found
for the other quaternions. For this reason, the peaks are considered to be insignificant.

Figure 6.10: Reaction wheels: qe (relative in %) over time in days, analysed from [05:32:10 05-01-2023] until [05:32:38
05-01-2023].

The next reaction wheel result to be observed is the angular velocity of the spacecraft, divided over its
three primary axes, as shown in Figure 6.11. The maximum angular velocity experienced is approx-
imately 0.00045 [rad/s], equal to approximately 0.0258 [◦/s]. This was also experienced during the
close fly-by manoeuvrers, and for the rest of the simulation, the angular velocity remains approximately
zero, which already indicates good stability. The peaks indicated in the figure are necessary for the
adjustment of the attitude during the close fly-bys, and therefore do not pose a risk for the spacecraft.
In addition, these values remain below the slew rate given in requirement ADCS-03 from the LUMIO
mission, which is equal to 0.5 [◦/s].

Figure 6.11: Reaction wheels: ω for each of the spacecraft primary axes over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

The external disturbance torques, as well as the required control torque at each moment in time, can
also be visualised for each of the primary axes. In Figure 6.12, the gravity gradient torque exerted on

6.1. Simulation 83

the spacecraft is shown for the full two-week simulation. It can be seen that the order of magnitude of
this torque is 10−10 and it becomes only significant with the close fly-bys again.

Figure 6.12: Reaction wheels: TGG for each of the spacecraft primary axes over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

In Figure 6.13, the solar radiation pressure torque exerted on the spacecraft is shown. It can be seen
that its order of magnitude is only 10−18, making it considerably insignificant with respect to the gravity
gradient torque and to the attitude control system as a whole. For this reason, a combined disturbance
torque graph is omitted since the solar radiation pressure torque will not give significant rise to the
gravity gradient torque.

Figure 6.13: Reaction wheels: TSRP for each of the spacecraft primary axes over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

Next, the control torque necessary to attain the reference as seen in the quaternion performance is
displayed in Figure 6.14 and was well within the limits of 0.007 [Nm] possible by the reaction wheels.
The maximum required torque by one of the primary axis is experienced over the x-axis (roll axis) and
has a magnitude of approximately 1.3 · 10−7 [Nm]. It can be observed that this is about an order 103
larger than the maximum experienced disturbance torque. Moreover, a required torque in the first few
iterations of the simulation is observed.

An important observation that should already be mentioned, is the fact that the required control torques
are an order 104 smaller than the capabilities of the used reaction wheels. Since no direct information
on the resolution of the Blue Canyon reaction wheels as used in this research is publicly available,
no conclusion can yet be drawn on whether they can be used for the analysis in this research. As a
first approximation, usual reaction wheel resolution can go up to 1% of the torque range, which would

6.1. Simulation 84

mean a minimum torque of 7.0 · 10−5 [Nm] would be possible, disqualifying the reaction wheels for this
analysis. In order to achieve the goals of this research, the reaction wheel analysis is assumed to be
feasible. Further discussion will be provided in Chapter 7.

Figure 6.14: Reaction wheels: Tc for each of the spacecraft primary axes over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

In order to have a closer inspection of the close fly-bys and their effect on the control torque needed
for the system, Figure 6.15 and Figure 6.16 are displayed below. The variation of the torque per axis
can be observed more clearly in this way.

Figure 6.15: Reaction wheels: Tc for each of the spacecraft primary axes over time in days, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023].

6.1. Simulation 85

Figure 6.16: Reaction wheels: Tc for each of the spacecraft primary axes over time in days, analysed from [00:00:00
12-01-2023] until [05:26:40 12-01-2023].

All the results as shown above will be approximately similar for the thruster analysis. As was mentioned
before, the dynamics that constitute these results are primarily based on the control algorithmwith its un-
derlying dynamic equations, and these equations only differ in the fact that the total angular momentum
of the spacecraft is supplemented by the reaction wheels. Therefore, for the reaction-wheel-specific
results below, a closer look will also be given to the angular momentum term the wheels introduce,
and a conclusion shall be drawn on whether this has a significant influence for the control algorithm
results as shown above. With this conclusion drawn, the thruster analysis results can efficiently be
pre-selected.

From the required control torque, the necessary torque per wheel could be computed and their results
are presented in Figure 6.17. It can be seen that reaction wheel 3, aligned with the z-axis, exerts
the highest torques around the first fly-by, and this goes for reaction wheel 1 during the second fly-by.
In order to more thoroughly inspect the graph, the zoomed-in versions are shown in Figure 6.18 and
Figure 6.19, for the same time period as shown previously. Note that the control torque, as well as
logically the reaction wheel torques, show required values around day 6. This is due to the switching
of signs again, as was seen previously in the quaternion error as well.

Figure 6.17: Reaction wheels: Trw for each of the four reaction wheels over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

6.1. Simulation 86

Figure 6.18: Reaction wheels: Trw for each of the four reaction wheels over time in days, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023].

Figure 6.19: Reaction wheels: Trw for each of the four reaction wheels over time in days, analysed from [00:00:00
12-01-2023] until [05:26:40 12-01-2023].

Based on the torques exerted per reaction wheel, the power required per wheel could also be analysed.
A linear relationship between the power required by the reaction wheels and the torque exerted was
assumed in this research. In addition, the integration of power over time gives the energy in Joules that
is consumed by the wheels in total. Note that this energy increases over time, which is expected. In
addition, the total power and energy consumption of the wheel is shown. This information is presented
in Figure 6.20 and Figure 6.21. Finally, the power graphs have been posted more closely in Figure 6.22
and Figure 6.23 as well, from which it is again evident that reaction wheel 3 requires most power during
the first fly-by and reaction wheel 1 during the second fly-by.

6.1. Simulation 87

Figure 6.20: Reaction wheels: Prw for each of the four reaction wheels over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

Figure 6.21: Reaction wheels: Erw for each of the four reaction wheels over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

Figure 6.22: Reaction wheels: Prw for each of the four reaction wheels over time in days, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023].

6.1. Simulation 88

Figure 6.23: Reaction wheels: Prw for each of the four reaction wheels over time in days, analysed from [00:00:00
12-01-2023] until [05:26:40 12-01-2023].

From above figures, it can already be seen that the total power requirement for this reaction wheel
system is approximately 0.00025 [W] during the critical close fly-by maneuver. The question now arises
whether additional actuators (thrusters) are needed for momentum wheel desaturation. In order to
assess this, the angular momentum build-up in each of the wheels needs to be visualised and checked
with the angular momentum limits of the wheels, which was set to be 0.1 [Nms] for the first three
reaction wheels and 0.05 [Nms] for the fourth reaction wheel. The angular momentum build-ups are
visible in Figure 6.24 and Figure 6.25 below, for each reaction wheel individually. It can be seen that the
angular momentum for the wheels builds up around the close fly-by, but does not necessarily increase
towards the end of the simulation. Under nominal conditions and without any external actuation, the
angular momentum does not reach the limits of the wheels. However, non-nominal scenarios, such as
emergency manoeuvrers or unexpected high reaction wheel usage, could lead to rapid saturation of
the wheels, necessitating external momentum dumping.

Figure 6.24: Reaction wheels: hrw for reaction wheels 1, 2 and 3 over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023]. Saturation limits indicated.

6.1. Simulation 89

Figure 6.25: Reaction wheels: hrw for reaction wheel 4 over time in days, analysed from [00:00:00 01-01-2023] until [00:00:00
15-01-2023]. Saturation limits indicated.

In order to assess the significance of the reaction wheels on the overall spacecraft angular momentum
throughout the simulation, the angular momentum vectors of the wheels can be summed to create the
total angular momentum from the wheels hrw. Its evolution over time, for each of the primary spacecraft
axes, can be seen in Figure 6.26 below. Evidently, the induced angular momentum on the spacecraft
by the disturbance torques is fully compensated for by the reaction wheels, resulting in the desired
zero angular momentum value for the spacecraft itself. This is also directly observed from the angular
velocity results as seen in Figure 6.11, since angular momentum equal Iω.

Figure 6.26: Reaction wheels: hrw for each of the spacecraft primary axes over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

6.1.2. Thruster Analysis
The gain determination in the thruster analysis was conducted in the exact same way as was done
for the reaction wheel analysis. Also, the first estimations for the gains were in the same order of
magnitude, and the same estimations were therefore used. Based on the preliminary results obtained
from the thruster analysis, in combination with the knowledge that only the angular momentum terms
were different in the reaction wheel analysis, the same gain values were in the end used for both the
reaction wheel and thruster analyses, as displayed in Equation 6.2.

Kp =
[
5 · 10−2 5 · 10−2 5 · 10−2

]
Kd =

[
5 · 10−2 5 · 10−2 5 · 10−2

]
Ks =

[
12 12 12

] (6.2)

This section will show the results for the thruster analysis per thruster configuration as proposed in

6.1. Simulation 90

Chapter 4. Since the basic lay-out of the results has already been shown in subsection 6.1.1, this
section will only include visualisations that are inherently different from the ones shown previously. In
subsection 6.1.3, a comparison between the reaction wheels and thrusters will be given, and differences
between, for example, the quaternion evolution over time will also be provided there. All other results
not shown in this chapter are present in Appendix A.

6.1.2.1 Configuration 1
The quaternion behaviour for the systems is equal to the ones seen for the reaction wheel analysis.
In Figure 6.27, the error quaternion evolution over time has been shown for visual confirmation of its
equality to the reaction wheel analysis.

Figure 6.27: Thrusters: qe (absolute) over time in days, analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023].

Moreover, the environmental parameters in the analysis are equal to the reaction wheel case, because
of which the visualisations for TGG and T SRP will not be shown here. Next, the control torque values
display the exact same behaviour as well, and a comparative analysis between reaction wheel and
thruster analysis will be given in subsection 6.1.3. Now, the thruster-specific visualisations can be
examined. For configuration 1, six thrusters were present that all exhibit thruster firing during the
simulation in order to comply with the required control torque values. Their thrust values over time
have been displayed in Figure 6.28 to Figure 6.33 below.

6.1. Simulation 91

Figure 6.28: Thrusters: F1 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure 6.29: Thrusters: F2 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure 6.30: Thrusters: F3 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure 6.31: Thrusters: F4 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

6.1. Simulation 92

Figure 6.32: Thrusters: F5 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure 6.33: Thrusters: F6 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

These plots can all be combined into one graph, shown in Figure 6.34. Closer examination of these
plots is also shown, for the exact same time frames as was seen for the reaction wheel analysis. These
can be seen in Figure 6.35 and Figure 6.36. From the graphs, it can be seen that the maximum thrust
that is required for any of the thrusters is approximately 6.5 · 10−7 [N] or 0.65 [µN], which is well within
the limits of the maximum thrust delivered by the Pocket Rocket module in this research. Discussion
with respect to the Minimum Impulse Bit will follow in Section 6.3. Also, it can be seen that the thruster
fire behavior differs for each of the two fly-bys.

Figure 6.34: Thrusters: F output for all thrusters in configuration 1 over time in days, analysed from [00:00:00 01-01-2023]
until [00:00:00 15-01-2023].

6.1. Simulation 93

Figure 6.35: Thrusters: F output for all thrusters in configuration 1 over time in days, analysed from [05:33:20 05-01-2023]
until [14:46:40 05-01-2023].

Figure 6.36: Thrusters: F output for all thrusters in configuration 1 over time in days, analysed from [00:00:00 12-01-2023]
until [05:26:40 12-01-2023].

In addition to the thruster output values, the linear impulse of the thrusters (Jthrust) can be plotted over
time and has been displayed in Figure 6.37. This graph provides a direct overview of the thrusters that
have been fired for the longest duration.

6.1. Simulation 94

Figure 6.37: Thrusters: Jthrust output for all thrusters in configuration 1 over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

Based on the thruster output graphs, the power and energy consumption per thruster could be com-
puted and combined, as seen in Figure 6.38 and Figure 6.41. In addition, the closer examination plots
are again shown in Figure 6.39 and Figure 6.40. It can be seen that the maximum total power nec-
essary for the thruster setup is approximately 0.14[W]. The total energy consumed by the thrusters
builds up towards approximately 1900 [J] over the time frame analysed.

Figure 6.38: Thrusters: P required for all thrusters in configuration 1 over time in days, analysed from [00:00:00 01-01-2023]
until [00:00:00 15-01-2023].

6.1. Simulation 95

Figure 6.39: Thrusters: P required for all thrusters in configuration 1 over time in days, analysed from [05:33:20 05-01-2023]
until [14:46:40 05-01-2023].

Figure 6.40: Thrusters: P required for all thrusters in configuration 1 over time in days, analysed from [00:00:00 12-01-2023]
until [05:26:40 12-01-2023].

Figure 6.41: Thrusters: E required for all thrusters in configuration 1 over time in days, analysed from [00:00:00 01-01-2023]
until [00:00:00 15-01-2023].

The half-cone angle offset β will be equal to the offset shown in Figure 6.2 as the thruster configurations
all perfectly match the control torques required, and because of the insignificance of the reaction wheel
dynamics as seen before.

6.1. Simulation 96

6.1.2.2 Configuration 2
For configuration 2, the thruster required thrust values are shown in Figure 6.42 and Figure 6.43 for the
two fly-by maneuvers. At first glance, it can already be seen that overall, less thrust is needed for the
attitude control maneuvers and that different thrusters are activated for this compared to configuration
1.

Figure 6.42: Thrusters: F output for all thrusters in configuration 2 over time in days, analysed from [05:33:20 05-01-2023]
until [14:46:40 05-01-2023].

Figure 6.43: Thrusters: F output for all thrusters in configuration 2 over time in days, analysed from [00:00:00 12-01-2023]
until [05:26:40 12-01-2023].

The total linear impulse of the thrusters for configuration 2 is shown in Figure 6.44. As seen before,
these values increase over time and give a representation of the usage of each of the thrusters during
the simulation period.

6.1. Simulation 97

Figure 6.44: Thrusters: Jthrust output for all thrusters in configuration 2 over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

In line with the thrust output values, the power consumption of each thruster for the two fly-bys are
shown in Figure 6.45 and Figure 6.46, from which it can already be seen that the power requirements
of the system with configuration 2 is lower than that of configuration 1. The final total energy required
for configuration 2 is 1556 [J], whereas this value is equal to 1882 [J] for configuration 1.

Figure 6.45: Thrusters: P required for all thrusters in configuration 2 over time in days, analysed from [05:33:20 05-01-2023]
until [14:46:40 05-01-2023].

Figure 6.46: Thrusters: P required for all thrusters in configuration 2 over time in days, analysed from [00:00:00 12-01-2023]
until [05:26:40 12-01-2023].

6.1. Simulation 98

6.1.2.3 Configuration 3
For configuration 3, the thrust outputs for the flybys have been shown in Figure 6.47 to Figure 6.50.
The addition of 2 extra thrusters called for an extra graph for a better view on the thrust required.

Figure 6.47: Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023].

Figure 6.48: Thrusters: F output for thrusters 7 and 8 in configuration 3 over time in days, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023].

6.1. Simulation 99

Figure 6.49: Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days, analysed from [00:00:00
12-01-2023] until [05:26:40 12-01-2023].

Figure 6.50: Thrusters: F output for thrusters 7 and 8 in configuration 3 over time in days, analysed from [00:00:00
12-01-2023] until [05:26:40 12-01-2023].

In Figure 6.51, the linear impulse of the thrusters in configuration 3 is shown. The power graph has
been omitted for this thruster configuration since this will be shown in subsection 6.1.3. The final total
energy required for this configuration amounted to 1753 [J].

6.1. Simulation 100

Figure 6.51: Thrusters: Jthrust output for all thrusters in configuration 3 over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

6.1.2.4 Configuration 4
Figure 6.52 to Figure 6.55 shows the thrust requirements for the twelve thrusters in configuration 4.

Figure 6.52: Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days, analysed from [05:33:20
05-01-2023] until [14:46:40 05-01-2023].

Figure 6.53: Thrusters: F output for thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in days, analysed from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023].

6.1. Simulation 101

Figure 6.54: Thrusters: F output for thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days, analysed from [00:00:00
12-01-2023] until [05:26:40 12-01-2023].

Figure 6.55: Thrusters: F output for thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in days, analysed from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023].

Finally, the linear increase over time for the thrusters in configuration 4 is shown in Figure 6.56 and
Figure 6.57. The final total energy required for this configuration amounted to 1334 [J], making it the
least energy-consuming thruster configuration in this research.

Figure 6.56: Thrusters: Jthrust output for the first six thrusters in configuration 4 over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

6.1. Simulation 102

Figure 6.57: Thrusters: Jthrust output for the last six thrusters in configuration 4 over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

6.1.3. Comparison
This section will conclude all the results from subsection 6.1.1 and subsection 6.1.2 and will visually
compare the total power consumption of the thrusters and reaction wheels, as well as the total energy
consumption. In addition, the absolute difference in the half-cone angle between the reaction wheel
and thruster analysis will be shown, which proves the assumption made previously regarding the influ-
ence of the total angular momentum.

The power graphs for the thruster configurations can be seen in Figure 6.58 to Figure 6.60. In addition,
Figure 6.61 shows the energy consumption of all thruster configurations over time. From this graph, it
can be seen that configuration 1 requires the most amount of power, after which configuration 3, 2 and
finally configuration 4 follow.

Figure 6.58: Total power required for each thruster configuration over time in days, analysed from [00:00:00 01-01-2023] until
[00:00:00 15-01-2023].

6.1. Simulation 103

Figure 6.59: Total power required for each thruster configuration over time in days, analysed from [05:33:20 05-01-2023] until
[14:46:40 05-01-2023].

Figure 6.60: Total power required for each thruster configuration over time in days, analysed from [00:00:00 12-01-2023] until
[05:26:40 12-01-2023].

Figure 6.61: Total energy consumed by each thruster configuration over time in days, analysed from [00:00:00 01-01-2023]
until [00:00:00 15-01-2023].

In Figure 6.62 below, the reaction wheel results as seen previously are combined and show the total
power requirement and total energy consumption again.

6.1. Simulation 104

Figure 6.62: Total power and energy consumed by each reaction wheels over time in days, analysed from [00:00:00
01-01-2023] until [00:00:00 15-01-2023].

Finally, Figure 6.63 shows the absolute difference in half-cone angle offset between the reaction wheel
analysis and thruster analysis. It can be seen that this difference is in the order of 10−7◦, which is
approximately 10−4% of the half-cone offset angles shown in Figure 6.2. For this reason, it can finally
be concluded that the difference in attitude dynamics for the reaction wheels is sufficiently small for the
gain values in both analyses to be equal.

Figure 6.63: Absolute difference in degrees between the reaction wheel and thruster analysis half-cone angle offset, analysed
from [00:00:00 01-01-2023] until [00:00:00 15-01-2023].

From the above results, specifically looking at the power and energy requirements for the thruster-only
ADCS, it can already be concluded that the reaction wheel system is beneficial. The total energy re-
quired for the reaction wheel set-up only amounts to several Joules over the total simulation period,
whereas the thrusters require several kilo-Joules for the same time span. Since the reaction wheel
set-up still requires thrusters, and these were chosen to be chemical mono-propellant types, extra tank
volume and mass is required in this ADCS. For this reason, further analysis of the mass and volume
of each system is still to be done to draw final conclusions on this, which will be performed in Chapter 7.

Specifically looking at the comparison between the electrical thruster configurations, it can be seen that
configuration 1 has the highest energy demand, followed by configuration 3, 2 and 4. From this, as will
also be discussed more extensively in the next chapter, it can be concluded that coupling multiple axes
for attitude control introduces power and energy consumption benefits. Adding redundant thrusters to
an existing configuration, as was done in configuration 3, also introduces slight benefits with respect to
power and energy. A fully redundant system as was introduced in configuration 4 performed best.

6.2. Robustness 105

6.2. Robustness
This section provides an overview of the aforementioned three robustness tests: the single thruster
failure, the solar array deployment and, finally, the de-tumbling manoeuvrer behaviour. All relevant
results have been collected in tables and clear graph in order to provide an easy overview.

6.2.1. Single Thruster Failure
The single thruster failure robustness test is divided in two distinct parts: in the first approach, in which
the system is aware of thruster failure and compensates the malfunctioning thruster with the remain-
ing ones, only configurations 3 and 4 are analysed due to the under-determined state of the first two
configurations when one of the thrusters is not taken into account any more. The second approach
assumes that the system is not aware of the malfunctioning thruster, and attempts to correct the incor-
rect attitude attained at every time step. For both approaches, the difference in thrust levels for each
configuration is assessed, as well as the power and energy requirement. In order to scope this robust-
ness test within relevant bounds, only the first fly-by as was seen in previous results will be investigated
(between [05:33:20 05-01-2023] and [14:46:40 05-01-2023]). Moreover, the thruster that was required
most in terms of total thrust delivered in the base case scenario, will be turned off for these tests. For
configuration 1, thruster 1 was most critical. For configuration 2, this was thruster 5. For configuration
3, this was thruster 1 and, finally, for configuration 4, thruster 11 was most critical during the first fly-by.
These conclusions could easily be drawn from the results in the previous section.

6.2.1.1 Approach 1
For the first approach, Figure 6.64 and Figure 6.65 show the differences in thrust output for each
of the thrusters over time, compared to the original simulation as shown in the previous section, for
configuration 3. Configuration 4 is shown in Figure 6.66 and Figure 6.67. For configuration 3, it can be
seen that the malfunctioning of thruster 1 induces the largest increase in the output thrust of thruster
7, as well as a slightly lower increase in thruster 3. This increase in thruster 3 is approximately equal
in magnitude to original thrust output of thruster 1. For configuration 4, net thruster activity increase in
almost all thrusters can be seen, except thruster 5, 8, 9 and 10.

Figure 6.64: Single thruster failure 1: difference in F output, compared to the original simulation with all working thruster, for
thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40

05-01-2023].

6.2. Robustness 106

Figure 6.65: Single thruster failure 1: difference in F output, compared to the original simulation with all working thruster, for
thrusters 7 and 8 in configuration 3 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023].

Figure 6.66: Single thruster failure 1: difference in F output, compared to the original simulation with all working thruster, for
thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40

05-01-2023].

Figure 6.67: Single thruster failure 1: difference in F output, compared to the original simulation with all working thruster, for
thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40

05-01-2023].

6.2. Robustness 107

Table 6.1 shows the results for the first and second approaches in single thruster failure, for configura-
tion 3 and 4. Its columns represent the simulation type, the maximum total power needed throughout
the simulation, and finally the total energy consumed by the system. In addition, the base cases without
thruster failure, for the simulation period of [05:33:20 05-01-2023] to [14:46:40 05-01-2023], are pre-
sented in their total power requirement and energy consumption. It is important to realise that this does
not represent the full simulation, only the close fly-by period, which is why these results are different
from the ones observed before.

Simulation type Configuration Ptot,max [W] Etot [J]
Base 3 0.085 760
STF 1 3 0.3005 1165
STF 2 3 20.18 291,582
Base 4 0.0711 649
STF 1 4 0.1567 683
STF 2 4 20.53 362,486

Table 6.1: Results for single thruster failure simulations, approach 1 and 2, for both configuration 3 and 4. The maximum power
requirement (Ptot,max) and total energy consumption (Etot) for the first fly-by are shown, and compared to the base case.

6.2.1.2 Approach 2
Upon execution of the simulations for approach 2, it was evident that no stable simulation could be ob-
tained for configurations 1 and 2. This is shown in Figure 6.68 and Figure 6.69, in which the quaternion
error for all components start oscillating excessively after a certain time step. For this reason, it could
be concluded that the thruster failure case cannot successfully be applied to these configurations in the
present simulation set-up. Although this was already expected during the research generation phase,
it could not be readily be confirmed for this failure approach from past literature or research sources.

Figure 6.68: Single thruster failure 2: qe (absolute) over time in days, for configuration 1, analysed from [05:33:20 05-01-2023]
until [14:46:40 05-01-2023].

6.2. Robustness 108

Figure 6.69: Single thruster failure 2: qe (absolute) over time in days, for configuration 2, analysed from [05:33:20 05-01-2023]
until [14:46:40 05-01-2023].

For configuration 3 and 4, a stable solution was found and its maximum total power requirement and
total energy consumption can be seen in Table 6.1. Moreover, the change in output thrust required
from each thruster can be observed in Figure 6.70 to Figure 6.73 below. It can be seen that large thrust
correction spikes are present, in the same thrusters that were activated during the first single thruster
failure test. Thruster 6 en 7 especially show a large increase in thrust, around the closest approach
point. These spikes pose the explanation for the high maximum total power and energy consumed seen
from the results table and it is evident that more effort was needed for attitude control in the second
thruster failure case compared to the first one.

Figure 6.70: Single thruster failure 2: difference in F output, compared to the original simulation with all working thruster, for
thrusters 1, 2, 3, 4, 5 and 6 in configuration 3 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40

05-01-2023].

6.2. Robustness 109

Figure 6.71: Single thruster failure 2: difference in F output, compared to the original simulation with all working thruster, for
thrusters 7 and 8 in configuration 3 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023].

Figure 6.72: Single thruster failure 2: difference in F output, compared to the original simulation with all working thruster, for
thrusters 1, 2, 3, 4, 5 and 6 in configuration 4 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40

05-01-2023].

Figure 6.73: Single thruster failure 2: difference in F output, compared to the original simulation with all working thruster, for
thrusters 7, 8, 9, 10, 11 and 12 in configuration 4 over time in days, analysed from [05:33:20 05-01-2023] until [14:46:40

05-01-2023].

6.2. Robustness 110

Finally, the half-cone offset angle for both configuration 3 and 4 are shown in Figure 6.74 below, and
compared to the base case as was seen in Section 6.1. It can be seen, that the all half-cone angles
remain within the required limits again, and that the offset for configuration 3 is larger than the base
case, until the closest approach point during the fly-by. Moreover, the offset angle for configuration 4
is actually smaller than the base case after this closest approach. Therefore, in terms of pointing error,
configuration 4 performed better with one thruster malfunctioning, while the system was not aware of
this happening.

Figure 6.74: Single thruster failure 2: half-cone offset angle for configuration 3, 4 and the base case, compared to the system
requirement, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023.

From the results in Table 6.1, it can readily be concluded that approach 1 requires a total energy
increase of +53% for configuration 3 and +5.2% for configuration 4. For configuration 2, however, the
energy increases and total maximum power required for the thrusters become exceptionally high (380×
total energy for configuration 3,559× total energy for configuration 4) compared to the base case, due
to the incorrectly-attained attitude at every time step. These power increases would most likely cause
the system and mission to fail under real-life circumstances, which is why sensors should always be
present for the OBC to assess thruster failure and adhere to approach 1.

6.2.2. Solar Array Deployment
Un-deploying the solar arrays during the full two-week simulation does not impose many differences;
the solar radiation pressure, which was already found to be insignificantly small for the control torque
computations, and the spacecraft inertia matrix need to be changed. The inertia matrix will show a
reduction, as seen in Equation 6.3. The reduction of the inertia matrix called for a decrease of the
speed gain from 12 to 10, for proper functioning of the algorithm.

∆Ideployed→undeployed =


−70% 0 0

0 −17% 0

0 0 −70%

 (6.3)

As mentioned previously, the full two-week simulation has been run for the undeployed solar array
configuration. Upon inspection of the solar radiation pressure values, the disturbance torques were
equal in both cases. The reason for this lies in the simplified model used for this research, as will be
discussed in more detail in Chapter 7. Table 6.2 shows the maximum power and energy required for
the full two-week simulation, for each configuration deployed as well as undeployed.

6.2. Robustness 111

Configuration Ptot,max [W] Etot [J]
1, undeployed 0.0575 733
2, undeployed 0.0506 582
3, undeployed 0.0574 703
4, undeployed 0.0305 467
1, deployed 0.1382 1882
2, deployed 0.1067 1556
3, deployed 0.1398 1753
4, deployed 0.0877 1334

Table 6.2: Results for thruster configurations, showing maximum power requirement (Ptot,max) and total energy consumption
(Etot) for the two-week simulation analysis.

Finally, Figure 6.75 shows the half cone angle offset over time for the undeployed case. Similar as
before, this graph is equal for all configurations. It can be seen that the half-cone angle offset is similar
to the one observed for the original deployed solar array case. In fact, the maximum difference in
half-cone angle offset between the two cases over the entire simulation duration only amounted to
6.35 · 10−5◦.

Figure 6.75: Single thruster failure: β, measured between the negative y-panel normal vector and the Moon pointing vector
and presented in absolute numbers, over time in days, analysed from [00:00:00 01-01-2023] until [00:00:00 15-01-2023].

6.2.3. De-tumbling Maneuver
Upon the start of the de-tumbling robustness test, it was quickly found that no thruster output solutions
existed for any initial angular velocities above 0.00005 [rad/s] (approximately 0.003[◦/s]). An explana-
tion and further discussion on this, related to the method with which the attitude control algorithm was
created, will be given in Chapter 7. Although the feasible angular velocities do not reflect real-life mis-
sion situations, in which de-tumbling should occur at far higher rates (above 10 [◦/s]), the behaviour of
the system was in any case assessed for the initial angular velocity vectors as shown below in Table 6.3.

6.2. Robustness 112

Test number [ω0,x, ω0,y, ω0,z] [rad/s]
1 [5 · 10−5, 0, 0]
2 [0, 3 · 10−5, 0]
3 [0, 0, 5 · 10−5]
4 [5 · 10−5, 3 · 10−5, 0]
5 [5 · 10−5, 0, 5 · 10−5]
6 [0, 3 · 10−5, 5 · 10−5]
7 [5 · 10−5, 3 · 10−5, 5 · 10−5]

Table 6.3: Initial angular velocities in degrees per second for the de-tumbling robustness test of the attitude control algorithm.
Values found based on tests for feasibility within the thruster allocation algorithm.

As mentioned previously, the time frame during which these de-tumbling manoeuvrers were tested is
[00:00:00 01-01-2023] until [00:02:00 01-01-2023], since the disturbance torques are insignificant in
this frame as was seen in the results for the main simulation. Each initial angular velocity from the table
is fed to the control algorithm as initial state. The reference quaternion was used as the quaternion
vector for the initial state. For the first test, the angular velocity and error quaternions over time can
be seen in Figure 6.77 and Figure 6.76, in which a clear oscillatory pattern around the equilibrium is
seen for the first time steps. As was also seen before, the relative quaternion error with respect to
each component’s absolute value is shown in Figure 6.78. It can be seen that, after approximately 28
seconds, the error components stop oscillating significantly and remain within a 5% error band, which
will be defined as the settling time in this analysis.

Figure 6.76: De-tumble test 1: ω for each of the spacecraft primary axes over time in days, analysed from [00:00:00
01-01-2023] until [00:02:00 01-01-2023].

6.2. Robustness 113

Figure 6.77: De-tumble test 1: qe (absolute) for each quaternion error component over time in days, analysed from [00:00:00
01-01-2023] until [00:02:00 01-01-2023].

Figure 6.78: De-tumble: qe (relative) for each quaternion error component over time in days, analysed from [00:00:00
01-01-2023] until [00:02:00 01-01-2023].

In addition, the thrust output values of all thrusters can be visualised, as seen in Figure 6.79. The
activation of thrusters 3 and 4 is observed and could also be expected based on their location and
thrust directions; these two thrusters control the x-axis of the spacecraft in the simulation.

Figure 6.79: De-tumble test 1: F output for all thrusters over time in days, analysed from [00:00:00 01-01-2023] until [00:02:00
01-01-2023].

6.2. Robustness 114

Finally, the total power and energy consumed by the thrusters is observed in Figure 6.80 and Fig-
ure 6.81, in order to provide an idea of the additional resources needed for such manoeuvrers. Having
observed this de-tumbling behaviour over a time span of two minutes, all tests could be carried out.

Figure 6.80: De-tumble test 1: P required for all thrusters over time in days, analysed from [00:00:00 01-01-2023] until
[00:02:00 01-01-2023].

Figure 6.81: De-tumble test 1: E required for all thrusters over time in days, analysed from [00:00:00 01-01-2023] until
[00:02:00 01-01-2023].

The results from the de-tumbling tests are observed in Table 6.4, in which five columns are present: the
first column gives the test number, the second column shows the thruster numbers that were activated
during the manoeuvrer, the third column shows the settling times as defined before, the fourth column
shows the maximum power required in Watts, and the last column shows the total energy consumed
by the system during the manoeuvrer.

6.2. Robustness 115

Test number Thrusters activated Settling time [s] Ptot,max [W] Etot [J]
1 3, 4 28 20.00 94.86
2 5, 6 18 18.00 67.10
3 1, 2 29 20.00 85.01
4 3, 4, 5, 6 33 38.00 159.58
5 1, 2, 3, 4 32 40.00 177.49
6 1, 2, 5, 6 25 38.00 149.73
7 1, 2, 3, 4, 5, 6 30 58.00 242.21

Table 6.4: Results for the de-tumbling manoeuvre tests, indicating active thrusters, settling times, maximum power
requirement, and total energy consumption. Results are shown for configuration 1.

Finally, the last test, in which an initial de-tumbling manoeuvrer was performed for correction of all three
spacecraft primary axes, has been repeated for the other three configurations as well. Their results are
shown in Table 6.5 and show a similar pattern in performance as observed in the regular configuration
simulations, in which the fourth configuration shows the best results in terms of power and energy. Note
that the settling times have been omitted, since these are independent on the configurations as they
exactly adhere to the control torque required.

Conf. number Thrusters activated Ptot,max [W] Etot [J]
2 All 40.00 183.84
3 All, except 8 58.00 230.02
4 All, except 11 and 1 34.50 152.94

Table 6.5: Results for de-tumbling manoeuvre test, indicating active thrusters, settling times, maximum power requirement,
and total energy consumption, for the last test as shown in Table 6.3. Results are shown for configuration 2, 3 and 4.

Regarding the de-tumbling manoeuvrer results, it was found that a higher de-tumbling rate could be
imposed for configurations 3 and 4 (approximately 2 times the rate used for configuration 1), which was
to be expected since the addition of more thrusters gives more control capacity. Results for this were
omitted because no comparison with other configurations could be made.

In order to assess the attitude control algorithm itself for de-tumbling correction behaviour, irrespective
of the actuators used, code was run in order to find the highest initial angular velocity values for 1, 2 and
3 axes at the same time that could still be corrected by the system. The results for these algorithm-only
tests are shown in Table 6.6, in which the test initial angular velocity is shown in the first column, the
settling time is shown in the second column and the maximum control torque vector is shown in the last
column. The angular velocity values seen in the table have been found by iterating over a large number
of combinations, assessing the maximum attainable angular velocity for 1 axis (first three tests), two
axes (test four, five and six) and, finally, three axes.

6.2. Robustness 116

ω0 [◦/s] Settling Time [s] Tc,max [Nm]
[10132, 0, 0] 50 [-106.10, 0.00, 0.00]
[0, 222, 0] 26 [0.00, 2.68, 0.00]
[0, 0, 15275] 52 [0.00, 0.00, -160.96]
[115, 115, 0] 35 [-0.52, 1.94, 0.10]
[113, 0, 113] 40 [0.10, 1.93 -0.57]
[0, 123, 123] 37 [-0.01, 1.94, -0.56]
[85, 85, 85] 34 [-0.35, 1.93, -0.42]

Table 6.6: Results for algorithm-only de-tumbling tests. The table shows the initial angular velocity, the settling time, and the
maximum control torque vector.

From the table, it can be seen that one-axis stabilisation is possible for excessively high angular rates
over the x- and z-axes, totalling to almost 43 revolutions per second for the z-axis. It is understood that
this is not a realistic angular rate at which the spacecraft will remain structurally intact, but has been
tested in this way for looking at the system response to such extreme situations. The maximum initial
angular velocity over the y-axis is significantly lower due to the mass moment of inertia over this pri-
mary axis. It can finally be seen that the control torque vectors are indeed larger than can be achieved
using the Pocket Rocket thruster configurations as were used in this research. These results can for
this reason be used to size appropriate ADCS actuators for such extreme situations.

As a final analysis within de-tumbling manoeuvres, the reaction wheel configuration is assessed. The
same approach will be used as shown for the thruster configurations previously, in which the maximum
angular rates are tested that can still be corrected by the reaction wheels. The feasibility of correction
is based on whether the algorithm still provides a solution for adjusted control torque values based on
the reaction wheel capabilities. More specifically, when a certain initial angular velocity needs to be
corrected that is within the values shown in Table 6.5, the algorithm will provide a solution that will con-
tain high control torque values. When these values are converted into the required torque per reaction
wheel (using Equation 2.43), it is assessed whether one or more reaction wheels require an absolute
torque magnitude of 0.007 [Nm] or larger. If this is the case, their values are corrected for this maxi-
mum value, and a new control torque is calculated. Within this approach, the maximum initial angular
velocities are therefore the ones for which the simulation still gives a solution based on the corrected
control torque values.

Having retrieved the maximum initial angular velocities, it could be seen that the inverse pattern is
observed compared to Table 6.5: the x- and z-axes now have the smallest possible angular rates,
whereas the y-axis shows the largest. When multiple axes require de-tumbling, the maximum rates
again show that the values are ”spread out” over the axes. With the initial conditions in place, the settling
times, maximum total power consumption and total energy consumption of the tests are assessed.
Results for this analysis are shown in Table 6.7 below.

6.3. Experimental Characterisation 117

Test number ω0 [◦/s] Settling time [s] Ptot,max [W] Etot [J]
1 [70, 0, 0] 1710 36 55,476
2 [0, 252, 0] 1580 36 74,920
3 [0, 0, 85] 3460 36 109,444
4 [70, 70, 0] 3190 36 114,925
5 [53, 0, 53] 1705 36 55,307
6 [0, 80, 80] 2640 36 92,391
7 [55, 55, 55] 3220 36 108,027

Table 6.7: Results for the de-tumbling manoeuvre tests, maximum initial angular rate, settling times, maximum power
requirement, and total energy consumption. Results are shown for the reaction wheel configuration, making use of the four

reaction wheels only.

From these results, it can readily be concluded that regardless of which axis is initially rotated, all re-
action wheels are needed for attitude correction. This can be observed from the maximum total power
required, which equals the maximum power usage of 9.0 [W] for each of the four reaction wheels.
Moreover, the settling times are significantly longer than was observed in Table 6.4. The reason for
this is that the reaction wheel capabilities allow for a larger range of solutions, which result in solutions
of longer settling time compared to the thruster configurations. With these longer settling times, signif-
icantly larger energy consumptions are paired, which is a natural result of the longer activation of the
actuators. From the results, it can be concluded that relatively large initial angular velocities can be
corrected for using the reaction wheels from the LUMIO ADCS design.

6.3. Experimental Characterisation
This section will show the results for the practical discussed in Chapter 5, which consists of two dis-
tinct parts: results for the code porting activities, in which the original Python-based simulation was
migrated to the C-based embedded environment, and the actuator connection set-up, in which the em-
bedded system was tested with actual hardware. These results are displayed in subsection 6.3.1 and
subsection 6.3.2, respectively.

6.3.1. Code Porting
The results from this experiment include the iteration time per simulation time step, set to one second,
and the accuracy of the computed values (T c, qref , and F thrust) compared to the original Python
simulation. Before presenting these numerical results, a summary of the challenges encountered during
the porting process is provided:

• Data Transmission: Data sent from Python to the hardware was transmitted as strings, which
the C code had to receive bit by bit. This required sufficiently large buffers to store the data and
convert it into double-precision floating-point numbers. Similarly, sending computed results back
to Python required adaptive functions to handle varying vector lengths, as quaternions, control
torque vectors, and thrust values have different dimensions.

• Memory Management: Variables such as gain values were reused across iterations, while ref-
erence quaternions and angular velocities changed per iteration. To manage these efficiently, a
systematic memory allocation strategy was implemented.

• Thruster Allocation Algorithm: The thruster allocation algorithm, based on the ECOS solver
for linear programming, posed significant challenges. The ECOS library had to be separately
downloaded and installed, and modifications to its Makefile were necessary to ensure compati-
bility with the STM32IDE environment. Integration with the existing project code required further
adjustments during the compilation process.

The porting process was successfully completed, starting with the ”1/0” test, after which the control
torque PD, reference quaternion and thruster allocation equations were migrated. Aforementioned nu-
merical results are displayed in Table 6.8. It should be noted that the simulation time period for these
tests was only the first close fly-by, since this poses a good representation of the rest of the simulation.

6.3. Experimental Characterisation 118

The iteration time stands for the average time, over all time steps, the computation was performed in.
This time was measured in the Python environment, and data sending and receiving takes place within
this time measurement. The base case stands for the regular simulation, without any connection with
the MCU. Note that the time values are presented in milliseconds and the absolute difference units are
given in the table itself.

In the set-up where only the control torque has been added to the embedded environment, the control
torque values were compared to the Python-based values to assess their absolute and relative differ-
ence. Then, these values were averaged over the three components of the vector, and averaged over
all time iterations. For the quaternion reference, the reference values were compared to the Python
case and the absolute and relative differences were computed in the same manner. For the final row
in the table, this was done in the same way for the six thruster output values per iteration time step.

Set-up Iteration time [ms] Absolute difference Relative difference
Base case 1.5 NA NA
1/0 Test 4.2 NA NA

T c 35 1.460 · 10−19 [Nm] −2.17 · 10−9%
T c and qref 53 6.685 · 10−19 1.25 · 10−15%

T c, qref , and F thrust 1050 6.783 · 10−11 [N] 9.99 · 10−3%

Table 6.8: Numerical results for the code porting process in the practical experiment.

As can be seen from the table, the order of magnitude of the errors for the control torque vector and the
reference quaternion vector are due to round-off errors, since double precision floating point numbers
remain accurate for 15 to 17 decimals. Therefore, it could be concluded that the values for these
vectors were equal to the Python-based simulation. The propagation of the round-off errors resulted in
the numerical offset seen for the thrust values: since the exact same linear programming solver was
used as in Python, and intermediate results were not possible to verify within the solver, this has been
concluded.

6.3.2. Actuator Connection
Having performed the experiment with one valve, it could be said that a successful connection be-
tween the Nucleo board and the valve power distribution board was assessed. A high-frequency click-
ing sound (opening and closing) was heard from the valve upon activation of the code, and a square
wave signal could be observed from the oscilloscope at the moment of this sound. This confirmed the
increase and decrease of the duty cycle values internally, since the activation as also seen from the
oscilloscope did not have the same length over the entire simulation. Externally, it confirmed that the
board was producing the correct 3.3[V] signal from the designated pin and the timer was therefore
working correctly. From the physical behaviour of the valve, it could be concluded that this ”dummy”
thruster did indeed respond to the created signals correctly.

It should now be assessed whether the commanded signal, or whether the commanded duty cycle
adjustment, was correct. In order to prove this, the actual duty cycle output over time, in percentages,
is compared to the thrust output over time, compared to the maximum thrust achievable. The thrust
is presented both in absolute numbers and percentages. It should again be clear that the maximum
thrust used in this experiment was set to 8.0 ·10−7 and the MIB to 0.01 [µNs]. For the MIB, considering
a frequency of 10 [Hz], the minimum thrust that the system will respond to is equal to:

Fthrust,min =
MIB

period
= 1 · 10−7[N] (6.4)

In this equation, the period is equal to 1
f in seconds. The average computational time for one iteration

for one valve was found to be equal to the value seen in Table 6.8 since the exact same code was
used with the inclusion of the PWM signal adaptation, which did not cause any significant increase in

6.3. Experimental Characterisation 119

time. The computed thrust outputs from the MCU are presented in Figure 6.82, as seen previously and
comparable to Figure 6.34.

Figure 6.82: Connectivity: F output for all thrusters in configuration 1 over time in days, calculated by the Nucleo MCU,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023].

Looking at the output thrust for thruster 1, the output that has been connected to the valve and for which
PWM signals have been created, the duty cycle for this thruster over time can be analysed, as seen
in Figure 6.83. It can be observed that the increase and decrease in duty cycle neatly adheres to the
increase and decrease of thrust values, and that the threshold of 1·10−7 [N] is accurately adhered to as
well. A more thorough comparison can now be made, in which the percentage the desired output thrust
is compared to the duty cycle percentage. This has been shown in Figure 6.84. Note that the large
values on either end of the oscillatory pattern can be attributed to the exclusion of the MIB requirement
for the desired signal. This is obviously a physical limitation, so is not regarded in the theoretical desired
output.

Figure 6.83: Connectivity: duty cycle in % for thruster 1 in configuration 1, as measured from the output signal to the valve,
analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023].

6.4. Verification & Validation 120

Figure 6.84: Connectivity: difference between the commanded duty cycle in % and the actual duty cycle in %, as measured
from the output signal to the valve, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023].

Finally, the duty cycles of all the thrusters, using six separate PWM channels, can be shown in Fig-
ure 6.85. It can be seen that the thrust output for thruster 6 does not yield any duty cycle over the
simulation period. This is due to the MIB requirement set to the simulation and will lead to a loss of ac-
curacy in control torque generation. Using different settings for MIB (so, using different hardware) may
solve this. The maximum percentual offset per thruster has been presented in Table 6.9, disregarding
the large spikes shown for the Minimum Impulse Bit requirement.

Figure 6.85: Connectivity: duty cycle in % for all thrusters in configuration 1, as measured from the output signals of the PWM
channels, analysed from [05:33:20 05-01-2023] until [14:46:40 05-01-2023].

Configuration 1 2 3 4 5 6
Maximum ∆ DC 4.67% 4.91% 1.28% 1.49% 2.06% 0.0%

Table 6.9: Maximum difference in duty cycle between commanded, theoretical, and output from PWM, disregarding MIB
requirement differences.

6.4. Verification & Validation
The results presented in this chapter require both verification and validation to ensure mathematical
correctness and adherence to real-world systems. This section explores these aspects, focusing on
the methods used for the main attitude control simulation, robustness tests, and the practical exper-
iment conducted as part of this research. The practical experiment serves as a validation case for
the ADCS simulation, applying its methods to existing hardware, while the robustness tests verify the
algorithm’s performance under extreme conditions. These techniques complement the approaches dis-
cussed earlier and are divided into verification techniques (subsection 6.4.1) and validation techniques
(subsection 6.4.2).

6.4. Verification & Validation 121

6.4.1. Verification
Algorithms are composed of various building blocks, each of which may include smaller blocks or func-
tions, creating a hierarchical and clear structure. Unit testing is a widely used technique for verifying
the correctness of these individual components, ensuring that underlying mathematical operations are
accurate. During the development process, unit tests were extensively applied to validate nearly every
mathematical operation, comparing results against established libraries or manual calculations. While
detailing all the unit tests would be exhaustive, several key tests that were particularly important in
ensuring the algorithm’s correctness are highlighted below, for the adherent parts of the code.

• Rotation class: The functions in this class were used for applying specific Euler angle and quater-
nion rotations, creating direction cosine matrices and converting quaternions to Euler angles and
vice-versa. All functions were mathematically verified using the scipy.spatial.transform li-
brary, which contained the exact same functions. In addition, rotations were tested by rotating
an arbitrary 3D vector over a specific set of quaternions, and performing the reverse rotation in
order to verify the exact same 3D vector was obtained (or: verify that RR−1 is equal to the iden-
tity matrix). Additional tests for these rotations include verifying that det(R) = 1 and RTR is also
equal to the identity matrix.

• Quaternion operations: Different functions were created for the calculation of the quaternion
error, the quaternion product and the time derivative of the quaternion. All these functions have
also been developed in the dedicated pyquaternion library, and each of these was tested against
the same functions from the library.

• TGG and TSRP : Although no direct libraries were available for the verification of these distur-
bance torques, which are essential in the attitude control simulation, verification was performed
in two ways. First of all, the equations used for the disturbances were taken from Rizza et al.
[41] and reproduced. Next, a number of hand calculations were performed in order to assess
their magnitude and therefore validity throughout the algorithm. As will be seen after the unit
tests, the functions were tested for their behaviour with closer proximity to the Moon and the Sun,
respectively.

• Linear Programming Solver: The ECOS solver for the linear programming solution was part of
the cvxpy library for Python. This library is extensively used throughout research and therefore
acts as the verification of the solution for the thrust outputs itself. In addition, the ECOS library
installed for the embedded environment served as additional proof of its proper functioning.

• Quaternion normalisation: The magnitude of each quaternion vector should be equal to one, as
per their definition. Throughout the code, normalisation checks (np.linalg.norm()) have been
inserted to assure this.

• Ephemeris data conversion: The linear interpolation applied to the retrieved ephemeris data
was verified by ensuring that the interpolated data points remained within the range defined by
the original data points. Specifically, the interpolated points between full-minute intervals were
checked to confirm they fell between the values of the nearest surrounding full-minute data points.

• T c order ofmagnitude: The preliminary results of the control torque computed by the proportional-
derivative controller have been checked for their order of magnitude. This is relevant, since these
values should lie in the approximate same order of magnitude as the disturbance torques, with an
allowed offset of a thousand times larger, primarily due to reference quaternion adjustments. This
factor thousand was also observed and allowed in recent research (Cilliers, Steyn, and Jordaan
[12]). As could be seen from Figure 6.12 and Figure 6.14, this was verified as well.

• RK-4 integrator: To enhance the accuracy of numerical integration within the simulation, the
RK-4 integrator replaced the simpler Euler integrator. While the Euler method was initially imple-
mented due to its simplicity, its accuracy was quickly assessed using quaternion results. Upon
introducing the RK-4 integrator, two verification techniques were employed to validate its imple-
mentation: First, the RK-4 integrator was tested on a standard ordinary differential equation (ODE)
with a known analytical solution: δy

δt = −y. The global truncation error was calculated and con-
firmed to align with the theoretical order of accuracy, O(∆t4). For an integration time step of 0.1
[s], the error was found to be in the range of 10−8, demonstrating the expected high accuracy
of the method. Second, the results of the RK-4 integrator were compared against those of the
Euler integrator. The Euler method, as expected, exhibited a larger error, on the order of 10−3,

6.4. Verification & Validation 122

for the same time step and simulation conditions. This confirmed the superior accuracy of the
RK-4 integrator. The visual comparison of the integrated values using the Euler method, RK-4
method, and the analytical solution can be seen in Figure 6.86. The figure clearly illustrates how
RK-4 more closely matches the analytical solution over the total time span of 5 [s].

• Single thruster failure: Output thrust values were printed in order to ascertain that, during the
single thruster failure experiment, the correct thruster did not output any thrust.

Figure 6.86: Results for the integrated values of the Euler method, the RK-4 method and the analytical solution of the ordinary
differential equation δy

δt
= −y. Total time span was 5 [s], integration time step was 0.1 [s].

After all the unit tests had been done and verified, it could be concluded that the underlying functions
were correct. This did not, however, directly imply the overall system was computing what it should
be computing, which is why an additional number of tests were introduced. Firstly, the orbit retrieved
from JPL Horizons needed to be checked for adherence to the orbit laid out by NASA in their research
towards the mission. This could be done by visualising the orbit as was done in Figure 4.1a and
Figure 4.1b. In order to verify that the aforementioned time periods of [05:33:20 05-01-2023] until
[14:46:40 05-01-2023] and [00:00:00 12-01-2023] until [05:26:40 12-01-2023] did indeed coincide with
the close fly-by manoeuvrers during the entire simulation, Figure 6.87 and Figure 6.88 show these
periods of time plotted.

Figure 6.87: CAPSTONE orbit used for this research based
on JPL Horizons retrieved ephemeris data, plotted from
[05:33:20 05-01-2023] until [14:46:40 05-01-2023].

Figure 6.88: CAPSTONE orbit used for this research based
on JPL Horizons retrieved ephemeris data, plotted from
[00:00:00 12-01-2023] until [05:26:40 12-01-2023].

6.4. Verification & Validation 123

The second test to assess the functioning of the overall system was testing the response of the attitude
control algorithm to an arbitrary reference quaternion value. This reference quaternion was generated
using the np.random.rand() function and normalised to fulfil the quaternion definition. Then, it was
kept constant over a dummy simulation time span. The same disturbance torques were not included
in this analysis and the gains were kept equal compared to the gains used in simulation. The result of
this test can be seen in Figure 6.89 to Figure 6.92.

Figure 6.89: qw versus qw,ref over time. Figure 6.90: q1 versus q1,ref over time.

Figure 6.91: q2 versus q2,ref over time. Figure 6.92: q3 versus q3,ref over time.

As can be seen, the functioning of the control system was hereby verified and the reference quater-
nion for the research could be introduced, and tested again without any disturbance torques present.
After the proper functioning with a varying reference quaternion was also confirmed, the disturbance
torques were introduced and results of a short time period were assessed (close fly-by) to see whether
the actual attitude state of the spacecraft adhered to the desired state. After this was verified as well,
the question arose whether the reference quaternion from the paper was actually correct. In order to
assess this, the spacecraft location at each time step was converted into a body-centred Moon pointing

6.4. Verification & Validation 124

vector, pointing exactly at the centre of the Moon. This pointing vector was then compared in its orien-
tation with the location of the spacecraft negative y-panel (coordinates in the body frame again), which
resulted in the half-cone angle as displayed in previous sections. For this reason, the computation
and analysis of the half-cone angle serves in itself as a verification method for the correctness of the
reference quaternion.

The gravity gradient torque and solar radiation pressure torque values were then computed for extreme
scenarios. In the closer proximity of the Moon, the gravity gradient torque should increase with the cube
of the decrease in distance to the centre of the Moon. For the solar radiation pressure, this increase
scales with the square of the distance to the centre of the Sun. For the gravity gradient torque, the value
was computed at the surface of the Moon (rSC/Moon = [RMoon, 0, 0]), and for the solar radiation pressure,
the value was computed at the location of Mercury, the closest planet to the Sun in the solar system. The
absolute distance between the Sun and Mercury is approximately 0.4 [AU], so the spacecraft position
with respect to the Sun is taken to be rSC/Sun = [0.4AU, 0, 0] for this test. The results are displayed in
Table 6.10. The values for the CAPSTONE orbit as shown in the table have been computed for the first
close fly-by manoeuvrer, at the time where the gravity gradient torque was largest. The results correctly
show increase in the magnitudes of both disturbance torques, with the expected increase scale.

Case TGG [Nm] T SRP [Nm]
CAPSTONE [−1.17 · 10−9, 3.08 · 10−12, 5.19 · 10−9] [−1.0 · 10−20, 2.0 · 10−20, 2.0 · 10−20]
Extreme [−1.12 · 10−7, −1.25 · 10−7, −9.67 · 10−8] [−6.32 · 10−20, −7.33 · 10−20, 9.54 · 10−20]

Table 6.10: Gravity gradient torque and solar radiation pressure torque values for regular CAPSTONE orbit and extreme
situations.

The actuator implementation also had to be verified. Having performed unit tests on the linear program-
ming solution, as well as on the reaction wheel configuration matrix computations, the resultant thrust
and torque outputs for the actuators needed to be checked to lie within the constraints imposed on the
system (maximum thrust of 200 [µN] and maximum torque of 0.007 [Nm]. Moreover, the thrust outputs
could never be below 0 and the reaction wheels should remain within their angular momentum limits.
This was all verified by analysing the results from the previous sections, both visually and numerically.
With this verification, it was also proved that the system would be able to properly function with electri-
cal thrusters, irrespective of power or other systems engineering constraints. Finally, the timing of the
thrust outputs, as was observed in many of the graphs in the previous sections, was compared to the
timing of the control torque required and based on that, it could be seen that the thrusters were indeed
activated when control torque was necessary.

In order to assess the control algorithm’s functioning for different accuracy levels, the time steps were
decreased and compared to each other. Four different simulations were run, with time steps of 1, 0.1,
0.01 and 0.001 [s]. The resultant quaternions all converged towards stability with the same quaternion
error values as a result. Simulation execution times increased with every reduced time step, and were
analysed on a 300-second total simulation run. For each decreased step, the simulation time increased
by a factor 10 approximately (1.5, 8.7, 77 and 772 [s]. Choice for the 1-second time step throughout
the regular simulation was based on this difference in computation time.

The verification results for the code porting part of the practical have already been shown in Table 6.8
and confirmed the proper functioning of the code in C.

6.4.2. Validation
The main question that needs to be answered by validation is ”Does the system that is created, actually
represent a real-life system?” and all its aspects should therefore be assessed for whether the results
make any sense. As mentioned previously, the practical results serve as a main validation tool and will
therefore not be repeated here. Furthermore, a number of verification tests also included validation:
the fact that the reference quaternion direction cosine matrix was taken from the LUMIO ADCS paper,
validated its relevance to the real-life scenario. The main validation techniques that are left for this

6.4. Verification & Validation 125

section, are the validation of the dynamic attitude control system as a whole, as well as the mission
requirement and budget checks for the thruster and reaction wheel analyses.

In order to assess the control system as a whole, a simplified case will be studied. The reference
quaternion will be kept constant, so that no control torque should be required for attitude control. Then,
three dummy input disturbance torques will be exerted on the system: one disturbance torque purely
over each of its primary axes, with a magnitude of 1 · 10−2 [Nm], in order to be able to visually assess
its effect. The system state response will then be analysed as a sanity check on what a real-life system
would exert. Other disturbance torques will be turned off.

Within a 300-second simulation, the dummy disturbance torques were activated at 80, 160 and 240
seconds, respectively, for a total duration of 10 seconds. They were executed in the order x, y and z
axis. The results in the control torque and the angular velocity response of the system can be seen in
Figure 6.93 and Figure 6.94 below. From the torque graph, it can be seen that for all axes, a positive
disturbance gives rise to a negative control torque with a similar magnitude. This is in any real case
to be expected for control of the attitude of a rigid body. Moreover, after the ten-second disturbance
interval is over, extra torque in the opposite direction is needed to counter-act the initial correction and
come back to the equilibrium state. The control about the y-axis shows a more intense correction
mechanism, which is due to its lower mass moment of inertia and therefore lower resistance against
changes in angular velocity, for the same PD gains. The mass moments of inertia about the x- and
z-axes are similar and their response therefore show similar results.

Figure 6.93: Control torque over time for a 600-second simulation with disturbance torques exerted over the x-, y- and z-axes,
at 80, 160 and 240 seconds, respectively.

Figure 6.94: Angular velocity over time for a 600-second simulation with disturbance torques exerted over the x-, y- and
z-axes, at 80, 160 and 240 seconds, respectively.

6.4. Verification & Validation 126

In the angular velocity graph, it is clear to observe the positive angular velocity initially attained due to the
positive disturbance torque for the x and z axes. When the control torque has attained its maximum
value, the angular velocity has decreased towards zero again, after which it keeps oscillating until
convergence to the equilibrium point. The negative angular velocity is due to the overshoot of the control
torque. Again, for the y-axis, strong oscillatory behaviour is seen due to its lower inertia. Using half of
the original gains for the y-axis only solved this oscillatory behaviour, as can be seen in Figure 6.95. All
in all, the results for this validation test confirmed that the system indeed reacts to external disturbances
as one would expect any rigid object to respond. For this reason, validation of the dynamic system can
be confirmed.

Figure 6.95: Figure 6.93 with adjusted gains for the y-axis.

It should be noted that, in order to perform a more complete validation of the developed algorithm, re-
sults from comparable research should be discussed and compared. It was unfortunately concluded
that this research was not openly available to be used in this report. The results for the LUMIO mission,
and particularly its ADCS, were available as seen in, for example, Romero-Calvo, Biggs, and Topputo
[43] and Rizza et al. [41], but included the disturbance caused by the main engine for orbit keeping.
Since this was not included in this research, direct validation was not possible with these results. More-
over, the ADCS analysis for the CAPSTONE mission was not sufficiently detailed in literature to be
useful for validation. For this reason, a validation gap is still present in this report and will be added to
the final recommendations for future study.

7
Discussion

7.1. Introduction
With the results of the previous chapter, a large amount of information has been collected. By means of
sanity checks, verification and validation tests, and pure observations, a number of conclusions could
already be drawn from these results. It should also not be forgotten that preliminary results were used
to improve the attitude control algorithm developed in this research, so that the final results as displayed
previously could be found.

Naturally, the information provided by the obtained results should be discussed, so that potential prob-
lems are identified, or new insights may be found. This chapter will focus on the discussion of these
results, and will draw themain conclusions of this research from them, in order to approach the research
questions presented in Chapter 3. This will be done in a structured way. First of all, all results from
the simulation part of the research, including the reaction wheel, thruster and robustness analyses, will
be elaborated upon in Section 7.2, and the result adherence to the LUMIO mission requirements will
be assessed. Then, a closer look will be given to the results from the experimental validation and its
main conclusions will drawn. Finally, based on all the methods used, results obtained and conclusions
drawn, recommendations for future work will be presented, so that any reader of interest may continue
on this intriguing topic.

The final conclusions will be used to answer the research questions in Chapter 8. In this chapter, the
hypotheses will also be tested.

7.2. Simulation
This section will analyse the results for the entire algorithm in general first, after which the reaction
wheel, thrust and robustness analyses will follow. Therefore, all conclusions that follow from the results
of the Python simulation are presented here and elaborated upon. Reference will be made to figures
in the previous chapter.

7.2.1. General
In the general results of the algorithm, Figure 6.4 to Figure 6.7 showed good adherence of the space-
craft state to the desired state. The varying reference quaternion pattern can be explained based on
the reference DCM, which points the negative y-axis of the spacecraft towards the centre of the Moon,
whilst keeping the positive x-axis perpendicular to the pointing vectors to the Sun and the Moon, max-
imising the power yield of the solar arrays. A close fly-by with these requirements set out, requires the
spacecraft to quickly adjust its attitude in order to follow, which is clearly seen from the spikes observed
in qw and q1, and the sudden sign changes in q2 and q3.

The absolute quaternion error shown in Figure 6.8 confirms the previous statement on good adherence:
the only significant error occurs during the fly-bys. In order to make this more insightful, Figure 6.9 was

127

7.2. Simulation 128

created. A number of large error spikes are present that can be ignored since they are related to quater-
nion sign changes. In fact, the overall relative error is only in the range of 0.001% during the fly-bys,
which again confirms the good adherence of the quaternion components to the reference. In order
to put this in a more understandable perspective and compare these results to a clearer benchmark,
Figure 6.2 was presented to be able to assess the offset of the camera towards the desired centre of
the Moon location. The error in the angle, which is well below the requirement from the LUMIO mission,
only occurs during the fly-bys as well.

The maximum angular rate observed in Figure 6.11 also occurred during the fly-bys, was equal to
0.0248 [◦/s] and therefore below the requirement for the maximum slew rate (ADCS-03). From this an-
gular velocity analysis throughout the two-week simulation, it could be concluded that no uncontrollable
angular velocities will be present within the spacecraft. The non-zero angular velocity values observed
were required for correct attitude control and therefore desired.

The magnitudes of the gravity gradient torque and solar radiation pressure torques (Figure 6.12 & Fig-
ure 6.13) were significantly low compared to the required control torque. The order of magnitude of
the solar radiation pressure was insignificant to the control torque. Its magnitude varied for two fly-
by scenarios due to its attitude with respect to the Sun: it was exposed to the Sun more significantly
during these fly-bys. The gravity gradient torque itself varies with the distance to the centre of the
Moon, as explained and tested before. Its magnitude was 1000 times smaller than that of the control
torque, which also makes it have a minor influence on the required torque, and no realistic influence
on the required power from either actuator system. For these reasons, it could be concluded that the
external disturbances used in this research for the NRHO are insignificant for the calculation of control
torque and power requirements for actuators. The difference with the quasi-periodic orbit for the actual
LUMIO mission will be that the gravity gradient torque is even smaller. The SRP difference is negligi-
ble since the distance towards the Sun will not vary, as was proven in Table 4.2. Over a longer time
span, of e.g. a year, these disturbance torques may cause significant angular momentum to build up
in reaction wheels, and equally require linear impulse from non-electrical thrusters as reaction control
system. For an ADCS with electrical thrusters only, however, this should not call for any additional
design considerations, since no saturation of any case can be present. The only limitation observed
for the configurations would be the power required for firing, so that the total necessary impulse can be
achieved.

Because of this conclusion with respect to the disturbance torques, it could be concluded that the con-
trol torque as observed in Figure 6.14 is mainly due to the change in reference quaternion, especially
during the close fly-by manoeuvrers, where the control torque values are largest. The time steps dur-
ing which the control torque values are most prominent, the quick changes in state vector also occur
(Figure 6.4 to Figure 6.7). It should again be noticed, that the quasi-periodic halo orbit designed for the
LUMIO mission will not show this quick reference quaternion behaviour; since it will not have close fly-
by manoeuvrers, its reference quaternion will remain relatively equal throughout its mission. Based on
the results in this research, it can be concluded that the final LUMIO mission will also be able to attain
its correct attitude using the control algorithm explained here, whilst adhering to the mission pointing
requirements.

Looking at the control torque necessary during the close fly-bys in Figure 6.15 and Figure 6.16, the be-
haviour of the attitude control system can be explained. During the first close fly-by, the control torque
is primarily focused on corrections around the z-axis, with minimal adjustments around the y-axis. This
indicates that the spacecraft is performing a rotation about its z-axis, likely to ensure that the onboard
camera remains oriented towards the Moon during the manoeuvrer. In the second close fly-by, a similar
behaviour is observed, but this time the corrections are predominantly around the x-axis. This differ-
ence arises due to the different approach angles of the spacecraft relative to the Moon during the two
fly-bys, as seen when visualizing the spacecraft’s orbit in the Moon-centred frame (Figure 6.87 and
Figure 6.88). Despite the changes in orientation relative to the Moon, the solar panels continue to point
towards the Sun, which remains approximately in the same position relative to the spacecraft after
7 days. This consistency occurs because, while the Moon has moved about one-quarter of its orbit
around the Earth in that time, the Sun’s position relative to the spacecraft remains largely unchanged.

7.2. Simulation 129

Consequently, the attitude control system needs to balance the requirements of both targeting theMoon
during the fly-bys and maintaining solar panel alignment towards the Sun. This dual objective explains
the observed torque corrections and highlights the effectiveness of the control system in achieving the
desired attitude state.

Before continuing with the specific reaction wheel analyses, it should be noted that in the original LUMIO
ADCS analysis, the disturbance torques due to the main engine firing (used for orbital insertions and
orbit keeping) were also included in the attitude control algorithm. For this reason, the results in the
upcoming sections will not match the expected results from the LUMIO papers. The reason for not
including these disturbance torques was the fact that the NRHO was assumed to be a stable orbit in
which analysis could be done without the need for orbit keeping. Upon reviewing Rizza et al. [41], using
the information on the parasitic torque due to the main engine firing within the Monte Carlo simulations
performed, the maximum torque that has to be corrected for has an order of magnitude of 1 ·10−2 [Nm].
The remainder of this analysis will be left as a future recommendation.

7.2.2. Reaction Wheel Analysis
From the required torques per reaction wheel, displayed in Figure 6.17, Figure 6.18 and Figure 6.19,
it can be observed that the reaction wheel torques correctly align with the required control torques dur-
ing the simulation. Reaction wheel 1, for example, shows a positive and then negative torque exerted
during the first fly-by, which is the negative of the control torque over the x-axis during that time period.
This can be seen for all the wheels in both fly-bys. In addition, reaction wheel 4, which is aligned with
all the axes, takes up part of the required control torque and therefore carries part of the load for the
other wheels. This is best seen for the negative control torque needed in the second fly-by by over the
x-axis, which translates into a positive torque for reaction wheel 1 that is opposite in sign, and slightly
lower than the control torque value in magnitude. In this way, it can be concluded that adding additional
reaction wheels to a determinate system not only gives provides redundancy, but also decreases the
power required per wheel.

It should be noted that the reaction wheels will most probably not have the required resolution for the
considerably small control torques necessary in this analysis. Due to the lack of information on the
reaction wheel resolution, and considering a standard resolution of 1%, the minimum available torque
by these reaction wheels will be too large for the required torques in this research. For this reason,
the simplified disturbance environment that was presented in this research is not suitable for extensive
reaction wheel analysis. For the sake of comparison to the thruster cases, however, the results have
still been used.

In the total power and energy graphs, observed in Figure 6.20 to Figure 6.23, it can be seen that the
reaction wheels aligned with the x- and z-axes demand most power and energy from the spacecraft.
This aligns again with the attitude observations during the fly-by, which also showed significant rotations
over these axes for pointing the y-axis towards the Moon and was also expected beforehand. As was
mentioned in subsection 6.4.2, the power required will fall well within the power budget of the LUMIO
mission, since the required system power values are small compared to existing other ADCS analyses.
Since the exact results from the research in the paper and this report do not align, this research cannot
add any information to the currently known ADCS research done within the LUMIO mission ([41]).

In line with the difference in power required, the angular momentum analysis as shown in Figure 6.25
does not show the expected angular momentum build-up as was seen in Rizza et al. [41]. Again, the
reason for this is the exclusion of the parasitic torque induced by the main engines, which is not included
in this research. What can be concluded from the angular momentum build-up analysis, however, is
that over a span of 14 days, the maximummagnitude of angular momentum stored in wheels 1, 2 or 3 is
equal to 6 ·10−4 [Nms] which is well below the saturation limit of 0.1 [Nms]. In addition, after this value
has been attained, the magnitude reduces again. None of the momentum wheels reached saturation
limit over a 14-day time span, from which it can be concluded that no momentum wheel desaturation
is needed within the nominal simulation bounds of this research for a two-week time span. For more
extreme situations, however, in which de-tumbling manoeuvres or other disturbances are present, the
reaction wheels will most likely require additional actuators for desaturation. Over a longer simulation

7.2. Simulation 130

time span, such as a full year, it may also be necessary to include actuators for desaturation. There-
fore, for realistic mission scenarios, these actuators will definitely be needed. This will be added as a
recommendation for future work.

The reaction wheel analysis demonstrates that the torques produced by the wheels closely align with
the required control torques during both fly-bys. The inclusion of a fourth reaction wheel provides redun-
dancy and reduces the load on individual wheels, improving overall power distribution. The power and
energy consumption analysis confirms that the reaction wheel system operates well within the LUMIO
mission’s power budget. It is not completely certain whether the actual reaction wheel resolution will be
sufficient for the correction of such small disturbances, and from a preliminary estimation it is assumed
that they will not be able to. Regardless, this analysis is used as a comparable case to the electrical
thruster configurations ADCS. Additionally, the angular momentum build-up in the wheels remains mini-
mal, with no wheel saturation observed over the two-week simulation period, eliminating the immediate
need for desaturation manoeuvrers. However, it is recommended to assess long-term behaviour over
the mission’s full duration, as momentum limits may be reached over a year-long time frame. More-
over, extreme mission situations will most definitely require additional actuators for desaturation, which
is why the inclusion of these is recommended.

7.2.3. Thruster Analysis
The thrusters configurations will be analysed one by one, after which conclusions on the set-ups and
application in the simulation will be given. After this, the discussion on the robustness tests will follow.

For configuration 1, it could be observed from Figure 6.28 to Figure 6.36 that the first fly-by required
the most amount of thrust from thrusters 1 and 2, with values of 6.60 · 10−7 and 6.31 · 10−7 [N], respec-
tively. Looking at the thruster set-up from Figure 4.3, in which it can be seen that these two thrusters
are located on top of the CubeSat (+y) and pointed at both positive and negative x directions, a pure
rotation about the z-axis is caused by firing either one of them. Linking this to the control torque re-
quired from Figure 6.14, the firing of thruster one for the first half of the close fly-by does indeed cause
the required positive control torque over the z-axis, and the firing of thruster 2 for the second half of the
fly-by does indeed cause the negative torque over the z-axis. The other thrusters are fired at a lower
thrust level, and will cause the torques necessary about the remaining axes. Since configuration 1 is
constructed so that each thruster will generate either a positive or negative torque about 1 axis only,
one will see that from each thruster pair (1&2 or 3&4 or 5&6), only one thruster is activated at the same
time. For the second close fly-by of configuration 1, the same can be observed, with maximum thrust
values for thrusters 3 and 4, with a magnitude of 6.57 ·10−7 [N] and 6.45 ·10−7 [N], respectively. These
thrusters cause pure rotation over the x-axis, which explains their firing for the second fly-by, again
based on the required control torque from Figure 6.14. The other thrusters also exactly adhere to their
pure rotations, and when one thruster of a pair is firing, the other is disabled.

The oscillations observed in all thruster output graphs stem directly from the control torque output, as
shown in Figure 6.14. These oscillations arise due to the high precision of the control algorithm and
the discrete nature of the simulated system. In the current simulation, the controller rapidly adjusts the
torque, resulting in fine variations in the commanded thrust. However, in real-world applications, these
small oscillations will not translate directly to the thruster outputs. In practice, the on-board computer
(OBC) would average or smooth the control torque over short time intervals to provide a more stable
thrust command. This averaging process reduces the impact of rapid fluctuations in control torque
and ensures that the physical thrusters do not oscillate as sharply. The averaged thrust values would
instead reflect the desired control torque over an extended duration, as opposed to instantaneous
changes seen in the simulation results.

Figure 6.37 provides a first indication of the thruster that requires the most power and energy over
time. The impulse over time is an important parameter, usually for non-electrical thrusters, since the
amount of propellant stored directly determines its maximum allowable linear momentum. For electri-
cal thrusters, however, the impulse is not directly constrained by propellant storage but instead by the
available power onboard the spacecraft. The ability of electrical thrusters to generate continuous low
thrust over prolonged durations allows them to achieve significant total impulse, despite lower instan-

7.2. Simulation 131

taneous thrust compared to non-electrical systems. In this analysis, it can be observed that thrusters
1 and 2 exhibit the highest accumulated impulse over the 14-day period. This result corresponds well
with the significant control effort required during the two close fly-bys, as also observed in the torque
demands on the spacecraft.

Based on the thrust outputs, the power requirement over this simulation period could be assessed and
examined more closely during the two fly-bys, which has been presented in Figure 6.38 to Figure 6.41.
The required power values for one thruster, scaled between 0 and 20 [W] based on the total available
thrust of 200 [µN], have a maximum of 0.0631 [W] for thruster 1 during the first fly-by and a maximum
of 0.0626 [W] for thruster 3 during the second fly-by. Over the entire simulation, as was also seen in the
impulse graph, it is thruster 1 and 2 that consume most energy and add approximately 26% of the total
energy consumption over the entire simulation, each. This means that more than half of the energy
consumed by the thrusters is due to these two thrusters, for the control of the z-axis.

From this analysis of thruster configuration 1, a number of conclusions can readily be drawn. First of all,
it can be concluded that the theoretical implementation of the configuration can adhere to the nominal
control torque requirements of the attitude control algorithm and showed positive thrust outputs (as the
linear programming solution demanded) over the entire simulation. In addition, all thrust values are
well within the limits of the 200 [µN] set by the Pocket Rocket specifications and would therefore be
feasible to exert. The values are, however, all lower than the Minimum Impulse Bit imposed by the
Pocket Rocket, which was equal to 1.18 [µNs]. This means that, given the thruster resolution, the val-
ues would all not be feasible to output and the final thruster outputs would be zero. A further discussion
on this will follow at the end of this section. Looking at the power requirements for the system, which
totals to a maximum of 0.09 [W] during the first fly-by and a total of 0.14 [W] during the second fly-by, it
can be concluded that these values are small compared to the total power budget given in the LUMIO
mission (3.1% and 4.8%, respectively) and the power should therefore be available for the thrusters to
control the spacecraft’s attitude.

For configuration 2, the adjusted set-up did not show pure rotations over one axis for all thruster pairs
any more: thrusters 1, 2, 5 and 6 were responsible for rotations over the z- and y-axes, simultaneously.
Therefore, looking at Figure 6.42 and Figure 6.43, the required torque over the z-axis for the first fly-by
is now covered by all four of these thrusters. What is interesting to observe, is that the maximum thrust
required for this, during the first fly-by, is only 3.94 · 10−7 [N], exerted by thruster 5 and approximately
40% lower than the required thrust for configuration 1. For the second fly-by, the maximum thrust is
exerted by thruster 3 and equal to 6.62 · 10−7 [N]. Since the largest required torque for this fly-by was
over the x-axis, which is not covered by the four thruster 1, 2, 5 and 6, approximately the same thrust
value as observed for configuration 1 is required, from thruster 3 again.

The impulse graph in Figure 6.44 provides the first indication of thruster 4 being the most demanding
thruster over the entire simulation period. This shows a clear difference with configuration 1: thrusters
1 and 2 are not so demanding over time any more, and a benefit is already observed. This impulse
graph directly translates into the total energy consumed over the thruster and the same conclusion
can therefore be drawn for this. The maximum power required by thruster 5 during the first fly-by was
0.0375 [W], with a maximum total power consumption of 0.083 [W], and the maximum power required
by thruster 3 during the second fly-by was 0.0631 [W] and the maximum total power of the system
amounted to 0.107 [W]. From this, it can concluded that configuration 2, having an equal number of
thrusters but with different locations, required less power per thruster, and in total, during both fly-bys.
From this, it can be concluded that having thrusters coupled for torques about multiple axes at the same
time, introduces benefits in terms of thrust needed, power consumption and total energy consumption.

For configuration 3, in which configuration 1 was copied and two extra thrusters for torque over the x-
and z-axes were added, it can be seen from Figure 6.47 to Figure 6.50 that introducing these redundant
thrusters provides benefits. For the first fly-by, it can be seen that thruster 7 takes over a part of the
required thrust for thruster 1 and thruster 4, compared to configuration 1. The same can be said for
thruster 8, which takes away the required thrust from thruster 2 and thruster 4. Again, thruster 7 and
8 are never fired simultaneously. Above observations make sense: thruster 7 induces positive torque

7.2. Simulation 132

over the x-axis and z-axis, which is exactly what thruster 4 and thruster 1 cause as well, respectively.
For thruster 8, which induces positive torque over x-axis and negative torque over the z-axis, it is there-
fore also logical that it takes away the load of thruster 4 and 2. For fly-by two, the exact same behaviour
can be observed, and the increase in thruster 7 is now larger than that of thruster 8, which is exactly in
line with the large required control torque over the x-axis observed during this fly-by compared to the
one over the z-axis seen in the first fly-by. The largest thrust value from the thrusters during the first
close fly-by was 6.28 · 10−7 [N] for thruster 1, which is a 5% decrease, and for the second fly-by this
was 6.62 · 10−7 [N], which is a slight increase compared to the configuration 1 case.

Looking at the impulse graph for configuration 3 in Figure 6.51, it can be seen that, in contrast to con-
figuration 2, thrusters 1 and 2 pose the largest strain on the system again. Thruster 4, in contrast,
is relieved of its required thrust significantly. This again directly translates in the required power and
energy consumption of the thrusters. It appears that adding thrusters, coupled to two axes for attitude
control, does not provide benefit for all the thrusters in the original system. Further conclusions on the
power consumed over time will be given at the end of this section.

For configuration 4, the adjusted approach compared to the other configurations shows benefits with
respect to the required thrust outputs to adhere to the control torque. The maximum thrust required
over the first close fly-by was equal to 3.45 · 10−7 [N] for thruster 11, and for the second fly-by equal
to 6.41 · 10−7 [N] for thruster 5. Although the maximum thrust output for the second fly-by is in the
same range as was seen for the previous configurations, the benefit can be observed from Figure 6.56
and Figure 6.57, when the total linear impulse magnitude for each of the thrusters is compared to the
previous set-up. The total accumulated impulse of thruster 8, which has the highest demand of all the
thrusters over the entire simulation, is equal to 0.00219 [Ns], while the maximum total impulse for the
other configurations all lay above 0.004 [Ns]. The behaviour of the thruster firing themselves is more
complicated to verify: each thruster is responsible for the torque over two axes simultaneously. For
the first fly-by, for example, thrusters 1, 2, 4, 11 and 12 are most prominently activated, which induce
torques over the x- and z-axes or y- and z-axes, simultaneously.

Looking at the comparative graphs of Figure 6.58 to Figure 6.62, a number of conclusions can be drawn
on the different configurations. First, Table 7.1 shows the maximum total power over all thrusters and
the total energy consumed over the entire simulation, compared to the worst-performing configuration,
which is configuration 1. The values are shown in percentages that have been saved due to these
configurations. From the graphs and this table, it can be concluded that, in terms of power and energy
consumption, which directly relates to the thrust requirements of each of the thrusters, the best perfor-
mance was observed by configuration 4, then configuration 2, configuration 3, and finally configuration
1. It can therefore be concluded that, having a redundant system with multiple redundant thrusters
will provide the best system in terms of power and energy required. Having thrusters that are coupled
to two axes simultaneously will also greatly enhance performance compared to thrusters that control
one axis only. Furthermore, as was seen in configuration 3, a system with thrusters that control one
axis only will dominate in case extra thrusters are added that control multiple axes. This is the rea-
son that configuration 3 only performs slightly better than configuration 1. Finally, in terms of pointing
angle accuracy, as measured by the half-cone angle offset, the configurations all performed equally
well, since the control torque required was perfectly adhered to by all of them. Therefore, all of these
configurations are realistic for usage within the LUMIO ADCS as explained in this research, within the
boundaries of its assumptions.

Configuration ∆Ptot,max [%] ∆Etot [%]
1 0 0
2 -22.79 -17.33
3 +1.15 -6.88
4 -36.51 -29.14

Table 7.1: Relative differences of the maximum total power and total energy consumed per configuration, compared to
configuration 1.

7.2. Simulation 133

At first glance, the thruster configurations do not seem beneficial at all compared to a reaction wheel
set-up, with respect to the power consumption differences (kJ range for thruster, J range for wheels).
In order to further analyse this, another look is give to Table 4.9, specifically to IDs SE1 and SE2, the
power, mass and cost budgets of the entire system can be examined to give extra relevance to this
research. Since the correction of the disturbance caused by main engine firing is not included in this
research, and the magnitudes of the extra load imposed on the reaction wheels and thrusters could only
be guessed, no accurate power budget conclusions can be drawn from this research. It is only clear
what the required power is from the results of the research, and that these values lie well within the
constraints given by the LUMIO mission. For the mass budget, however, an attempt has been made
to review what the influence of using the thruster system would be. The mass of the currently used
reaction wheels of type RWp100 is 0.33 [kg] and of type RWp050 is 0.24 [kg]. Looking at the total mass
budget from Table 2.4, the ADCS mass without the reaction wheels would become 0.9 [kg]. Using the
Pocket Rocket mass of 0.085 [kg], the total mass of the ADCS and the LUMIO spacecraft as a whole
can be observed in Table 7.2. Since the RCS thrusters in the original LUMIO ADCS design require
propellant themselves, and are not considered in case the entire ADCS is replaced with electrical
thrusters, only part of the propellant mass of the original budget should be included: 25% was taken
as assumption for this. Note that the bottom row indicates the wet mass difference with the originally
calculated LUMIO wet mass of 28.56 [kg] and the new wet mass includes the same absolute margins
as was used previously, equal to 3.51 [kg]. In addition, it is assumed that the original thrusters for
ADCS, including its two tanks for the two-phase propellant storage, are part of the ADCS mass budget.

Component Conf. 1 Conf. 2 Conf. 3 Conf. 4
ADCS [kg] 1.41 1.41 1.58 1.92
ADCS [%] 5.15 5.15 5.73 6.88

LUMIO wet mass 27.40 27.40 27.57 27.91
Absolute difference [kg] -1.16 -1.16 -0.99 -0.65

Difference [%] -4.06 -4.06 -3.47 -2.28

Table 7.2: Adjusted mass budget for the four different vacuum arc thruster set-ups.

For the nominal operations as were analysed in this report, the electrical thruster configurations can
save mass compared to the reaction wheel system. It is recognised, however, that extreme cases such
as the de-tumbling of the spacecraft, and the correction for the main engine firing (not included in this
research), cannot effectively be covered by the electrical thrusters. For this reason, this conclusion
from Table 7.2 can only be made based on the nominal simulation conditions. Using configurations
with improved electrical thruster performance (e.g. maximum thrust, minimum impulse bit) should be
tested for extreme spacecraft situations, and when successful, another mass budget should be created
to assess whether mass saving can actually be realistic by this thruster-only ADCS.

Configuration 1 and 2 both pose a 4.06% mass saving on the overall mass budget. To put this mass
saving in perspective, the total launch cost of the Space Launch System Block 1 by NASA amounts to
US$2.5 Billion per launch, with a total mass of 27,000 [kg] that can be taken to the Moon, every gram
saved equals US$92.59. This means that configuration 1 and 2 could save more than US$100,000. In
the above, simplified, mass budget estimations, the effect of extra wires, or structural adjustments has
not been taken into account.

Now, the robustness test results can be examined and conclusions can be drawn from them. First of all,
during the single thruster failure in approach 1, where the system is aware of a malfunctioning thruster
and will compensate using the other thrusters, it could already be concluded that the determinate con-
figurations 1 and 2 would not produce any results for these test. Thrusters 3 and 4 showed that the lack
of the thrust output of the most prominent thruster in the configuration was adequately covered by the
other thrusters, inducing a total energy consumption increase of approximately +53% for configuration
3 and +5.2% for configuration 4. This was only analysed for the first fly-by. From these results, it can
be concluded that an overdetermined system is only able to cover for a single thruster failure, within the

7.2. Simulation 134

current simulation. Moreover, having an increased number of redundant thrusters will greatly enhance
the power requirement and energy consumption requirements when one of the thrusters fail.

From the results of approach 2, different conclusions could be drawn. For configuration 3, and looking
at Figure 6.70 and Figure 6.71, it is clear that a large increase in the thrust values per thruster was
needed to compensate for the incorrectly attained attitude during the first time steps. Thrust values up
to 12.1 [µN] were necessary for this correction. After this was achieved, the system operated well, until
the fly-by manoeuvrer. There, similar increases in required thrust was seen as compared to the first
approach, with the main difference being a thrust spike in thruster 2. This spike can be attributed to a
sign switch of reference quaternion values, which the malfunctioning system did give as the reference
attitude, but did not manage to attain at that time step. Therefore, a large adjustment over a few time
steps was necessary to compensate, inducing a large increase in power and energy consumed.

For configuration 4, as seen in Figure 6.72 and Figure 6.73, the exact same could be observed, al-
though different thrusters were now responsible for the thrust spikes. Moreover, since more thrusters
were available compared to configuration 3, two thrusters show this spike behaviour, with thrust values
reaching 1.35 [µN]. These results can directly be attributed to the increase in power and energy re-
quired as seen in Table 6.1. Finally, as seen from Figure 6.74, the half-cone angle offset compared to
the base case even increased for configuration 4, after the closest approach to the Moon was reached.
The reason for this lies in the large thrust spikes; after this, the pointing accuracy of the spacecraft
increased compared to what the original system was capable of. For configuration 3, this angle offset
slightly increased.

From the results of single thruster failure, approach 2, it could be concluded that a determinate system
again fails to cover for a malfunctioning thruster, and its attitude propagates out of bounds without a
stable solution. Moreover, having more thrusters allows the system to compensate for the incorrect
attitude more severely, resulting in a better pointing angle than was present in the original simulation,
but inducing a large increase in power and energy required. These power and energy increases would
make the system and entire mission fail in real-life situations, compared to the total power budget of
the LUMIO mission. For this reason, sensors should always be present within the thrusters so that the
OBC is always aware of any potential thruster failures and approach 1 can be adhered to. The non-
feasibility of configurations 1 and 2 also show that redundancy is essential within space mission design.

Comparing both approach 1 and approach 2, it is evident that approach 1 would realistically be possi-
ble to handle for the LUMIO spacecraft in terms of the required energy. For approach 2, in which the
system is unaware of the thruster malfunction, the thrusters would require excessive energy compared
to the base case (as was seen in Table 6.1) and is therefore considered unfeasible. Luckily, in real-life
spacecraft applications, the system will be aware of any malfunctioning occurring in the system elec-
tronics, using built-in sensors and warnings.

From the results for the undeployed solar array configuration as shown in Table 6.2, it could be seen
that the power and energy required for attitude control significantly reduced due to the retraction of
the solar arrays. This was to be expected, since the mass moment of inertia showed a decrease in
all its values along the primary spacecraft axes as well. The average maximum total power decrease
amounted to -59% (averaged over all configurations) and the total energy consumed decreased by
-62%. The largest decrease was observed for configuration 4, which was to be expected based on the
previous results. From this, it can be concluded that the undeployed solar array case relieves signif-
icant demands on the system and is most definitely realistic to also be solved by the attitude control
algorithm from this research.

Finally, the initial angular velocity test has to be examined. It was, unfortunately, noticed that high an-
gular velocities above very small values (5 · 10−5 [rad/s]) were not feasible to control using the thruster
set-ups in this simulation. Two distinct reasons have been identified. First of all, the thruster maximum
force limits do not allow for the creation of the instantaneous control torque necessary for correcting
this attitude. Also with lowering the PD gains, uncontrolled motion was still observed and no thruster so-
lution was found. Secondly, the attitude control algorithm is structured in such a way, that it calculates

7.2. Simulation 135

the torque immediately necessary at every time step for control of the rigid object. In real life, whenever
this instantaneous correction is not possible, the system will try to solve this over a longer time span,
allowing for more time for the attitude to be corrected. The total angular momentum introduced by the
high initial angular velocity, would then be counter-acted by the thrusters over a longer period, which is
perfectly possible. This simulation has not included this approach to solving the control problem, and
can be seen as a recommendation for improving the algorithm.

For the initial angular velocity values that were possible, on the other hand, the thruster activations for
correction over the simulation time were in line with the expected thrusters for firing. Since the maxi-
mum attainable rates were tested, the maximum thrust output (as concluded from the maximum power
required in Table 6.4) was observed from these thrusters. In addition, the settling times and total energy
required for control of the system, for initial velocities over one axis only, scaled inversely with the mass
moment of inertia about each axis. For three-axis initial tumble, the energy needed per configuration
showed the same results again as was seen for the regular simulation: configuration 1 required the
most total energy, after which configuration 3, 2 and 4 placed themselves. These results serve as
independent verification technique for the results of the regular simulation. Finally, the de-tumbling ma-
noeuvrers experienced by the control system only, without taking into account any actuators, showed
that a maximum spin rate of 85 [◦/s] was feasible to control, and that any spin rate beyond that or
the other rates as shown in Table 6.6 would cause uncontrolled spin within the current attitude control
system. Based on the control torque results in this table, the ADCS of the spacecraft can be re-sized
based on the expected angular rates during the actual mission.

Finally, the reaction wheel configuration was also tested against high initial angular velocities. Due to
the superior capabilities of the reaction wheels in terms of maximum torque achievable, higher angular
rates were possible to induce and they could be corrected over a longer time span, as was seen in
Table 6.7, looking at the settling times. The power requirements for de-tumbling were significant and
would, similar to the thrusters in single thruster failure approach 2, most likely lead to system and
mission failure. Comparing the reaction wheel results to the electrical-thruster-only set-ups, however,
leads to the conclusion that the thrusters are not suitable for de-tumbling manoeuvres, whereas the
reaction wheel system is. For this reason, the currently proposed thruster set-ups would not be suitable
for implementation in the LUMIO mission, since the ADCS should be able to handle these extreme
situations.

7.2.4. Mission Requirements
For both the thruster and reaction wheel cases, it was seen that the half-cone offset angle fell well
within the limits of the requirement of 0.18◦ set by the mission’s ADCS-01 requirement. For require-
ment ADCS-02, the attitude control simulation performed in this research was not sufficiently accurate
to assess the requirement’s fulfilment. For ADCS-03, it was observed from Figure 6.11 that the maxi-
mum slew rate throughout the regular simulation was approximately 0.00045 [rad/s], which is equal to
0.026 [◦/s]. This falls well within the limit of 0.5 [◦/s] set out by the requirement. For this reason, the
performance of the system adheres to the requirements.

The total power that was initially budgeted for the ADCS of the LUMIO mission is 2.91 [W] for all sce-
narios except de-tumbling, for which 7.97 [W] was budgeted. From the reaction wheel analysis in this
report, it became evident that the necessary power for the reaction wheel functioning throughout the
entire nominal simulation is equal to 2.5 · 10−4 [W], which is also well within the limits of the power
available. This does not yet take into account the power necessary for the other ADCS components.
Unfortunately, it was not possible to examine the power consumption of each of the components for the
simulation time individually, but it is given, for example, that the power consumption of the star trackers
is <1.5 [W], and since activation of reaction wheels requires generally more power than these trackers,
it can be concluded that the nominal power requirements that have come from this research will fall
well within the power budget given by the LUMIO mission. For the de-tumbling manoeuvres, however,
the required power of the ADCS could become significantly more than the budgeted value. Further
research should examine what the maximum expected de-tumbling rates may become and adjust the
power budget accordingly.

7.3. Experimental Characterisation 136

7.2.5. Summary
To conclude the discussion on the results of this research, the following summary highlights the main
findings and conclusions drawn from the analyses:

• Mission pointing requirement: The quaternion components of the spacecraft closely adhered
to the reference quaternion throughout the simulation, with relative quaternion errors remaining
below 0.001% during close fly-bys. The half-cone angle offset consistently met the LUMIO mis-
sion requirement of 0.18°.

• Reaction wheel performance: Reaction wheels successfully controlled the spacecraft without
saturating over the two-week simulation. The maximum angular momentum build-up of 6 · 10−4

[Nms] was well below the wheel capacity of 0.1 [Nms]. However, for extreme scenarios, such
as de-tumbling or long-term operation, additional momentum dumping actuators will likely be
required. The reaction wheel system operated efficiently within the power budget, consuming
only 2.5 · 10−4 [W] during nominal operations.

• Thruster configuration comparison: In nominal scenarios, electrical thruster configurations
successfully adhered to the control requirements, with configuration 4 showing the best perfor-
mance, reducing total energy consumption by 29% and maximum power by 36% compared to
configuration 1. In general, it could be concluded that adding redundant thrusters enhances
the energy consumption of a configuration compared to a determinate system, and that adding
thruster pairs controlling multiple spacecraft primary axes simultaneously is advantageous com-
pared to thruster pairs only responsible for one axis.

• Mass budget: Thruster-based configurations offer potential mass savings compared to the cur-
rent LUMIO ADCS, with configurations 1 and 2 reducing the spacecraft’s wet mass by 4.06%.
However, these savings are valid only for nominal conditions and do not account for extreme
scenarios, which would require additional hardware or modifications.

• Single thruster failure: Approach 1 (with system awareness of failures) allowed the system to
maintain functionality, although redundancy (e.g., configuration 4) is essential to handle failures
without compromising control. Approach 2 (without system awareness) induced critically high
power and energy demands, rendering the system unfeasible. This highlights the necessity of
real-time thruster health monitoring and communication with the onboard computer.

• Disturbance torque reflection: Disturbance torques from gravity gradient and solar radiation
pressure were insignificant compared to the control torque. However, the disturbance torque from
main engine firings, not included in this research, could significantly affect the ADCS performance
and should be included in future analyses.

• Solar array deployment: Retracting solar arrays significantly reduced ADCS power and energy
requirements, with average reductions of 59% in power and 62% in energy across all configura-
tions. This scenario is highly beneficial for early mission phases or contingency cases.

• De-tumbling: The thruster-based ADCS struggled to control high initial angular velocities due to
instantaneous torque limitations. This performance deficit severely restricts their practical appli-
cation as a replacement for the reaction wheel system and would not be advised by this research.
Enhancing the control algorithm to distribute corrections over longer time spans is recommended
for future studies.

• Final conclusion: Replacing the current LUMIO ADCS with electrical thruster configurations
could be feasible for nominal scenarios but is unsuitable for extreme situations such as de-
tumbling or handling main engine firing disturbances. Therefore, while theoretical mass savings
and energy performance gains are achievable, no clear benefits arise from replacing the reaction
wheel system in practice.

7.3. Experimental Characterisation
The practical experiment performed in this research can, based on its results, be used as a valida-
tion case for the simulation. It was first of all shown, as presented in Table 6.8, that the ported code
showed the exact same results for the control torque and reference attitude vector compared to the
Python-based simulation, with slight deviation due to non-significant round-off errors due to the double-
precision of the numbers. The thrust values showed slight deviation, which can be attributed to the

7.4. Recommendations for Future Work 137

usage of the linear programming solution with the ECOS solver. As mentioned previously, the exten-
sive calculations performed in this solver are the reason the magnitude of the error rises to the order
of 10−11 and cannot be attributed to any computation error. These results show that the Python-based
code is reproducible and translatable in other languages, which makes future research in line with this
work a possibility.

Although reproducibility is an important aspect of any research, the main validation value came from the
proper functioning of the valve. With this positive result observed, it was proven that any OBC running
on the attitude control algorithm as developed throughout this research, would be able to successfully
send its signals to electrical thrusters. It is understood that a research gap is still present due to the
usage of a solenoid valve instead of an actual electrical thruster, but connection to hardware has been
proven.

Upon analysis of the single thruster 1 from configuration 1, it could already be concluded that the
imposed duty cycle on the valve coincided with the required thrust from the thruster, including the
MIB requirement cut-off. Upon closer inspection, it was seen that the offset between the commanded
and actual signal was in the range 4-5%, which is equal to the assumed thrust uncertainty modelled
throughout the simulation. For this reason, it can be concluded that the real-life output of the system
accurately adheres to what is desired from internal calculations. With respect to the duty cycles of the
other thrusters, the same can be concluded.

One issue that can be observed is the lack of the thrust from thruster 6 in the final output. This will influ-
ence the control torque of the spacecraft, and can be compared to the single thruster failure approach
2 as was seen in the robustness results. Unfortunately, the simulation would not yield a stable state for
the failure of one thruster in configuration 1, so its exact effects over this same time span could not be
assessed. The adaptation of the control algorithm for allowing configuration 1 and 2 to have thruster
failure although being a determinate system, will be left for future research and feasibility analysis.

7.4. Recommendations for Future Work
Based on the elaborate discussion laid out in this chapter, a number of focused recommendations for
future research and potential continuation of this work can be presented. These recommendations are
based on ideas during the execution of the research, gaps that were identified during the discussion of
the research or general ideas that were thought of afterwards. Again, a clear distinction can be made
between the simulation part of the research and the practical part of the research.

First of all, in order to analyse the total angular momentum build-up in the reaction wheels and to as-
sess the total impulse needed for the entire mission duration, the two-week simulation as was shown
can be extended to the full-year simulation. In order to do this with the same accuracy as was done in
this report, one of these simulations would take approximately 26 hours to complete. It can then also
be assessed whether the CAPSTONE orbit shows any irregularities on the long term. Moreover, with
respect to the reaction wheels, the physical limitations of its resolution should be known, so that a final
conclusion can be given on their usability in this research.

One of the primary disturbance sources not accounted for in this research is the torque induced by
main engine firings. To align more closely with the LUMIO mission requirements, this disturbance
torque should be modelled and incorporated into the simulation. This would require knowledge of the
firing instances, including the exact duration, magnitude, and orientation of the main engine thrust at
each moment. By introducing these parameters and accounting for uncertainties in both direction and
magnitude, the disturbance torque can be accurately computed for each firing sequence. Incorporat-
ing these effects into the analysis will provide a stronger foundation for validating the feasibility of the
electrical thruster configurations proposed in this research within the LUMIO mission framework.

Based on the Monte Carlo simulations performed in the research from Rizza et al. [41], it was found
that the maximum disturbance torque generated by the main engine firing would be in the order of mag-
nitude of 0.01 [Nm]. In the electrical thruster configurations from this research, the maximum torque

7.4. Recommendations for Future Work 138

induced would be equal to 4 · 200 [µN] ·0.1 [m] = 8 · 10−5 [Nm], only around one axis (configuration
4). From these high-level estimates, it is therefore already expected that the instantaneous maximum
disturbance from the main engine firing would also not be feasible to counteract using these thrusters.
For future research, different actuator options with higher thrust capabilities should be investigated,
such as electrospray thrusters or regular ion thrusters, to ensure the ADCS system can handle such
disturbances effectively.

To enhance the realism of the simulation, the introduction of noise to parameters sensed externally
by the spacecraft’s components could be considered. Incorporating noise in the determination of the
spacecraft’s position, attitude, and measured disturbance torques would introduce offsets between ex-
pected and actual values. Computational tools, such as the extended Kalman filter, could then be
employed to mitigate these offsets and smooth out the noise. This approach is particularly relevant
because no real-world system operates perfectly; incorporating such imperfections into the simulation
would provide an additional layer of validation for its robustness and reliability.

As outlined in the assumptions section of this research, the orbital environment analysed here is based
on the CAPSTONE orbit, rather than the actual quasi-periodic halo orbit planned for the LUMIOmission.
The CAPSTONE orbit introduces more disturbances due to its close lunar fly-bys, which require the
reference quaternion to adapt more rapidly, and due to a more pronounced gravity gradient torque. In
contrast, the actual LUMIO orbit is expected to provide a more stable environment with fewer rapid at-
titude adjustments and reduced disturbance torques. The effects of using the true LUMIO orbit should
be investigated in future work to quantify the differences in control torque requirements and assess
how much lower the strain on the ADCS would be. This investigation would not only provide a more
realistic operational scenario but also serve as an additional test case to further validate the successful
implementation of the thruster system under mission-specific conditions.

Additionally, the control torque magnitudes observed in this research primarily arise from the rapid
changes in the reference quaternion during the close lunar fly-bys. This issue could potentially be mit-
igated by refining the PD control algorithm. Specifically, introducing a desired angular velocity term
into the control law could help smooth out the rapid attitude adjustments and reduce torque spikes. Al-
though this approach was explored during this research, the results did not yield a feasible or realistic
solution within the current system framework. For this reason, it is recommended to further investigate
enhancements to the PD controller, including tuning its gains more systematically or incorporating addi-
tional control terms, such as feed-forward components to anticipate the rapid changes in the reference
quaternion.

Alternatively, exploring other advanced control strategies could also prove beneficial. For example,
model predictive control could be considered, as it enables the controller to account for future states
and disturbances over a prediction horizon, potentially improving performance during dynamic phases
like close fly-bys. Similarly, adaptive control techniques may provide a solution by dynamically adjust-
ing controller parameters based on the system’s behaviour, allowing the ADCS to better respond to
varying disturbance environments and reference changes. Finally, optimal control methods, such as
Linear Quadratic Regulators, could be applied to minimize control effort while maintaining pointing ac-
curacy, further reducing strain on the actuators.

Within the nominal simulation, the thruster hardware specifications currently used show performance
parameters that are over-qualified for the research results. For this reason, a different vacuum arc
thruster module should be included, with lower maximum torque values and also lower MIB limits. A
good candidate for this research application is the VAT developed by the University of Würzburg, with
a maximum thrust level of 2 [µN] (Section 2.6).

Currently, the results of the algorithm have not been extensively validated against comparable studies
or real-world data. As a future recommendation, similar studies should be made available or conducted
to facilitate effective validation. This could involve benchmarking the algorithm against previously pub-
lished work or collaborating with other teams working on comparable systems. The LUMIO ADCS
research that was published in the past, could be used as a benchmark when the analysis of the main

7.4. Recommendations for Future Work 139

engine parasitic torque is included, and when the actual LUMIO orbit would be used.

Regarding the practical aspects of this research, establishing a direct connection between the STM32
Nucleo board and the actual thruster module, or engineering models thereof, is recommended to en-
able a more in-depth study of connectivity and system integration. Utilizing a setup that closely mimics
the final onboard configuration of the spacecraft would allow for the validation of critical aspects, includ-
ing signal communication between the control system and the thrusters, the acceptance and execution
of control commands, and the physical output performance of the thruster modules.

In the current research, the STM32 Nucleo board was programmed and connected to a valve that
served as a ”dummy thruster,” providing a basic proof of concept for the communication and control
loop. However, a more comprehensive approach would involve replacing the dummy thruster with a
set of engineering models of the actual thrusters, matching the configurations used in the simulations.
Conducting hardware-in-the-loop tests with these engineering models would enable real-time thrust
measurements, facilitating an accurate assessment of the control system’s performance in driving the
thrusters.

This setup would also allow for the study of the dynamic behaviour of the thrusters, including response
times and any potential discrepancies between the commanded and actual thrust values. Additionally,
testing under various operational conditions, such as different firing sequences or prolonged operation,
would provide insights into potential wear, thermal effects, or performance degradation over time. For
this to be possible, additional data should be transmitted again from thruster module to the OBC, re-
quiring an extension of the data handling system. These enhancements would bridge the gap between
simulation and real-world application, strengthening the validity of the control algorithm and the feasi-
bility of the proposed thruster configurations.

All in all, since the complete replacement of the current LUMIO ADCS by electrical thruster configura-
tions does not seem to be feasible for the entire mission, alternatives can be tested in future research.
As mentioned previously, other electrical thruster modules can be incorporated, and additional configu-
rations can be tested. A more promising analysis that can be carried out is keeping the reaction wheels
from the current ADCS design, and replacing the mono-propellant thrusters that serve as the reaction
control system with electrical thrusters. In this way, the novel hardware is only necessary for wheel
desaturation, and the excessive tank volume that is currently included in the design is omitted.

8
Conclusion

This report has shown an extensive examination of the application of electrical thrusters to an exist-
ing 12U CubeSat mission, ESA’s LUMIO mission. This research found its origin in the study of lunar
CubeSat missions: a significant number of these small spacecraft have already been sent to the lunar
environment for a diverse range of scientific objectives, and there are many more to come. Within
CubeSat development, miniaturisation and specifically the development of micro-propulsion units has
been a popular topic over the past few years, which has led to the rise of small electrical and non-
electrical thruster units. Electrical units pose the benefit of not having to include a propellant tank and
the simplicity of connection with the spacecraft on-board computer and power system. CubeSats also
contain an ADCS, with which it can attain its correct attitude for its scientific, communication or power
generation purposes. Miniaturised ADCS components, such as reaction wheels and magnetorquers,
have been widely applied in existing CubeSat missions, and therefore extensively tested.

The above observations clearly showed that a research gap was present in current literature: electrical
thrusters were not being applied for the ADCS of CubeSats, especially not for the lunar environment.
With this in mind, the main research question could be constructed:

What is the impact of adjusting the ADCS configurations, consisting of electrical thrusters only, on
the LUMIO mission, a 12U lunar CubeSat, on its attitude control performance, robustness and connec-
tivity?

In order to properly approach this research question, it was sub-divided in three main components:
assessment of the spacecraft performance with an attitude control simulation, the assessment of the
control algorithm using multiple robustness tests, and finally validating the algorithm by connecting it
to existing hardware. The simulation context consisted of ESA’s LUMIO mission, a 12U CubeSat to
be launched in 2027 to attain a quasi-periodic halo orbit, around the Earth-Moon L2 point, and detect
meteoroid impact flashes in the far-side of the Moon. Since its orbital parameters were not publicly
available, a similar orbit as attained during the CAPSTONE mission was taken for this research. With
the context described, a control algorithm was developed that could be run for four different thruster
configurations over a simulation period of two weeks. As output of this algorithm, several parameters
such as the thrust per thruster, angular velocity of the spacecraft body and half-cone offset angle over
time were computed. With these results, feasibility of the thruster configurations could be assessed
based on mission requirements and physical limitations.

Within the spacecraft robustness tests, single thruster failure was adopted and split into two approaches:
the first let the system be aware of a malfunctioning thruster, the second did not make the system aware
of this. For the second approach, the correct control torque would therefore never be generated. De-
ployment of the solar arrays was taken as the base case in the general simulations, but as additional
test its undeployed state was evaluated as well. Finally, initial angular velocities were fed to the sys-
tem to assess its response to these extreme situations. It was found that, due to the limitation of the
maximum thrust output per thruster, significant initial rotations could not be implemented. The system

140

141

itself, without assessment of any actuator, could be tested for its maximum allowed initial rotation.

For the nominal two-week simulation scenario, as well as for the initial angular velocity robustness test,
a reaction wheel set-up was assessed in addition to the electrical-thruster-only configurations. This
analysis consisted of four reaction wheels only, without any reaction control thrusters for attitude con-
trol, copied from the current design of the LUMIO mission. In this design, three reaction wheels are
aligned with one spacecraft primary axis, and a fourth reaction wheel is equally aligned with all three
of these axes. The results of this reaction wheel configuration served as a base case to compare the
electrical thruster configurations with, and finally to assess whether replacing the entire ADCS by these
thrusters would be beneficial based on performance, volume and mass.

Regarding the physical validation of the system, the Python-based algorithm was partly ported to an
embedded system, in which reference quaternion, control torque and thruster allocation calculations
were performed. After the results were verified, the embedded system, an STM32 Nucleo development
board, was connected to a solenoid valve and pulse-width modulated command signals were sent from
the Nucleo board to this hardware module, based on the control algorithm. In this way, a physical set-
up containing a PC, micro-controller and an actuator was created that could be tested for execution
time, accuracy and for the correctness of the commands.

From results of the main simulation of this research, a number of conclusions could be drawn. It was
observed that the spacecraft attitude correctly and accurately adhered to the reference attitude as
desired throughout a two-week simulation period. In addition, the control torques required were suc-
cessfully produced by the reaction wheel configuration, as well as by all the thruster configurations. In
the reaction wheel analysis, it was seen that no momentum desaturation would be necessary over the
simulated time span, since angular momentum build-up was insignificant due to the barely perturbed
environment in which the spacecraft was operational. It was realised, however, that for longer simula-
tion runs and for extreme situations, reaction wheel desaturation would definitely be necessary, which
is why it was concluded that additional thrusters would in any case be necessary for this configuration.
To add to the reaction wheel results, it was observed that the resolution of the currently implemented
wheels was too small for accurate control of the spacecraft. The wheels were included regardless of
this, in order to adhere to the ADCS design laid out in the LUMIO mission research.

For the thruster configurations, the maximum thrust output value was in the range of 6.0 · 10−7 [N],
which is well below the maximum Pocket Rocket thrust output of 2.0 · 10−4 [N]. Also, to be able to
fire considering the Minimum Impulse Bit of the Pocket Rocket, firings of longer than 1 second with
low thrust values should be applied. Considering the 1 [Hz] control simulation frequency, this would
cause major inaccuracies in the attitude results. Therefore, it was concluded that the resolution of the
thrusters was not accurate enough for application in this simulation. The major deficit in this simulation
compared to the LUMIO mission analyses from literature was the disturbance caused by the main en-
gine firing. Were this included, the angular momentum build-up and thrust values would adhere better
to previous research values. As a preliminary estimation, it is expected that the thruster configurations
would in any case not be able to correct for the parasitic torque introduced by the main engine firing,
since its maximum disturbance value has an order of magnitude of 0.01 [Nm]. Apart from this lacking
disturbance, the thruster configurations are suitable for application in the nominal mission scenario as
was tested in this simulation. Concerns were, however, raised by the significant increase of power
and energy compared to the reaction wheel configuration, as well as the results from robustness tests,
which portray extreme situations.

All aspects of the simulation, from unit tests to larger integration tests, have been verified in order to
ascertain its correct computations. Moreover, as means of validation, the algorithm was tested against
a ”simple” input and its results were compared to what would be expected in the real world. Moreover,
the experimental set-up from this research serves as a main validation technique. In order to further
complement the validation aspects of this research, a comparable study should be included to ascer-
tain the validity of results. It was, unfortunately, not possible to retrieve such research results.

From the single thruster failure approaches, it was concluded that the determinate configuration 1 and

142

2 did not allow for any thruster failure, as was expected. No solutions were simply possible within the
limitations set out and using the linear programming solver. For the other two configurations, the remain-
ing thrusters would cover for the thruster loss in approach 1 which was clearly seen in the increase in
thrust output over all thrusters. An increase in power required and total energy consumption was also
observed. Moreover, in approach 2, large thrust spikes were observed for correcting the incorrectly
attained attitude, which led to large increase in required power and energy over the simulated time
span. These increases will most likely lead to system and mission failure in real-life situations, which
is why approach 2 should be avoided in actual missions. Sensors should always be present that can
inform the OBC on any potential thruster failure. Moreover, determinate systems should be avoided
as well, since complete loss of mission takes place when any of the thrusters in configuration 1 or 2 fails.

For the undeployed solar array case, it was observed that less effort from the ADCS was required for
its attitude control, as was also expected based on the change in mass moment of inertia. It could
be concluded that the undeployed case would most definitely also be feasible within the simulation
limits to deploy electrical thrusters on. For the initial angular velocities, the thrusters responded as
expected, in the sense that the thrusters causing rotation over a specific axis were activated for an
initial angular velocity over that same axis. Energy requirement for the de-tumble manoeuvrers, with
the thruster limitations in place and also solely examining the control algorithm, showed the same hi-
erarchy as was observed during the regular simulation. The initial possible rates for thrusters were,
however, unrealistically low. Upon examining the maximum initial rates and results for the reaction
wheels, it was evident that their superior performance range compared to the thruster configurations
allows for realistic angular velocities. For this reason, it was concluded that the thrusters will not be
able to be applied in real-life extreme situations, adding to the disadvantages of using these compared
to the current reaction wheel set-up used in the LUMIO mission. From these results, it is evident that
the robustness tests have added valuable information on the limitations of this research, in addition to
the nominal simulation conditions.

Finally, the reproducibility demonstrated by the code porting in the practical implementation highlights
the potential for further development of this research, as well as its adaptability to multiple program-
ming languages and embedded systems. The successful valve firing tests validated that the simula-
tion framework could be seamlessly integrated into an existing OBC setup with real actuator modules.
Furthermore, the results confirmed that the control signals generated by the ”dummy” OBC were ac-
curately transmitted to the ”dummy” thrusters, ensuring correct interfacing and functionality. The only
discrepancy in accuracy observed could be attributed to the readily expected thruster uncertainty. This
validation step represents a critical milestone, bridging the gap between simulation and real-world im-
plementation.

Having summarised and concluded the research performed in this report, the research questions should
be assessed for their fulfilment. In addition, the hypotheses have to be checked for their correctness.
For the first sub-question (SQ-01), it can be concluded that the replacement of the reaction-wheel-
based ADCS by electrical thrusters only is not beneficial in terms of power requirements and energy
consumption. The total energy required over a time span of two weeks was in the range of several
Joules for the reaction wheel set-up, whereas the thruster results showed 1 to 2 kilo Joules. The point-
ing accuracy between different thruster configurations is equal, since the accuracy stems directly from
the control torque computed in attitude control algorithm. The same goes for the reaction wheel set-up,
which was also equal in pointing accuracy. As a main recommendation for elaboration on this research
question, additional configurations should be assessed and the main engine parasitic torque should
be included in the simulation. In this way, comparable results might be retrieved with respect to past
LUMIO mission research.

Regarding sub-question 2 (SQ-02), three separate answers can be formulated. First of all, single
thruster failure is only possible in the current algorithm for determinate thruster systems and will gener-
ally induce an increase of power and energy consumed by any configuration. Moreover, the pointing
accuracy will be equal if the system is aware of the problem, and can increase and decrease if the
system is unaware, dependent on the configuration. In real-life scenarios, the spacecraft data system
should always be aware of failure using sensors or other data feeding. De-tumbling manoeuvrers are

143

limited by the physical limits of the thrusters, but are generally solved by the thrusters that control the
tumbling axis. Moreover, they require high power and energy levels for their solution, especially in
the limit cases, and will give equal pointing accuracy as seen previously when stabilised. The initial
angular rates were unrealistic for real-life mission application of the thrusters and is one of the reasons
the thruster configurations are discarded as they have been analysed in this research. For the reaction
wheel analysis, more relaxed limits and behaviour were observed, as also expected. Realistic initial
rates with realistic power and energy requirements were reached for this. Finally, the deployment of
solar arrays generally increases the mass moment of inertia, requiring more power and energy from
the ADCS than was originally needed. The pointing accuracy remains equal.

The answer to SQ-03 has been treated elaborately in this research, and can be summarised by stating
that effective code porting, with unit tests and debugging, needs to take place, after which signal modu-
lation needs to take place to make sure correct output signals are produced. These outputs signals are
fed to the actuator hardware modules, and can in this way represent a real-life attitude control system.

Although the correctness of the hypotheses is clear from this report, the major differences can be high-
lighted. First of all, H-03 posed that significantly more energy would be required from this system than
in the original ADCS. From the research performed here, this was not evidently true; no actual power
budget analysis could be performed, but the results shown in this report are below the results from re-
action wheel analysis in the original LUMIO mission analysis. Compared to the reaction wheel analysis
in this research, however, the thrusters required significantly more power and energy. For this reason,
H-03 is true. H-04 stated that the pointing accuracy for more thrusters would increase, although it was
seen that this does not necessarily have any influence; the configuration responds to the required con-
trol torque, and needs more or less energy to solve this dependent on the number of thrusters present.
The hypothesis for the main research question, H-11, was also not completely valid; pointing accuracy
is only improved during the robustness tests and remains equal for the rest of the simulations, and
resilience against de-tumbling was not proven. The optimised number of thrusters was shown to be
configuration 4 in this research, in terms of power and energy requirements.

A number of recommendations for future work include: the analysis of the main engine firing as a dis-
turbance; the usage of the actual orbit LUMIO will attain; an extended simulation duration, to a full
year timespan; including a different vacuum arc thruster module with lower performance parameters
for the nominal simulation; including a different vacuum arc thruster module with higher performance
parameters for de-tumbling; include a vacuum arc thruster engineering model in the practical set-up;
perform a hardware-in-the-loop test that analyses thrust output values compared to their desired value.
All these suggestions can be taken to future research in the domain of the LUMIO spacecraft and its
ADCS.

In conclusion, this research demonstrated the partial feasibility of replacing the current reaction-wheel-
based ADCS of ESA’s LUMIO mission with different electrical thruster configurations. Including the
gravity gradient torque and solar radiation pressure torque, which proved to be insignificant for direct
attitude control, a two-week simulation showed that all Pocket Rocket vacuum arc thruster configura-
tions could effectively keep the half-cone angular offset below the limit of 0.18◦ throughout the entire
simulation, whilst keeping the thrust output below their maximum values as well. Better performance
in terms of energy consumption was achieved by including more thruster pairs, and allowing them to
control multiple axes simultaneously. Compared to the reaction wheels as used in the current LUMIO
ADCS design, however, total energy consumption was on average a factor 103 larger for the thruster
configurations and showed no direct benefits in those terms. Thruster redundancy should in any case
be present to counteract potential thruster failure, and the control algorithm showed to be adaptable
to solar array deployment. The limited thrust outputs from the VATs did not allow for realistic initial
angular velocities to be imposed on the system, whilst the algorithm did show proper response to such
behaviour. Apart from the disadvantages laid out here, mass could be saved on the overall LUMIO
system by incorporating the electrical thruster configurations, but it is realised that this does not pose
a realistic mission scenario. The successful validation of the control algorithm on embedded hardware
further bridged the gap between simulation and real-world application, emphasizing the adaptability of
the developed system for future CubeSat missions.

144

Although the approach adhered to in this research did not provide a realistically feasible alternative for
the reaction wheel configuration currently employed within the LUMIO mission, future developments
might yield more promising results. Incorporating parasitic torque effects due to main engine firing
and replacing the current thrusters with higher-performance modules could significantly enhance the
feasibility of such systems. Additionally, extending simulations to account for longer mission durations
would offer deeper insights. Research into the use of electrical thrusters for CubeSat ADCS should
continue to foster innovation, exploring alternative configurations, thruster technologies, and algorithms.
By expanding the boundaries of current knowledge, future missions may unlock the full potential of
miniaturised propulsion systems, contributing to the advancement of CubeSat capabilities in lunar and
other deep-space environments.

References

[1] Solid State Propulsion (SSP). Pocket Rocket: Advanced Propulsion System. Version 2.5. Com-
pact propulsion systemwith solid-state design, optimized for collision avoidance andminor orbital
adjustments. First flight scheduled for Q4 2024. Solid State Propulsion. South Africa, May 2024.
URL: https://www.solidstatepropulsion.co.za.

[2] AirTAC and Trimantec. 2VSeries Fluid Control Valve Datasheet. Includes specifications for 2V025,
2V130, and 2V250 solenoid valves. 2016. URL: https://trimantec.com/product-category/
airtac-2v-fluid-control-valve-2-2-way/.

[3] A. Alkatheeri et al. “Design and Implementation of Attitude Control System for Gnssas 6U Cube-
sat”. In: IEEE International Geoscience and Remote Sensing Symposium (2023), pp. 384–387.
DOI: 10.1109/IGARSS52108.2023.10281925.

[4] H. Alemi Ardakani and T.J. Bridges. “Review of the 3-2-1 Euler Angles: a yaw–pitch–roll se-
quence”. In: Department of Mathematics, University of Surrey (Apr. 2010).

[5] Argotec. FERMI OBC&DH: Miniaturized Rad-Hard On-Board Computer & Data Handling Unit.
FERMI enables deep-space operations for CubeSat-class platforms, offering high-performance
processing, edge computing, and radiation-hardened components for spacecraft management
and autonomous missions. Argotec. 2024. URL: https://www.argotec.it.

[6] A. Bello et al. “Experimental verification and comparison of fuzzy and PID controllers for attitude
control of nanosatellites”. In: Advances in Space Research 71 (2023), pp. 3613–3630. DOI: htt
ps://doi.org/10.1016/j.asr.2022.05.055.

[7] Inc. Busek Co. BGT-X5 Green Monopropellant Thruster. Version 1.0. Busek Co., Inc. 11 Tech
Circle, Natick, MA 01760, USA, 2021. URL: https://www.busek.com.

[8] Inc. Busek Co. BHT-200 Hall Effect Thruster: Outsized Performance in a Compact Package. Ver-
sion 1.0. Busek Co., Inc. 11 Tech Circle, Natick, MA 01760, USA, 2021. URL: https://www.
busek.com.

[9] J.C. Butcher.Numerical Methods for Ordinary Differential Equations. New York: JohnWiley Sons,
2008. ISBN: 978-0-470-72335-7.

[10] A. Cervone. AE4S07 - Course Reader - Micro-Propulsion. 4th ed. Delft, The Netherlands: Delft
University of Technology, 2022.

[11] A. Cervone et al. “Selection of the Propulsion System for the LUMIO Mission: an Intricate Trade-
Off Between Cost, Reliability and Performance”. In: 2021.

[12] T. Cilliers, W.H. Steyn, and H.W. Jordaan. “Multi-axis thruster-only fine pointing control strategies
for nanosatellites”. In: Elsevier (2024), pp. 1–10.

[13] A. Cipriano, D.A. Dei Tos, and F. Topputo. “Orbit Design for LUMIO: The Lunar Meteoroid Impacts
Observer”. In: Frontiers in Astronomy and Space Sciences 5 (Sept. 2018). DOI: 10.3389/fspas.
2018.00029.

[14] C.J. Dennehy et al. Application of micro-thruster technology for space observatory pointing sta-
bility. Tech. rep. NASA Engineering Safety Center, 2020.

[15] A.O. Esho et al. “Electrical propulsion systems for satellites: a review of current technologies and
future prospects”. In: International Journal of Frontiers in Engineering and Technology Research
6 (2024), pp. 35–44. DOI: 10.53294/ijfetr.2024.6.2.0034. URL: https://doi.org/10.
53294/ijfetr.2024.6.2.0034.

[16] G.F. Franklin, D.J. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. 4th.
USA: Prentice Hall PTR, 2001. ISBN: 0130323934.

[17] E. Fresk and G. Nikolakopoulos. “Full quaternion based attitude control for a quadrotor”. In: 2013
European Control Conference (ECC). 2013, pp. 3864–3869. DOI: 10.23919/ECC.2013.6669617.

145

https://www.solidstatepropulsion.co.za
https://trimantec.com/product-category/airtac-2v-fluid-control-valve-2-2-way/
https://trimantec.com/product-category/airtac-2v-fluid-control-valve-2-2-way/
https://doi.org/10.1109/IGARSS52108.2023.10281925
https://www.argotec.it
https://doi.org/https://doi.org/10.1016/j.asr.2022.05.055
https://doi.org/https://doi.org/10.1016/j.asr.2022.05.055
https://www.busek.com
https://www.busek.com
https://www.busek.com
https://doi.org/10.3389/fspas.2018.00029
https://doi.org/10.3389/fspas.2018.00029
https://doi.org/10.53294/ijfetr.2024.6.2.0034
https://doi.org/10.53294/ijfetr.2024.6.2.0034
https://doi.org/10.53294/ijfetr.2024.6.2.0034
https://doi.org/10.23919/ECC.2013.6669617

References 146

[18] T. Gardner et al. “CAPSTONE: A CubeSat Pathfinder for the Lunar Gateway Ecosystem”. In:
Small Satellite Conference (2021), pp. 1–7. DOI: https://digitalcommons.usu.edu/smallsat/
2021/all2021/142/.

[19] R. Gottlieb. “Fast gravity, gravity partials, normalized gravity, gravity gradient torque andmagnetic
field: Derivation, code and data”. In: NASA Contractor Report 188243 (1993), pp. 1–64.

[20] M. Grande et al. Planetary Exploration Horizon 2061 Report Chapter 5: Enabling technologies
for planetary exploration. 2023. URL: https://arxiv.org/abs/2302.14832.

[21] C. Hardgrove et al. “The Lunar Polar Hydrogen Mapper (LunaH-Map) Mission”. In: 33rd Annual
AIAA/USU (2019), pp. 1–7. DOI: https://digitalcommons.usu.edu/smallsat/2019/all2019/
97/.

[22] Small Spacecraft Systems Virtual Institute. State-of-the-Art Small Spacecraft Technology. NASA
Technical Publication NASA/TP—2024–10001462. Moffett Field, CA: NASA Ames Research
Center, Feb. 2024. URL: http://www.nasa.gov/smallsat-institute/sst-soa.

[23] Z. Ismail and R. Varatharajoo. “A study of reaction wheel configurations for a 3-axis satellite
attitude control”. In: Advances in Space Research 45.6 (2010), pp. 750–759. DOI: https://doi.
org/10.1016/j.asr.2009.11.004.

[24] J. Jang, M. Plummer, and M. Jackson. “Absolute Stability Analysis of a Phase Plane Controlled
Spacecraft”. In: AIAA Space Flight Mechanics Meeting (2010), pp. 1–13. DOI: 10.13140/2.1.
2472.0002.

[25] E. van Kampen. Lecture 2: Eigenaxis, quaternions, MRP. AE4313-20: Spacecraft Attitude Dy-
namics and Control. 2024. URL: https://studiegids.tudelft.nl/a101_displayCourse.do?
course_id=65819&_NotifyTextSearch_.

[26] M. Kannan, U. Anitha, and A. Kumarasamy. “CubeSat attitude control by implementation of
PID controller using Python”. In: 12th International Conference on Advanced Computing (2023),
pp. 1–5. DOI: 10.1109/ICoAC59537.2023.10249887.

[27] J.T. King et al. “Performance analysis of nano-sat scale μCAT electric propulsion for 3U CubeSat
attitude control”. In: Acta Astronautica 178 (2021), pp. 722–732. DOI: https://doi.org/10.
1016/j.actaastro.2020.10.006. URL: https://www.sciencedirect.com/science/article/
pii/S0094576520306020.

[28] D. Krejci and P. Lozano. “Space Propulsion Technology for Small Spacecraft”. In: Proceedings
of the IEEE 106.3 (2018), pp. 362–378.

[29] I. Kronhaus et al. “Simple Orbit and Attitude Control Using Vacuum Arc Thrusters for Picosatel-
lites”. In: Journal of Spacecraft and Rockets (2014), pp. 2008–2015. DOI: https://doi.org/10.
2514/1.A32796.

[30] M. Kühn and J. Schein. “Development of a High-Reliability Vacuum Arc Thruster System”. In:
Journal of Propulsion and Power (2022), pp. 752–758. DOI: https://doi.org/10.2514/1.
B38202.

[31] J. Lasue et al. “From planetary exploration goals to technology requirements”. In: Planetary Explo-
ration Horizon 2061. Elsevier, 2023, pp. 177–248. DOI: 10.1016/b978-0-323-90226-7.00005-2.
URL: http://dx.doi.org/10.1016/B978-0-323-90226-7.00005-2.

[32] C. Leibbrandt and J. Miller. CubeWheel Gen 2 Product Description. Commercial in Confidence.
CubeSpace Satellite Systems RF (Pty) Ltd. The LaunchLab, Hammanshand Rd, 7600, RSA,
2023. URL: http://www.cubespace.co.za/.

[33] C. Lemmer. “Propulsion for CubeSats”. In: Acta Astronautica 134 (2017), pp. 231–243.
[34] Y. Lian, J. Xiang, and Y. Zhao. “Modulated multi-sliding-surface attitude tracking control for all-

electric propulsion satellites”. In: Advances in Space Research 72.8 (2023), pp. 3297–3307.
ISSN: 0273-1177. DOI: https : / / doi . org / 10 . 1016 / j . asr . 2023 . 06 . 012. URL: https :
//www.sciencedirect.com/science/article/pii/S0273117723004428.

[35] T.W. Lim. “Thruster Attitude Control System Design and Performance for Tactical Satellite 4 Ma-
neuvers”. In: Journal of Guidance, Control and Dynamics (2014), pp. 403–412. DOI: https://
doi.org/10.2514/1.61727.

https://doi.org/https://digitalcommons.usu.edu/smallsat/2021/all2021/142/
https://doi.org/https://digitalcommons.usu.edu/smallsat/2021/all2021/142/
https://arxiv.org/abs/2302.14832
https://doi.org/https://digitalcommons.usu.edu/smallsat/2019/all2019/97/
https://doi.org/https://digitalcommons.usu.edu/smallsat/2019/all2019/97/
http://www.nasa.gov/smallsat-institute/sst-soa
https://doi.org/https://doi.org/10.1016/j.asr.2009.11.004
https://doi.org/https://doi.org/10.1016/j.asr.2009.11.004
https://doi.org/10.13140/2.1.2472.0002
https://doi.org/10.13140/2.1.2472.0002
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65819&_NotifyTextSearch_
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65819&_NotifyTextSearch_
https://doi.org/10.1109/ICoAC59537.2023.10249887
https://doi.org/https://doi.org/10.1016/j.actaastro.2020.10.006
https://doi.org/https://doi.org/10.1016/j.actaastro.2020.10.006
https://www.sciencedirect.com/science/article/pii/S0094576520306020
https://www.sciencedirect.com/science/article/pii/S0094576520306020
https://doi.org/https://doi.org/10.2514/1.A32796
https://doi.org/https://doi.org/10.2514/1.A32796
https://doi.org/https://doi.org/10.2514/1.B38202
https://doi.org/https://doi.org/10.2514/1.B38202
https://doi.org/10.1016/b978-0-323-90226-7.00005-2
http://dx.doi.org/10.1016/B978-0-323-90226-7.00005-2
http://www.cubespace.co.za/
https://doi.org/https://doi.org/10.1016/j.asr.2023.06.012
https://www.sciencedirect.com/science/article/pii/S0273117723004428
https://www.sciencedirect.com/science/article/pii/S0273117723004428
https://doi.org/https://doi.org/10.2514/1.61727
https://doi.org/https://doi.org/10.2514/1.61727

References 147

[36] B. Malphrus et al. “The lunar IceCube EM-1 mission: Prospecting the Moon for water ice”. In:
IEEE Aerospace and Electronic Systems Magazine (2019), pp. 6–14. DOI: https://doi.org/
10.1109/MAES.2019.2909384.

[37] P. Marwedel. Embedded System Design: Embedded systems, Foundations of Cyber-Physical
Systems and Internet of Things. 3rd ed. New York, USA: Springer, 2018.

[38] D. McIntosh, J. Baker, and J. Matus. “The NASACubesat Missions Flying on Artemis-1”. In: Small
Satellite Conference (2020), pp. 1–11. DOI: https://digitalcommons.usu.edu/smallsat/
2020/all2020/44/.

[39] C.P. Newman et al. “Stationkeeping, orbit determination and attitude control for spacecraft in
Near-Rectilinear Halo Orbits”. In: AAS Astrodynamics Specialists Conference (2018), pp. 1–20.

[40] C. Nieto and R. Emami. “CubeSat Mission: From Design to Operation”. In: Applied Sciences 9
(Aug. 2019), p. 3110. DOI: 10.3390/app9153110.

[41] A. Rizza et al. “Design, Analysis and Validation of the ADCS for the LUMIO mission”. In: Proceed-
ings of the 74th International Astronautical Congress (IAC). International Astronautical Federation
(IAF). Oct. 2023.

[42] H. Rom and A. Gany. “Thrust control of hydrazine rocket motors by means of pulse width mod-
ulation”. In: Acta Astronautica 26.5 (1992), pp. 313–316. ISSN: 0094-5765. DOI: https://doi.
org/10.1016/0094- 5765(92)90077- V. URL: https://www.sciencedirect.com/science/
article/pii/009457659290077V.

[43] Á. Romero-Calvo, J. Biggs, and F. Topputo. “Attitude Control for the LUMIO CubeSat in Deep
Space”. In: International Astronautical Congress (2019), pp. 1–13. DOI: http://hdl.handle.
net/11311/1117585.1880.

[44] K. Saddul et al. “Mission analysis of a 1U CubeSat post-mission disposal using a thin-film vacuum
arc thruster”. In: Acta Astronautica 219 (2024), pp. 318–328. DOI: https://doi.org/10.1016/
j.actaastro.2024.03.019.

[45] H. Sekine et al. “On-orbit Performance Evaluation of AQUARIUS: a Water Resistojet Propulsion
System during Initial Flight Operation of a 6U CubeSat EQUULEUS”. In: Transactions of the
Japan Society for Aeronautical and Space Sciences 67.5 (2024), pp. 274–284. DOI: 10.2322/
tjsass.67.274.

[46] E. Spreen, K. Howell, and D. Davis. “Near Rectilinear Halo Orbits and their application in cis-lunar
space”. In: 3rd IAA Conference on Dynamics and Controls of Space Systems (2017), pp. 1–20.

[47] STMicroelectronics. STM32F303xD, STM32F303xE. Rev 5. Datasheet for STM32F303xD/E mi-
crocontrollers. 2016. URL: https://www.st.com.

[48] A.H. Tavakkoli, M. Kabganian, and M. Shahravi. “Modeling of attitude control actuator for a flexi-
ble spacecraft using an extended simulation environment”. In: 2005 International Conference on
Control and Automation. Vol. 1. 2005, 147–152 Vol. 1. DOI: 10.1109/ICCA.2005.1528107.

[49] Blue Canyon Technologies. Reaction Wheels - Small Wheels 2024. Lafayette, CO, USA: Blue
Canyon Technologies, Jan. 2024.

[50] Blue Canyon Technologies. XACT and FleXcore Attitude Control Systems: Product Description.
REV 1/2024. Specifications for XACT and FleXcore ACS systems, including design and perfor-
mance parameters for various configurations. Blue Canyon Technologies. 2550 Crescent Drive,
Lafayette, CO 80026, USA, 2024. URL: https://www.bluecanyontech.com.

[51] “The Forward Euler Method”. In: Practical Analysis in One Variable. New York, NY: Springer New
York, 2002, pp. 583–604. DOI: 10.1007/0-387-22644-3_43. URL: https://doi.org/10.1007/
0-387-22644-3_43.

[52] F. Topputo et al. “LUMIO CubeSat: Current Status and Lessons Learnt (So Far)”. In: 4S Sympo-
sium 2024. 2024.

[53] M. von Unwerth et al. “Application of CubeSat Technologies for Research and Exploration on the
Lunar Surface”. In: Advances in Astronautics Science and Technology (2023), pp. 57–72. DOI:
https://doi.org/10.1007/s42423-023-00144-w.

https://doi.org/https://doi.org/10.1109/MAES.2019.2909384
https://doi.org/https://doi.org/10.1109/MAES.2019.2909384
https://doi.org/https://digitalcommons.usu.edu/smallsat/2020/all2020/44/
https://doi.org/https://digitalcommons.usu.edu/smallsat/2020/all2020/44/
https://doi.org/10.3390/app9153110
https://doi.org/https://doi.org/10.1016/0094-5765(92)90077-V
https://doi.org/https://doi.org/10.1016/0094-5765(92)90077-V
https://www.sciencedirect.com/science/article/pii/009457659290077V
https://www.sciencedirect.com/science/article/pii/009457659290077V
https://doi.org/http://hdl.handle.net/11311/1117585.1880
https://doi.org/http://hdl.handle.net/11311/1117585.1880
https://doi.org/https://doi.org/10.1016/j.actaastro.2024.03.019
https://doi.org/https://doi.org/10.1016/j.actaastro.2024.03.019
https://doi.org/10.2322/tjsass.67.274
https://doi.org/10.2322/tjsass.67.274
https://www.st.com
https://doi.org/10.1109/ICCA.2005.1528107
https://www.bluecanyontech.com
https://doi.org/10.1007/0-387-22644-3_43
https://doi.org/10.1007/0-387-22644-3_43
https://doi.org/10.1007/0-387-22644-3_43
https://doi.org/https://doi.org/10.1007/s42423-023-00144-w

References 148

[54] J.R. Wertz. Spacecraft Attitude Determination and Control. 1st ed. Dordrecht, The Netherlands:
Kluwer Academic Publishers, 1978.

[55] K. Williamson. Research Methods for Students, Academics and Professionals. 2nd ed. Kingston
upon Hull, UK: Chandos Publishing, 2002.

[56] R. Wirz et al. “Hollow Cathode and Low-Thrust Extraction Grid Analysis for a Miniature Ion
Thruster”. In: International Journal of Plasma Science and Engineering 2008 (2008), 11 pages.
DOI: 10.1155/2008/693825. URL: https://doi.org/10.1155/2008/693825.

[57] J. Ziegler and N. Nichols. “Optimum settings for automatic controllers”. In: Journal of Dynamic
Systems, Measurument and Control (1993), pp. 220–222. DOI: https://doi.org/10.1115/1.
2899060.

https://doi.org/10.1155/2008/693825
https://doi.org/10.1155/2008/693825
https://doi.org/https://doi.org/10.1115/1.2899060
https://doi.org/https://doi.org/10.1115/1.2899060

A
Simulation Results

Below, the results for the thrust, power and energy per thruster, for the full two-week simulation between
[00:00:00 01-01-2023] until [00:00:00 15-01-2023], are displayed. Each configuration is presented.

A.1. Configuration 1

Figure A.1: Thrusters: F1 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.2: Thrusters: F2 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

149

A.1. Configuration 1 150

Figure A.3: Thrusters: F3 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.4: Thrusters: F4 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.5: Thrusters: F5 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.6: Thrusters: F6 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.7: Thrusters: P1 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.8: Thrusters: P2 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.1. Configuration 1 151

Figure A.9: Thrusters: P3 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.10: Thrusters: P4 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.11: Thrusters: P5 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.12: Thrusters: P6 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.13: Thrusters: E1 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.14: Thrusters: E2 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.2. Configuration 2 152

Figure A.15: Thrusters: E3 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.16: Thrusters: E4 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.17: Thrusters: E5 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.18: Thrusters: E6 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.2. Configuration 2

Figure A.19: Thrusters: F1 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.20: Thrusters: F2 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.2. Configuration 2 153

Figure A.21: Thrusters: F3 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.22: Thrusters: F4 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.23: Thrusters: F5 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.24: Thrusters: F6 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.25: Thrusters: P1 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.26: Thrusters: P2 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.2. Configuration 2 154

Figure A.27: Thrusters: P3 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.28: Thrusters: P4 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.29: Thrusters: P5 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.30: Thrusters: P6 output in configuration 1 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.31: Thrusters: E1 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.32: Thrusters: E2 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.3. Configuration 3 155

Figure A.33: Thrusters: E3 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.34: Thrusters: E4 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.35: Thrusters: E5 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.36: Thrusters: E6 output in configuration 1 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.3. Configuration 3

Figure A.37: Thrusters: F1 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.38: Thrusters: F2 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.3. Configuration 3 156

Figure A.39: Thrusters: F3 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.40: Thrusters: F4 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.41: Thrusters: F5 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.42: Thrusters: F6 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.43: Thrusters: F7 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.44: Thrusters: F8 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.3. Configuration 3 157

Figure A.45: Thrusters: P1 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.46: Thrusters: P2 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.47: Thrusters: P3 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.48: Thrusters: P4 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.49: Thrusters: P5 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.50: Thrusters: P6 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.3. Configuration 3 158

Figure A.51: Thrusters: P7 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.52: Thrusters: P8 output in configuration 3 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.53: Thrusters: E1 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.54: Thrusters: E2 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.55: Thrusters: E3 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.56: Thrusters: E4 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.4. Configuration 4 159

Figure A.57: Thrusters: E5 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.58: Thrusters: E6 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.59: Thrusters: E7 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.60: Thrusters: E8 output in configuration 3 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.4. Configuration 4

Figure A.61: Thrusters: F1 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.62: Thrusters: F2 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.4. Configuration 4 160

Figure A.63: Thrusters: F3 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.64: Thrusters: F4 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.65: Thrusters: F5 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.66: Thrusters: F6 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.67: Thrusters: F7 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.68: Thrusters: F8 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.4. Configuration 4 161

Figure A.69: Thrusters: F9 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.70: Thrusters: F10 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.71: Thrusters: F11 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.72: Thrusters: F12 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.73: Thrusters: P1 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.74: Thrusters: P2 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.4. Configuration 4 162

Figure A.75: Thrusters: P3 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.76: Thrusters: P4 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.77: Thrusters: P5 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.78: Thrusters: P6 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.79: Thrusters: P7 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.80: Thrusters: P8 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

A.4. Configuration 4 163

Figure A.81: Thrusters: P9 output in configuration 4 over time
in days, analysed from [00:00:00 01-01-2023] until [00:00:00

15-01-2023].

Figure A.82: Thrusters: P10 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.83: Thrusters: P11 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.84: Thrusters: P12 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.85: Thrusters: E1 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.86: Thrusters: E2 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.4. Configuration 4 164

Figure A.87: Thrusters: E3 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.88: Thrusters: E4 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.89: Thrusters: E5 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.90: Thrusters: E6 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.91: Thrusters: E7 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.92: Thrusters: E8 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

A.4. Configuration 4 165

Figure A.93: Thrusters: E9 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.94: Thrusters: E10 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.95: Thrusters: E11 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

Figure A.96: Thrusters: E12 output in configuration 4 over
time in days, analysed from [00:00:00 01-01-2023] until

[00:00:00 15-01-2023].

B
Python Source Code

Below, a raw copy of the code for this thesis research is presented. Note that this is all included in the
classes.py file. The full code, inlcuding Jupyter notebooks for execution and testing, can be viewed in:

https://github.com/Pieter1999/lunar_CubeSat

1 from astroquery.jplhorizons import Horizons
2 from astropy.time import Time
3 from datetime import date
4 from datetime import datetime
5 import numpy as np
6 import matplotlib.pyplot as plt
7 from mpl_toolkits.mplot3d import Axes3D
8 from matplotlib import cm
9 from scipy.linalg import null_space
10 import pandas as pd
11 import os
12 import re
13 from scipy.optimize import minimize
14

15 class Constants:
16 """
17 This class contains all the constants that are used throughout the research. Constants

can in this way
18 easily be called and their values are stored in one central location. Further in-line

comments will
19 clarify the meaning and values of the constants present.
20 """
21

22 # Physical constants
23 c = 299792458 # Speed of light [ms^-1]
24 G = 6.67428e-11 # Universal Gravitational Constant [m^3s^-2kg^-1]
25 mu_Earth = 398600441800000.0 # Gravitational parameter Earth [m^3s^-2]
26 mu_Moon = 4.9048695e12 # Gravitational parameter Moon [m^3s^-2]
27 mu_Sun = 1.32712440018e20 # Gravitational parameter Sun [m^3s^-2]
28 AU = 149597870700.0 # Astronomical unit [m]
29 R_Earth = 6.3781e6 # Earth mean radius [m]
30 R_Moon = 1737.4e3 # Moon mean radius [m]
31 R_Sun = 695700e3 # Sun mean radius [m]
32 P_solar = 3.842e26 # Power exerted by the Sun, [W]
33

34 # LUMIO spacecraft data
35 inertia_matrix = np.array([[100.9, 0, 0], [0, 25.1, 0], [0, 0, 91.6]]) * 10 ** (
36 -2
37) # deployed inertia matrix, [kg m^2]
38 inertia_matrix_undeployed = np.array(
39 [[30.5, 0, 0], [0, 20.9, 0], [0, 0, 27.1]]
40) * 10 ** (-2)
41

166

https://github.com/Pieter1999/lunar_CubeSat

167

42 # Payload panel location
43 LUMIO_loc_pp = np.array([0, 0.15, 0]) # m
44

45 # Hyperion RW400 data
46 T_RW_max = 0.007 #Nm
47 P_peak_max = 9 #W
48

49 # Solid State Propulsion Pocket Rocket data
50 F_SSP_max = 0.0002 #N
51 P_SSP_max = 20 #W
52 MIB = 1.18e-6 #Ns
53

54 # Astroquery data
55 # CAPSTONE data
56 id_CAPSTONE = "-1176" # JPL Horizons
57 start_date_CAPSTONE = (
58 "2022-11-14" # Official nominal mission start date, insertion in NRHO
59)
60 end_date_CAPSTONE = "2023-05-18" # Official end date nominal mission
61

62 # Location data
63 id_Moon = "301"
64 id_Sun = "10"
65 id_Earth = "500"
66 location_Moon_centre = "500@301" # 500 indicates the body-centric location
67 location_Sun_centre = "500@10"
68 location_Earth_centre = "500"
69 location_CAPSTONE_centre = "500@-1176"
70

71

72 class Rotation:
73 """
74 Placeholdere name. This class will hold several rotational dynamics functions for easy

use in reference frame conversion practices.
75 At the moment of writing, only the 3-2-1 Euler rotation method and Euler angle -

quaternion conversions are considered for this class.
76 Take three Euler angles as input, potentially angular velocity as well. NOTE: roll =

theta_1, pitch = theta_2, yaw = theta_3
77 """
78

79 def euler_rotation(
80 self, theta_1, theta_2, theta_3
81): # 3-2-1 rotation, using Euler angles, from INERTIAL TO BODY FRAME, is R_x @ R_y @ R_z

. Other way around is the inverse of this.
82 # Define rotation matrices
83 R_z = np.array(
84 [
85 [np.cos(theta_3), np.sin(theta_3), 0],
86 [-np.sin(theta_3), np.cos(theta_3), 0],
87 [0, 0, 1],
88]
89)
90 R_y = np.array(
91 [
92 [np.cos(theta_2), 0, -np.sin(theta_2)],
93 [0, 1, 0],
94 [np.sin(theta_2), 0, np.cos(theta_2)],
95]
96)
97 R_x = np.array(
98 [
99 [1, 0, 0],
100 [0, np.cos(theta_1), np.sin(theta_1)],
101 [0, -np.sin(theta_1), np.cos(theta_1)],
102]
103)
104

105 return R_x @ R_y @ R_z
106

107 def quaternion_321_rotation(
108 self, qw, qx, qy, qz

168

109): # 3-2-1 rotation, using quaternions, is the inverse of the resultant matrix, so np.
linalg.inv(R) should be used to match Euler 3-2-1 rotation from inertial to body
frame.

110 # This regular matrix is other way around.
111

112 R = np.array(
113 [
114 [
115 1 - 2 * (qy**2 + qz**2),
116 2 * (qx * qy - qz * qw),
117 2 * (qx * qz + qy * qw),
118],
119 [
120 2 * (qx * qy + qz * qw),
121 1 - 2 * (qx**2 + qz**2),
122 2 * (qy * qz - qx * qw),
123],
124 [
125 2 * (qx * qz - qy * qw),
126 2 * (qy * qz + qx * qw),
127 1 - 2 * (qx**2 + qy**2),
128],
129]
130)
131

132 return np.linalg.inv(R)
133

134 def euler_to_quaternion(self, theta_1, theta_2, theta_3):
135

136 # Extract individual angles
137 cr, sr = np.cos(theta_1 * 0.5), np.sin(theta_1 * 0.5)
138 cp, sp = np.cos(theta_2 * 0.5), np.sin(theta_2 * 0.5)
139 cy, sy = np.cos(theta_3 * 0.5), np.sin(theta_3 * 0.5)
140

141 # Calculate quaternion components, based on the 3-2-1 Euler sequence
142 qw = cr * cp * cy + sr * sp * sy # Real component
143 qx = sr * cp * cy - cr * sp * sy # Imaginary, x
144 qy = cr * sp * cy + sr * cp * sy # Imaginary, y
145 qz = cr * cp * sy - sr * sp * cy # Imaginary, z
146

147 return np.array([qw, qx, qy, qz]) # Sequence w, x, y, z
148

149 def quaternion_product(self, q1, q2): # Kronecker definition
150 """
151 Compute the product of two quaternions.
152 Each quaternion is represented as an array [qw, qx, qy, qz]
153

154 Args:
155 q1 (array): The first quaternion as (w, x, y, z).
156 q2 (array): The second quaternion as (w, x, y, z).
157

158 Returns:
159 array: The resulting quaternion product as (w, x, y, z).
160 """
161 w1, x1, y1, z1 = q1
162 w2, x2, y2, z2 = q2
163

164 # Calculate the product components
165 qw = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
166 qx = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
167 qy = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
168 qz = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
169

170 return np.array([qw, qx, qy, qz]) # Sequence w, x, y, z
171

172 def quaternion_to_euler(
173 self, qw, qx, qy, qz
174): # Verified, using euler_to_quat first, then quat_to_euler
175

176 # Compute Euler angles
177 t0 = 2.0 * (qw * qx + qy * qz)

169

178 t1 = 1.0 - 2.0 * (qx**2 + qy**2)
179 roll = np.arctan2(t0, t1)
180

181 t2 = 2.0 * (qw * qy - qz * qx)
182 t2 = np.clip(t2, -1.0, 1.0) # Clamp to avoid numerical errors on the boundaries
183 pitch = np.arcsin(t2)
184

185 t3 = 2.0 * (qw * qz + qx * qy)
186 t4 = 1.0 - 2.0 * (qy**2 + qz**2)
187 yaw = np.arctan2(t3, t4)
188

189 return np.array([roll, pitch, yaw])
190

191 # Below definition of DCM to quaternion conversion is incorrect; it assumes a DCM
consisting of quaternions

192 # This raises instability. Below code can be verified with the PyQuaternion module.
193 # New DCM_to_quaternion function settles this
194 def DCM_to_quaternion_old(self, DCM_matrix):
195 a11 = DCM_matrix[0,0]
196 a22 = DCM_matrix[1,1]
197 a33 = DCM_matrix[2,2]
198

199 qw = 1/2 * np.sqrt(1 + a11 + a22 + a33)
200 q1 = 1/2 * np.sqrt(1 + a11 - a22 - a33)
201 q2 = 1/2 * np.sqrt(1 - a11 + a22 - a33)
202 q3 = 1/2 * np.sqrt(1 - a11 - a22 + a33)
203

204 return np.array([qw, q1, q2, q3])
205

206 def DCM_to_quaternion(self, DCM_matrix):
207 a11 = DCM_matrix[0, 0]
208 a22 = DCM_matrix[1, 1]
209 a33 = DCM_matrix[2, 2]
210 trace = a11 + a22 + a33
211

212 if trace > 0:
213 qw = 0.5 * np.sqrt(1 + trace)
214 qx = (DCM_matrix[2, 1] - DCM_matrix[1, 2]) / (4 * qw)
215 qy = (DCM_matrix[0, 2] - DCM_matrix[2, 0]) / (4 * qw)
216 qz = (DCM_matrix[1, 0] - DCM_matrix[0, 1]) / (4 * qw)
217 elif a11 > a22 and a11 > a33:
218 qx = 0.5 * np.sqrt(1 + a11 - a22 - a33)
219 qw = (DCM_matrix[2, 1] - DCM_matrix[1, 2]) / (4 * qx)
220 qy = (DCM_matrix[0, 1] + DCM_matrix[1, 0]) / (4 * qx)
221 qz = (DCM_matrix[0, 2] + DCM_matrix[2, 0]) / (4 * qx)
222 elif a22 > a33:
223 qy = 0.5 * np.sqrt(1 + a22 - a11 - a33)
224 qw = (DCM_matrix[0, 2] - DCM_matrix[2, 0]) / (4 * qy)
225 qx = (DCM_matrix[0, 1] + DCM_matrix[1, 0]) / (4 * qy)
226 qz = (DCM_matrix[1, 2] + DCM_matrix[2, 1]) / (4 * qy)
227 else:
228 qz = 0.5 * np.sqrt(1 + a33 - a11 - a22)
229 qw = (DCM_matrix[1, 0] - DCM_matrix[0, 1]) / (4 * qz)
230 qx = (DCM_matrix[0, 2] + DCM_matrix[2, 0]) / (4 * qz)
231 qy = (DCM_matrix[1, 2] + DCM_matrix[2, 1]) / (4 * qz)
232

233 return np.array([qw, qx, qy, qz])
234

235

236

237 class DisturbanceTorques:
238 """
239 This class contains the disturbance torques used for the ADCS modelling. These will be

the gravity gradient torque and
240 solar radiation pressure torque described from literature. The Gravity Gradient torque

function returns a torque vector...
241 """
242

243 def __init__(self, inertia_matrix):
244

245 self.inertia_matrix = inertia_matrix

170

246

247 def GGMoon(self, q, position_SC_Moon):
248

249 # Generate the rotation matrix to express the position vector in the body frame
instead of the inertial Moon-centered frame (retrieve wrt this frame)

250 rot = Rotation()
251 rot_matrix = rot.quaternion_321_rotation(q[0], q[1], q[2], q[3])
252

253 # Generate the unit vector of the spacecraft position vector in the body frame
254 # First approximation -> needs to be verified, in the body frame as well
255 R_sc = rot_matrix @ position_SC_Moon # 3x1 vector
256 R_sc_hat = R_sc / np.linalg.norm(R_sc)
257

258 # Calculate gravity gradient torque in the body frame
259 T_GG = (
260 3
261 * Constants.mu_Moon
262 / (np.linalg.norm(R_sc) ** 3)
263 * (np.cross(R_sc_hat, np.dot(self.inertia_matrix, R_sc_hat)))
264)
265

266 return T_GG
267

268 # DEFAULT: undeployed scenario. For deployed scenario, see next definition
269 def SRP(self, q, position_Sun_Moon, position_SC_Moon):
270

271 rot = Rotation()
272

273 rho_s = 0.6 # These values have been taken from the LUMIO ADCS paper for now; to be
verified or adjusted

274 rho_d = 0.1
275

276 # First, define surface CoM locations wrt satellite CoM [0,0,0] in body frame
277 # Numbering according to ADCS LUMIO paper
278 # Different reference frame, same as thruster config. Surface 1 is in positive z-axis

, surface 4 is positive x-axis, surface 6 is positive y-axis
279 # All values in meter, sides are either 20cm or 30cm (locations 5 and 6 are on the

far sides)
280

281 S_loc_1 = np.array([0, 0, 0.1])
282 S_loc_2 = np.array([0, 0, -0.1])
283 S_loc_3 = np.array([-0.1, 0, 0])
284 S_loc_4 = np.array([0.1, 0, 0])
285 S_loc_5 = np.array([0, -0.15, 0])
286 S_loc_6 = np.array([0, 0.15, 0])
287

288 c_p = np.column_stack(
289 [S_loc_1, S_loc_2, S_loc_3, S_loc_4, S_loc_5, S_loc_6]
290) # Centre of pressure locations for calculation
291 n_s = np.array([[0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 1, -1], [-1, 1, 0, 0, 0, 0]])
292 r_S_SC = position_Sun_Moon - position_SC_Moon
293 S_inertial = np.column_stack(
294 [
295 (S_loc_1 - r_S_SC) / np.linalg.norm(S_loc_1 - r_S_SC),
296 (S_loc_2 - r_S_SC) / np.linalg.norm(S_loc_2 - r_S_SC),
297 (S_loc_3 - r_S_SC) / np.linalg.norm(S_loc_3 - r_S_SC),
298 (S_loc_4 - r_S_SC) / np.linalg.norm(S_loc_4 - r_S_SC),
299 (S_loc_5 - r_S_SC) / np.linalg.norm(S_loc_5 - r_S_SC),
300 (S_loc_6 - r_S_SC) / np.linalg.norm(S_loc_6 - r_S_SC),
301]
302)
303

304 # Rotation matrix to body frame
305 rot_matrix = rot.quaternion_321_rotation(q[0], q[1], q[2], q[3])
306 # Convert S-matrix to the body frame
307 S = rot_matrix @ S_inertial
308

309 A = np.array([6, 6, 6, 6, 4, 4]) * 10 ** (
310 -2
311) # Surface areas of all labeled surfaces, in m2
312 F = np.empty((3, len(A)))

171

313

314 # Calculate the solar intensity at the spacecraft location, as seen in LUMIO ADCS
paper

315

316 I = Constants.P_solar / (4 * np.pi * np.linalg.norm(r_S_SC) ** 2)
317

318 for i in range(len(A)):
319 F_SRP = (
320 I
321 / Constants.c
322 * A[i]
323 * np.dot(S.T[i], n_s.T[i])
324 * (
325 (1 - rho_s) * S.T[i]
326 + (2 * rho_s * np.dot(S.T[i], n_s.T[i]) + 2 / 3 * rho_d) * n_s.T[i]
327)
328)
329

330 if np.dot(S.T[i], n_s.T[i]) > 0:
331 F[0, i], F[1, i], F[2, i] = np.cross(c_p[:, i], F_SRP)
332

333 else:
334 F[:, i] = np.zeros(3)
335

336 return F.sum(axis=1)
337

338 def SRP_deployed(self, q, position_Sun_Moon, position_SC_Moon):
339

340 rot = Rotation()
341

342 rho_s = 0.6 # These values have been taken from the LUMIO ADCS paper for now; to be
verified or adjusted

343 rho_d = 0.1
344

345 # First, define surface CoM locations wrt satellite CoM [0,0,0] in body frame
346 # Numbering according to ADCS LUMIO paper
347 # Different reference frame, same as thruster config. Surface 1 is in positive z-axis

, surface 4 is positive x-axis, surface 6 is positive y-axis
348 # All values in meter, sides are either 20cm or 30cm (locations 5 and 6 are on the

far sides)
349 # Solar arrays lie
350

351 S_loc_1 = np.array([0, 0, 0.1])
352 S_loc_2 = np.array([0, 0, -0.1])
353 S_loc_3 = np.array([-0.1, 0, 0])
354 S_loc_4 = np.array([0.1, 0, 0])
355 S_loc_5 = np.array([0, -0.15, 0])
356 S_loc_6 = np.array([0, 0.15, 0])
357 S_loc_7 = np.array([-0.45, 0, 0])
358 S_loc_8 = np.array([-0.45, 0, 0])
359 S_loc_9 = np.array([0.45, 0, 0])
360 S_loc_10 = np.array([0.45, 0, 0])
361

362 c_p = np.column_stack(
363 [S_loc_1, S_loc_2, S_loc_3, S_loc_4, S_loc_5, S_loc_6, S_loc_7, S_loc_8, S_loc_9,

S_loc_10]
364) # Centre of pressure locations for calculation
365

366 r_S_SC = position_Sun_Moon - position_SC_Moon
367

368 S_inertial = np.column_stack(
369 [
370 (S_loc_1 - r_S_SC) / np.linalg.norm(S_loc_1 - r_S_SC),
371 (S_loc_2 - r_S_SC) / np.linalg.norm(S_loc_2 - r_S_SC),
372 (S_loc_3 - r_S_SC) / np.linalg.norm(S_loc_3 - r_S_SC),
373 (S_loc_4 - r_S_SC) / np.linalg.norm(S_loc_4 - r_S_SC),
374 (S_loc_5 - r_S_SC) / np.linalg.norm(S_loc_5 - r_S_SC),
375 (S_loc_6 - r_S_SC) / np.linalg.norm(S_loc_6 - r_S_SC),
376 (S_loc_7 - r_S_SC) / np.linalg.norm(S_loc_7 - r_S_SC),
377

378 (S_loc_8 - r_S_SC) / np.linalg.norm(S_loc_8 - r_S_SC),

172

379 (S_loc_9 - r_S_SC) / np.linalg.norm(S_loc_9 - r_S_SC),
380 (S_loc_10 - r_S_SC) / np.linalg.norm(S_loc_10 - r_S_SC),
381]
382)
383

384 # Rotation matrix to body frame
385 rot_matrix = rot.quaternion_321_rotation(q[0], q[1], q[2], q[3])
386 # Convert S-matrix to the body frame
387 S = rot_matrix @ S_inertial
388

389 A = np.array([6, 6, 6, 6, 4, 4, 12, 12, 12, 12]) * 10 ** (
390 -2
391) # Surface areas of all labeled surfaces, in m2
392

393 # Define the n_s array as a function of alpha
394 def normal_s(alpha):
395 return np.array([
396 [0, 0, 1, -1, 0, 0, 0, 0, 0, 0],
397 [0, 0, 0, 0, 1, -1, np.sin(alpha), -np.sin(alpha), np.sin(alpha), -np.sin(

alpha)],
398 [-1, 1, 0, 0, 0, 0, np.cos(alpha), -np.cos(alpha), np.cos(alpha), -np.cos(

alpha)]
399])
400

401 # Define the objective function to minimize (negative total dot product to maximize
it)

402 def objective(alpha_array):
403 alpha = alpha_array[0]
404 n_s_alpha = normal_s(alpha) # Get n_s for this alpha
405 total_dot_product = np.sum([np.dot(n_s_alpha[:, i], S[:, i]) for i in range(10)])
406 return -total_dot_product # Minimize the negative to maximize the positive
407

408 # Use scipy.optimize to find the alpha that maximizes the total dot product
409 result = minimize(objective, x0=0) # x0 is the initial guess for alpha
410 alpha_optimal = result.x[0] # Optimal alpha value
411

412 n_s = normal_s(alpha_optimal)
413

414 F = np.empty((3, len(A)))
415

416 # Calculate the solar intensity at the spacecraft location, as seen in LUMIO ADCS
paper

417

418 I = Constants.P_solar / (4 * np.pi * np.linalg.norm(r_S_SC) ** 2)
419

420 for i in range(len(A)):
421 F_SRP = (
422 I
423 / Constants.c
424 * A[i]
425 * np.dot(S.T[i], n_s.T[i])
426 * (
427 (1 - rho_s) * S.T[i]
428 + (2 * rho_s * np.dot(S.T[i], n_s.T[i]) + 2 / 3 * rho_d) * n_s.T[i]
429)
430)
431

432 if np.dot(S.T[i], n_s.T[i]) > 0:
433 F[0, i], F[1, i], F[2, i] = np.cross(c_p[:, i], F_SRP)
434

435 else:
436 F[:, i] = np.zeros(3)
437

438 return F.sum(axis=1)
439

440 class EphemerisData:
441 """
442 This class contains the functions for the retrieval of ephemeris data. This data is

collected from the JPL Horizons module
443 and can be retrieved in two separate ways. The function "vectors" retrieves Cartesian

coordinates and velocities over time, whereas the

173

444 function "keplerian" retrieves the Keplerian elements (semi-major axis, eccentricity, etc
.) over time.

445

446 Input:
447 id: string, for Horizons query
448 location: string, for Horizons query
449 time_step: number, hours desired for time step of epoch query. Fractionals possible to

indicate minutes / seconds
450 start_date: custom start date, default set to beginning of nominal CAPSTONE mission,

convention: YEAR-MONTH-DAY HOUR:MINUTE:SECOND
451 end_date: custom end date, default set to end of nominal CAPSTONE mission
452 """
453

454 def __init__(self, id, location, time_step, start_date=None, end_date=None):
455

456 # If no input start or end dates are given, input the CAPSTONE mission start and end
dates

457

458 if start_date is None:
459 start_date = Constants.start_date_CAPSTONE
460 if end_date is None:
461 end_date = Constants.end_date_CAPSTONE
462

463 # Validate input start and end date, to verify they fall within the nominal mission
duration, see definition

464 self.validate_dates(start_date, end_date)
465

466 # Convert scalar dates (input) to Julian dates for Horizons query input
467 self.t0 = start_date
468 self.t1 = end_date
469 self.id = id
470 self.location = location
471 self.time_step = f"{int(time_step␣*␣60)}m" # Convert fractional time_step to minutes

, input for class remains hours
472

473 # Validation of correct date usage, simple if-statement for range description, in jd
474 def validate_dates(self, start, end):
475 mission_start = Time(
476 Constants.start_date_CAPSTONE, format="iso", scale="utc"
477).jd
478 mission_end = Time(Constants.end_date_CAPSTONE, format="iso", scale="utc").jd
479 start_jd = Time(start, format="iso", scale="utc").jd
480 end_jd = Time(end, format="iso", scale="utc").jd
481

482 if not (mission_start <= start_jd <= end_jd <= mission_end):
483 raise ValueError(
484 "Provided␣dates␣must␣be␣within␣the␣official␣mission␣dates."
485)
486

487 def vectors(self):
488 # Retrieve desired object
489 object = Horizons(
490 id=self.id,
491 location=self.location,
492 epochs={"start": self.t0, "stop": self.t1, "step": self.time_step},
493)
494

495 # Query Cartesian coordinate vectors, full table
496 ephemeris = object.vectors()
497

498 # Query specific columns from list
499 cartesian = ephemeris["datetime_jd", "x", "y", "z", "vx", "vy", "vz"]
500

501 # Data storage process
502 if self.id == "301":
503 body = "Moon"
504 elif self.id == "-1176":
505 body = "CAPSTONE"
506 elif self.id == "10":
507 body = "Sun"
508 elif self.id == "500":

174

509 body = "Earth"
510 else:
511 body = "other"
512

513 if self.location == "500@301":
514 center = "Moon-centered"
515 elif self.location == "500@10":
516 center = "Sun-centered"
517 elif self.location == "500":
518 center = "Earth-centered"
519 elif self.location == "500@-1176":
520 center = "CAPSTONE-centered"
521

522 name = (
523 "/Users/pieter/Library/Mobile␣Documents/com~apple~CloudDocs/Thesis/Research␣Phase

/lunar_CubeSat/ephemeris_data/cartesian_coordinates_"
524 + body
525 + "_"
526 + center
527 + "_"
528 + self.t0
529 + "_to_"
530 + self.t1
531 + "_"
532 + str(self.time_step)
533 + ".dat"
534)
535

536 np.savetxt(
537 name,
538 cartesian,
539)
540

541 return name, cartesian
542

543 def keplerian(self):
544 object = Horizons(
545 id=self.id,
546 location=self.location,
547 epochs={"start": self.t0, "stop": self.t1, "step": self.time_step},
548)
549

550 # Query complete elements table
551 ephemeris = object.elements()
552

553 # Query desired Keplerian elements
554 keplerian = ephemeris["datetime_jd", "a", "e", "incl", "Omega", "w", "nu"]
555

556 # Data storage process
557 if self.id == "301":
558 body = "Moon"
559 elif self.id == "-1176":
560 body = "CAPSTONE"
561 elif self.id == "10":
562 body = "Sun"
563 elif self.id == "500":
564 body = "Earth"
565 else:
566 body = "other"
567

568 if self.location == "500@301":
569 center = "Moon-centered"
570 elif self.location == "500@10":
571 center = "Sun-centered"
572 elif self.location == "500":
573 center = "Earth-centered"
574 elif self.location == "500@-1176":
575 center = "CAPSTONE-centered"
576

577 np.savetxt(
578 "/Users/pieter/Library/Mobile␣Documents/com~apple~CloudDocs/Thesis/Research␣Phase

175

/lunar_CubeSat/ephemeris_data/keplerian_elements_"
579 + body
580 + "_"
581 + center
582 + "_"
583 + self.t0
584 + "_to_"
585 + self.t1
586 + "_"
587 + str(self.time_step)
588 + ".dat",
589 keplerian,
590)
591

592 return keplerian
593

594 def convert_data(self, data_file, control_time_step):
595

596 original_data = np.loadtxt(data_file)
597

598 # Determine time step from original data
599 original_time_step = round(
600 (original_data[1, 0] - original_data[0, 0]) * 24 * 3600
601)
602

603 # Convert first original data column to seconds since epoch
604 for i in range(len(original_data[:, 0])):
605 original_data[i, 0] = i * original_time_step
606 original_data[i, 1:4] *= Constants.AU
607 original_data[i, 4:] *= Constants.AU / 24 / 3600
608

609 # From this point onwards, data becomes converted to the desired number of time steps
for the control algorithm

610 min_number_intervals = int(original_time_step / control_time_step)
611

612 converted_data = np.repeat(original_data, min_number_intervals , axis=0)
613

614 time_list = []
615

616 for j in range(len(original_data[:, 0])):
617 for k in range(min_number_intervals):
618 new_time = (
619 converted_data[j * min_number_intervals , 0] + control_time_step * k
620)
621 time_list.append(new_time)
622

623 converted_data[:, 0] = time_list
624

625 # Save using adjusted naming in different repository
626 base_name = os.path.basename(data_file)
627 np.savetxt(
628 "/Users/pieter/Library/Mobile␣Documents/com~apple~CloudDocs/Thesis/Research␣Phase

/lunar_CubeSat/converted_ephemeris_data/"
629 + "converted_"
630 + str(control_time_step)
631 + "s_"
632 + base_name,
633 converted_data,
634)
635

636 def convert_data_interpolated(self, data_file, control_time_step):
637

638 original_data = np.loadtxt(data_file)
639

640 # Determine time step from original data
641 original_time_step = round(
642 (original_data[1, 0] - original_data[0, 0]) * 24 * 3600
643)
644

645 # Convert first original data column to seconds since epoch
646 for i in range(len(original_data[:, 0])):

176

647 original_data[i, 0] = i * original_time_step
648 original_data[i, 1:4] *= Constants.AU
649 original_data[i, 4:] *= Constants.AU / 24 / 3600
650

651 # Prepare arrays for the new data set
652 new_time_steps = np.arange(original_data[0, 0], original_data[-1, 0] +

control_time_step, control_time_step)
653 converted_data = np.zeros((len(new_time_steps), original_data.shape[1]))
654

655 # Interpolate each column
656 for col in range(1, original_data.shape[1]): # Skip time column for interpolation
657 converted_data[:, col] = np.interp(new_time_steps, original_data[:, 0],

original_data[:, col])
658

659 # Fill in the new time column
660 converted_data[:, 0] = new_time_steps
661

662 # Save using adjusted naming in different repository
663 base_name = os.path.basename(data_file)
664 np.savetxt(
665 "/Users/pieter/Library/Mobile␣Documents/com~apple~CloudDocs/Thesis/Research␣Phase

/lunar_CubeSat/converted_ephemeris_data/"
666 + "converted_"
667 + str(control_time_step)
668 + "s_"
669 + base_name,
670 converted_data,
671)
672

673

674 class PID:
675 """
676 Functions:
677 """
678

679 def __init__(
680 self,
681 inertia_matrix,
682):
683 """
684 Initialize the PID controller with the required inertia matrix.
685

686 Args:
687 inertia_matrix (array): A numpy array representing the inertia matrix of the

system.
688 """
689 self.I = inertia_matrix
690 self.integral_term = np.zeros(3) # Integral term is initiated at zero
691

692 def quaternion_error(self, quaternion_vector, quaternion_ref_vector):
693 """
694 Compute the error between two quaternions.
695 Each quaternion is represented as an array np.array([qw, qx, qy, qz]).
696

697 Args:
698 quaternion_vector (array): The actual quaternion vector as np.array([qw, qx, qy, qz])
699 quaternion_ref_vector (array): The reference quaternion vector as np.array([qw_ref,

qx_ref, qy_ref, qz_ref]).
700

701 Returns:
702 array: quaternion error vector
703 """
704

705 qrw, qr1, qr2, qr3 = quaternion_ref_vector
706 qw, q1, q2, q3 = quaternion_vector
707

708 adj_quaternion_vector = np.array([-q1, -q2, -q3, qw])
709 adj_matrix = np.array([[qrw, qr3, -qr2, qr1], [-qr3, qrw, qr1, qr2], [qr2, -qr1, qrw,

qr3], [-qr1, -qr2, qr3, qrw]])
710

711 qe1, qe2, qe3, qew = adj_matrix @ adj_quaternion_vector

177

712

713 return np.array([qew, qe1, qe2, qe3])
714

715 def derivative_omega(self, omega_vector, T_d, T_c):
716 """
717 Calculate the derivative of the angular velocity vector (omega_dot) based on the

current state and external torques.
718

719 Args:
720 T_d (array): Disturbance torque vector.
721 T_c (array): Control torque vector.
722 omega_vector (array): Current angular velocity vector.
723

724 Returns:
725 array: The derivative of the angular velocity (angular acceleration).
726 """
727

728 omega_dot_vector = np.linalg.inv(self.I) @ (
729 T_c + T_d - np.cross(omega_vector, (self.I @ omega_vector))
730)
731

732 return omega_dot_vector
733

734 def derivative_omega_reactionwheel(self, omega_vector, T_d, T_c, h_rw):
735 """
736 Specifically for reaction wheel analysis; includes h_rw term in the equations of

motion
737 """
738

739 omega_dot_vector = np.linalg.inv(self.I) @ (
740 T_c + T_d - np.cross(omega_vector, (self.I @ omega_vector + h_rw))
741)
742

743 return omega_dot_vector
744

745

746 def derivative_quaternion(self, quaternion_vector, omega_vector):
747 """
748 Compute the time derivative of a quaternion based on the current angular velocity.
749

750 Args:
751 quaternion_vector (array): The current quaternion vector as np.array([qw, qx, qy,

qz]).
752 omega_vector (array): The angular velocity vector.
753

754 Returns:
755 array: The time derivative of the quaternion.
756 """
757

758 # Again, order qw qx qy qz
759 omega_q_vector = np.append(0, omega_vector)
760 rot = Rotation()
761

762 q_dot = 0.5 * rot.quaternion_product(quaternion_vector, omega_q_vector)
763

764 return q_dot
765

766 def derivative_quaternion_error(
767 self, quaternion_vector, quaternion_ref_vector , omega_vector
768): # See notes in notebook
769 """
770 Calculate the derivative of the quaternion error between the reference and current

quaternion.
771

772 Args:
773 quaternion_vector (array): The current quaternion vector as np.array([qw, qx, qy,

qz]).
774 quaternion_ref_vector (array): The reference quaternion vector as np.array([qw,

qx, qy, qz]).
775 omega_vector (array): The angular velocity vector.
776

178

777 Returns:
778 array: The derivative of the quaternion error.
779 """
780

781 qcw, qcx, qcy, qcz = quaternion_ref_vector
782 q_dot = self.derivative_quaternion(quaternion_vector, omega_vector)
783

784 ref_matrix = np.array(
785 [
786 [qcw, qcx, qcy, qcz],
787 [qcx, -qcw, qcz, -qcy],
788 [qcy, -qcz, -qcw, qcx],
789 [qcz, qcy, -qcx, -qcw],
790]
791)
792

793 return ref_matrix @ q_dot
794

795 def control_torque(
796 self, quaternion_vector, quaternion_ref_vector , omega_vector, k_p, k_i, k_d, k_s, dt
797):
798 """
799 Compute the control torque based on PID control laws using the quaternion error and

its derivative.
800

801 Args:
802 quaternion_vector (array): The current quaternion vector.
803 quaternion_ref_vector (array): The reference quaternion vector.
804 omega_vector (array): The angular velocity vector.
805 k_p (array): Proportional gain coefficients (k_p_x, k_p_y, k_p_z).
806 k_i (array): Integral gain coefficients (k_i_x, k_i_y, k_i_z).
807 k_d (array): Derivative gain coefficients (k_d_x, k_d_y, k_d_z).
808 dt (float): Time step for the integral calculation.
809

810 Returns:
811 array: Control torque vector [T_c_x, T_c_y, T_c_z].
812 """
813 qew, qex, qey, qez = self.quaternion_error(
814 quaternion_vector, quaternion_ref_vector
815) # quaternion error components
816

817 omega_x, omega_y, omega_z = omega_vector
818

819 k_p_1, k_p_2, k_p_3 = k_p # proportional gain
820 k_i_1, k_i_2, k_i_3 = k_i # integral gain
821 k_d_1, k_d_2, k_d_3 = k_d # derivative gain
822 k_s_1, k_s_2, k_s_3 = k_s # speed gain
823

824

825 int_x, int_y, int_z = self.integral_term
826

827 # control torque in the x, y and z directions
828 T_c_x = k_s_1 * (
829 k_p_1 * qex + k_i_1 * int_x - k_d_1 * (omega_x)
830)
831 T_c_y = k_s_2 * (k_p_2 * qey + k_i_2 * int_y - k_d_2 * (omega_y))
832 T_c_z = k_s_3 * (k_p_3 * qez + k_i_3 * int_z - k_d_3 * (omega_z))
833

834 self.integral_term += np.array([qex, qey, qez]) * dt
835

836 return np.array([T_c_x, T_c_y, T_c_z])
837

838 def rk4_integrator(self, func, y, dt, *args):
839 """
840 General RK4 integrator.
841 Args:
842 func: The function to calculate derivatives, signature func(y, *args)
843 y: Current state variable (np.array)
844 dt: Time step (float)
845 *args: Additional arguments required by `func`
846 Returns:

179

847 np.array: Updated state after dt
848 """
849 k1 = func(y, *args) * dt
850 k2 = func(y + 0.5 * k1, *args) * dt
851 k3 = func(y + 0.5 * k2, *args) * dt
852 k4 = func(y + k3, *args) * dt
853 return y + (k1 + 2 * k2 + 2 * k3 + k4) / 6
854

855 def euler_integrator(self, func, y, dt, *args):
856 """
857 Basic Euler integrator.
858 Args:
859 func: The function to calculate derivatives, with signature func(y, *args)
860 y: Current state variable (np.array)
861 dt: Time step (float)
862 *args: Additional arguments required by `func`
863 Returns:
864 np.array: Updated state after dt
865 """
866 dy = func(y, *args) # Calculate the derivative
867 return y + dy * dt # Update state
868

869 def reference_omega(self, q_ref, omega_vector):
870 q_ref_dot = self.derivative_quaternion(q_ref, omega_vector)
871 q_ref_dot_adj = np.array([q_ref_dot[1], q_ref_dot[2], q_ref_dot[3], q_ref_dot[0]])
872

873 mat = np.array([[q_ref[0], q_ref[3], -q_ref[2], -q_ref[0]], [q_ref[0], q_ref[3], -
q_ref[2], -q_ref[0]], [q_ref[0], q_ref[3], -q_ref[2], -q_ref[0]]])

874

875 return 2 * mat @ q_ref_dot_adj
876

877 def reference_quaternion(self, position_SC_Moon, quaternion_vector):
878 """
879 This function takes the spacecraft position vector with respect to the Moon and the

current spacecraft
880 attitude defined in quaternions to calculate the reference quaternion at one instance

of time. The
881 reference is defined to have the upper panel (y+ direction) of the LUMIO spacecraft

pointed towards
882 the Moon and this should at all times be adhered to. The output is a vector [qw, qx,

qy, qz] with the
883 reference quaternion vectors to be used within the PID algorithm for error

calculation.
884 """
885

886 qw, qx, qy, qz = quaternion_vector
887

888 rot = Rotation()
889 direction_SC_Moon = (
890 -position_SC_Moon
891) # Define the direction vector from the spacecraft to the Moon, inertial (Moon-

centered) frame
892 R = rot.quaternion_321_rotation(
893 qw, qx, qy, qz
894) # Rotation matrix for conversion from inertial to body frame
895 direction_SC_Moon_body = np.dot(
896 R, direction_SC_Moon
897) # Convert to the body frame
898 panel_body = Constants.LUMIO_loc_pp # Retrieve desired panel CoM location
899

900 n_current = panel_body / np.linalg.norm(
901 panel_body
902) # compare current orientation in the body frame to desired orientation in the body

frame
903 n_desired = direction_SC_Moon_body / np.linalg.norm(direction_SC_Moon_body)
904 q_rot = np.array(
905 [
906 np.sqrt(np.linalg.norm(n_current) ** 2 * np.linalg.norm(n_desired) ** 2)
907 + np.dot(n_current, n_desired)
908]
909 + list(np.cross(n_current, n_desired))

180

910) # Rotation quaternion so that the panel is oriented towards the Moon
911 q_rot /= np.linalg.norm(q_rot) # Normalize the quaternion
912

913 # Calculate the reference quaternion to adhere to, combination of current quaternion
(rotation representation) and newly calculated quaternion q_rot

914 return rot.quaternion_product(q_rot, quaternion_vector)
915

916

917 def reference_quaternion_paper(self, position_SC_Moon, position_Sun_Moon):
918 """
919 Based on the paper "ATTITUDE CONTROL FOR THE LUMIO CUBESAT IN DEEP SPACE", outputting
920 the desired attitude for the LUMIO spacecraft based on power maximisation. It can be
921 shown that this reference frame maximizes power generation by allowing the solar

arrays
922 to be always normal to the Sun vector.
923

924 ADJUSTMENT: in this case, considering the usage of a different reference frame
925 , the negative y-plane should always be pointed towards the Moon,
926 """
927 rot = Rotation()
928

929 Sun_pointing_vector = (position_Sun_Moon - position_SC_Moon) / np.linalg.norm(
position_Sun_Moon - position_SC_Moon)

930 Moon_pointing_vector = - position_SC_Moon / np.linalg.norm(position_SC_Moon)
931

932 x1 = Moon_pointing_vector
933 x2 = np.cross(Sun_pointing_vector, x1) / np.linalg.norm(np.cross(Sun_pointing_vector ,

x1))
934 x3 = np.cross(x1, x2) / np.linalg.norm(np.cross(x1, x2))
935

936 A_d = np.column_stack((x2, -x1, x3))
937

938 return rot.DCM_to_quaternion(A_d)
939

940

941 class Visualization:
942 """
943 Visualization class for result from attitude control.
944 """
945

946 def __init__(self, time_array):
947 self.t = time_array
948

949 def extract_dates_from_filename(self, filename):
950 # Define the regular expression pattern to match the dates
951 pattern = r'_(\d{4}-\d{2}-\d{2}␣\d{2}:\d{2})_to_(\d{4}-\d{2}-\d{2}␣\d{2}:\d{2})_'
952

953 # Search the pattern in the filename
954 match = re.search(pattern, filename)
955

956 if match:
957 # Extract the start and end date strings
958 start_date_str = match.group(1)
959 end_date_str = match.group(2)
960

961 # Convert the strings to datetime objects
962 start_date = datetime.strptime(start_date_str, '%Y-%m-%d␣%H:%M')
963 end_date = datetime.strptime(end_date_str, '%Y-%m-%d␣%H:%M')
964

965 return start_date, end_date
966 else:
967 raise ValueError("The␣filename␣does␣not␣match␣the␣expected␣pattern")
968

969 def plot_trajectories(self, *data_files):
970 plt.style.use('fast')
971 fig = plt.figure(figsize=(10, 10)) # Set the figure size to 10x10
972 ax = fig.add_subplot(111, projection="3d")
973

974 # Define reference frames with adjusted Moon radius for a smaller sphere
975 reference_frames = {
976 "Sun": Constants.R_Sun,

181

977 "Moon": Constants.R_Moon * 0.5, # Reduced radius for Moon
978 "Earth": Constants.R_Earth,
979 "CAPSTONE": 0.2,
980 } # Radii in meters
981 used_centers = set()
982

983 first_file = True
984 all_epochs = None
985

986 for data_file in data_files:
987 # Extracting information from file name
988 parts = data_file.split("_")
989 body_name = parts[6]
990 center_part = parts[7]
991 center = center_part.split("-")[0]
992

993 print(center)
994

995 # Check if center has been used consistently
996 if used_centers and center not in used_centers:
997 raise ValueError(
998 f"Inconsistent␣reference␣systems:␣{used_centers.pop()}␣vs␣{center}.␣All␣

data␣must␣be␣in␣the␣same␣reference␣frame."
999)
1000 used_centers.add(center)
1001

1002 # Reading data
1003 data = np.loadtxt(data_file)
1004 epochs, x, y, z, vx, vy, vz = data.T
1005 x, y, z = x, y, z # AU to meters
1006

1007 # Plotting trajectories
1008 ax.plot(x, y, z, label=body_name)
1009

1010 # Check epochs
1011 if all_epochs is None:
1012 all_epochs = epochs
1013 elif not np.array_equal(all_epochs, epochs):
1014 raise ValueError(
1015 "Epochs␣do␣not␣match␣across␣data␣files.␣Ensure␣all␣input␣files␣cover␣the␣

same␣time␣periods."
1016)
1017

1018 # Centering reference body
1019 if center in reference_frames:
1020 # Plotting central body as a sphere
1021 radius = reference_frames[center]
1022 u, v = np.mgrid[0:2 * np.pi:100j, 0:np.pi:50j]
1023 sphere_x = radius * np.cos(u) * np.sin(v)
1024 sphere_y = radius * np.sin(u) * np.sin(v)
1025 sphere_z = radius * np.cos(v)
1026 ax.plot_wireframe(sphere_x, sphere_y, sphere_z, color="grey", alpha=0.5)
1027 ax.text(0, 0, -5 * radius, center, color="black", fontsize=16, ha="center")
1028

1029 # Setting limits for equal aspect ratio
1030 max_radius = max(
1031 abs(ax.get_xlim()[0]), abs(ax.get_ylim()[0]), abs(ax.get_zlim()[0])
1032)
1033 ax.set_xlim([-max_radius, max_radius])
1034 ax.set_ylim([-max_radius, max_radius])
1035 ax.set_zlim([-max_radius, max_radius])
1036

1037 # Add labels, title, and legend with adjusted font sizes
1038 ax.set_xlabel("X␣(m)", fontsize=16)
1039 ax.set_ylabel("Y␣(m)", fontsize=16)
1040 ax.set_zlabel("Z␣(m)", fontsize=16)
1041 ax.legend(fontsize=16)
1042

1043 # Adjust tick parameters for axis font sizes
1044 ax.tick_params(axis='both', which='major', labelsize=16)
1045

182

1046 plt.show()
1047

1048

1049 # # Save plot
1050 # today = date.today()
1051 # plt.savefig("/Users/pieter/Library/Mobile Documents/com~apple~CloudDocs/Thesis/

Research Phase/lunar_CubeSat/figures/trajectory_rundate_" + str(today) + "
length" + str(round(float(len(self.t)) / 60 / 60 / 24, 3)) + "_days_timestep_"
+ str(self.t[1] - self.t[0]) + "_seconds.png")

1052

1053 # def euler_versus_time(self, quaternion_ref_array , quaternion_array):
1054

1055 # """
1056 # This function consists of two distinct parts: one shows the actual Euler angles and
1057 # the commanded both plotted in the same graph. The next shows the offset of the

Euler
1058 # angles over time, compared to the maximum allowed offset of 0.1degrees during the
1059 # Science & Navigation phase.
1060 # """
1061

1062 # rot = Rotation()
1063

1064 # euler_ref_vis = np.empty((3, len(self.t)))
1065 # euler_vis = np.empty((3, len(self.t)))
1066

1067 # for index in range(len(self.t)):
1068

1069 # # Extract quaternion value for each time step
1070 # qwr, qxr, qyr, qzr = quaternion_ref_array[:, index]
1071 # qw, qx, qy, qz = quaternion_array[:, index]
1072

1073 # # Append do visualisation array
1074 # euler_ref_vis[:, index] = np.rad2deg(rot.quaternion_to_euler(qwr, qxr, qyr, qzr

))
1075 # euler_vis[:, index] = np.rad2deg(rot.quaternion_to_euler(qw, qx, qy, qz))
1076

1077 # plt.figure(1)
1078 # plt.figure(figsize=(15, 5))
1079 # plt.rcParams.update({"font.size": 16})
1080 # plt.plot(
1081 # self.t,
1082 # euler_ref_vis[0, :],
1083 # color="red",
1084 # linestyle="dashed",
1085 # label="Commanded",
1086 #)
1087

1088 # plt.plot(self.t, euler_vis[0, :], label="Actual")
1089 # plt.xlabel("Time since epoch [s]")
1090 # plt.ylabel("ϕ [deg]")
1091 # plt.title("Roll angle commanded and actual signal versus time")
1092 # plt.legend()
1093 # plt.show()
1094

1095 # plt.figure(2)
1096 # plt.figure(figsize=(15, 5))
1097 # plt.rcParams.update({"font.size": 16})
1098 # plt.plot(
1099 # self.t,
1100 # euler_ref_vis[1, :],
1101 # color="red",
1102 # linestyle="dashed",
1103 # label="Commanded",
1104 #)
1105

1106 # plt.plot(self.t, euler_vis[1, :], label="Actual")
1107 # plt.xlabel("Time since epoch [s]")
1108 # plt.ylabel("$\\theta$ [deg]")
1109 # plt.title("Pitch angle commanded and actual signal versus time")
1110 # plt.legend()
1111 # plt.show()

183

1112

1113 # plt.figure(3)
1114 # plt.figure(figsize=(15, 5))
1115 # plt.rcParams.update({"font.size": 16})
1116 # plt.plot(
1117 # self.t,
1118 # euler_ref_vis[2, :],
1119 # color="red",
1120 # linestyle="dashed",
1121 # label="Commanded",
1122 #)
1123

1124 # plt.plot(self.t, euler_vis[2, :], label="Actual")
1125 # plt.xlabel("Time since epoch [s]")
1126 # plt.ylabel("ψ [deg]")
1127 # plt.title("Yaw angle commanded and actual signal versus time")
1128 # plt.legend()
1129 # plt.show()
1130

1131 # # Offset
1132

1133 # euler_offset_vis = np.abs(euler_vis - euler_ref_vis)
1134 # acc_req = np.full(len(self.t), 0.1)
1135

1136 # plt.figure(4)
1137 # plt.figure(figsize=(15,5))
1138 # plt.rcParams.update({"font.size": 16})
1139 # plt.plot(
1140 # self.t,
1141 # acc_req,
1142 # color="red",
1143 # linestyle="dashed",
1144 # label="ADCS requirement",
1145 #)
1146 # plt.plot(self.t, euler_offset_vis[0, :], label="Actual offset")
1147 # plt.xlabel("Time since epoch [s]")
1148 # plt.ylabel("$\Delta$$\phi$ [deg]")
1149 # plt.title("Roll angle offset versus time")
1150 # plt.legend()
1151 # plt.show()
1152

1153 # plt.figure(5)
1154 # plt.figure(figsize=(15,5))
1155 # plt.rcParams.update({"font.size": 16})
1156 # plt.plot(
1157 # self.t,
1158 # acc_req,
1159 # color="red",
1160 # linestyle="dashed",
1161 # label="ADCS requirement",
1162 #)
1163 # plt.plot(self.t, euler_offset_vis[1, :], label="Actual offset")
1164 # plt.xlabel("Time since epoch [s]")
1165 # plt.ylabel("$\Delta$$\\theta$ [deg]")
1166 # plt.title("Pitch angle offset versus time")
1167 # plt.legend()
1168 # plt.show()
1169

1170 # plt.figure(6)
1171 # plt.figure(figsize=(15,5))
1172 # plt.rcParams.update({"font.size": 16})
1173 # plt.plot(
1174 # self.t,
1175 # acc_req,
1176 # color="red",
1177 # linestyle="dashed",
1178 # label="ADCS requirement",
1179 #)
1180 # plt.plot(self.t, euler_offset_vis[2, :], label="Actual offset")
1181 # plt.xlabel("Time since epoch [s]")
1182 # plt.ylabel("$\Delta$$\psi$ [deg]")

184

1183 # plt.title("Yaw angle offset versus time")
1184 # plt.legend()
1185 # plt.show()
1186

1187 # plt.figure(8)
1188 # plt.figure(figsize=(15, 5))
1189 # plt.rcParams.update({"font.size": 16})
1190 # plt.plot(self.t, acc_req, color="red", linestyle="dashed", label="ADCS requirement

")
1191 # plt.plot(self.t, euler_offset_vis[0, :], label="Roll offset ($\Delta\phi$)")
1192 # plt.plot(self.t, euler_offset_vis[1, :], label="Pitch offset ($\Delta\\theta$)")
1193 # plt.plot(self.t, euler_offset_vis[2, :], label="Yaw offset ($\Delta\psi$)")
1194 # plt.xlabel("Time since epoch [s]")
1195 # plt.ylabel("Angle Offset [deg]")
1196 # plt.title("Angle Offset versus Time for Roll, Pitch, and Yaw")
1197 # plt.legend()
1198 # plt.show()
1199

1200 # # Accuracy
1201 # plt.figure(7)
1202 # plt.figure(figsize=(15,5))
1203 # plt.rcParams.update({"font.size": 16})
1204 # plt.plot(
1205 # self.t,
1206 # np.full(len(self.t), 1),
1207 # color="red",
1208 # linestyle="dashed",
1209 # label="ADCS requirement",
1210 #)
1211 # plt.plot(self.t, acc_req / euler_offset_vis[0, :], label="ϕ_{max} / $\phi_{err

}$")
1212 # plt.plot(self.t, acc_req / euler_offset_vis[1, :], label="$\\theta_{max}$ / $\\

theta_{err}$")
1213 # plt.plot(self.t, acc_req / euler_offset_vis[2, :], label="$\\psi_{max}$ / $\\psi_{

err}$")
1214 # plt.ylim(0,10)
1215 # plt.xlabel("Time since epoch [s]")
1216 # plt.ylabel("Accuracy [-]")
1217 # plt.title("Accuracy of all Euler angles over time")
1218 # plt.legend()
1219 # plt.show()
1220

1221 def quaternion_versus_time(self, quaternion_ref_array , quaternion_array):
1222

1223 # Setup for quaternion error array
1224

1225 pd = PID(Constants.inertia_matrix)
1226 # Setup for quaternion error array
1227 qe = np.zeros_like(quaternion_array) # Initialize error quaternion array with the

same shape as quaternion_array
1228

1229 # Iterate over each time step to compute the error quaternion
1230 for i in range(quaternion_array.shape[1]): # Loop over the time array's length
1231 qe[:, i] = pd.quaternion_error(quaternion_array[:, i], quaternion_ref_array[:, i

]) # Compute quaternion error for each time step
1232 qe[0,i] = quaternion_array[0,i] - quaternion_ref_array[0,i]
1233

1234 plt.figure(1)
1235 plt.style.use('seaborn-v0_8')
1236 plt.figure(figsize=(5, 5))
1237 plt.plot(
1238 self.t,
1239 quaternion_ref_array[0, :],
1240 color="red",
1241 linestyle="dashed",
1242 label="Commanded",
1243)
1244 plt.plot(self.t, quaternion_array[0, :], label="Actual")
1245 plt.xlabel("Time␣[s]", fontsize = 16)
1246 plt.ylabel("q_w␣[-]", fontsize = 16)
1247 plt.xlim(left=0)

185

1248 plt.tick_params(axis='both', which='major', labelsize=16)
1249 plt.legend(fontsize=16)
1250 # Increase the size of the scientific notation offset
1251 plt.show()
1252

1253 # Plot for quaternion q1
1254 plt.figure(2)
1255 plt.figure(figsize=(5, 5))
1256 plt.rcParams.update({"font.size": 16})
1257 plt.plot(
1258 self.t,
1259 quaternion_ref_array[1, :],
1260 color="red",
1261 linestyle="dashed",
1262 label="Commanded",
1263)
1264 plt.plot(self.t, quaternion_array[1, :], label="Actual")
1265 plt.xlabel("Time␣[s]", fontsize=16)
1266 plt.ylabel("q_1␣[-]", fontsize=16)
1267 plt.xlim(left=0)
1268 plt.tick_params(axis='both', which='major', labelsize=16)
1269 plt.legend(fontsize=16) # Legend font size
1270 plt.show()
1271

1272 # Plot for quaternion q2
1273 plt.figure(3)
1274 plt.figure(figsize=(5, 5))
1275 plt.rcParams.update({"font.size": 16})
1276 plt.plot(
1277 self.t,
1278 quaternion_ref_array[2, :],
1279 color="red",
1280 linestyle="dashed",
1281 label="Commanded",
1282)
1283 plt.plot(self.t, quaternion_array[2, :], label="Actual")
1284 plt.xlabel("Time␣[s]", fontsize=16)
1285 plt.ylabel("q_2␣[-]", fontsize=16)
1286 plt.xlim(left=0)
1287 plt.tick_params(axis='both', which='major', labelsize=16)
1288 plt.legend(fontsize=16) # Legend font size
1289 plt.show()
1290

1291 # Plot for quaternion q3
1292 plt.figure(4)
1293 plt.figure(figsize=(5, 5))
1294 plt.rcParams.update({"font.size": 16})
1295 plt.plot(
1296 self.t,
1297 quaternion_ref_array[3, :],
1298 color="red",
1299 linestyle="dashed",
1300 label="Commanded",
1301)
1302 plt.plot(self.t, quaternion_array[3, :], label="Actual")
1303 plt.xlabel("Time␣[s]", fontsize=16)
1304 plt.ylabel("q_3␣[-]", fontsize=16)
1305 plt.xlim(left=0)
1306 plt.tick_params(axis='both', which='major', labelsize=16)
1307 plt.legend(fontsize=16) # Legend font size
1308 plt.show()
1309

1310 # Plot for quaternion error components
1311 plt.figure(figsize=(5, 5))
1312 # Plot all components of qe
1313 plt.plot(self.t, qe[0, :], label="$q_{e,w}$", linestyle="solid", color="blue")
1314 plt.plot(self.t, qe[1, :], label="$q_{e,1}$", linestyle="dashed", color="red")
1315 plt.plot(self.t, qe[2, :], label="$q_{e,2}$", linestyle="dotted", color="green")
1316 plt.plot(self.t, qe[3, :], label="$q_{e,3}$", linestyle="dashdot", color="orange")
1317 # Axis labels
1318 plt.xlabel("Time␣[s]", fontsize=16)

186

1319 plt.ylabel("q_{e}␣[-]", fontsize=16)
1320 # Set x-axis limits
1321 plt.xlim(left=0)
1322 # Customize ticks
1323 plt.tick_params(axis='both', which='major', labelsize=16)
1324 ax = plt.gca() # Get the current axis
1325 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1326 # Add legend
1327 plt.legend(fontsize=16)
1328 # Show the plot
1329 plt.show()
1330

1331 # Plot for quaternion relative error components (in percentages)
1332 plt.figure(figsize=(15, 5))
1333

1334 # Compute relative error in percentages
1335 relative_error_0 = np.abs(qe[0, :] / quaternion_array[0, :]) * 100
1336 relative_error_1 = np.abs(qe[1, :] / quaternion_array[1, :]) * 100
1337 relative_error_2 = np.abs(qe[2, :] / quaternion_array[2, :]) * 100
1338 relative_error_3 = np.abs(qe[3, :] / quaternion_array[3, :]) * 100
1339

1340

1341 # Plot all relative error components
1342 plt.plot(self.t/ (24*3600), relative_error_0, label="$q_{e,w}␣/␣q_{w}$␣(%)",

linestyle="solid", color="blue")
1343 plt.plot(self.t/ (24*3600), relative_error_1, label="$q_{e,1}␣/␣q_{1}$␣(%)",

linestyle="dashed", color="red")
1344 plt.plot(self.t/ (24*3600), relative_error_2, label="$q_{e,2}␣/␣q_{2}$␣(%)",

linestyle="dotted", color="green")
1345 plt.plot(self.t/ (24*3600), relative_error_3, label="$q_{e,3}␣/␣q_{3}$␣(%)",

linestyle="dashdot", color="orange")
1346

1347 # Axis labels
1348 plt.xlabel("Time␣[days]", fontsize=16)
1349 plt.ylabel("Relative␣Error␣[%]", fontsize=16)
1350 plt.yscale('symlog', linthresh=1e-8)
1351 # Set x-axis limits
1352 plt.xlim(left=0)
1353

1354 # Customize ticks
1355 plt.tick_params(axis='both', which='major', labelsize=16)
1356

1357 # Add legend
1358 plt.legend(fontsize=16)
1359

1360 # Show the plot
1361 plt.show()
1362

1363

1364

1365 def disturbance_torque_versus_time(self, T_d, T_GG, T_SRP):
1366

1367 # Apply seaborn style
1368 plt.style.use('seaborn-v0_8')
1369

1370 # Disturbance torques
1371 plt.figure(figsize=(15, 5))
1372 plt.plot(self.t / (24*3600), T_d[0, :], label="$T_{d,x}$", linestyle="dashed", color=

"red")
1373 plt.plot(self.t / (24*3600), T_d[1, :], label="$T_{d,y}$", linestyle="dotted", color=

"blue")
1374 plt.plot(self.t / (24*3600), T_d[2, :], label="$T_{d,z}$", linestyle="solid", color="

green")
1375 plt.xlabel("Time␣[days]", fontsize=16)
1376 plt.ylabel("T_d␣[Nm]", fontsize=16)
1377 plt.xlim(left = 0)
1378 plt.tick_params(axis='both', which='major', labelsize=16)
1379 ax = plt.gca() # Get the current axis
1380 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1381 plt.legend(fontsize=16)
1382 plt.show()

187

1383

1384 # Gravity gradient torques
1385 plt.figure(figsize=(15, 5))
1386 plt.plot(self.t / (24*3600), T_GG[0, :], label="$T_{GG,x}$", linestyle="dashed",

color="red")
1387 plt.plot(self.t / (24*3600), T_GG[1, :], label="$T_{GG,y}$", linestyle="dotted",

color="blue")
1388 plt.plot(self.t / (24*3600), T_GG[2, :], label="$T_{GG,z}$", linestyle="solid", color

="green")
1389 plt.xlabel("Time␣[days]", fontsize=16)
1390 plt.ylabel("T_{GG}␣[Nm]", fontsize=16)
1391 plt.xlim(left = 0)
1392 plt.tick_params(axis='both', which='major', labelsize=16)
1393 ax = plt.gca() # Get the current axis
1394 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1395 plt.legend(fontsize=16)
1396 plt.show()
1397

1398 # Solar radiation pressure torques
1399 plt.figure(figsize=(15, 5))
1400 plt.plot(self.t / (24*3600), T_SRP[0, :], label="$T_{SRP,x}$", linestyle="dashed",

color="red")
1401 plt.plot(self.t / (24*3600), T_SRP[1, :], label="$T_{SRP,y}$", linestyle="dotted",

color="blue")
1402 plt.plot(self.t / (24*3600), T_SRP[2, :], label="$T_{SRP,z}$", linestyle="solid",

color="green")
1403 plt.xlabel("Time␣[days]", fontsize=16)
1404 plt.ylabel("T_{SRP}␣[Nm]", fontsize=16)
1405 plt.xlim(left = 0)
1406 plt.tick_params(axis='both', which='major', labelsize=16)
1407 ax = plt.gca() # Get the current axis
1408 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1409 plt.legend(fontsize=16)
1410 plt.show()
1411

1412 def control_torque_versus_time(self, T_c):
1413

1414 # Apply seaborn style
1415 plt.style.use('seaborn-v0_8')
1416

1417 # Create a single plot with all components of control torque
1418 plt.figure(figsize=(15, 5))
1419 plt.plot(self.t, T_c[0, :], label="$T_{c,x}$", linestyle="dashed", color="red")
1420 plt.plot(self.t, T_c[1, :], label="$T_{c,y}$", linestyle="dotted", color="blue")
1421 plt.plot(self.t, T_c[2, :], label="$T_{c,z}$", linestyle="solid", color="green")
1422 plt.xlabel("Time␣[s]", fontsize=16)
1423 plt.ylabel("T_c␣[Nm]", fontsize=16)
1424 plt.xlim(left = 0)
1425 plt.tick_params(axis='both', which='major', labelsize=16)
1426 ax = plt.gca() # Get the current axis
1427 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1428 plt.legend(fontsize=16) # Add labels for x, y, z components
1429 plt.show()
1430

1431 def RW_torque_per_wheel(self, torque_matrix):
1432 """
1433 Visualizes the torque values for each reaction wheel and their total torque.
1434

1435 Args:
1436 torque_matrix (numpy array): 4xlen(self.t) array with torque values for the

reaction wheels.
1437

1438 """
1439 # Apply seaborn style
1440 plt.style.use('seaborn-v0_8')
1441 plt.rcParams.update({"font.size": 16})
1442

1443 # Plot torque for individual reaction wheels and total torque
1444 plt.figure(figsize=(15, 5))
1445 for i in range(4): # Loop through the 4 reaction wheels
1446 plt.plot(self.t / (24 * 3600), torque_matrix[i, :], label=f"RW␣{i␣+␣1}")

188

1447

1448 # Labels and settings
1449 plt.xlabel("Time␣[days]", fontsize=16)
1450 plt.ylabel("T_{rw}␣[Nm]", fontsize=16)
1451 # plt.xlim(left=0)
1452 ax = plt.gca() # Get the current axis
1453 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1454 plt.tick_params(axis='both', which='major', labelsize=16)
1455 plt.legend(fontsize=16, loc='upper␣left')
1456 plt.show()
1457

1458

1459 def RW_PE_versus_time(self, PE, select):
1460 # Apply seaborn style
1461 plt.style.use('seaborn-v0_8')
1462 plt.rcParams.update({"font.size": 16})
1463

1464 # Define labels based on selection
1465 if select == "P":
1466 y_label = "P_{rw}␣[W]"
1467 elif select == "E":
1468 y_label = "E_{rw}␣[J]"
1469 else:
1470 raise ValueError("Invalid␣'select'␣argument.␣Use␣'P'␣for␣power␣or␣'E'␣for␣energy.

")
1471

1472 # Plot power/energy for individual reaction wheels and total
1473 plt.figure(figsize=(15, 5))
1474 for i in range(4): # Loop through the 4 reaction wheels
1475 plt.plot(self.t / (24 * 3600), PE[i, :], label=f"RW␣{i␣+␣1}")
1476

1477 # Plot total power/energy
1478 total_PE = np.sum(PE, axis=0)
1479 plt.plot(self.t / (24 * 3600), total_PE, label="Total", linestyle="dashed", color="

black", linewidth=2)
1480

1481 # Labels and settings
1482 plt.xlabel("Time␣[days]", fontsize=16)
1483 plt.ylabel(y_label, fontsize=16)
1484 # plt.xlim(left=0)
1485 plt.ylim(bottom=0)
1486 plt.tick_params(axis='both', which='major', labelsize=16)
1487 plt.legend(fontsize=16, loc='upper␣left')
1488 plt.show()
1489

1490 def thruster_PE_vs_time(self, PE, select):
1491 num_thrusters = PE.shape[0] # Determine the number of thrusters from the array shape
1492

1493 # Apply seaborn style
1494 plt.style.use('seaborn-v0_8')
1495

1496 for i in range(num_thrusters):
1497 plt.figure(figsize=(5, 5)) # Individual plot size
1498 plt.plot(self.t / (24*3600), PE[i, :])
1499 plt.xlabel("Time␣[days]", fontsize=14)
1500 plt.xlim(left = 0)
1501 if select == "P":
1502 plt.ylabel(f"$P_{{thrust,{i+1}}}$␣[W]", fontsize=14)
1503 elif select == "E":
1504 plt.ylabel(f"$E_{{thrust,{i+1}}}$␣[J]", fontsize=14)
1505 plt.tick_params(axis='both', which='major', labelsize=14)
1506 plt.show()
1507

1508 # Combined plot for total power or energy of all thrusters
1509 plt.figure(figsize=(15, 5)) # Combined plot size
1510 total_PE = np.sum(PE, axis=0) # Summing up all thrusters' power or energy over time
1511 for i in range(num_thrusters):
1512 plt.plot(self.t/ (24*3600), PE[i, :], label=f'Thruster␣{i+1}')
1513 plt.plot(self.t/ (24*3600), total_PE, label='Total', linestyle='--', linewidth=2.0,

color = 'black')
1514 plt.xlabel("Time␣[days]", fontsize=16)

189

1515 plt.xlim(left = 0)
1516 if select == "P":
1517 plt.ylabel("P_{thrust}␣[W]", fontsize=16)
1518 elif select == "E":
1519 plt.ylabel("E_{thrust}␣[J]", fontsize=16)
1520 plt.tick_params(axis='both', which='major', labelsize=16)
1521 plt.legend(fontsize=16)
1522 plt.show()
1523

1524 # TO DO
1525 def combined_PE_vs_time(self, RW_PE, Thruster_PE, select):
1526 plt.rcParams.update({"font.size": 16})
1527

1528 # Calculate the total power or energy over time for reaction wheels and thrusters
1529 total_RW_PE = np.sum(RW_PE, axis=0)
1530 total_Thruster_PE = np.sum(Thruster_PE, axis=0)
1531

1532 plt.figure(figsize=(15, 5))
1533

1534 # Plotting the total from reaction wheels
1535 plt.plot(self.t / (24*3600), total_RW_PE, label='Total␣Reaction␣Wheels')
1536

1537 # Plotting the total from thrusters
1538 plt.plot(self.t / (24*3600), total_Thruster_PE, label='Total␣Thrusters')
1539 plt.yscale('log')
1540 plt.xlabel("Time␣[days]")
1541 if select == "P":
1542 plt.ylabel("Total␣Power␣[W]")
1543 plt.title("Total␣power␣usage␣of␣reaction␣wheels␣and␣thrusters␣over␣time")
1544 elif select == "E":
1545 plt.ylabel("Total␣Energy␣[J]")
1546 plt.title("Total␣energy␣consumption␣of␣reaction␣wheels␣and␣thrusters␣over␣time")
1547

1548 plt.legend()
1549 plt.show()
1550

1551 def omega_versus_time(self, omega_array):
1552

1553 # Apply seaborn style
1554 plt.style.use('seaborn-v0_8')
1555

1556 # Create a single plot with all angular velocity components
1557 plt.figure(figsize=(15, 5))
1558 plt.plot(self.t, omega_array[0, :], label="$\\omega_x$", linestyle="dashed", color="

red")
1559 plt.plot(self.t, omega_array[1, :], label="$\\omega_y$", linestyle="dotted", color="

blue")
1560 plt.plot(self.t, omega_array[2, :], label="$\\omega_z$", linestyle="solid", color="

green")
1561 plt.xlabel("Time␣[s]", fontsize=16)
1562 plt.ylabel("$\\omega$␣[rad/s]", fontsize=16)
1563 plt.xlim(left = 0)
1564 plt.tick_params(axis='both', which='major', labelsize=16)
1565 ax = plt.gca() # Get the current axis
1566 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1567 plt.legend(fontsize=16) # Add labels for x, y, z components
1568 plt.show()
1569

1570 def h_versus_time(self, h_array):
1571 # Import Seaborn style
1572 plt.style.use('seaborn-v0_8')
1573

1574 # Reaction wheel saturation limits
1575 h_sat_1_2_3 = np.full(len(self.t), 0.1) # Saturation limit for wheels 1, 2, and 3 [

Nms]
1576 h_sat_4 = np.full(len(self.t), 0.05) # Saturation limit for wheel 4 [Nms]
1577

1578 # Combine angular momentum for reaction wheels 1, 2, and 3
1579 plt.figure(figsize=(15, 5))
1580 plt.rcParams.update({"font.size": 16})
1581 plt.plot(self.t / (24 * 3600), h_array[0, :], label="RW␣1")

190

1582 plt.plot(self.t / (24 * 3600), h_array[1, :], label="RW␣2")
1583 plt.plot(self.t / (24 * 3600), h_array[2, :], label="RW␣3")
1584 plt.plot(self.t / (24 * 3600), h_sat_1_2_3, color="red", linestyle="dashed", label="

Saturation␣limit␣(+/-␣0.1␣Nms)")
1585 plt.plot(self.t / (24 * 3600), -h_sat_1_2_3, color="red", linestyle="dashed")
1586 plt.yscale('symlog', linthresh=1e-8)
1587 plt.xlabel("Time␣[days]", fontsize=16)
1588 plt.ylabel("h_{rw}␣[Nms]", fontsize=16)
1589 plt.xlim(left=0)
1590 plt.tick_params(axis='both', which='major', labelsize=16)
1591 plt.legend(fontsize=16, loc = 'upper␣left')
1592 plt.show()
1593

1594 # Angular momentum for reaction wheel 4
1595 plt.figure(figsize=(15, 5))
1596 plt.rcParams.update({"font.size": 16})
1597 plt.plot(self.t / (24 * 3600), h_array[3, :], label="RW␣4")
1598 plt.plot(self.t / (24 * 3600), h_sat_4, color="red", linestyle="dashed", label="

Saturation␣limit␣(+/-␣0.05␣Nms)")
1599 plt.plot(self.t / (24 * 3600), -h_sat_4, color="red", linestyle="dashed")
1600 plt.yscale('symlog', linthresh=1e-8)
1601 plt.xlabel("Time␣[days]", fontsize=16)
1602 plt.ylabel("h_{rw}␣[Nms]", fontsize=16)
1603 plt.xlim(left=0)
1604 plt.tick_params(axis='both', which='major', labelsize=16)
1605 plt.legend(fontsize=16)
1606 plt.show()
1607

1608

1609 def thrust_values(self, thruster_force_values):
1610 # Apply seaborn style
1611 plt.style.use('seaborn-v0_8')
1612

1613 # Number of thrusters per graph
1614 thrusters_per_graph = 6
1615 num_thrusters = thruster_force_values.shape[0]
1616 num_graphs = (num_thrusters + thrusters_per_graph - 1) // thrusters_per_graph #

Calculate number of graphs
1617

1618 # Loop through groups of thrusters
1619 for group_idx in range(num_graphs):
1620 start_idx = group_idx * thrusters_per_graph
1621 end_idx = min((group_idx + 1) * thrusters_per_graph, num_thrusters)
1622

1623 # Plot combined graph for this group of thrusters
1624 plt.figure(figsize=(15, 5))
1625 for i in range(start_idx, end_idx):
1626 plt.plot(
1627 self.t/ (24*3600),
1628 thruster_force_values[i, :],
1629 label=f"Thruster␣{i␣+␣1}"
1630)
1631 plt.xlabel("Time␣[days]", fontsize=16)
1632 plt.ylabel("F_{thrust}␣[N]", fontsize=16)
1633 plt.xlim(left=0)
1634 plt.ylim(bottom=0)
1635 plt.tick_params(axis='both', which='major', labelsize=16)
1636 ax = plt.gca() # Get the current axis
1637 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1638 plt.legend(fontsize=16, loc='upper␣left', ncol=2)
1639 plt.show()
1640

1641 def thrust_values_difference(self, thruster_force_values):
1642 # Apply seaborn style
1643 plt.style.use('seaborn-v0_8')
1644

1645 # Number of thrusters per graph
1646 thrusters_per_graph = 6
1647 num_thrusters = thruster_force_values.shape[0]
1648 num_graphs = (num_thrusters + thrusters_per_graph - 1) // thrusters_per_graph #

Calculate number of graphs

191

1649

1650 # Loop through groups of thrusters
1651 for group_idx in range(num_graphs):
1652 start_idx = group_idx * thrusters_per_graph
1653 end_idx = min((group_idx + 1) * thrusters_per_graph, num_thrusters)
1654

1655 # Plot combined graph for this group of thrusters
1656 plt.figure(figsize=(15, 5))
1657 for i in range(start_idx, end_idx):
1658 plt.plot(
1659 self.t/ (24*3600),
1660 thruster_force_values[i, :],
1661 label=f"Thruster␣{i␣+␣1}"
1662)
1663 plt.xlabel("Time␣[days]", fontsize=16)
1664 plt.ylabel("$\Delta␣F_{thrust}$␣[N]", fontsize=16)
1665 plt.tick_params(axis='both', which='major', labelsize=16)
1666 ax = plt.gca() # Get the current axis
1667 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the 1e-6
1668 plt.legend(fontsize=16, loc='upper␣left', ncol=2)
1669 plt.show()
1670

1671

1672 def impulse_versus_time(self, impulse):
1673 # Apply seaborn style
1674 plt.style.use('seaborn-v0_8')
1675

1676 # Define custom behavior for 8-thruster setup
1677 num_thrusters = impulse.shape[0]
1678 line_styles = ['solid'] * 6 + ['dashed'] * (num_thrusters - 6) # First 6 solid, rest

dashed
1679

1680 # Plot
1681 plt.figure(figsize=(15, 5))
1682 for i in range(num_thrusters):
1683 plt.plot(
1684 self.t / (24 * 3600),
1685 impulse[i, :],
1686 label=f"Thruster␣{i␣+␣1}",
1687 linestyle=line_styles[i % len(line_styles)] # Use solid for first 6, dashed

for 7 and 8
1688)
1689

1690 # Labels and settings
1691 plt.xlabel("Time␣[days]", fontsize=16)
1692 plt.ylabel("J_{thrust}␣[Ns]", fontsize=16)
1693 plt.xlim(left=0)
1694 plt.ylim(bottom=0)
1695 plt.tick_params(axis='both', which='major', labelsize=16)
1696

1697 # Adjust y-axis offset text font size
1698 ax = plt.gca()
1699 ax.yaxis.get_offset_text().set_fontsize(16)
1700

1701 # Legend with multiple columns
1702 plt.legend(fontsize=16, loc='upper␣left', ncol=2)
1703 plt.show()
1704

1705 def impulse_versus_time_2(self, impulse):
1706 # Apply seaborn style
1707 plt.style.use('seaborn-v0_8')
1708

1709 # Total number of thrusters
1710 num_thrusters = impulse.shape[0]
1711

1712 # Split into two groups
1713 thrusters_per_plot = 6
1714 num_plots = int(np.ceil(num_thrusters / thrusters_per_plot))
1715

1716 for plot_idx in range(num_plots):
1717 start_idx = plot_idx * thrusters_per_plot

192

1718 end_idx = min((plot_idx + 1) * thrusters_per_plot, num_thrusters)
1719

1720 # Plot each group of thrusters
1721 plt.figure(figsize=(15, 5))
1722 for i in range(start_idx, end_idx):
1723 plt.plot(
1724 self.t / (24 * 3600),
1725 impulse[i, :],
1726 label=f"Thruster␣{i␣+␣1}" # Thruster numbering starts from 1
1727)
1728

1729 # Labels and settings
1730 plt.xlabel("Time␣[days]", fontsize=16)
1731 plt.ylabel("J_{thrust}␣[Ns]", fontsize=16)
1732 plt.xlim(left=0)
1733 plt.ylim(bottom=0)
1734 plt.tick_params(axis='both', which='major', labelsize=16)
1735

1736 # Adjust y-axis offset text font size
1737 ax = plt.gca()
1738 ax.yaxis.get_offset_text().set_fontsize(16)
1739

1740 # Legend with multiple columns if needed
1741 plt.legend(fontsize=16, loc='upper␣left', ncol=2)
1742 plt.show()
1743

1744 def half_cone_versus_time(self, cone_3, cone_4, cone_base_case):
1745

1746 # Apply seaborn style
1747 plt.style.use('seaborn-v0_8')
1748 requirement = np.ones(len(cone_3)) * 0.18
1749

1750 # Plot combined graph for all configurations
1751 plt.figure(figsize=(15, 5)) # Set combined graph size
1752 plt.plot(self.t / (24 * 3600), cone_3, label="STF␣Conf.␣3", linestyle="-")
1753 plt.plot(self.t / (24 * 3600), cone_4, label="STF␣Conf.␣4", linestyle="--")
1754 plt.plot(self.t / (24 * 3600), cone_base_case, label="Base␣case", linestyle="-.")
1755 plt.plot(self.t / (24 * 3600), requirement, label="ADCS-01␣requirement", color="red",

linestyle="dashed")
1756

1757 # Add labels and customize ticks
1758 plt.xlabel("Time␣[days]", fontsize=16)
1759 plt.ylabel("$\\beta$␣[$\\degree$]", fontsize=16)
1760 plt.xlim(left=0)
1761 plt.ylim(bottom=0)
1762 plt.tick_params(axis='both', which='major', labelsize=16)
1763 ax = plt.gca() # Get the current axis
1764 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the offset

text
1765

1766 # Add legend
1767 plt.legend(fontsize=16)
1768

1769 # Show plot
1770 plt.show()
1771

1772 # Plot combined graph for all configurations
1773 plt.figure(figsize=(15, 5)) # Set combined graph size
1774 plt.plot(self.t / (24 * 3600), cone_3, label="STF␣Conf.␣3", linestyle="-")
1775 plt.plot(self.t / (24 * 3600), cone_4, label="STF␣Conf.␣4", linestyle="--")
1776 plt.plot(self.t / (24 * 3600), cone_base_case, label="Base␣case", linestyle="-.")
1777

1778 # Add labels and customize ticks
1779 plt.xlabel("Time␣[days]", fontsize=16)
1780 plt.ylabel("$\\beta$␣[$\\degree$]", fontsize=16)
1781 plt.xlim(left=0)
1782 plt.ylim(bottom=0)
1783 plt.tick_params(axis='both', which='major', labelsize=16)
1784 ax = plt.gca() # Get the current axis
1785 ax.yaxis.get_offset_text().set_fontsize(16) # Adjust the font size of the offset

text

193

1786

1787 # Add legend
1788 plt.legend(fontsize=16)
1789

1790 # Show plot
1791 plt.show()
1792

1793

1794 def simulation(
1795 data_file_CAPSTONE,
1796 data_file_Sun,
1797 omega_0,
1798 kp,
1799 kd,
1800 ks,
1801 T_matrix,
1802 matrixnumber
1803):
1804 # Load data files
1805 data_CAPSTONE = np.loadtxt(data_file_CAPSTONE)
1806 data_Sun = np.loadtxt(data_file_Sun)
1807

1808 # Load data files
1809 data_CAPSTONE = np.loadtxt(data_file_CAPSTONE)
1810 data_Sun = np.loadtxt(data_file_Sun)
1811

1812 # Extract metadata from data_file_CAPSTONE filename using regular expressions
1813 # Looks for date and time in the format YYYY-MM-DD HH:MM
1814 filename = os.path.basename(data_file_CAPSTONE)
1815 datetime_matches = re.findall(r'\d{4}-\d{2}-\d{2}␣\d{2}:\d{2}', filename)
1816

1817 if len(datetime_matches) >= 2:
1818 startdate = datetime_matches[0].replace(":", "-").replace("␣", "_")
1819 enddate = datetime_matches[1].replace(":", "-").replace("␣", "_")
1820 else:
1821 raise ValueError("Could␣not␣extract␣start␣and␣end␣date-times␣from␣the␣filename.")
1822

1823 # Define save directory
1824 save_dir = "/Users/Pieter/Library/Mobile␣Documents/com~apple~CloudDocs/Thesis/Research␣

Phase/lunar_CubeSat/results/data"
1825 os.makedirs(save_dir, exist_ok=True)
1826

1827 # Create time array based on the input data files and check if they cover the same epochs
1828 time_array = data_CAPSTONE[:, 0]
1829 time_array_check = data_Sun[:, 0]
1830 if time_array.all() != time_array_check.all():
1831 raise ValueError(
1832 "Epochs␣of␣the␣data␣files␣are␣not␣the␣same;␣check␣ephemeris␣retrieval."
1833)
1834

1835 # Obtain position data over time
1836 position_CAPSTONE = data_CAPSTONE[:, 1:4]
1837 position_Sun = data_Sun[:, 1:4]
1838

1839 # Retrieve time step from data file
1840 dt = time_array[1] - time_array[0]
1841

1842 vis = Visualization(time_array)
1843 const = Constants()
1844 rot = Rotation()
1845 pd = PID(const.inertia_matrix)
1846 dist = DisturbanceTorques(const.inertia_matrix)
1847

1848 # Initialize individual vectors for iteration
1849 # q = quaternion_0_vector # For custom initial condition
1850 q = pd.reference_quaternion_paper(position_CAPSTONE[0,:], position_Sun[0,:]) # For

standard initial position
1851 omega = omega_0
1852

1853 # Dummy values for PID
1854 factor_p = kp

194

1855 factor_i = 0
1856 factor_d = kd
1857 factor_s = ks
1858

1859 # Create arrays
1860 k_p = np.array([1, 1, 1]) * factor_p
1861 k_i = np.array([1, 1, 1]) * factor_i
1862 k_d = np.array([1, 1, 1]) * factor_d
1863 k_s = np.array([1, 1, 1]) * factor_s
1864

1865

1866 # Initialize storage arrays for visualization
1867 q_ref_vis = np.empty((4, len(time_array)))
1868 q_vis = np.empty((4, len(time_array)))
1869 T_GG_vis = np.empty((3, len(time_array)))
1870 T_SRP_vis = np.empty((3, len(time_array)))
1871 T_d_vis = np.empty((3, len(time_array)))
1872 T_c_vis = np.empty((3, len(time_array)))
1873 T_RW_vis = np.empty((3, len(time_array)))
1874 P_RW_vis = np.empty((3, len(time_array)))
1875 E_RW_vis = np.empty((3, len(time_array)))
1876 omega_vis = np.empty((3, len(time_array)))
1877 h_vis = np.empty((3, len(time_array)))
1878 thrust_vis = np.empty((len(T_matrix[0]), len(time_array)))
1879 impulse_vis = np.empty((len(T_matrix[0]), len(time_array)))
1880 P_thrust_vis = np.empty((len(T_matrix[0]), len(time_array)))
1881 E_thrust_vis = np.empty((len(T_matrix[0]), len(time_array)))
1882 half_cone_offset_vis = np.empty((len(time_array)))
1883

1884 # Index count and previous q_ref value
1885 index = 0
1886 previous_q_ref = None
1887

1888 # Initiate angular momentum, reaction wheel energy, thrust energy, impulse
1889 h = 0
1890 E_RW = 0
1891 E_thrust = 0
1892 impulse = np.zeros(len(T_matrix[0]))
1893

1894 for t in time_array:
1895

1896 # LUMIO paper-based reference quaternion update
1897 q_ref = pd.reference_quaternion_paper(position_CAPSTONE[index,:], position_Sun[index

,:])
1898

1899 # Check quaternion continuity; do we need to flip signs?
1900 if previous_q_ref is not None:
1901 if np.dot(q_ref, previous_q_ref) < 0:
1902 q_ref = -q_ref
1903

1904 # Store q_ref for next iteration
1905 previous_q_ref = q_ref
1906

1907 # Half-cone requirement validation
1908 y_panel_body = np.array([0,-1,0])
1909 y_panel_inert = np.linalg.inv(rot.quaternion_321_rotation(q[0], q[1], q[2], q[3])) @

y_panel_body
1910 y_panel_inert /= np.linalg.norm(y_panel_inert)
1911 Moon_pointing_vector = - position_CAPSTONE[index,:]
1912 Moon_pointing_vector /= np.linalg.norm(Moon_pointing_vector)
1913 half_cone_offset = np.rad2deg(np.arccos(np.clip(np.dot(y_panel_inert,

Moon_pointing_vector), -1.0, 1.0)))
1914

1915 # Calculate real-time disturbance torques
1916 T_GG = dist.GGMoon(q, position_CAPSTONE[index, :])
1917 T_SRP = dist.SRP_deployed(q, position_Sun[index, :], position_CAPSTONE[index, :])
1918 # Dummy input zeros
1919 T_d = T_GG + T_SRP
1920

1921 T_c = pd.control_torque(q, q_ref, omega, k_p, k_i, k_d, k_s, dt)
1922

195

1923 ######### RW ANALYSIS #######################
1924 # Calculate incremental increase in angular momentum of the momentum wheel
1925 h = const.inertia_matrix_undeployed @ omega
1926 # Assembly configuration matrix, each reaction wheel covers one axis
1927 A_RW = np.array([[1,0,0], [0,1,0], [0,0,1]])
1928 # Torque imposed on RW assembly, nominal mode
1929 T_ass = np.linalg.pinv(A_RW) @ (-T_c + np.cross(A_RW @ h, omega))
1930 # Torque generated by the RW set, total
1931 T_RW = - (A_RW @ T_ass + np.cross(omega, A_RW @ h))
1932 # Power consumption at this time step, linear relation assumed
1933 P_RW = const.P_peak_max / const.T_RW_max * np.abs(T_RW)
1934 # Total energy consumption, power integrated over time
1935 E_RW += P_RW * dt
1936 ###
1937

1938 ######### THRUSTER ANALYSIS #################
1939 # Linear Programming Solution
1940 thrust = cp.Variable(len(T_matrix[0]))
1941 constraints = [T_matrix @ thrust == T_c, thrust >= 0, thrust <= const.F_SSP_max]
1942 objective = cp.Minimize(cp.sum(thrust))
1943 problem = cp.Problem(objective, constraints)
1944 problem.solve()
1945

1946 # # Check the solution status
1947 # if problem.status == cp.OPTIMAL:
1948 # print("Solution found!")
1949 # thrust_value = thrust.value
1950 # print("Thrust values:", thrust_value)
1951 # elif problem.status == cp.INFEASIBLE:
1952 # print("No solution exists (problem is infeasible).")
1953 # elif problem.status == cp.UNBOUNDED:
1954 # print("Problem is unbounded (no finite solution).")
1955 # else:
1956 # print(f"Solver status: {problem.status}")
1957

1958 if thrust.value is None:
1959 thrust_value = np.zeros(len(T_matrix[0]))
1960 else:
1961 thrust_value = np.clip(thrust.value, 0, None) # Set all values < 0 to 0
1962

1963 # Add uncertainty
1964 sigma = 0.05 # 5% uncertainty introduced, random value
1965 thrust_value_actual = thrust_value.copy() # Start with the original values
1966 non_zero_indices = thrust_value > 0 # Find indices where thrust value is positive
1967

1968 # Apply noise only to non-zero values
1969 thrust_value_actual[non_zero_indices] = np.clip(
1970 np.random.normal(
1971 loc=thrust_value[non_zero_indices],
1972 scale=sigma * thrust_value[non_zero_indices]
1973),
1974 (1 - sigma) * thrust_value[non_zero_indices],
1975 (1 + sigma) * thrust_value[non_zero_indices]
1976)
1977

1978 # Update impulse value
1979 impulse += thrust_value_actual * dt
1980

1981 # Power analysis
1982 # From data sheet: Input Power linear relation with thrust output, from T = 0 to T =

200 [muN] and P = 0 to 20 [W]
1983 # Let power input be as in original thrust case, since uncertainty comes from the

output only
1984 P_thrust = const.P_SSP_max / const.F_SSP_max * thrust_value
1985 E_thrust += P_thrust * dt
1986 ###
1987

1988 # Append to visualisation arrays
1989 q_ref_vis[:, index] = q_ref
1990 q_vis[:, index] = q
1991 T_d_vis[:, index] = T_d

196

1992 T_GG_vis[:, index] = T_GG
1993 T_SRP_vis[:, index] = T_SRP
1994 T_c_vis[:, index] = T_c
1995 T_RW_vis[:, index] = T_RW
1996 P_RW_vis[:, index] = P_RW
1997 E_RW_vis[:, index] = E_RW
1998 omega_vis[:, index] = omega
1999 h_vis[:, index] = h
2000 half_cone_offset_vis[index] = half_cone_offset
2001 thrust_vis[:,index] = thrust_value_actual
2002 impulse_vis[:,index] = impulse
2003 P_thrust_vis[:,index] = P_thrust
2004 E_thrust_vis[:,index] = E_thrust
2005

2006 # Update to t = 1
2007 # Integrate omega and quaternion
2008 omega_new = pd.rk4_integrator(pd.derivative_omega, omega, dt, T_d, T_c)
2009 q_new = pd.rk4_integrator(pd.derivative_quaternion , q, dt, omega)
2010 q = q_new / np.linalg.norm(q_new)
2011 omega = omega_new
2012

2013 # Update index
2014 index += 1
2015 print(index)
2016

2017 # At the end of the simulation loop, after populating the visualization arrays
2018 total_PE = np.sum(P_thrust_vis, axis=0) # Summing up all thrusters' power over time
2019 total_E = np.sum(E_thrust_vis[:, -1]) # Total energy is the last value of summation
2020

2021 # Save each "vis" array
2022 vis_arrays = {
2023 "q_ref_vis": q_ref_vis,
2024 "q_vis": q_vis,
2025 "T_GG_vis": T_GG_vis,
2026 "T_SRP_vis": T_SRP_vis,
2027 "T_d_vis": T_d_vis,
2028 "T_c_vis": T_c_vis,
2029 "T_RW_vis": T_RW_vis,
2030 "P_RW_vis": P_RW_vis,
2031 "E_RW_vis": E_RW_vis,
2032 "omega_vis": omega_vis,
2033 "h_vis": h_vis,
2034 "thrust_vis": thrust_vis,
2035 "impulse": impulse_vis,
2036 "P_thrust_vis": P_thrust_vis,
2037 "E_thrust_vis": E_thrust_vis,
2038 "half_cone_offset_vis": half_cone_offset_vis ,
2039 "time_array": time_array
2040 }
2041

2042 for var_name, data in vis_arrays.items():
2043 file_name = f"{startdate}_{enddate}_{var_name}_{matrixnumber}.dat"
2044 file_path = os.path.join(save_dir, file_name)
2045 np.savetxt(file_path, data.T, delimiter="␣", fmt="%.20f") # Transpose data for

column format
2046

2047 # Plot generation
2048 vis.quaternion_versus_time(q_ref_vis, q_vis)
2049 # vis.euler_versus_time(q_ref_vis, q_vis)
2050 # vis.control_torque_versus_time(T_c_vis)
2051 # vis.RW_PE_versus_time(P_RW_vis, "P")
2052 # vis.RW_PE_versus_time(E_RW_vis, "E")
2053 # vis.h_versus_time(h_vis)
2054 # vis.disturbance_torque_versus_time(T_d_vis, T_GG_vis, T_SRP_vis)
2055 # vis.omega_versus_time(omega_vis)
2056 # vis.plot_trajectories(data_file_CAPSTONE)
2057 vis.thruster_PE_vs_time(P_thrust_vis, "P")
2058 vis.thruster_PE_vs_time(E_thrust_vis, "E")
2059 # vis.combined_PE_vs_time(P_RW_vis, P_thrust_vis, "P")
2060 # vis.combined_PE_vs_time(E_RW_vis, E_thrust_vis, "E")
2061 vis.thrust_values(thrust_vis)

197

2062

2063 # Return required values
2064 return {
2065 "max_total_power": np.max(total_PE),
2066 "max_total_energy": total_E
2067 }
2068

2069 ############## INPUT ##################################
2070

2071 ephemeris_time_step = 1/60 # hours
2072 begin_date = "2023-01-01␣00:00"
2073 end_date = "2023-01-01␣00:05"
2074 control_time_step = 0.001 # seconds
2075

2076 ###
2077

2078 eph_CAPSTONE = EphemerisData(
2079 Constants.id_CAPSTONE,
2080 Constants.location_Moon_centre ,
2081 ephemeris_time_step ,
2082 begin_date,
2083 end_date,
2084)
2085 eph_CAPSTONE.convert_data_interpolated(eph_CAPSTONE.vectors()[0], control_time_step)
2086

2087 eph_Sun = EphemerisData(
2088 Constants.id_Sun,
2089 Constants.location_Moon_centre ,
2090 ephemeris_time_step ,
2091 begin_date,
2092 end_date,
2093)
2094 eph_Sun.convert_data_interpolated(eph_Sun.vectors()[0], control_time_step)
2095

2096 # Set-up 1
2097 tau_11 = np.cross(np.array([0.1, 0.15, 0]), np.array([-1,0,0]))
2098 tau_12 = np.cross(np.array([-0.1, 0.15, 0]), np.array([1,0,0]))
2099 tau_13 = np.cross(np.array([0, 0.15, 0.1]), np.array([0,0,-1]))
2100 tau_14 = np.cross(np.array([0, -0.15, 0.1]), np.array([0,0,-1]))
2101 tau_15 = np.cross(np.array([0.1, 0, 0.1]), np.array([-1,0,0]))
2102 tau_16 = np.cross(np.array([-0.1, 0, 0.1]), np.array([1,0,0]))
2103

2104 # Set-up 2
2105 tau_21 = np.cross(np.array([0.1, 0.15, 0.1]), np.array([-1,0,0]))
2106 tau_22 = np.cross(np.array([-0.1, 0.15, 0.1]), np.array([1,0,0]))
2107 tau_23 = np.cross(np.array([0, 0.15, 0.1]), np.array([0,0,-1]))
2108 tau_24 = np.cross(np.array([0, -0.15, 0.1]), np.array([0,0,-1]))
2109 tau_25 = np.cross(np.array([0.1, -0.15, 0.1]), np.array([-1,0,0]))
2110 tau_26 = np.cross(np.array([-0.1, -0.15, 0.1]), np.array([1,0,0]))
2111

2112 # Set-up 3
2113 tau_31 = np.cross(np.array([0.1, 0.15, 0]), np.array([-1,0,0]))
2114 tau_32 = np.cross(np.array([-0.1, 0.15, 0]), np.array([1,0,0]))
2115 tau_33 = np.cross(np.array([0, 0.15, 0.1]), np.array([0,0,-1]))
2116 tau_34 = np.cross(np.array([0, -0.15, 0.1]), np.array([0,0,-1]))
2117 tau_35 = np.cross(np.array([0.1, 0, 0.1]), np.array([-1,0,0]))
2118 tau_36 = np.cross(np.array([-0.1, 0, 0.1]), np.array([1,0,0]))
2119 tau_37 = np.cross(np.array([0.1, -0.15, -0.1]), np.array([0,1,0]))
2120 tau_38 = np.cross(np.array([-0.1, -0.15, -0.1]), np.array([0,1,0]))
2121

2122 # Set-up 4
2123 tau_41 = np.cross(np.array([0.1, -0.15, 0.1]), np.array([0,1,0]))
2124 tau_42 = np.cross(np.array([0.1, -0.15, 0.1]), np.array([-1,0,0]))
2125 tau_43 = np.cross(np.array([0.1, -0.15, 0.1]), np.array([0,0,-1]))
2126 tau_44 = np.cross(np.array([-0.1, -0.15, 0.1]), np.array([1,0,0]))
2127 tau_45 = np.cross(np.array([-0.1, -0.15, 0.1]), np.array([0,1,0]))
2128 tau_46 = np.cross(np.array([-0.1, -0.15, 0.1]), np.array([0,0,-1]))
2129 tau_47 = np.cross(np.array([0.1, -0.15, -0.1]), np.array([-1,0,0]))
2130 tau_48 = np.cross(np.array([0.1, -0.15, -0.1]), np.array([0,1,0]))
2131 tau_49 = np.cross(np.array([0.1, -0.15, -0.1]), np.array([0,0,1]))
2132 tau_410 = np.cross(np.array([-0.1, -0.15, -0.1]), np.array([0,0,1]))

198

2133 tau_411 = np.cross(np.array([-0.1, -0.15, -0.1]), np.array([0,1,0]))
2134 tau_412 = np.cross(np.array([-0.1, -0.15, -0.1]), np.array([1,0,0]))
2135

2136 # Stack the tau vectors into a 3x6 matrix
2137 T_matrix_1 = np.column_stack((tau_11, tau_12, tau_13, tau_14, tau_15, tau_16))
2138 T_matrix_2 = np.column_stack([tau_21, tau_22, tau_23, tau_24, tau_25, tau_26])
2139 T_matrix_3 = np.column_stack([tau_31, tau_32, tau_33, tau_34,tau_35, tau_36, tau_37, tau_38])
2140 T_matrix_4 = np.column_stack([tau_41, tau_42, tau_43, tau_44,tau_45, tau_46, tau_47, tau_48,

tau_49, tau_410, tau_411, tau_412])

C
C Source Code

This appendix consists of tho main parts: first, the main.c file will be shown, in which the entire Nucleo
board set-up is presented and the main functions are called. Then, func.c will be shown, that includes
all the underlying functions used throughout the attitude control computations.

C.1. main.c
1

2 /* USER CODE BEGIN Header */
3 /**
4 **
5 * @file : main.c
6 * @brief : Main program body
7 **
8 * @attention
9 *
10 * Copyright (c) 2024 STMicroelectronics.
11 * All rights reserved.
12 *
13 * This software is licensed under terms that can be found in the LICENSE file
14 * in the root directory of this software component.
15 * If no LICENSE file comes with this software, it is provided AS-IS.
16 *
17 **
18 */
19 /* USER CODE END Header */
20 /* Includes --*/
21 #include "main.h"
22 #include "func.h"
23 #include "global.h"
24

25 /* Private includes --*/
26 /* USER CODE BEGIN Includes */
27

28 /* USER CODE END Includes */
29

30 /* Private typedef ---*/
31 /* USER CODE BEGIN PTD */
32

33 /* USER CODE END PTD */
34

35 /* Private define --*/
36 /* USER CODE BEGIN PD */
37

38 /* USER CODE END PD */
39

40 /* Private macro ---*/
41 /* USER CODE BEGIN PM */
42

199

C.1. main.c 200

43 /* USER CODE END PM */
44

45 /* Private variables ---*/
46 TIM_HandleTypeDef htim1;
47 TIM_HandleTypeDef htim2;
48

49 UART_HandleTypeDef huart2;
50

51 /* USER CODE BEGIN PV */
52 UART_HandleTypeDef huart2;
53 uint8_t rxByte[1] = {0};
54 uint8_t rxBuff[500] = {0};
55 int rxCounter = 0;
56

57 // Define a static previous_q_ref array to store the last reference quaternion
58 static double previous_q_ref[4] = {1.0, 0.0, 0.0, 0.0}; // Initialize with a default

quaternion (identity)
59 double pos_CAP[3] = {0};
60 double pos_Sun[3] = {0};
61 double q[4], q_ref[4], omega[3], k_p[3], k_i[3], k_d[3], k_s[3], dt;
62 double T_c[3]; // Initialize these in main
63 double thrust_array[6];
64 /* USER CODE END PV */
65

66 /* Private function prototypes ---*/
67 void SystemClock_Config(void);
68 static void MX_GPIO_Init(void);
69 static void MX_USART2_UART_Init(void);
70 static void MX_TIM1_Init(void);
71 static void MX_TIM2_Init(void);
72 /* USER CODE BEGIN PFP */
73 /* USER CODE END PFP */
74

75 /* Private user code ---*/
76 /* USER CODE BEGIN 0 */
77

78 /* HAL_UART_RxCpltCallback:
79 *
80 * Standard usage, leave the buffer parsing as is.
81 * In parseBuffer parsing definition in func.c, adjust for the input parameters that are

being taken.
82 * PD: q, q_ref, omega, k_p, k_i, k_d, k_s, dt
83 * PD & q_ref: pos_CAP, pos_Sun, q, omega, k_p, k_i, k_d, k_s
84 *
85 * Leave PD_control for all.
86 * Optional sending of different parameters possible, 3 or 4 array (sendQuaternion definition

)
87 */
88

89 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {
90 if (rxByte[0] != '\n') {
91 rxBuff[rxCounter] = rxByte[0];
92 rxCounter++;
93 } else {
94 rxBuff[rxCounter] = '\0'; // Ensure null-terminated string
95 parseBuffer(rxBuff, rxCounter); // Parse the buffer
96

97 // Reset buffer
98 memset(rxBuff, 0, sizeof(rxBuff)); // Clear the buffer after parsing
99 rxCounter = 0; // Reset counter
100

101 // Update the reference quaternion based on latest positions
102 reference_quaternion_paper(); // Call to calculate q_ref
103

104 send4Vector(&huart2, q_ref, 4);
105

106 // Check quaternion continuity: flip q_ref if dot product with previous_q_ref is
negative

107 double dot_product = quaternion_dot_product(q_ref, previous_q_ref);
108 if (dot_product < 0) {
109 flip_quaternion(q_ref);

C.1. main.c 201

110 }
111

112 // Store q_ref for the next iteration
113 memcpy(previous_q_ref, q_ref, 4 * sizeof(double));
114

115 // Calculate control torques with the updated q_ref and other values taken from
Python.

116 PD_control(q, q_ref, omega, k_p, k_i, k_d, k_s, dt, T_c); // Calculate the control
torques

117

118 // Send control torque values back to Python
119 send3Vector(&huart2, T_c, 3); // Send the control torques back to Python
120

121 // Define number of thrusters based on thruster matrix
122 idxint n_thrusters = 6;
123

124 // Solve problem
125 solve_thruster_problem(T_matrix_1, n_thrusters, T_c, F_SSP_max);
126

127 // Test PWM adjustment
128 // double test_thrust = thrust_array[0];
129 updatePWMFrequency(&htim1, 1, thrust_array[0]);
130 updatePWMFrequency(&htim1, 2, thrust_array[1]);
131 updatePWMFrequency(&htim1, 3, thrust_array[2]);
132 updatePWMFrequency(&htim1, 4, thrust_array[3]);
133 updatePWMFrequency(&htim2, 1, thrust_array[4]);
134 updatePWMFrequency(&htim2, 2, thrust_array[5]);
135

136 // Send thruster values back to Python
137 send6Vector(&huart2, thrust_array, n_thrusters);
138

139 }
140

141 // Reset rxByte[0] to 0 to ensure it's ready for the next byte
142 rxByte[0] = 0;
143

144

145 HAL_UART_Receive_IT(&huart2, rxByte, 1); // Continue to receive the next byte
146 }
147

148 /* USER CODE END 0 */
149

150 /**
151 * @brief The application entry point.
152 * @retval int
153 */
154 int main(void)
155 {
156

157 /* USER CODE BEGIN 1 */
158

159 /* USER CODE END 1 */
160

161 /* MCU Configuration--*/
162

163 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
164 HAL_Init();
165

166

167 /* USER CODE BEGIN Init */
168

169 /* USER CODE END Init */
170

171 /* Configure the system clock */
172 SystemClock_Config();
173

174 /* USER CODE BEGIN SysInit */
175

176 /* USER CODE END SysInit */
177

178 /* Initialize all configured peripherals */

C.1. main.c 202

179 MX_GPIO_Init();
180 MX_USART2_UART_Init();
181 MX_TIM1_Init();
182 MX_TIM2_Init();
183 /* USER CODE BEGIN 2 */
184

185 HAL_UART_Receive_IT(&huart2, rxByte, 1);
186 HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
187 HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
188 HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
189 HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4);
190 HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
191 HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);
192 /* USER CODE END 2 */
193

194 /* Infinite loop */
195 /* USER CODE BEGIN WHILE */
196 while (1)
197 {
198

199 // HAL_GPIO_TogglePin(GREEN_LED_GPIO_Port , GREEN_LED_Pin);
200 // HAL_Delay(1000);
201 }
202

203

204 /* USER CODE END WHILE */
205

206 /* USER CODE BEGIN 3 */
207

208 /* USER CODE END 3 */
209 }
210

211 /**
212 * @brief System Clock Configuration
213 * @retval None
214 */
215 void SystemClock_Config(void)
216 {
217 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
218 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
219 RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
220

221 /** Initializes the RCC Oscillators according to the specified parameters
222 * in the RCC_OscInitTypeDef structure.
223 */
224 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
225 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
226 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
227 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
228 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
229 {
230 Error_Handler();
231 }
232

233 /** Initializes the CPU, AHB and APB buses clocks
234 */
235 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
236 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
237 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
238 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
239 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
240 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
241

242 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
243 {
244 Error_Handler();
245 }
246 PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_TIM1
247 |RCC_PERIPHCLK_TIM2;
248 PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
249 PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLK_HCLK;

C.1. main.c 203

250 PeriphClkInit.Tim2ClockSelection = RCC_TIM2CLK_HCLK;
251 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
252 {
253 Error_Handler();
254 }
255 }
256

257 /**
258 * @brief TIM1 Initialization Function
259 * @param None
260 * @retval None
261 */
262 static void MX_TIM1_Init(void)
263 {
264

265 /* USER CODE BEGIN TIM1_Init 0 */
266

267 /* USER CODE END TIM1_Init 0 */
268

269 TIM_MasterConfigTypeDef sMasterConfig = {0};
270 TIM_OC_InitTypeDef sConfigOC = {0};
271 TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
272

273 /* USER CODE BEGIN TIM1_Init 1 */
274

275 /* USER CODE END TIM1_Init 1 */
276 htim1.Instance = TIM1;
277 htim1.Init.Prescaler = 8-1;
278 htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
279 htim1.Init.Period = 1000-1;
280 htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
281 htim1.Init.RepetitionCounter = 0;
282 htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
283 if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
284 {
285 Error_Handler();
286 }
287 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
288 sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
289 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
290 if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
291 {
292 Error_Handler();
293 }
294 sConfigOC.OCMode = TIM_OCMODE_PWM1;
295 sConfigOC.Pulse = 250;
296 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
297 sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
298 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
299 sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
300 sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
301 if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
302 {
303 Error_Handler();
304 }
305 sConfigOC.Pulse = 0;
306 if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
307 {
308 Error_Handler();
309 }
310 if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
311 {
312 Error_Handler();
313 }
314 if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
315 {
316 Error_Handler();
317 }
318 sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
319 sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
320 sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;

C.1. main.c 204

321 sBreakDeadTimeConfig.DeadTime = 0;
322 sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
323 sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
324 sBreakDeadTimeConfig.BreakFilter = 0;
325 sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
326 sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
327 sBreakDeadTimeConfig.Break2Filter = 0;
328 sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
329 if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
330 {
331 Error_Handler();
332 }
333 /* USER CODE BEGIN TIM1_Init 2 */
334

335 /* USER CODE END TIM1_Init 2 */
336 HAL_TIM_MspPostInit(&htim1);
337

338 }
339

340 /**
341 * @brief TIM2 Initialization Function
342 * @param None
343 * @retval None
344 */
345 static void MX_TIM2_Init(void)
346 {
347

348 /* USER CODE BEGIN TIM2_Init 0 */
349

350 /* USER CODE END TIM2_Init 0 */
351

352 TIM_MasterConfigTypeDef sMasterConfig = {0};
353 TIM_OC_InitTypeDef sConfigOC = {0};
354

355 /* USER CODE BEGIN TIM2_Init 1 */
356

357 /* USER CODE END TIM2_Init 1 */
358 htim2.Instance = TIM2;
359 htim2.Init.Prescaler = 8-1;
360 htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
361 htim2.Init.Period = 1000-1;
362 htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
363 htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
364 if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
365 {
366 Error_Handler();
367 }
368 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
369 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
370 if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
371 {
372 Error_Handler();
373 }
374 sConfigOC.OCMode = TIM_OCMODE_PWM1;
375 sConfigOC.Pulse = 250;
376 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
377 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
378 if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
379 {
380 Error_Handler();
381 }
382 /* USER CODE BEGIN TIM2_Init 2 */
383

384 /* USER CODE END TIM2_Init 2 */
385 HAL_TIM_MspPostInit(&htim2);
386

387 }
388

389 /**
390 * @brief USART2 Initialization Function
391 * @param None

C.1. main.c 205

392 * @retval None
393 */
394 static void MX_USART2_UART_Init(void)
395 {
396

397 /* USER CODE BEGIN USART2_Init 0 */
398

399 /* USER CODE END USART2_Init 0 */
400

401 /* USER CODE BEGIN USART2_Init 1 */
402

403 /* USER CODE END USART2_Init 1 */
404 huart2.Instance = USART2;
405 huart2.Init.BaudRate = 115200;
406 huart2.Init.WordLength = UART_WORDLENGTH_8B;
407 huart2.Init.StopBits = UART_STOPBITS_1;
408 huart2.Init.Parity = UART_PARITY_EVEN;
409 huart2.Init.Mode = UART_MODE_TX_RX;
410 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
411 huart2.Init.OverSampling = UART_OVERSAMPLING_16;
412 huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
413 huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
414 if (HAL_UART_Init(&huart2) != HAL_OK)
415 {
416 Error_Handler();
417 }
418 /* USER CODE BEGIN USART2_Init 2 */
419

420 /* USER CODE END USART2_Init 2 */
421

422 }
423

424 /**
425 * @brief GPIO Initialization Function
426 * @param None
427 * @retval None
428 */
429 static void MX_GPIO_Init(void)
430 {
431 GPIO_InitTypeDef GPIO_InitStruct = {0};
432 /* USER CODE BEGIN MX_GPIO_Init_1 */
433 /* USER CODE END MX_GPIO_Init_1 */
434

435 /* GPIO Ports Clock Enable */
436 __HAL_RCC_GPIOC_CLK_ENABLE();
437 __HAL_RCC_GPIOA_CLK_ENABLE();
438

439 /*Configure GPIO pin Output Level */
440 HAL_GPIO_WritePin(GREEN_LED_GPIO_Port, GREEN_LED_Pin, GPIO_PIN_RESET);
441

442 /*Configure GPIO pin : GREEN_LED_Pin */
443 GPIO_InitStruct.Pin = GREEN_LED_Pin;
444 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
445 GPIO_InitStruct.Pull = GPIO_NOPULL;
446 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
447 HAL_GPIO_Init(GREEN_LED_GPIO_Port, &GPIO_InitStruct);
448

449 /* USER CODE BEGIN MX_GPIO_Init_2 */
450 /* USER CODE END MX_GPIO_Init_2 */
451 }
452

453 /* USER CODE BEGIN 4 */
454

455 /* USER CODE END 4 */
456

457 /**
458 * @brief This function is executed in case of error occurrence.
459 * @retval None
460 */
461 void Error_Handler(void)
462 {

C.2. func.c 206

463 /* USER CODE BEGIN Error_Handler_Debug */
464 /* User can add his own implementation to report the HAL error return state */
465 __disable_irq();
466 while (1)
467 {
468 }
469 /* USER CODE END Error_Handler_Debug */
470 }
471

472 #ifdef USE_FULL_ASSERT
473 /**
474 * @brief Reports the name of the source file and the source line number
475 * where the assert_param error has occurred.
476 * @param file: pointer to the source file name
477 * @param line: assert_param error line source number
478 * @retval None
479 */
480 void assert_failed(uint8_t *file, uint32_t line)
481 {
482 /* USER CODE BEGIN 6 */
483 /* User can add his own implementation to report the file name and line number,
484 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
485 /* USER CODE END 6 */
486 }
487 #endif /* USE_FULL_ASSERT */

C.2. func.c
1 #include "func.h"
2 #include <math.h>
3 #include <string.h>
4 #include "main.h"
5 #include <stdio.h>
6 #include <stdint.h>
7 #include <stdlib.h>
8 #include <global.h>
9 #include "ecos.h"
10

11

12 // Constants
13 const double F_SSP_max = 0.0000008; //N, test 200microNewtons of thrust from SSP thrusters
14 const uint32_t timer_period = 100000; //microseconds, frequency = 1 / (timer_period /

1,000,000)
15 const double minimum_impulse_bit = 0.01; // microNewtonseconds
16

17 // note: matrices do not adjust correctly for difference in panel distance. Re-do all
matrices in case of different set-up.

18 const double T_matrix_1[3][6] = {
19 {0.0, 0.0, -0.15, 0.15, 0.0, 0.0},
20 {0.0, 0.0, 0.0, 0.0, -0.1, 0.1},
21 {0.15, -0.15, 0.0, 0.0, 0.0, 0.0}
22 };
23

24 const double T_matrix_2[3][6] = {
25 {0.0, 0.0, -0.15, 0.15, 0.0, 0.0},
26 {-0.1, 0.1, 0.0, 0.0, -0.1, 0.1},
27 {0.15, -0.15, 0.0, 0.0, -0.15, 0.15}
28 };
29

30 const double T_matrix_3[3][8] = {
31 {0.0, 0.0, -0.15, 0.15, 0.0, 0.0, 0.1, 0.1},
32 {0.0, 0.0, 0.0, 0.0, -0.1, 0.1, 0.0, 0.0},
33 {0.15, -0.15, 0.0, 0.0, 0.0, 0.0, 0.1, -0.1}
34 };
35

36 const double T_matrix_4[3][12] = {
37 {-0.1, 0.0, 0.15, 0.0, -0.1, 0.15, 0.0, 0.1, -0.15, -0.15, 0.1, 0.0},
38 {0.0, -0.1, 0.1, 0.1, 0.0, -0.1, 0.1, 0.0, -0.1, 0.1, 0.0, -0.1},
39 {0.1, -0.15, 0.0, 0.15, -0.1, 0.0, -0.15, 0.1, 0.0, 0.0, -0.1, 0.15}

C.2. func.c 207

40 };
41

42 const double inertia_matrix[3][3] = {
43 {1.009, 0.0, 0.0},
44 {0.0, 0.251, 0.0},
45 {0.0, 0.0, 0.916}
46 };
47

48 // Retrieve buffer from incoming signal
49 void parseBuffer(uint8_t *buffer, uint16_t size) {
50 char *token;
51

52 // Convert buffer to null-terminated string
53 buffer[size] = '\0'; // Ensure there is a null at the end of the buffer
54

55 token = strtok((char *)buffer, ",");
56 if (!token) {
57 HAL_UART_Transmit(&huart2, (uint8_t*)"Parse␣Error\n", 12, HAL_MAX_DELAY);
58 return;
59 }
60

61 // Parsing arrays from the buffer
62 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) pos_CAP[i] = token ? atof(token):

0;
63 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) pos_Sun[i] = token ? atof(token):

0;
64 for (int i = 0; i < 4; i++, token = strtok(NULL, ",")) q[i] = token ? atof(token) : 0;
65 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) omega[i] = token ? atof(token) :

0;
66 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) k_p[i] = token ? atof(token) : 0;
67 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) k_i[i] = token ? atof(token) : 0;
68 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) k_d[i] = token ? atof(token) : 0;
69 for (int i = 0; i < 3; i++, token = strtok(NULL, ",")) k_s[i] = token ? atof(token) : 0;
70 token = strtok(NULL, ",");
71 dt = token ? atof(token) : 0;
72

73

74 }
75

76

77 // Matrix multiplication standard
78 void matrix_multiply_vector(const Matrix4x4* mat, const Quaternion* vec, Quaternion* result)

{
79 // Adjusting order of assignments to match [qew, qe1, qe2, qe3]
80 result->w = mat->m[3][0] * vec->w + mat->m[3][1] * vec->x + mat->m[3][2] * vec->y + mat->

m[3][3] * vec->z;
81 result->x = mat->m[0][0] * vec->w + mat->m[0][1] * vec->x + mat->m[0][2] * vec->y + mat->

m[0][3] * vec->z;
82 result->y = mat->m[1][0] * vec->w + mat->m[1][1] * vec->x + mat->m[1][2] * vec->y + mat->

m[1][3] * vec->z;
83 result->z = mat->m[2][0] * vec->w + mat->m[2][1] * vec->x + mat->m[2][2] * vec->y + mat->

m[2][3] * vec->z;
84 }
85

86 // Quaternion error calculation function
87 void quaternion_error(const Quaternion* q, const Quaternion* q_ref, Quaternion* result) {
88 // Extract quaternion components
89 double qrw = q_ref->w, qr1 = q_ref->x, qr2 = q_ref->y, qr3 = q_ref->z;
90 double qw = q->w, q1 = q->x, q2 = q->y, q3 = q->z;
91

92 // Adjusted quaternion vector
93 Quaternion adj_vec = {-q1, -q2, -q3, qw};
94

95 // Construct the matrix
96 Matrix4x4 adj_mat = {
97 {
98 {qrw, qr3, -qr2, qr1},
99 {-qr3, qrw, qr1, qr2},
100 {qr2, -qr1, qrw, qr3},
101 {-qr1, -qr2, qr3, qrw}
102 }

C.2. func.c 208

103 };
104

105 // Perform the matrix-vector multiplication
106 matrix_multiply_vector(&adj_mat, &adj_vec, result);
107 }
108

109

110 // Function to convert float array to string and send via UART
111 void send3Vector(UART_HandleTypeDef *huart, const double *vector, uint8_t num_elements) {
112 uint8_t buffer[200]; // Adjust size based on the expected length of the message
113

114 sprintf((char*) buffer, "%.20lf,%.20lf,%.20lf\n", vector[0], vector[1], vector[2]);
115

116 // Send the formatted string via UART
117 HAL_UART_Transmit(huart, buffer, strlen((char*)buffer), HAL_MAX_DELAY);
118 }
119

120 // Function to convert float array to string and send via UART, for reference quaternion
121 void send4Vector(UART_HandleTypeDef *huart, const double *vector, uint8_t num_elements) {
122 uint8_t buffer[200]; // Adjust size based on the expected length of the message
123

124 sprintf((char*) buffer, "%.20lf,%.20lf,%.20lf,%.20lf\n", vector[0], vector[1], vector[2],
vector[3]);

125

126 // Send the formatted string via UART
127 HAL_UART_Transmit(huart, buffer, strlen((char*)buffer), HAL_MAX_DELAY);
128 }
129

130 // Function to convert float array to string and send via UART, for reference quaternion
131 void send6Vector(UART_HandleTypeDef *huart, const double *vector, uint8_t num_elements) {
132 uint8_t buffer[300]; // Adjust size based on the expected length of the message
133

134 sprintf((char*) buffer, "%.20lf,%.20lf,%.20lf,%.20lf,%.20lf,%.20lf\n", vector[0], vector
[1], vector[2], vector[3], vector[4], vector[5]);

135

136 // Send the formatted string via UART
137 HAL_UART_Transmit(huart, buffer, strlen((char*)buffer), HAL_MAX_DELAY);
138 }
139

140

141

142 // PD control loop, adapted for C
143 void PD_control(double *q, double *q_ref, double *omega, double *k_p, double *k_i, double *

k_d, double *k_s, double dt, double *T_c) {
144 Quaternion current_q = {q[0], q[1], q[2], q[3]};
145 Quaternion reference_q = {q_ref[0], q_ref[1], q_ref[2], q_ref[3]};
146 Quaternion error_q;
147

148 // Calculate quaternion error
149 quaternion_error(¤t_q, &reference_q, &error_q);
150

151 // Destructure error quaternion components
152 double qew = error_q.w;
153 double qex = error_q.x;
154 double qey = error_q.y;
155 double qez = error_q.z;
156

157 // Angular velocity components
158 double omega_x = omega[0], omega_y = omega[1], omega_z = omega[2];
159

160 // PID gains
161 double k_p_1 = k_p[0], k_p_2 = k_p[1], k_p_3 = k_p[2];
162 double k_i_1 = k_i[0], k_i_2 = k_i[1], k_i_3 = k_i[2];
163 double k_d_1 = k_d[0], k_d_2 = k_d[1], k_d_3 = k_d[2];
164 double k_s_1 = k_s[0], k_s_2 = k_s[1], k_s_3 = k_s[2];
165

166 // Assuming integral terms should be persistent or managed outside this function
167 static double int_x = 0, int_y = 0, int_z = 0; // Integral terms
168

169 // Control torque calculations
170 T_c[0] = k_s_1 * (k_p_1 * qex + k_i_1 * int_x - k_d_1 * omega_x);

C.2. func.c 209

171 T_c[1] = k_s_2 * (k_p_2 * qey + k_i_2 * int_y - k_d_2 * omega_y);
172 T_c[2] = k_s_3 * (k_p_3 * qez + k_i_3 * int_z - k_d_3 * omega_z);
173

174 // Update integral terms for next iteration
175 int_x += qex * dt;
176 int_y += qey * dt;
177 int_z += qez * dt;
178 }
179

180 // Helper function to compute the cross product of two 3D vectors
181 void cross_product(const double *v1, const double *v2, double *result) {
182 result[0] = v1[1] * v2[2] - v1[2] * v2[1];
183 result[1] = v1[2] * v2[0] - v1[0] * v2[2];
184 result[2] = v1[0] * v2[1] - v1[1] * v2[0];
185 }
186

187 // Helper function to normalize a 3D vector
188 void normalize_vector(double *v) {
189 double norm = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
190 for (int i = 0; i < 3; i++) {
191 v[i] /= norm;
192 }
193 }
194

195 void reference_quaternion_paper(void) {
196 double Sun_pointing_vector[3];
197 double Moon_pointing_vector[3];
198 double cross_1[3], cross_2[3];
199 double x1[3], x2[3], x3[3];
200 double A_d[3][3];
201

202

203 // Calculate Sun pointing vector
204 for (int i = 0; i < 3; i++) {
205 Sun_pointing_vector[i] = pos_Sun[i] - pos_CAP[i];
206 }
207

208 normalize_vector(Sun_pointing_vector);
209

210 // Calculate Moon pointing vector
211 for (int i = 0; i < 3; i++) {
212 Moon_pointing_vector[i] = -pos_CAP[i];
213 }
214

215 normalize_vector(Moon_pointing_vector);
216

217 // x1 = Moon pointing vector
218 memcpy(x1, Moon_pointing_vector , 3 * sizeof(double));
219

220 // x2 = cross product of Sun_pointing vector and x1, normalized
221 cross_product(Sun_pointing_vector, x1, cross_1);
222 normalize_vector(cross_1);
223 memcpy(x2, cross_1, 3 * sizeof(double));
224

225 // x3 = cross product of x1 and x2, normalized
226 cross_product(x1, x2, cross_2);
227 normalize_vector(cross_2);
228 memcpy(x3, cross_2, 3 * sizeof(double));
229

230 // Construct DCM matrix A_d to convert to quaternion representation
231 for (int i = 0; i < 3; i++) {
232 A_d[0][i] = x1[i];
233 A_d[1][i] = x2[i];
234 A_d[2][i] = x3[i];
235

236 }
237

238 // Final DCM to quaternion conversion
239 DCM_to_quaternion(A_d);
240

241 }

C.2. func.c 210

242

243 void DCM_to_quaternion(double DCM[3][3]) {
244 double a11 = DCM[0][0];
245 double a22 = DCM[1][1];
246 double a33 = DCM[2][2];
247 double trace = a11 + a22 + a33;
248

249 double qw, qx, qy, qz;
250

251 if (trace > 0) {
252 qw = 0.5 * sqrt(1 + trace);
253 qx = (DCM[2][1] - DCM[1][2]) / (4 * qw);
254 qy = (DCM[0][2] - DCM[2][0]) / (4 * qw);
255 qz = (DCM[1][0] - DCM[0][1]) / (4 * qw);
256 } else if (a11 > a22 && a11 > a33) {
257 qx = 0.5 * sqrt(1 + a11 - a22 - a33);
258 qw = (DCM[2][1] - DCM[1][2]) / (4 * qx);
259 qy = (DCM[0][1] + DCM[1][0]) / (4 * qx);
260 qz = (DCM[0][2] + DCM[2][0]) / (4 * qx);
261 } else if (a22 > a33) {
262 qy = 0.5 * sqrt(1 + a22 - a11 - a33);
263 qw = (DCM[0][2] - DCM[2][0]) / (4 * qy);
264 qx = (DCM[0][1] + DCM[1][0]) / (4 * qy);
265 qz = (DCM[1][2] + DCM[2][1]) / (4 * qy);
266 } else {
267 qz = 0.5 * sqrt(1 + a33 - a11 - a22);
268 qw = (DCM[1][0] - DCM[0][1]) / (4 * qz);
269 qx = (DCM[0][2] + DCM[2][0]) / (4 * qz);
270 qy = (DCM[1][2] + DCM[2][1]) / (4 * qz);
271 }
272

273 q_ref[0] = qw;
274 q_ref[1] = qx;
275 q_ref[2] = qy;
276 q_ref[3] = qz;
277

278 }
279

280

281 // Function to calculate the dot product of two quaternions
282 double quaternion_dot_product(const double q1[4], const double q2[4]) {
283 return q1[0] * q2[0] + q1[1] * q2[1] + q1[2] * q2[2] + q1[3] * q2[3];
284 }
285

286 // Function to flip the sign of a quaternion
287 void flip_quaternion(double q[4]) {
288 q[0] = -q[0];
289 q[1] = -q[1];
290 q[2] = -q[2];
291 q[3] = -q[3];
292 }
293

294 // Function to calculate quaternion-based rotation matrix (3-2-1 rotation)
295 void quaternion_321_rotation(double qw, double qx, double qy, double qz, double R[3][3]) {
296 R[0][0] = 1 - 2 * (qy * qy + qz * qz);
297 R[0][1] = 2 * (qx * qy - qz * qw);
298 R[0][2] = 2 * (qx * qz + qy * qw);
299

300 R[1][0] = 2 * (qx * qy + qz * qw);
301 R[1][1] = 1 - 2 * (qx * qx + qz * qz);
302 R[1][2] = 2 * (qy * qz - qx * qw);
303

304 R[2][0] = 2 * (qx * qz - qy * qw);
305 R[2][1] = 2 * (qy * qz + qx * qw);
306 R[2][2] = 1 - 2 * (qx * qx + qy * qy);
307 }
308

309 // Function to calculate the norm of a 3-element vector
310 double vector_norm(double v[3]) {
311 return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
312 }

C.2. func.c 211

313

314 // Function to multiply a 3x3 matrix with a 3-element vector (dot product)
315 void matrix_vector_dot_product(double matrix[3][3], double vector[3], double result[3]) {
316 for (int i = 0; i < 3; i++) {
317 result[i] = matrix[i][0] * vector[0] + matrix[i][1] * vector[1] + matrix[i][2] *

vector[2];
318 }
319 }
320

321 // Function to calculate the inverse of a 3x3 matrix
322 void matrix_inverse(double input[3][3], double output[3][3]) {
323 double det = input[0][0] * (input[1][1] * input[2][2] - input[1][2] * input[2][1])
324 - input[0][1] * (input[1][0] * input[2][2] - input[1][2] * input[2][0])
325 + input[0][2] * (input[1][0] * input[2][1] - input[1][1] * input[2][0]);
326

327 if (det == 0) {
328 // Matrix is singular, cannot be inverted
329 printf("Error:␣Singular␣matrix,␣cannot␣compute␣inverse.\n");
330 return;
331 }
332

333 double inv_det = 1.0 / det;
334

335 output[0][0] = (input[1][1] * input[2][2] - input[1][2] * input[2][1]) * inv_det;
336 output[0][1] = (input[0][2] * input[2][1] - input[0][1] * input[2][2]) * inv_det;
337 output[0][2] = (input[0][1] * input[1][2] - input[0][2] * input[1][1]) * inv_det;
338

339 output[1][0] = (input[1][2] * input[2][0] - input[1][0] * input[2][2]) * inv_det;
340 output[1][1] = (input[0][0] * input[2][2] - input[0][2] * input[2][0]) * inv_det;
341 output[1][2] = (input[0][2] * input[1][0] - input[0][0] * input[1][2]) * inv_det;
342

343 output[2][0] = (input[1][0] * input[2][1] - input[1][1] * input[2][0]) * inv_det;
344 output[2][1] = (input[0][1] * input[2][0] - input[0][0] * input[2][1]) * inv_det;
345 output[2][2] = (input[0][0] * input[1][1] - input[0][1] * input[1][0]) * inv_det;
346 }
347

348 // Function to multiply a 3x3 matrix with a 3-element vector
349 void matrix_vector_multiply(double matrix[3][3], double vector[3], double result[3]) {
350 for (int i = 0; i < 3; i++) {
351 result[i] = 0;
352 for (int j = 0; j < 3; j++) {
353 result[i] += matrix[i][j] * vector[j];
354 }
355 }
356 }
357

358 void solve_thruster_problem(const double* T_matrix, idxint n_thrusters, double T_c[3], double
F_SSP_max) {

359

360 // Dynamically calculate the number of thrusters (columns of T_matrix)
361 idxint n = n_thrusters; // Number of variables (thrusters)
362 idxint m = 2 * n; // Number of inequalities (0 <= thrust <= F_SSP_max)
363 idxint p = 3; // Number of equality constraints (T_matrix * thrust == T_c)
364 idxint l = 2 * n; // Number of simple bounds (0 <= thrust)
365 idxint ncones = 0; // Number of second-order cones (none in this case)
366 idxint nex = 0; // Number of exponential cones (none in this case)
367

368 // Objective vector (sum of thrust is minimized)
369 double* c = (double*)malloc(n*sizeof(double));
370 for (idxint i = 0; i < n; i++) {
371 c[i] = 1.0;
372 }
373

374 // Define G matrix as sparse in compressed column format
375 idxint* G_i = (idxint*)malloc(2 * n * sizeof(idxint)); // Row indices for G's non-

zero entries
376 idxint* G_j = (idxint*)malloc((n + 1) * sizeof(idxint)); // Column indices (

compressed format)
377 double* G_x = (double*)malloc(2 * n * sizeof(double)); // Non-zero values
378

379 for (idxint i = 0; i < n; i++) {

C.2. func.c 212

380 G_i[2 * i] = i; // Lower bound row index
381 G_x[2 * i] = -1.0; // Represents thrust >= 0 (negative because inequalities

are G * x � h)
382

383 G_i[2 * i + 1] = n + i; // Upper bound row index
384 G_x[2 * i + 1] = 1.0; // Represents thrust � F_SSP_max
385

386 G_j[i] = 2 * i; // Start of each column in `G_x` (compressed column index)
387 }
388 // End marker for the last column
389 G_j[n] = 2 * n;
390

391 // Vector h (right-hand side of the inequality constraints)
392 double* h = (double*)malloc(2*n*sizeof(double));
393 for (idxint i = 0; i < n; i++) {
394 h[i] = 0.0; // Lower bound 0 <= thrust
395 h[n+i] = F_SSP_max; // Upper bound thrust <= F_SSP_max
396 }
397

398 // Define sparse matrix arrays
399 double A_x[] = {0.15, -0.15, -0.15, 0.15, -0.1, 0.1};
400 idxint A_i[] = {2, 2, 0, 0, 1, 1};
401 idxint A_j[] = {0, 1, 2, 3, 4, 5, 6};
402

403 // RHS vector (T_c)
404 double* b = (double*)malloc(p * sizeof(double));
405 for (idxint i = 0; i < p; i++) {
406 b[i] = T_c[i];
407 }
408

409 // Sparse G and A matrix arrays in compressed column storage (ccs)
410 // Gpr: Non-zero values of G
411 // Gjc: Column index array of G
412 // Gir: Row index array of G
413 // Similar structure for A
414 pwork *work = ECOS_setup(
415 n, // Number of variables (thrusters)
416 m, // Number of inequalities
417 p, // Number of equality constraints
418 l, // Dimension of the positive orthant
419 ncones, // Number of second-order cones
420 NULL, // No second-order cones (hence NULL)
421 nex, // Number of exponential cones
422 G_x, // Sparse G matrix data
423 G_j, // G matrix column index array (compressed)
424 G_i, // G matrix row index array (compressed)
425 A_x, // Sparse A matrix data
426 A_j, // A matrix column index array (compressed)
427 A_i, // A matrix row index array (compressed)
428 c, // Cost function
429 h, // RHS of inequalities
430 b // RHS of equalities
431);
432

433 // Solve the problem
434 idxint exitflag = ECOS_solve(work);
435

436 // Buffer to hold the UART messages
437 char uart_msg[100];
438

439 // Check for optimal solution and store the result in thrust_array
440 if (exitflag == ECOS_OPTIMAL) {
441 snprintf(uart_msg, sizeof(uart_msg), "Optimal␣solution␣found:\r\n");
442 // HAL_UART_Transmit(&huart2, (uint8_t*)uart_msg, strlen(uart_msg), HAL_MAX_DELAY);
443 for (idxint i = 0; i < n; i++) {
444 thrust_array[i] = work->x[i]; // Store the thrust values in the global array
445 }
446 } else {
447 snprintf(uart_msg, sizeof(uart_msg), "ECOS␣failed␣with␣exitflag:␣%ld\r\n", exitflag);
448 // HAL_UART_Transmit(&huart2, (uint8_t*)uart_msg, strlen(uart_msg), HAL_MAX_DELAY);
449 }

C.2. func.c 213

450

451 // Clean up workspace
452 ECOS_cleanup(work, 0);
453

454 // Free dynamically allocated memory
455 free(c);
456 free(G_i);
457 free(G_j);
458 free(G_x);
459 free(h);
460 free(b);
461 }
462

463

464 void updatePWMFrequency(TIM_HandleTypeDef *htim, uint32_t channel, double value) {
465 // Only the duty cycle actually has to be updated
466 // Based on hydrazine varying thrust paper
467 // This is a first assumption, later refinement will follow
468

469 uint32_t duty_cycle;
470

471 if (value < (double)(minimum_impulse_bit / timer_period)) {
472 duty_cycle = 0;
473 } else {
474 // Calculate the duty cycle normally
475 duty_cycle = (uint32_t)((value / F_SSP_max) * timer_period);
476 }
477

478 uint8_t buffer[50]; // Adjust size based on the expected length of the message
479

480 // Format string to include timer period and duty cycle
481 sprintf((char*) buffer, "%u,%u\n", timer_period, duty_cycle);
482

483 // Send the formatted string via UART
484 HAL_UART_Transmit(&huart2, buffer, strlen((char*)buffer), HAL_MAX_DELAY);
485

486 // Dynamically set the duty cycle for the specified channel
487 switch (channel) {
488 case 1:
489 __HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_1, duty_cycle);
490 break;
491 case 2:
492 __HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_2, duty_cycle);
493 break;
494 case 3:
495 __HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_3, duty_cycle);
496 break;
497 case 4:
498 __HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_4, duty_cycle);
499 break;
500 default:
501 // Invalid channel
502 sprintf((char*) buffer, "Error:␣Invalid␣Channel\n");
503 HAL_UART_Transmit(&huart2, buffer, strlen((char*)buffer), HAL_MAX_DELAY);
504 break;
505 }
506 }

	Preface
	List of Figures
	List of Tables
	Nomenclature
	Executive Summary
	Abstract
	Introduction and Problem Description
	Background
	Problem Definition
	Thesis Layout
	Novelty

	Literature Review
	Introduction
	Research Questions
	Spacecraft Attitude Control
	Basics
	Dynamics
	Rigid Body Dynamics
	Reference Frames
	Quaternions
	Disturbances

	Actuators
	Reaction Wheels
	Thrusters

	Controllers
	PID
	Phase plane analysis

	Integration
	Forward Euler method
	Runge-Kutta 4 method

	Lunar CubeSat Missions
	Overview of Existing Missions
	CAPSTONE
	LUMIO

	Embedded Systems
	Overview of Basic Principles
	CubeSat OBC
	STM32 Nucleo

	Vacuum Arc Thrusters
	Working Principle
	Pulse-Width Modulation
	Overview of Existing Modules

	Conclusion

	Research Questions & Hypotheses
	Introduction
	Research Questions
	Hypotheses

	Attitude Control Simulation
	Introduction
	Context
	Orbit
	Spacecraft
	Thrusters

	Assumptions & Considerations
	Code
	Overview
	Data
	Visualisation

	Robustness
	Single Thruster Failure
	Solar Array Deployment
	De-tumbling Manoeuvrer

	Experimental Characterisation
	Introduction
	Code Porting
	Experimental Framework
	Porting
	1/0 Test
	PD Control
	Reference Attitude
	Thruster Allocation

	Actuator Connection

	Results
	Simulation
	Reaction Wheel Analysis
	Thruster Analysis
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4

	Comparison

	Robustness
	Single Thruster Failure
	Approach 1
	Approach 2

	Solar Array Deployment
	De-tumbling Maneuver

	Experimental Characterisation
	Code Porting
	Actuator Connection

	Verification & Validation
	Verification
	Validation

	Discussion
	Introduction
	Simulation
	General
	Reaction Wheel Analysis
	Thruster Analysis
	Mission Requirements
	Summary

	Experimental Characterisation
	Recommendations for Future Work

	Conclusion
	References
	Simulation Results
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4

	Python Source Code
	C Source Code
	main.c
	func.c

