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Abstract

Linear aerostatic bearings are frequently used in high precision stages for their advantageous
bearing properties, with low friction and absence of stick-slip being most notable. To improve
relatively low out-of-plane stiffness of air bearings, pre-loading is applied. A common method
of pre-loading is by utilizing vacuum, where a constant vacuum force decreases film height
resulting in increased stiffness. Other methods for increasing stiffness are available, which is
an active field of research.

However, high stiffness results in strong coupling between bearing and running surface,
transferring unwanted external vibrations. The amount of vibration transfer is quantified as
transmissibility, which is the ratio of displacements between coupled surfaces. This property
is frequency dependent. To reduce disturbance from external vibrations, this research focusses
on reducing air bearing stiffness by combining pressurized and vacuum bearing pads, which to
the knowledge of the author has not yet been researched.

To analyse stiffness behaviour, air bearings have been modelled based on Reynolds equation.
The effect of a vibrating running surface is modelled by linear perturbation of Reynolds
equation. Resulting equations have been solved with a self developed finite volume method
code, resulting in air film stiffness and damping as a function of frequency in an computationally
efficient manner.

Two combinations of thrust and vacuum bearings with a stable low stiffness operating point
have been designed with the developed models. By offsetting vacuum and thrust surfaces or
by using a micrometer pocket in the thrust bearing surface, vacuum and thrust stiffness cancel
out, creating a range of low stiffness between regions with higher stiffness.

To validate the models, air bearings have been manufactured. Measurements on restrictor
properties have shown the literature model to be invalid for realistic pressure drops. Without
taking the measured restrictor behaviour into account, model and measurement will not match.

Also shown is that controlling surfaces flatness is essential for predictable bearing behaviour.
Performance of available production methods is thoroughly researched. Model and measure-
ment correspondence can only be achieved by taking surface properties into account.

Also, the low tip-tilt stiffness of a single air bearing has been found to negatively effect
measurements on film height. By using three bearings in the measurement set-up, tip-tilt
stiffness has been significantly increased. This reduces measurement uncertainty.

By taking these findings into account, excellent agreement between measurements and model
has been achieved. This clears the way for development of a low stiffness prototype, combining
thrust and vacuum bearings. Ideas on model improvement and prototype development are
shared in the recommendations.
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1
Introduction

In 1886, Osborne Reynolds submitted a paper to the Royal Society of London with the title:
“On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments,
Including an Experimental Determination of the Viscosity of Olive Oil” [1]. Mr. Beauchamp
Tower, a railway engineer, was measuring friction in journal bearings trying to find ‘any
regularity’ under ordinary lubrication conditions. Somewhat by chance he included the unusual
circumstances of completely immersing surfaces in oil. While looking at the experimental
results, Reynolds realised that the surfaces might be completely and continuously separated by
a film of oil, in which case the results would be deducible from the equations of hydrodynamics.

In his paper, Reynolds develops an equation which will later become known as Reynolds
equation, describing the pressure distribution of thin viscous fluid films and laying the
foundation for the study of full film lubrication.

1-1 Research context

Reynolds’ discovery has lead to a wide range of full film lubricated bearings, with an equally
wide range of applications. Full film lubricated bearings can for example be found in extreme
high speed turbochargers [2], machining equipment [3], hard disk drives [4], dental equipment
[5] and high precision stages [6], [7], [8]. This last example will be the focus of this study.

Full film bearings can be characterized on different criteria. Considering guidance type,
bearings can provide linear, cylindrical or spherical guidance. A second distinction is lubricant
phase, which can either be liquid or gas. Commonly used liquids are oil or water. Bearings
using liquid lubricant are noted with the prefix hydro-. Gas lubricated bearings mostly use
air, resulting in the prefix aero-, but other gasses are used for specific applications. A final
distinction is the method of pressure generation. Pressure is either generated by relative
movement of bearing surfaces, with suffix -dynamic, or is inserted externally, with suffix -static.

This study focuses on linear aerostatic bearings with high precision stages as application. Air
bearings have distinct advantages over alternative bearing concepts, extreme low friction and
absence of stick-slip being among the most important. Stick-slip limits achievable position
resolution of motion stages [9]. By eliminating stick-slip, higher resolutions can be achieved.
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2 Introduction

Extremely low friction between surfaces allows for high speeds and accelerations, also very
beneficial for motion stages. Since operation is contact-free, air bearings do hardly wear and
have long life spans if operated correctly. In contrast to oil, air is a clean lubricant and does
not need seals [10].

A disadvantage of air bearings is the high geometrical accuracies required on both bearing and
running surface. Furthermore, they require constant power in the form of clean, pressurized
air which increases operating costs. Without air, contact occurs which may damage bearing
or running surface. Also, aerostatic bearings can be sensitive to a dynamic instability known
as pneumatic hammer, depending on the design.

Another disadvantage is the relative low stiffness of air bearings compared to rolling-element
or hydrostatic bearings. Stiffness can significantly be increased by pre-loading the bearing.
Well known methods for applying pre-load are adding mass, using magnets, using vacuum
or by mounting two air bearings on opposite sides. Vacuum pre-loading is commonly used
because it is a compact solution, does not add significant extra mass, and requires only one
running surface. In vacuum pre-loading, a constant pulling force between bearing and running
surface is created by enclosing a vacuum chamber inside of the pressurized part, sealing in the
vacuum. This results in decreased fly height and increased stiffness [11].

Other methods are available for increasing bearing stiffness, which is an active field of research.
These methods include using convergent gap geometry [12], adding X-shaped grooves [13],
passive gap shape variation using membranes [14], active gap variation using a PZT actuator
[15] and active restrictor compensation using a variety of actuators [16], [17], [18].

These studies have in common that they optimize for high stiffness, resulting in a strong
coupling between running surface and bearing. The amount of movement transfer caused by
this coupling is called transmissibility and is frequency dependent.

In high precision applications, isolation from environmental vibrations is critical for assuring
adequate performance [19]. High stiffness connections have high transmissibility, resulting in
a significant transfer of environmental vibrations. Low stiffness connections can be used to
decrease transmissibility. Design of low stiffness bearings will be the focus of this research.

As shown, air bearings have beneficial properties for precision stages and are often optimised
for high stiffness. However, no research into reducing air bearing stiffness has been found.
This could provide an interesting opportunity in integrating vibration isolation in a bearing
system. Therefore this research focusses on the design and development of low stiffness air
bearings, by combining pressurized bearings with vacuum bearings. This should allow the
combination of beneficial properties of linear aerostatic bearings in two in-plane directions
with vibration isolating properties in the out-of-plane direction.

1-2 Research goals

The goal of this research is to design a combination of pressurized and vacuum bearings that
have a stable, low stiffness behaviour with vibration isolation as application. Because vibration
isolation is a dynamic property, the dynamics of a vibrating thin film are included into the
study. To bridge the gap between reality and theory, a design is to be realised for validation
of theory.
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1-3 Project outline 3

1-3 Project outline

This thesis starts with a short chapter on Reynolds equation. To determine this equation’s
use and limits, assumptions will be stated and Reynolds equation will be derived. This will be
used to develop models on the static behaviour of aerostatic bearings and gain insight into the
working principle of air bearings in a following chapter. Next, linear perturbation techniques
will be applied to Reynolds equation to find dynamic thin film stiffness and damping. The
resulting equations will be solved with the finite volume method.

Both static and dynamic models will be used to find multiple low stiffness designs. To validate
theory and gain insight in realisation of the designs, a test set-up will be built for static and
dynamic validation.

1-4 Reader’s manual

This thesis is written to be comprehensible for a MSc student in precision engineering, without
prior knowledge on Reynolds equation or air bearings, to allow successors to continue with this
research. Knowledgeable readers might therefore find the pace of the first chapters slow. Each
chapter starts and concludes with a summary, which should suffice for chapter 2 to chapter 4.
Knowledgeable readers should start reading in detail at chapter 5 and further.
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2
Reynolds equation

The motion of viscous fluid can be described by the Navier-Stokes equations. These equations
include terms dependent on inertia, body forces, pressures and viscous forces. Solving these
equations including all terms is complex. Because in some cases terms have negligible magnitude
compared to others, they can be dropped, allowing Navier-Stokes equations to be simplified.

In lubrication theory, a significant disparity in length scale is assumed. This theory describes
the flow of fluids in a geometry in which one dimension is significantly smaller than others.
This type of flow is therefore called thin film flow. The pressure distribution in thin film flow
is governed by Reynolds equation.

In this chapter, assumptions made to derive Reynolds equation are discussed. The full
derivation of Reynolds equation can be found in Appendix A. The resulting partial differential
equation and the physical interpretation of terms are treated in this chapter.

2-1 Derivation of the Reynolds equation

There are multiple ways to derive Reynolds equation. Two common derivations are from
simplification of the Navier-Stokes equation, or by looking at a small fluid element in equilibrium.
In this section the latter options is chosen. First, the assumptions needed for the derivation
will be briefly discussed in subsection 2-1-1. The equilibrium of pressure and shear stress
and a mass balance can be found in Appendix A. The resulting equation and the physical
interpretation will be discussed.

2-1-1 Assumptions for derivation of Reynolds equation

To attain a mathematically solvable equation, some simplifying assumptions have been made.
These assumptions are chosen such that the equation becomes easier to solve while the accuracy
of the physics that the equation tries to capture does not suffer. Some assumptions are done
at a specific point in the derivation in the appendix and will be referenced there. Others are
of a more general nature, and will not be referenced at a specific equation. Equations applied
in this section are derived from [20], [21] and [10]. The assumptions are the following:
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6 Reynolds equation

1. Body forces, which act on the whole system, are neglected. Body forces include gravity,
inertial accelerations or electric field accelerations.

2. Constant pressure is assumed throughout the film height. Since, for thin film flow, film
height is significantly smaller than film length, difference of pressure in film height is
neglected.

3. No slip at the boundaries is assumed. Fluid and surface have the same velocity at the
interface.

4. The lubricant behaves like a Newtonian fluid. Shear stress is linear proportional with
the velocity derivative scaled with viscosity: τ = η du

dy . Air and most lubrication oils
behave like a Newtonian fluid.

5. Laminar flow is assumed.

6. Fluid inertia is neglected. This assumption can be tested with Reynolds number. This
is discussed in subsection 4-2-5.

7. The film is assumed to be isothermal.

8. Lubricant viscosity is considered constant. In literature, this is called the isoviscous
approximation. For oils, viscosity is highly dependent on temperature, but for gasses
this effect is smaller. Since the previous assumption states isothermal operation, this
temperature dependency is neglected. Pressure increase will also have negligible effect
on viscosity.

2-1-2 Reynolds equation

Taking all assumptions into account, Reynolds equation can be derived. This is described in
Appendix A. The resulting equation can be written as:

∂

∂x

(
ρ h3

12 η
∂p

∂x

)
+ ∂

∂y

(
ρ h3

12 η
∂p

∂y

)
− ∂

∂x

(
ρ h (u1 + u2)

2

)
− ∂

∂y

(
ρ h (v1 + v2)

2

)
= ρ (w2 − w1)− ρ u2

∂h

∂x
− ρ v2

∂h

∂y
+ h

∂p

∂t

(2-1)

where ρ is lubricant density, h is film height, p is film pressure, η is lubricant viscosity, t is
time and u, v and w are velocities in x, y and z direction, as drawn in Figure 2-1.

2-1-3 Physical interpretation of terms in Reynolds equation

To understand how pressure can be build up in a thin film, and thus be able to carry load,
different terms and their physical interpretation in the Reynolds equation are explored in this
section. Reynolds equation, as derived in Equation 2-1, can be simplified by considering a one
dimensional system, neglecting side flow. Time dependent terms, on the right hand side of
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2-1 Derivation of the Reynolds equation 7

x

z

y

Surface 1

Surface 2

h

u1

w1

v1

u2

w2

v2

Figure 2-1: Thin film of fluid between two surfaces, moving with velocities u, v and w.

(2-1), are written in one partial differential. This gives the following equation, consisting of
three parts:

∂

∂x

(
ρ h3

12 η
∂p

∂x

)
︸ ︷︷ ︸
Poiseuille flow

− ∂

∂x

(
ρ h (u1 + u2)

2

)
︸ ︷︷ ︸

Couette flow

= ∂

∂t
(ρ h)︸ ︷︷ ︸

Dynamic effects

(2-2)

Poiseuille flow describes the flow due to pressure gradients in the fluid.

Couette flow describes the flow due to surface velocities and can be split up into three parts
by expanding the partial derivative to x:

∂

∂x

(
ρ h (u1 + u2)

2

)
= h (u1 + u2)

2
∂ρ

∂x︸ ︷︷ ︸
Density wedge

+ ρ (u1 + u2)
2

∂h

∂x︸ ︷︷ ︸
Physical wedge

+ ρ h

2
∂

∂x
(u1 + u2)︸ ︷︷ ︸

Stretch

(2-3)

The density wedge describes a flow caused by a change in lubricant density. This could for
example be caused by a temperature change in the lubricant.

The physical wedge describes how a change in height causes a flow. To satisfy continuity,
this flow must be balanced with a Poiseuille flow. This pressure generating mechanism is
often used in journal and sliding thrust bearings to carry a load. To generate a positive load
carrying pressure, a decrease of fly height in the sliding direction is needed.

Stretch describes a flow caused by a change in surface velocity in the sliding direction. This
can be caused by having the surfaces deform. This effect is not encountered in conventional
bearings.

Dynamic effects can be split up into two parts:

∂

∂t
(ρ h) = ρ (w2 − w1)− ρ u2

∂h

∂x︸ ︷︷ ︸
Squeeze

+ h
∂ρ

∂t︸ ︷︷ ︸
Local expansion

(2-4)
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8 Reynolds equation

Squeeze terms generate a flow by direct up or down movement of the surfaces, or by sideways
movement of non parallel surfaces.

Local expansion terms generate a flow by varying density in time. This could for example be
caused by heating of the lubricant.

2-2 Reynolds equation for compressible lubricants

In (2-2), fluid density is present in all three parts of the equation, and is a function of both
space and time. To allow an easier solution of the equation, density is sometimes assumed
constant, so it no longer is a function of space and time. Thus, it can be removed from
both sides of the equation, providing that thermal effects are not abound. This assumption
is considered valid for liquid lubricants, since density of a liquid varies insignificantly with
pressure, and is only dependent on temperature. Therefore, fluids are called incompressible,
and the resulting equation is called the incompressible Reynolds equation.

However, when gas is used as lubricant, quite the opposite is true: because gas is compressible,
density is highly dependent on pressure. Lubricant density can not be considered constant in
this case . To find a solution to (2-2), density is substituted with pressure via the ideal gas
law:

ρ = p

Rs T
(2-5)

where ρ is fluid density in kg/m3, p is pressure in Pa, Rs is specific gas constant in m2/s2K and
T is temperature in K. To plug this equation into Reynolds equation, constant temperature is
assumed, as in assumption 7. Combining (2-5) with the 1-D Reynolds equation (2-2) gives:

∂

∂x

(
p h3

12 η Rs T
∂p

∂x

)
− ∂

∂x

(
p h (u1 + u2)

2Rs T

)
= ∂

∂t

(
p h

Rs T

)
(2-6)

By taking note that, at this point, viscosity, specific gas constant and temperature are all
constants, and assuming that only surface 2 is moving and not deforming, this equation can
be simplified to:

∂

∂x

(
p h3 ∂p

∂x

)
− 6u2 η

∂

∂x
(p h) = 12 η ∂

∂t
(p h) (2-7)

2-3 Reynolds equation in polar coordinates

When modelling circular bearings, a polar coordinate system is more suitable . Therefore,
Reynolds equation is also derived in a polar coordinate system in Appendix A. Assuming axial
symmetry, neglecting Couette flow and substituting the ideal gas law, the resulting equation
is:

1
r

∂

∂r

(
r p h3

12 η Rs T
∂p

∂r

)
= ∂

∂t

(
p h

Rs T

)
(2-8)
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2-4 Conclusions and outlook 9

2-4 Conclusions and outlook

The flow and pressure build up of a thin film can be modelled with Reynolds equation. The
most important assumptions are that flow is laminar, and that lubricant is Newtonian and
of constant viscosity. The physical interpretation of the terms in the equation have been
discussed. Reynolds equation can be modified to deal with compressibility of gas lubricant
via the ideal gas law. Two coordinate systems are treated: Cartesian and polar. In the next
chapter, Reynolds equation will be used to model a circular air bearing. Different techniques
of solving Reynolds equation will be compared.
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3
Static air bearing modelling

In the previous chapter, Reynolds equation has been derived. This equation describes the
pressure distribution in a thin viscous fluid, as found in fluid film bearings. The equation has
been expanded for compressible lubricants like air, and derived both in Cartesian and polar
coordinate systems.
In this chapter, the static modelling of externally pressurized circular air bearings is explored.
First, the system of restrictor and thin film is investigated, explaining how an air bearing
achieves stiffness. Then, a model for the restrictor will be introduced and an analytical solution
of Reynolds equation will be used as a model for the thin film. Finally, multiple alternative
solving methods for Reynolds equation will be explored and compared, leading to an efficient
model for circular aerostatic bearings.

3-1 General working principle

In Figure 3-1, a schematic cross section of a circular air bearing is drawn. The bearing is fed
with a source pressure Ps, into the middle of the thin film with fly height h. This causes a
flow to the outside of the film, gradually decreasing the pressure to the ambient pressure Pa,
at the sides of the bearing.
Underneath the schematic cross section, the pressure profile in the thin film is shown. Because
pressure in the film is higher than ambient pressure, a net force acts upwards on the bearing
surface, determined by the integral of the pressure over the bearing surface. This force gives
the bearing the capacity to carry a load, and therefore this force is called the load capacity W .
In order for the bearing to be stable, the load capacity and thus the pressure profile should be
able to change for different loads. This means the bearing should have stiffness.

Bearing stiffness

A thrust bearing achieves stiffness by adding a restrictor in the flow path from source to
ambient. This can be understood by comparing the system with restrictor and thin film in
series as an electrical circuit. Pressure can be seen as voltage, lubricant flow as current. The
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12 Static air bearing modelling

Pa
P

Ps Pa
Rtf

P

Ps

Pa

Ps

Figure 3-1: Schematic view of circular air bearing without restrictor, with pressure distribution in
the thin film drawn underneath. The air feed diameter is such that it has no significant influence
on the thin film pressure. On the right side, the electrical equivalent circuit is drawn.

Ps

Pr
Pa

P

Ps Pr Pa
Rr Rtf

P

Ps

Pr

Pa

Figure 3-2: Schematic view of circular air bearing with restrictor and electrical equivalent. The
air feed diameter is small and has a significant resistance on the flow. Therefore it is called a
restrictor. It reduces the pressure from the source pressure to the restrictor pressure entering the
middle of the film.

source pressure can be seen as a voltage source, the ambient pressure as ground. Both the
restrictor and thin film are resistors. The restrictor has constant resistance. Resistance of the
thin film depends on the film height.

First, a system without restrictor is analysed, as drawn in Figure 3-1. The electrical equivalent
is drawn on the right side. Only the thin film resistance causes a significant pressure drop.
Since load capacity is given by the pressure drop over the thin film, a change in pressure
drop causes a change in load capacity. However, the pressure drop in this system is constant,
independent on the thin film resistance and therefore height of the thin film. Because the film
height is uniform, the distribution of pressure is also constant with film height. There is no
mechanism that changes the pressure distribution as function of the film height. Therefore,
load capacity is independent on film height and this system has no stiffness.

For the bearing to have stiffness, load capacity should be dependent on film height. This
can be achieved by adding a second resistor in the circuit, called the restrictor, as drawn
in figure Figure 3-2. The restrictor has a constant resistance. The pressure at the middle
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3-2 Restrictor model 13

Ps

Pr

ld

Figure 3-3: Schematic view of capillary restrictor. Pressure drops from Ps to Pr through a
restrictor with length l and diameter d.

of the thin film controls the load capacity and is called restrictor pressure Pr. A change in
thin film resistance will effect the ratio of resistances Rr and Rtf and therefore change the
restrictor pressure. This makes the load capacity dependent on the fly height, giving the
bearing stiffness.

To model bearing stiffness and see how it can be influenced, equations will be derived for both
the restrictor and thin film in the following sections.

3-2 Restrictor model

There are different methods to restrict flow. Most common are orifice restrictors, a porous
medium or capillary restrictors. In contrast to orifice restrictors, capillary restrictors are
assumed to promote laminar flow into the thin film. For high precision applications, as treated
in this thesis, a steady laminar flow is considered to give the best results and therefore capillary
restrictors will be used.

A capillary restrictor is sketched in Figure 3-3. It is a long thin hole through which the
pressure is reduced. According to Poiseuille’s law for laminar flow [22, (6.12)] through a long
cylindrical pipe, the volume flow is:

φ = π d4

128 η l (Ps − Pr) (3-1)

For Poiseuille’s law to be valid, the tube must be long (l/d > 20) and the flow must be
laminar (Re < 1000). The mass flow can be computed by multiplying volume flow with fluid
density, which has to be approximated since gas is compressible. The density is computed
with the ideal gas law, averaging the pressure over the restrictor. The ideal gas law as stated
in Equation 2-5 now gives:

ρ = Ps + Pr
2

1
Rs T

(3-2)

Multiplying the volume flow with the density gives:

ṁ = π d4

256 l
1

η Rs T

(
P 2
s − P 2

r

)
(3-3)

Master of Science Thesis R.P. Hoogeboom



14 Static air bearing modelling

Pr Pa

rr ro

Figure 3-4: Schematic view of thin film. Pressure p(r) drops from Pr (rr) to Pa (ro).

This is the same equation as stated in [10, (12.3)]. To simplify equations further, the resistor
conductivity Gr is introduced, relating squared pressure difference with mass flow:

Gr = π d4

256 l
1

η Rs T
, ṁ = Gr

(
P 2
s − P 2

r

)
(3-4)

3-3 Thin film model

In this section, an analytical solution for the resistance and mass flow of an axisymmetric thin
film is developed. Starting with the axisymmetric Reynolds equation as stated in (2-8) and
assuming steady state removes the time derivatives from the right hand side, changing the
right hand side to zero. Also, the surfaces are assumed parallel, meaning that h is constant.
Lastly, since the right hand side is zero, constants can be left out, giving the following equation
as shown in [23, (2.139)]:

∂

∂r

(
r p
∂p

∂r

)
= 0 (3-5)

With boundary conditions for p(r) as drawn in Figure 3-4:

p (rr) = Pr, p (ro) = Pa (3-6)

the mass flow can be shown to be [23, 2.162]:

ṁ = π h3

12 η Rs T
P 2
r − P 2

a

ln (ro/rr)
(3-7)

Defining the thin film conductivity as Gtf :

Gtf = π h3

12 η Rs T
1

ln (ro/rr)
, ṁ = Gtf

(
P 2
r − P 2

a

)
(3-8)

3-4 Modelling the air bearing system

With equations derived for mass flow through both thin film and restrictor, different techniques
for setting up and solving the system of equations will be discussed in this section. The goal
is to find the load capacity for a given fly height. First, the bearing geometry will be defined.
After that, the multiple resistance method is discussed. Next, a finite volume approach is
used, which is the basis for a dynamic model discussed in the next chapter. The last method
that will be treated is using the finite element method as implement by COMSOL. All three
methods will be compared in the last subsection.
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ro

rp

hp

rr

d l

h

Ps

Pr Pp Pa

Figure 3-5: Declaration of geometry variables and pressures for the air bearing model, drawn in
axisymmetric view. The restrictor is put off centre, at radius rr. This bearing also has a pocket, a
step in the bearing surface, with height hp.

3-4-1 Bearing geometry

Geometry of the modelled bearing is drawn in Figure 3-5. The restrictor can be put of centre
at radius rr. Because of axial symmetry, pressure for radii smaller than the restrictor radius
are constant and equal to the restrictor pressure Pr. A step in film height, called a pocket,
has radius rp and height hp.

3-4-2 Multiple resistance method

To find the load capacity for a given fly height with the multiple resistance method, first Pr
and Pp are computed. By noting that the mass flow through the system must be constant, a
system of equations can be set up.

By using the equations for mass flow through the restrictor (3-4) and thin film (3-8), the
following system of equations can be derived:

ṁ = Gr
(
P 2
s − P 2

r

)
= Gp

(
P 2
r − P 2

p

)
= Ge

(
P 2
p − P 2

a

)
(3-9)

where Gr is the restrictor conductivity and Gp and Ge the conductivity of the pocket and
edge. Unknowns are ṁ, Pr and Pp. Since this system is linear in the squared pressures, the
system can be written in matrix form and solved:Gr 0 1

Gp −Gp −1
0 Ge −1


P 2

r

P 2
p

ṁ

 =

Gr P 2
s

0
Ge P

2
a

 (3-10)

Alternatively, the pressures can be found by treating the system as linear circuit where the
voltage is the pressure squared. The mass flow can be solved with:

ṁ = P 2
s − P 2

a
1
Gr

+ 1
Gp

+ 1
Ge

=
(
P 2
s − P 2

a

) GrGpGe
GrGp +GrGe +GpGe

(3-11)

Then, pressures can be found with (3-9).
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16 Static air bearing modelling

To find the load capacity, the film pressure between Pr and Pp, and Pp and Pa needs to be
determined. Taking the pressure drop from Pp to Pa as example, this can be written as [10],
[23]:

p(r) = Pa

√√√√(Pp
Pa

)2
− ln (r/rp)

ln (ro/rp)

((
Pp
Pa

)2
− 1

)
(3-12)

The load capacity is given by the integral of this equation and the integral under the pocket
plus the pressure at the restrictor minus the ambient pressure on the bearing:

W = π r2
r Pr︸ ︷︷ ︸

restrictor

+
∫ rp

rr

2π r p(r) dr︸ ︷︷ ︸
pocket

+
∫ ro

rp

2π r p(r) dr︸ ︷︷ ︸
edge

−π r2
o Pa︸ ︷︷ ︸

ambient

(3-13)

Both [10] and [24] state that the integrals in this equation can not be solved analytically.
However, the integral can be shown to be [23, (2.159)]:∫ ro

rp

2π r p(r) dr = π r2
o Pp

(
rp
ro

)2
e

2
a

√
π a

8

[
Erf

(√
2
a

)
− Erf

(
Pa
Pp

√
2
a

)]
(3-14)

where

a =
1−

(
Pa
Pp

)2

ln
(
ro
rp

) (3-15)

Where Erf(x) is the Gauss error function. Alternatively, the integrals in (3-13) can be solved
numerically without substitution of (3-14). This describes the first method of finding the load
capacity as function of the fly height.

3-4-3 Finite volume method

Alternative to the multiple resistance method, a finite volume approach for solving Reynolds
equation has been developed. Although the multiple resistance model suffices, this alternative
method has been built to provide the basis for a dynamic model, which will be treated in the
next chapter.

Dimensionless numbers

Since fly heights are in the order of 10× 10−5 m and are cubed in the conductivity, typical
values for conductivity are in the order of 10−15 or smaller. To improve numerical stability,
equations have been written in a dimensionless form by introducing dimensionless radius,
pressure and height:

r [m] = r̄ [−] R [m]
p [Pa] = p̄ [−] P [Pa]
h [m] = h̄ [−] H [m]

(3-16)
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3-4 Modelling the air bearing system 17

A common choice for R is the outside radius ro. P is choosen as ambient pressure Pa and H
it is at the fly height h.

Starting with (2-8), removing all constants except the film height and substituting the
dimensionless variables, gives:

H3 P 2

R

∂

∂r̄

(
r̄ h̄3 p̄

∂p̄

∂r̄

)
= 0 (3-17)

Discretization and setting up equations

To solve (3-17), the differential equation has been discretized. The thin film has been divided
into volumes, and a set of equations has been set up describing how the pressure in a specific
volume depends on the pressures in neighbouring volumes. Flow of air through the restrictor
and boundary conditions are also discretized. This leads to a system of equations for the
pressure in each volume. The system of equations can be solved to find the pressures in each
volume, satisfying the boundary conditions.

With the solution of (3-17) numerically approximated, the dimensionless load capacity W̄ can
be found by integrating the pressures in the elements. The dimensionless load capacity can be
converted to dimensioned load capacity by multiplying with the conversion factors as defined
in (3-16).

The process of discretization, setting up equations, solving and finding the load capacity is
treated in appendix B-1. This section only has shortly summarized the process from differential
equation to solution. For a more detailed insight into this process, the reader is encouraged to
read the appendix. All mathematics are derived there, giving the reader an opportunity to
program his or her own finite volume solution using only this thesis as reference.

3-4-4 Finite Element Method: COMSOL Multiphysics

A third static model has been developed in COMSOL, a commercial finite element package.
This model was mainly used to verify the solutions of the finite volume model. The main
advantage of using COMSOL is the ease at which the model is created. Differential equations
can be put in directly, with COMSOL taking care of discretization.

The model is set up using a 1D axisymmetric component with General form PDE physics.
The conservative flux is set to:

Γ = r̄ h̄3 p̄
∂p̄

∂r̄
(3-18)

The source is added as a flux:

g = Ḡr
2
(
P̄ 2
s − p̄2

)
(3-19)

the factor 2 compensates for (B-3). The boundary condition at r = 1 is taken care of with
a Dirichlet boundary condition, and the symmetry boundary conditions are taken care of
automatically by COMSOL since the component is axisymmetric.
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18 Static air bearing modelling

3-4-5 Model comparison

In this section, pressure distribution and load capacity as found by the different models are
compared. Also, an analysis of model run times and some considerations for a parameter
study are made. All models are programmed in matlab R2014b, except the COMSOL model
which has been created in version 4.4.

Pressure distribution

The pressure distribution is computed with three different models: The multiple resistance
model, the finite volume model and the COMSOL finite element model. For the parameters
as listed in Table 3-1, the results are plotted in Figure 3-6. All models show equal pressure
distributions. Three distinct regions are clearly shown: first the constant pressure on the inside
of the restrictor radius, then a small drop in pressure caused by the pocket, from r = 0.1 m to
r = 0.4 m and last a greater drop in pressure over the edge.

Load capacity

The load capacity for a given pressure distribution can be found in four ways: by analytical
integration using the Gauss error function (3-14), by numerical integration of the pressure
distribution, by summing finite volume pressures and by using COMSOL’s built in integration
over its finite elements. The results can be found in Table 3-2.

Analytical integration, numerical integration and COMSOL show almost identical values. The
finite volume method result is accurate up to the third significant number. If the volume count
is increased, the results approaches that of the other models.

Run time and parameter study considerations

The run times for 500 runs are printed in Table 3-3. Both finite volume method and COMSOL
use 250 linear elements, giving 250 degrees of freedom.

The analytical integral is the fastest by far. Numerical integration and finite volume method
are close together at second and third. COMSOL is a lot more slow, probably caused by user
interface overhead.

When conducting an expensive parameter study, different considerations are to be taken. If
only a static solution is required, Gauss approximation is fast and accurate. The results of
this method, however, rely on the accuracy of Erf(x). For high pressure drops, the results
of Erf

(√
2
a

)
− Erf

(
Pa
Pp

√
2
a

)
approaches zero, resulting in an inaccurate approximantion of

load capacity. Constraints and validity checks should be added to ensure the solution is valid.
Numerical integration does not risk this error. It is therefore more reliable and requires less
effort to be made robust. This comes a cost of runtime. Both models are simple to program.

Finite volume should only be used if dynamics are also considered, which will be further
developed in the next chapter. It is not as fast or accurate as the previous two models, and a
greater programming effort.
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Figure 3-6: Thin film pressure versus radius. All solutions match.

Table 3-1: List of model parameters

variable value unit
Gr 2 · 10−16 m2s3/kg
Ps 3·105 Pa
Pa 1·105 Pa
rr 1·10−3 m
rp 4·10−3 m
ro 10·10−3 m
hp 10·10−6 m
h 10·10−6 m
η 18·10−6 Pa s
Rs 287 m2/s2K
T 293 K

Table 3-2: Modelled load capacities

model load capacity [N]
Gauss approx 19.2096
Numerical int 19.2096
Finite volume 19.1828
COMSOL 19.2097

Table 3-3: Computation time for 500 runs

model time [s]
Analytical int 0.11
Numerical int 0.77
Finite volume 0.93
COMSOL 9

The COMSOL model is easy to set up, but given its slow runtime, proves to be unwieldy for
an extensive parameter study.

3-5 Conclusions and outlook

In this chapter, static modelling of externally pressurized circular air bearings has been
discussed. The function of a restrictor in combination with a thin film is explained as a way
to achieve stiffness. Models for mass flow through both restrictor and thin film are developed,
leading to different solution strategies for finding load capacity for a given fly height and
bearing geometry.

The multiple resistance method, with two possible integration options, is fast and accurate.
The finite volume method is slower and less accurate, but provides a basis for the dynamic
model which is developed in the next chapter. The COMSOL model is primarily used as
reference, since it is quite slow in comparison.
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20 Static air bearing modelling

In the next chapter, the dynamic model will be treated. By linear perturbation of Reynolds
equation, stiffness and damping as function of frequency, fly height and bearing geometry will
be determined.
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4
Dynamic air bearing modelling

In the previous chapter, different models for load capacity as function of fly height and bearing
geometry have been developed and compared. In this chapter, a model will be developed to
determine stiffness and damping of a thin film of air when subjected to a sinusoidal squeeze
motion: a change of fly height in time. Using a technique called linear perturbation, the effects
of squeeze motion around a static solution will be explored, resulting in a differential equation.
Different solution techniques will be discussed, of which two will be chosen. The solutions
found by the different techniques, and properties of these techniques, will be discussed.

4-1 Linear perturbation of Reynolds equation

To gain more insight in the dynamic behaviour of air bearings with vibrating surfaces, Reynolds
equation is linearly perturbed. First, the process of perturbation is explained. The derivation
of the perturbed Reynolds equation is shown after that.

4-1-1 Stiffness and damping

Perturbation is a mathematical technique for finding an approximate solution to a problem,
by starting from the exact solution of a related, simpler problem. In this thesis the static
solution is perturbed by a real and imaginary sinusoidal signal with small amplitude. This
leads to the stiffness and damping of the thin film. The static height h0 is perturbed with δh,
leading to a change in pressure δp:

h = h0 + δh(t), δh = h̃ ej ω t

p = p0 + δp(t), δp = p̃ ej ω t
(4-1)

The perturbed load capacity can be found by integrating the perturbed pressure, giving δW .
Calling the unperturbed load capacity W0, the stiffness can be found with:

k = −∂W
∂h
≈ − δW −W0

(h0 + δh)− h0
= −

∫
p0 + δp dr − ∫ p0 dr

(h0 + δh)− h0
= −

∫
p̃ dr

h̃
(4-2)
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22 Dynamic air bearing modelling

Thus, stiffness can be found by solving the perturbed Reynolds equation and integrating the
real part of the perturbed pressure. Damping, defined as the negative change of load with
velocity, can be found with:

c = −∂W
∂ḣ
≈ − δW −W0(

ḣ0 + δḣ
)
− ḣ0

= −
∫
p̃ dr

j ω h̃
(4-3)

Therefore, damping can be found by integrating the imaginary part of the perturbed pressure
and dividing by the frequency.

4-1-2 Substitution of perturbed variables

The perturbed height and pressure are substituted in the axisymmetric Reynolds equation as
described in (2-8), which is copied for the reader’s convenience:

−1
r

∂

∂r

(
r p h3

12 η Rs T
∂p

∂r

)
+ ∂

∂t

(
p h

Rs T

)
= 0 (4-4)

Both p and h are function of time. All other variables are assumed constant. Substituting
(4-1) into this equation gives:

− 1
12 η r

∂

∂r

[
r (po + δp) (h0 + δh)3 ∂ (p0 + δp)

∂r

]
+ ∂

∂t
[(po + δp) (h0 + δh)] = 0 (4-5)

Neglecting all higher order terms in δ, like δh δp, stating ∂
∂t (p0) = 0 and ∂

∂t (h0) = 0 and
substituting δh = h̃ ej ω t and δp = p̃ ej ω t gives:

− 1
12 η r

∂

∂r

(
r h3

0 p0
∂p0
∂r

+ r h3
0 p0

∂p̃

∂r
ej ω t + r h3

0 p̃ e
j ω t∂p0

∂r
+ 3h2

0 h̃ e
j ω t p0

∂p0
∂r

)
+

j ω p0 h̃ e
j ω t + j ω h0 p̃ e

j ω t = 0
(4-6)

The first part in brackets, r h3
0 p0

∂p0
∂r , is the static solution and is equal to zero, as shown in

chapter 3. Therefore it can be removed. All remaining term are now multiplied with ej ω t,
which can therefore also be removed. This gives the perturbed Reynolds equation:

− ∂

∂r

(
r h3

0 p0
∂p̃

∂r
+ r h3

0 p̃
∂p0
∂r

+ 3h2
0 h̃ p0

∂p0
∂r

)
+ 12 η r j ω

(
p0 h̃+ h0 p̃

)
= 0 (4-7)

This equation describes the change in pressure in radial direction in a thin film as a result of
small deviation of fly height.
The perturbed Reynolds equation contains the static solution and the first and second derivative
of the static solution to r. This means that the static solution has to be solved and substituted
before the perturbed equation can be solved.

4-2 Solving the perturbed Reynolds equation

With the perturbed Reynolds equation set up, this section will deal with different solving
techniques. The most promising techniques will be further developed.

R.P. Hoogeboom Master of Science Thesis
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4-2-1 Solving techniques

The change of perturbed pressure is governed by (4-7). To solve this equation, boundary
conditions have to be added. At the inner edge, symmetry demands no change in perturbed
pressure: ∂p̃(r=0)

∂r = 0. At the outside border, the perturbed pressure is 0: p̃(r = ro) = 0. This
makes this a boundary value problem. Different solution techniques are tried and will be
discussed subsequently.

Shooting method

The shooting method is a method for solving a boundary value problem by reducing it to the
solution of an initial value problem. Simply put, it changes starting conditions to iterate to a
solution that fits the boundary conditions.
A shooting method was implemented in Matlab which could iterate to a solution. However,
the iteration process was quite computationally heavy, taking multiple seconds per solution,
and therefore a better method was sought.

Finite Element Method: COMSOL Multiphysics

Similar to the model as discussed in subsection 3-4-4, this differential equation can also be
solved by the finite element package COMSOL. This model is easy to build, but too slow for
an extensive parameter study. Because it was used extensively to check results of different
models, it is discussed in greater detail in a next subsection.

Finite volume

Lastly, a finite volume model is developed to solve the perturbed Reynolds equation. It gives
reliable results and is fast enough to be used in a parameter study. The finite volume model
will be discussed in the next subsection.

4-2-2 Finite volume method

In this subsection, development of the dynamic finite volume method model is treated. Static
solutions required in the perturbed equation are found with the static finite volume method
model as treated in the previous chapter.
The steps in developing a finite volume model to solve the perturbed Reynolds equation are
similar to those for Reynolds equation, as described in subsection 3-4-3. First, the perturbed
Reynolds equation is put into a dimensionless form by defining an extra dimensionless number:

ω [1/s] = ω̄ [−] Ω [1/s] = ω̄ [−] P H2

12 η R2 [1/s] (4-8)

Substituting this into (4-7) gives:

− ∂

∂r̄

(
r̄ h̄3

0 p̄0
∂ ˜̄p
∂r̄

+ r h̄3
0 ˜̄p ∂p̄0

∂r̄
+ 3 h̄2

0
˜̄h p̄0

∂p̄0
∂r̄

)
+ r̄ j ω̄

(
p̄0

˜̄h+ h̄0 ˜̄p
)

= 0 (4-9)
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24 Dynamic air bearing modelling

By discretizing this equation, the air feed equation and boundary conditions, a linear set
of equations is found. Note that the perturbed pressure is a complex number. To simplify
solving, the complex equations are split up into real and imaginary parts, leading to a final set
of equations which can be solved to find the perturbed pressure. Dimensionless stiffness and
damping can be determined by integrating the perturbed pressure solution over the radius,
which in discretized form is equal to summing the volume areas multiplied with values for
pressure. The dimensionless stiffness and damping can be converted to dimensioned numbers
by multiplying with the conversion factors.

This process is fully documented in appendix B-2. For an appreciation of the effort needed
to solve this differential equation and develop a working model, a view at the appendix is
suggested. Using only this appendix as reference, a fully working finite volume implementation
for solving the perturbed Reynolds equation can be programmed.

4-2-3 Finite element method: COMSOL

To validate the finite volume model, the perturbed Reynolds equation is also solved using
COMSOL. The model is very similar to the static model as discussed in subsection 3-4-4. A
1D axisymmetric component has been used with general form PDE physics. The conservative
flux is set to:

Γ = r̄ h̄3 p̄0
∂ ˜̄p
∂r̄

+ r̄ h̄3 ˜̄p ∂p̄0
∂r̄

+ 3 r̄ h̄2 ˜̄h p̄0
∂p̄0
∂r̄

(4-10)

the source term is set to:

f = 12 η R2 iΩ
P H2 r̄

(
p̄0

˜̄h+ h̄ ˜̄p
)

(4-11)

The feed is modelled with a flux set to:

g = Ḡr p̄0 ˜̄p (4-12)

The boundary on r̄ = 1 was set with a Dirichlet boundary condition, the boundary on r̄ = 0
is taken care of by the axisymmetry of the component.

4-2-4 Comparison of solutions

With both the finite volume method as a COMSOL method set up, the solutions to the
perturbed Reynolds equation can be compared. First, perturbed pressure versus radius is
analysed for both models. Next, the integrals of the real and imaginary part of the perturbed
pressure, leading to stiffness and damping, are compared. At last, perturbed stiffness is related
to a finite difference stiffness of the static solution.

Dynamic pressure

In Figure 4-1, the dynamic pressures are plotted. Bearing geometries are equal to those of
the previous chapter, as listed in Table 3-1. The real and imaginary parts are plotted for
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Figure 4-1: Dynamic pressure in thin film at low frequencies, top row, and high frequency, bottom
row. Since both plots are made for identical bearing geometry, and the dynamic pressure changes
with frequency, both stiffness and damping are frequency dependent.

Table 4-1: Stiffness and damping results for the finite volume method model and COMSOL

1 Hz 1× 104 Hz
model k [N/m] c [Ns/m] k [N/m] c [Ns/m]

Finite volume 2.140× 106 1.999× 102 4.029× 106 7.697
COMSOL 2.141× 106 1.996× 102 4.029× 106 7.697

a solution at 1 Hz and at 1× 104 Hz. The finite volume method solutions match with the
COMSOL model solutions in both cases. This is also reflected in the values for stiffness and
damping, which are printed for both frequencies in Table 4-1. This validates the finite volume
method as a method of solving the perturbed Reynolds equation.

Note that only the frequency changes between the upper and lower row in Figure 4-1. Since
the surface area beneath the graphs, which is a measure for stiffness and damping, changes
between both cases, stiffness and damping are frequency dependent.

For 500 runs, the finite volume model with 250 volumes takes 2.95 s, while COMSOL with
250 linear elements takes 19 s for 500 runs. Being faster, the finite volume method is more
suitable for an extensive parameter study.

Both solving times are significantly longer than their static counterparts. Because the static
solution is needed to solve the perturbed equation, every run solves both the static and
perturbed equations.
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26 Dynamic air bearing modelling

Comparison with static model stiffness

As an additional check, the perturbed stiffness at a low frequency is compared to the stiffness
that can be derived from the static model via finite difference. For the model with geometries
as stated in Table 3-1, finite difference on the numerical integral gives 2.14× 106 N/m, which is
equal to that of the finite volume model at 1 Hz. This validates that perturbation of Reynolds
equation results in the correct stiffness at low frequencies.

4-2-5 Range of validity of the model

In chapter 2, Reynolds equation and assumptions are discussed. In assumption 6, fluid inertia
is neglected. The validity of this assumption for both radial flow as for squeeze motion is
discussed in this subsection.

Navier - Stokes equations describe the motion of viscous fluids. Reynolds equation can be
derived from Navier - Stokes equation by using the assumptions as mentioned in chapter 2
and neglecting higher order terms of h/r, as shown by [21] and [24]. If inertia terms are not
removed, the reduced Navier - Stokes momentum equation in dimensionless form and polar
coordinates becomes [24, (6.20)]:

ρ̄

(
˜̄hRe,sq

∂ū

∂t̄
+Re,r

[
ū
∂ū

∂r̄
+ w̄

∂ū

∂z̄

])
= − Re,r

κM2
a

∂p̄

∂r̄
+ ∂2ū

∂z̄2 (4-13)

where ū is the normalised fluid velocity in r direction and w̄ is the normalised fluid velocity
in z direction. Time is normalised by dividing through the scaled radial frequency: t [s] =
t̄ [−] /¯̃hω [1/s]. Ma is the Mach number and κ the ratio of specific heats.

The terms on the left hand side are the inertia terms. Their relative importance can be judged
by the terms with which they are multiplied, which are the reduced Reynolds number:

Re,r = ρ∗ U H2

η R
(4-14)

and the squeeze Reynolds number:

Re,sq = ρ∗H2 ω

η
(4-15)

where density is normalised with ρ∗: ρ
[
kg/m3] = ρ̄ [−] ρ∗ [kg/m3]. The assumption of

neglecting fluid inertia is valid if both Reynolds numbers are much smaller than one.

For a typical air bearing with a radius of 10 mm, a fly height of 10 µm and fed in the middle
with a restrictor pressure of 2× 105 Pa (source pressure 3× 105 Pa), the average density is
around 1.6 kg/m3. The average velocity is 6 m/s. This gives a reduced Reynolds number of
6× 10−3, justifying the assumption that globally speaking the inertia in r direction can be
neglected.

If this bearing is vibrating with a frequency of 1 kHz, the squeeze Reynolds number becomes
6× 10−2, small enough to disregard the inertial terms. Around 15 kHz, the squeeze Reynolds
number becomes 1, and inertia due to the squeeze motion can no longer be neglected.
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4-3 Conclusions and outlook

Stiffness and damping of an air film in squeeze motion can be found by linear perturbation of
Reynolds equation, as shown in this chapter. The perturbed Reynolds equation is derived and
solved using a self developed finite volume method. The solution found by the finite volume
model shows correspondence with the COMSOL model. The finite volume method is almost
10 times faster than the COMSOL model, making it suitable for extensive parameter studies.
The range of validity of linear perturbation is discussed.

In the next chapter, the developed model will be used to find a low transmissibility air bearing
design. First, transmissibility is explained. Then, a study is performed to determine the
influence of different design parameters. The effects of adding a vacuum bearing to a thrust
bearing is explored, leading to two methods for achieving low stiffness. Last, these designs
will be optimized.
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5
Low transmissibility bearing design

In this chapter, design of a low transmissibility air bearing will be explored. First, the concept
of transmissibility and how it can be influenced is explained. Next, a dimensionless parameter
study will be conducted to examine how bearing stiffness can be influenced. The effects of
combining thrust with vacuum bearings will be analysed. This will lead to two concepts for a
low stiffness air bearing. Both concepts will be thoroughly examined, optimized and compared.

5-1 Transmissibility

The term transmissibility refers to the capability of a system to transfer motion from one body
to another. It is defined as the ratio of movements between two bodies. Because transmissibility
relates relative movements, it is a useful measure in judging vibration isolation. An ideal
vibration isolation system will not transfer any vibrations and have zero transmissibility over
the full frequency spectrum. This is not achieved in real systems, but the trend is that lower
transmissibility will result in better vibration isolation.

In Figure 5-1, the air bearing system is sketched. The thin film is represented by a spring with
stiffness k and a damper with damping c. The counter surface, or floor, moves with distance
xf , causing the bearing to move with distance xb.

Transmissibility of this system can be shown to be [25, (3.62)]:

xf
xb

= j ω c+ k

−mω2 + j ω c+ k
(5-1)

As can be seen from this equation, transmissibility is controlled by three parameters: stiffness,
damping and mass. The influence of all three factors will be investigated and compared to a
reference: a system with k = 1 · 105 N/m, c = 3 N/ms and m = 1 kg. The eigenfrequency of a
mass spring system is given by ω0 =

√
k/m, which is 50 Hz for the reference.

This can be seen in Figure 5-2, where a bode plot of the transmissibility is shown, with the
magnitude in the top axis and the phase in the lower axis. The reference has been drawn in
blue.
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Figure 5-1: Modelling thin film as a spring and damper to find the transmissibility of vibrations
from the floor to the bearing
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Figure 5-2: Bode plot of transmissibility for four different systems. High mass and low stiffness
decrease the eigenfrequency, leading to low transmissibility at high frequencies. High damping
reduces eigenfrequency amplitude and couples more strongly at high frequencies.

Increasing mass

By increasing mass with a factor 100, the natural frequency of the system is reduced with a
factor 10, from 50 Hz to 5 Hz, as can be seen in Figure 5-2 where the high mass system is
drawn in red and is somewhat hidden behind the green line.

For frequencies above the natural frequency, the transmissibility decreases with a slope of -2
(amplitude ×10−2 per decade). A lower natural frequency therefore leads to less throughput
of vibration, since transmissibility decrease starts at a lower frequency.

Although the high mass system has better vibration isolation properties, making systems
heavier might not be feasible. It will result in a trade off in other system performances. The
system is supported on air bearings because it should be able to move parallel to the floor.
For example, assume the bearing supports a high speed scan stage. Although increasing the
mass has a beneficial effect on vibration isolation, it will also increase the force required to
accelerate parallel to the floor, introducing other problems. Decisions concerning the trade off
between transmissibility and acceleration can only be made on a system design level, since

R.P. Hoogeboom Master of Science Thesis



5-2 Parameter study 31

it will affect more than only the bearings. Therefore, increasing system mass is not treated
further in this thesis as a transmissibility reducing option.

Decreasing stiffness at constant damping ratio

Transmissibility is also influenced by stiffness. In Figure 5-2 the low stiffness case is drawn
in green. Stiffness has been reduced with a factor 100, from 1× 105 N/m to 1× 103 N/m.
Damping has been changed from c = 3 N/ms to c = 0.3 N/ms, to keep damping ratio ζ
constant:

ζ = c

2
√
km

(5-2)

at a value of ζ = 0.005. The decrease in stiffness of a factor 100 leads to a decrease in natural
frequency with a factor 10. This has an effect equal to increasing the mass: the -2 slope
starts at a lower frequency, leading to less vibration throughput at the higher frequencies. In
contrast with increasing mass, lowering stiffness has less negative side effects. Therefore, this
option is explored in this thesis.

Increasing damping

Finally, damping ratio is changed. The result of increasing damping from c = 3 N/ms to
c = 300 N/ms has been plotted in yellow in Figure 5-2. The resulting damping ratios are
ζ = 0.005 and ζ = 0.5, respectively.
Two noticeable effects can be seen in the transmissibility magnitude. First, the peak at
the natural frequency has disappeared completely. Second, the decrease in transmissibility
after the natural frequency has changed in a -1 (amplitude ×10−1 per decade) slope. More
vibrations will be transferred to the bearing at higher frequencies, because the damper is
coupling the floor and bearing more strongly at these frequencies.
The phase of the transmissibility also shows two noticeable differences. The phase at the
natural frequency now changes more smoothly and decreases to −90◦ instead of −180◦. This
behaviour is typical of a damper.
A closer look at the low stiffness case in green shows that the phase at high frequencies is
starting to increase, and the magnitude is transferring from a -2 line to a -1 line. This is also
caused by damping.
The decrease in resonance peak magnitude is beneficial, but stronger coupling at high frequen-
cies is not. Therefore, the properties of a vibration isolating air bearing to optimize are low
stiffness and low damping. The resonance peak should be dealt with differently, for example
with tuned mass-spring-damper, as discussed in [25].

5-2 Parameter study

Low transmissibility can be achieved with low bearing stiffness. To design a low stiffness
bearing, first some insight in the effect of design parameters is required. Therefore, a parameter
study is conducted in this section.
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Figure 5-3: Declaration of dimensionless geometry parameters for the air bearing model, drawn
in axisymmetric view. To allow height offsets and different radii between multiple dimensionless
bearings, the relative fly height and outer radius are defined.

First, the benefits of doing a dimensionless study are discussed and design parameters are set
up. Next, the effect of these parameters on load capacity, stiffness and damping is treated.

5-2-1 Dimensionless analysis

The finite volume method models developed in chapter 3 and chapter 4 are in dimensionless
form. This has two clear advantages, but also requires a conversion to dimensioned values.

First, by using dimensionless equations, the numerical accuracy is increased, as discussed in
subsection 3-4-3.

Second, the solutions found in a dimensionless solution are valid for every bearing that has
the same normalised geometry: the solution can be scaled to a certain dimension to describe a
dimensioned design. This considerably simplifies the design process. One dimensionless design
with advantageous properties, like low stiffness, can be scaled to fit multiple dimensioned
designs with different load capacities.

Dimensionless design parameters

The set of parameters for this dimensionless axisymmetric air bearing design is reduced
compared to the dimensioned design. Because the outer radius and fly height are normalised,
they can be removed from the design parameters for a single bearing. However, because the
effect of combining two bearings is studied in a coming section, a relative fly height and radius
is added. For a study with two bearings, this leads to 12 design parameters in total: 2 times
3 geometry parameters, 2 feed pressures, 2 restrictor conductivities and 2 relative geometry
parameters.

5-2-2 Influence of design parameters

In this section, the effect of changing design parameters is explored. All changed characteristics
are compared to a reference design, a bearing without a pocket and with the air feed located
in the middle. The parameters of all modelled designs are listed in Table 5-1. All plots that do
not have dimensionless fly height h̄ on the x axis are drawn at h̄ = 1, unless stated otherwise.
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Table 5-1: Design parameters for all examined models. Parameters that did not change with
respect to the reference are noted with a “-”.

Parameter Reference r̄r = 0.3 r̄p = 0.3 Ḡr = 3 Ḡr = 1/3 P̄s = 6 P̄s = 1.5
r̄p 0 - 0.3 - - - -
h̄p 0 - 10 - - - -
r̄r 0.01 0.3 - - - - -
P̄s 3 - - - - 6 1.5
Ḡr 1 - - 3 1/3 - -

Influence of restrictor radius and pocket

First, the effect of placing the restrictor off centre is studied. Because adding pocket has a
similar effect, this is also treated here. Results are plotted in Figure 5-4.
The top left axis shows the pressure distribution versus the radius. For radii lower than the
restrictor or pocket radius, pressure is constant. High film height in the pocket results in an
negligible resistance; there is virtually no pressure drop in the pocket. Therefore, adding a
pocket has the same effect as increasing the restrictor radius and the off centre air feed creates
a ‘virtual pocket’.
The thin film from restrictor (or pocket) to the outer edge is shorter compared to the reference
case. Since this is the only part with significant resistance, the total resistance is lower. This
results in a lower restrictor pressure compared to the reference case, from P̄r = 2.8 for the
reference case to P̄r = 2.3.
Although the restrictor pressure is lower for both bearings, their load capacity is considerably
higher than the reference case. This can be seen in the lower left figure. Because the pressure
is higher for essentially the total radius, the load capacity is increased.
The stiffness and damping versus the frequency at h̄ = 1 are plotted in the right column.
Before examining the effect of different parameters, the overall behaviour is explained, as
displayed by the reference bearing.
At low frequencies, squeeze motion results in damping. A change in fly height forces fluid in
and out at a flow rate proportional to the relative velocity of the bearing. Resistance to this
flow, which is also proportional to the flow rate, creates a reaction force on the bearing. This
force is thus proportional to, and in phase with, velocity and therefore identified as damping.
At higher frequencies, the fluid is no longer forced in and out of the air gap by a change in
fly height, but it is compressed. The resulting force on the bearing becomes proportional to
displacement instead of velocity. The film now acts as a spring instead of a damper. [26].
Both decreasing damping and increasing stiffness can be seen in the graphs. The stiffness is
not zero for low frequencies due to the static behaviour of the bearing. This can be seen in
the load capacity - fly height diagram on the bottom left, which as a non zero slope at h̄ = 1.
Both non reference bearings show equal and increased stiffness at low frequencies compared to
the reference. This can also be seen from the W̄ - h̄ graph, where the derivative at h̄ = 1 is
larger than that of the reference bearing. For higher frequencies, the pocket shows a different
stiffness behaviour than the increased radius, caused by a difference in film volume.
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Figure 5-4: Characteristics of a bearing with feed at r̄ = 0.3 and with a pocket with height
h̄p = 10 at r̄p = 0.3. Statically, a pocket and feed radius have the same effect, dynamically they
do not. The bearing with pocket is dynamically unstable, because damping is negative at low
frequencies.

A difference in damping is also observed, shown in the bottom right. Contrary to the reference
and off centre restrictor bearing, damping for the pocket bearing starts at a negative value. This
means that the bearing is dynamically unstable. This instability is a well known phenomena
in air bearing design and is called ‘pneumatic hammer’. It is caused by having significant
volumes in the thin film, downstream of the restrictor. It will be treated in more detail in
section 6-2.

Influence of restrictor conductivity

A change in conductivity will result in a change of stiffness. This can be seen in Figure 5-5,
where the results for increased and decreased conductivities are plotted. The most pronounced
effect is seen in the W̄ - h̄ plot, on the bottom left. By increasing the conductivity, stiffness is
decreased and vice versa. This is also reflected in the low frequency stiffness, which is higher
for a lower conductivity.
This effect can be understood by analysing the bearing as a system of two resistances in series,
namely the restrictor and the thin film. The load capacity is proportional to the ratio of thin
film resistance over total resistance: W̄ ∼ Rtf/ (Rr +Rtf ). Since the geometries for the three
compared bearings in this study is equal, their thin film resistance is equal at equal fly height.
Therefore, a high restrictor resistance (low Ḡr) will give a lower load capacity at a particular
fly height. But since the maximum load capacity is only dependent on the thin film geometry
(for low h̄: Rtf >> Rr), and the geometry is equal, the higher resistance will result in a faster
decrease of W̄ with increasing h̄, resulting in a higher stiffness.
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Figure 5-5: Characteristics of bearings with Ḡr = 1, Ḡr = 3 and Ḡr = 1/3. Increasing
conductivity decreases stiffness.

Decreasing stiffness by increasing Ḡr looks promising for a low transmissibility design. For an
infinitely high Ḡr the system indeed has no stiffness, but also is unstable. This results in the
bearing as shown in Figure 3-1, with a constant W̄ , independent of h̄.

Influence of increasing the source pressure

In Figure 5-6, the results for an increased and decreased source pressure are drawn. Increasing
the source pressure raises the maximum load capacity. The higher maximum load also leads
to a higher stiffness, since the load capacity still declines over almost the same range in fly
height but starts at a higher value. Higher source pressure increases stiffness over the whole
frequency spectrum. It has no pronounced effect on damping.

Influence of relative bearing height and radius

As can be seen in the left graph of Figure 5-7, increasing the relative fly height with 0.5 has
the effect of shifting the W̄ − h̄ curve to the left with 0.5. Decreasing the relative fly height
with 0.5 will shift the curve and cause the model to stop at h̄ = 0.5, since at that height the
bearing will make contact. The p̄− r̄, k̄− ω̄ and c̄− ω̄ plots, are identical for all three bearings,
only the frequency is shifted with a factor h̄2

rel. Therefore, they are omitted.

On the right side of Figure 5-7, the effect of a relative change in radius is plotted. A larger
radius will increase the load capacity. The stiffness and damping magnitude is scaled with
r̄2
rel, the frequency with 1/r̄2

rel.
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Figure 5-6: Characteristics of a bearings with P̄s = 6 and P̄s = 1.5. Increasing source pressure
results in a higher maximum load capacity and increased stiffness.
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Figure 5-7: Load capacity versus fly height of a bearings with a different relative fly height (left)
and radius (right). Increasing relative fly height shifts the W̄ − h̄ line to the left. Increasing
relative radius raises load capacity.
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5-3 Combing thrust and vacuum bearings

With the influence of design parameters on the behaviour of a single bearing discussed, in this
section a vacuum bearing is added to the thrust bearing. This is commonly used to increase
the total bearing stiffness, as discussed in chapter 1. This mechanism will be shown in the
next subsection. The addition of a vacuum bearing also creates an opportunity for a stable
low stiffness design, as will be treated subsequently.

The source pressure of a vacuum bearing is lower than ambient pressure. This gives a vacuum
bearing a negative load capacity and negative stiffness. The design parameters, as discussed
in the last section, effect a vacuum bearing in a similar way as it effects thrust bearings. Load
capacity can be changed with (virtual) pockets and conductivity influences stiffness.

Although stiffness is negative for feed pressures < 1, damping is not. It shows similar behaviour
as damping in thrust bearings.

5-3-1 Vacuum pre-loading

As discussed in chapter 1, air bearings are usually optimized for high stiffness. While
maintaining equal load capacity, bearing stiffness can be enhanced by increasing source
pressure and pre-loading, often done using vacuum bearings.

The function of the vacuum bearing is to pre-load the thrust bearing. The increased load
capacity caused by the high feed pressure is countered by the negative load capacity of the
vacuum bearing. Vacuum bearings are implemented such that they exert a constant force, thus
with zero stiffness. Therefore, the increased stiffness of the high source pressure now occurs at
the same load capacity and fly height as the default source pressure without pre-load.

To ensure a constant negative force by the vacuum bearing, in actual air bearings the vacuum
film is significantly higher than the pressurized film. Also, the vacuum flow is only restricted
by mass flow limits in the vacuum source. Because this behaviour is not captured by the
model, it is illustrated by using a equal film height, high restrictor conductivity vacuum air
bearing.

Increased stiffness is illustrated in Figure 5-8. In this W̄ − h̄ graph, the reference bearing is
compared to a increased source pressure and vacuum pre-loaded bearing. At the operating
point of h̄ = 1.6, stiffness of the pre-loaded bearing is significantly higher than the reference
case, while having the same load capacity.

5-3-2 Effect of negative stiffness on bearing stability

Vacuum bearings used for pre-loading exert a fly height independent and thus constant force.
This force can made fly height dependent by having the vacuum surface at equal height to
the pressurized surface and restricting vacuum flow. This gives the vacuum bearing stiffness,
which is negative because the vacuum force is negative and increasing to zero. The total
system stiffness is the sum of thrust and vacuum stiffness. Therefore, a vacuum bearing can
be used to reduce total stiffness. However, this will not lead to a stable, low stiffness operating
point, as will be shown.
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Figure 5-8: Load capacity for reference bearing and vacuum pre-loaded bearing. The increased
load capacity is countered by the pre-load, resulting in higher stiffness.
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Figure 5-9: Effect of increasing negative stiffness in the vacuum pre-loaded system. The solid
red line, Ḡr = 30, is the pre-loaded system as drawn in Figure 5-8. In the right axis, the stiffness
versus fly height has been plotted. The stiffness of the thrust bearing is drawn with a purple
dashed line. Other dashed lines, with negative stiffness values, are vacuum stiffnesses at different
conductivities. Combined vacuum and pressurized load capacities and stiffnesses are drawn with
solid lines.

To illustrate this, the vacuum conductivity of the system from the previous subsection, which
has surfaces at equal heights, is decreased. The results have been plotted in Figure 5-9.

First examine the red line, which is the pre-loaded system from Figure 5-8. The total stiffness,
drawn with a solid line in the right graph, is the sum of the thrust (purple dashed) and vacuum
(red dashed) stiffness. The vacuum stiffness is low and almost constant, having little effect on
the total stiffness. If conductivity is reduced to Ḡr = 1.5, stiffnesses balance. The solid green
line has low stiffness up to h̄ = 0.5.

If the conductivity is reduced even further, as drawn in yellow, a zero stiffness point appears.
Left of this point is a region with negative stiffness, making this zero stiffness point unstable.
If the bearing is operating at the zero stiffness point and a small disturbance decreases the fly
height, the vacuum part will pull harder than the thrust part can push. The bearing snaps in
and makes contact, which is undesirable.

To create a stable low stiffness point, the W̄ − h̄ curve should be monotonically decreasing.
The low stiffness point should not cross the k̄ = 0 line, but at best be tangent to it.
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Figure 5-10: Screen capture of the graphical user interface. Influence of design parameters can
be tested, combination of bearings assessed and different combinations compared.

The system with Ḡr = 1.5 complies to these rules, but is also not a feasible vibration isolator.
The low stiffness region occurs at maximum load capacity. If the bearing operates at this
point, the fly height could reduce to h̄ = 0 and the bearing could make contact.
This sets a second rule. The low stiffness point should not be at the maximum load capacity,
but should be a decrease in the k̄ − h̄ curve, in between two areas with positive stiffness.
By only changing the vacuum conductivity and vacuum restrictor radius, and thus influencing
the negative load capacity and stiffness, no designs complying to both rules have been found.
If the vacuum stiffness is equalized to the bearing stiffness, it would always resemble the green
line in Figure 5-9. The stiffness decrease of the vacuum starts at the same fly height as the
increase of the thrust bearing. A different design strategy is required to find an operable low
stiffness working point.
To simplify the design process and create insight in the effects of parameters, the ‘air bearing
design tool’ has been programmed. This is a user interface that uses sliders to change the
geometries of a thrust and vacuum bearing, and in real time plot the corresponding curves, as
can be seen in Figure 5-10. Details of this tool can be found in Appendix C.

5-4 Low stiffness air bearing design

As seen in the last section, decreasing vacuum bearing conductivity to balance negative stiffness
with the thrust pad’s positive stiffness does not lead to an operable low stiffness working
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Table 5-2: Design parameters for vacuum bearing as drawn in Figure 5-11

Parameter Design 1 Design 2 Design 3 Design 4
h̄rel -0.3 -0.5 -0.7 -0.9
r̄r 0.28 0.33 0.33 0.31
Ḡr 1 - - -
P̄s 0.5 - - -
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Figure 5-11: Load capacity and stiffness diagrams for low stiffness designs. The blue dashed
line in the right graph is the reference bearing stiffness. The dashed lines in other colours are the
stiffnesses of the vacuum bearings. The combined load capacity and stiffness are plotted in solid
lines.

point. If stiffnesses are balanced, the low stiffness point will occur at maximum load capacity.
However, by changing the fly height at which the negative stiffness is maximum, a stable
design and operable working point can be achieved. Alternatively, using the air bearing design
tool, another promising design was found. Both are described in the next subsection.

5-4-1 Low stiffness by height difference - concept one

In section 5-2, a decrease in relative fly height is shown to shift the W̄ − h̄ curve to the right.
If the vacuum bearing is given a height offset, its stiffness will start to increase for higher
fly heights. This solves the problem that stiffnesses can only be made to balance at low fly
heights, close to the maximum load capacity.

Stable designs can be achieved with a negative relative fly height. The vacuum restrictor
radius needs to be changed for different height offsets to balance the stiffnesses. Some results,
combining the reference bearing with a vacuum bearing, are plotted in Figure 5-11. The
parameters are listed in Table 5-2.

The combined load capacity versus fly height curve is drawn on the left. The stiffness versus
fly height is drawn on the right. The stiffness of the reference bearing is drawn with a blue
dashed line. This bearing is combined with 4 different vacuum bearings, leading to 4 low
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Figure 5-12: Load capacity and stiffness diagrams for low stiffness designs with 20% error in Ḡr.
The error is compensated by tuning both supply pressures.

stiffness systems. Each vacuum bearing has a different height offset. The vacuum stiffnesses
are drawn in dashed lines, all are negative. The combined stiffnesses are plotted in solid lines,
where the colour of the combined (solid) line corresponds to the colour of the vacuum (dashed)
line.

For an increasing height difference, the low stiffness point occurs at lower fly heights. It
determines the balance of load capacity before and after the low stiffness point. The trade off
is in the load capacity at the low stiffness point. A lower relative fly height difference will lead
to a higher load capacity at the low stiffness point, but less margin for unexpected changes
in load. Designs using this method of height offset to create a low stiffness point are hereby
referenced as concept one.

Compensation of manufacturing uncertainties

When a design is manufactured, parameters have some degree of uncertainty. Some will have
more relative uncertainty than others, and therefore influence expected performance more.

The average fly height of an air bearing is 10 µm, thus the height offset is in the order of µm.
This is 4 orders of magnitude smaller than the radius, which is typically in the order of 10 mm.
Therefore the height offset can be expected to have relative high uncertainty. Restrictor
conductivity also has a high manufacturing uncertainty, as will be shown in chapter 6.

A change of 20% in both Ḡr and h̄rel shows around a 10% change in load capacity at the low
stiffness operating point. Especially a change in Ḡr has a negative effect because it will cause
the vacuum stiffness to no longer balance the thrust stiffness.

However, both source pressures can be tuned in operation. By changing source pressures,
uncertainty in manufacturing can be compensated.

This is shown in Figure 5-12, where the vacuum restrictor conductivity of design 3 from
the previous subsection is lowered with 20%. This increases vacuum stiffness, leading to an
unstable point around h̄ = 1.4. If the thrust pressure is lowered to 2.82 and the vacuum
pressure increased to 0.59, low stiffness can still be achieved at the anticipated load capacity.
Uncertainty in can h̄rel can be compensated with a similar strategy.
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Figure 5-13: Load capacity and pressure of a shallow pocket bearing. At low fly heights, the
shallow pocket has a significant effect on load capacity. At higher fly heights, the effect of the
pocket is negligible.

5-4-2 Low stiffness by shallow pocket - concept two

By manipulating the user interface as described in Appendix C, an alternative low stiffness
design has been found. This concept uses a shallow pocket, which influences low fly height
stiffness. First, the mechanism resulting in high stiffness is explained. Thereafter, it will be
used to find an alternative low stiffness design.

Influence of a shallow pocket

On the left of Figure 5-13, the W̄ − h̄ of a bearing with a pocket depth of 0.1 is drawn. For
h̄ > 1, the bearing shows almost identical behaviour to the reference bearing, but for lower fly
heights, both load capacity and stiffness increases significantly.

The mechanism driving this effect can be understood by examining the right graph, where
film pressures for h̄ = 2 and h̄ = 0.2 have been drawn.

For h̄ = 2, the film pressures are almost identical. The relative height increase in the pocket is
only 5% of the total film height and has a negligible effect on the resistance of the thin film.

For lower fly heights, the relative height increase becomes significant. At h̄ = 0.2, the film in
the pocket is 50% higher than the film in the edge. The pocket resistance is significantly lower
than that of the edge, increasing the load capacity and stiffness.

This leads to a bearing with a high stiffness at low fly heights and thus a lower, more constant
stiffness at moderate fly heights. By combining this bearing with a vacuum bearing, a low
stiffness operating point can be created.

Combining a shallow pocket with a vacuum bearing

High stiffness for low fly heights circumvents the problem as stated in subsection 5-3-2, where
vacuum stiffness (without offset) for low fly heights would always lead to a low stiffness point
at maximum load capacity. The shallow pocket thrust stiffness is no longer fully balanced by
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Figure 5-14: Load capacity and stiffness diagram of a shallow pocket low stiffness design. High
stiffness at low fly heights caused by a shallow pocket are no longer balanced by a vacuum bearing
without height offset.

Table 5-3: Parameters for shallow pocket low stiffness design

Parameter Shallow pocket Vacuum
P̄s 3 0.5
r̄r 0.01 0.42
r̄p 0.35 0
h̄p 0.1 0

the vacuum stiffness for all low fly heights. Thus, a stable and workable low stiffness design
can be achieved with a thrust and vacuum bearing without a relative height offset.

An example of such a design is shown in Figure 5-14. Design parameters are listed in Table 5-3.
High stiffness at low fly heights is not fully compensated by the vacuum stiffness, leading to a
stable low stiffness operating point at h̄ = 0.6, as can be seen in the right graph. Designs using
a shallow pocket to create a low stiffness operating point will be referenced as concept two.

Compensation of manufacturing uncertainties

Similarly as for the concept 1, an uncertainty analysis is done for concept two to show that
manufacturing uncertainties can be compensated by tuning source pressures.

For a shallow pocket design, following the same reasoning as in the previous uncertainty
analysis, the pocket depth and conductivity are subject to relatively high uncertainties. As
shown in Figure 5-15, an increase in pocket depth of 50% will lead to a higher stiffness at
the operating point. By decreasing the vacuum source pressure, the stiffness at the operating
point reduces to the same level as in the intended design. The change in load capacity is dealt
with by a slight increase in thrust source pressure.

This example illustrates that relatively high design uncertainty can be dealt with by tuning
source pressures.
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Figure 5-15: Load capacity and stiffness diagram of a shallow pocket with a 50% deviation in
pocket depth. By compensating both supply pressures, manufacturing errors can be negated.

5-4-3 Design optimisation

In the previous sections, two concepts for low stiffness bearings have been discussed. The
presented designs are just examples of the working principle. When designing a low transmissi-
bility bearing, some extra requirements can be considered to improve the system’s performance.
This will be treated in this subsection.

The designs in this subsection are optimised manually, by examining load capacity and stiffness
characteristics, and not using optimisation algorithms. Therefore, the objective and constraints
are not written in equations, as is modus operandi for algorithmic optimisations, but explained
in words. Because the thought process for a manual optimisation is similar to that of setting
up an algorithmic optimisation, the structure of an algorithmic optimisation is used. First the
objective to be optimised is defined. Then, constraints to which the design should comply are
discussed.

Objective

For a vibration isolation system, a large low stiffness range is beneficial. If vibration amplitudes
exceed the range of low stiffness, transmissibility will increase and vibrations will be passed
through. Therefore, the range of low stiffness should be maximised.

This range could be measured in two ways. First, a boundary value k̄min can be defined. The
ratio of heights for which the system stiffness crosses the boundary stiffness can be used as
an objective. However, this requires model evaluations for a range of fly heights. This is no
problem when doing a manual optimization since the model is fast and bearing characteristics
will be examined for a range of fly heights anyway.

When an algorithm is used for optimisation, an alternative, possibly more efficient, approach
is possible. The stiffness in the operating point should be a minimum. Thus, the derivative
of the stiffness is crossing zero. The angle at which it crosses determines the rate of change
of the stiffness. A more shallow change in stiffness derivative, so a smaller angle, leads to a
larger low stiffness fly height range. Since the angle of the change in stiffness is the second
derivative of the stiffness, this metric should be minimized at the operating point.
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A secondary design objective could be to increase the load capacity at the operating point.
This leads to smaller bearings for equal load capacities.

Constraints

Rules for stable designs are optimization constraints. They are covered in the previous sections,
and therefore only shortly summarized here. For a stable bearing design, the load capacity
should be monotonically decreasing. The operating point should also have some stiffness for
lower and higher fly heights to ensure that an unexpected load increase does not cause contact.
The design parameters are also constrained. Some ranges have to be chosen such that they
are reasonable from an engineering point of view. These ranges are debatable. For instance,
the maximum source pressure for this optimization is set at three, but six might as well have
been chosen.
Since deep pockets will lead to pneumatic hammer, pockets will only be used for the shallow
pocket effect. Only virtual pockets will be used to increase load capacity and stiffness.

Optimization results and comparison

The manually optimized parameters are listed in Table 5-4 and the resulting stiffness and load
capacities are plotted in Figure 5-16. The design scores, defined as the ratio of the highest fly
height with stiffness below k̄min over the lowest can be found in Table 5-5. k̄min is set to 0.05.
Optimized concept one has increased load capacity and increased low stiffness range. By raising
the height offset, the vacuum stiffness starts acting at a higher fly height. Both conductivities
are increased to lower stiffness over a wider range of fly heights. The source radius is not put
off centre, because the increase in stiffness this provides has to be balanced with the vacuum
bearing. This did not lead to an increase in load capacity.
Optimized concept two is more balanced in pre and post operating point load capacity. By
increasing thrust resistor radius, maximum load capacity is increased. By lowering pocket
radius, pre working point stiffness is sacrificed for post working point stiffness. The increased
load capacity comes at the cost of slightly smaller low stiffness range.
Concept one shows a higher score, so it has a larger low stiffness range. The load capacity
for bearings with the same size, however, is less than half that of the shallow pocket design.

Table 5-4: Manually optimized parameters

Concept one Concept two
Parameter Thrust Vacuum Thrust Vacuum

Ḡr 3 2 1 1
P̄s 3 0.5 3 0.5
r̄r 0.01 0.29 0.05 0.528
r̄p - - 0.25 -
h̄p - - 0.1 -
h̄rel 1 -0.9 1 1

Table 5-5: Optimization scores

Model Score
Concept one example 1.35
Concept one optimized 1.42
Concept two example 1.36
Concept two optimized 1.32
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Figure 5-16: Load capacity and stiffness diagrams for optimized low stiffness bearings. The grey
dashes line in the stiffness diagram marks the low stiffness range. The crosses in the load capacity
diagram mark the points where the designs cross the low stiffness range.
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Figure 5-17: Stiffness and damping in the frequency domain for both optimized bearings. All
models are run at the low stiffness fly height of that particular bearing.

Depending on the dimensioned design requirements and manufacturability, a choice has to be
made for one both concepts. There is no clear best design.

Although the optimized results look promising, there is no doubt that an algorithmic opti-
mization would give even better results. Especially a method that is good finding the global
minimum, like a genetic algorithm, could yield interesting combinations of parameters. This
is left as a recommendation.

Dynamic properties of optimized design

In Figure 5-17, stiffness and damping versus frequency for both concepts are plotted. The
frequency models are evaluated at the operating point fly height. Therefore the low frequency
stiffness is close to zero for all models.

Stiffness for concept one increases at lower frequencies than it does for concept two, because a
negative height difference shifts the frequency at which the stiffness increase begins to lower
frequencies. Damping also shifts to lower frequencies. Concept one has a lower dimensionless
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Figure 5-18: Equal load capacity for different bearing geometries. A change in restrictor radius is
compensated with the restrictor pressure and conductivity, leading to a constant static behaviour
but different frequency responses.

load capacity, and thus needs a larger radius for equal dimensioned load capacity. This will
also shift the dimensioned frequency response to the left. Therefore, the low stiffness range in
the frequency domain of concept two is larger.
For low transmissibility, damping should also be minimized. Concept one has an overall lower
damping, and also declines at a lower frequency. Therefore, in the frequency domain also
a trade off has to be made between low damping and a low frequency range or increased
damping and a higher frequency range.
In this optimization study, frequency behaviour is not discussed in the objective or constraints.
The optimization is conducted only for the static response of the system. Although definitely
of influence on the transmissibility, frequency domain characteristics have been omitted from
the optimization and only shortly discussed. A future algorithmic optimization could take the
frequency behaviour into account, by including it into the objective or constraints.
However, some thoughts and ideas were formed on how such an optimization could be shaped.
During manual optimization, different geometries have shown equal W̄ − h̄ characteristics but
different dynamic properties. For example, a change in restrictor radius can be compensated
by changing source pressure and conductivity.
This is shown in Figure 5-18. The reference design is drawn, combined with designs where the
restrictor radius is changed to 0.2 and 0.4. By lowering the source pressure and increasing
conductivity, static behaviour has remained identical. This creates the possibility to optimize
dynamics after a promising static design is found.

5-5 Dimensioned design

In the previous section, two dimensionless concepts are discussed. To convert the dimensionless
designs into dimensioned design, conversion factors need te be determined. As an example,
concept two will be scaled to 10 N load capacity at a 10 µm operating point.
First H is determined by choosing the dimensioned fly height at which the operating point is
to be placed. At h̄ = 0.62, stiffness is minimal. This dimensionless height should correspond
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Thrust Vacuum ThrustThrust Vacuum

Figure 5-19: Combining a thrust and vacuum bearing will result in a net torque, causing the
combination to tilt. For tip-tilt stability, the vacuum bearing is enclosed with thrust bearings,
solving this problem.

to 10 µm. H can be determined with:

H = h

h̄
= 10 · 10−6 [m]

0.62 = 1.61 · 10−5 [m] (5-3)

This also sets the pocket depth at 0.1H = 1.6 µm. R can be found by choosing the load
capacity at the operating point:

R =
√

W

W̄ P
=
√

10 [N]
1.08 · 105 [Pa] = 9.6 · 10−3 [m] (5-4)

The restrictor conductivity can now be found with (B-11), which givesGr = 7.22× 10−16 m2s3/kg.
Assuming a restrictor diameter of 0.18× 10−3 mm, this gives a restrictor length of 11.8 mm.

Finally, the frequencies can be dimensioned. The conversion from ω to ω̄ is given by:

ω = ω̄
P H2

12 η R2 = ω̄ · 1.3 · 103 [rad/s] (5-5)

So at ω̄ = 1, the frequency is f = 1.3 · 103/2π = 207 Hz.

Doing similar calculations on the height difference design, leads to H = 5.40× 10−6 m,
R = 13.6× 10−3 m and ω̄ = 1 at 12 Hz. The thrust conductivity is 8.2× 10−17 m2s3/kg and
the vacuum conductivity is 5.4× 10−17 m2s3/kg. The height difference between the vacuum
and thrust bearing is (1− 0.9)H = 0.5 µm.

Tip-tilt stiffness

The dimensioned design consists of a single thrust and a single vacuum bearing. Connecting
these bearings will result in a net torque, causing the combination to tilt as sketched on the left
of Figure 5-19. By enclosing the vacuum bearing with thrust bearings, the torque is cancelled,
as drawn in the right.

Figure 5-19 is a 2D representation. In 3D the vacuum bearing must be enclosed with three
bearings to cancel both tip and tilt torques. To maintain equal static characteristics, the
total area of three thrust bearings should be equal to the previously determined value for one
bearing. By adding n thrust bearings, their new radius rn becomes:

rn =

√
r2

1
n

(5-6)
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Figure 5-20: Top view of both low stiffness bearing designs, scale 1:1. Left is the height difference
concept, right is the shallow pocket concept. Dark coloured surfaces are sunk deeper into the
paper than the lighter coloured surfaces. The circles inside the vacuum bearings are the restrictor
radii, so both design utilize a virtual pocket.

where r1 is the radius of a single bearings. Static behaviour of the system of bearings remains
equal, dynamic behaviour changes. Because the thrust bearings are becoming smaller, the
frequencies scale up.

In Figure 5-20, the top view of both optimized designs is drawn. Both drawings are of scale
1:1. The dark coloured surfaces are sunk deeper than the light coloured surfaces. Concept one
is drawn on the left, concept two is drawn on the right. Both design have a virtual pocket,
which can be seen by the concentric circles in the vacuum bearings.

5-6 Conclusions and outlook

In this chapter, the concept of transmissibility and how it can be influenced is explored. This
leads to the conclusion that, for the applications in mind, reducing stiffness and damping is the
favourable option. Subsequently, a dimensionless analysis is introduced and a parameter study
is conducted to see the influence of bearing geometry on the static and dynamic behaviour.

A vacuum bearing, normally used to pre-load a thrust bearing, is added to the analysis to
compensate the thrust bearing’s stiffness. However, this does not lead to a stable design.
Nonetheless, by introducing a height difference, stable design can be realised.

Two concepts are discussed. Concept one uses a height offset between the thrust and vacuum
bearing, concept two uses a shallow pocket in the thrust bearing. Both designs are optimized
manually, and some remarks regarding a possible algorithmic optimization are made. Finally,
the dynamic properties of the design and the conversion to a dimensioned design are discussed.

In the next chapter, the practical side of manufacturing the proposed designs is treated. Both
uncertainties in air bearing surfaces manufacturing as design and realisation of restrictors will
be treated. This will lead to some valuable insight in the production of air bearings.
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6
Design realisation

With a design concepts for a low stiffness air bearing developed, this chapter deals with
manufacturing critical parts of the design: the bearing surface and the restrictor. Since the
design has strict demands on surface flatness and height offsets, manufacturing bearing surfaces
has proven not to be a trivial task. Capillary restrictors feature large depth over diameter
ratios, making manufacturing not trivial. The integration of restrictors into the design has also
been found to be challenging. Both bearing surface manufacturing and restrictor integration
will be discussed in this chapter.

6-1 Bearing surface manufacturing

The concepts, as discussed in section 5-5, have two surface features that require tight tolerance
on manufacturing: flatness and a step in surface height. Flatness of bearing surfaces has to
be accurately controlled to ensure constant film height. This will be discussed in the first
subsection.

Both designs feature a height offset in the order of micrometers. One design uses three bearings
with a shallow pocket with a depth of a few microns, the other features an height offset of
a micrometer between the vacuum and thrust bearings. Manufacturing techniques for both
designs will be treated in the second subsection.

To allow a fast cycle of manufacturing, assembly and testing, techniques analysed in this
section are those available for MSc students in the work shop.

6-1-1 Surface flatness

In the preceding chapters, bearing surfaces are assumed to be parallel. If the modelled bearing
behaviour is to be verified experimentally, the validity of this parallel surfaces assumption
should be checked. To ensure a constant film height, both bearing and counter surface should
be flat. First, for clarification, surface flatness is discussed. Next, achievable performance of
different production methods is treated.
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Figure 6-1: Cross section of surface profile and decomposition in low and high spatial frequency
components. Surface flatness is drawn in red.

Surface flatness is the measure of how closely two parallel planes can be drawn such that the
entire surface lies between these planes. It is often mistaken for surface roughness, so to clarify
these terms the cross section of a surface and its spatial frequency decompositions are drawn
in Figure 6-1.

The low frequency content, called the waviness, is drawn in the middle. The roughness,
containing the high frequency content, is drawn on the bottom. If summed, the actual surface
profile is produced, often called the texture. The surface flatness is drawn in red.

The influence of high frequency content on bearing characteristics is assumed negligible for
low average roughness values. The effect of low frequency content can not neglected [27].
Therefore, to achieve the best agreement with the model, reducing peaks in roughness is
subservient to reducing the waviness.

Manufacturing techniques, as available in the work shop, have been tested to determine
the most suitable technique for manufacturing of air bearings. The resulting surfaces were
measured using a Veeco - Bruker ContourGT-K1 white light interferometer as available in the
optics lab at Delft UT. Two optics have been used: IXL2.5 and IX20 with a 2.5 and 20 times
magnification. Surfaces larger than the viewing area of 2.5X lens have been analysed using
the stitch function, stitching multiple images together.

Surface analyses have been done with vision64 software that comes with the interferometer
and with Gwyddion, an open source height map analysis tool.

All tests on manufacturing techniques were either done by or under the supervision of an
employee of the workshop, to ensure proper usage of tools and optimal process settings. They
also have been consulted on options to reduce waviness. The results per manufacturing
technique will be discussed next.
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Figure 6-2: Measured surface profiles after grinding (top, blue) and lathing (bottom, red). The
peak at x = 40 mm in the bottom graph is the typical peak at the rotational symmetry axis.

Milling

Bearing surfaces were milled with a face mill (Dutch: ‘mantelkopfrees’). The resulting surface
was concave with a waviness amplitude over 10 µm. This is likely caused by a slight tilt of the
mill, resulting in an uneven removal of material. Because of the high amplitude of waviness,
this method was decided ineffective.

Surface grinding

The process of surface grinding is similar to milling: a large revolving tool is moved over the
work piece. Because the workpiece is held by a magnetic chuck, only steel is suitable. The
waviness amplitude of the sample was acceptable, but the roughness was not. The measured
profile of a steel counter surface is printed in the top axis of Figure 6-2, and has an Ra of
1.8 µm. In the figure can be seen that peaks over 5 µm are not uncommon. This roughness
was assessed too large, since if both the bearing and counter surface have 5 µm peaks, there
could be contact at a distance of 10 µm.

Furthermore, grinding does not allow for a height offset as is required for both designs. All
grinded surfaces in one clamping operation are in the same plane.

Lathe

Waviness for lathed surfaces have been found to vary significantly depending on the machine.
Newer machine in the workshop showed an almost sinusoidal pattern with an amplitude of
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5 µm for radii between 5 and 15 mm. This pattern is probably caused by flaws in the linear
guidance of the cutting tool, since it was observed in multiple workpieces at equal radii

The older machines had more recently been serviced and showed superior flatness. The result
of lathing a stainless steel workpiece with a 40 mm radius at low feed speed and with excessive
lubrication is plotted in the bottom axis of Figure 6-2. The peek at 40 mm is the typical peek
for lathing at the rotational symmetry axis, where less material is cut. The average roughness
is Ra = 0.3 µm, the waviness amplitude is acceptable at around 3 µm peak to peak.

Contrary to grinding, lathing allows for a step in surface height as required in the low stiffness
designs. This will be further explored in the next section. The option for a step in surface
height and because of the acceptable waviness and roughness have lead to the decision to use
a lathe for bearing manufacturing.

Lapping and polishing

After lathing a bearing surface, the flatness can be further improved by precision lapping and
polishing. Although high precision lapping machines are commercially available [28], [29], no
such machines are available at the faculty of mechanical engineering to the knowledge of the
author.

At the material science faculty, lapping and polishing machines are available where the
workpiece is held by hand. These machines are used to prepare samples for microscopy by
reducing roughness. Experiments showed that, although the roughness can be significantly
reduced with these machines, the waviness will increase. Because the samples are hold by
hand, more material is removed at the edge of the surfaces than on the inside, resulting in an
umbrella shaped profile. The author did not achieve to reduce waviness of a surface that was
lathed. Therefore, produced bearings have not been lapped and polished.

6-1-2 Shallow pocket manufacturing

Both low stiffness designs feature a height offset in the order of µm. Shallow pocket requires a
step in height in a bearing surface, height difference requires a step in height between thrust
and vacuum bearings. In this subsection, research on the production of a shallow pocket
is discussed. The conclusion for this research also apply to the manufacturing of a height
difference between bearings.

The goal of this research is to find a repeatable method for producing a shallow pocket.
Figure 6-3 illustrates the scale of a 2 µm pocket on a 20 mm diameter bearing. The bearing is
drawn at a scale of 7:1. To see the edge of the pocket, the figure is enlarged twice: first a 10x
zoom and second a 5x zoom. The nominal fly height of 10 µm is drawn with a dashed line.

Figure 6-3 illustrates the significant difference in length scales between bearing radius and
pocket depth. The radius is four orders of magnitude larger than the height. The scale
difference poses a challenge for manufacturing.

Three methods have been investigated to produce a 1 µm pocket: laser engraving, electrochem-
ical etching and lathing. These methods will be discussed subsequently.
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Figure 6-3: 2 µm pocket height on a 20 mm diameter surface. The main drawing is scaled 7:1,
the blue box is zoomed at 70:1 and the red box at 350:1. The step, visible in the red box, is the
edge of the pocket. The dashed line represents the nominal fly height at 10 µm.

Laser engraving

A CNC laser cut machine for cutting through plastics up to 10 mm thick is available in the
workshop. This machine can also be used to engrave metals, by burning away a small layer of
material. The machine has two software settings for controlling the path the laser follows,
called cut and engrave.
Initial tests with engrave have showed infeasible results. The user draws a surface and the
software automatically decides which lines are needed and how closely the lines are spaced to
fill that surface. The laser makes a wide scanning motion over the surface and switches the
laser on and off at the edge of surface. Analysis of the results has showed that switching the
laser causes an undesired profile, with uneven material removal at the surface edge.
By setting the software to cut, the laser path can be imposed. By drawing a spiral with
decreasing radius, a circular pocket can be engraved without starting and stopping the laser.
Intensity and speed settings have been chosen such that the least amount of material was
removed.
The results are drawn in Figure 6-4 showing a pocket with an average depth of 40 µm. The
surface is rough, but this does not cause a problem for a deep pocket, since its pneumatic
resistance is negligible. Some edges show burrs that have to be removed before this surface
can be used as an air bearing.
This method is promising for the manufacturing of deeper pockets, where the depth is not
controlled with µm precision. Because the laser is CNC controlled, different pocket shapes
can be engraved. However, for shallow pockets with µm depth, production on this machine is
not feasible. The most shallow pocket produced has a depth of 40 µm.

Electrochemical etching

Alternatively to laser engraving, electrochemical etching has been investigated as a shallow
pocket manufacturing technique. Electrochemical etching is a process in which a current is
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Figure 6-4: 2D surface and cross section plot of a laser engraved pocket. The blue dashed line in
the left graph indicates the location at which the cross section is made. Surface size is 2.5 mm by
2.5 mm.

run through the workpiece while a solution of electrolytes is flushed over the surface, etching
material. The size and shape of the etched surface is determined by a mask. An electrochemical
etching machine is available at the material science lab, where it is used to treat microscopy
samples.
Experimentation has showed this method to not produce suitable results. After 30 seconds of
etching, a few microns of material have been removed, leaving a rough surface. The shape of
the etched region did not mimic the shape of the mask. The round mask has given both round
and oval shaped etched surface. Furthermore, lining up the workpiece with the mask proved
difficult. The conclusion has been drawn that this manufacturing technique is not suitable for
the fabrication of micrometer pockets with well defined radii and depths.

Lathing

The lathe that produced surfaces with a low waviness amplitude, as described in the last
subsection, measures z displacement with a resolution of 5 µm. This is insufficient to make a
1 µm step. However, the resolution can be improved with a measurement gauge, as depicted
in Figure 6-5.
The gauge is able to measure displacements with a resolution smaller than a µm. One complete
revolution on the gauge is equal to 200 µm movement of the tip, the minor ticks depict
micrometers. The gauge is mounted on the coarse z stage, and measures the difference between
the fine and coarse z stage. The fine stage is put on under a 45◦ angle to amplify the measured
displacement with a factor 2/

√
2 = 1.4.

With the gauge set up, pockets can be lathed into the bearing surface by cutting the path as
drawn in Figure 6-7. This process is described step by step:

0. Before lathing, the fine z stage is moved some small amount in positive direction, to
ensure there is no backlash in both fine stage and gauge. The gauge is set to zero.
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Figure 6-5: Measurement gauge with mi-
crometer resolution fixed on lathe to mea-
sure fine z stage displacement
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Figure 6-6: Cutting path for shallow
pocket. Red line is controlled with fine
stage.

1. The surface is flattened to ensure there are no scratches deeper than the intended bearing
surface.

2. A ∼ 50 µm step is made into the surface with the coarse z stage. Some margin on this
depth is allowed, but a small step ensures small chips in the next cutting step and
improves surface quality of the final bearing surface.

3. Before the final bearing surface is cut, the coarse z stage is fixed and the current value
on the gauge checked. Thereafter, the surface is cut up to the pocket radius.

4. The fine stage is moved very delicately to the desired pocket depth. By tapping the
fine stage handle, tiny steps can be made. If the intended pocket depth is overshot, the
process is started again at step 0. Experiments have shown that moving the fine stage
in opposite direction to correct the overshoot does not give reliable results, presumable
caused by backlash in the fine stage and gauge.

5. The surface is finished by continuing the cut in r direction.

With this technique, pockets with a depth of 1 µm have been produced, as can be seen in
Figure 6-7. Because the depth in step 4 is difficult to control, some variance in produced
pocket depth is to be expected. A white light interferometry measurement to determine the
actual pocket depth is advised when using this method.
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Figure 6-7: 2D surface and cross section plot of a 1 µm lathed pocket. The blue dashed line in
the left graph indicates the location at which the cross section is made. Surface size is 5.5 mm by
5 mm.

Because this technique uses a lathe, only axisymmetric designs can be produced with this
method. Therefore, it is not suitable for production of all three shallow pocket bearings as
drawn in Figure 5-20 in a single clamping operation, since the pockets in this design are
not axisymmetric around the middle axisymmetry line. The three thrust bearings could be
produced separately and assembled, but this introduces the challenge of controlling the flatness
between three thrust bearings. This will be discussed in detail in section 7-2.
The developed technique for a step in the bearing surface can also be used to create a height
offset between bearings. By moving step 4 to a radius between the vacuum and thrust bearings,
the height offset can be controlled. This enables this technique for the production of concept
one, but requires the surface features in this final production step to be axisymmetric.

6-2 Restrictor integration

With the production of a bearing surface treated, this section will deal with restrictors. The
choice for pneumatic tubes will be discussed and these tubes will be integrated into the design
such that the chance of pneumatic instability is minimized. An experiment to determine
the restrictor properties will be set up, which will lead to conclusions on the validity of the
restrictor model.

6-2-1 Pneumatic tubes

A typical restrictor for an air bearing with 10 mm outer radius has a conductance value of
Gr = 1× 10−16 m2s3/kg. A small restrictor diameter is needed to achieve this conductivity:
for example, a diameter of 0.5 mm would require a length of over 5 m. However, since the
conductivity scales with d4/l, the restrictor length becomes approximately 10 cm for a diameter
of 0.2 mm.
The combination of small diameter and high length over diameter ratio makes conventional
techniques like drilling difficult. Drills with a diameter of 0.1 mm are available, but have
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1.7

1
1

initial design intermediate design

Figure 6-8: Initial and intermediate design to fix restrictor in bearing. Dimensions are in mm, the
scale is 8:1. Downstream volume of initial design makes the bearing dynamically unstable. This is
solved in the intermediate design, but bearing surface and restrictor are damaged by the cutting.

a length of only 2 mm, not reaching the required restrictor length. Alternatively, electrical
discharge machining could be used to create small holes with the required depth, but this
technique is not available in the mechanical engineering workshop at the TU Delft.

Therefore, a different approach is taken. Pneumatic tubes with diameters in the required range
are available. The two smallest available tubes have a diameter of 0.18 mm and 0.13 mm, which
give a length of 85 mm and 23 mm respectively. These are reasonable lengths, considering
a bearing with a diameter of 20 mm. Therefore, these tubes provide a valid option for use
as capillary restrictors. This increases the design complexity, since these tubes have to be
integrated into the design. However, if these tubes are not permanently fixed, an additional
advantage is that the restrictor can be switched to change bearing characteristics.

Minimizing thin film volume

To reduce the chance of pneumatic hammer, the volume downstream of the restrictor should
be minimized [30]. Due to the compressibility of air, volumes in the thin film provide the
possibility of storing energy in the lubricant film and releasing it in phase with the motion of
the bearing system [24], leading to negative damping. This causes a self-excited instability
known as pneumatic hammer.

In initial tests with manufactured air bearings, with the tube fixing design copied from the
flower bed project, pneumatic hammer has been observed. The design used a narrowing to fix
the pneumatic tube, as sketched in Figure 6-8. The volume upstream of the restrictor reduced
the damping such that pneumatic hammer occurred.

The obvious solution of reduction of height of the narrow could not be produced. The depth
of the 1.7 mm hole is difficult to control precisely, some safety margin is required. If too much
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Figure 6-9: Final design of restrictor in bearing, dimensions in mm. The pneumatic tube is fixed
by glue. The volume downstream of the restrictor is minimized, solving the pneumatic instability
that occurred in the initial design.

material is removed and the 1.7 mm hole is cut all the way through to the surface, the bearing
can be thrown away.
An alternative method for fixing the restrictor has been tested, labelled as intermediate design
and drawn to the right of the initial design. The narrow has been removed, and the pneumatic
tube has been extended from the bearing surface. Glue is applied such that the restrictor hole
is not blocked by glue. After the glue has cured, the top of the restrictor and the glue are cut
off, minimizing downstream volume. However, the cutting resulted in damage to the bearing
surface and to the restrictor. Because the results varied significantly, this method was decided
to be unreliable.
Another method for fixing the restrictors into the design has been developed. This method
consists of two steps, as drawn in Figure 6-9.
In the first step, as drawn on the right, a removable inset is inserted into the restrictor hole.
This inset has a step height of 0.1 mm to ensure the pneumatic tube is slightly sunk into the
bearing surface. Next, the tube is inserted, pressed against the inset, and glued on the other
side with cyanoacrylate glue. This glue has low viscosity and thus creeps into te space between
the tube and the hole.
When the glue has cured, the inset is removed. In the drawing, the bearing is rotated 180◦

to allow comparison with Figure 6-8. This method proved to solve the pneumatic instability
encountered in the initial design, and proved to give reliable and repeatable results.

6-2-2 Restrictor properties

To ensure that the restrictor conductivity of a bearing is as designed, a test set up has been
developed to measure conductivity as function of pressure drop over the restrictor. In this
subsection, the measurement set-up and results of the measurements will be discussed.

Measurement set up

A schematic of the conductivity measurement set-up has been drawn in Figure 6-10. Two
versions of this measurement have been conducted, which is displayed by the switch on the
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Figure 6-10: Schematic representation of restrictor conductivity measurement set up. Two
versions of the experiments have been conducted by optionally adding a second resistance in series
with the restrictor.

right of the scheme.
The set up contains 7 components. The source delivers air flow at an adjustable pressure.
Valve 1 and 2 are Festo solenoid valves, which can be opened or closed. The tank is a Festo
CRVZS-2 tank, with 2 l capacity. The sensor is a NXP MPX 5700DP differential pressure
sensor with a range of 7 bar.
In experiment one, the restrictor as integrated in the bearing is the last component in the
pneumatic circuit. It is vented to ambient pressure. In experiment two, a counter surface
floats on top of the bearing, adding an extra resistance in the pneumatic circuit since a thin
film forms between bearing and counter surface.
The measurement procedure for both experiments is the same. First, the tank is filled with
air by opening valve 1 and closing valve 2. If the pressure in the tank is at the same level as
the source, valve 1 is closed. A few seconds later, valve 2 is opened and air flows out of the
tank through the resistor(s). The pressure is measured and logged until the pressure in the
tank is equal to ambient pressure.

Conductivity from measured pressure

With pressure versus time measured, the mass of air inside the system at any time can be
determined with the ideal gas law:

m = ρ V = p V

Rs T
(6-1)

where V is the pressurized volume, in this case the tank and connecting tubes. Assuming
constant volume and temperature, the mass flow out of the tank can be found with:

ṁ = −∂p
∂t

V

Rs T
(6-2)

Finally, Gr can be found by rewriting (3-4):

Gr = ∂p

∂t

V

Rs T

1
p2 − P 2

r

(6-3)

where Pr depends on which experiment is conducted. For experiment 1, Pr is the ambient
pressure Pa.
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Figure 6-11: Measured pressure versus time and derived conductivity versus quadratic pressure
difference. The dashed black line in the right axis is the theoretical conductivity.

Determining Pr for experiment 2 is more complicated, since the pressure directly downstream
of the restrictor is not measurable. However, if the load capacity remains constant during
the experiment, the integral of the pressure distribution in the thin film must also remain
constant since it determines the load capacity. For a parallel film, the pressure distribution is
determined by the restrictor pressure only, assuming ambient pressure at outflow and constant
geometry, see (3-12). Thus, the restrictor pressure is constant during the experiment and can
be determined with the bearing geometry and load capacity.

Alternatively, it can be determined experimentally by measuring the pressure at which bearing
and counter surface make contact. This will be treated in chapter 7.

The result of experiment 2 depends on a pressure that is not directly measurable, and is
therefore more prone to errors. It also requires more time to set up, since the counter surface
has to be aligned with the bearings. This will be treated in more detail in chapter 7.

Still, experiment two is conducted because it more closely resembles the actual operating
circumstances of a restrictor in an air bearing. Also, it creates the possibility to investigate if a
pressure drop with the same quadratic pressure difference at a different linear pressure difference
gives the same conductivity. In other words, does Ps = 1.5× 105 Pa to Pr = 1× 105 Pa give the
same conductivity as Ps = 2× 105 Pa to Pr = 1.66× 105 Pa, which have the same quadratic
pressure difference? If so, the more accurate, more simple and faster experiment one can be
used instead of experiment two.

Measurement results

The results of three measurements are shown in Figure 6-11. On the left, tank pressure versus
time is plotted. The calculated conductivity versus the quadratic pressure difference is plotted
on the right.

As can be seen in the left graph, experiment 1 has taken significantly more time than experiment
2: 18 minutes for experiment 1 versus 5 minutes for both version of experiment 2. To increase
tip and tilt stiffness, experiment 2 has been conducted with three bearings, and thus with three
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restrictors in parallel. This has increased flow with a factor three, explaining the difference in
experiment time. This has been taken into account for the calculation of Gr.

All three experiment have been stopped at Ps = Pr + 0.1× 105 Pa. These values have been
drawn with dashed lines. For experiment 1, Pr is the ambient pressure. For experiment 2,
Pr has been determined experimentally at 1.23× 105 Pa and 1.73× 105 Pa. As expected, Pr
increases with bearing load.

With Pr set, the quadratic pressure difference in (6-3) can be calculated. The time derivative
of pressure can also be determined from the measurement. This leads to the measured
conductivity, as plotted in the right graph. The theoretical conductivity, as determined by
(3-4), is plotted with a black dashed line.

Two conclusions can be drawn from this experiment. First, the three experiments show
similarity for the conductivity. To find the conductivity of a system, the more simple
experiment one is sufficient, since the results are similar to the results of experiment two.

Second, the measured conductivity is significantly lower than the model introduced in section 3-
2 predicts. For low pressure differences, the measured conductivity approaches the theoretical
conductivity. However, at very low pressure differences the conductivity is lost in measurement
noise and is left out of the graph, so if the theoretical value has been reached can not be
determined with this set up.

The measured conductivity is not constant and drops sharply with an increasing pressure
difference, increasing the mismatch between model and measurement up to a factor 6 for the
measured range. The proposed model highly overestimates the conductivity and does not
capture the measured restrictor behaviour.

By calculating the Reynolds number of the flow through the restrictor, some insight in validity
of the proposed model can be created. For (linear) pressure difference greater than 0.3× 105 Pa,
the Reynolds number exceeds 103, which is stated as the maximum valid Reynolds number for
the restrictor model [10]. Therefore, the set up has been operated outside the valid range of
the current model, and a new model should be proposed.

The current model does not take compressibility and friction losses into account. A more
suitable model would be that of Fanno flow, which is a Moody-type pipe friction problem
but with large changes in pressure in the flow [22, sec 9.7]. The development of a Fanno flow
model to describe restrictor mass flow is left as a recommendation.

6-3 Conclusions and outlook

In this chapter, two aspects in the production of bearing surfaces have been treated: surface
texture properties and manufacturing of a height offset in the order of µm. Methods available
for MSc students have been investigated.

Surface roughness is determined to be of less importance than waviness. Milling and grinding
do not produce surfaces with the required waviness, lathing does. Precision lapping could
improve both waviness and roughness, but the available lapping and polishing machines have
proved unsuitable.
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Pockets and height offsets in the order of µm can be produced with a lathe and micrometer
gauge. Laser engraving could be used for deeper surface features, electrochemical polishing
has not produced suitable results.

Because lathed products are axisymmetric, the shallow pocket design with three thrust bearings
can not be produced in a single clamping operation. The height difference design can be
produced in a single clamping operation.

The integration of restrictors into the design has also been treated in this chapter. Small
restrictor diameters with large length over diameter ratios have been achieved with pneumatic
tubes. Allowing volumes of air in the thin film when integrating pneumatic tubes can lead to
instability. By using an inset, the tubes have been glued at a small offset from the surface,
solving the instability and successfully integrating the tubes in the design.

Two experiments to measure restrictor properties have been introduced. Experiment one,
where a pressurized tank is emptied through a restrictor, has proven to give similar results to
the more complicated experiment two.

The measured conductivity does not agree with the theoretical conductivity. Only for small
pressure differences, some agreement is found. For larger pressure differences, as will be used
in the next chapter, a more complicated model that takes compressibility into account is
required. Compressible duct flow with friction, known as Fanno flow, is recommended.

In the next chapter, design of test set ups will treated, taken the conclusions of this chapter
into account. Experimental results will be discussed and compared to the models.
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With techniques for manufacturing bearing surfaces and integrating restrictors discussed,
measurement set-ups can be build to validate the proposed model. In this chapter, measurement
set-up one is introduced, which provided understanding in the behaviour of a single air bearing.
This has led to conceivable set-up improvements. Implementation of these improvements have
resulted in the set-up two, which will be discussed subsequently. With this improved set-up,
extensive measurements on both static and dynamic bearing behaviour have been conducted.

7-1 Measurement set-up one

Set-up one has been developed to measure fly height of a single air bearing for a certain load
capacity. In this section, set-up design and experimental results will be covered.

7-1-1 Set-up design

Set-up one consists of an air bearing and a counter surface, called the target, as pictured in
Figure 7-1. The target is suspended by two wires, fixing its x and y position. It is supported
in z direction by the air bearing.
To align the bearing with the target in x and y, the bearing is put on two hand controlled
micrometer stages. This allows fine tuning of the bearing’s position relative to the target. The
bearing is put under a slight angle by a tip-tilt stage to ensure tension in the wires. The angle
in Figure 7-1 is exaggerated to be visible in the photograph. When conducting a measurement,
the angle is reduced to a minimum.
With the bearing and target aligned, the air supply can be switched on. A thin film of air
forms between the surfaces on which the target floats. To measure film height, tip and tilt,
three sensors have been used. They are positioned on a concentric circle to the bearing.
With this set-up, the air gap height is measured indirectly, by taking the difference between
height at contact and height with a thin film. Instead of integrating sensors into the target to
measure the fly height directly, this method has been chosen because it requires no connection
of sensor cables to the target, minimizing unaccounted forces on the target.
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Figure 7-1: Set-up up for measurement of characteristics of single bearing

Multiple load capacities can be measured by adding weights on top of the target. The weights
are centred with a bolt, protruding from the top of the target.

Sensors

Three eddy current sensors are fixed around the bearing surface as can be seen in Figure 7-1b.
The sensors are Micro-Epsilon U05(09) eddy current sensor with a range of 0.5 mm and a
resolution of 0.025 µm [31].

The sensors are controlled by Micro-Epsilon DT3010-M controllers, which are specifically
tuned for ferromagnetic target material. The controllers have been calibrated for the target,
as described in the manual.

The sensors and controllers have been selected on basis of availability in the lab. Although
the measurement range, 10 times the required range of 50 µm, could be smaller in return for
an improved resolution, these sensors were the most suitable available and their resolution
sufficient.

The controller type (DT3010-M or DT3010-A) determines if the target material should be fer-
romagnetic (steel) or non-ferromagnetic (aluminium, stainless steel). Since only ferromagnetic
controllers were available, target material is steel, although stainless steel would be preferable.

Both the controller power supplies and sensor signal filters are integrated into a rack mount
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case, which has been inherited from the previous set up in which the sensors have been used.
The filter schematics, which retrieval was an effort, show a third order type II Chebyshev low
pass filter with a cut off frequency of 10 kHz.

The filter circuit also comprises features for adding a DC offset and amplification to the output
signal. By moving jumpers and adjusting trim pots on the PCB, offset and amplification can
be controlled. Circuit schematics, jumper lay-out and trim pot functions can be found in
Appendix D.

The sensor sensitivity and linearity have been determined with a calibration set-up. The
distance between target and sensor was varied with a micrometer stage. Output voltages have
been measured as a function of relative displacement. Although the results of this calibration
can not be directly re-used in a different set-up since it depends on trim pot settings in the
controllers, it is included in Appendix D to give some insight in sensor sensitivity and linearity.

Data acquisition

Data is acquired with a National Instruments NI USB-6211 DAQ which samples at 250 ksamples/s
divided over the number of channels that are measured. By oversampling the measured heights,
resolution is improved with a low pass filter.

Pneumatics

The pneumatics of measurement set-up one are equal to experiment two of Figure 6-10. It
consists of a source, tank, pressure sensor, two valves and an air bearing.

Measurement procedure

With the target supported by the bearing and sensors calibrated, fly heights can be measured
for given load capacities. To match the modelled air gap geometry, the target should be
parallel to the bearing surface.

If the target’s centre of mass is not aligned with the bearing centre, the air gap will not be
parallel. The distance in x and y between the weight vector pointing down and the bearing
force pointing up causes a torque around x and y. This torque is balanced by tip and tilt in
the film. In the lower part of the tilted air film, pressure will be increased compared to the
higher part. This cause a torque, countering the torque due to load vector mismatch.

By moving the bearing in x and y direction underneath the target, the load capacity vector
and weight vector mismatch is reduced. When properly aligned, the air gap is parallel and at
a maximum height.

To measure the fly height, a reference position at contact has to be determined. With valve 2
closed, the target rests on top of the bearing. This position is used as reference. By turning
on valve 2, pressure builds and a thin film of air forms between bearing and target. The fly
height, tip and tilt can now be determined by multiplying the difference from the current
sensor voltage and the zero fly height sensor voltage with the calibrated sensitivity.
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Figure 7-2: Measured and modelled load capacities for a single bearing for different feed pressures.
Measurement tick marks correspond to model with the same colour.

By moving the bearing, measured tip and tilt can be minimized. If valve 2 is closed in a
changed position and the target again rests on top of the bearing, the expected fly height
is zero since it was defined as reference. However, it has been found not to return to zero.
Changes in height up to 5 µm have been measured. Therefore, the reference zero height
position and thus measured fly height are dependent on the position of bearing relative to the
target.

If a new zero height reference is measured in the position which previously showed no tip and
tilt, some tip and tilt reappears, caused by a change in reference height. To ensure a parallel
film, a position is sought in which, after measuring the reference height in that location, the
film shows to be parallel.

Thus, the bearing is moved slightly until tip and tilt appear to be zero again. In this new
position, the pressure is switched off, a reference voltage is measured and the pressure is
turned on again. If the tip and tilt in this position are within acceptable bounds, the fly height
for that load capacity can be determined. If not, the process of moving, measuring a new
reference and then determining fly height, tip and tilt is repeated.

This procedure has proven to be time consuming. For every measurement of fly height at a
load capacity, the bearing has been moved multiple times before a parallel film was measured.

By adding a weight to the target, the x and y position of the centre of mass changes. Because
of the low tip - tilt stiffness of a single bearing, this slight centre of mass change results in
significant tip and tilt. Correction requires large changes in position, slowing the measurement
process.

Even with the care taken in ensuring a parallel film, measured results show significant deviation,
as will be discussed in the next subsection.

7-1-2 Experimental results

Measured fly heights for given load capacities are plotted in Figure 7-2. Four load capacities
have been measured at 2× 105 Pa feed pressure, drawn in blue and five load capacities have
been measured at 4× 105 Pa feed pressure, drawn in red. All measurements have been repeated
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three times, resulting in three marks per load capacity. For every new measurement, the
weights have been removed and placed back on top of the target, and the bearing has been
realigned until parallel.
The deviation on fly height is significant, except for the values at 2.2 N. This is the weight of
the target, without added mass. Although the extra mass is centred on the target, by taking
it off and placing it back the centre of mass does not return exactly to the previous position.
The lack of tip and tilt stiffness of a single bearing results in a required change in the position
to form a parallel film. This causes the uncertainty in the measured fly heights.
Modelled results are also drawn in Figure 7-2 as solid lines. The modelled restrictor conductivity
has been assumed constant and fitted to match the measured data for Ps = 2× 105 Pa.
The modelled fly height was also lowered 9 µm. These setting have also been used for the
Ps = 4× 105 Pa model.
Similarity between measurements and model are low. To match both stiffness and fly height,
a significant height offset is required. Maximum modelled load capacity is significantly higher
than measured load capacities, causing a large mismatch that cannot be fully explained
by inaccuracy of the restrictor conductance. Clearly, the model does not fully capture the
measured behaviour.
To decrease uncertainty in measured fly heights, decrease time required to set up an experiment
and increase model and measurement similarity, a set up with three bearings has been developed.
This set-up also resembles the design of Figure 5-20 more closely, and can therefore generate
valuable insight towards a design with a vacuum bearing. Set-up design, results and comparison
with modelled behaviour will be discussed in the next section.

7-2 Measurement set-up two

Set-up two has been developed to increase tip-tilt stiffness and reduce uncertainties in measured
fly heights. It features three identical bearings fixed on a plate. Both static measurements, as
carried out in the previous section as well as dynamic measurements, where the thin film is
excited in z direction, will be treated in this section. First, set-up design is discussed.

7-2-1 Set-up design

Set-up two, pictured in Figure 7-3, consists of identical parts as set-up one, except for the
bearings and target. The base is moved with a tip-tilt stage and two micrometer stages. Three
supply lines feed the bearings with air. The target, a 160 mm diameter stainless steel cylinder,
rests on top of the bearings and supports the extra mass, 1.8 kg in the picture. Fly height
sensors and a contact sensor are integrated in the base.
In Figure 7-3b, the bearings and sensors can be seen more clearly. The bearings have a radius
of 10 mm and are located on a circle, separated 120◦, at an inside radius of 9 mm.

Bearing surface

Since a parallel film is to be measured and the target has a flat surface, the surfaces of all
three bearings must be in the same plane. To ensure this, flattening the surface has been the
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Figure 7-3: Set-up up for measurement of characteristics of three identical bearings

final step in manufacturing of this set-up. The bearings, with restrictors integrated, are tightly
fixed to the base by three bolts each. The base is clamped in the lathe and a small amount of
material is removed from the top of the bearings. This ensures that all three bearings are in
the same plane.
This is verified with white light measurements similar to those in section 6-1, but now over
multiple surfaces. The results can be seen in Figure 7-4, where measured surfaces have been
drawn in the top figure. In order to relate the heights of separate bearings to each other and
make a successful stitch, a piece of aluminium foil is spanned across the surfaces.
Cross-section heights of the blue and red lines on the bearing surface are drawn on the bottom
of Figure 7-4. The triangles mark the start of height map. The third bearing would be above
the two measured bearings, so the triangles are at the inside radius of the set-up.
The cross-sections show two things. First, both bearing surfaces are in the same plane, as
expected. Second, both bearings show poor flatness for low radii. The surface declines in a
linear fashion up to a radius of 10 mm.
This profile is likely to be caused by a temperature change induced by cutting on the lathe.
The surfaces are at room temperature when cutting starts and heat up by friction. The
bearings expand, causing more material to be removed later in the cutting process. When the
bearing is back at room temperature, the part of the surface that was cut at a an increased
temperature now is lower than the part cut at room temperature.
Aluminium has a thermal expansion coefficient of around 22× 10−6 1/K. Assuming uniform
heating of the bearings with a height of 10 mm, a 4 µm expansion could be caused by a
temperature increase of only 20 K, which is not unlikely in machining.

R.P. Hoogeboom Master of Science Thesis



7-2 Measurement set-up two 71

6.0
5.0
4.0
3.0

2.0

1.0
0.0
-1.0
-2.0

µm

r = 0 mm r = 0 mm

0 2 4 6 8 10 12 14 16 18 20−2

0

2

4

6

r [mm]

pr
ofi

le
he

ig
ht

[µ
m
]

Figure 7-4: White light measurement of two bearings. A piece of aluminium foil is spanned
between the bearings to allow stitching as can be seen in the bottom of the 2D graph. Surface
size is 55 mm by 22 mm.

The non constant temperature could be solved by manufacturing a cylinder with the diameter
of the base and height of the bearings. If holes are drilled at the locations of the bearings,
this cylinder can be put on top of the base, adding material where now there is none. This
would heat the bearings more evenly when flattening, since material would be cut before the
cutting tool reaches the bearings. The aluminium foil in Figure 7-4 would also no longer be
needed, since this cylinder could be used for stitching white light images. Manufacturing of
this part is left as a recommendation.

The 2D model to which experiments will be compared, which will be discussed in more detail
in the next subsection, takes this curved surface into account. A line has been fitted through
the measured surface profile and has been added to the fly height.

Two other white light interferometer measurements, similar to that in Figure 7-4, have been
conducted with both of the depicted bearings and the third bearing that is not in the image.
The results are comparable to Figure 7-4.

Similar experiments have also been conducted on the target. The result of this measurement
can be found in Figure D-4 in Appendix D. Target flatness is 2 µm. The surface profile is also
fitted and added to the 2D model.
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Figure 7-5: Measured pressure versus time and derived conductivity versus quadratic pressure
difference for the restrictors in set-up two

Pneumatic system

The pneumatics of set-up two are similar to that of set-up one, only restrictor and thin film
parts are different. For set-up two, the air supply is divided over three bearings, so the
restrictor and thin film part of the pneumatic circuit in Figure 6-10 consists of three restrictors
plus thin film resistances in parallel.

The restrictor conductivities have been determined with the method described in subsection 6-
2-2. The results are plotted in Figure 7-5. The restrictors show very similar conductivity,
which is a satisfactory result and shows that the method used for fixing the restrictors gives a
repeatable result. Restrictor one only has a slightly higher conductivity.

The measured conductivities are averaged and a look up table has been created as a function
of the quadratic pressure difference. This table has been used in the 2D model, which is
described in the next section.

Sensors

The Eddy current sensors from set-up one are transferred to set-up two. Since the target
material for set-up two is stainless steel, the controllers have been recalibrated. According to
the manual, the controllers are not suitable for non-ferromagnetic targets, but by experimenting
with controller settings, a linear voltage - displacement curve for a range of 0.1 mm has been
measured. The measured sensitivity can be found in Figure D-3 in Appendix D.

The pressure sensor has been used in set-up two to measure pressure in the tank. This allows
the determination of air flow.

Also, a contact sensor has been added. This relatively simple, self developed sensor consists
of a wire to the base and a wire touching the target which is pictured in Figure 7-6. If the
target is in contact with the bearings a small current can flow, caused by a voltage potential
difference between the target and base. This current is amplified with a transistor and can be
measured by the DAQ.
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Figure 7-6: Contact sensor. A voltage po-
tential between base and target will cause
a measurable current flow if the target is
in contact with the bearings.

Figure 7-7: Set-up two with shaker and
extra Eddy current sensor to measure trans-
missibility

Shaker for dynamic measurements

For dynamic measurements, a Brüel & Kjær Mini Shaker Type 4810 has been used to excite
the bearings. The shaker replaces the large aluminium block that rests on the x− y stages, as
can be seen in Figure 7-7 .

Sinusoidal signals to vibrate the shaker have been generated with the analog output on the
DAQ. This low power signal is amplified by a current amplifier. The shaker amplitude is
controlled with the amplitude of the DAQ output signal.

To measure the sinusoidal displacement, a fourth Eddy current sensor of the same type as
before has been used. It measures the displacement of the base and is fixed to the granite
block on which the breadboard with the set-up rests.

With set-up two discussed in detail, the measured results can be reviewed and compared with
the 2D model which will also be discussed. Two types of measurements, static and dynamic,
will be treated subsequently.

7-2-2 Static measurements

In this subsection, the static measurements will be discussed. Although not at steady state,
these experiments are called static because the bearings are not exited by the shaker. Before
treating the results, the measurement procedure and updated model will be discussed.
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Measurement procedure

To create more insight in bearing behaviour and have more data to compare the model to, not
only the W - h curve will be determined, but also air flow and the effect of different source
pressures will be measured.
An approach similar to experiment two of subsection 6-2-2 has been taken: a tank is filled
with air and deflated through the bearing which supports the target. During this experiment,
pressure, fly height and contact state are logged.
The procedure consists of two steps. First, the bearings are aligned at constant pressure such
that a parallel film is formed, as described in section 7-1. Because of the significant increase
in tip-tilt stiffness, aligning the bearings for a parallel film is notably more easy compared to
set-up one.
Second, the actual measurement takes places. While logging fly height and pressure, the tank
is deflated until contact is measured continuously for 1 minute. This experiment is performed
multiple times per load capacity, realigning the bearings each time, to show repeatability. In
total eight different load capacities have been measured, from only the target mass of 0.42 kg
up to an additional mass of 1 kg.
From this data, mass flow and fly height at different load capacities and supply pressures can
be determined and compared to the updated 2D model. This model will be discussed next.

2D model

As shown in subsection 7-2-1, the bearing surfaces and resulting thin film can not be correctly
represented axisymmetrically. By using a 2D space, modelling the thin film as a circle instead
of an axisymmetric line, the measured surface profile can be imposed. The developed model
is similar to the model used in section 3-4, but now uses Reynolds equation in Cartesian
coordinates as derived in Appendix A. The resulting model has been compared and verified
with the axisymmetric model before adding the measured surface profile.
One of three bearings is modelled, the other two are assumed identical. Both bearing and
target surface profiles have been taken into account by fitting a line through the measured
surfaces and adding that to the fly height. All three restrictor conductivities have been
measured. The average conductivity per pressure difference is computed from the data of the
three restrictors and used as a lookup table in the model.
To simulate the full experiment of deflating a tank, two extra ODEs are added. In the model,
the fly height is a parameter and the load capacity is dependent on the pressure profile, but in
experiments it is the other way around. The first ODE sets the fly height such that the load
capacity is at a given value.
The second ODE controls the pressure in the modelled tank:

∂Ps
∂t
− 3 ṁRs T

V
= 0 (7-1)

where the mass flow ṁ can be determined by integrating the Lagrange multiplier over the edge
of the bearing. Factor three is to account for three bearings. The starting pressure Ps (t = 0)
is set in the ODE.
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Figure 7-8: Measured and modelled pressure and fly height versus time for 4.2 N and 14.2 N load
capacity. Model and measurement show excellent agreement.

The model can now be solved in three steps. First, an initial solution for a given fly height
and source pressure is found. Next, the first ODE is added to find the fly height and pressure
distribution for a given load capacity. Finally, the time dependent second ODE is enabled and
the previous solution is used as the initial condition. The simulation stops at a given end time.

With both the measurement procedure and updated model discussed, the results can be
compared.

Static results

Two static experimental results will be discussed and compared to the modelled results.
First, the experiments where fly height and pressure are measured while deflating a tank are
treated. From multiple of these experiments, a W − h curve can be formed, which is discussed
subsequently.

The results from two deflating tank experiments are drawn in Figure 7-8. The first measurement,
in blue, has been conducted with a load capacity of 4.2 N, which is the target without extra
mass and therefore the lowest measurable load capacity. In little over 7 minutes, the pressure
decreases from 3.3× 105 Pa to 1.2× 105 Pa, at which contact has been measured. The average
fly height at the moment of contact is not zero, but 2.4 µm. Because one of the restrictor
conductivities is slightly higher, the fly height decreases faster over the other two. Therefore,
one of these bearings is in contact before the average is at zero.

The second measurement, in green, has been conducted at maximum measured load capacity
of 14.2 N. For this measurement, the average fly height also does not fully measure zero. All
other measured experiments range between the two plotted experiments.

The 2D model is run with equal load capacities and starting pressures as measured in the
experiments. The model results are plotted in dashed red and yellow. A systematic error
in fly height of 2 µm has been observed. This error is probably caused by a mismatch in
reference height and actual air gap height because of non perfect flatness. Subtracting this
error improves the results for both measurements, and for all further measurements, as will be
seen.
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Figure 7-9: Load capacity versus fly height for different source pressures. Solid lines are modelled,
points are measured. 2 µm has been subtracted from the modelled fly heights, shifting the model
to the left.

With the systematic error removed, both measured and modelled experiments show excellent
agreement. The pressure decrease and therefore the air flow is correctly captured by the model,
as can be seen in the left graph. The 2D model computes the average fly height and does not
take the difference in resistor conductance and resulting tilt into account. This assumption
is sufficient to capture the actual behaviour, as can be seen by the agreement between both
modelled and measured experiments.

The deflating tank experiment has been conducted 35 times in total, for 8 different load
capacities from 4.2 N to 14.2 N. All loads have been measured at least three times, positions
were reset each time. By looking up the fly height at the time the tank was at a certain
pressure, a point on the W − h curve is found for that particular supply pressure and load.

This has been done for four supply pressures in all experimental data, resulting in Figure 7-9.
The dots represent the measured W − h curve, where points with equal colour are taken at
equal supply pressure but different load capacities.

Because of the increased tip-tilt stiffness, the uncertainty in measured fly height has been
significantly decreased when compared to Figure 7-2. The deflating tank method has proven a
fast an dependable method for measuring W − h curves at varying supply pressures.

The results from the 2D model are included in Figure 7-9 as lines. The supply pressure used
in the model corresponds to the supply pressure of the measured results with the same colour.
2 µm is subtracted from all modelled fly heights, as discussed in previous results.

Modelled and measured results show excellent agreement. By taking the measured surface
properties and restrictor conductivities into account, the model can correctly predict load
capacity at a certain fly height and source pressure. This validates the static model.

7-2-3 Dynamic results

In this subsection, the results from modelling and measuring the dynamic response from set-up
two will be treated. By exciting the thin film with a shaker, the transmissibility as a function
of the frequency can be determined.
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First, the measurement procedure will be treated. Next, three 2D models will be discussed to
which the dynamic results will be compared.

Measurement procedure

The transmissibility between two parts is defined as the ratio of displacements, as discussed in
section 5-1. As can be seen in Figure 7-7, the absolute displacement of the base and the relative
displacement of the target with respect to the base have been measured. The transmissibility
can therefore be found by:

T = xt + xb
xb

(7-2)

where xt is the relative target displacement and xb is the absolute base displacement.

The start of the measurement procedure is similar to the start of previous experiments. The
bearing is aligned with the target to form a parallel film and a reference voltage is measured
with the air supply switched off. When the air supply is switched on, the actual measurement
can start.

The shaker movement is controlled by the power supply, which receives a sinusoidal signal from
the analogue output of the DAQ. A constant amplitude input signal at different frequencies
does not result in a constant amplitude movement of the base. Since bearing stiffness is
dependent on the fly height, a small and constant amplitude base displacement is required
for all measured frequencies to assume negligible change in bearing stiffness by change in fly
height.

To control the amplitude of the measurement, a simple proportional feedback loop has been
used. After one second of acquiring a time signal, an FFT is performed on the data with a
flat top window applied. The amplitude at the excited frequency is compared to the required
amplitude. If the measured amplitude is not within set bounds, another measurement at the
same frequency is started. The input amplitude for this measurement is scaled proportional
to the quotient of the target amplitude over the measured amplitude. This loop is repeated
until the required amplitude is measured. That data is stored and the final input amplitude is
used for the next frequency.

Dynamic models

Three models have been developed for verification and insight in the measured data. First, the
static 2D model (without ODEs) has been expanded with linear perturbation, as discussed in
chapter 4. With this model, the stiffness and damping as function of the frequency can be
calculated, taking the measured restrictor conductance and surface profile into account.

Resulting stiffness and damping for two feed pressures have been drawn in Figure 7-10. Both
have been evaluated at a load capacity of 4.2 N. The stiffness and damping are essentially
constant up to 1 kHz. Above this frequency, stiffness increases and damping decreases.

This frequency dependent stiffness and damping have been used in the second dynamic model,
which calculates transmissibility as function of frequency based on (5-1). Stiffness and damping,
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Figure 7-10: Stiffness and damping versus frequency for set-up two at different feed pressures.
Models have been evaluated at 4.2 N load capacity, and show significant change in stiffness from
1 kHz and up.

(a) Base and bearings (b) Target

Figure 7-11: Geometry models for eigenfrequency study of set-up two. Base and target are
coupled with frequency dependent stiffness and damping, as drawn in Figure 7-10.

as found in Figure 7-10, has been used as a lookup table as function of frequency. The results
will be discussed and compared to measurements in the next subsection.

Third, a mechanical finite element model has been developed to find the resonance frequencies
of the base and target coupled by a thin film of air. The geometries of both base plus bearings
and target are pictured in Figure 7-11. The blue highlighted surface on the base and a similar
surface on the back side are fixed, modelling the clamping by a bolt. The bearings and
target are coupled by boundary loads, where the forces on both surfaces are generated by
displacements, coupled by stiffness, and velocities, coupled by damping. Both stiffness and
damping are frequency dependent and taken from dynamic model one. The target is only
allowed to move in z direction.
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Figure 7-12: Modelled and measured transmissibility Bode plot at a source pressure of 4× 105 Pa
and a load capacity of 4.2 N. Since mass and stiffness are accurately know, measured and modelled
first eigenfrequency match. Measured behaviour is as expected up to 5× 102 Hz, above this
frequency decoupling occurs.

Dynamic results

The transmissibility results calculated with dynamic model two can be found in Figure 7-12.
Results drawn are for a source pressure of 4× 105 Pa.

Up to 500 Hz, model and measurement show excellent agreement. Because the transmissibility
curve is dependent on mass, stiffness and damping and these properties are accurately
determined, model and measurement match.

For frequencies over 500 Hz, other phenomena, not taken into account in the simple trans-
missibility model, are measured. Eigenfrequencies found with dynamic model three can help
to explain these phenomena. The first computed eigenfrequency and mode is the up and
down motion of the target on the bearings, at 146.2 Hz, matching exactly with the measured
response.

The second mode is torsion around the z axis at 3.2 kHz, beyond the maximum measured
frequency. The measured effects are therefore not caused by eigenmodes of the bearings, base
and target. Because the sensors are not fixed to the base with very high stiffness, sensor
movement could cause the measured effects at 500 Hz and up. Finite sensor connection stiffness
is not taken into account in dynamic model three.

To validate frequency dependent stiffness and damping, measuring the change in these proper-
ties would be insightful. However, increase in stiffness for the measured experiment is marginal,
as can be seen in Figure 7-10. The increase in stiffness between 10 Hz and 500 Hz for a feed
pressure of 4× 105 Pa is only 5%.

This insignificance can also be seen in Figure 7-12, where the results of running the trans-
missibility model with constant stiffness and damping has been plotted in black dashdotted
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lines. The difference between dynamic model 2 and a constant stiffness and damping model is
smaller than the uncertainty on the measured transmissibility and therefore the change in
stiffness and damping can not be seen in the measured data.
To increase the change in stiffness between 10 Hz and 500 Hz, dynamic model one has been
evaluated at varying source pressures and load capacities. The highest change in stiffness
between 10 Hz and 500 Hz has been found to be at 2× 105 Pa and 4.2 N. The resulting k and
c have been plotted in blue in Figure 7-10. The change in stiffness for this combination is 14%,
which is improved but still too small to be measured. Therefore, the resulting transmissibility
bode plot has been omitted, as it is very similar to Figure 7-12.
To increase stiffness and damping change, larger bearings could be used. Change in stiffness
and damping has been measured in literature for bearings with a radius of 30 mm [32]. A
similar model to the one used in this thesis has been verified with these measurements [24,
6.5.3]. However, repeating the experiments with larger bearings to verify the model used in
this thesis is left as a recommendation.
To summarize: measured and modelled bearing behaviour show a good match up to 500 Hz.
The measured stiffness is practically constant up to that frequency, as expected. The increase
in stiffness and decrease in damping have not been measured, since the set-up does not give
reliable results for the frequencies at which that effect becomes significant.

7-3 Conclusions and outlook

In this chapter, experimental set-ups, measured results and comparison with models have
been discussed.
First, set-up one has been treated in detail. It consists of a single bearing, positioned
underneath a target by two micrometer stages and put under a slight angle with a tip-tilt
stage. The target is suspended by wires and supported by the bearing. Three eddy current
sensors are used to measure film height, tip and tilt. Because of uncertainties in the measured
reference position, the measurement procedure consists of alternating tip-tilt minimization by
positioning the bearing and remeasuring of a reference zero fly height position.
Even though great care has been taken in making the measurements repeatable, the spread
on measured fly heights is significant. Because of the low tip-tilt stiffness, the bearing is
repositioned for every change in load capacity. This introduces uncertainty in measured fly
heights. The similarity between measurements and model is low. To increase tip-tilt stiffness
and reduce this uncertainty, set-up two has been designed and build.
Set-up two consists of three bearings with the same manipulation of x − y position and
tip-tilt as set-up one. The bearing surfaces show a non-flat surface profile, likely caused by
temperatures changes in the material during manufacturing. The measured surface profile is
taken into account in the model. Pneumatically, set-up two is similar to set-up one. Measured
conductivities have been included in the model.
The Eddy current sensors have been reused. With a voltage potential between base and target,
contact between bearing and target has been measured. For dynamic measurements, the
aluminium bottom is replaced with a shaker and base movements are measured with a fourth
sensor.
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To also measure air flow and the effect of different source pressures, a tank filled with air is
deflated through restrictors and thin films while pressure, fly height and contact state are
logged. A 2D model has been developed to predict the deflation of a tank through a restrictor
and thin film, including measured surface profile and restrictor conductivity.

Measured and modelled results for the deflating tank experiment show excellent agreement.
From multiple deflating tank experiments, a load capacity versus fly height curve can be
derived. Comparison of these measured curves with modelled results also show excellent
agreement, validating the static model.

By exciting the base with a shaker, dynamic response is measured. Resulting transmissibility
is compared with modelled results and show agreement up to 500 Hz. Above this frequency,
the set-up decouples. Change in stiffness and damping at higher excitation frequencies have
not been measured, their effect is not significant for the measurable frequency range.

With the models experimentally verified, the last part of this research is to drawn final
conclusions and give recommendations for further research, which is done in the next chapter.
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8
Conclusions and recommendations

In this final chapter, conclusions on this research are drawn in the first section. Next,
recommendations will be discussed.

8-1 Conclusions

The goal of this research is to design a stable, low stiffness aerostatic thrust bearing system
consisting of thrust and vacuum pads. To achieve this goal, both static and dynamic behaviour
has been modelled. Bearings have been manufactured and tested to validate the model. In
this section, the conclusions that can be drawn from this research will be discussed.
Different modelling approaches have been explored. With both static and dynamic behaviour of
interest, the finite volume method model developed in this thesis has proven a fast and reliable
approach. It enabled a user interface that in real time updates relevant bearing properties
as function of design variables. This interface allows to quickly assess static and dynamic
behaviour of a combination of bearings with different geometries, restrictor conductivities and
feed pressures.
With the help of this interface, two conceptually different designs for low stiffness air bearings
have been conceived. Concept one is based on a height difference between pads, concept two
uses a shallow pocket. Both designs are optimized for high range of low stiffness region.
For the purpose of model validation, air bearings have been manufactured. Realisation of
a simple bearing with a flat surface fed through a capillary restrictor, as often discussed in
literature, has been shown to be not trivial. Important observations on manufacturing of both
components have been made.
First, by minimizing downstream volume, restrictors have been integrated such that dynamic
instability does not occur. Measurements of restrictor conductance have proven the in literature
proposed model to be invalid for realistic pressure drops. The conductance is strongly non-
linear, disproving the assumption that it is constant. Without taking the measured restrictor
behaviour into account, model and measurement will not match.
Second, assuring flatness of both bearing and running surface has also proven to not be trivial.
Controlling surfaces flatness is essential for predictable bearing behaviour. The performance
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of available production methods has been thoroughly researched. Best results have been
achieved using a lathe, but a check after production remains crucial. Model and measurement
correspondence can only be achieved by taking surface properties into account.
Finally, the low tip-tilt stiffness of a single air bearing has been found to negatively effect
measurements on film height. By using three bearings, tip-tilt stiffness has been significantly
increased. This reduces measurement uncertainty.
By taking these findings into account, excellent agreement between measurements and model
has been achieved. Static fly height versus load capacity and air flow are accurately captured.
Measured dynamic transmissibility agrees with the model up to 500 Hz. The difficulty in
finding agreement between measurement and model shows that manufacturing and testing of
air bearings is not as simple as often considered.
With these results, the research goals has been achieved. The lessons learned in this research
enable the design, development and testing of a low stiffness prototype. Recommendations
concerning this design are shared in the next section.

8-2 Recommendations

Follow up research should be aimed at building and testing a prototype with combined thrust
and vacuum bearings with a low stiffness operating point. First, recommendations on modelling
will be discussed. Manufacturing will be treated next.
The first part of prototype development should be an update in the restrictor model. Ex-
periments in section 6-2 have shown the proposed model to be insufficient. A more suitable
model might be based on Fanno flow [22, chap 9], which described pipe flow with friction for
compressible fluids. It is capable of dealing with larger pressure drops than the literature
model used in this thesis. Verifying this model with the described restrictor conductivity
experiments before using it as a design tool is recommended.
With restrictor non-linearity taken into account, the low stiffness concepts should be optimized.
Not too much change is to be expected, since measured restrictor conductivity do not show
too much change for higher pressure differences.
Another minor recommendation on modelling is an extra potential speed-up in the dynamic
model. The perturbed finite volume method requires a static solution, that so far has been
calculated with the static finite volume model. However, this could be replaced with a solution
using the analytical model, reducing computational cost which is beneficial for a possible
optimization.
Taking lessons learned from chapter 6 and chapter 7 on production of bearing surfaces into
account, a tip-tilt stable, axisymmetric design as drawn in Figure 8-1 should be considered.
Here, the thrust bearing is located concentrically around the vacuum bearing with an optional
ambient pressure part in between. To ensure tip-tilt stability, the pressure feed should consist
of three point feeds, as drawn. The advantage of this lay-out is that height steps can be made
with a lathe, both in the bearing surface or between surfaces, allowing both developed design
concepts to be manufactured.
A second consideration is the method of applying a height offset. Instead of manufacturing
offsets, the vacuum and thrust parts could be connected with a flexure. This way, the height
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Thrust

Vacuum

Ambient

Figure 8-1: Alternative design for combined thrust and vacuum bearing, with optional ambient
pressure in between. Because this design is fully axisymmetric, surface finishing is less complicated.

offset and alignment of the pads can be changed after production, allowing multiple offsets to
be tested. This would also enable flattening and polishing of both surfaces in the same plane,
applying the offset afterwards.

With these recommendations, developing a working low stiffness prototype could be a chal-
lenging and rewarding MSc thesis project.
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A
Derivation of Reynolds equation

In this appendix the Reynolds equation is derived, in a similar way as can be found in literature.

A-1 Cartesian coordinates

First, the derivation in Cartesian coordinates is discussed. Referenced assumptions can be
found in subsection 2-1-1.

A-1-1 Equilibrium of pressure and shear forces on an element

Assume a control volume, as drawn in Figure A-1. Two surfaces at distance h are separated
by a thin film. The x and y axis are defined along the bottom surface, the z axis is the normal
direction of the surface, in the direction of the film height. In this film, a control volume in
equilibrium with sides dx, dy and dz is defined. The film pressure p in z direction is assumed
constant, as described in assumption 2. The pressure thus only differs in x and y direction.

For simplicity, only the forces in x direction are drawn in Figure A-1. The derivation will only
be worked out in x direction, as the equations in y direction are similar. Because the element
is in equilibrium, and flow is laminar (assumption 5) forces must balance. This gives:

p dy dz +
(
τx + ∂τx

∂z
dz

)
dx dy =

(
p+ ∂p

∂x
dx

)
dy dz + τx dx dz (A-1)

where p is the pressure and τx the shear stress in x direction. Assuming that dx dy dz 6= 0,
meaning that the control volume’s volume is not zero, this can be simplified to:

∂τx
∂z

= ∂p

∂x
(A-2)

Since the film pressure in z direction is assumed constant, the gradient is zero:

∂p

∂z
= 0 (A-3)
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dx

dy

dz

y

z

x

(
p+ ∂p

∂xdx
)
dy dzp dy dz

τx dx dy

(
τx + ∂τx

∂z dz
)
dx dy

u

w

v

Surface 1

Surface 2

h

Figure A-1: Equilibrium of forces in x direction of a thin film fluid element in between two
surfaces. For clarity, only forces in x direction are showm. p is the film pressure, τ is the shear
stress. u, v and w are velocities.

Newton’s law of viscous flow relates shear stress to change in velocity, under the assumption
that the fluid is Newtonian (assumption 4):

τx = η
∂u

∂z
(A-4)

Substituting (A-4) into (A-2) gives:

∂p

∂x
= ∂

∂z

(
η
∂u

∂z

)
(A-5)

This equation can now be integrated. Assume constant viscosity as in assumption 8, (A-5)
becomes:

∂p

∂x
= η

∂2u

∂z2 (A-6)

Integrating in z:
∂p

∂x
z = η

∂u

∂z
+ c1 (A-7)

Integrating once more in z:

∂p

∂x

z2

2 = η u+ c1 z + c2 (A-8)

The integration constants can be found by assuming there is no slip (assumption 3) between
the surface and the fluid. Stating that the velocity at the bottom surface (z = 0) is u1 gives:

η u1 + c2 = 0 → c2 = −η u1 (A-9)

With the velocity at the top (z = h) as u2:

∂p

∂x

h2

2 = η u2 + c1 h− η u1 → c1 = ∂p

∂x

h

2 −
η

h
(u2 − u1) (A-10)
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dx

dy

h

y

x
qx dy

(
qx + ∂qx

∂x dx
)
dy

qy dx

(
qy + ∂qy

∂y dy
)
dx

Figure A-2: Continuity of flow in an element with height h enclosed between two surfaces. Flow
in and out must equal the change in volume and density.

Substituting (A-9) and (A-10) into (A-8) gives:

∂p

∂x

z2

2 −
∂p

∂x

h z

2 + η z

h
(u2 − u1) + η u1 = η u (A-11)

Rewriting, the velocity becomes:

u =
(
z2 − z h

2η

)
∂p

∂x
+ (u2 − u1) z

h
+ u1 (A-12)

The volume flow per unit length is now found by integrating the velocity over the film height:

qx =
∫ h

0
u(z) dz = − h3

12η
∂p

∂x
+ h

2 (u1 + u2) (A-13)

In similar fashion, the velocity in y direction can be written as:

v =
(
z2 − z h

2η

)
∂p

∂y
+ (v2 − v1) z

h
+ v1 (A-14)

and the volume flow per unit length in y direction:

qy =
∫ h

0
v(z) dz = − h3

12η
∂p

∂y
+ h

2 (v1 + v2) (A-15)

A-1-2 Continuity of flow in an element

Consider the element af shown in Figure A-2. Lubricant flows into the element at rates qx
and qy and out at qx + ∂qx

∂x dx and qy + ∂qy

∂y dy per unit length and width. The element has a
height of h, and the lubricant has density ρ. The mass of lubricant inside the element at any
instant is ρ h dx dy. Mass conservation demands that the rate of change of the mass inside the
element is equal to the difference in inflow and outflow of mass. Therefore:

ρ qx dy −
(
ρ qx + ∂ (ρ qx)

∂x
dx

)
dy + ρ qy dx−

(
ρ qy + ∂ (ρ qy)

∂y
dy

)
dx = ∂

∂t
(ρ t) dx dy (A-16)
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Simplifying this equation gives:

−∂ (ρ qx)
∂x

− ∂ (ρ qy)
∂y

= ∂

∂t
(ρ t) (A-17)

However, due to the product rule:

∂

∂t
(ρ h) = ρ

∂h

∂t
+ h

∂ρ

∂t
(A-18)

By examining Figure A-1, the change in height ∂h
∂t can be attributed to two factors:

∂h

∂t
= w2 − w1 − u2

∂h

∂x
− v2

∂h

∂y
(A-19)

The first factor, w2 − w1, is the direct up and down movement of the surfaces. The second
factor is caused by the sideways sideways movement u, v of the surfaces while not parallel,
given by ∂h

∂x ,
∂h
∂y . Since for surface 1 in Figure A-1 ∂h

∂x = 0 and ∂h
∂y = 0, these are omitted from

(A-19).

Now plugging (A-13), (A-15) and (A-19) in (A-17) gives:

∂

∂x

(
ρ h3

12 η
∂p

∂x

)
+ ∂

∂y

(
ρ h3

12 η
∂p

∂y

)
− ∂

∂x

(
ρ h (u1 + u2)

2

)
− ∂

∂y

(
ρ h (v1 + v2)

2

)
= ρ (w2 − w1)− ρ u2

∂h

∂x
− ρ v2

∂h

∂y
+ h

∂p

∂t

(A-20)

This equation is known as the Reynolds equation.

A-2 Polar coordinates

In the previous section, the Reynolds equation is derived in Cartesian coordinate system.
However, when modelling circular bearings, a polar coordinate system is more suitable.
Therefore, the polar Reynolds equation will be derived in this section in a similar fashion as
in section 2-1. Because the steps taken are so similar, this section contains only the most
important derivations. Equations in this section are derived from [23].

The assumptions as stated in section 2-1 also apply here. Furthermore, an extra assumptions
is added. The system is assumed axisymmetric, meaning there is no flow in the θ direction.

A result of the combination of coordinate system and axisymmetry is that the linear sliding of
surfaces cannot be described. A surface velocity in θ means the surfaces are rotating compared
to each other. Because of axisymmetry, a radial surface velocity difference would mean that
one of the surfaces is expanding out from the origin. Both velocities are not needed in the
description of circular thrust bearings, so the Couette flow is left out of this derivation.

In Figure A-3a a fluid element in polar coordinates is drawn. It has sides dr, dθ and dz. The
equivalent figure in Cartesian coordinates is Figure A-1. For a clearer picture of the polar
coordinates system, a top view of this element is drawn in Figure A-3b. Here, also the flows
are drawn, equivalent to Figure A-2.
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dr

dθ

(
p+ ∂p

∂rdr
)
dθ dz p dθ dz

τr dr dθ

(
τr + ∂τr

∂z dz
)
dr dθ

dz

(a) Equilibrium of forces in r direction. Polar coor-
dinate equivalent of Figure A-1.

dr
dθ

θr

o

qr dθ

(
qr + ∂qr

∂r dr
)
dθ

(b) Top view of fluid element. Out of plane height
is h. Polar coordinate equivalent of Figure A-2.

Figure A-3: Thin film fluid element in polar coordinates

Stating the element is in equilibrium, the fluid is Newtonian and the viscosity is constant gives
[23, (2.136)]:

∂p

∂r
= η

∂2ur
∂z2 (A-21)

Also note that the pressure is constant in the height and axisymmetric:

∂p

∂z
= 0; ∂p

∂θ
= 0 (A-22)

The volume flow per unit length is [23, (2.137)]:

qr = − h3

12 η
∂p

∂r
(A-23)

Continuity, as in Figure A-3b, states:

−1
r

∂

∂r
(r ρ qr) = ∂

∂t
(ρ h) (A-24)

Plugging the volume flow per unit length into the continuity equations gives:

1
r

∂

∂r

(
r ρ h3

12 η
∂p

∂r

)
= ∂

∂t
(ρ h) (A-25)

Converting the density to the pressure with the ideal gas law, as in (2-5), gives the axisymmetric
compressible Reynolds equation:

1
r

∂

∂r

(
r p h3

12 η Rs T
∂p

∂r

)
= ∂

∂t

(
p h

Rs T

)
(A-26)
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B
Finite volume method

This appendix contains all derivations and equations that are needed develop the finite volume
method model. Since the perturbed solution requires a static solution, this is developed first.

B-1 Static

In this section, the Reynolds equation, (2-8), is put into dimensionless form and solved using
the finite volume method.

Dimensionless numbers

As described in subsection 3-4-3, by defining dimensionless parameters:

r [m] = r̄ [−] R [m]
p [Pa] = p̄ [−] P [Pa]
h [m] = h̄ [−] H [m]

(B-1)

equation (2-8) can be written as:

H3 P 2

R

∂

∂r̄

(
r̄ h̄3 p̄

∂p̄

∂r̄

)
= 0 (B-2)

Discretization

To solve (B-2) for p, the continuous film is now divided into volumes. The volumes have
midpoints, numbered i and edges, numbered i± 1

2 as drawn in Figure B-1. Notice that:

p
∂p

∂r
= 1

2
∂p2

∂r
(B-3)
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riri− 1
2

ri+ 1
2

ri−1 ri+11
2∆ri 1

2∆ri

Figure B-1: Definition of 1D mesh for finite volume method

Substitution and integration over volume i gives:∫ r̄
i+ 1

2

r̄
i− 1

2

∂

∂r̄

(
r̄ h̄3 ∂p̄

2

∂r̄

)
dr̄ = r̄ h3∂p̄

2

∂r̄

∣∣∣∣∣
r̄

i+ 1
2

− r̄ h3∂p̄
2

∂r̄

∣∣∣∣∣
r̄

i− 1
2

(B-4)

The derivative can be approximated by finite difference:

∂p̄2
i+ 1

2

∂r̄
≈ p̄2

i+1 − p̄2
i

1
2∆r̄i+1 + 1

2∆r̄i
(B-5)

Substituting into (B-4) gives:(
r̄h̄3

)
i+ 1

2

p̄2
i+1 − p̄2

i
1
2∆r̄i+1 + 1

2∆r̄i
−
(
r̄h̄3

)
i− 1

2

p̄2
i − p̄2

i−1
1
2∆r̄i + 1

2∆r̄i−1
= 0 (B-6)

This equation describes how p̄i is dependent on p̄i+1 and p̄i−1, and thus how the pressure
changes through the volumes as function of the neighbouring pressures. To find a solution for
the model as drawn in Figure 3-5, in the next section the feed and boundary conditions are
added.

Feed

The mass flow of a restrictor with conductivity Gr is given by (3-4). To equate this point
source feed to the axisymmetric Reynolds equation, it needs to be divided over an area A.
This gives:

−1
r

∂

∂r

(
r h3

24 η Rs T
∂p2

∂r

)
= π d4

256 l
1

η Rs T

1
A

(
P 2
s − P 2

r

)
(B-7)

which can be written in a dimensionless form and simplified to:

− ∂

∂r̄

(
r̄ h̄3 ∂p̄

2

∂r̄

)
= 24π d4

256 l
r̄

Ā

1
H3

(
P̄ 2
s − P̄ 2

r

)
(B-8)

To discretize this equation, both sides are integrated over the volume at which the source is
located. The area over which the point source is spread is changed into the circumference of
the mid point of the volume multiplied with the length of the volume: Ā = 2π r̄i ∆r̄i. The
integral of the left side of the equation is already dealt with in (B-4). The right side becomes:∫ r̄

i+ 1
2

r̄
i− 1

2

24π d4

256 l
r̄i

2π r̄i ∆r̄i
1
H3

(
P̄ 2
s − p̄2

i

)
dr̄ = 12 d4

256 l
1
H3

(
P̄ 2
s − p̄2

i

)
(B-9)
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i = 1 i = 2 i = 3 i = 4

Ḡr
(
P̄ 2
s − p̄i

)
p̄4 = 1∂p̄1

∂r̄ = 0

Figure B-2: Example of a meshed thin film domain with 4 volumes, boundary conditions and a
feed

since ri+ 1
2
− ri− 1

2
= ∆r̄i and all terms in the equation are constant with r̄. Defining the

dimensionless conductivity Ḡr as:

Ḡr = 12 d4

256 l
1
H3 (B-10)

the following conversion factor is found to compare the dimensionless finite volume method
conductivity with the multiple resistance conductivity as described in the previous section:

Gr = πH3

12 η Rs T
Ḡr (B-11)

Boundary conditions

Two boundary conditions are applied to model the air bearing. Firstly, symmetry dictates the
pressure at r̄ = 0 is constant. This gives:

∂p̄ (r̄ = 0)
∂r̄

= 0 (B-12)

Secondly, the pressure at the outer radius is equal to the ambient pressure:

p̄ (r̄ = 1) = 1 (B-13)

Setting up equations

With boundary conditions, air feed and discretization put together, a system of equations can
be set up. A small example is used to illustrate this. In Figure B-2, a finite volume grid with
4 volumes is drawn. The feed is connected to the second volume. To simplify equations, a new
constant Di is defined as:

Di =
r̄i+ 1

2
h̄3
i+ 1

2
1
2∆r̄i+1 + 1

2∆r̄i
(B-14)

By factorizing (B-6) for p̄i and substituting Di, the discretized equation for element i is found:

Di p̄
2
i+1 − (Di +Di−1) p̄2

i +Di−1p̄
2
i−1 = 0 (B-15)
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Now, setting up the equations for every element in Figure B-2, taking boundary conditions
and feed into account, gives:−D1 D1 0

D1 −D2 −D1 −Gr D2
0 D2 −D3 −D2


p̄2

1
p̄2

2
p̄2

3

 =

 0
−Ḡr P̄ 2

s

−D3

 (B-16)

This set of equations can be solved to give the pressures in the thin film.

Load capacity

The load capacity of the bearing can now be determined by integration of the pressures in
the volumes. Because the pressure is constant inside the volumes and can only change on the
boundaries, the load capacity is the sum over all volumes of the pressure multiplied with the
area of that element minus the ambient pressure. Since the dimensionless radius is one, the
total ambient pressure on the bearing is π 12 = π. For a model with N volumes:

W̄ + π =
N∑
1
π

(
r̄2
i+ 1

2
− r̄2

i− 1
2

)
p̄i (B-17)

As can be seen in (3-12), the pressure drop is a continuous. To better approach this continuous
line with constant pressure volumes, more volumes should be used.

The dimensionless load capacity can be converted to a load capacity in Newtons by multiplying
the dimensionless variables with their conversion factors:

W [N] = W̄ [−] P [Pa] R2
[
m2
]

(B-18)

B-2 Dynamic

In this section, the perturbed Reynolds equation is written into a dimensionless form and
solved using the finite volume method.

Dimensionless equations

By defining one extra dimensionless number:

ω [1/s] = ω̄ [−] Ω [1/s] = ω̄ [−] P H2

12 η R2 [1/s] (B-19)

the perturbed Reynolds equation, (4-7), can be written as:

− ∂

∂r̄

(
r̄ h̄3

0 p̄0
∂ ˜̄p
∂r̄

+ r h̄3
0 ˜̄p ∂p̄0

∂r̄
+ 3 h̄2

0
˜̄h p̄0

∂p̄0
∂r̄

)
+ r̄ j ω̄

(
p̄0

˜̄h+ h̄0 ˜̄p
)

= 0 (B-20)
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Discretization

The definitions of radii used in this section are equal to the definitions used in Figure B-1.
Starting by integrating one volume of (4-9), which for convienience is copied in (B-20):
∫ r̄

i+ 1
2

r̄
i− 1

2

∂

∂r̄

(
r̄ h̄3

0 p̄0
∂ ˜̄p
∂r̄

+ r̄ h̄3
0 ˜̄p ∂p̄0

∂r̄
+ 3 h̄2

0
˜̄h p̄0

∂p̄0
∂r̄

)
dr̄ =

∫ r̄
i+ 1

2

r̄
i− 1

2

r̄ j ω̄
(
p̄0

˜̄h+ h̄0 ˜̄p
)
dr̄ (B-21)

The partial derivatives of p̄0 and ˜̄p to r̄ will be approximated with finite difference. By defining
the following constants:

ki+ 1
2

=
r̄i+ 1

2
h̄3

0,i+ 1
2

1
2∆ri + 1

2∆r̄i+1
, li+ 1

2
=

3 r̄i+ 1
2
h̄0,i+ 1

2

˜̄h
1
2∆r̄i + 1

2∆r̄i+1
, mi = ω̄

(
r̄2
i+ 1

2
− r̄2

i− 1
2

)
(B-22)

equation (B-21) can be written as:[
ki+ 1

2
p̄0,i+ 1

2

( ˜̄pi+1 − ˜̄pi
)

+ ki+ 1
2

˜̄pi+ 1
2

(p̄0,i+1 − p̄0,i) + li+ 1
2
p̄0,i+ 1

2
(p̄0,i+1 − p̄0,i)

]
−[

ki− 1
2
p̄0,i− 1

2

( ˜̄pi − ˜̄pi−1
)

+ ki− 1
2

˜̄pi− 1
2

(p̄0,i − p̄0,i−1) + li− 1
2
p̄0,i− 1

2
(p̄0,i − p̄0,i−1)

]
=

1
2 j mi

(
p̄0,i

˜̄hi + h̄0,i ˜̄pi
) (B-23)

The values for p̄0,i+ 1
2
are not defined in the static finite volume model and will be approximated

by taking the average of the neighbouring pressures. For ˜̄pi+ 1
2
the same approach is taken:

p̄0,i+ 1
2

= 1
2 (p̄0,i + p̄0,i+1) , ˜̄pi+ 1

2
= 1

2
( ˜̄pi + ˜̄pi+1

)
(B-24)

Substitution into (B-23) gives:[
ki+ 1

2
(p̄0,i + p̄0,i+1)

( ˜̄pi+1 − ˜̄pi
)

+ ki+ 1
2

( ˜̄pi + ˜̄pi+1
)

(p̄0,i+1 − p̄0,i) + li+ 1
2

(
p̄2

0,i+1 − p̄2
0,i
)]
−[

ki− 1
2

(p̄0,i−1 + p̄0,i)
( ˜̄pi − ˜̄pi−1

)
+ ki− 1

2

( ˜̄pi−1 + ˜̄pi
)

(p̄0,i − p̄0,i−1) + li− 1
2

(
p̄2

0,i − p̄2
0,i−1

)]
=

j mi

(
p̄0,i

˜̄hi + h̄0,i ˜̄pi
)

(B-25)

This equation is the discretized version of (4-7), using only the pressures at the volume’s
midpoints. Factorized for p̃ and including feed and boundary conditions, it can be written
into a linear system of equations and solved.

Feed

Substituting the perturbed pressure (4-1) into the equation for mass flow through a restrictor
(3-4) gives:

ṁ = Gr
[
Ps2 −

(
p2

0 + 2 p0 p̃ e
i ω t + p̃2 e2 i ω t

)]
(B-26)
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Because p̃2 can be neglected and P 2
s − p2

0 is solved in the static equation, the dynamic mass
flow is reduced to:

ṁ = −2Gr p0 p̃ e
i ω t (B-27)

Since the feed is divided over an area Ā, the mass flow per area can be equated to (4-9):

− ∂

∂r̄

(
r̄ h̄3

0 p̄0
∂ ˜̄p
∂r̄

+ ...

)
+ 12 η R2 Ω

P H2 r̄ j ω̄
(
p̄0

˜̄h+ h̄0 ˜̄p
)

= −12 η Rs T
H3

r̄

Ā
2Gr p̄0 p̃ (B-28)

Integrating over the volume with the feed, the feed area becomes Ā = 2πr̄i ∆r̄i. The right
side of the equation becomes:∫ r̄

i+ 1
2

r̄
i− 1

2

−12 η Rs T
H3

r̄i
2π r̄i ∆r̄i

2Gr p̄0 p̃ dr̄ = −Ḡr p̄0 p̃ (B-29)

where Ḡr is given by (B-11). Because (B-25) is multiplied with 2 compared to (B-23), this
multiplication should also be done for the feed in the finite volume model.

Boundary conditions

The boundary condition are:

∂p̃(r = 0)
∂r

= 0, p̃(r = ro) = 0 (B-30)

Factorization for pressure

Factorizing (B-25) for ˜̄p:

Di ˜̄pi+1 − (Ei +Di−1 + j Ai) ˜̄pi + Ei−1 ˜̄pi−1 = −Ci + Ci−1 + j Bi (B-31)

where:

Ai = mi h̄0,i, Bi = mi p̄0,i
˜̄h, Ci = li+ 1

2

(
p̄2

0,i+1 − p̄2
0,i
)
,

Di = 2 ki+ 1
2
p̄0,i+1, Ei = 2 ki+ 1

2
p̄0,i

(B-32)

Separation of real imaginary parts

The pressure p̃i can be split up into its real and imaginary part: p̃i = p̃r,i + j p̃j,i. Substituting
this into (B-31), the imaginary and a real part can be split up into a linear system of two
coupled equations:

Di ˜̄pr,i+1 − (Ei +Di−1) ˜̄pr,i +Ai ˜̄pj,i + Ei−1 ˜̄pr,i−1 = −Ci + Ci−1

Di ˜̄pj,i+1 − (Ei +Di−1) ˜̄pj,i −Ai ˜̄pr,i + Ei−1 ˜̄pj,i−1 = Bi
(B-33)

where in the second equation all terms were multiplied with j.
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i = 1 i = 2 i = 3 i = 4

−2 Ḡr p̄0 ˜̄p
˜̄p4 = 0∂ ˜̄p1

∂r̄ = 0

Figure B-3: Example of a meshed thin film domain with 4 volumes, boundary conditions and a
feed

System of equations

With the feed, boundary conditions and the discretized equations set up, the example as
sketched in Figure B-3 can be solved. Six equations are needed to find the pressures ˜̄pr,1 to
p̃r,3 and p̃j,1 to p̃j,3:

−E1 D1 0 0 0 0
E1 −E2 −D1 + 2 Ḡr p̄0,2 D2 0 A2 0
0 E2 −E3 −D2 0 0 A3
0 0 0 −E1 D1 0
0 −A2 0 E1 −E2 −D1 + 2 Ḡr p̄0,2 D2
0 0 −A3 0 E2 −E3 −D2





˜̄pr,1
˜̄pr,2
˜̄pr,3
˜̄pj,1
˜̄pj,2
˜̄pj,3


=



−C1
−C2 + C1
−C3 + C2

0
B2
B3


(B-34)

Stiffness and damping

As described in subsection 4-1-1, the stiffness and damping can be found by integrating the
real and imaginary part of ˜̄p, which for this finite volume model is equal to summing the
pressures multiplied with the area of a volume. The normalised stiffness and damping can be
found with:

k̄ =
N∑
1
π

(
r̄2
i+ 1

2
− r̄2

i− 1
2

)
˜̄pr,i

d̄ =
N∑
1
π

(
r̄2
i+ 1

2
− r̄2

i− 1
2

) ˜̄pj,i
Ω

(B-35)

The normalised stiffness and damping can be converted with:

k [N/m] = R2 P

H
k̄

c [N/ms] = R2 P Ω
H

d̄

(B-36)
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C
User interface

With 12 parameters in a study, getting valuable insight in effects and possibilities is not a
trivial task. To aid in understanding the effect of combinations of parameters, a graphical
user interface is programmed. This interface allows easy experimentation and comparison of
different bearing designs. A screen capture is printed in Figure C-1. The functions will be
glanced over to give an idea of the functionality.

The top left half of the GUI, panel 1, represents bearing one, the top right half, panel 2,
bearing two. The load capacity versus fly height is plotted in the left graph of both halves,
the stiffness and damping versus frequency the right halve. Underneath each bearing, the
parameters are controlled with sliders and input boxes. The relative height and radius can be
set in panel 4, underneath panel 1.

The bottom right half, panel 3, is the combination of bearing 1 and two. Here the result of
combining the bearings can be studied. On the bottom right, some plot options are available.
Every axes contains two lines, because the plot list has two bearings selected. This allows for
easy comparison of designs. The pressure versus radius plots can also be drawn, by selecting
this option in the plot type box.

With the help of this user interface, combining vacuum and thrust pads is explored.
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Figure C-1: Screen capture of the graphical user interface.
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Set-up appendix
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Figure D-1: Eddy current sensor low pass filter schematics
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Figure D-2: Calibration result for sensors with serial numbers 29475, 27460 and 27463 on a steel
target. Since the signal was amplified 10 times in the filter electronics, maximum output voltage
of 10 V is reached at 10% of the total range of 0.5 mm. Dashed line is the derived sensitivity. 1σ
error bars have been plotted on the measured voltages.
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Figure D-3: Calibration result for sensors with serial numbers 27466, 27460 and 27463 on a
stainless steel target. Dashed line is the derived sensitivity. 1σ error bars have been plotted on the
measured voltages.
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