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Abstract

Every spacecraft carries small rocket engines called thrusters for the purpose of orbit and
position corrections in space. A precise operation of the thrusters saves fuel and a lower
fuel consumption can extend the service life of the spacecraft. Precise thrust levels can be
better obtained by pulsed firing than by continuous firing of the thrusters. To guarantee a
precise operation, thrusters are tested extensively in a vacuum chamber beforehand on earth
to measure their thrust. Measurement errors always impede the accurate determination of
the rocket thrust. The measurement of pulsed rocket thrust is especially difficult, if using
strain gage type thrust stands typical for the space industry. Their low first natural frequency
results in a dominant transient response of the thrust stand structure, which interferes with
the thrust signal. In this thesis, an augmented state-space Kalman Filter is proposed as a
low-cost and easy-to-implement solution to deconvolute the thrust signal from the transient
thrust stand response. The typical weakness of the Kalman Filter - the complicated determi-
nation of its process and measurement noise covariance matrices - is overcome by presenting
several methods of choosing the matrices for pulsed thrust measurements. The measurement
state covariance matrix of the Deconvolution Kalman Filter is used to obtain an estimate of
the uncertainty attached to the deconvoluted thrust signal. Using several test cases, the De-
convolution Kalman Filter’s superiority to evaluate pulsed thrust measurements is proven by
comparing it with Infinite Impulse Response filters commonly used in the industry. Finally,
a sequential Monte Carlo method is applied to the dynamic thrust measurement problem for
the first time to show that while precise thrust levels may be better obtained by pulsed firing,
the attached uncertainty can become up to three times higher.

Master of Science Thesis Richard B.H. Ahlfeld



iv Abstract

Richard B.H. Ahlfeld Master of Science Thesis



Table of Contents

Abstract iii

Acknowledgements xiii

1 Introduction 1

2 Literature Review 7
2-1 Rocket Thrust Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-1-1 Thrust Stands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2-1-2 Steady-State and Pulsed Thrust Measurements . . . . . . . . . . . . . . 8

2-2 The Dynamic Thrust Measurement Problem . . . . . . . . . . . . . . . . . . . . 9
2-2-1 Analytical Calculation of the System Response . . . . . . . . . . . . . . . 10
2-2-2 Building a Distortionless Measurement System . . . . . . . . . . . . . . . 13
2-2-3 Experimental Determination of the System Response . . . . . . . . . . . 14

2-3 Digital Deconvolution Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-3-1 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-3-2 Ill-Posedness of the Deconvolution Problem . . . . . . . . . . . . . . . . 17
2-3-3 Thrust Compensation Filters . . . . . . . . . . . . . . . . . . . . . . . . 18
2-3-4 Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2-4 Infinite Impulse Response (IIR) Deconvolution Filters . . . . . . . . . . . . . . . 23
2-4-1 Finite Impulse Response (FIR) and IIR Filters . . . . . . . . . . . . . . . 23
2-4-2 Autoregressive-Moving-Average Models . . . . . . . . . . . . . . . . . . 24
2-4-3 Discrete-Time Linear Least Squares System Identification for IIR Filters . 25
2-4-4 Stabilisation of IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2-4-5 Approximation Error and Error Statistics . . . . . . . . . . . . . . . . . . 28

2-5 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2-5-1 Advantages of the Kalman Filter for the Dynamic Thrust Measurement

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Master of Science Thesis Richard B.H. Ahlfeld



vi Table of Contents

2-5-2 State-Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . 31
2-5-3 Kalman Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2-5-4 IIR Deconvolution from Noisy Observations Using the Kalman Filter . . . 38
2-5-5 Determination of Q and R . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-6 Uncertainty Evaluation for Deconvolution Filters . . . . . . . . . . . . . . . . . . 41
2-6-1 Monte Carlo Uncertainty Quantification for Thrust Deconvolution Methods 41
2-6-2 Sequential Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . 43
2-6-3 Setting up the Filter Covariance Matrix Uba . . . . . . . . . . . . . . . . 44

2-7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2-8 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Airbus DS Thrust Measurement Equipment and Evaluation Method 49
3-1 Measurement Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . 49
3-2 Measurement Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3-2-1 Thrust Stand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3-2-2 Thrust Force Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3-2-3 Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-3 The Airbus DS Thrust Compensation Method . . . . . . . . . . . . . . . . . . . 56
3-3-1 The Digital Filter and its History . . . . . . . . . . . . . . . . . . . . . . 56
3-3-2 Linearity Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3-3-3 High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3-3-4 IIR System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3-3-5 Filter Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3-3-6 Gain Change Caused by Order Reduction . . . . . . . . . . . . . . . . . 63
3-3-7 Second Order System Low-Pass Filter . . . . . . . . . . . . . . . . . . . 63
3-3-8 Design of the Compensation Filter . . . . . . . . . . . . . . . . . . . . . 65
3-3-9 Error Analysis for Pulse Mode Firing (PMF) Measurements . . . . . . . . 65

3-4 The MATLAB Edition of the TDMS Method . . . . . . . . . . . . . . . . . . . 67
3-4-1 Lower Identification Order . . . . . . . . . . . . . . . . . . . . . . . . . 67
3-4-2 Step-Function as Identification Input . . . . . . . . . . . . . . . . . . . . 68
3-4-3 Zero-Point Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3-4-4 Results Obtained by the Matlab Edition . . . . . . . . . . . . . . . . . 70

3-5 Improvement Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3-5-1 Inverse Transfer Function Method . . . . . . . . . . . . . . . . . . . . . 72
3-5-2 System Identification with Firing Signal . . . . . . . . . . . . . . . . . . 73
3-5-3 Filter Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3-5-4 Low-Pass Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3-5-5 Phase Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3-5-6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3-5-7 Design of Inverse Compensation Filter . . . . . . . . . . . . . . . . . . . 82

Richard B.H. Ahlfeld Master of Science Thesis



Table of Contents vii

3-6 Uncertainty Analysis for the Airbus DS Thrust Measurements . . . . . . . . . . . 84
3-6-1 Electronic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3-6-2 Identification Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3-6-3 Non-Repeatability Force Transducer . . . . . . . . . . . . . . . . . . . . 88
3-6-4 Firing Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3-6-5 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3-7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Kalman Filter for Deconvolution 93
4-1 Preliminary Conditions for the Use of the Kalman Filter . . . . . . . . . . . . . . 93
4-2 Test of Bora’s Deconvolution Kalman Filter . . . . . . . . . . . . . . . . . . . . 94

4-2-1 Set-Up of Test Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4-2-2 Removal of Initialisation Error . . . . . . . . . . . . . . . . . . . . . . . 95
4-2-3 Determination of Q and R . . . . . . . . . . . . . . . . . . . . . . . . . 96

4-3 Deconvolution Kalman Filter for Dynamic Thrust Measurements . . . . . . . . . 99
4-3-1 Choosing the Integrated Low-Pass Filter . . . . . . . . . . . . . . . . . . 99
4-3-2 Heuristic Tuning of Q and R . . . . . . . . . . . . . . . . . . . . . . . . 103
4-3-3 Rational Tuning of Q and R . . . . . . . . . . . . . . . . . . . . . . . . 106
4-3-4 Automatic Tuning of Q and R . . . . . . . . . . . . . . . . . . . . . . . 107

4-4 Uncertainty Analysis for the Deconvolution Kalman Filter . . . . . . . . . . . . . 108
4-4-1 Uncertainty Analysis Using the Deconvolution Kalman Filter . . . . . . . 108
4-4-2 Uncertainty Analysis Using an Efficient Implementation of the Monte Carlo

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Test Results 115
5-1 Performance of Deconvolution Filters in Test Scenarios . . . . . . . . . . . . . . 115

5-1-1 Comparison of Deconvolution Filters . . . . . . . . . . . . . . . . . . . . 118
5-1-2 White Gaussian Random Noise . . . . . . . . . . . . . . . . . . . . . . . 122
5-1-3 Low-Pass Filter Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5-2 Realistic Test Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5-3 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5-4 Summary of Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Conclusion 131
6-1 Further Research Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 137

Glossary 143
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Master of Science Thesis Richard B.H. Ahlfeld



viii Table of Contents

Richard B.H. Ahlfeld Master of Science Thesis



List of Figures

1-1 ATV firing its thrusters [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Hot firing test of an AHRES engine [2] . . . . . . . . . . . . . . . . . . . . . . . 2
1-3 Airbus DS Bipropellant Thrusters [3] . . . . . . . . . . . . . . . . . . . . . . . . 3

2-1 Typical thrust stand configuration [4] . . . . . . . . . . . . . . . . . . . . . . . . 8
2-2 Illustration of Steady-State Firing (SSF) and PMF . . . . . . . . . . . . . . . . . 9
2-3 Dynamic thrust measurement example . . . . . . . . . . . . . . . . . . . . . . . 10
2-4 Analytical multi-degree of freedom thrust stand model [4] . . . . . . . . . . . . . 11
2-5 Normed step response of a thrust stand behaving like a system of order 2. . . . . 11
2-6 Analytical single-degree-of-freedom thrust stand model [4]. . . . . . . . . . . . . 12
2-7 Frequency response of the PMF measurement platform designed by Gao [7]. . . . 14
2-10 White noise cancellation performance of deadbeat and non-deadbeat digital com-

pensator [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2-11 Ideal frequency response for a thrust compensation low-pass filter according to [4]. 20
2-12 Schematic frequency response of an elliptic low-pass filter. . . . . . . . . . . . . 21
2-13 Comparison of the amplitude characteristics of Butterworth of order 3, Chebychev

and digitalised Bessel filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2-14 Illustration of the working principle of FIR and IIR filters. . . . . . . . . . . . . . 24
2-15 Idea of Kalman filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2-16 Kalman filtering to recover a noise corrupted input signal [9] . . . . . . . . . . . 38
2-17 Performance of the Kalman Filter for different noise covariance matrices [10]. . . 40
2-18 Relation between Number of Monte Carlo Trials and Digit Accuracy from [11] . . 42

3-1 Flowchart illustrating the steps of a thrust measurement evaluation. . . . . . . . 50
3-2 Measurement signal of thruster showing constructive interference. . . . . . . . . 51

Master of Science Thesis Richard B.H. Ahlfeld



x List of Figures

3-3 Offset of zero point during longer SSF measurement . . . . . . . . . . . . . . . 51
3-4 Thrust stand sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3-5 Characteristics of SM S-Type Load Cell [12]. . . . . . . . . . . . . . . . . . . . . 53
3-6 External influences on the Thrust Measurement Bridge (TMB). . . . . . . . . . 53
3-7 Thruster characteristics [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3-8 Isp for SSF and PMF [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3-9 Ibit repeatability and test range [13] . . . . . . . . . . . . . . . . . . . . . . . . 55
3-10 The algorithm of the TDMS method. . . . . . . . . . . . . . . . . . . . . . . . 56
3-11 Band-stop filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3-12 Check of linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3-13 Frequency spectrum of PMF test showing low frequency noise. . . . . . . . . . . 58
3-14 Calibration with impulse hammer. . . . . . . . . . . . . . . . . . . . . . . . . . 59
3-15 Time series used for identification. . . . . . . . . . . . . . . . . . . . . . . . . . 59
3-16 System identification flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3-17 Frequency spectra of two tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3-18 Example for frequency, damping, amplitude and phase of a transfer function of

order 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3-19 Frequency response and reconstructed thrust input . . . . . . . . . . . . . . . . 63
3-20 Frequency response of inverted, reduced transfer function . . . . . . . . . . . . . 64
3-21 Frequency response of low-pass filter Second Order System (SOS) . . . . . . . . 65
3-22 Frequency response of the Airbus DS thrust compensation filter. . . . . . . . . . 65
3-23 Frequency, damping, amplitude and phase for a transfer function of order 60 . . 67
3-24 Frequency spectrum of measurement signal . . . . . . . . . . . . . . . . . . . . 68
3-25 Impulse and step-function input used for system identification. . . . . . . . . . . 69
3-26 Zero point correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3-27 Thrust signal validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3-28 Two exceptional test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3-29 Algorithm of the Inverse Transfer Function method. . . . . . . . . . . . . . . . . 72
3-30 Firing signal used as input for identification . . . . . . . . . . . . . . . . . . . . 73
3-31 Thrust pulses reconstructed using different identification routines . . . . . . . . . 73
3-32 Choice of order for least squares identification . . . . . . . . . . . . . . . . . . . 76
3-33 Beat in measurement signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3-34 Compensated thrust signal for filter of order 2 and 8 . . . . . . . . . . . . . . . 77
3-35 Frequency response for Inverse Transfer Function filter of order 2 and 8 . . . . . 77
3-36 Time response of Bessel and Butterworth filter. . . . . . . . . . . . . . . . . . . 78
3-37 Thrust stand sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3-38 Frequency and phase response of the Inverse Transfer Function method. . . . . . 80
3-39 Forward, reverse and bidirectionally filtered thrust signal . . . . . . . . . . . . . 80
3-40 Phase jump when frequency passes through 0 . . . . . . . . . . . . . . . . . . . 81

Richard B.H. Ahlfeld Master of Science Thesis



List of Figures xi

3-41 One and bidirectionally filtered thrust pulse . . . . . . . . . . . . . . . . . . . . 81
3-42 Pole-zero plot of the Inverse Transfer Function compensator . . . . . . . . . . . 82
3-43 Frequency response of Inverse Transfer Function Filter. . . . . . . . . . . . . . . 83
3-44 Last pulse of measurement signal and transient response . . . . . . . . . . . . . 84
3-45 Error sources considered in the uncertainty quantification for Airbus DS. . . . . . 85
3-46 Electronic noise in a thrust measurement signal. . . . . . . . . . . . . . . . . . . 85
3-47 Histogram of electronic noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3-48 Frequency spectrum of electronic and ideal white Gaussian noise. . . . . . . . . . 86
3-49 Left: Identification error, Right: Histogram of modeling error. . . . . . . . . . . 87
3-50 Frequency spectrum of modelling error. . . . . . . . . . . . . . . . . . . . . . . 87
3-51 Measured (black) and predicted (red) output using an Autoregressive-Moving Av-

erage (ARMA) model of order 27. . . . . . . . . . . . . . . . . . . . . . . . . . 88
3-52 Example of firing noise caused by inconsistent combustion. . . . . . . . . . . . . 89
3-53 Histogram of firing noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3-54 Frequency spectrum of firing noise. . . . . . . . . . . . . . . . . . . . . . . . . . 90
3-55 Example of one input and output signal including noise . . . . . . . . . . . . . . 90
3-56 Uncertainty and 95% credibility intervals for a thrust signal . . . . . . . . . . . . 91
3-57 Uncertainty and 95% credibility intervals for a thrust signal . . . . . . . . . . . . 91

4-2 Deconvolution of a random input signal using Bora’s method [9] . . . . . . . . . 95
4-3 Convergence of Kalman gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4-4 Deconvolution of random input signal with initial guess for P determined in a pre-run. 96
4-5 Q/R-ratio for the Deconvolution Kalman Filter . . . . . . . . . . . . . . . . . . 97
4-6 Relative error for different Q/R ratios. . . . . . . . . . . . . . . . . . . . . . . . 98
4-7 Different effects of Butterworth low-pass filter. . . . . . . . . . . . . . . . . . . . 99
4-8 Thrust inputs deconvoluted with the Kalman Filter using Butterworth filters with

different order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4-9 Steady-state error caused by the Inverse Transfer Function and Kalman Filter . . 101
4-10 Steady-state system error for different types of feedback systems [14]. . . . . . . 102
4-11 Thrust signal recovered by Deconvolution Kalman Filter for different values of Q 104
4-12 Absolute error x− x̂ for different Q/R ratios. . . . . . . . . . . . . . . . . . . . 104
4-13 Four pulses used to determine the value of Q . . . . . . . . . . . . . . . . . . . 105
4-14 Error metrics J1 and J2 for the Deconvolution Kalman Filter . . . . . . . . . . . 106
4-15 Input Signal and Output Signal used for Autocovariance Determination. . . . . . 108
4-16 95% credible intervals reconstructed with the Deconvolution Kalman Filter . . . 110
4-17 95% credible intervals calculated with a sequential Monte Carlo method . . . . . 111
4-18 Input and output signal used for the sequential Monte Carlo method . . . . . . . 112
4-19 Input and output signal used for the sequential Monte Carlo method for PMF test. 112
4-20 Input and output signal for a PMF test . . . . . . . . . . . . . . . . . . . . . . 113

Master of Science Thesis Richard B.H. Ahlfeld



xii List of Figures

4-21 Uncertainty for a single thrust pulse, for which the rise of the thrust has been triple 113

5-1 Flowchart illustrating how synthetic data are generated to compare different de-
convolution methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5-2 Measurement signal generated with the (n,n) or (n,n-1) transfer function. . . . . 116
5-3 Frequency response of the two test models constructed to have the same frequency

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5-4 Delay of one sample caused when identifying a (n,n) model with a (n,n-1) transfer

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5-5 Bias in the TDMS, Inverse Transfer Function and Deconvolution Kalman Filter

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5-6 Recovery of prescribed input signals with on and off times of the same duration:

10ms and 50ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5-7 Effect of random noise with standard deviation of σ = 0.15 on deconvolution

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5-8 Inverse Transfer Function method without and with Butterworth low-pass filter. . 124
5-9 Effect of white noise with standard deviation 0.15N on deconvolution methods. . 124
5-10 Synthetic input and output data for realistic test scenario . . . . . . . . . . . . . 126
5-11 Reconstruction of input signal including firing noise. . . . . . . . . . . . . . . . . 127

6-1 The theoretical model built by Ren with a nonlinear modal analysis is accurate
enough to replace the actual frequency response [15]. . . . . . . . . . . . . . . . 133

6-2 Effect of errors in the noise covariances of Kalman Filter and OUFIR filter estimates
[10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Richard B.H. Ahlfeld Master of Science Thesis



Acknowledgements

I would like to thank my supervisors Johann Keppeler (Airbus Defence and Space) and Fer-
dinand Schrijer (Delft University of Technology) for their advice and assistance during the
writing of this thesis. A special thanks goes to Robert Wagner (Airbus Defence and Space) for
his critical comments and Sascha Eichstädt (Physikalisch Technische Bundesanstalt Berlin)
for his helpful insights and impulses.

Delft, University of Technology Richard B.H. Ahlfeld
August 28, 2014

Master of Science Thesis Richard B.H. Ahlfeld



xiv Acknowledgements

Richard B.H. Ahlfeld Master of Science Thesis



Chapter 1

Introduction

The International Space Station (ISS) remains on its nominal orbit by firing its thrusters
on a regular basis to compensate for the effect of gravitational forces [6]. Likewise, every
satellite, space shuttle or spacecraft carries thrusters for orbit and gesture controlling, docking
rendezvous or landing operations [8].

Figure 1-1: ATV Edoardo Amaldi and the International Space Station firing their thrusters to
boost their orbit, captured by ESA astronaut André Kuipers [1].

During an attitude adjustment of the ISS or a satellite, an imprecise firing of the thrusters
can cause an imbalance. By contrast, a more accurate firing can save fuel, extend the service
life of the spacecraft and consequently increase the payload or reduce the cost of a mission
[8]. Because precise thrust levels can be better obtained by a pulsed firing than by continuous
firing of the thrusters [15], the design of highly accurate measurement evaluation methods
for pulsed liquid rocket engines has received more attention in the last decade [8, 15, 16, 17],
even though most of the concepts have been known since the 1960s [4, 18].
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To determine the exact performance of a thruster in space, an experimental determination
of the thrust can be conducted in a vacuum chamber beforehand on earth. Although the
thrust of a liquid rocket engine can by determined by analytical or computational methods,
a reliable experimental validation of every thruster is unavoidable. It has to be ensured that
the thruster will function flawlessly in space for many years, where there is no opportunity of
maintenance. Even if a good computational or mathematical model is available, each thruster
still has to be tested extensively on a thrust stand. A thrust stand is a mechanical structure
equipped with force transducers onto which the thruster is mounted. An example of a thrust
stand operated by Airbus DS and the German Aerospace Center (DLR) in Lampoldshausen
is shown in Figure 1-2.

Figure 1-2: Hot firing test of an AHRES engine by the German Aerospace Center DLR in
Lampoldshausen [2].

The thrust of chemical rocket engines is usually determined using a displacement type thrust
stand. For steady-state thrust measurements, during which the engine is fired continually,
displacement-type thrust stands can be very precise [16]. However, most displacement-type
thrust stands found in literature are not suitable for pulsed firing frequencies of higher than
50Hz [16]. The reason is that during pulsed thrust measurements the transient response of
the mechanical structure interferes with the thrust signal. The amplitude of the interfering
thrust stand oscillation can become larger than the thrust value, so that the true thrust
value cannot be determined without first compensating the oscillations of the thrust stand.
Since the mathematical relation between the thrust signal and the thrust stand response is
best described by a convolution-type integral, the inverse process of separating the thrust
from the transient system response is called deconvolution. The flexible bearing between
the thruster and the load cell is mainly responsible for the high amplitudes in the transient
thrust stand response. Therefore, pulsed thrust can be measured more accurately when a
stiffer bearing with higher natural frequencies is used. Novel designs of thrust stands with
favourable frequency spectra were proposed by [15, 16, 17, 7]. While such thrust stands will
improve the precision of pulsed thrust measurements in the future, at the moment industrial
rocket engine providers mostly use displacement type thrust stands. For such thrust stands
it is a challenge to reduce the error below 20% for pulsed tests, where the on and off times of
the thruster firing are twenty times shorter than sampling rate. The main aim of this thesis
is to develop a digital deconvolution filter, which is able to reduce the measurement accuracy
of pulsed thrust measurements below 5%, if a displacement type thrust stand is used.
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This thesis was initiated by Airbus Defence and Space (Airbus DS)1 and carried out in the
department for data reduction and statics (TP24) in Ottobrunn in cooperation with the test
department of liquid rocket engines in Lampoldshausen. The data made available by Airbus
DS are proprietary and cannot be published in this work. However, surrogate data containing
the relevant aspects of the problem were generated to perform tests. It is generally difficult
to refer the reader to freely available data in the literature. There are, however, a few papers
indicating the state-of-the-art [8, 16], which describe the typical model for dynamic thrust
measurements. Chen [8] outlines three methods to compensate the transient thrust stand
response (see Section 2-3-3) and Xing [16] outlines the calibration and design of a new thrust
stand system for liquid pulsed rocket engines.

Figure 1-3: Airbus DS Bipro-
pellant 10N Hydrazine Thruster
[3]

For Airbus DS the primary goal of this thesis was the trans-
fer of their digital thrust compensation method from a SciL-
ab/Java environment in the local Technical Data Management
System (TDMS) in Lampoldshausen to a Matlab/C++ envi-
ronment in Airbus’ global Measurement Data Base (MDB) in
Ottobrunn. Furthermore, it should be investigated whether the
method could be improved considering recent advances in dy-
namic measurement filtering. Any improvement or alternative
method should take into account that Airbus DS has a whole
range of thrust stands and that the evaluation method should
be easily adaptable to all of them. The thruster fired on the
Airbus DS 10N thrust stands is depicted in Figure 1-3.

Conventionally, the thrust stand response is filtered by a dig-
ital IIR or FIR filter and the operator tries to improve the
accuracy by shifting the zeros and poles of the digital filter.
However, the designing effort increases significantly for increas-
ing demands on accuracy, because the design of a deconvolution
filter requires extensive manual testing. In addition, the system
order has to be chosen carefully as a trade-off it is necessary to
choose the system order carefully as a trade off between accu-
racy and stability. Above all, it is important that the operator
can discern whether a signal component is characteristic for the
thrust signal or caused by the evaluation method.

Using data provided by Airbus DS, an entirely new method
for pulsed rocket thrust measurements for displacement type
thrust stands was developed: an augmented version of the op-
timal linear Kalman Filter. As this filter essentially performs
the deconvolution of the thrust signal from the transient thrust
stand response the method is called a Deconvolution Kalman
Filter. To apply it, only an Autoregressive-Moving Average (ARMA) model describing the
transient response has to be provided. Unlike for other filters, the Deconvolution Kalman
Filter needs no stability analysis, even if an unstable model is used. It requires no other

1 The former Astrium Space Transportation.
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designing choices of the operator than a sensible choice of its covariance matrices and, if an
additional smoothing is wanted, a cut-off frequency for its low-pass filter component. The
commonly known weak-spot of the Kalman Filter is that its measurement noise and process
noise covariance matrices Q and R are unknown and need to be determined. Guidelines on
how to choose the covariance matrices for dynamic thrust measurements were developed and
shown to be effective. The Deconvolution Kalman Filter is simple to implement. Due to
its special set-up, it is possible to conveniently integrate an evaluation of the measurement
uncertainty into the deconvolution process. Tests on synthetic data have shown its great ca-
pacity to extract even the shortest firing pulses with an error of less than 5%, for tests where
the error of a comparable IIR Filter was never less than 20%.

Summary of Contents

The literature study in Chapter 2 introduces the basics concepts of rocket thrust measure-
ments and the dynamic rocket thrust measurement problem. Three different methods are
presented to solve it: the analytical calculation of the dynamic system response, the con-
struction of a distortionless measurement system and the experimental determination of the
dynamic response with a subsequent removal by a digital filter. The basic properties of digital
deconvolution filters are explained. The ill-posedness of the deconvolution problem requires
that any thrust correction filter is complemented by a low-pass filter. Low-pass filters suitable
for thrust measurements are elaborated. The focus lies on IIR filters for deconvolution, as used
by Airbus DS. It is described how ARMA models can be identified using linear least squares
system identification and how the modelling error can be quantified using error statistics. As
innovative solution to most problems faced in dynamic thrust measurement evaluations, the
use of a Kalman Filter for deconvolution is proposed. An adaptation of the Kalman Filter
for deconvolution has already been attempted by Bora [9]. The choice of the Kalman Filter
tuning parameters is different than for the linear optimal Kalman Filter and has not yet been
treated in the literature. Only two methods, one by Saha and the other by Rajamani, are
found to be adaptable for the Deconvolution Kalman Filter. The derivation of the Kalman
Filter algorithm is used to illustrate how the Kalman Filter can be used for uncertainty quan-
tification. The basics of uncertainty quantification are explained and the Monte Carlo method
is suggested to evaluate the uncertainty in dynamic thrust measurements. It results in a high
accuracy and has low memory requirements. The study is concluded by the industrial and
academic objectives of this thesis.

In Chapter 3, the Airbus DS main digital filter and thrust stand are described. First, an
overview of the entire measurement evaluation procedure is given and specific properties of the
used measurement equipment are explained. Then, the design of the digital filter is described
in detail. The implementation of the described method in a Matlab/Octave environment
required a few changes, which are explained. It is attempted to improve the method by
making several adaptations. The performance of the improved method is analysed in the
Test Chapter 5. Finally, the measurement uncertainty is evaluated using a sequential Monte
Carlo method provided by the Physikalisch Technische Bundesanstalt Berlin and conclusions
are drawn from the results. This chapter is not included in the public version of this thesis,
but the accuracy of the Airbus DS filters is a point of reference for the new methods developed.
It partly contains real test data in scaled form, while synthetic data are used throughout the
other chapters of this thesis. This is done not only because real data are proprietary, but also
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because it is only for synthetic test data that the true input signal is available and can be
used to compare the accuracy of different deconvolution methods.

The Deconvolution Kalman Filter is developed and adapted to the dynamic thrust measure-
ment problem in Chapter 4. The concept of the Deconvolution Kalman Filter is adapted
from a design made by Bora [9]. His method is tested and adapted for the dynamic thrust
measurement problem. As the correct choice of the measurement and process noise covariance
matrices is crucial for the accuracy of the method, three ways to determine correct values are
described: a heuristic approach, a rational method suggested by Saha [19] and an automatic
method developed by Rajamani [20]. Due to the special set-up of the augmented Kalman
Filter, an estimate of the uncertainty in the thrust signal can be extracted from the measure-
ment state covariance matrix. It is found that the Deconvolution Kalman Filter produces a
stable system, robust against numerical errors, and provides the optimal recursive solution for
linear-time invariant systems when the noise is white Gaussian and its statistics are exactly
known. Finally, the model uncertainty is evaluated once more using codes provided by the
Physikalische Technische Bundesanstalt Berlin [21] for a model of order two. This is neces-
sary, because the determination of the model uncertainty for dynamic force measurements is
not yet standard practice in the industry [21].

In Chapter 5, the performance of the Deconvolution Kalman Filter, the Airbus DS IIR
Filter and the alternative IIR Filter improving the Airbus DS method is evaluated in a
series of synthetic test cases with different on and off times. The evaluation is divided into
deconvolution filter, noise and low-pass filter effects to identify error sources separately. The
computational effort is compared and the results are summarised.

The results of this thesis are summarised in Chapter 6 and possibilities for further research
are pointed out.
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Chapter 2

Literature Review

This chapter introduces the basic concepts of rocket thrust measurements in Section 2-1. The
dynamic thrust measurement problem is introduced and three different methods of solving
it are presented: the analytical calculation of the dynamic system response in Section 2-2-1,
the construction of a distortionless measurement system in Section 2-2-2 and the experimen-
tal determination of the dynamic response with a subsequent removal by a digital filter in
Section 2-2-3. The concept and basic properties of digital deconvolution filters are developed
in Section 2-3. A digital deconvolution filter always consists of a compensating and a noise
attenuating part. This is described in Section 2-3-3 and Section 2-3-4, respectively. IIR filters
for deconvolution, as used by Airbus DS, are explained in Section 2-4. It is described how
Autoregressive-Moving Average (ARMA) models can be identified using linear least squares
system identification and how the modelling error can be quantified. As innovative solution
to most problems faced in dynamic thrust measurement evaluations, the Kalman Filter is
introduced in Section 2-5. Its algorithm is derived in a way which illustrates how the Kalman
Filter can be used for uncertainty quantification in Section 2-5-3. The basics of uncertainty
quantification are explained in Section 2-6. A Monte Carlo method suitable to evaluate the
uncertainty in dynamic thrust measurements with high accuracy and low memory require-
ments is explained in Section 2-6-2. The chapter is concluded by the industrial and academic
objectives of this work.

2-1 Rocket Thrust Measurements

2-1-1 Thrust Stands

The thrust force of a rocket engine can be determined by mounting the thruster onto a
mechanical measurement system equipped with force transducers: the thrust stand. Although
various different thrust stand types exist, their measurement principles are the same. The
rocket engine is mounted onto a movable platform. The platform is attached to a fixed
basement through one or several flexures. The flexures allow the thrust force to move the
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platform, so that the displacement of the movable platform is proportional to the thrust to be
measured. A sensing element or force transducer is fixed to the movable platform to detect
the displacement [16]. The thrust of chemical rocket engines is usually determined using a
load cell as sensing element. Load cells can handle large amounts of thrust, but are also very
sensitive [22]. They are the conventional choice for measuring thrust forces in the order of
several Newton [23]. A load cell measures force through a set of sensitive strain gages. The
strain gages measure the deformation of a material with known elasticity by recording the
change in electrical resistance accompanying a deformation [24]. Three typical and simplified
displacement-type thrust stands are displayed in Figure 2-1. In all of them, the thruster (3)
is attached to a load cell (2), which is firmly connected to a thrust butt and to the ground.
In the graph on the far left-hand side, the thruster is not directly fixed to the load cell but
to flexures (4) which bend when the thrust force is exerted. This intermediate step has the
advantage that the measurable strain of the bent beam can be described by a time-invariant
and linear model of order 2. Moreover, the sensitivity of the thrust stand can be altered by
changing the stiffness of its flexures.

Figure 2-1: Typical configurations of thrust stands. One horizontal (left) and two vertical (middle
and right) configurations [4].

2-1-2 Steady-State and Pulsed Thrust Measurements

Thrusters can be fired in two different modes: steady-state and pulsed. If the thruster is
fired once, continuously and long enough for the relevant parameters like the thrust and the
pressure in the combustion chamber to reach quasi-stationary conditions, the firing of the
thruster is referred to as Steady-State Firing (SSF). If the thruster is fired repeatedly in
an either periodic or non-periodic sequence of on and off times, the firing is referred to as
Pulse Mode Firing (PMF) and the measurement is known as dynamic thrust measurement.
The particular case that the thruster is fired only once, but not long enough to reach an
equilibrium can be counted as SSF.

Precise thrust levels can be better obtained by PMF than by SSF [15]. An exact knowledge
of the thrust saves fuel, extends the service life of the spacecraft, increases the payload and
reduces the cost of a mission [8]. Therefore, the design of thrust stands with high natural
frequencies and adequate sensitivity for pulsed liquid rocket engines has received more at-
tention during the last decade. For SSF measurements displacement-type thrust stands can
reach high precision.
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Figure 2-2: Illustration of SSF and PMF, using an input signal of amplitude 10N and a transfer
function of order 2. One can see that the measurement signal reaches a new steady state at 10N
after about 300ms in the graph on the left.

2-2 The Dynamic Thrust Measurement Problem

The classic reference work for dynamic rocket thrust measurement techniques was written by
Crosswy and Kalb in 1967 at the Arnold Engineering Development Center (AEDC) in the
United States [4]. The authors were the first to investigate the relevant components of the
problem and suggested different solutions. In a nutshell, the dynamic thrust measurement
problem can be formulated as follows: a thrust measurement is defined as dynamic if the
input thrust varies faster in time than the response of the measurement system. If the input
signal varies more slowly than the rate at which the system responds, the measurement is
defined as static. For dynamic measurements, the fast variations of the input signal have a
great effect on the accurate estimation of the measurand1 and the measurement uncertainty
connected with it. In addition, there is usually a time delay between the thrust input and
measured thrust stand response and the amplitude scaling is wrong [26].

That the mechanical thrust stand system is dynamic can be seen when observing the oscilla-
tions in the measurement signal following an abrupt change in the input thrust, as depicted
in Figure 2-3. If the thruster is turned on or off (green curve), the thrust force (red curve)
changes abruptly and the thrust stand responds with oscillations (blue curve). Since rocket
engines do not produce exact sinusoidal waves [16], the sinusoidal oscillation can only have
one cause: the harmonics of a thrust stand frequency. If the thruster is fired with a frequency
close to a natural frequency of the mechanical structure, the firing can even excite resonance
effects.

1 Expression used in metrology to refer to the quantity sought in a measurement.
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Figure 2-3: Example of a thrust measurement signal distorted by the thrust stand’s system
response (blue curve). The firing signal (green curve) indicates when the thruster was turned on
or off (1 or 0) and the reconstructed thrust (red curve) is the thrust input estimated by a digital
filtering method.

To solve the dynamic thrust measurement problem, a technique has to be devised, which can
reconstruct an accurately scaled and undistorted replica of the thrust force from a measure-
ment signal corrupted by thrust stand dynamics. The existing techniques can be classified
into three categories:

1. Calculating the system response analytically:

- distributed parameter methods
- lumped parameter methods

2. Building a distortionless measurement system.
3. Determining the system response experimentally:

- analogue filter
- digital filter

2-2-1 Analytical Calculation of the System Response

The mechanical system of the thrust stand is a composition of continuous mass members,
whose motion response is a function of both space and time. In the past, a treatment of the
thrust stand as a distributed parameter system2 could only be approximated with methods
like Rayleigh-Ritz. Nowadays, the availability of high performance computers make it possi-
ble (but still time-consuming) to set up a three-dimensional distributed model of the stand
and simulate its dynamic motions with finite element software using Galerkin or Collocation

2 For an introduction to the notion of a distributed parameter systems see Chapter 2 in [27].
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methods [28]. In 2013, the thrust stand of the historic Russian Vostock rocket engines was
technically overhauled with an ANSYS model, as this was much cheaper than designing a
new thrust stand [29]. Nevertheless, an analytical approach characterising all objects as rigid
and only connected by joints, springs or dampers, as illustrated in Figure 2-4, provides insight
into the parameters that govern the thrust stand and is less time intensive to perform. It can
be used as a guideline, especially when designing a new thrust stand.

Figure 2-4: Example for an analytical multi-degree of freedom thrust stand model suitable for
all thrust stands.

For a lumped parameter model, the mass, elasticity and energy dissipation of all rigid objects
is assumed to be located at discrete points in space. In this way, only ordinary linear differ-
ential equations with constant coefficients have to be solved instead of multi-variable partial
differential equations. The system can be built analytically and solved with little computa-
tional effort, as the equation of motion is derivable by application of D’Alembert’s principle
or the Lagrangian formalism:

[M(t)] q̈ + [B(t)] q̇ + [K(t)] q = {F} (2-1)

where [M(t)] is the mass and moment of inertia matrix, [B(t)] is the damping matrix, and
[K(t)] the stiffness matrix. If all coefficients [M(t)], [B(t)] and [K(t)] are constants, the
dynamic system (2-1) is called time-invariant or stationary. All three matrices are square
matrices of size n× n, where n is the number of degrees of freedom; q̈ and q̇ and q are single
column matrices with n elements.

Figure 2-5: Normed step response of a thrust stand behaving like a system of order 2.
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The transient response of a thrust stand is mostly characterised by a single predominant
frequency and looks like the response of a stationary single-degree-of-freedom system of order
2 as shown in Figure 2-5. To describe the system with a classical Mass-Spring-Damper (MSD)
system of order 2, which can be illustrated as in Figure 2-6, all components (the rocket engine,
the propellant lines and the mounting structure) have to be regarded as one lumped mass
to be contained in a single mass parameter M . The dynamic and static deflections need to
be small to assume linear damping with parameter B. The spring rate should be a linear
and time invariant function of spring deflection to apply Hooke’s Law with stiffness K. In
addition, it is assumed that the energy dissipation mechanism is linearly dependent upon
velocity and time invariant and that the thrust butt is rigid [4]. That an ordinary MSD
system of order 2 with these assumptions is a good approximation for a limited range was
validated for example by [6, 8, 17]. However, the complex mechanical thrust stand structure
does not respond like a single-degree-of-freedom system for an unlimited range of excitation
frequencies. It will be discussed in Chapter 3 why efficient dynamic response compensation
using a system of order 2 is difficult to realise [8].

Figure 2-6: Analytical single-degree-of-freedom thrust stand model [4].

For a single-degree-of-freedom system, the external force is equivalent to the sum of the
system’s reaction forces. Summing them up to determine the thrust is called the Reaction
Force Summation Technique and was extensively adopted to solve the dynamic thrust problem
[8], for example in [30].

The adequacy of any model formulation still has to be verified by correlation with an experimentally-
determined system response. To obtain a transfer function for the system of order 2, the
continuous Laplace transform is performed under the assumption that the coefficients are
constant and the initial conditions are all set to 0:

Ms2Y (s) + CsY (s) + kY (s) = X (s) . (2-2)

Rearranging shows that the transfer function of the system is

H (s) = Y (s)
X (s) = 1

Ms2 + Cs+ k
. (2-3)

Using a regression method, a system with two poles and no 0 can be fitted to this model.
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2-2-2 Building a Distortionless Measurement System

The perfect thrust measurement system would be a device that returned an exact replica of the
thrust force produced by a thruster without time delay, noise or modulation. However, this is
practically impossible to accomplish. First of all, there is an unavoidable time delay td between
the action of the thruster and the reaction of the thrust stand structure. Furthermore, the
measurand of the thrust stand system is not the thrust force per se, but an electrical signal.
Because the electrical signal has a different scaling than the thrust force, the ideal thrust
measurement system could at best be a system h(t) with a different scaling but constant gain
h and only a short known time delay td:

Fthrust (t)h (t− td) = y (t) , with h (t) = h h = scalefactor (2-4)

When building a thrust stand, the designer should try to conform as closely as practically
possible to the ideal requirements described in Equation (2-4). However, even systems with
nearly ideal specifications are hard to construct. The reason why a measurement system as
described in Equation (2-4) is virtually impossible lies in the mechanical structure of a thrust
stand. Its mechanical components require the system h(t) to be frequency dependent. In
addition, stochastic processes in the force transducer and electronics overlay the measurement
signal y(t). Hence, realistically, the thrust stand dynamics can be only described with a
relation

Fthrust (ω)H (ω) = Y (ω) + ∆. (2-5)

where ∆ is a vector containing the measurement errors. Such a system can be achieved
by Laplace transforming the time dependent measurement signals. The procedure will be
explained in detail in Section 2-3-1.

Systems with a similar behaviour to the ideal system described by Equation (2-4) can be
achieved, if the lowest natural frequency of the thrust stand is about five times higher than
the ‘highest appreciable amplitude Fourier frequency component of the input thrust’ [4]. As
a consequence, the design of a PMF measurement thrust stand strongly depends on the firing
frequency of the thruster.

Building a Distortionless Systems for PMF Measurements

Most displacement-type thrust stands in the literature are not suitable for PMF frequencies
higher than 50Hz [16]. To avoid resonance effects in dynamic thrust measurements, the natural
frequency of the thrust stand should be about five times higher than the PMF frequency of
the thruster [16]. Since PMF measurements reach frequencies up to 50Hz, a PMF thrust
stand should have no natural frequency below 250Hz. While it is generally difficult to build
a thrust stand with a higher natural frequency than 200Hz, it is virtually impossible to build
a displacement-type thrust stand with such a high first natural frequency [16]. Buchholz
[31] describes a time-resolved thrust measurement system using a strain-gage-based force
transducer, which had a resonant frequency of 62Hz. Haag [32] built two-torsional thrust
stands for pulsed plasma thrusters but as the natural frequencies of both stands were too low,
the stands could only register the average level of the PMF thrust.

A thrust stand capable of registering time-resolved thrust and with a natural frequency of
about 1KHz was built by Cubbin [17]. The stand measured the dynamic response of a
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swinging arm using two-sensor laser interferometers. Most systems developed for PMF thrust
measurements were realised using a piezoelectric load cell. Ren [15] designed a piezoelectric
thrust stand with a natural frequency of higher than 1000Hz. Xing [16] described the design
of a piezoelectric thrust stand with nearly ideal properties. The lowest natural frequency
of the thrust stand is 1245Hz and the relation between thrust input and output is almost
linear with a linearity error of less than 0.24% and a repeatability error of less than 0.25%.
This thrust stand also shows excellent properties regarding the reconstruction of short pulses.
For 3ms rising to maximum thrust time, 4ms on time and 10ms off time, the error is less
than 5% [16]. Gao [7] specifically investigated the possibilities of piezoelectric thrust stand
designs and was able to design a system, where the lowest resonant frequency along the axial
direction is larger than 2000 Hz, far exceeding their original design requirement of 1000Hz.
Figure 2-7 shows the frequency response of the PMF measurement platform designed by Gao.
Piezoelectric sensors are ideal for measuring small, volatile forces, but cannot pick up steady
forces. Their quartz crystals only register an electrostatic charge when the force applied to
them changes. During a SSF measurement, the measurable charge will eventually leak to 0,
no matter how good the electrical insulation is [33]. While displacement-type thrust stands
can be used to measure both SSF and PMF thrust, a piezoelectric thrust stand can only be
used for the measurement of PMF thrust.3

Figure 2-7: Frequency response of the PMF measurement platform designed by Gao [7].

2-2-3 Experimental Determination of the System Response

In an experimental solution of the dynamic thrust measurement problem, the thrust force is
measured using a thrust stand with not ideal properties. The effect of the thrust stand is
filtered from the measurement signal. For this purpose, the thrust stand is regarded as a block-
box system as shown in Figure 2-8. The input to the system is the rocket engine thrust force
and the output is the analogue electric signal produced by the load cell. The electric signal
can be converted to a digital signal with an Analogue-Digital Converter. Both the electric
and digital signal contain the thrust signal as well as the system response of the thrust stand
and measurement errors. Hence, to reconstruct the thrust force either an analogue or a digital
filter has to be designed and joined up in circuit. Since the principal purpose of this filter is to
compensate the transient response, one can call it a thrust compensation filter. The process

3 More information on the comparison of strain gages and piezoelectric crystal can be found in [34, 35].
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of removing the transient response from the measurement signal of liquid rocket engines is
sometimes called ‘thrust compensation’ in the literature, see for example [8, 18], and it is also
the way it is referred to at Airbus DS.

Figure 2-8: Thrust stand system with electronic noise εy.

To design a digital filter which is able to compensate the dynamic system response in a thrust
measurement, a more mathematical definition of the behaviour of the thrust stand is needed.
Using system analysis, the thrust stand is regarded as a black box system with unknown
input and known output signal. Then, it is established that the thrust stand behaves like a
Linear Time-Invariant (LTI) system. A system is classified as linear if its input and output
signal are related by a linear mapping. The necessary requirements for a linear mapping are
additivity and homogeneity. Both requirements hold if one can show that

ay1 (t) + by2 (t) = h (ax1 (t) + bx2 (t)) . (2-6)

A system is time-invariant if only input and output but not the system change over time.
Therefore an input x(t) will result in an output y(t), irrespective of the point in time, that is
x(t+ δ), results in y(t+ δ) [26]:

y (t+ δ) = h (x (t+ δ)) . (2-7)

Whether a system behaves like a linear system can empirically be established: for example
when the amplitude of the input signal is doubled, the amplitude of the output doubles as
well. The system is time-invariant if the impulse response is the same irrespective of the
time. As the output signal is obtained from the input by convolution, the input signal can
be calculated from the output signal by performing the inverse operation of convolution. The
process of estimating the input signal from the output signal by correcting the effects of the
instrumentation and sensing system is called deconvolution [36].

Master of Science Thesis Richard B.H. Ahlfeld



16 Literature Review

2-3 Digital Deconvolution Filters

For an LTI system the relation between output y (t) and input signal x (t) is defined by
convoluting the input signal with the transfer function h (t):

y (t) =
∫ +∞

−∞
h (t− τ)x (τ) dτ =

∫ +∞

−∞
h (t)x (t− τ) dτ. (2-8)

If, like in case of the thrust measurements, the data are only discretely available, the relation
between input and output signal is described by a discrete convolution:

y [n] =
∞∑

k=−∞
h [n− k] · x [k], (2-9)

where n stands for the sample at time T = ndt, x[n] is the input thrust, y[n] is the measure-
ment signal, and h [n] is a system model of the thrust stand at time n. The system model
h [n] and input thrust x[n] are unknown, while the measurement signal y[n] is known, but
spoiled by measurement errors.

2-3-1 Deconvolution

Deconvolution is defined as the process of finding a solution x(t) to the convolution equation

y (t) =
∫ +∞

−∞
H (t) ∗ x (t− τ) dτ, (2-10)

whether in continuous form like in Equation (2-8) or in discrete form as in Equation (2-9) [36].
The convolution equation can mathematically be classified as an inhomogeneous Fredholm
integral equation of the first kind. Solving an inhomogeneous Fredholm integral equation of
the first kind is not trivial and commonly avoided in Digital Signal Processing (DSP) due to
the rather complicated mathematics involved. In addition, it has not yet been shown that
purely numerical approaches are more accurate than commonly used filtering approaches [37].
One possible advantage is that recently much progress has been made in the development
of parallel algorithms for integral equations, so that a direct numerical method becomes
preferable in terms of computation time. A fast and parallelised solver for integral equations
with convolution-type Kernel was proposed by Ye and Zhang [38].
Instead of solving Equation 2-10 numerically, the typical approach in DSP is to transform
the convolution equation into the frequency domain using a Laplace transform. The Laplace
transform is a mostly bijective integral transform of a function. For a continuous function
h(t), it can be defined as

L {h (t)} =
∫ ∞

0
h (t) e−stdt = H(s), (2-11)

where t is the continuous time variable and the function space of h(t) is called the time
domain; s is the complex parameter s = σ + iω and the function space of H(s) is called
the frequency domain. For the Fourier transform, s is evaluated at the imaginary argument
s = iω. The Fourier transform can be applied to determine the frequency spectrum of a
dynamical system.
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2-3 Digital Deconvolution Filters 17

The z-transform is the discrete equivalent of the Laplace transform. For a discrete function
h[n] it can be defined as

Z {h} =
∞∑

n=−∞
h [n] z−n = H(z), (2-12)

where the square brackets indicate the discreteness of the variable n [39].

Using the property of the Laplace and z-transform that, in the time domain, convolution
becomes multiplication in the frequency domain, instead of solving

y (t) =
∫ t

0
h (t− τ)x (τ) dτ (2-13)

for x(t), one can Laplace transform Equation (2-13) and obtain

Y (s) = H (s) ·X (s) , (2-14)

so that X(s) can be obtained by a division in the Laplace domain:

X (s) = Y (s)
H (s) , (2-15)

if Y (s) and H(s) are fully and accurately known. Unfortunately, for thrust measurements,
Y (s) is affected by measurement noise and H(s) is unknown and can only be determined
using the measurement signal.

2-3-2 Ill-Posedness of the Deconvolution Problem

To demonstrate the effect of errors on the solution of the deconvolution problem, let Ym(z)
and Hm(z) denote the measurement signal and the identified transfer function, respectively.4
As the signals are discrete, the z-transform is used. Using the flawed signals, the estimate
Xm(z) of the thrust input is determined:

Xm (z) = Ym (z)
Hm (z) (2-16)

Since the true signal is hidden underneath the coat of errors, the measured signal is be split
into a correct and an error part:

Ym (z) = Y (z) + Yε (z)
Hm (z) = H (z) +Hε (z) , (2-17)

where H (z) and Y (z) are accurate and Hε (z) and Yε (z) contain the errors.

The accurate input X(z) can be calculated once the errors are known by rearranging Equation
(2-17) as

X (z) = Ym (z)− Yε (z)
Hm (z)−Hε (z) . (2-18)

4Note that while h[n] is a discrete function its z-transform H(z) is continuous.
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In regions where Hm is as small as the errors contained in the signal, the denominator is
close to 0 and the input becomes very large. A small change in the data can trigger a large
change in the results. This is the textbook definition of an ill-conditioned or ill-posed prob-
lem. ill-conditioned or ill-posed problems can be stabilized by using regularization methods
[36]. The ill-posedness is also the reason why purely mathematical approaches are difficult.
Nevertheless, Maleknejad [40], for instance, overcomes the ill-posedness of the deconvolution
problem by using wavelets and the collocation method to solve the Fredholm integral equation
and even obtains accurate error bounds for the solution.

In practical situations, the bandwidth of the measured signal is always finite and has regions
in which H(z) is fairly small. Practical deconvolution is thus inherently unstable [41]. Even if
the errors are small enough to avoid the solution blowing up, the reconstructed signal is likely
to contain unrealistically high frequency oscillations. For this reason, every deconvolution has
to be combined with a suitable low-pass filter. When adding the low-pass filter it has to be
decided which range of the signal is relevant and which merely amplifies noise. It is important
to realise at this point that deconvolution is an estimation problem, and not a problem to
which an exact solution exists. This means that it is not possible to perform deconvolution
without subjective judgement. The filter designer has to decide, whether the found estimate
is acceptable.

Summed up, a digital deconvolution filter hc corrects the output signal of a sensor for dynamic
effects by employing deconvolution. The input signal x can be estimated by convoluting the
filter h with the output signal y: _

x [n] =
(
hc ∗ _

y
)

[n] where _
y [n] is the sensor output signal at

time instant nTs after an A/D conversion with error ε [n] = _
y [n]−y [nTs] where n ∈ N specifies

the sample and Ts = 1/fs denotes the used sampling rate [26]. Practical deconvolution is
inherently unstable so that the compensator has to be complemented with a low-pass filter.

Figure 2-9: Every deconvolution filter is a combination of compensation filter and low-pass filter.

2-3-3 Thrust Compensation Filters

The documentation of digital filters specifically designed for the purpose of thrust compen-
sation available in freely-available publications is rather limited, because research in this
particular direction is mostly done by governmental research institutions or companies pro-
tecting their intellectual property. The easiest approach to find a thrust compensation filter is
to assume that the errors are small compared to the thrust force. In case ε� FT , also Yε ≈ 0
and Hε ≈ 0 so that the measurement signal and the transfer function, which is identified from
it, can be assumed to be fairly consistent with their unknown correct values:

hm [n] ≈ h [n] ym [n] ≈ y [n] . (2-19)
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In this case, an acceptable estimation of the solution is provided by:

X (z) ≈ Ym (z)
Hm (z) . (2-20)

If this is not the case, a stable filter imitating the behaviour of the inverse transfer function
H−1 as closely as possible has to be found. The common procedure is to try to find an inverse
compensation filter HC(z), such that the product of filter and compensation filter becomes
one:

H (z)HC (z) = 1. (2-21)

A design according to Equation (2-21) is only feasible, if there is no time delay between input
and output signal. If there is a delay n, then a compensation filter satisfying

H (z)HC (z) = z−n (2-22)

has to be found. If the requirements to treat the thrust stand as a system of order 2 (described
in Section 2-2-1) apply, a compensation filter HC (z) based on the ideal transfer function of
order 2 can be designed:

HC (z) = C

H (z) = C
(
z2 + 2ζ0ω0z + ω2

0

)
, (2-23)

where C is a constant. The resulting filter is unstable, if its zeros lie outside the unit circle.
Due to the ill-posedness of the problem, the filter is likely to amplify high frequency noise.
One should therefore try to choose a denominator polynomial that creates a system with
a high natural frequency. Placed in the denominator it will then have the reverse effect of
attenuating high frequencies.

Deadbeat Compensator Developed by Chen

The approach of Equation (2-23) is called the ‘construction of an ideal transfer function’ by
Chen [8]. He criticises this method for its limitation in bandwidth and suggests three differ-
ent filters with a broader bandwidth and better noise attenuation instead: the non-deadbeat,
deadbeat and two-deadbeat compensator. Chen shows that the accuracy of a thrust compen-
sation filter can be influenced by changing the time delay caused by the compensator HC(z).
If a filter causes a time delay of one sample they call it a deadbeat compensator, of two samples
a two-beat-delay or two-deadbeat and a combination of the two a non-deadbeat digital com-
pensator. Comparing deadbeat filters with inverse filters without time delay, Chen [8] shows
that by foregoing a small amount of response speed, white noise is better attenuated by the
non-deadbeat digital compensator (of which the two-beat-delay and deadbeat compensators
are the specific cases) Figure 2-10. So far only the design of filters specifically designed for
the purpose of dynamic thrust compensation have been discussed. In the following section,
the concept is extended to the general design of digital filters.
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Figure 2-10: White noise cancellation performance of deadbeat (top) and non-deadbeat (bottom)
digital compensator [8].

2-3-4 Low-Pass Filter

The ideal low-pass filter to complement a thrust deconvolution filter should be designed so that
none of the appreciable amplitude frequency components of the input thrust are amplitude
or phase-distorted [4]. To that end, the passband should be as flat as possible, the transition
band should be short to provide a clean cut-off, and the stop band should guarantee no noise
amplification, as depicted in Figure 2-11.

Figure 2-11: Ideal frequency response for a thrust compensation low-pass filter according to [4].

The phase response should be linear to prevent phase distortions. If ω̄ is the cut-off fre-
quency separating the relevant from the noisy frequency components, the ideal filter can be
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characterised as
Hlow (ω) = cons ω ≤ ω̄
Hlow (ω) = 0 ω > ω̄

. (2-24)

The characteristics of the passband, transition and stop band are determined by the type of
low-pass filter used. The cut-off frequency has to been chosen dependent on the width of the
transition band and frequency spectrum of the thrust signal.

Common Low-Pass Filter Types

A low-pass filter is designed to extract a part of the entire frequency band of a signal and
attenuate all other frequencies. As its name suggests, it extracts lower frequencies and at-
tenuates higher frequencies. The ideal low-pass filter for thrust compensation should have a
frequency response similar to the one characterised in Figure 2-11. The most commonly used
low-pass filters in digital signal processing are Elliptic, Chebyshev and Butterworth filters.
Their effect on a signal can be visualised by regarding their frequency response. An exemplary
frequency response for the Elliptic filter is shown in Figure 2-12. It can be seen that Elliptic
filters have ripples in both their stop and pass band. If the number of ripples in the stop
band nears 0, the filter becomes a Chebyshev type I filter. If the number of ripples in the
pass band nears 0, the filter becomes a Chebyshev type II filter. If the number of ripples in
both bands approach 0, the filter becomes a Butterworth filter.

Figure 2-12: Schematic frequency response of an elliptic low-pass filter.

The ideal low-pass filter for thrust compensation can under no circumstances have ripples in
the passband, because a flat passband is essential to preserve the correct thrust amplitude.
Hence, the Elliptic and Chebyshev type I filter can be ruled out. Only Butterworth and
Chebyshev type II filters have a flat passband. Butterworth filters have a slower roll-off than
Chebyshev filters, but in the pass band, they have a more linear phase response. On the
downside, Butterworth filters need a higher order to achieve the same stop band attenuation
obtained with a Chebychev filter. Both filters produce overshoot at the signal edges, as can
be seen in Figure 2-13, but the overshoot of the Chebyshev type II filter is larger for the same
order. A high stop band attenuation and fast roll off are not as important as a maximally
flat passband, smaller overshoot and a more linear phase response in the pass band. Thus, of
the common low-pass filter types, the Butterworth filter is the most suitable one for thrust
compensation.

Crosswy suggests an analogue Bessel filter for thrust measurements, because it does not
produce overshoot [4]. However, it produces blunter edges and slower rise times. Therefore,
Crosswy recommends the use of a Butterworth-Thomson filter to combine the amplitude
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characteristics of the Butterworth filter with the linear phase of the Thomson filter, which has
maximally flat time delay, but a poor rise time and amplitude characteristics [42]. However,
he has an analogue filter in mind, since the Bessel filter is not intended for digital use.
Furthermore, it is very difficult to get access to the paper referred to by Crosswy.

Figure 2-13: Comparison of the amplitude characteristics of Butterworth of order 3, Chebychev
and digitalised Bessel filter.

Nevertheless, he mentions another important property the low-pass filter should have for
thrust compensation: fast rise and fall times. If the edges of the thrust pulse are to be
represented accurately, the filter should not smooth them too much. This is another argument
in favour of the Butterworth filter and is demonstrated in Section 3-5-4.

Cut-off Frequency

The low pass filter cut-off frequency should chosen such that most of the signal is kept but
still the noise is attenuated. A high cut-off frequency will minimise the error caused by a
modulation of the relevant frequencies, but increases the error caused by noise amplification.
A low cut-off frequency reduces the signal noise but distorts the signal and increases the
estimation error. This trade-off is mostly done by a trial-and-error method in engineering
approaches. There have been attempts to find automatic methods, but they are not wholly
reliable and limited in their applicability to different cases. One approach is suggested by
Eichstädt [26]. They suggest the formulation of an optimisation problem by minimising the
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root-mean-squared (RMS) error r[n] to determine the optimal cut-off frequency:

r [n] =

√√√√ 1
K

K∑
k=1

(x̂k [n]− x [n])2 for k = 1, ..,K, (2-25)

where x̂k [n] is 1 of K estimates obtained for the input signal x using different cut-off fre-
quencies. This approach can only be used if the true input signal is known. For the dynamic
thrust measurement problem, the input signal is unknown, so that the approach can only be
applied on test cases with known solution.

2-4 Infinite Impulse Response (IIR) Deconvolution Filters

Airbus DS only uses IIR filters. Therefore, the focus of this thesis is also on IIR filters.
An IIR filter is essentially a rational polynomial model which is applied to correct a signal.
The determination of the polynomial coefficients for a system like the thrust stand from
its input and output signal is referred to as system identification. It can be done with an
automated iterative procedure if an appropriate model structure (like Autoregressive (AR),
Moving Average (MA) or ARMA defined in Section 2-4-2) and the polynomial order of the
model are specified. The usual procedure to find a suitable model for a problem is to fit
many different models to the data. The standard method to find an optimal model for a LTI
system is linear least squares regression and is explained in Section 2-4-3. To determine the
best model a goodness of fit statistic like Normalised Root Mean Square (NRMS), which is
defined in Section 2-4-5, can be used. Once the system has successfully been identified, the
model can be used to predict, analyse or filter the behaviour of the system.

2-4-1 Finite Impulse Response (FIR) and IIR Filters

Analogue and digital filters are classified according to how long they respond to a unit impulse:
finite or infinite. For digital filters, this classification is only theoretical, because infinite
responses also become finite when they are truncated by the digital floating point arithmetic.
Digital FIR and IIR Filters are better distinguished by how they compute an output. FIR
filters express each output sample as a weighted sum of the last N input samples. IIR filters
express each output sample as a linear combination of the previous N input and M output
samples, meaning that they use feedback. Any LTI system can be approximated arbitrarily
well with a FIR filter when an adequate time delay is introduced [43] and any FIR filter can
be approximated by a stable IIR filter [44].
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Figure 2-14: Illustration of the working principle of FIR and IIR filters. IIR Filters take feedback
into account and can therefore be unstable.

IIR filters are the digital equivalent of analogue filters and can be analysed using traditional
filter design techniques. When an analogue filter is to be replaced with a digital filter, an IIR
filter can be designed based on the previous analogue filter design. The usage of a feedback
loop allows IIR filters to solve a problem with a significantly lower order than a FIR filter
would require. For IIR filters, the use of higher orders implies the possibility of instability and
arithmetic overflow. Arithmetic overflow can be avoided if the order 10 is not exceeded [37].
Instability can also occur for lower orders. The phase of IIR filters is a nonlinear function of
frequency and can cause distortions.

FIR filters do not employ feedback, so they are naturally stable. If their coefficients are
chosen symmetrically, they possess a linear phase which means that signals of all frequencies
equally delayed by them and the resulting signal is not distorted. Their main drawback is
that they require considerably higher orders and longer processing time than IIR Filters for
the same performance. IIR filters are harder to design than FIR filters. Table 2-1 shows that
the pros and cons of FIR and IIR filters are rather well balanced. It mostly depends on the
application, which filter is preferable.

FIR Filters IIR Filters
+ unconditionally stable analogue equivalents

linear phase response more efficient
– no analogue equivalents possibly unstable

less efficient nonlinear phase response

Table 2-1: Comparison of the key properties of FIR and IIR Filters.

2-4-2 Autoregressive-Moving-Average Models

ARMA models combine a MA model with an AR model. They are called autoregressive,
because a regression is performed on the time series itself (auto). An ARMA model is appro-
priate when a system is a function of a series of random shocks, described by the MA part,
as well as its own behaviour, described by AR part [45].
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Conventionally, ARMA models are applied to model the physical persistence of a random
time series, where the random process is more dominant than the physical. When an ARMA
model is used to model a thrust stand, the physical process is more dominant. The transient
response is modelled by the AR part and measurement errors by the MA part. Essentially, an
ARMA model is based on the same equations as an IIR filter. The close connection between
ARMA models and IIR transfer function, can be demonstrated by considering a z-transformed
transfer function H (z) of an IIR filter:

H (z) = Y (z)
X (z) =

z−d
Na∑
j=0

ajz
−j

Nb∑
i=0

biz−i
=
z−d

(
a0 + a1z

−1 + ...+ aNaz
−Na

)
1 + b1z−1 + ...+ bNb

z−Nb
, (2-26)

where z−d includes the possibility of a time delay. Rearranging Equation (2-26) to include
the input and output signal, gives:

Y (z)
Nb∑
i=0

biz
−i = X (z) z−d

Na∑
j=0

ajz
−j . (2-27)

Taking the inverse z-transform of Equation (2-27) results in the discrete finite difference
equation used for describing ARMA processes:

Nb∑
i=1

biy (k − i) =︸ ︷︷ ︸
AR

Na∑
j=0

ajx (k − d− j)

︸ ︷︷ ︸
MA

, (2-28)

where the left-hand side stands for the AR, the right-hand side for the MA part and d
represents the delay between input and output signal. Taking the term for i = 0 out of the
left sum, results in the difference equation (2-29). This illustrates that in discrete form, the
current output value of y(k) depends on the n past values of the output y(k − i) and m+ 1
values of the input x(k − d− j):

y (k) = −
Nb∑
i=0

biy (k − i) +
Na∑
j=0

ajx (k − d− j). (2-29)

The information contained in a discrete rational transfer function can be described by a
difference equation and an ARMA model, just like the information contained in a continuous
transfer function can be described by a differential equation, as shown in Section 2-2-1.

2-4-3 Discrete-Time Linear Least Squares System Identification for IIR Filters

The time domain identification approach described in this section is one of the most elemen-
tary approaches to start an IIR filter design. The coefficients, obtained with this approach,
can be used directly for the design of a stable IIR filter or as basis for the design of an FIR
filter. In the following, it is assumed that a time delay between input and output signal has
already been eliminated by an appropriate shift of input signal. A method to design an IIR
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filter, which can automatically determine the existing time delay can be found in Vuerinckx
[46]. Applying a linear least squares regression to an IIR transfer function means that the
coefficients of a rational polynomial, relating input to output signal, are determined in such
a way that the error between model and measurement is minimised. The coefficients of an
IIR transfer function H(z) can be described by the discrete finite difference equation

y (k) = −
Nb∑
i=0

biy (k − i) +
Na∑
j=0

aju (k − d− j), (2-30)

where k = 1, ...,K andK is the number of samples, n andm are the orders of the denominator
and enumerator polynomials, respectively. To find the closed form solution to the linear least
squares problem in the time domain, a system of equations is set up. For this purpose,
Equation (2-30) is at first considered only for sample k. The input values uk and output
values yk are summarised in one vector xk:

x (k − 1) = [y (k − 1) y (k − 2) y (k −Na) u (k − 1) u (k − 2) ... u (k −Nb)]T (2-31)

and their corresponding coefficients are summarised in a vector θ

θ = [−a0 − a1 ... − aNa b0 b1 ... bNb
]T . (2-32)

Regarding the problem for k = 1, ...,K where K is the total number of samples considered,
Equation (2-30) can be reformulated in matrix form:


y (1)
y (2)
...

y (k)


︸ ︷︷ ︸

Yk

=


y (0) · · · y (1−Na) u (0) · · ·
y (1) · · · y (2−Na) u (1) · · ·
...

y (k − 1) y (k −Na) u (k − 1)

u (1−Nb)
u (2−Nb)

u (k −Nb)


︸ ︷︷ ︸

XT
k



a1 (k)
...

aNa (k)
b1 (k)

...
bNb

(k)︸ ︷︷ ︸
θ̂k


.

(2-33)
Summarising all vectors xk for k = 1, ...,K in the matrix Xk, Equation (2-33) can be abridged
to

Yk = XT
k θ̂k. (2-34)

where the hat indicates that θ̂ is an estimate. Equation (2-34) has no unique solution. The
number of measurement points K usually exceeds the sum of numerator Nb and denominator
order Na, so that Equation (2-34) is an overdetermined system of equations. Hence, the prob-
lem must be reformulated as an optimisation problem. For this purpose, the approximation
error produced by the overdetermined systems is added to Yk in Equation (2-34):

Yk + εk = XT
k θ̂k. (2-35)

This estimation error can be expressed as

εk = XT
k θ̂k − Yk. (2-36)
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Because there is no unique solution to Equation (2-33), the problem is transformed into a
minimisation problem by taking the square of the errors:

εTk εk =
k∑
l=i

[
yi −XT

i−1θ̂k
]2
. (2-37)

Since this is a quadratic equation in θ̂, the error function is convex and its minimum can be
found where the derivative is 0:

∂εTk εk

∂θ̂k
= 0. (2-38)

The first derivative of Equation (2-37) is

− 2XkYk + 2XT
k Xkθ̂k = 0 (2-39)

and the second derivative is
∂2εTk εk

∂θ̂2
k

= 2XT
k Xk > 0. (2-40)

That the second derivative is larger than 0 means that there is a unique minimum of the error
squares function at

θ̂k =
(
XT
k Xk

)−1
XT
k Yk. (2-41)

If Xk is a square invertible matrix, the pseudo-inverse equals the inverse, so that an estimate
for the coefficients can be found with

θ̂k = XT
k Yk. (2-42)

In order for the closed form solution of Equation (2-41) to exist, all input and output values
Yk and Xk should be known. The optimal solution to the minimisation problem in Equation
(2-41) or Equation (2-42) is not necessarily the best solution to the problem at hand. The
system may not be perfectly linear. In this case, a nonlinear least squares approach has to be
used instead. In addition, the measurement signal is affected by noise. The presence of noise
is not so problematic if it is zero mean white Gaussian, but non-Gaussian noise will reduce
the quality of the obtained estimate. Gaussian white noise can be defined as a sequence of
random uncorrelated variables αt with finite variance and zero mean:

E (αt) = µa
var (αt) = σ2

a

cov (αt, αt+k) = 0 fork 6= 0
. (2-43)

Gaussian white noise approximates many real-world situations, like measurement errors, fairly
well and generates mathematically tractable models [39].

For the deconvolution problem, the input signal Xk is unknown. This complication can be
solved by generating an idealised input, such as an impulse, pulse or trapezium, for the input
signal and inserting it as an approximation for Xk in Equation (2-41).
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2-4-4 Stabilisation of IIR Filters

Unlike FIR filters, IIR filters are not inherently stable and their stability has to be ensured
[47]. For a stable IIR transfer function, all poles have to be either in the left-half plane of the
complex plane if the function is continuous, or within the unit circle if the function is discrete.
The stability of an IIR Filter can be ensured using either of the four following methods:

- cancelling unstable poles with zeros [4, 8]
- reflecting unstable poles into the unit circle see Section 2-4-4 or [46]
- asynchronous time reversal filtering, see [48, 49]
- decomposition into an all-pass and minimum-phase system, see [46, 47]

In this thesis, the reflection of poles outside the unit circle into the unit circle will be used
for stabilisation of IIR filters.

Reflection of Poles Outside the Unit Circle

A discrete digital filter is stable when all poles of its z-domain transfer function lie within the
unit circle. The unit circle serves as stability boundary. It is possible to stabilise a discrete
transfer function by reflecting the zeros of the denominator polynomial, that is to say, the
poles, into the unit circle by inverting their radius [50]:

rp exp (±jθp)→
1
rp

exp (±jθp) , (2-44)

where rp is the radius and θp is the angle of the unstable pole. While this procedure preserves
the amplitude, it modifies the phase characteristics of the signal:

Astab (ωTs) = 1
A(ω) φstab (ωTs) 6= −φ (ω) , (2-45)

where Astab is the amplitude and φstab is the phase of the stabilised transfer function Hstab[z].
If the phase becomes strongly nonlinear, the signal becomes distorted [50]. The nonlinear
phase can be corrected either by linearising it [51] or with an all-pass filterHall(z) of amplitude
1 [52]:

Hcomp (z) = Hstab (z)Hall (z) . (2-46)

2-4-5 Approximation Error and Error Statistics

An effective least squares system identification requires the choice of a suitable model order.
The frequency response is a useful tool to find the order. If one can restrict the identification
frequency region to the bandwidth of the input signal, a lower filter order can be chosen.
For thrust stands, it was explained in Section 2-2-1 that a rational polynomial of order 2
provides a good analytical approximation. One can thus safely assume that a IIR filter of
order 2 will perform comparatively well. Nevertheless, a higher identification order can still
lower the approximation error at the cost of higher computational effort. This works only up
to the point where a further increase of the identification order only integrates signal noise
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into the model; or, the increase in numerical errors becomes larger than the improvement
in estimation. The quality of the least squares fit can be determined either with an error
statistic or visually, by looking at the reconstructed input signal. A reliable error statistic
is the reprojection error. The measurement signal is re-calculated using the model and the
approximation error is determined as difference between model and true value. The reprojec-
tion error is especially suitable for a visual comparison of the error. For a one-dimensional
thrust signal, the reprojection error can be defined as

εrp = ‖y − ŷ‖ with ŷ =
∫ t

0
H (t− τ) x̂ (τ) dτ, (2-47)

where H (t− τ) is a transfer function and x̂ is the deconvolved input thrust. Another way
to visually evaluate the performance of a deconvolution filter in the time domain is to apply
the filter to a problem with known solution. To create such a synthetic test case, one takes
a known input signal, for example a thrust pulse of uniform amplitude, convolutes it with
a transfer function resembling the thrust stand dynamics and adds white Gaussian random
noise. A visual evaluation in the time domain has the advantage that the designer can see
how the filter affects the reconstructed input signal, so that an incorrect time delay, a bias in
the thrust amplitude, or an inappropriate cut-off frequency (too much random noise in the
end product) can all easily be seen. If a test scenario is used, the NRMS error values provides
a good error statistic. The NRMS error is a normalised version of the commonly most used
accuracy measure: the Root Mean Square (RMS) error.

εNRMS =

1− ‖x̂− xref‖∥∥∥∥x̂− 1
n

n∑
i=1

xref (i)
∥∥∥∥
 · 100 (2-48)

where ‖.‖ indicates the 2-norm, x̂ is the deconvoluted estimate of the input signal and xref is
the prescribed thrust input. For the NRMS statistic, a 100% fit means that the new function
fits the original perfectly, 0% means that the new function is not better at approximating
the original function than a straight line, and −∞ means a very bad fit. In this thesis, the
reprojection error of reconstructed thrust input signals is used for visual comparison and the
NRMS error for statistical comparison.

An upper bound for the time domain estimation error of a deconvolution filter was reported
by Eichstädt [21, 26] and is

|∆ [n]| ≤ 1
2π

∫ πfs

−πfs

∣∣∣eiωnd/fsHC

(
eiω/fs

)
H (iω)− 1

∣∣∣ · X̄ (ω) dω, (2-49)

where ∆ [n] is the estimation error at sampling nTs, and X̄ (ω) is an known upper bound
for the magnitude spectrum of the input signal. This error bound is especially suitable for
deconvolution filters, as it takes the low-pass filter into account: if the low-pass filter has a
broad pass-band, the error is primarily influenced by the compensation filter. While Equation
(2-49) provides an upper boundary for the compensation error, it does not evaluate to what
extent estimation and measurement errors degrade the accuracy of the deconvoluted input
signal. This can be done by performing an uncertainty evaluation.
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2-5 The Kalman Filter

2-5-1 Advantages of the Kalman Filter for the Dynamic Thrust Measurement
Problem

It was shown in Section 2-3-1 that the deconvolution problem is ill-posed and that this leads
to an amplification of the signal noise. The conventional way to deal with this problem is
to design an IIR or FIR filter and to complement it with a low-pass filter to prevent noise
amplification, as described in Section 2-4 and 2-3-4. Both filter types are time-consuming to
design and require a secure foundation in DSP, such as knowledge of pole-zero plots, frequency
response and frequency spectra. IIR filters are especially difficult to design, because they can
be unstable and stabilisation is difficult to perform without destroying the phase, see Section
2-4-4. The Kalman Filter is known for its simple design and intuitive algorithm. It does
not require stabilisation. It improves the signal-to-noise ratio by taking the statistics of the
measurement and process noise into account. It provides the optimal solution for a LTI
system if the noise is white Gaussian. Its only disadvantage is that the covariance matrices
of the measurement and process noise have to be provided by the operator. Otherwise, it
offers an innovative solution to all the problems commonly encountered when designing a
filter for dynamic thrust compensation. Thus, the Kalman Filter offers an ideal way to solve
the dynamic thrust measurement problem, if it can be adapted to deconvolute the thrust
signal from the transient response of the thrust stand.

IIR Filters Kalman Filter
+ no choice of covariance matrices required optimal for white Gaussian noise

improves signal-to-noise ratio
stable, even with unstable IIR coefficients

simple design
simple implementation

integrated uncertainty analysis
– not optimal requires choice of covariance matrices

worsens signal-to-noise ratio
unstable

complicated design
complicated implementation

additional uncertainty analysis

Table 2-2: Comparison of the properties of IIR and Kalman Filters.
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The Kalman Filter was published by Rudolf E. Kalman as a recursive solution to the discrete
time linear estimation problem [53]. Its first major application was in the on-board computer
that guided the descent of the Apollo 11 lunar module to the moon. The idea behind the
Kalman Filter is that of a two step predictor-corrector method: a state is predicted using a
model for the system dynamics based on previous steps only. This estimate for the next step is
then corrected, once the measurement outcome is known, by forming a probabilistic weighted
average between the measurement outcome and the prediction, as illustrated in Figure 2-15.

Figure 2-15: Illustration of the working principle of the Kalman Filter. The next step of the
signal α̂k+1,k+1 is estimated by combining the probability of the prediction of the next step gained
by a model α̂k+1,k and the actual measurement yk+1.

The Kalman Filter’s typical role within the realm of dynamic force measurements is that of
a noise cancellation filter, and for good reason: if the noise is white Gaussian, as it usually
is for measurement signals, the Kalman Filter is optimally suited for the task. Haddab [54],
for instance, applies the Kalman Filter to smooth a micro-force measurement signal obtained
by a strain gage, before applying a deconvolution filter. In the following, a more unusual
use of the Kalman Filter is suggested: a modification to perform the deconvolution itself.
A few simple adjustments are sufficient to make the Kalman Filter suitable for this task.
Successful attempts to use the Kalman filter for deconvolution were already made in other
fields than thrust measurement. Sayman [55] uses a Deconvolution Kalman filter to recover
seismic traces, Rotunno [56] for ion quantisation and Rousseaux [57] describes the retrieval
of the time-varying active states in a muscle with a Deconvolution Kalman Filter. Bora [9]
reports that the signal-to-noise ratio could be improved significantly using a Deconvolution
Kalman Filter, although deconvolution filters in general have the tendency to reduce the
signal-to-noise ratio. Furthermore, Bora was even able to reconstruct an input signal of
complete white Gaussian random noise after a convolution with a fifth order transfer function
using a Deconvolution Kalman Filter. Especially this last result makes the Kalman Filter
a promising candidate to extract even the sharper edges of short firing pulses overlaid with
Gaussian firing noise.

2-5-2 State-Space Representation

The state-space representation of a LTI system is a time-domain approach, in which a differ-
ence equation of order N is rewritten as a vector difference equation of order 1. The state
variables constitute the smallest possible subset of variables by which the entire system can
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be described. For a system of m inputs, n states and r outputs, the state-space representation
can be defined as:

α̇ (t) = Aα (t) +Bx (t)
y (t) = Cα (t) +Dx (t) , (2-50)

where α(t) is the state, x(t) is the input and y(t) the output signal. The matrix A (size
n× n) is the system matrix, B (size n×m) is the input matrix, C (size r× n ) is the output
matrix and D (size r ×m) is the called the feedthrough matrix, because it represents direct
connections between input and output signal [58] .
The connection between the state-space model and the differential equation can be illustrated
using the analytical model of order 2, used to describe the thrust stand In Section 2-2-1, the
differential equation (2-3) was transformed into a transfer function:

H (s) = Y (s)
X (s) = 1

Ms2 + Cs+ k
⇔ Mÿ (t) + Cẏ (t) +Ky (t) = x (t) . (2-51)

To transform the differential equation (2-51) into a state-space representation, the derivatives
of y are substituted with components of a vector. In this case, two equations of order 1 replace
a differential equation of order 2:

α1 (t) = y (t)
α2 (t) = dy(t)

dt

. (2-52)

The derivatives of this state vector are
α̇1 (t) = dy(t)

dt

α̇2 (t) = − C
M y2 (t)− K

M y1 (t) + x (t)
. (2-53)

The two equations (2-53) can be written in matrix form as[
α̇1 (t)
α̇2 (t)

]
=
[

0 1
−K
M − C

M

]
︸ ︷︷ ︸

A

[
α1 (t)
α2 (t)

]
+
[

0
1
M

]
︸ ︷︷ ︸

B

x (t) , (2-54)

which, introducing the matrix A and B can be summarised as

α̇ (t) = Aα (t) +Bx (t) . (2-55)

The output equation is given by
y (t) = α1 (t) , (2-56)

which can also be expressed in matrix form as

y (t) =
[

1 0
]

︸ ︷︷ ︸
C

[
α1 (t)
α2 (t)

]
+ [0]︸︷︷︸

D

x (t) , (2-57)

which is in short
y (t) = Cα (t) +Dx (t) . (2-58)

The matrix D represents direct connections between the output and the input feedthrough.
Equation (2-55) and (2-58) together represent the commonly used short form of a linear
state-space model:

α̇ (t) = Aα (t) +Bx (t)
y (t) = Cα (t) +Dx (t) . (2-59)

The Kalman Filter is a particular algorithm that is used to solve state-space models in the
linear case. Occasionally, state-space models are even referred to as Kalman Filter models.
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2-5-3 Kalman Filter Algorithm

The Kalman Filter is famous for its straightforwardness. Kalman himself declared in later life
that the simplicity and intuitiveness of the final equations (2-91) had surprised him. For the
Kalman Filter, a set of simple equations is the result of a series of simplifying assumptions. In
the following, the assumptions made during the derivation of the Kalman filter are identified.
The general problem addressed by the Kalman Filter is that of estimating the state α of
a discrete-time controlled process that can be described by the linear stochastic difference
equations (2-60) and (2-61):

αk+1 = Aαk +Bxk + wk, (2-60)

yk = Ckαk + vk, (2-61)

where the subscript k denotes the sampling of the values at time tk = k∆t. The matrix A in
difference Equation (2-60) relates the state at time step k to the state at step k + 1. Matrix
B relates the control input x to the state α and matrix C in Equation (2-61) relates the state
α to the measurement signal y. For further reference, Equation (2-60) will be referred to as
state equation and Equation (2-61) as measurement equation. Essentially, the state equation
(2-60) contains the model which is used to predict the behaviour of the next measurement
value. The states and the measurements are corrupted by additive noise: the process noise
wk and measurement noise vk, respectively. Both are usually assumed to be mutually uncor-
related (E [wkvk] = 0), independent, and white Gaussian, because the Kalman Filter yields
optimal results for this case.

For the assumption of white Gaussian noise with zero mean, the probability distribution of
the process and measurement noise can be defined as

p (w) ∼ N (0, Q)
p (v) ∼ N (0, R) . (2-62)

whereQ and R are the covariance matrices of the process and measurement noise, respectively.
The prediction and update state essentially describe the same value of xk, many authors mark
the prediction with a minus superscript to set it apart from the correction. In the following,
however, a two index system will be used. The first index indicates the iteration step, while the
second designates the availability of measurement data. This index system is more conform
with the typical notation for random processes and is more suitable for probabilistic proofs
and derivations. In this notation, the predicted (a priori) and the corrected (a posteriori)
estimates can be written as:

- α̂k,k−1 denotes the predicted a priori state estimate of step k given measurement data
up to yk−1

- αk,k denotes the updated/corrected a posteriori state estimate at step k+ 1 given mea-
surement yk. Occasionally also αk is written for α̂k,k.

There are many ways to derive the Kalman Filter. The following derivation is based on
the idea that the Kalman filter is an efficient recursive weighted least-squares solution to an
estimation problem considered from a probabilistic point of view [59]. This way of derivation
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is chosen, because it will be used later on to extract an estimate of the uncertainty attached
to the measurement states for thrust measurements by using the Kalman Filter. Kalman
himself insisted on regarding the estimation problem probabilistically, because he agreed
with Norbert Wiener [60] that the natural setting of the estimation problem belonged to the
realm of probability theory and statistics [53]. Any estimation problem starts with defining a
model. The estimation aim is to fit a model f(α, θ) (where α are the states and θ the model
parameters) as closely as possible to the measurement data y by minimising the error between
model and data:

ε = y − f (α, θ) . (2-63)
To penalise modelling errors, a cost function J = J (ε) is defined, which fulfils the additional
requirements

J (0) = 0
J (ε2) ≥ J (ε1) ≥ 0 for ε2 ≥ ε1 ≥ 0
J (ε) = J (−ε) .

(2-64)

The model coefficients are determined, such that the cost function becomes minimal

θ̂ = arg min J (x, θ) , (2-65)

where θ̂ again denotes an estimate for θ.5 For the Kalman Filter, a weighted least squares
cost function is defined to equally penalise state and measurement prediction errors [61].

J = 1
2(α̂k+1,k+1 − α̂k+1,k)TP−1

k+1,k (α̂k+1,k+1 − α̂k+1,k)︸ ︷︷ ︸
penalisestateprediction error

1
2 (yk+1 − Ck+1α̂k+1,k+1)TR−1

k+1 (yk+1 − Ck+1α̂k+1,k+1)︸ ︷︷ ︸
penalisemeasurement prediction error

, (2-66)

where R is the covariance matrix of the measurement errors and P is the state estimation
error covariance matrix. The cost function in Equation (2-66) illustrates what is minimised
by the Kalman Filter. The next state α̂k+1,k+1 has to be predicted in such a way that the
prediction error α̂k+1,k+1 − α̂k+1,k is small with respect to the variance of the state measure-
ment errors represented by P . It also has to be chosen such that the measurement error
yk+1 − Ck+1α̂k+1,k+1 is minimised with respect to the measurement noise represented by R.

Optimal State Correction

To find a relation for the optimal estimate α̂k+1,k+1 of the next step αk+1, the cost function
is minimised with respect to the next step αk+1 by finding the location where ∂J

∂α̂k+1,k+1
= 0:

∂J

∂α̂k+1,k+1
= (α̂k+1,k+1 − α̂k+1,k)TP−1

k+1,k + (yk+1 − Ck+1α̂k+1,k+1)TR−1
k+1Ck+1 = 0. (2-67)

Adding and subtracting CTk+1R
−1
k+1Ck+1α̂k+1,k to the right-hand side of Equation (2-67) and

rearranging it in terms of α̂k+1,k+1 and α̂k+1,k leads to(
P−1
k+1,k + CTk+1R

−1
k+1Ck+1

)
α̂k+1,k+1 =

5 argmin stands for the argument of the minimum, for which the given function attains its minimum value.
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(
P−1
k+1,k + CTk+1R

−1
k+1Ck+1

)
α̂k+1,k + CTk+1R

−1
k+1 [yk+1 − Ck+1α̂k+1,k] . (2-68)

Transposing the equation for α̂k+1,k+1 gives

α̂k+1,k+1 = α̂k+1,k + CTk+1R
−1
k+1 [yk+1 − Ck+1α̂k+1,k]

(
P−1
k+1,k + CTk+1R

−1
k+1Ck+1

)−1
. (2-69)

Below in Equation (2-87) is shown that the terms
(
P−1
k+1,k + CTk+1R

−1
k+1Ck+1

)−1
CTk+1R

−1
k+1 can

be summarised into one vector called the Kalman gain K, so that the formula for the state
correction is

α̂k+1,k+1 = α̂k+1,k +Kk+1 [yk+1 − Ck+1α̂k+1,k] . (2-70)

Equation (2-70) demonstrates the working principle of the Kalman Filter. The next state
α̂k+1,k+1 is calculated as a weighted average between the measured and the predicted state.

State Covariance Prediction

The Kalman gain is found by minimising the state error covariance matrix Pk. The use of a
quadratic cost function in Equation (2-66) allows to define the expectation of the states as
the estimate of the sought quantity [62]. Therefore, the estimates for αk are the expected
value of αk:

E [αk] = α̂k. (2-71)
The covariance matrix of the state prediction error ε̂k+1,k = α̂k+1,k −αk+1 is called Pk and is
defined as

E
[
(αk − α̂k) (αk − α̂k)T

]
= E

[
ε̂kε̂

T
k

]
= Pk. (2-72)

Hence, the probability density function of the states p (α̂k) is

N (α̂k, Pk) = N
(
E [αk] , E

[
(αk − α̂k) (αk − α̂k)T

])
. (2-73)

if the current measurement value yk is known.
Using Equation (2-60), the next state is predicted as

α̂k+1,k = Aα̂k,k +Bxk (2-74)
without consideration of the process noise. The real measurement value αk+1 is assumed to
deviate from the predicted value by a random noise constant wk:

αk+1 = Aαk +Bxk + wk. (2-75)

The difference between Equation (2-74) and Equation (2-75) constitutes the state prediction
error ε̂k+1,k = α̂k+1,k − αk+1, which has the covariance

E
[
ε̂k+1,kε̂

T
k+1,k

]
= E

[
(Aε̂k,k + wk) (Aε̂k,k + wk)T

]
. (2-76)

Multiplying Equation (2-76) out, results in

AE
[
ε̂kε̂

T
k

]
AT + E

[
wkw

T
k

]
T +AE

[
ε̂kw

T
k

]
T + E

[
wkε̂

T
k

]
AT , (2-77)

The cross-covariances in Equation (2-77) are 0, because the process noise and the state pre-
diction error are uncorrelated. The process and the state prediction variance were defined as
E
[
wkw

T
k

]
=Qk and E

[
ε̂kε̂

T
k

]
= Pk, respectively. Therefore, the a priori error covariance can

be predicted with
Pk+1,k = APkA

T +Qk. (2-78)
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State Covariance Correction

The a posteriori state error covariance Pk+1,k+1 is calculated as:

Pk+1,k+1 = cov (αk+1 − α̂k+1,k+1) . (2-79)

If α̂k+1,k+1 is replaced by the formula for the state correction of Equation (2-70):

= cov

αk+1 − (α̂k+1,k +Kk+1 (yk+1 − Ck+1α̂k+1,k))︸ ︷︷ ︸
α̂k+1,k+1

 (2-80)

and yk by the measurement relation in Equation (2-61):

Pk+1,k+1 = cov

αk+1 −

α̂k+1,k +Kk+1

Ck+1αk+1 + vk+1︸ ︷︷ ︸
yk+1

−Ck+1α̂k+1,k



 . (2-81)

The measurement error αk − α̂k,k−1 can be extracted as

Pk+1,k+1 = cov ((αk+1 − α̂k+1,k) (I −Kk+1Ck+1) +Kk+1vk+1) (2-82)

and the covariance can be applied on the individual parts of the sum:6

(I −Kk+1Ck+1) cov (αk+1 − α̂k+1,k) (I −Kk+1Ck+1) +Kk+1cov(vk+1)KT
k+1 (2-83)

= (I −Kk+1Ck+1)Pk+1,k (I −Kk+1Ck+1) +Kk+1Rk+1K
T
k+1 (2-84)

Multiplying out and rearranging results in an extended formula for the a posteriori error
covariance, gives:

Pk+1,k+1 =

Pk+1,k−Kk+1Ck+1Pk+1,k−Pk+1,kC
T
k+1K

T
k+1+Kk+1

(
Ck+1Pk+1,kC

T
k+1 +Rk+1

)
KT
k+1. (2-85)

The best estimator is the one minimising this variance.

Kalman Gain

The Kalman gain is determined as the value for Kk resulting in the optimal estimator for
Pk. For this purpose, the trace of the matrix in Equation (2-85) is minimised by setting the
matrix derivative with respect to Kk to 0:

∂trace (Pk+1,k+1)
∂K

= −2Pk+1,kC
T
k+1 + 2Kk+1

(
Ck+1Pk+1,kC

T
k+1 +Rk+1

)
= 0. (2-86)

Rearranging yields the minimum mean square error gain, also called the optimal Kalman
gain:

Kk+1 = Pk+1,kC
T
k+1

(
Ck+1Pk+1,kC

T
k+1 +Rk+1

)−1
. (2-87)

6It holds that cov(AX) = Acov (X) A.
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When the Kalman gain equals the optimal value, the a posteriori error covariance can be
computed in a simplified manner. The formula for the optimal Kalman gain can then be
rearranged:

Kk+1
(
Ck+1Pk+1,kC

T
k+1 +Rk+1

)
KT
k+1 = Pk+1,kC

T
k+1K

T
k+1 (2-88)

and inserted into Equation (2-85), so that the last two terms cancel each other out and the
a posteriori error covariance can be computed with

Pk+1,k+1 = Pk+1,k −Kk+1Ck+1Pk+1,k. (2-89)

Each measurement has an associated standard deviation σy and each input σx has an associ-
ated standard deviation. Their noise covariance matrices can be defined as follows:

R =

 σy1 0 0

0 . . . 0
0 0 σyn

 Q =

 σx1 0 0

0 . . . 0
0 0 σxn

 (2-90)

The Kalman Filter algorithm can be summarised with the five equations:

αk+1,k = Aαk,k +Bxk state prediction
Pk+1,k = APk,kA

T +Qk covariance prediction

Kk+1 = Pk+1,kC
T
k+1

(
Rk + Ck+1Pk+1,kC

T
k+1

)−1
Kalman gain

Pk+1,k+1 = Pk+1,k (I −Kk+1Ck) covariance correction
α̂k+1,k+1 = α̂k+1,k +Kk+1 (yk+1 − Ck · α̂k+1,k) state correction

(2-91)

Measurement State Uncertainty

The derivation of the state covariance prediction and correction performed above have shown
that the Kalman Filter predicts and optimally corrects the variance Pk = E

[
ε̂kε̂

T
k

]
of the

error contained in the state vector α in each iteration. The use of a quadratic cost function
in Equation (2-66) allows the definition of the mean of the posterior distribution of the states
as the estimate of the sought quantity [62], as in Equation (2-71). This assumption, namely
that E [αk] = α̂k, means that the covariance matrix P summarises the dispersion of the
probability distribution around the expected value. In other words, P contains the entire
information of the uncertainty associated with the state error. Normally, the calculation
of the variance for the estimates of a dynamic measurement evaluation method requires an
extensive computational method, like the Monte Carlo method. For the Kalman Filter, such
an estimation of the uncertainty can be obtained simply by retrieving the information during
each iteration from the measurement state error covariance matrix. This approach will be
developed in Chapter 4-4-1 for the Deconvolution Kalman Filter. To the knowledge of the
author, this has not been attempted so far. However, to validate the results a Monte Carlo
method will be needed.
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2-5-4 IIR Deconvolution from Noisy Observations Using the Kalman Filter

Bora [9] developed a Deconvolution Kalman Filter for the general scenario of extracting an
ARMA process after convolution with an IIR Filter and corruption by white Gaussian noise.
The innovation of the method is to combine the Kalman Filter with a low-pass filter in state-
space representation to form a single augmented state-space system. The resulting augmented
system can perform noise removal and deconvolution simultaneously. The set-up of Bora’s
method is depicted in Figure 2-16.

Figure 2-16: Kalman filtering to recover a noise corrupted input signal convoluted with an IIR
transfer function developed by Bora [9].

An unknown input signal x(k) is convoluted with an IIR transfer function H(z) and white
Gaussian random noise v(k) with probability distribution v ∼ N

(
0, σ2) is added. The mea-

surement signal is theoretically generated with

y[n] =
K∑
k=1

h [n− k] · x [k] + σv[n] (2-92)

and the Deconvolution Kalman Filter is applied to find an estimate x̂ of x. The z-transformed
IIR transfer function H(z) can be described by

H (z) = a0 + a1z
−1 + ...+ amz

−m

1 + b1z−1 + ...+ bnz−n
=

m∑
j=0

ajz
−j

1 +
n∑
i=0

biz−i
(2-93)

and is brought into state-space form by inserting the denominator coefficients bi and nu-
merator coefficients ai into the matrices AH in Equation (2-94) and BH in Equation (2-95),
respectively.

AH =


0 1 · · · 0
... . . . . . . ...
0 · · · 0 1
−bN −bN−1 · · · −b1

 (2-94)

BH =


0
0
...
1

 CH =
[
aN aN−1 · · · a1

]
DH = a0 (2-95)
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The resulting state-space model is defined as

αk+1 = AHαk +BHxk
y′k = CHαk +DHxk

, (2-96)

where y′k is the output of the system H(z) without noise and α is the state-space variable. In
a similar way, the coefficients of a Butterworth low-pass filter can be expressed in state-space
form as

βk+1 = AGβk +BGwk
xk = CGβk +DGwk

, (2-97)

where β is the state-space variable for the low-pass filter. Both state-space systems, Equation
(2-97) and Equation (2-96), are combined into a single augmented state-space system with
matrices A, B and C defined in Equation (2-98) and (2-99):

A =

 AH BH 0 0
0 0 CG DG

0 0 AG BG

 (2-98)

B =
[

0 0 0 I
]

C =
[
CH DH 0 0

]
(2-99)

and corresponding state vector ζ

ζk =
[
αTk xTk βTk wTk

]T
. (2-100)

A closer look at matrix A reveals that the augmentation of the state-space system with the
low-pass filter is not very complicated. Following the way a matrix-vector multiplication is
carried out, αk is multiplied with AH , xK with BH , and the noise components of the signal
are affected by the low-pass filter matrices only. The Deconvolution Kalman Filter for the
augmented state-space system is almost identical to the ordinary Kalman Filter:

ζk+1,k = Aζk,k
Pk+1,k = APk,kA

T +BQBT

Kk+1 = Pk+1,kC
T
(
R+ CPk+1,kC

T
)−1

Pk+1,k+1 = Pk+1,k (I −Kk+1C)
ζk+1,k+1 = ζk+1,k +Kk+1 (yk+1 − C · ζk+1,k)

(2-101)

Compared to the conventional Kalman Filter code in Equation (2-91), the augmented code
shows only a few alterations:

1. In the normal Kalman Filter, the first line also contains the matrix B: αk+1 = Aαk +
Bxk. In the augmented system, Bxk is contained in the matrix A, so that the next
state can be predicted with ζk+1,k = Aζk,k.

2. In Pk+1 = AkPkA
T
k + BQkB

T , BQkB appears to be different, but for the case that Q
is a number, BBT = 1.

The algorithm of the Deconvolution Kalman Filter is not different to the algorithm of the
ordinary Kalman Filter. Its working principle can be understood by looking at the algorithm
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in Equation (2-101). Instead of applying an inverse model, the Kalman Filter computes the
output value of the model with ζk+1,k = CAζk,k and subtracts the calculated value from
the measurement value at step k. Hence, the transient response described by the model is
removed from the measurement signal by subtracting it. The Kalman Filter corrects the
amplitude of the calculated input by multiplying it with the optimal Kalman gain. As the
model is applied without inverting the transfer function, no stabilisation or regularisation is
needed. The problem is not ill-posed.

The drawback of the Deconvolution Kalman Filter becomes apparent from its way of working.
The Kalman gain may be calculated incorrectly, if inappropriate values are chosen for the
covariance matrices Q and R. In this case, the Kalman Filter returns a qualitatively correct
signal, meaning that the shape of the signal is correct, but the amplitude is wrong. Since the
amplitude of the thrust is the value which needs to be found, this kind of error is fatal and
has to prevented.

2-5-5 Determination of Q and R

The Kalman Filter provides a simple yet effective method for state estimation by accounting
for not modelled dynamics and measurement noise with the use of the system covariance
matrices Q and R [19]. These filter tuning parameters have to be supplied by the designer
to guarantee a convergence to the correct solution. Shmaliy [10] depicts the dependency of
the Kalman Filter’s accuracy on the noise covariance as a parabola, shown in Figure 2-17, to
illustrate that the Kalman Filter’s optimality is strictly dependent on the correct choice of Q
and R.

Figure 2-17: Performance of the Kalman Filter for different noise covariance matrices [10].

Figure 2-17 shows that the Kalman Filter is only optimal if the noise covariance matrices
are prescribed correctly. However, Q and R are still chosen heuristically most of the time in
engineering applications [63]. If the Kalman Filter is applied as a low-pass filter the heuristic
tuning is based on the effect of the tuning parameters [64]:

- small Q: Dynamics trusted more
- small R: Measurements trusted more
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As the Deconvolution Kalman Filter’s main objective is not noise removal, but the removal
of a transient system response, the same logic cannot be transferred to the Deconvolution
Kalman Filter. To the knowledge of the author, no method exists which describes how to
choose the tuning parameters, if the Kalman Filter is used for deconvolution.

Various researchers have developed methods to rationalise and automatise the choice of the
tuning parameters, see for example [65, 66, 67]. From the available methods only two methods
could be identified, which show the potential to be applied to the Deconvolution Kalman
Filter. One was developed by Saha [19]. Saha suggest the use of two metrics, which measure
the effect of Q and R. The designer can use the two metrics to find suitable choices of Q
and R for the deconvolution problem. The other is the Autocovariance Least Squares (ALS)
method developed by Rajamani [20]. The method is available in form of an open-source
Octave toolbox. The software routines can be adapted to any form of ARMA model. Hence,
it should be possible to adapt them to the Deconvolution Kalman Filter.

2-6 Uncertainty Evaluation for Deconvolution Filters

The deconvoluted input signal is of little use unless its accuracy is known. The accuracy is
difficult to ascertain, because it is diminished by environmental factors, like ground vibra-
tions, and mistakes made by the operator or the measuring equipment. The measured value
is merely an indication of the quantity that is really sought: the measurand. In an error
analysis, systematic and random errors are quantified to give the best possible estimate of
the measurand. In an uncertainty analysis, the best estimate of the measurand is given along
with an associated measurement uncertainty and confidence intervals. An uncertainty analy-
sis is based on the premise that, because it is impossible to state how well the true value of a
measurand is known, it is better to quantify the result of a measurement in terms of probabil-
ity. Therefore, all quantities influencing the accuracy of the measurand are mathematically
defined as random variables with a probability distribution assigned to them. It is possible
that the assigned random variables are correlated and have joint distributions. Measurement
errors can often by described well with a normal distribution. If no estimate of a variable is
known, but only that the value is to be found within a certain interval, a uniform distribution
can be used. Relevant data to define distributions can be found by analysing the measurement
data in reference books and manufacturer specifications. Concerning the uncertainty caused
by a deconvolution filter, exact formulas to calculate the mean and variance are available for
FIR filters, but not for IIR filters [68]. The formulation of closed mathematical expressions
for IIR filters generally requires linearisation. For this reason, the uncertainty attached to
IIR filters is generally evaluated by performing a Monte Carlo simulation.

2-6-1 Monte Carlo Uncertainty Quantification for Thrust Deconvolution Meth-
ods

The term Monte Carlo method is used to encompass stochastic computational methods, which
obtain numerical results by repeated random sampling for cases in which deterministic results
are difficult to obtain. The random numbers are obtained using random number generators
[69]. To apply the Monte Carlo method to the Deconvolution problem, the thrust input X is
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regarded to be unknown and depending on one or more other quantities, denoted by Yn:

X = f (Y1, Y2, ..., Yn) . (2-102)

As before, the thrust input can be obtained by a convolution of the measurement signal Y
with an inverse filter hc, so that the input thrust becomes known up to a constant ∆[n],
representing a local bias, introduced by the application of the deconvolution filter:

X [n] = (Y ∗ hc) [n] + ∆ [n] . (2-103)

To characterise the uncertainty, which propagates from the measurement signal through to
the model and the deconvoluted thrust input, a probability distribution needs to be assigned
to the model coefficients ai and bi and to the error in the measurement signal y. Then, random
draws y(r)b(r)a(r) can be made from the distributions and the input signal can be calculated
for each draw, transferring the effect of the model and measurement uncertainty to the input
thrust:

x(r) = y(r) ∗ hc(r). (2-104)

The number of random draws made is referred to as the number of Monte Carlo trials M .
The uncertainty attached to each vector of lengthM , calculated for each sample of the thrust
input by the Monte Carlo method, can be interpreted as the uncertainty in the input signal.
Hence, for each sample M values have to be saved. This shows that while the procedure of
a Monte Carlo simulation is not complicated, the achievable accuracy depends strongly on
the computational power and storage capacity. The higher the number of trials M , the more
reliable are the estimates as shown in Figure 2-18.

Figure 2-18: Number of Monte Carlo trials needed to obtain two and three digits accuracy for
uncertainty evaluations in dynamic measurements [11]. While an accuracy of two digits is still
achievable with capacities of desktop computers today, the usage of a computer server system is
needed for three digits.
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To achieve an accuracy of three digits, more than M = 106 Monte Carlo trials have to be
performed. That this is currently difficult to perform on a conventional desktop PC, as used
for this thesis, can be shown by the following example: Eichstädt [21] reported an ‘Out of
memory warning’ in Matlab for a signal length of N = 3000 with 106 Monte Carlo trials on
a workstation computer with 24 cores, 96GB of RAM running on a 64-bit Linux operating
system. Hence, for this thesis, a memory efficient alternative to a direct Monte Carlo method
is needed to evaluate the uncertainty of a deconvolution filter: the sequential Monte Carlo
method. The signal of N = 3000 and 106 Monte Carlo trials of the example above runs
without difficulty on a desktop PC if a sequential Monte Carlo method is applied.

2-6-2 Sequential Monte Carlo Method

The sequential Monte Carlo method differs from the direct Monte Carlo method mainly in
the amount of computer memory that it requires. The Monte Carlo simulation is performed
sequentially for each measurement point in the signal, column by column in Equation (2-105),
instead of traversing and saving the entire measurement signal:

XMC =


x(1) [1] · · · x(1) [K]
x(2) [1] · · · x(2) [K]

...
...

...
x(M) [1] · · · x(M) [K]


Sequential Monte Carlo

−→

, (2-105)

where M is the number of Monte Carlo trials and K is the length of the measurement
signal. This procedure requires considerably less memory, because only the M Monte Carlo
realizations of the Nθ = Na +Nb + 1 filter coefficients have to be stored:

X̂ [n] =
∑

bjY [n− j]︸ ︷︷ ︸
2·(Nb+1)·M

−
∑

ajX̂ [n− j]︸ ︷︷ ︸
2·Na·M

, (2-106)

in contrast to the direct Monte Carlo method where N filter input values and MK output
quantity values have to be stored. The storage requirements for the sequential Monte Carlo
method compared with the direct Monte Carlo method can be summarised to:

directMC
sequentialMC

∣∣∣∣∣ (M + 2)K +Nθ

M (2Nθ + 2) , (2-107)

where the most striking difference is the absence of K for the sequential Monte Carlo method
[68]. Storing the output quantity values for only a small number of time samples does not
impede the results obtainable with the sequential Monte Carlo method, which are identical
to those obtained from a direct implementation. Several efficient implementations of the
Monte Carlo method to evaluate the measurement uncertainty of deconvolution filters were
programmed by Eichstädt [68] and can be downloaded online.7 In order to apply the toolbox,
not only the model coefficients of an IIR or FIR filter are needed, but also either a proba-
bility distribution connected to them or an uncertainty covariance matrix Uba for the model
coefficients bi and ai has to be provided.

7 The software can be downloaded at http://www.ptb.de/cms/en/fachabteilungen/abt8/fb-84/ag-842/
dynamischemessungen-842/download.html.
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2-6-3 Setting up the Filter Covariance Matrix Uba

The filter covariance matrix Uba for an IIR filter with coefficients bi and ai can be found
by using another Monte Carlo simulation. During M Monte Carlo trials, random draws are
made from probability distributions assigned to the input and output signal to identify the
filter coefficients of the model under the influence of changing noise. For the case of random
zero mean Gaussian white noise, the noise distributions in the input and output identification
time series are characterised as

εin ∼ N
(
0, σ2

inp

)
εoutp ∼ N

(
0, σ2

outp

)
, (2-108)

and the input and output identification time series become

Xε = X + εin Yε = Y + εoutp. (2-109)

The model parameters can be identified M times by solving the linear least squares problem:

θ̂m,k =
(
XT
ε,kXε,k

)−1
XT
ε,kYε,k for m = 1, ï£·,M. (2-110)

The set of M randomly flawed filter coefficients θ̂m,k is divided into numerator and denom-
inator coefficients, bm,i and am,i respectively. The numerator coefficients am,i are saved to
matrix A in Equation (2-111), and the denominator coefficient bm,i are saved to a matrix B
in Equation (2-112):

A =



a
(1)
1 a

(1)
2 · · · a

(1)
N−1 a

(1)
Na

a
(2)
1

. . . a
(2)
Na...
...

a
(M−1)
1

. . . a
(M−1)
Na

a
(M)
1 a

(M)
2 · · · a

(M)
N−1 a

(M)
Na


(2-111)

B =



b
(1)
1 b

(1)
2 · · · b

(1)
N−1 b

(1)
Nb

b
(2)
1

. . . b
(2)
Nb...
...

b
(M−1)
1

. . . b
(M−1)
Nb

b
(M)
1 b

(M)
2 · · · b

(M)
N−1 b

(M)
Nb


, (2-112)

where A is a M × Na and B is a M × Nb matrix, so that every column corresponds to an
observation and every row to a variable. The covariance matrix of the model Uba needed for
the toolbox can be found as covariance of the matrix Uba = [A, B̂] where the first column of
B is left out, because it is constantly 1:

B̂ =


b
(1)
2 · · · b

(1)
Nb...

...
...

b
(M)
2 · · · b

(M)
Nb

 . (2-113)
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The covariance matrix Uba becomes an Na ×Nb matrix and can be calculated with

Uba = Cov ([A,B]) = 1
M − 1

M∑
i=1

(
Ui − Ū

) (
Ui − Ū

)T
, (2-114)

where Ui for i = 1, ...,M represents a column of Uba, and Ū is the mean of the corresponding
column.8 The best estimate for the filter coefficients ai or bi can be determined by calculating
the mean of each column in matrix A or B, respectively:

bk = 1
M

M∑
i=1

bi , for k = 1, ..., Nb

ak = 1
M

M∑
i=1

ai , for k = 1, ï£·, Na

. (2-115)

All the filter approaches described so far have focused on the characterisation of the transient
response of the thrust stand and only suppressed measurement errors by using a low-pass
filter. However, there are methods, which use the occurrence of random measurement errors
to their advantage by incorporating them into the optimisation process. One of them is the
Kalman Filter.

2-7 Conclusion

As private companies have ventured into the space sector during the last decade increasing
the competition, the development of more cost efficient rocket engines has attracted renewed
interest. The fuel efficiency of thrusters can be improved by pulsed firing. Therefore, the
measurement methodologies and evaluation strategies for pulsed rocket engines have been
revisited. To improve their measurement accuracy, several scientific institutions have designed
novel thrust stands based on piezoelectric force sensors for PMF measurements. However, the
currently prevalent type of thrust stand is based on load cells containing strain gages. This
type is not well suited to pulsed rocket thrust measurements as it produces large oscillations.
To avoid costly new designs for the majority of industrial suppliers, a new evaluation method
is needed to adapt displacement type thrust stands to the demands of PMF measurements.
Many different FIR and IIR filter methods are available and can be designed to fulfil this
task. Yet, trimming them to the high precision needed to increase the measurement accuracy
in PMF measurements, is a difficult task. Therefore, in this thesis, an amended version of the
linear optimal Kalman Filter is proposed as a simple, highly accurate and easy-to-implement
solution to the dynamic force measurement problem. The Kalman Filter provides the optimal
solution, as long as the noise is white Gaussian (which it usually is for thrust measurements).
To apply the Deconvolution Kalman Filter, only an ARMA model describing the transient
response of the thrust stand has to be provided. As the Deconvolution Kalman Filter applies
the model without inversion, the ill-posedness of the deconvolution problem does not affect
it. Thus, it needs no stability analysis, even if an unstable model is used. It requires no
other designing choices of the operator than a sensible choice of the noise covariance matrices
and the low-pass filter’s cut-off frequency. It conveniently integrates the evaluation of the
measurement uncertainty into the deconvolution process, as it estimates states by minimising

8 In Matlab , the integrated cov function can simply be used.
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the error variance. Results obtained by Bora [9] have shown that the Deconvolution Kalman
Filter can reconstruct random noise which changes at the frequency of the sampling rate.
This suggests that the Deconvolution Kalman Filter can also reconstruct short firing pulses
of the length of five to ten samples during a PMF measurement.

2-8 Objectives

Objectives by Airbus

This thesis was carried out for Airbus DS, which is in possession of a range of thrust stands and
a huge data base of validated test results to correlate new methods with. For Airbus DS, the
primary goal of this thesis was the transfer of their digital thrust compensation method from
its SciLab/Java environment within the local Technical Data Management System (TDMS)
in Lampoldshausen to a Matlab/C++ environment in the Airbus DS global Measurement
Data Base (MDB). During this transfer, the method should be documented carefully. It
should be investigated, whether the method could be improved or replaced by an alternative
method considering recent advances in dynamic measurement filtering. Any improvement
or alternative method should take into account that Airbus DS has a whole range of thrust
stands and that the evaluation method should be adaptable to all of them. While suggestions
on how to improve the measurement efficiency by changes in hardware were encouraged, the
focus of this work should be the documentation and improvement of the software and not the
hardware of the thrust stand.

It is suggested to proceed as follows: first of all, the characteristics of the Airbus DS rocket
engine, thrust stand and measurement equipment should be specified. Then, the methodology
used by Airbus DS should be extracted from the Java and SciLab codes used in Lampold-
shausen and implemented in Matlab and C++. After that, it could be investigated how the
method works and whether it is possible to improve it. Because only an error analysis, but no
uncertainty analysis has been performed for the 10N rocket thrust measurements, an uncer-
tainty analysis should be performed for the Airbus DS evaluation method. This uncertainty
quantification should try to include the most important sources of uncertainty caused by the
Airbus DS thrust measurement equipment.

Academic Objectives

Deconvolution methods can only be validated using an analytical model or with synthetic test
cases. Analytical models with sufficiently high accuracy to validate deconvolution filters are
difficult and time-consuming to develop, as described in Section 2-2-1. Therefore, only the
effectiveness of the simplest analytical model, a MSD system should be investigated. Several
authors have mentioned that a system of order 2 can approximate the thrust stand dynamics
well, but have not discussed the degree to which this proposition is valid.

To compare the performance of deconvolution filters, including the Airbus DS thrust mea-
surement method, a suitable test scenario has to be developed to generate realistic surrogate
thrust measurement signals, for which the thrust input is known.
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It was shown in this literature study that the Kalman Filter offers an attractive solution to
most of the problems encountered when designing a deconvolution filter, if it can be adapted
to the purpose of deconvolution. Furthermore, it was found that Bora [9] already devel-
oped a Kalman Filter for deconvolution. Therefore, the method developed by Bora should
be implemented and adapted to deconvolute the input thrust from dynamic rocket thrust
measurements. As the only disadvantage of the Kalman Filter is that the noise covariance
matrices Q and R have to be specified, a way has to be found to choose the matrices for PMF
thrust measurements. From the methods available in the literature, only the two metrics de-
veloped by Saha [19] and the ALS method developed by Rajamani [20] seem to be applicable
to the Deconvolution Kalman Filter. Their applicability for deconvolution in dynamic thrust
measurements should be tested. In addition, it was observed that the Deconvolution Kalman
Filter calculates an estimate of the uncertainty associated to the input thrust during each it-
eration. If this uncertainty could be extracted, an evaluation of the measurement uncertainty
could be directly incorporated into the deconvolution filter. That the uncertainty estimate
contained in this way is realistic could be validated with a sequential Monte Carlo method.
Finally, the performance of the Deconvolution Kalman Filter should be compared with the
method used by Airbus DS to see whether it improves the measurement accuracy for PMF
rocket thrust measurements.
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Chapter 4

Kalman Filter for Deconvolution

This chapter discusses the theory that is required to apply the linear optimal Kalman Filter for
the purpose of deconvolution to the dynamic thrust measurement problem. The requirements
needed to apply the Kalman Filter are checked in Section 4-1. The design of the Deconvolution
Kalman Filter suggested by Bora [9] is described in Section 4-1. The adaptations needed to
apply Bora’s method to the dynamic thrust measurement problem are presented in Section 4-
3. The most important adaptation concerns the choice of the measurement and process noise
covariance matrices for the case of Pulse Mode Firing (PMF) thrust measurements. How to
choose them is discussed in Sections 4-3-2 to 4-3-4. In Section 4-4-1, it is explained how the
measurement state error covariance matrix of the Deconvolution Kalman Filter can be used
to obtain an estimate of the uncertainty in the input thrust. A time-varying analysis of the
uncertainty in the input thrust using a Monte Carlo simulation is performed in Section 4-4-2.
The analysis is similar to the one performed in Section 3-6, but is repeated here because the
uncertainty analysis in Chapter 3 is tailored to Airbus DS data and could not be included in
the public version of this thesis.

4-1 Preliminary Conditions for the Use of the Kalman Filter

To apply the Kalman Filter it is assumed that the measurement signal can be modelled
with an Autoregressive-Moving Average (ARMA) process, introduced in Section 2-4-2. This
assumptions implies that

- The model effectively describes the persistence in the signal.
- The model residuals are random, uncorrelated in time and approximately normally
distributed.

If the model residuals are random, uncorrelated in time and approximately normally dis-
tributed, it is likely that the ARMA model also successfully captures the persistence in the
signal. If this random series is white Gaussian, the Kalman Filter is optimal.
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To check whether the Kalman Filter is optimal to evaluate thrust measurements, the output
of the model simulating the transient system response has to be subtracted from the real
transient system response. This was done in Section 3-6-2, using measurement data provided
by Airbus DS. It was found that the frequency spectrum of the thrust stand is too complex to
be modelled by a transfer function. The model residues are not white Gaussian. Figure 3-50
shows that there are still physical components. However, they are distributed approximately
normal, as can be seen in Figure 3-49. In Section 3-6-1, the measurement noise could be
shown to be white Gaussian.
Hence, the Kalman Filter’s optimality for the dynamic thrust measurement problem is ques-
tionable. The measurement noise is white Gaussian, and a physical model can describe the
main persistence in the signal. However, the model residues are only Gaussian, not white
Gaussian. The Infinite Impulse Response (IIR) filters described in Chapter 3 are capable of
reconstructing the unknown input signal, even if the model residuals contain certain deter-
ministic elements. Since the same model coefficients are inserted into the Kalman Filter, the
filter should be equally able to perform the deconvolution. However, there is no guarantee
that the result is optimal.

4-2 Test of Bora’s Deconvolution Kalman Filter

To check if the Deconvolution Kalman Filter suggested by Bora is implemented correctly,
it is applied to the same test scenario as described in their publication. That the method
is implemented correctly is demonstrated in Section 4-2-1 The sought input signals can be
reconstructed with the Deconvolution Kalman Filter. However, two difficulties are encoun-
tered. First, the initial conditions prescribed by Bora result in a larger initial error as shown
in Bora’s publication. Second, the accuracy of the method depends strongly on the values
chosen for the process noise covariance matrices Q and R. However, no recommendation on
how to choose these values is given by Bora [9]. In the following section, the set-up of the
test scenario is described. Then, the two difficulties are investigated: the dependency of the
solution on the initial values and the covariance matrices Q and R.

4-2-1 Set-Up of Test Scenario

The Deconvolution Kalman Filter is applied to reconstruct an ARMA process x(k), which has
passed through an IIR filter F (z) and is corrupted by measurement noise v(k). The ARMA
process x(k) is generated by exciting a system G(z) with white noise w(k). The system
G(z) is designed as a low-pass filter using the Yule-Walker equations with cut-off frequency
wc = 0.5π and order 10. The measurement noise v(k) is chosen as white Gaussian random
noise of unit variance. This procedure is illustrated in Figure 4-1.

Figure 4-1: Flowchart showing how Bora tests the Kalman Filter for Deconvolution [9].

Richard B.H. Ahlfeld Master of Science Thesis



4-2 Test of Bora’s Deconvolution Kalman Filter 95

The IIR transfer function F (z), which is used by Bora to add a transient response to the
input signal x(k), is defined as

F (z) = 0.4652− 0.1254z−1−0.3151z−2+0.0975z−3−0.0259z−4

1− 0.6855z−1+0.3297z−2−0.0309z−3+0.0032z−4 . (4-1)

The state vector ζ is initialised as ζ̂ (0, 0) = 0 and the state error covariance matrix as
P (0, 0) = I. Bora gives no indication how to choose the covariance matrices Q and R. For
the reconstruction of his results depicted in Figure 4-2, they are chosen as Q = 1000000 and
R = 1.

Figure 4-2: Deconvolution of a random input signal from a noisy signal using Bora’s method.
Left: Reconstruction of Bora’s test results, Right: Benchmark test results supplied by Bora [9].

Although the instructions given by Bora are closely followed, it can be seen in Figure 4-2 that
the imitated results differ from the original results in two ways:

- The absolute error xr − x, which subtracts the input signal reconstructed with the
Deconvolution Kalman Filer xr from the original input signal x, is significantly larger
for the initial 20 iterations than claimed by Bora.

- The scale in the left graph is 2x1011 and not only 2, as in Bora’s graph on the right. This
is because the input signal could only be reconstructed, if Q was chosen significantly
higher than R. Bora prescribes random noise v of unit variance. Hence R should be
chosen as 1. For this case, it was only possible to reconstruct the input signal when Q
was set to values at least 10000 times larger.

4-2-2 Removal of Initialisation Error

It can be seen in Figure 4-2 that the largest error occurs during the initialisation phase of the
Deconvolution Kalman Filter. This error is caused by using 0 as initial condition for the state
error covariance matrix P . For Linear Time-Invariant (LTI) systems, the entries of the matrix
P and the Kalman gain converge to constant values after a few iterations. In Figure 4-3, it
is illustrated how the Kalman gain K converges to the constant value 1.381 within the first
10 iterations. Similarly, all entries of the 16 × 16 matrix P converge to constant values.
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Figure 4-3: The Kalman gain converges after 6 iterations and then remains constant.

The large initialisation error can be prevented if the matrix P is obtained in a short pre-run.
Usually, the solution for P is obtained by solving the Riccati Equation. The Riccati Equation
is an ordinary differential equation of order 1 of the state error covariance matrix P . It can
be derived by combining the update and prediction steps of the Kalman Filter in such a way
that a quadratic equation in P is obtained. However, because the equation is quadratic, it
is simpler to find P using a different method instead of the standard Riccati approach: the
Deconvolution Kalman Filter is applied to the problem until P has converged to its final
value. If this value is then used as as initial guess for P , the initial error is reduced, as can
be seen in Figure 4-4.

Figure 4-4: Deconvolution of random input signal, for which the initial guess for P was deter-
mined in a pre-run.

4-2-3 Determination of Q and R

For Bora’s test scenario the value of R is chosen as 1, because the measurement noise v is
supposed to be of unit variance. However, no value for Q is suggested by Bora. Because R
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is constant, different Q/R ratios, rather than single values of Q, are used for a series of tests
to find a suitable value for Q. The code is run in a loop for Q/R ratios from Q/R = 10−5 to
Q/R = 200000 and the absolute error ε = x̂− x is computed.

In all cases, in which the Q/R ratio is chosen smaller than or close to 1, the Deconvolution
Kalman Filter greatly reduces the amplitude of the input signal, so that the reconstruction
error becomes extremely large. The graphs in Figure 4-5 illustrate this. The input signals
were reconstructed using a Q/R ratio of 1 for the graph on the left and 0.1 for the graph on
the right. One can see that the amplitude for the Q/R ratio of 0.1 is smaller than that of 1.
When using more values, it can be observed that the amplitude of the input signal converges
to 0, if the Q/R ratio converges to zero. Hence, the Q/R ratio has to be chosen larger than
1 for a correct reconstruction of the amplitude.

Figure 4-5: Left: Result obtained by the Deconvolution Kalman Filter for Q/R = 1, with
Q = 1000 and R = 1000, Right: Q/R = 0.1, with Q = 100 and R = 1000

The effect of Q/R ratios from 1 to 200000 on the estimation error is shown in Figure 4-6. The
two graphs show the relative error ‖x−x̂‖‖x‖ , because the absolute error varies greatly for different
Q/R ratios. The graph on the left is plotted to scale and shows dominant random fluctuations
for the relative error for different Q/R ratios. The graph on the right is logarithmic and shows
that the error decreases linearly for Q/R from 1 to 1000. Evaluating the information obtained
in Figure 4-6, it can be attempted to find a general rule how to choose the Q/R ratio. The
random fluctuations of the error in both graphs show local minima. For example, for a Q/R
ratio of 1.59e5 the error is only 10−4 compared to the error of 10−2, which occurs most
often. This suggests that an optimal Q/R ratio could be obtained using a gradient descent
algorithm, which minimises the relative error. This is only possible when using synthetic
data. Because, for real test cases, the input signal is unknown. The chance that a Q/R ratio,
which is optimal for a test case, is also optimal for a corresponding real test is very small.
For example, in Figure 4-6, the error to the left and right of the minimum error found at
1.59e5 is a hundred times larger. Hence, finding a global minimum for a real measurement
by employing a gradient descent method on a corresponding test case is unlikely.
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Figure 4-6: Relative error ‖x−x̂‖
‖x‖ for different Q/R ratios. Left: Unscaled plot, Right: Double

logarithmic plot showing a linear behaviour for Q/R ratios between 1 and 1000.

For a practical application of the method, it is more helpful to realise that from a certain
Q/R ratio upwards, an upper boundary for the estimation error can be found. In Figure 4-6,
there is a boundary for the estimation error of 0.01 for Q/R ratios from 10000 to 200000.
Due to the wide range of ratios for which this rule applies, it is probable that a similar ratio
is applicable to a real test. In a similar way, a heuristic choice will be developed for thrust
measurements using synthetic data in Section 4-3-2.
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4-3 Deconvolution Kalman Filter for Dynamic Thrust Measure-
ments

In this section, the Deconvolution Kalman Filter is adapted for the application on the dynamic
thrust measurements problem. Two problems were encountered. One was already elaborated
in the Section 4-2-3 and is widely known to be the main drawback of the Kalman Filter: the
necessity to choose the covariance matrices Q and R correctly. The second problem is that the
low-pass filter integrated into the augmented state-space system sometimes causes oscillations
in the reconstructed input signal. A case where this has happened is shown in Figure 4-7
and Figure 4-8. Both effects are investigated in the following sections for synthetic thrust
measurement data, which was generated exactly as described in Chapter 5. The transfer
function used to model the system dynamics of the thrust stand is

H(z) = 0.5887z2 + 0.2072z + 0.02314
z2 − 1.15 + 0.9771 . (4-2)

The input signal is a sequence of four pulses with an on time of 30ms and an off time of 30ms
and a rise and fall time of 2ms. In the visual comparisons, always the third pulse is looked
at.

4-3-1 Choosing the Integrated Low-Pass Filter

When applying the Deconvolution Kalman Filter on thrust measurements, it is found that
the Butterworth low-pass filter integrated into the state-space equations of the Deconvolution
Kalman Filter behaves differently than it does in combination with an inverse filter. This is
exemplified in Figure 4-7 where a thrust signal reconstructed with the Deconvolution Kalman
Filter is compared with a thrust signal recreated with the Inverse Transfer Function method,
which was developed in Section 3-5. For both graphs, a Butterworth filter of order 6 with
a cut-off frequency 0.1fNyquist has been used. This filter is capable of removing the entire
transient system response, but causes overshoot. This effect is visible in the graph on the right
in Figure 4-7. However, integrated into the state-space system of the Deconvolution Kalman
Filter, this low-pass filter has a completely different effect. The original transient response is
only slightly reduced in amplitude, but remains almost intact, as can be seen in the graph
on the left in Figure 4-7. In order to be able to predict the behaviour of the Butterworth
low-pass filter integrated into the Kalman Filter, different filters are used and the result are
documented.
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Figure 4-7: Different effects of Butterworth low-pass filter. Left: Integrated into the augmented
state-space system of the Deconvolution Kalman Filter, Right: Applied in combination with an
inverse filter.

It is found that the effect of the Butterworth low-pass filter depends on the cut-off frequency
and on the order. Figure 4-8 shows four thrust signals reconstructed with four different
low-pass filters integrated into the augmented state-space system. The two graphs on the
top illustrate that the overshoot is dependent on the cut-off frequency. Both graphs were
obtained with Butterworth filters of order 3. For the graph on the left, the cut-off frequency
is 0.3fNyquist and for the graph on the right 0.1fNyquist. The amplitude of the oscillation in
the graph on the right is higher. The graph in the bottom left-hand corner shows that the
overshoot depends on the order. The cut-off frequency is 0.3fNyquist, as in the graph above.
However, the ringing has a higher amplitude due to the higher order of 6. The graph in the
bottom right-hand corner is obtained with a Butterworth filter of order 2 and has a high
cut-off frequency of 0.8fNyquist. This low-pass filter has an effect on the highest 20% of the
frequency range and no overshoot occurs.

Figure 4-8: Thrust inputs deconvoluted with the Kalman Filter using Butterworth filters with
different order and cut-off frequency. In the following abbreviation the first number describes
the order, the second number the cut-off frequency. Top left: Butterworth(3,0.3), Top right:
Butterworth(3,0.1), Bottom left: Butterworth(6,0.3), Bottom right: Butterworth(2,0.8).

From the results in Figure 4-8, it can be concluded that the ideal low-pass filter for the
augmented state-space system of the Deconvolution Kalman Filter is a filter which has only
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little effect on the entire bandwidth of the signal and is of low order. This insight led to
the idea to include an integrator instead of a Butterworth filter into the state-space system.
In control theory, an integrator is usually described in the frequency domain as I = 1

z . It
is used to remove the steady-state error caused by a filter. The steady-state error is the
difference between input and output signal of a system as time goes to infinity. It can be seen
in Figure 4-9 that the Inverse Transfer Function method has a steady-state error while the
Deconvolution Kalman Filter with integrator has none.

Figure 4-9: Left: Steady-state error caused by the Inverse Transfer Function method, Right: No
steady-state error occurs for the Deconvolution Kalman Filter with integrator.

The effect, which the integrator has on the Deconvolution Kalman Filter, can be explained
mathematically by adapting results obtained by Chen [8]. The steady-state error in the
reconstructed input thrust can be defined as

X (z)− X̂ (z) with X̂ (z) = X (z)H (z)HC (z) , (4-3)

where X̂ is an estimate for the thrust signal, H(z) is the thrust stand transfer function and
HC(z) is the compensator. The steady-state error of a system can be calculated using the
final value theorem:

e (∞) = lim
z→0

zH (z) , (4-4)

where e is the steady-state error. To obtain an equation how the steady-state error can be
removed with the compensator HC in Equation (4-3), the final value theorem can be adapted
to

e (∞) = lim
z→1

(z − 1)
(
X (z)− X̂ (z)

)
, (4-5)

because H(z)
HC(z) ≈ 1, the steady-state error vanishes for the limit to 1. The multiplication

with (z − 1) ensures that the steady state-error still goes to 0. Inserting Equation (4-3) into
Equation (4-5) results in

lim
z→1

(z − 1)

X (z)− X̂ (z)︸ ︷︷ ︸
error

 = lim
z→1

(z − 1)

X (z) (1−H (z)HC (z))︸ ︷︷ ︸
X̂(z)=X(z)H(z)HC(z)

 = 0, (4-6)
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which is a general equation for the steady-state error for a compensator HC dependent on
the input signal X(z).
Suitable input signals X(z) to simulate a thrust pulse are the unit step function and the unit
ramp function. The general z-transform of a unit step and unit ramp input is:

X (z) = A (z)
(1− z−1)m (4-7)

with m = 1 and A(z) = 1 for the unit step and m = 2 and A(z) = Tz−1 for the unit ramp.
Inserting, for example, the unit step into the steady-state error equation (4-6) results in

lim
z→1

(z − 1) 1
(1− z−1) (1−H (z)HC (z)) = 0. (4-8)

From Equation (4-8), it can be seen that the limit z → 1 can only be 0 if

1−H (z)HC (z) =
(
1− z−1

)
, (4-9)

otherwise it becomes infinity. Rearranging Equation (4-9) results in

H (z)HC (z) = z−1. (4-10)

Therefore, the compensator must fulfil

HC (z) = z−1

H (z) = 1
zH (z) (4-11)

in order to avoid a steady-state error. One can see that the term z−1 is needed to have a
steady-state error of 0 for a unit step input. This term causes a time delay of 1 sample. In
a similar way, it can be found that higher order polynomials of z in the denominator are
required to remove the steady-state error for a different input signal. A polynomial of order
2 can be used for a ramp input.
Although the derivation is different, the obtained result is common knowledge in Digital
Signal Processing (DSP). The steady-state error for an open loop system is known to be
dependent on the number of times 0 occurs in the denominator. This number is also called
the type of the system. The type of a feedback system is defined as the power n of z which
can be factored from the denominator:

H (z) = N (z)
znD (z) . (4-12)

How many additional poles at 0 is required to avoid a steady-state error for different input
signals is shown in Figure 4-10.

Figure 4-10: Steady-state system error for different types of feedback systems [14].
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The thrust input signal can either be approximated with a step input or a ramp input. The
ramp input is more realistic, because it considers the rise and fall time of the thrust. The
transfer function of the Deconvolution Kalman Filter is always bi-proper and its poles occur
in complex conjugate pairs for every mode of the thrust stand. Hence, there are no 0 poles
and the Deconvolution Kalman Filter transfer function is of type 0. As figure Figure 4-10
shows, for type 0 systems, a finite steady-state error can occur for a step input [73]. Adding an
integrator to the augmented state-space system increases the system type by 1 and removes
the possibility of a steady-state error. To include an integrator 1

z into the state-space system,
which removes the steady-state error for a step input, the matrices AG, BG, CG and DG

described in Equation (2-97) have to be chosen as

AG= 0 BG = 1 CG= 1 DG= 0. (4-13)

To include a double integrator 1
z2 into the state-space system, which removes the steady-state

error for a ramp input, the matrices AG, BG, CG and DG have to be chosen as

AG =
[

0 0
1 0

]
BG =

[
1
0

]
CG =

[
0 1

]
DG = 0

. (4-14)

In the following, the second, double integrator is chosen to remove the steady-state error
caused by the ramp-like thrust input.

4-3-2 Heuristic Tuning of Q and R

In this section, a heuristic approach is developed to choose the filter tuning parameters Q and
R for the Deconvolution Kalman Filter for the application in dynamic thrust measurements.
A good guess for the measurement noise covariance matrix R is easily obtained from the
sensor noise. The statistics of the electronic sensor noise can be determined during periods
in which the sensing apparatus is turned on, but no thrust force is exerted, see Section 3-6-1.
This is the case at the beginning and end of each thrust measurement. The variance and mean
of the electronic noise can be considered to be time-invariant. Hence, the measurement noise
covariance matrix R is kept constant at a value typical for electronic measurement noise, for
example σR = 0.005N, in the following test series.

The tuning of the process noise covariance matrix Q is more difficult. All the model uncer-
tainties and inaccuracies as well as the noise affecting the process should quantitatively be
incorporated into Q [19]. Therefore, Q is determined in the same way as in Section 4-2-3,
by reconstructing an input signal using different Q/R ratios. Instead of using an example
by Bora [9], synthetic thrust measurements with known input are used. How the synthetic
test case is generated is explained Chapter 5. Because R is constant, the Q/R ratio can be
used as a single indicator for the chosen values of Q and R. In Figure 4-11, input signals
reconstructed for the Q/R ratios 0.1, 1, 10 and 100 are depicted. As before, it can be seen
that for Q/R ratios smaller than or equal to 1 the resulting amplitude is so inaccurate that it
cannot be used. The accuracy increases for Q/R ratios larger than 1, but it is only for ratios
above a 100 that the thrust pulse amplitude reaches an acceptable level of accuracy.
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Figure 4-11: Thrust signal recovered by Deconvolution Kalman Filter for different values of Q
and constant value of R.

In Figure 4-12 is depicted how the error decreases for ratios higher than 1, where the Nor-
malised Root Mean Square (NRMS) error, defined in Equation (2-48), is plotted for Q/R
ratios from 1 to 1000. It can be seen in the graph on the left-hand side that the error de-
creases almost exponentially for ratios until 100 and then levels off. To find the limit of the
accuracy, the relative error ‖x− x̂‖ / ‖x‖ between the input signal x and the reconstructed
signal x̂ was calculated for Q/R ratios from 1 to 12000 in the graph on the right-hand side.
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Figure 4-12: Left: NRMS error, Right: Relative error ‖x−x̂‖
‖x‖ for different values of Q and

constant value of R = 0.005.

It can be seen that the error decreases up to Q/R ratios of 10000, where it becomes constant
with a residual error of 0.006. The value reflects the standard deviation of the electronic noise
added to the signal of σR = 0.005. This suggests that the noise level of the electronic noise is
the limit of the accuracy.

A Q/R ratio of approximately 10000 can be obtained by using the standard deviation of the
measurement signal as an estimate for Q. This is illustrated in Figure 4-13, where a test
with an on time of 30ms and an off time of 30ms was plotted. The standard deviation of
the test from the first ignition of the thrust till it is turned off is Q = 54, as can be seen in
the graph on the left. The electronic noise contained in the signal has a standard deviation
of R = 0.005, as can be seen in the graph on the right. Hence, the Q/R ratio is about 104.
This choice for Q falls directly within the region of the lowest possible error in Figure 4-12
as indicated by the red line. Hence, the standard deviation of the measurement signal can be
used as an indication for the correct value of Q. However, it is more reliable to use only one
pulse than an entire series. Otherwise, long off times between the firing pulses can lower the
standard deviation.

Figure 4-13: Left: First four pulses used to determine the value of Q, Right: White Gaussian
random noise simulating the electronic noise, used to determine the value of R.

Using this knowledge, the following heuristic choice for the tuning parameters Q and R in
dynamic thrust measurements can be recommended:

Q = σ2
Q R = σ2

R, (4-15)

where σQ =
√

var (y∆t) is the standard deviation of the measurement signal from the first
ignition of the thruster till it is turned off for the last time, if the off time is shorter than
the time it takes for the transient response of the thrust stand to subside. If the off time
is longer, σQ =

√
var (y∆t) is the standard deviation of a decaying pulse. σR =

√
var (yt0)

is the standard deviation of the system noise measured before the first ignition of the thruster.
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4-3-3 Rational Tuning of Q and R

A completely different approach to use the covariance matrices Q and R for calibration is
suggested by Saha [19]. Instead of estimating the tuning parameters, he suggests the usage of
two metrics, J1 and J2, by which the designer can manually tune the linear optimal Kalman
Filter. A higher value of the metric J1 improves the sensitivity of the filter performance while
an increase in the metric J2 improves the filter robustness. Thus, the designer can either
choose the property which fits him best or find a compromise by balancing the two factors:

J1k = trace
{

(Ak +Bk +Rk)−1Rk
}

J2k = trace
{

(Ak +Bk)−1Bk
}
, (4-16)

where Ak and Bk are defined as Ak = CkAkPkA
T
kC

T
k and Bk = CkQkC

T
k . The two metrics

can be derived by rearranging the basic equations of the linear optimal Kalman Filter. The
finer details of the derivation can be found in Equations (10-15) in Saha’s publication [19].
In essence, the metric J1 measures the effect of the measurement noise covariance matrix Rk,
and the metric J2 the effect of the process noise covariance matrix Qk.

In Figure 4-3, it was shown that the Kalman gain and measurement state error covariance
matrix P converge to constant values after a few iterations because the model is a LTI system.
Therefore, the metrics J1 and J2 similarly converge to constant values for one set of values
of Q and R. In order to plot a graph, such as the ones in Figure 4-14, from which suitable
values for Q and R can be obtained by use of the two metrics, Saha suggests a constant value
of R as initial choice Q0 = R and then the calculation of both metrics for Q = 10p · Q0,
where p ∈ N is contained in the interval [−10, 10] and the x-axis values are computed with
nq = log (trace {Bk}).

The values of both metrics for the p values of Q and R for the Deconvolution Kalman Filter
applied on a thrust test are plotted in the graph on the left in Figure 4-14.1

Figure 4-14: Left: Error metrics J1 and J2 for the Deconvolution Kalman Filter applied to a
thrust test, Right: Benchmark results provided by Saha [19] for the Kalman Filter (green) and
the Extended Kalman Filter (red).

Figure 4-14 suggests a choice of Q of the same or similar magnitude as R for the best trade-
off between robustness and sensitivity. From Section 4-3-2 it is known, however, that such a

1 The value for R = Q = 0.005 was an outlier in J2 and had to be removed.

Richard B.H. Ahlfeld Master of Science Thesis



4-3 Deconvolution Kalman Filter for Dynamic Thrust Measurements 107

choice does not result in the correct amplitude when using the Deconvolution Kalman Filter.
Hence, Saha’s method cannot be used for the Deconvolution Kalman Filter to find a better
trade-off between Q and R, but it shows that for high choices of Q, the Deconvolution Kalman
Filter is more robust. Another advantage of Saha’s method is that not only single values can
be chosen for Q and R but also full matrices, as can be seen in Equation (4-16). Their effect
can still be evaluated with the same metrics. Normally, it is very difficult to evaluate the
effect of a full covariance matrix.

4-3-4 Automatic Tuning of Q and R

The Autocovariance Least Squares (ALS) method was developed by Rajamani in his PhD
thesis [74] and can be used to determine the values for Q and R [20]. It is considered by many
researchers as the most promising approach to determine the covariance matrices [75]. The
method developed by Rajamani [20] was adapted for the Kalman Filter by Aakesson [75], but
the details are beyond the scope of this thesis. The main idea behind the ALS method is to
address the covariance determination problem by focussing on the innovations of the Kalman
Filter. The innovation is defined as qk = yk −Cxk,k−1 and originates from the linear optimal
Kalman Filter equation:

α̂k+1,k+1 = α̂k+1,k +Kk+1 (yk+1 − Ck · α̂k+1,k)︸ ︷︷ ︸
innovation

, (4-17)

The autocovariance, which is minimised by the method, is defined as the variance of this
innovation qk:

var(qk) = E
[
qkq

T
k

]
. (4-18)

Application of GNU Octave ALS Toolbox

To apply the version of the ALS method available as a GNU Octave Toolbox2 for the Decon-
volution Kalman Filter, a few things have to be noted. First of all, for the matrices A, B and
C, the model matrices AH , BH and CH from Equation (2-94) and Equation (2-95) have to
be used and not the extended matrices in Equation (2-98):

AF =
[

0 1.00
−0.982880 1.149515

]
CF =

[
−0.529724 0.841263

]
. (4-19)

BF is an optional choice in the toolbox and is left out.3 The toolbox requires a coefficient
vector G for the random noise vt, which is not considered for the Deconvoluted Kalman Filter
model here, so G was set to 1, G = [1, 1]T . As initial guesses Q0 = 10 and R0 = 0.005 are
used. Then, the method requires an extract from the assumed input and output signal used
to identify the model. The best results are obtained by using a step input as input function,
and the decaying curve after the last pulse in the output signal as output signal. Both signals
are depicted in Figure 4-15.

2 The GNU Octave package of the Autocovariance Least Squares Toolbox can be downloaded from http:
//jbrwww.che.wisc.edu/software/als/download.html.

3 The entries of CF are computed with ai=ai−a0bi, where ai and bi are the coefficients of the numerator
and denominator polynomial, respectively.
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Figure 4-15: Input Signal and Output Signal used for Autocovariance Determination.

Under these conditions, the ALS method estimates the covariance matrices as

Qest = 3.081590
Rest = 1.659573e−4,

(4-20)

which gives a Q/R ratio of about 18000. Inserting Qest and Rest into the Deconvolution
Kalman Filter results in a relative error of 0.00624, which is slightly smaller than the smallest
error obtained by the heuristic choice, which is 0.00674.

The ALS method is integrated into the code of the Deconvolution Kalman Filter right after
the identification step when the input signal, output signal and the corresponding model
coefficients are determined. To increase the probability of reliable results, the heuristic choice
for Q and R suggested in Section 4-3-2 is used as initial guess for Q and R. Even so, during
testing, the ALS method produces inconsistent results. Occasionally, it returns a larger
estimate for R than for Q, which results in far too an low amplitude. The reason for this
estimation error could not yet be identified. Therefore, the autocovariance matrix is always
disabled as it is not fit for routinely performed thrust evaluation.

4-4 Uncertainty Analysis for the Deconvolution Kalman Filter

4-4-1 Uncertainty Analysis Using the Deconvolution Kalman Filter

During the application of the Deconvolution Kalman Filter, the variance of the measurement
state error is updated in each iteration in form of the state error covariance matrix P :

Pk,k = E

[(
ζ̂k,k − ζk

) (
ζ̂k,k − ζk

)T ]
. (4-21)

The variance describes the dispersion of a probability density function around the expecta-
tion. It can be interpreted to be the uncertainty associated with the expected value. In
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the Deconvolution Kalman Filter, the state-space system is augmented to contain the thrust
input signal. The state prediction is performed with

ζk+1,k = Aζk,k with ζk =
[
αTk xTk βTk wTk

]T
, (4-22)

where A and ζ are defined as in Section 2-5-4. The corresponding state error covariance
matrix P contains the entries

P =


σ2
α1 σ2

α1,α2 · · · σ2
α1,x

σ2
α2,α1

. . . · · · σ2
α2,x

...
... σ2

αn

...
σ2
x,α1 σ2

x,α2 · · · σ2
x

 , (4-23)

where σ2
x is the variance calculated for the input signal, and σ2

x,αi
are the covariances between

the input signals and the other states. To retrieve an estimate for the uncertainty attached
to the thrust input, the covariances have to be evaluated as well. This can be done by
using the conditional covariance theorem [76]: if a random vector Z with multivariate normal
distribution can be partitioned in two components X and Y , then the mean and variance of
Z can also be partitioned into a mean vector µ and a variance-covariance matrix Σ:

µ =
(
µX
µY

)
Σ =

(
ΣX ΣX,Y

ΣY,X ΣY

)
. (4-24)

The conditional variance-covariance matrix of Y given that X = x is equal to the variance-
covariance matrix of Y minus the terms involving the covariances between X and Y :

var (Y |X = x) = ΣY − ΣY XΣ−1
X ΣXY . (4-25)

The theorem can be applied directly to the matrix P by abbreviating the state vector as

ζ =
[
α1 · · · αn x

]
=
[

Λ x
]
, (4-26)

where the state variables αi were replaced with the vector Λ. In the same way, the matrix P
can be summarised as

P =
[

ΣΛ ΣΛ,x
Σx,Λ Σx

]
, (4-27)

where the sub-matrices of P are defined as

ΣΛ =


σ2
α1 · · · σ2

α1,αn

... . . . ...
σ2
αn,α1 · · · σ2

αn

 Σx = σ2
x (4-28)

and

Σx,Λ =
[
σ2
x,α1 · · · σ2

x,αn

]
ΣΛ,x =


σ2
α1,x
...

σ2
αn,x

 . (4-29)
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Using Equation (4-28) and (4-29), the variance of the input state x can be calculated with

var (x|Λ = Λk) = Σx − ΣxΛΣ−1
Λ ΣΛx, (4-30)

given a realisation of the coefficient vector Λ = Λk. Using Equation (4-30), the Deconvolution
Kalman Filter can automatically calculate the uncertainty attached to the each reconstructed
thrust sample during every iteration. If the Deconvolution Kalman Filter is applied to a LTI
system, the measurement state error covariance matrix P converges to a constant value after
a few iterations. Hence, only one estimate for the uncertainty in the input thrust signal can
be obtained with Equation (4-30).
To test the developed method, the 95% credible intervals were computed for a thrust signal
of amplitude 10N containing white Gaussian firing noise of 0.3N and electronic measure-
ment noise of 0.008N. The Deconvolution Kalman Filter estimates a variance of the error in
the input signal of 0.1106N, which corresponds to 95% credible intervals of ±0.1836. This
uncertainty margin is displayed in Figure 4-16.

Figure 4-16: Input thrust reconstructed with the Deconvolution Kalman Filter and 95% credible
intervals extracted from the state error covariance matrix P .

To validate the obtained estimate, a Monte Carlo simulation was performed for the same
test conditions. The simulation returned 95% credible intervals of width ±0.1N, as shown
in Figure 4-19. Hence, the credible intervals calculated by the Deconvolution Kalman Filter
are validated. The Monte Carlo simulation calculates the uncertainty for each sample and is
consequently more accurate than the Deconvolution Kalman Filter, which calculates only one
uncertainty margin for one entire test. However, though less accurate, the credible intervals
calculated by the Deconvolution Kalman Filter still provide a realistic upper boundary for the
uncertainty contained in the input thrust. Moreover, they can be obtained with significantly
less computational effort than with the Monte Carlo method. The performed Monte Carlo
simulation is described in the next section.
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Figure 4-17: 95% credible intervals attached to the deconvoluted input signal calculated with a
sequential Monte Carlo method with 106 trials.

4-4-2 Uncertainty Analysis Using an Efficient Implementation of the Monte
Carlo Method

The Deconvolution Kalman Filter provides the variance of the reconstructed input signal,
but only in a time-invariant form. To obtain a time-resolved description of the uncertainty, a
Monte Carlo simulation has to be performed. For this, a toolbox developed by Eichstädt [68]
is used. The toolbox is based on the same assumptions as used for the Kalman Filter:

- Knowledge of the system outputs y[n] is available in form of discrete-time observations.
- The measurement system is linear and time-invariant.
- The observational noise process ε[n] can be modelled as a stationary zero-mean ARMA
process. (That this last requirement is fulfilled, was shown in Section 3-6-2)

The covariance matrix Uba, required for the toolbox, is calculated as described in Section
2-6-3. As input signal, a step function is used without additional noise. The output signal
is calculated using the transfer function described by Equation (4-31). Noise of variance
σoutp = 0.008 is added, representative for the electronic measurement noise. The used transfer
function is the same as used for all Kalman Filter tests so far:

H(z) = 0.5887z2 + 0.2072z + 0.02314
z2 − 1.15 + 0.9771 . (4-31)

The filter covariance matrix Uba obtained in this way is

Uba = 10−3 ·


0.081738 −0.139598 0.0579391 −0.000881 0.000919
−0.139598 0.281667 −0.142762 0.002297 −0.002922
0.057939 −0.142762 0.085481 −0.001416 0.002030
−0.000881 0.002297 −0.001416 0.000066 −0.000066
0.000919 −0.002922 0.002030 −0.000066 0.000093

 . (4-32)

The mean of the coefficient vectors resulting from the used Monte Carlo simulation are:

a =
[

0.595895 0.156678 0.072552
]

b =
[

1.000000 −1.148859 0.981404
]
. (4-33)
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The uncertainty is evaluated using Equation (4-32) and (4-33) for a test case with an on time
of 800ms and a total signal length of 2000 samples, as displayed in Figure 4-18. Firing noise
of amplitude 0.3N is added to the input signal during the firing of the thruster and electronic
measurement noise of amplitude 0.008N is added to the entire resulting measurement signal.

Figure 4-18: Input and output signal used for the sequential Monte Carlo simulation in state-
space form (SMC-SS).

Using a sequential Monte Carlo method in state-space form (SMC-SS) with 106 trials, the
uncertainty associated with the reconstructed input signal was calculated and depicted in
Figure 4-19.

Figure 4-19: Uncertainty associated with the deconvoluted input signal calculated with a se-
quential Monte Carlo method in state-space form (SMC-SS) with 106 trials.

When comparing the measurement signal inFigure 4-18 and the associated uncertainty in
Figure 4-19, it can be seen that the uncertainty is dependent on transients in the thrust input
signal. It is highest after big changes in amplitude, which occur shortly after the thruster is
turned on at 0.2s and off at 1.0s.

Therefore, the overall measurement uncertainty is dependent on the PMF frequency of the
thruster and can be assumed to be higher for higher PMF frequencies. To illustrate this, a
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PMF test case with an on and off time of 100ms is shown in Figure 4-20. The uncertainty,
shown in the graph on the right-hand side, takes about 20ms to decay after the thruster has
been turned on or off. Hence the uncertainty is larger for PMF tests with shorter on or off
times.

Figure 4-20: Left: Input and output signal for a PMF test with an on and off time of 100ms,
Right: Associated uncertainty.

Figure 4-19 and Figure 4-20 show that the uncertainty is higher after an abrupt change in
the thrust signal. These abrupt changes are caused by the ignition of the thruster. Hence,
the accuracy of a PMF engine could be improved if the firing of the engine was less abrupt.
Figure 4-21 show the uncertainty for one thrust pulse, for which the rise time of the thrust
is tripled: the thrust needs 6ms instead of 2ms to reach 10N. The high uncertainty peaks
observed in Figure 4-19 and Figure 4-20 have almost vanished.

Figure 4-21: Uncertainty for a single thrust pulse, for which the rise of the thrust has been
tripled from 2ms to 6ms.

One can conclude that a fast pulsed firing of the thruster results in a significantly higher
uncertainty. The uncertainty can be reduced by increasing the turn on or turn off time of the
thruster. However, this requires a change in the valves of the rocket engine, which is difficult
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to achieve. Nevertheless, the results obtained by the uncertainty analysis can be taken into
account to improve the PMF accuracy of thrusters. For example, when defining how a thrust
level is established, combinations which result in high uncertainty can be avoided.

Richard B.H. Ahlfeld Master of Science Thesis



Chapter 5

Test Results

In this chapter the Deconvolution Kalman Filter and the Inverse Transfer Function method
(an improved version of the TDMS method) are compared to the Matlab edition of the
TDMS method, which is used by Airbus DS in Lampoldshausen to evaluate thrust mea-
surement of 10N Hydrazine thrusters. The methods are tested for surrogate test scenarios
covering the entire range of on and off times of the Airbus DS thrusters.1 To identify the
weight and source of different errors, tests with different configurations are performed. First,
only the parts of the deconvolution filters compensating the transient thrust stand response
are compared in Section 5-1-1. Second, the effect of random noise on the methods is in-
vestigated in Section 5-1-2. Third, the influence of the low-pass filters on the measurement
accuracy is tested in Section 5-1-3. The ability of the three methods to cope with firing noise
is tested in the most realistic test scenario in Section 5-2. Firing noise is left out in from
tests in Section 5-1-1 to 5-1-3 as including a strong random component into the measurement
signal makes it more difficult to evaluate the effect of low-pass filter and deconvolution filter.
Finally, the computational effort of all methods is compared in Section 5-3 and the test results
are summarised in Section 5-4.

5-1 Performance of Deconvolution Filters in Test Scenarios

The test scenario by which the digital deconvolution filters are validated and compared is
shown in Figure 5-1. An input signal (1) is created by manually prescribing a periodic series
of at least four rectangular or trapezoidal pulses shown in Figure 5-2. The rise time and fall
time of a thrust pulse is chosen realistically as 2ms. This is done to investigate how well the
methods can capture short rise times. Moreover, the rise time of many thrusters is shorter
than 5ms. A series of four pulses is chosen to evaluate the effect of different on and off times
on the total error. A periodic series with the same on and off times is selected, because an
analytical error analysis using Fourier series is not possible for aperiodic cases (as described
in Section 3-3-9). White Gaussian firing noise (2) with a standard deviation of approximately

1 The entire performance range of Airbus DS thrusters is publicly available in [13].
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3% of the nominal thrust value can be added optionally during the on times of the thruster. It
is optional, because it is easier to compare most features of the methods without the presence
of firing noise. Firing noise is included into the evaluation in the most realistic test scenario
described in Section 5-2.

Figure 5-1: Flowchart illustrating how synthetic data are generated to compare different decon-
volution methods.

Figure 5-2: Left: Self-generated input pulses with 10ms on and 100ms off time, Right: Measure-
ment signal generated with the (n,n) or (n,n-1) transfer function H(z). The oscillation resulting
from both models is almost identical.

Assuming that the thrust stand can be modelled as an Linear Time-Invariant (LTI) system,
a transient thrust stand response can be integrated into the surrogate measurement signal
by convolution with a transfer function (3). The following two discrete 2nd order transfer
functions are chosen to imitate the behaviour of a thrust stand:

(n, n) : 0.5887z2 + 0.2072z + 0.02314
z2 − 1.15 + 0.9771 (n, n− 1) : 0.5887z + 0.2295

z2 − 1.15z + 0.9761 . (5-1)

Both transfer functions are designed to have a single main mode at 0.3fNyquist. For a sampling
rate of 1000Hz this means approximately 150Hz. The main mode at 0.3fNyquist is constructed
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with a high gain of approximately 30 and strong damping for all higher frequencies. The
frequency response of both transfer functions is shown in Figure 5-3.

Figure 5-3: Frequency response of the two test models. Left: (2,2) model, Right: (2,1) model.
Both models are constructed to have the same frequency response.

After convolution with the transfer function, white Gaussian random noise (4) with a stan-
dard deviation of 0.05% of the nominal thrust value is added, so that an artificial thrust
measurement signal (5) of the thrust stand is created. The deconvolution filters (6) can be
applied to this signal to obtain an estimate x̂ (7) of the input thrust x.

The two transfer functions described in Equation (5-1) are needed, because the TDMS and
Inverse Transfer Function Filter are programmed for a transfer function of denominator degree
n and numerator degree n − 1 (from now on abridged with the tuple (n,n-1))2, while the
Deconvolution Kalman Filter needs a (n,n) transfer function for the proper set-up of its
state-space system. Hence, either a (n,n-1) transfer function has to be re-identified using a
(n,n) model for the Deconvolution Kalman Filter, or a (n,n) model has to be re-identified
by an (n,n-1) model for the two IIR filter methods. If a (n,n-1) transfer function is re-
identified using a (n,n) model, the numerator coefficient of z2 is identified as a very small
constant (10e-10) which can adversely affect the calculations. If a (n,n) transfer function is
re-identified using a (n,n-1) model, the transfer function can be only identified correctly for
the Deconvolution Kalman Filter. For the two IIR filters, the model can at best be identified
up to a time delay of one sample. This is due to the fact that if a transfer function with
one zero has to describe a transfer function with two zeros, the missing zero is interpreted as
a time delay, see Chapter 2-3-3 and Figure 5-4. Therefore, two different transfer functions
have to be used to ensure that the results are not affected by system identification errors.
The measurement signal for the IIR filter methods is created with a (n,n-1) transfer function
and for the Deconvolution Kalman Filter with a (n,n) transfer function. In this way, both
deconvolution filters can possess a full and accurate knowledge of the system dynamics and
no time delay occurs.

2 This is not a conventional notation, but merely introduced in this thesis to differentiate between the two
transfer functions.
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The deconvolution methods are evaluated by comparing the NRMS error statistic described
in Equation (2-48) of x and x̂. To allow a better comparison of the methods, the deviation
of the perfect fit in percent is used, instead of the goodness of fit. This changes the NRMS
static such that 0% means a perfect fit and 4% means a deviation of 4 % from a perfect fit.
The changed Normalised Root Mean Square (NRMS) statistic can be defined as

εfit = 100− 100

1− ‖x̂− x‖∥∥∥∥x̂− 1
n

n∑
i=1

x (i)
∥∥∥∥
 , (5-2)

where x is the test input and x̂ is the estimate of thrust input obtained by the deconvo-
lution method. The NRMS errors are always computed for the full length of the created
measurement signals. For a signal consisting of four consecutive pulses and their off times,
the measurement signal length is ∆t = 4 ·ton+4 ·toff . In this way, the calculated error is more
representative of the total error occurring during Pulse Mode Firing (PMF) measurements.
In visual comparisons, like in Figure 5-6, only the third pulse is looked at. The system is
tested for a set of input pulses with an amplitude of exactly 10N and varying on and off times:
5ms, 10ms, 50ms, 100ms and 1s. This set is chosen to cover the whole range of PMF tests, in
which the thrusters are tested by Airbus DS (see Figure 3-9) and to investigate the influence
of the pulse length on the measurement accuracy.

5-1-1 Comparison of Deconvolution Filters

At first, only the component of the deconvolution methods compensating the transient thrust
stand response is evaluated by excluding as many external influences as possible. No mea-
surement noise is added. Therefore, no low-pass filters are needed to complement the com-
pensation filters. Although the compensation filters still amplify frequencies higher than
approximately 0.4fNyquist, there is no noise contained in the signal which can be amplified.
Hence, the low-pass filters can be left out to avoid their effect on the signals.

Figure 5-4: Delay of one sample caused when identifying a (n,n) model with a (n,n-1) transfer
function.
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While the low-pass filters can easily be disabled for the Inverse Transfer Function method
and Deconvolution Kalman Filter, disabling the low-pass component of the original TDMS
method poses a problem. In the TDMS method, noise amplification is avoided by manually
adding a pair of zeros. By omitting these additional two zeros, the design of the TDMS filter
is somewhat crippled. However, if they remain, the TDMS method applies its low-pass filter
while the other two methods do not. To solve this, the additional low-pass filter zeros are
left out of the design of the TDMS method. Furthermore, the gain of the filter is corrected
as follows:

HTDMS_without_lp (iω) = HTDMS_without_lp (iω)
HTDMS (1) HTDMS (1) . (5-3)

In this way, the gain of the filter is not changed when the additional zeros are omitted.
Zooming into a longer test (with 1000ms on time) as shown in Figure 5-5, reveals that the
TDMS method and Inverse Transfer Function method have a constant bias of approximately
0.1N when reconstructing a 10N pulse. For a thrust amplitude of 10N, this is a 1% error, while
the Deconvolution Kalman Filter only has a bias of 0.00002N, that is an error of 0.0002%.

Figure 5-5: Bias in the TDMS, Inverse Transfer Function and Deconvolution Kalman Filter
method.

For all methods the largest part of the error is caused at the rising and falling edges of the
reconstructed thrust pulses, although none of the IIR filters causes overshoot without the
use of low-pass filters. A test with an on time of 10ms is shown in Figure 5-6. One can see
that the TDMS method needs 5ms to reach the true thrust amplitude, the Inverse Transfer
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Function method needs 2ms and the Deconvolution Kalman Filter needs 1ms. Hence, the
Deconvolution Kalman Filter is the most accurate for short pulses. The TDMS method’s
smoothing effect on the edges of a pulse is constant. Consequently, the error caused by the
flanks has a stronger weight, when the pulse length is shorter. For example, while for an on
time of 10ms in Figure 5-6 only 5ms in the middle of the pulse are hit correctly, 45ms are hit
correctly for an on time of 50ms.

Figure 5-6: Recovery of prescribed input signals with on and off times of the same duration:
10ms and 50ms.
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The dependence of the error on different on and off times can be seen in Table 5-1. To
quantify the error, the NRMS error statistic introduced in Equation (5-2) is used. The error
is calculated for the entire measurement signal. The true error of the TDMS method is
concealed to protect the intellectual property of Airbus DS. For the TDMS method, the table
only shows, whether the computed error is larger or smaller than 5%. It can only be revealed
that the error of the TDMS method increases for shorter on times as predicted in Section
3-3-9. The overall NRMS error is below 5% only for an on and off time of 1000ms. The Inverse
Transfer Function method behaves similarly to the TDMS method, only that the errors are
always smaller. The adaptations to the design of the filter increase the accuracy.

TMDS Method on|off time 5 ms 10 ms 50 ms 100ms 1000ms

5 ms >5 >5 >5 >5 >5
10 ms >5 >5 >5 >5 >5
50 ms >5 >5 >5 >5 >5
100 ms >5 >5 >5 >5 >5
1000 ms >5 >5 >5 >5 <5

Inverse Filter

5 ms 0.9465 0.9464 0.9457 0.9441 0.9393
10 ms 0.9556 0.9553 0.9540 0.9507 0.9411
50 ms 0.9910 0.9900 0.9863 0.9768 0.9486
100 ms 1.1060 1.1030 1.0920 1.0629 0.9742
1000 ms 2.0796 2.0636 2.0043 1.8410 1.2577

Kalman Filter

5 ms 0.00002 0.00002 0.00002 0.00003 0.00003
10 ms 0.00002 0.00002 0.00002 0.00002 0.00003
50 ms 0.00002 0.00002 0.00002 0.00002 0.00003
100 ms 0.00003 0.00003 0.00002 0.00002 0.00004
1000 ms 0.00005 0.00005 0.00005 0.00004 0.00003

Table 5-1: Goodness of Fit for different on and off times for TDMS, Inverse Transfer Function
and Deconvolution Kalman Filter method without noise and low-pass filter (rows contain the
same on time, columns the same off time).

The average error of the Inverse Transfer Function method is about 1%. The minimum error
is approximately 0.94% and occurs for on times of 5ms and all off times tested. The maximum
error occurs for an on time of 1000ms and off time of 5ms. This large error can be explained
with the bias of the method observed in Figure 5-6. Because of the bias for the Inverse
Transfer Function method holds: the longer the on time, the higher is the error caused by
the bias. For the same on time, the error decreases slightly for increasing off time. This effect
can be best observed for an on time of 1000ms, where the error is 2.07% for an off time of
2ms and 1.25% for an off time of 1000ms. This can be explained by the increasing weight of
the off times. As the NRMS error is computed for the entire signal and the thrust oscillation
takes only 400ms to decay, each off time adds 600 samples of comparing 0 with 0 to the error.
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5-1-2 White Gaussian Random Noise

The effect of random errors on the performance of the deconvolution filters is evaluated by
adding white Gaussian random noise with standard deviation 0.005N (corresponding to 0.05%
of the nominal thrust force for 10N) to the created measurement signals. The NRMS error for
different combinations of on and off times is listed in Table 5-2. The occurrence of random
noise decreases the accuracy for all methods. The average error for the Inverse Transfer
Function method increases from 1% to about 3% with noise. Similarly, the average error of
the Deconvolution Kalman Filter is increased from 0.002% to about 1%. Nonetheless, the
Deconvolution Kalman Filter is still the most accurate overall.

The only value which stands out, is the high error of 12% for the Inverse Transfer Function
method for an on time of 5ms and an off time of 1000ms. It can be explained by considering
that about 99.5% of this signal is 0. In the 0 regions, random noise is compared to 0, adding
to the overall error. This is also true for the Deconvolution Kalman Filter. However, for the
Deconvolution Kalman Filter the error is only 3.4%, because it improves the signal-to-noise
ratio while the Inverse Transfer Function method does not. The NRMS statistic is not a
good error indicator for tests with long off times and short on times. For such cases a visual
comparison of the true and deconvoluted input thrust is preferable.

Figure 5-7: Effect of random noise with standard deviation of σ = 0.15 and NRMS error for all
three deconvolution methods.

To visualise how sensitive the different deconvolution methods are to an increase in the noise,
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TDMS Method on|off time 5 ms 10 ms 50 ms 100ms 1000ms

5 ms >5 >5 >5 >5 >5
10 ms >5 >5 >5 >5 >5
50 ms >5 >5 >5 >5 >5
100 ms >5 >5 >5 >5 >5
1000 ms >5 >5 >5 >5 >5

Inverse Filter

5 ms 5.7754 5.8817 6.1530 6.8278 12.7755
10 ms 4.1244 4.1165 4.5193 5.3928 8.9498
50 ms 2.8686 2.8803 2.8648 3.2034 5.3235
100 ms 2.0274 2.0291 2.1416 2.1671 3.2183
1000 ms 2.8984 2.8311 2.7906 2.5780 2.0192

Kalman Filter

5 ms 2.3214 2.2983 2.3391 2.3649 3.3658
10 ms 1.7400 1.7348 1.7400 1.8333 2.4505
50 ms 1.1062 1.1086 1.1073 1.0816 1.3327
100 ms 1.0529 1.0088 1.0197 1.0165 1.0711
1000 ms 1.6272 1.6023 1.5187 1.4366 1.0057

Table 5-2: Goodness of Fit for different on and off times for TDMS, Inverse Transfer Function
and Deconvolution Kalman Filter method with white Gaussian noise with a standard deviation of
0.005N, but without low-pass filter.

measurement noise with a standard deviation of 0.15N is imposed on the synthetic measure-
ment signal. This noise is about 30 times larger than the commonly encountered electronic
noise. The reconstructed inputs thrusts are depicted in Figure 5-7. The noise is smoothed out
most evenly by the TDMS method. Figure 5-7 explains why the error is generally higher for
the Inverse Transfer Function method than for the Deconvolution Kalman Filter. Without
a low-pass filter, the Inverse Transfer Function method amplifies the imposed measurement
noise. The Deconvolution Kalman Filter’s output still shows a certain randomness. However,
the standard deviation of the noise in the reconstructed input signal is only 0.8244N while
it had a standard deviation 0.15N in the measurement signal. The Deconvolution Kalman
Filter does not amplify the noise: it decreases its amplitude and improves the signal-to-noise
ratio. The effect can be explained with results obtained by Chen in [8]. He discovered that
additional poles at 0 can improve the cancellation properties of a filter for white Gaussian
random noise. The integrator has the same effect, only that it does not cause a time delay.

5-1-3 Low-Pass Filter Effects

To avoid noise amplification, the low-pass filter of the Inverse Transfer Function method is
activated and a Butterworth filter of order 1 with a cut-off frequency of 0.5fNyquist is used.
A comparison of the result obtained with and without low-pass filter for electronic noise with
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standard deviation 0.005N is shown in Figure 5-8. It shows that the effect of the low-pass
filter on the signal flanks outweighs the effect of the noise cancellation considerably in the
NRMS error.

Figure 5-8: Input thrust of 10ms on time deconvoluted with Inverse Transfer Function method
without (left) and with (right) Butterworth low-pass filter of order 1.

Figure 5-9: Effect of white noise with standard deviation 0.15N on the TMDS, Inverse Transfer
Function and Deconvolution Kalman Filter method for a 10ms long pulse.
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To visualise the effect of the low-pass filter for stronger noise, noise with a standard deviation
0.15N is imposed and a Butterworth filter of order 3 with cut-off frequency 0.3fNyquist is in-
cluded into the Inverse Transfer Function method and into the augmented state-space system
of the Deconvolution Kalman Filter. The results are displayed in Figure 5-9. The TDMS
method shows regular ripples where the random noise has been smoothed. The application
of a stronger low-pass filter in the Inverse Transfer Function method becomes clearly visible
in the overshoots caused at the beginning and end of a firing pulse. For the Deconvolution
Kalman Filter, the noise cancellation is not as effective as for the other two methods, but no
overshoots occur and the signal flanks are both accurately represented.

TDMS Filter on|off time 5 ms 10 ms 50 ms 100ms 1000ms

5 ms >5 >5 >5 >5 >5
10 ms >5 >5 >5 >5 >5
50 ms >5 >5 >5 >5 >5
100 ms >5 >5 >5 >5 >5
1000 ms >5 >5 >5 >5 >5

Inverse Filter

5 ms 22.8822 22.8360 22.7947 22.7060 22.6889
10 ms 95.7037 95.7305 95.8219 95.2246 91.0405
50 ms 13.7061 13.7422 13.6629 13.5271 13.1509
100 ms 8.4377 8.4058 8.3264 8.1260 7.4934
1000 ms 5.4076 5.3672 5.2244 4.7988 3.2978

Kalman Filter

5 ms 1.3512 1.3577 1.5509 1.5799 3.0397
10 ms 1.0778 1.0172 1.1165 1.2222 2.1974
50 ms 0.6048 0.5929 0.6157 0.6343 1.0527
100 ms 0.5090 0.5144 0.5303 0.5305 0.7864
1000 ms 0.6906 0.6869 0.6707 0.6176 0.5027

Table 5-3: Goodness of Fit for different on and off times for TDMS, Inverse Transfer Function
and Deconvolution Kalman Filter method with Gaussian white noise and Butterworth low-pass
filter of order 1 with 0.5fNyquist cut-off frequency.

In Table 5-3, it can be seen that the low-pass filter causes larger errors than the random
noise. Therefore, it can be concluded that for the design of a low-pass filter for short PMF
tests, more attention should be paid to the flanks than to the noise cancellation. If a separate
Butterworth low-pass filter is applied as a follow-up after the Deconvolution Kalman Filter,
almost the same NRMS errors are produced as for the Inverse Transfer Function method.
Hence, the Deconvolution Kalman Filter works better without a subsequent low-pass filter.
Tests with higher noise levels, as well as tests with real data have revealed that a Butterworth
filter included into the state-space system has an improving effect on the thrust signal, if the
noise in the measurement signal is strong enough. For noise of standard deviation 0.005, it
is sufficient to replace the Deconvolution Kalman Filter with the same Butterworth filter of
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order 1 as used by the Inverse Transfer Function method to improve the accuracy as seen
in Table 5-3. Hence, the included low-pass filter in the state-space system has a smaller
effect on the measurement signal’s flanks than the separate execution after application of the
Deconvolution Kalman Filter.
From the test results above, it can be concluded that the integration of the low-pass filter into
the state-space system of the Deconvolution Kalman Filter can become useful for stronger
random noise in the output signal. For weak random noise in the output signal, the application
of an integrator produces in the best results. Similarly, the random firing noise in the input
signal can be reconstructed most accurately if an integrator is used. This is demonstrated in
the next section.

5-2 Realistic Test Scenario

The following test scenario tries to reconstruct realistic test conditions for small liquid rocket
engines. The surrogate input signal is generated as a series of trapezoidal pulses with an
amplitude of exactly 10N, a rise and fall time of 2ms, an on and off time of 50ms. The on
time is chosen as 50ms to make the effects of firing noise visible. Electronic noise with standard
deviation 0.008N is added to the output signal and firing noise with standard deviation 0.3N
is added during the on times of the thruster as depicted in Figure 5-10. The TDMS, Inverse
Transfer Function and Deconvolution Kalman Filter method all use their integrated low-pass
filter components.

Figure 5-10: Synthetic input and output data with firing noise in the input and electronic noise
in the output signal.

The deconvoluted input results are depicted in Figure 5-11. The smoothest results are ob-
tained by the TDMS method. The Inverse Transfer Function method follows the random
noise little better, but not consistently. The Deconvolution Kalman Filter is significantly
better suited to the task of extracting the random firing noise from the system response than
the other two methods. It is the only method capable of extracting the time-resolved firing
signal.
It is difficult to evaluate whether a better fit to the firing noise makes the Deconvolution
Kalman Filter more or less accurate. If the error is computed with respect to a smooth and
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noise-free input signal despite the presence of firing noise, the following NRMS errors are
obtained: 13.5145 for the TDMS method, 14.8277 for the Inverse Transfer Function method,
and only 3.574 for the Deconvolution Kalman Filter. The error of the TDMS method becomes
smaller compared with a smooth input signal, but it is still higher than the other two values.
Again, the reason is the bad fit at the signal flanks. The error of the Inverse Transfer Function
method also decreases slightly, because it smooths the firing noise. Still, even for a smooth
input signal the NRMS error is considerably smaller for the Deconvolution Kalman Filter than
for the other IIR filter methods. This can be explained by the Deconvolution Kalman Filter’s
ability to hit the amplitude most accurately. In addition, for the Deconvolution Kalman
Filter, the firing noise is zero-mean Gaussian around the correct amplitude value of 10N.
Once again, its mean gives the correct amplitude. Hence, even if a smooth input is desired,
the Deconvolution Kalman Filter is still the most accurate.

Figure 5-11: TDMS, Inverse Transfer Function and Deconvolution Kalman Filter method decon-
volution of input signal including firing noise with standard deviation 0.3N and electronic noise
with standard deviation 0.008N.

It still has to be tested whether the smooth reconstruction of the input signal or a recon-
struction of the input signal with firing noise is eventually more accurate. This is done by
comparing real thrust integrals and centroid times. However, following the indications of the
test series, it is most likely that the Deconvolution Kalman Filter creates the most accu-
rate thrust integrals and centroid times, because it has the smallest bias and hits the thrust
amplitude and signal edges most accurately.
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To obtain results comparable to those of the TDMS method for real test cases, a stronger low-
pass filter has to be integrated in the Inverse Transfer Function method and Deconvolution
Kalman Filter. The results most similar to the ones achieved with the TDMS method were
obtained by a Butterworth filter of order 3 with a cut-off frequency of 0.4fNyquist.

5-3 Computational Effort

The computation time needed by the three methods for measurement signals of increasing
signal length is depicted in Figure 5-12. The Inverse Transfer Function method is the fastest,
immediately followed by the TMDS method. The Deconvolution Kalman Filter needs sig-
nificantly longer. While all three methods show linear computation time, the Deconvolution
Kalman Filter’s gradient is more than ten times higher than that of the other two methods.
The reason for this is that the Deconvolution Kalman Filter has to solve a system of equa-
tions in each iteration to find the measurement state error covariance matrix P . The transfer
function filter methods only have to find their model once and then traverse the output signal
with it.3

Figure 5-12: Comparison of computational effort of the Deconvolution Kalman Filter and the
two transfer function approaches.

Long measurement tests with signal lengths of more than 300000 samples can take about 5
to 6 seconds when evaluated with the Deconvolution Kalman Filter. This is no significant
disadvantage for two reasons. First, a measurement signal of 300000 samples is 30 seconds
long. Hence, the Deconvolution Kalman Filter could already evaluate the measurement while
it is taken and finish in time without causing a delay. Second, even if the measurements are
evaluated a posteriori, the required evaluation time is not unreasonable. Even if 300 tests
were performed in one day, they could all be evaluated in 25 minutes. One can conclude that
the increase in computation time can be justified by the improvement in accuracy.

3 The measurement time was computed using 4 cores of an Intel i7 processor with 8GB RAM.
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5-4 Summary of Test Results

The accuracy of all methods shows a dependency on the length of on and off times during
PMF. In general, shorter on and off times disturb the oscillation of the system and increase
the error. The inaccurate representation of the true signal flanks in the reconstructed thrust
signal has been identified as the main reason behind the increasing error for shorter pulses.

The TDMS method has a strong smoothing effect on the measurement noise. White Gaussian
random noise has no great effect up to a certain magnitude and the firing noise occurring
during real tests is smoothed. Moreover, the TDMS method requires only little computational
effort. However, it has a constant bias of about 1% of the thrust level and produces a large
error at the signal flanks.

The Inverse Transfer Function method hits the signal flanks more accurately, but it, too,
has a bias of 1%. It needs an additional low-pass filter to avoid noise amplification due to
the ill-posedness of the inversion problem. How much the firing noise occurring during real
tests is smoothed depends on the order of this low-pass filter. The Inverse Transfer Function
method requires a little more computational effort than the TDMS method.

The Deconvolution Kalman Filter represents the signal flanks most accurately and with a
steady-state error so low, that it is in the order of the electronic noise. The Deconvolution
Kalman Filter does not invert the transfer function and, therefore, does not amplify the noise.
Its integrator has no effect on the system flanks and also reduces the noise amplitude. It is
more suitable for an accurate extraction of short pulses than the tested IIR filters. It can
reconstruct the firing noise as accurately as a smooth pulse. This accurate reconstruction of
the firing noise could be beneficial for the computation of the correct centroid times and thrust
integrals. This will have to be investigated further using real test data. The Deconvolution
Kalman Filter requires more computational effort than the other methods, but the additional
effort can be justified by the increase in accuracy.
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Chapter 6

Conclusion

In an age of fierce competition, as more private companies venture into the space sector,
the fuel and cost efficiency of satellites and their thrusters is of primary importance. A
precise firing of the thrusters during a position adjustment of a satellite can save precious
fuel and increases the service life [8]. Such precise thrust levels can be better obtained
by pulsed than by steady-state firing [15]. For this reason, the design of highly accurate
measurement evaluation methods for pulsed liquid rocket engines has received more attention
in the last decade [8, 15, 16, 17]. To avoid costly new designs for the majority of industrial
suppliers, a new evaluation method is needed to adapt commonly used strain gage type thrust
stands to the demands of pulsed thrust measurements. In this thesis, a new method was
developed to increase the measurement accuracy for such Pulse Mode Firing (PMF) rocket
thrust measurements. The method is intended as a cost-efficient alternative for industrial
rocket manufacturers who wish to increase their measurement accuracy without building a
new thrust stand specifically designed for PMF measurements.

Using a design made by Bora [9], the Kalman Filter was adapted to deconvolute the input
thrust from a noise-corrupted transient thrust stand response. This Deconvolution Kalman
Filter distinguishes itself from conventional, industrial IIR filtering approaches by its algorith-
mic simplicity and the few designing choices it requires. The designer only needs to supply
an Autoregressive-Moving Average (ARMA) model describing the thrust stand behaviour.
The model can be identified with, for example, a linear least squares method. The model
coefficients can be obtained most reliably by assuming a step function input and extracting
a corresponding decaying oscillation from the measurement signal. For Infinite Impulse Re-
sponse (IIR) filters, a stability analysis has to be conducted for the identified coefficients in
case they are unstable. This is not necessary for the Deconvolution Kalman Filter, because
it does not invert the model.

During testing, it was discovered that including an integrator into the augmented state-space
system of the Deconvolution Kalman Filter offered a way to remove the steady-state error
and, at the same time, attenuate white Gaussian measurement noise. A similar observation
was already made by Chen [8]. They noticed that a thrust compensator can be improved
by inserting an additional pole at 0 into the transfer function at the cost of causing a time
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delay. An integrator has the same effect, only that no time delay is caused. For dynamic
thrust measurements, the use of an integrator has two more advantages. First, white Gaussian
random components in the input signal can be reconstructed accurately even if it changes
at the rate of the sampling rate. For thrust measurements, this means that the combustion
noise of the rocket engine can be recovered accurately. Second, with the help of an integrator,
thrust pulses can be reconstructed in rectangular form with a reconstruction error in the order
of the standard deviation of the electronic measurement noise.

The ability to evaluate rectangular pulses makes the Deconvolution Kalman Filter especially
suitable for the evaluation of PMF rocket thrust measurements with short firing times. This
was demonstrated by comparing the Deconvolution Kalman Filter with two IIR filtering meth-
ods. It was found that a low-pass filter, incorporated into the augmented state-space system
of the Deconvolution Kalman Filter results in a more accurate reconstruction of rectangular
pulses than when applied in combination with an IIR filter.

The commonly known weak-spot of the Kalman Filter is the determination of its measurement
and process noise covariance matrices Q and R. It was found that for PMF thrust measure-
ments, Q can be chosen as the standard deviation of the oscillations following a sharp thrust
pulse and R can be chosen as the standard deviation of electronic noise picked up at the be-
ginning of a measurement. If these heuristic choices do not lead to good results, the rational
metrics developed by Saha [19] or the Autocovariance Least Squares (ALS) method developed
by Rajamani [20, 75] can be used.

In the special set-up of the augmented state-space Kalman Filter, the input signal is added
as an additional state. The state error covariance matrix P contains the variance of the
error for this state. The variance of the error in the input signal can be interpreted as an
estimate of the uncertainty in the reconstructed thrust signal and can be extracted using the
conditional covariance theorem. In this way, an evaluation of the measurement uncertainty
can be conveniently integrated into the deconvolution process for the Kalman Filter. By
contrast, the deterministic models used by FIR and IIR Filter approaches do not include an
evaluation of the measurement uncertainty, but need an additional Monte Carlo simulation.

A Monte Carlo simulation was carried out for the model used by the Deconvolution Kalman
Filter to obtain a time-resolved estimate of the uncertainty at each sampling point. This
Monte Carlo simulation showed that the uncertainty in dynamic thrust measurements is
greatly influenced by transients in the thrust input signal. To the knowledge of the author,
the uncertainty caused by the transients in dynamic thrust measurements has so far not been
considered in the design of pulsed rocket engines. The analysis performed in this thesis shows
that the uncertainty is tripled immediately after the thrust is turned on or off. Hence, a
fast PMF results in a significantly higher uncertainty level overall. The uncertainty could
be reduced by increasing the turn on and turn off times of the thruster. As this requires a
change in the valves of the rocket engine, it is difficult to achieve. Nonetheless, the results
obtained by the uncertainty analysis can be taken into account to improve the PMF accuracy
of thrusters. When defining how a thrust level is established, combinations which result in
high uncertainty can be avoided.
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6-1 Further Research Possibilities

Improvement of System Identification: Nonlinear Modal Analysis

The entire analysis performed in this thesis was based on the assumption that the thrust
stand can be modelled as a Linear Time-Invariant system. While it could be shown that this
assumption is legitimate, further research could investigate to what extent the accuracy can
be improved by including dynamic nonlinearities into the model. Ren [15] developed a very
promising recursive nonlinear method, which can accurately describe the frequency response
of system modes up to 2500Hz, as shown in Figure 6-1.

Figure 6-1: The theoretical model built by Ren with a nonlinear modal analysis is accurate
enough to replace the actual frequency response [15].

A similar approach could be used to reduce the system identification error and the uncer-
tainty caused by it. However, a better fit to the frequency response is no guarantee that the
deconvolution filter will perform more accurately, as shown in Section 3-5-3 of this thesis.
This problem would need to be addressed before implementing Ren’s method.

Improvement of Low-Pass Filter: Gaussian Filter

A low-pass filter designed especially for the purpose of complementing deconvolution filters
for dynamic thrust measurements still has to be found. Not only the Deconvolution Kalman
Filter, but all FIR and IIR filtering methods could be improved with a low-pass filter with
uniform time delay, abrupt cut-off, no pass-band ripples, no overshoot, no phase distortion
and, most importantly, short rise and fall times. One promising method is the Gaussian filter.
It produces no overshoot for a step function input and minimises the rise and fall time.

Improvement of Deconvolution Kalman Filter

The Kalman Filter can only be optimal, if the process and measurement noise covariance
matrices Q and R are predicted absolutely correctly. Although the heuristic and rational
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choices suggested in this thesis were shown to produce only small errors, the exact values for
Q and R could not be determined. Among the automatic methods to estimate the covariance
matrices Q and R, the ALS method is the most promising approach. Nevertheless, many
researchers have made similar experiences as in this thesis: the obtained estimates are not
always reliable. Further research could focus on improving the reliability of the ALS method.
Due to the popularity of the Kalman Filter, research in this direction is likely to find great
appreciation by the Digital Signal Processing (DSP) community.

Alternative Methods: Bayesian Deconvolution, OUFIR Filters, Numerical Approach

Two other slight disadvantages of the Deconvolution Kalman Filter are its restricted appli-
cability, as it can only be used for cases with white Gaussian noise, and its slightly higher
computation time in comparison to IIR filters. These problems could be avoided by switching
to different methods, which, however, might have disadvantages of their own.
It could be seen throughout this thesis that it is difficult to determine to what extent noise is
white Gaussian. This is a disadvantage, because the optimality of the Deconvolution Kalman
Filter depends on the assumption that the noise is white Gaussian. Different probability
distributions could be used by exchanging the Deconvolution Kalman Filter for the more
general concept of Bayesian Deconvolution, which operates similarly to the Deconvolution
Kalman Filter, but without the assumption of white Gaussian noise. The concept is not
new and a considerable amount of research in this direction has already been done [77, 78].
However, Bayesian Deconvolution has not yet been applied to the dynamic rocket thrust
measurement problem.
Less ambitious, but similarly fruitful would be the application of an approach, which ignores
the noise statics altogether. Attempts in this direction have been made by several researchers
and were recently summarised by Shmaliy [10]. According to Shmaliy, Optimal Unbiased FIR
(OUFIR) filters are better and more robust under real-world conditions with uncertainties
and non-Gaussian noise than the Kalman Filter. While the Kalman Filter is more accurate
in cases where the real noise covariance matrices are known exactly, OUFIR filters produce
only slightly less accurate estimates and are significantly more robust, because their accuracy
is not reduced by errors in the noise covariances, as illustrated by Figure 6-2.
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Figure 6-2: Effect of errors in the noise covariances of Kalman Filter and OUFIR filter estimates
[10].

A simple way to improve the computation time of the Deconvolution Kalman filter is the
parallelisation of the method. If the initial conditions are determined either with the Riccati
equation or in a short pre-run, the measurement signal can be divided into several sections, so
that the Deconvolution Kalman Filter algorithm can be parallelised to some extent. Alterna-
tively, it might be interesting to look at the problem from a completely different perspective
using a purely numerical approach. For instance, a fast and parallelised solver for integral
equations with convolution-type Kernel was proposed by Ye and Zhang [38]. Such approaches
could provide a distinctive advantage in terms of computation time, but have not yet been
rigorously compared to conventional deconvolution approaches applied in DSP.
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List of Acronyms

AEDC Arnold Engineering Development Center

ALS Autocovariance Least Squares

AR Autoregressive

ARMA Autoregressive-Moving Average

ATV Automated Transfer Vehicle

DSP Digital Signal Processing

FIR Finite Impulse Response

IIR Infinite Impulse Response

LTI Linear Time-Invariant

MA Moving Average

MSD Mass-Spring-Damper

NRMS Normalised Root Mean Square

PMF Pulse Mode Firing

RMS Root Mean Square

SOS Second Order System

SSF Steady-State Firing

TDMS Technical Data Management System

TMB Thrust Measurement Bridge
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